

MODELLED RESPONSE OF THE ELECTRICALLY STIMULATED HUMAN AUDITORY NERVE FIBRE

by Jacoba Elizabeth Smit

Submitted in partial fulfillment of the requirements of the degree Philosophiae Doctor (Biosystems) in the

Faculty of Engineering, the Built Environment and Information Technology UNIVERSITY OF PRETORIA

April 2008

© University of Pretoria

SUMMARY

Modelled response of the electrically stimulated human auditory nerve fibre by

Jacoba Elizabeth Smit

Promotor	:	Prof T Hanekom
Co-promotor	:	Prof JJ Hanekom
Department	:	Electrical, Electronic and Computer Engineering
Degree	:	Philosophiae Doctor (Biosystems)

SUMMARY

This study determined whether the Hodgkin-Huxley model for unmyelinated nerve fibres could be more comprehensively modified to predict excitation behaviour at Ranvier nodes of a human sensory nerve fibre, as specifically applied to the prediction of temporal characteristics of the human auditory system. The model was developed in three phases. Firstly, the Hodgkin-Huxley model was modified to describe action potential dynamics at Ranvier nodes using recorded ionic membrane current data from single human myelinated peripheral nerve fibres. A nerve fibre cable model, based on a combination of two existing models, was subsequently developed using human sensory nerve fibre morphometric data. Lastly the morphological parameters of the nerve fibre model were changed to resemble a Type I peripheral auditory nerve fibre and coupled to a volume-conduction model of the cochlea.

This study is the first to show that the Hodgkin-Huxley model equations can be modified successfully to predict excitation behaviour of a generalised human peripheral sensory nerve fibre without using the Goldman-Hodgkin-Katz equations. The model includes a more comprehensive establishment of temperature dependence of the physiological and electrical parameters compared to existing models.

Two versions of the human Type I auditory nerve fibre model were developed, one simulating an undamaged (non-degenerate) fibre and another a damaged (degenerate) fibre. Comparison between predicted and measured results indicated similar transient and persistent sodium, as well as slow potassium ionic membrane currents to those found in generalised sensory nerve fibres. Results confirm that chronaxie, rheobase current, mean latency, threshold and relative refractory periods depend on the amount of degeneracy of fibres. The model could account for threshold differences observed between different asymmetric waveforms. The combination of persistent sodium and slow potassium ionic membrane currents could in part predict non-monotonic excitation behaviour observed experimentally.

A simplified method was developed to calculate electrically evoked compound action potential responses following neural excitation. It provided a computationally effective way to obtain an estimate of profile widths from the output of models that calculate neural excitation profiles, and an indirect way to estimate stimulus attenuation by calculating the value of the parameter that produces the best fit to experimental data. Results also confirmed that electrode arrays located closer to the modiolus produce more focussed neural excitation spread than more laterally located arrays.

KEY WORDS

human, auditory nerve fibre, computational model, Hodgkin-Huxley model, generalised sensory nerve fibre, ionic membrane currents, strength-duration time constant, evoked compound action potential, conduction velocity, temporal characteristics

OPSOMMING

Gemodelleerde gedrag van 'n elektries-gestimuleerde menslike ouditiewe senuweevesel deur

Jacoba Elizabeth Smit

Promotor	:	Prof T Hanekom
Mede-promotor	:	Prof JJ Hanekom
Departement	:	Elektriese, Elektroniese en Rekenaar-Ingenieurswese
Graad	:	Philosophiae Doctor (Biosisteme)

SLEUTELWOORDE

mens, ouditiewe senuweevesel, berekeningsmodel, Hodgkin-Huxley-model, veralgemeende sensoriese senuweevesel, ioniese membraanstrome, sterkte-duur tydskonstante, ontlokte saamgestelde aksiepotensiaal, geleidingspoed, temporale eienskappe

OPSOMMING

In hierdie proefskrif is 'n moontlike uitbreiding van die Hodgkin-Huxley-model vir ongemiëliniseerde senuweevesels ondersoek. Die aanpassings is daarop gemik om die opwekkingsgedrag by Ranvier-nodes van 'n menslike sensoriese senuweevesel te kan voorspel, met spesifieke toepassing op voorspelling van temporale eienskappe van die menslike ouditiewe stelsel. Die model is in drie fases ontwikkel. Gemete ioniese membraanstroomwaardes vir 'n enkele, menslike gemiëliniseerde perifere senuweevesel is gebruik om aksiepotensiaaldinamika by Ranvier-nodes te beskryf. Daarna is morfometriese inligting van menslike senuweevesels gebruik om 'n toepaslike kabelmodel, wat op twee bestaande modelle gebaseer is, te ontwikkel. Laastens is morfologiese veranderlikes van hierdie model aangepas vir 'n Tipe I ouditiewe senuweevesel en aan 'n volume-geleidingsmodel van die koglea gekoppel.

Hierdie studie is die eerste wat bewys dat vergelykings van die Hodgkin-Huxley-model suksesvol aangepas kan word om opwekkingsgedrag van 'n algemene, menslike perifere sensoriese senuweevesel te voorspel, sonder om van die Goldman-Hodgkin-Katzvergelykings gebruik te maak. In vergelyking met bestaande modelle bevat hierdie model 'n meer uitgebreide daarstelling van die temperatuurafhanklikheid van die fisiologiese en elektriese veranderlikes.

Twee weergawes van die menslike Tipe I ouditiewe senuweevesel-model is ontwikkel, waarvan een 'n onbeskadigde (nie-gedegenereerde) vesel en die ander 'n beskadigde (gedegenereerde) vesel voorstel. 'n Vergelyking van voorspelde en eksperimenteel gemete resultate het aangedui dat kortstondige en meer blywende natrium-, sowel as stadige kaliumioon-membraanstrome bestaan, soortgelyk aan wat in algemene sensoriese senuweevesels aangetref word. Die afhanklikheid van kronaksie, reobasisstroom, gemiddelde vertraging, drempels en relatiewe refraktêre periodes tot die hoeveelheid degenerasie van vesels is aangedui. Die model kon ook drempelverskille tussen verskillende asimmetriese golfvorms voorspel. Die kombinasie van blywende natriumen stadige kaliumioon-membraanstrome kon, gedeeltelik eksperimenteel waargeneem, nie-monotone opwekkingsgedrag voorspel.

'n Vereenvoudigde metode is ontwikkel om die elektries ontlokte saamgestelde aksiepotensiaalreaksies van neurale opwekking, te bepaal. Die metode bied 'n berekeningseffektiewe manier om profielwydtes van die uitsette van modelle wat neurale opwekkingsprofiele bereken, te voorspel. Dit verskaf ook 'n indirekte manier om stimulusverswakking te bereken deur die waarde wat gemete resultate die beste voorspel, te bereken. Resultate het ook bevestig dat elektrodeskikkings nader aan die modiolus meer gefokusde neurale opwekkingsverspreidings voorspel as meer laterale elektrodeskikkings.

Acknowledgements

I acknowledge and thank the following persons for the role they played in my life during this research period:

My parents and sister for their love, support and encouragement during this time.

- **Friends** who had endured the up and downs that accompany a research degree. Sincere thanks for all the support and encouragement, the cups of coffee and tea, conversations, emails and good energy!
- Many others including family, acquaintances and fellow students whose kind enthusiasm for my pursuit has kept me going.
- Specifically My promotors for their interest in the study. Jackie Nel and Raymond Sparrow for valuable discussions on aspects of Physical Chemistry and biological membrane properties. Hans Grobler for expert administration of the computing clusters in the Engineering Faculty and for technical assistance. Linda Pretorius for advise on writing and editing. Niel Malan for introducing me to IATEX. Walter Meyer for support and encouragement. Mrs Barbara Bradley for patiently proofreading the thesis. Mrss Hannetjie Boshoff and Annamarie Bezuidenhout, the two angles in the library who can perform miracles obtaining interlibrary loans.
- **Anyone else** who do not fall under any of the above categories, but has played a part no matter how small.
- Lastly, my Creator and giver of inspiration.

This research has been supported by the National Research Foundation of South Africa.

My efforts regarding this study can be summed up by the following quote:

"Everything is vague to a degree you do not realize till you have tried to make it precise."

– Bertrand Russell

But I enjoyed all of it.

Contents

	Sum	ımary	ii
	Ops	omming	iv
	List	of abbreviations	vii
1	INT	TRODUCTION	1
	1.1	PROBLEM STATEMENT	1
		1.1.1 Context of the problem	1
		1.1.2 Research gap	3
	1.2	RESEARCH OBJECTIVE AND QUESTIONS	3
	1.3	HYPOTHESIS AND APPROACH	5
	1.4	RESEARCH CONTRIBUTION	6
	1.5	OVERVIEW OF THE STUDY	7
2	BA	CKGROUND REVIEW	10
	2.1	PHYSIOLOGICALLY BASED MODELS	11
		2.1.1 Animal-based models	11

		2.1.2	Human-based models	13
		2.1.3	Temperature dependence of nerve fibre excitation behaviour	13
	2.2	PERI	PHERAL AUDITORY NERVE FIBRE	14
		2.2.1	General overview and degeneration	14
		2.2.2	Type I auditory nerve fibre properties	15
	2.3	SING FIBR	LE-FIBRE VERSUS GROSS ENSEMBLE AUDITORY NERVE E STUDIES	16
	2.4	GROS TION	SS ENSEMBLE STUDIES: PREDICTING NEURAL EXCITA- SPREAD INSIDE THE COCHLEA	17
	2.5	TEMI	PORAL CHARACTERISTICS	18
		2.5.1	Absolute and relative refractory periods of the action potential	19
		2.5.2	Mean latency and jitter	20
		2.5.3	Threshold	23
		2.5.4	The threshold-distance relationship	25
		2.5.5	Strength-duration relationship	26
3	HU	MAN	RANVIER NODE MODEL	28
	3.1	INTR	ODUCTION	28
	3.2	MOD	EL AND METHODS	29
		3.2.1	Parameters applied to the nodal model	29
		3.2.2	Model output calculations	34
	3.3	RESU	LTS	36

		3.3.1 Action potential rise and	fall times	36
		3.3.2 Action potential amplitude	ıde	40
		3.3.3 Strength-duration relati	onships	42
	3.4	DISCUSSION		43
	3.5	CONCLUSION		45
4	GE	NERALISED HUMAN SEN	SORY NERVE FIBRE MODEL	47
	4.1	INTRODUCTION		47
	4.2	MODEL AND METHODS		48
		4.2.1 Parameters applied to t	ne nerve fibre model	48
		4.2.2 Model output calculatio	ns	54
	4.3	RESULTS		55
		4.3.1 Action potential rise and	d fall times	56
		4.3.2 Action potential duration	n times	57
		4.3.3 Action potential amplit	ıde	59
		4.3.4 Conduction velocities .		60
		4.3.5 Refractory periods		63
		4.3.6 Strength-duration relati	onships	64
	4.4	DISCUSSION		64
	4.5	CONCLUSION		68

5	TY	PE I HUMAN AUDITORY NERVE FIBRE MODEL 70				
	5.1	INTRODUCTION				
	5.2	MODEL AND METHODS				
		5.2.1	The auditory nerve fibre model	71		
		5.2.2	Modelling the degenerate nerve fibre	73		
		5.2.3	The volume conduction cochlear model	73		
	5.3	RESU	LTS	74		
		5.3.1	Strength-duration relationships	75		
		5.3.2	Refractory periods	75		
		5.3.3	Conduction velocities	76		
		5.3.4	Mean latencies	77		
	5.4	DISCU	USSION AND CONCLUSION	80		
6	EV	OKED	COMPOUND ACTION POTENTIAL WIDTHS	84		
	6.1	INTR	ODUCTION	84		
	6.2	MOD	EL AND METHODS	85		
		6.2.1	Models of the implanted cochlea and auditory nerve fibre	85		
		6.2.2	ECAP profile widths at the electrode array level	86		
	6.3	RESU	LTS	88		
		6.3.1	Neural excitation profiles	88		
		6.3.2	Predicted versus measured ECAP profile widths	90		

			6.3.2.1	Measured ECAP profile widths	90
			6.3.2.2	Auditory nerve fibre model predicted ECAP profile widths	90
			6.3.2.3	Normalised ECAP profile width ranges	91
		6.3.3	Stimulus model .	attenuation predicted with the auditory nerve fibre	93
	6.4	DISCU	USSION .		93
	6.5	CONC	LUSION		97
7	INF PRI	'LUEN EDICT	CE OF IONS	PULSATILE WAVEFORMS ON THRESHOLD	98
	7.1	INTRO	ODUCTIC	DN	98
	7.2	MODE	EL AND N	IETHODS	99
		7.2.1	Stimuli a	nd stimulation conditions	99
		7.2.2	Threshole	d predictions	101
	7.3	RESU	LTS		102
		7.3.1	Effect of	electrode array position	102
		7.3.2	Effects of	f a low-amplitude long-duration phase	103
		7.3.3	Effects of	f an interphase gap	104
		7.3.4	Effect of	an increase in the interpulse interval	106
		7.3.5	Comparis	son between measured and modelled results	107
		7.3.6	Effects of	f pulse rate	108

	7.4	DISCUSSION	109			
	7.5	CONCLUSION	116			
8	GEI	NERAL DISCUSSION AND CONCLUSION	117			
	8.1	RESEARCH OVERVIEW	117			
	8.2	RESULTS AND DISCUSSION	118			
	8.3	CONCLUSION AND FUTURE RESEARCH DIRECTIVES	121			
REFERENCES 123						
R	EFEF	RENCES	123			
R] A	EFEI ADI	RENCES DITIONAL TEMPORAL CHARACTERISTICS	123 143			
R] A	EFEF ADI A.1	RENCES	123143144			
A	AD A.1 A.2	RENCES DITIONAL TEMPORAL CHARACTERISTICS DISCHARGE RATE ADAPTATION	 123 143 144 145 			
Rl A	AD A.1 A.2 A.3	ADAPTATION	 123 143 144 145 146 			
R.I A	AD A.1 A.2 A.3 A.4	RENCES DITIONAL TEMPORAL CHARACTERISTICS DISCHARGE RATE ADAPTATION ALTERNATION ENTRAINMENT, ALSO REFERRED TO AS TIME-LOCKING	 123 143 144 145 146 147 			
R.I A	ADI A.1 A.2 A.3 A.4 A.5	RENCES DITIONAL TEMPORAL CHARACTERISTICS DISCHARGE RATE ADAPTATION ALTERNATION ENTRAINMENT, ALSO REFERRED TO AS TIME-LOCKING PHASE-LOCKING	 123 143 144 145 146 147 147 			

List of abbreviations

3D	:	Three dimensional	(p. 73)
AP	:	Action potential	(p. <mark>35</mark>)
ARP	:	Absolute refractory period	(p. 18)
ANF	:	Auditory nerve fibre	(p. 1)
ECAP	:	Electrically evoked compound action potential	(p. <mark>2</mark>)
FE	:	Firing efficiency	(p. <mark>20</mark>)
GHK	:	Goldman-Hodgkin-Katz	(p. <mark>6</mark>)
GSEF model	:	Generalised Schwarz-Eikhof-Frijns model	(p. 12)
HH model	:	Hodgkin-Huxley model	(p. 4)
IPG	:	Interphase gap	(p. 101)
IPI	:	Interpulse interval	(p. <mark>20</mark>)
MCL	:	Most comfortable level	(p. <mark>2</mark>)
MPI	:	Masker probe interval	(p. 19)
NRT	:	Neural Response Telemetry	(p. <mark>2</mark>)
ODE	:	Ordinary differential equation	(p. <mark>34</mark>)
RRP	:	Relative refractory period	(p. 18)
SEM	:	Scanning electron microscopy	(p. 14)
SFAP	:	Single-fibre action potential	(p. 17)
TEM	:	Transmission electron microscopy	(p. 14)