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CHAPTER 1 

 

 

Introduction�

The first transistor invented in 1947 by J. Bardeen and W.H. Brattain used germanium (Ge) as 

the semi-conducting material [1]. This opened the door to countless applications of solid state 

electronics. From early 1970s, microelectronics has been primarily a silicon-based technology, 

not only because of its high abundance in the Earth’s crust but also because of the stability and 

high quality SiO2 and its interface with Si substrate. The solid phase reaction at sub-eutectic 

temperatures between a thin metal film and a single-crystal semiconductor has attracted much 

interest because of its importance in Schottky barrier and contact formation, epitaxial growth and 

device reliability [2]. In the manufacturing of semiconductor devices and metal contacts have 

always played a pivotal role, especially in metal-oxide semiconductor field effect transistors 

(MOSFET) and complementary metal-oxide semiconductor (CMOS) devices. Contacts to ultra 

large scale integration (ULSI) circuits and interconnections require metal-semiconductor (MS) 

contacts which are thermally stable, have low resistivity and are compatible with the process 

technology. A good MS contact is essential for the successful operation of the electronic circuits 

and devices [3]. Due to the shrinking of the advanced Si-based complementary metal-oxide-

semiconductor (CMOS) device feature size, it is becoming increasingly difficult to further 

improve Si-based CMOS performance with traditional device scaling. Thus new material and 

device structures to relax the physical limitation in device scaling are now required. Ge has been 

regarded as the replacement for Si as the channel material in future high-speed CMOS 

technology, due to its lower effective mass of holes [4], higher carrier mobilities [5] compared to 

those of Si, and its relative compatibility with silicon processing [6]. The lack of a stable native 

Ge oxide has been the obstacle for the use of Ge in CMOS devices [5]. However, recent 

developments of next generation deposited high-k dielectrics, germanium oxynitride, ZrO2, 
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Al2O3 and HfO2 allow for the fabrication of high performance Ge-based metal-oxide 

semiconductor field effect transistors (MOSFETs) [5,7]. Low reactivity with oxygen in the high-

k dielectric is expected in the germanide/high-k gate stack structure [8]. 

Much work has been done on transition metal-Si systems but data concerning the behaviour of 

metal thin films on germanium upon heat treatment is relatively scarce, as little attention has 

been paid to transition metal-Ge systems. Therefore optimal implementation of germanium 

technology will require an understanding of metal-germanium interactions, from both 

metallurgical and electronic standpoints, and dynamic properties of process-induced defects in 

Ge. Most of the studies on metal-Ge reaction up to date have been carried out using in-situ 

annealing by slowly-ramping annealing temperature or rapid thermal annealing processing 

(RTP), rather than using furnace annealing, and also with less emphasis on morphological 

evolution. 

Metal-semiconductor (MS) interfaces are an essential part of virtually all semiconductor 

electronic devices [9]. The MS structures are important research tools in the characterization of 

new semiconductor materials [��]. Their interface properties have a dominant influence on the 

performance, reliability and stability of device [9,11,12]. These applications include microwave 

field effect transistors, radio-frequency detectors, phototransistors, heterojunction bipolar 

transistors, quantum confinement devices and space solar cells [13,14,15,16].   

The objective of this study was to add to the knowledge about: metal-germanium electrical 

properties and surface morphological evolution at different furnace annealing temperatures; 

defects induced in n-Ge during contact fabrication and annealing processes; and the temperature 

dependence of n-Ge Schottky diodes’ electrical parameters.  

An overview of the semiconductor theory with emphasis on Schottky contacts and defects is 

presented in Chapter 2. Chapter 3 contains the experimental details of the research. The results 

obtained from the study are presented in chapters 4, 5, 6, 7 and 8, while chapter 9 gives a 

summary and discussion of the results. 
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CHAPTER 2 

 

THEORETICAL ASPECTS 

 

2.1  Introduction 

In this chapter, semiconductor theoretical aspects are discussed. Section 2.2 and 2.3 present 

the crystal and the energy band structures respectively, for germanium. Metal-semiconductor 

contacts are discussed in section 2.4. Section 2.5 discusses the annealing studies and 

germanide formation. In section 2.6 and 2.7, the fundamentals of defects in semiconductors 

and the theoretical aspects of deep level transient spectroscopy are presented respectively.  

2.2 Crystal structure of Ge 

A crystalline structure is formed when a basis of atoms is attached to every lattice point, with 

every basis identical in composition, arrangement, and orientation [1]. Many semiconductors 

have a simple crystal structure with high degrees of symmetry. Elemental and compound 

semiconductors have either the diamond, zinc blende, or wurzite structures. Germanium, 

element number 32 [2], crystallizes into the diamond structure shown in Fig. 2.1, which is 

actually formed by two interpenetrating face-centered cubic (fcc) lattices. The primitive basis 

has two identical atoms at 
4
1

4
1

4
1

;000 associated with each point of the fcc lattice [1]. 

2.3 Band structure of Ge 

The essence of energy band theories for a crystalline solid is due to the fact that many 

physical and optical properties of a solid can be explained using its band structure. The band 

structure of a crystalline solid, that is, the energy-momentum (E-k) relationship, is usually 

obtained by solving the Schrodinger equation of an approximate one-electron problem [3]. In 

this method the total wave functions of electrons are chosen as a linear combination of the 

individual wave functions in which each wave function involves only the coordinates of one 
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electron [4]. The Bloch theorem states that the most generalized solution for a one-electron 

time-dependent Schödinger equation in a periodic crystal lattice is given by [3,4] 

rjk

kk erur
.)()( =φ         (2.1) 

where )(ruk is the Bloch function, which has the same spatial periodicity of the crystal 

potential, and )/2( λπ=k is the wave vector of an electron. 

 

Fig. 2.1 Crystal structure of diamond [1] 

The one-electron time-independent Schrödinger equation for which )(rkφ is a solution can be 

written as [3,5]: 

)()()()(
2

2
2

rErrVr
m

kkkk φφφ =+∇− �
�

�
�
�

� �
     (2.2) 

where )(rV is the periodic crystal potential, which arises from the presence of ions at their 

regular lattice sites. From the Bloch theorem it can be shown that the energy kE is periodic in 

the reciprocal lattice, and for a given band index, to label the energy uniquely, it is sufficient 

to use only k ’s in a primitive cell of the reciprocal lattice. 

The energy band structures for the elemental (Si, Ge) and III-V compound semiconductors 

have been studied theoretically using a variety of numerical methods. The three methods 

most frequently used are the orthogonalized plane-wave method [6,7], the pseudopotential 
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method [8], and the k.p method [9]. In most cases theoretical calculations of the energy band 

structures for these semiconductor materials are guided by the experimental data from the 

optical absorption, photoluminescence and photoemission experiments [4]. For any 

semiconductor there is a forbidden energy region in which allowed states cannot exist. 

Energy bands are permitted above and below this forbidden energy region. The upper energy 

bands are called conduction bands and below the forbidden energy region, the valence bands. 

The separation between the energy of the lowest conduction band and that of the highest 

valence band is called the band gap Eg, which is the most important parameter in 

semiconductor physics. The conduction and valence bands of germanium are shown in Fig. 

2.2. The Ge conduction band minimum and valence band maximum are not located at the 

same k-value, and so Ge is referred to as an indirect band gap semiconductor. The conduction 

band minimum of germanium crystal is located at the zone boundaries along the {111} axes. 

It is noted that the constant energy surfaces for electrons in germanium are ellipsoidal [4]. 

The value of the band gap for Ge at room temperature and under normal pressure is 0.66 eV 

[3].  

 

Fig. 2.2 Energy band structure of Ge, where Eg is the energy band gap. Plus signs indicate 

the holes in the valence band and minus signs indicate electrons in the conduction band [1] 

 

 
 
 



7 

�

The experimental results show that the band gap of Ge decreases with increasing temperature. 

The variation of the band gap with temperature can be expressed approximately by universal 

function [3] 

)(

2
)0()(

β
α

+
−=

T
T

ETE gg                                                               (2.3) 

where )0(gE  = 1.170 eV, α = 4.774 × 10-4eV/K and β = 235. 

Also to note is that at near room temperature, the Ge band gap increases with pressure, and its 

dependence on pressure is given by [3]: 

dP

dEg
 = 5× 10-6 eV/(kg/cm2)       (2.4) 

 

2.4 Metal-semiconductor contacts 

2.4.1 Introduction 

Metal-semiconductor (MS) interfaces are an essential part of virtually all semiconductor 

electronic and optoelectronic devices [10]. The physical properties of MS interfaces are 

widely studied, both for their basic physical properties and for their technological 

applications to electronic devices [11]. The MS structures are important research tools in the 

characterization of new semiconductor materials [12]. Their interface properties have a 

dominant influence on the performance, reliability and stability of devices [3,10,13]. 

Electronic properties of the MS contacts are characterised by their barrier height (BH). 

Boyarby et al. [14] suggested that the recent motivation for studying Schottky barrier 

formation is due to the recognition that both electronic and chemical equilibrium have to be 

considered together across a reactive interface between metal and semiconductor, as surface 

states and metal-induced gap states failed to take into consideration the chemical equilibrium 

at the interface. The chemical equilibrium results in interfacial atomic rearrangement, 

interdiffusion, and inter-metallic compound formation, which have a profound effect on the 

electronic equilibrium producing the Schottky barrier [15]. Therefore, the BH is likely to be a 

function of the interface atomic structure, and the atomic inhomogeneities at MS interface 
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which are caused by grain boundaries, multiple phases, facets, defects, a mixture of different 

phases, etc [16,17,18,19]. 

2.4.2 Schottky barrier formation 

When a metal is evaporated onto the surface of a semiconductor, a potential barrier is formed 

at the MS interface. The Fermi levels in the two materials must be coincident at thermal 

equilibrium. According to the Schottky-Mott model, the barrier height of an ideal metal/n-

type semiconductor Schottky contact is equal to the difference between the metal work 

function mφ  (the energy required to remove an electron from the material to the vacuum 

level) and the electron affinity sχ of a semiconductor (energy released when an electron is 

added to the material), which can be written as [20,21] 

smBn χφφ −=         (2.5) 

            a)� b)  

 

�

�

�

�

�

           c) d) 

 

 

 

Fig. 2.3 The formation of a Schottky barrier between a metal and a semiconductor (a) neutral 

and isolated states, (b) electrically connected, (c) separated by a narrow gap, and (d) in 

perfect contact, redrawn from ref. 22 
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Fig. 2.3 shows the formation of a Schottky barrier. Part (a) shows the metal and the 

semiconductor in their isolated, electrically neutral states for an n-type semiconductor with 

work function sφ  less than that of the metal, which, in practice, is the most important case. If 

the semiconductor and metal are connected by means of a wire, electrons pass from the 

semiconductor to the metal. Due to the flow of the electrons, there must be a negative charge 

on the surface of the metal and a positive charge builds up on the surface of the 

semiconductor, resulting an electric field in the gap between the metal and the 

semiconductor. The equilibrium condition is established when the Fermi levels of the two 

materials coincide as illustrated in Fig. 2.3 (b).  

The negative charge on the surface of the metal consists of extra conduction electrons 

contained within the Thomas-Fermi screening distance of about 0.5 Å. Because the 

semiconductor is n-type, the positive charge will be provided by conduction electrons moving 

from the surface leaving uncompensated positive donor ions in a region depleted of electrons. 

Due to the fact that the donor concentration is much lower than the concentration of electrons 

in the metal, the uncompensated donors occupy a layer of appreciable thickness w. The 

potential changes slowly over the depletion region, and results in bands bending downwards 

as shown in Fig. 2.3 (b). The difference between the electrostatic potentials outside the 

surface of the metal and semiconductor is given by δ=iV Ei, where δ is their separation and 

Ei is the electric field in the gap. As the metal and semiconductor approach each other, the 

electric field stays finite (Fig. 2.3 (c)), and results in  iV   tending to zero as the gap 

diminishes. When the metal and semiconductor finally touch (Fig. 2.3 (d)), the barrier due to 

the vacuum disappears completely, and the only barrier seen by electrons, is that resulting 

from the bending of the bands in the semiconductor. 

As shown in Fig. 2.3 (d), the height of the barrier relative to the position of the conduction 

band in the neutral region of the semiconductor is called the diffusion potential ( also called 

the built-in-potential), dV  can be expressed by 

ξφ −= BndV          (2.6) 

where ξ is the Fermi (or chemical) potential of an n-type semiconductor (the energy 

difference between the Fermi level and conduction band) and is given by [3] 
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D

C

N

N
kT lnξ         (2.7) 

where CN  is the density of states in the conduction band of the semiconductor, DN  is the 

doping density, k  is the Boltzmann constant and T  is the Kelvin temperature. 

2.4.3 Schottky barrier behaviour under forward and reverse bias  

A Schottky barrier diode is a majority-carrier device, as the current flow in such a device is 

due to the majority carriers (e.g electrons in an n-type semiconductor). Under zero bias 

conditions, electrons from both the semiconductor and the metal see the same barrier height 

relative to their Fermi levels. Therefore, there is no net flow of electrons over the barrier in 

either direction. 

Applying a bias voltage to the contact so that the metal is positive, the bands in the 

semiconductor are raised in energy compared to those in the metal, causing the electric field 

in the barrier to decrease. The decrease in electric field takes place within the semiconductor 

barrier region and shape of the barrier changes as illustrated in Fig. 2.4 (a).  The diffusion 

potential dV is decreased compared to the zero-bias condition. The electrons can now cross 

from the semiconductor to the metal more easily as they now see a reduced barrier. However, 

if a positive potential is applied to the semiconductor, the Fermi level of the semiconductor is 

lowered relative to that of the metal,  and the diffusion potential dV  is increased (Fig. 2.4 (b)), 

resulting in the number of electrons able to surmount the barrier into the metal decreasing. 

This also increases the width of the depletion region. Therefore, in the reverse biased mode, 

very little current flows through the device. 

2.4.4 Depletion layer 

For the determination of the spatial distributions of potential and electric fields, the depletion 

layer width, and the junction capacitance of a Schottky diode, a Poisson’s equation in the 

space-charge region has to be solved using proper boundary conditions. 
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(a)                                                                                  (b) 

Fig. 2.4 Schottky barrier (a) under forward bias, (b) under reverse bias, redrawn from ref. 

22. 

The boundary conditions are obtained from the barrier height, and that there is no electric 

field in the bulk of the semiconductor. Considering that x = 0 at the interface, the boundary 

conditions can be written as dVV =)0(  and E ( ∞ ) = 0, where V is the contact potential and E 

is the electric field. The Poisson’s equation in the depletion region of a Schottky diode can be 

written as 

)(
1

2

2

x
dx

Vd

s

ρ
ε

=         (2.8) 

where )(xρ  is the total charge density in the semiconductor at depth x and sε  is the 

permittivity of the semiconductor. In general, )(xρ  should include contributions from 

valence band, conduction band, ionized donors and acceptors, and deep levels in the band 

gap. This will result to a complicated equation that can only be solved by numerical methods. 

The equation can be simplified by applying the depletion approximation. By using the 

depletion or abrupt approximation, it is assumed that the semiconductor can be divided into 

two regions: the depletion region, directly below the metal, which contains no free carriers, 

and the bulk of the semiconductor, which is electrically neutral and in which the electric field 

is zero. In the depletion region, as there are no electrons in the conduction band, the charge 

density )(xρ  is DqN . If the width of the depletion region is w, the charge density in the 

semiconductor can be written as 
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wxif

wxifqN
x

D

0
)(ρ        (2.9) 

where DN  is the density of dopants and q is the electronic charge. 

By integrating Eq. (2.8) twice and applying the boundary condition, the depletion width can 

be written as 

D

ds

qN
V

w
ε2

=          (2.10) 

When the contact is biased by an externally applied voltage aV , the depletion width can be 

expressed as 

��
�

�
��
�

�
−−=

q
kT

VV
qN

w ad
D

sε2
       (2.11) 

where the term 
q

kT
 arises from the contribution of the majority-carrier distribution tail 

(electrons in the n side). It is seen from Eq. (2.11) that the depletion layer width is directly 

proportional to square root of applied voltage and is inversely proportional to the square root 

of the dopant density of the semiconductor. The electric field  and the potential in the 

depletion region are given respectively by 

E( x) = ( )wx
qN

s

D −
ε

        (2.12) 

and 

Bn

s

D wx
xqN

xV φ
ε

−−−= �
�

�
�
�

�
��
�

�
��
�

�

2
)(

2

      (2.13) 

Fig. 2.5 shows a graph of )(xρ , E(x), and V(x)  for a Schottky barrier. 
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Fig. 2.5 Graphs of the charge density )(xρ , electric field E and electrostatic potential V. 

The space charge density scQ  per unit area of the semiconductor and depletion layer 

capacitance C per unit area are given by 

)(2
q

kT
VVNqwqNQ adDsDsc −−== ε      (2.14) 

)/(2 qkTVV

Nq

V

Q
C

ad

Dssc

−−
=

∂

∂
=

ε
 =

w

sε
     (2.15) 

Eq. (2.15) can also be expressed in the form, 

Ds

ad

Nq

qkTVV

C ε

)/(21
2

−−
=        (2.16) 

or 



�

�


�

�
−=

dVCdq
N

s

D
/)/1(

12
2ε

      (2.17) 
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If DN  is constant throughout the depletion region, a straight line should be obtained by 

plotting 2/1 C  versus V. If DN is not constant, the differential capacitance method can be 

used to determine the doping profile from Eq. (2.17).  From the intercept on the voltage axis, 

the barrier height can be determined: 

φξφ ∆−++=
q

kT
ViBn         (2.18) 

where iV  is the voltage intercept, and ξ  is the depth of the Fermi level below the conduction 

band, which can be computed if the doping concentration is known and φ∆  is the image 

force barrier lowering and is given by 

1/ 2

04
m

s

qEφ
πε ε

� �
∆ = 
 


� �
        (2.19) 

with Em being the maximum electric field and being given by  

1/ 2

0

2 D i
m

s

qN V
E

ε ε
� �

= 
 

� �

        (2.20) 

2.4.5 Image-force lowering of the barrier 

When an electron is at a distance x from the metal, a positive charge will be induced on the 

metal surface. The force of attraction between the electron and the induced positive charge is 

equivalent to the force that would exist between the electron and the image charge located at  

-x. The image force is given by  

2

2

16 x

q
F

sπε

−
=          (2.21) 

where sε  is the permittivity of the semiconductor. The work done by an electron due to its 

transfer from infinity to the point x is given by  
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= .       (2.22) 

The energy above corresponds to the potential energy of an electron at distance x from metal 

surface, shown in Fig. 2.6, and is measured downwards from the x axis. When an external 

field E is applied, the total potential energy PE is given by  

qEx
x

q
xPE

s

+=
πε16

)(
2

       (2.23) 

 The maximum potential energy occurs at a position xm where the resultant electric field is 

zero; i.e. the field due the image force is equal and opposite to the field in the depletion 

region, or 

216 m
s m

q
E

xπε
=         (2.24) 

where Em is the maximum electric field. As a result of the image force, the maximum 

potential in the barrier is lowered by an amount 

m
m m2

16 4m m
s m s

qEq
x E x E

x
φ

πε πε
∆ = + = =      (2.25) 

The value sε  may be different from the semiconductor static permittivity, as during the 

emission process, the electron transit time from metal-semiconductor interface to the barrier 

maximum xm is shorter than the dielectric relaxation time, the semiconductor medium does 

not have enough time to be polarized, and smaller permittivity than the static value is 

expected [3]. 
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Fig. 2.6 Image-force lowering of barrier, redrawn from ref. 22. 

2.4.6 Ohmic contact 

An ohmic contact is a metal-semiconductor contact that has a negligible contact resistance Rc, 

relative to the bulk of the semiconductor. The contact resistance is defined as the reciprocal 

of the derivative of current density with respect to voltage. When evaluated at zero bias the 

contact resistance is given by 

1

0

−

=

�
�

�
�
�

�
∂

∂
=

V

c
V

J
R .        (2.26) 

A satisfactory ohmic contact should not significantly perturb device performance, and it can 

supply the required current with a voltage drop that is sufficiently small compared with the 

drop across the active region of the device [3]. To achieve ohmic contacts to semiconductors, 

for an n-type semiconductor, the metal work function, mφ must be less than that of the 

semiconductor sφ as depicted in Fig. 2.7 (a) and (b), and mφ  must be greater than sφ  in case 

of a p-type semiconductor. For an n-type semiconductor at equilibrium, electrons are 

transferred from the metal to the semiconductor, resulting in the aligning of the Fermi Levels. 
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This raises the semiconductor energy bands, reducing the barrier to electron flow between the 

metal and semiconductor.  

A more practical ohmic contact is a tunnel contact, shown in Fig. 2.7 (c). Such contacts have 

a high doping in the semiconductor such that there is only a thin barrier separating the metal 

from the semiconductor, and carriers can easily tunnel across the barrier. The doping density 

to achieve a tunnel contact should be 1019 cm-3 or higher. 

 

(a)                                                                          (b) 

 

                                 (c) 

Fig. 2.7 Energy band diagrams of a metal/n-type semiconductor with scm Φ<Φ . 

 
 
 



18 

�

2.4.7 Current transport mechanisms 

The current transport in metal-semiconductor contacts is mainly due to majority carriers, 

unlike in p-n junction, where the minority carriers are responsible. There are four main 

mechanisms by which carrier transport can occur in Schottky barriers in forward biased 

direction [3]. The transport mechanisms are shown in Fig. 2.8. The mechanisms are: 

A: thermionic emission over the potential barrier into the metal, 

B: quantum-mechanical tunnelling through the barrier (important for heavily doped 

     semiconductors and responsible for most ohmic contacts), 

C: recombination and/or generation in the space charge region, and 

D: hole injection from the metal to the semiconductor (equivalent to recombination in the  

     neutral region). 

 

Fig. 2.8 Current transport mechanisms redrawn from ref. 22. 
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2.4.7.1 Thermionic emission current. 

This mechanism is dominant for Schottky diodes with moderately doped semiconductors 

operated at moderate temperatures (e.g. 300 K) [3]. Emission of electrons over the barrier 

into the metal are governed by two basic processes, (i) electrons are transported from the 

interior of the semiconductor to the interface by the mechanism of drift and diffusion in the 

electric field of the barrier, and (ii) at interface, their emission into the metal is determined by 

the rate of transfer of electrons across the boundary between the metal and the 

semiconductor. These two processes are effectively in series, and the current is determined 

predominantly by whichever causes the larger impediment to the flow of electrons [22].  For 

high-mobility semiconductors (e.g. Si and Ge) the current transport can be described by the 

thermionic emission theory by Bethe [23] using the assumptions that the barrier height 
Bnφ  is 

much larger than kT, thermal equilibrium established at the plane that determines emission, 

and the existence of a net current flow does not affect thermal equilibrium so that one can 

superimpose two current fluxes. Because of these assumptions, the shape of the barrier 

profile is immaterial and current flow depends solely on the barrier height [3]. The current 

density msJ → from the semiconductor to the metal can be expressed as: 

�
∞

+
→ =

BF qE
xms dnqvJ

φ
        (2.27) 

where BF qE φ+  is the minimum energy required for thermionic emission into metal, and 

xv is the carrier velocity in the direction of transport. The electron density can be expressed in 

an incremental range as: 

dEEFENdn )()(=  

              = dEkTqVEEEE
h

m
ncc ]/)(exp[

)2(4
3

2
3

*

+−−−
π

   (2.28) 

where )(EN  and )(EF are the density of states and the distribution function, respectively; 

*
m  is the effective mass of the semiconductor; and nqV  is )( FC EE − . 
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Postulating that all the energy of electrons in the conduction band is kinetic energy, then 

2*

2

1
vmEE C =−   

vdvmdE
*=  

.2/*
mvEE C =−        (2.29) 

Substituting Eq. (2.29) into Eq. (2.28) results 

)4(
2
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2*3*

dvv
kT
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kT

qV

h

m
dn n π�

�

�
�
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�
�
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�
�
�
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�
�

�
�
�

� −
−=    (2.30) 

Eq. (2.30) gives the number of electrons per unit volume with speeds between v and dvv +  

distributed over all directions [3]. Resolving the speed into components along the axes with 

the x axis parallel to the transport direction, we have 
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zyx vvvv ++=         (2.31) 

With the transformation zyx dvdvdvdvv =24π  we obtain from Eqs. (2.27), (2.30) and (2.31) 
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where oxv is the minimum velocity required in the x direction to surmount the barrier  and is 

given by 
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where dV  is the built-in potential at zero bias. Substituting Eq. (2.33) into (2.32) we get 
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where Bφ  is the barrier height and equals the sum of nV  and dV  , and 

3

2*
* 4

h

kqm
A

π
=          (2.35) 

is the effective Richardson constant for thermionic emission. 

Since the barrier height for electrons moving from the metal into the semiconductor remains 

the same, the current flowing into the semiconductor is thus unaffected by the applied voltage 

[3]. It must therefore be equal to the current flowing from the semiconductor into the metal 

when equilibrium prevails (i.e., when V = 0). The corresponding current density at 

equilibrium  is 
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The total current density is given by the sum of Eqs.(2.34) and (2.36). 
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where STJ  is the saturation current density given by 
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Eq. 2.37 is the current density of an ideal diode. For a non-ideal diode, the series resistance 

sR , and the ideality factor,  n need to be factored into Eq. (2.37). The resulting expression 

becomes, 
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The ideality factor is obtained as the gradient of the slope of the linear region of the semi 

logarithmic I-V plot and is given by [3] 
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2.4.7.2 Quantum-mechanical tunnelling. 

This is usually the dominant transport mechanism in a heavily doped semiconductor at low 

temperatures. The current in the forward direction arises from the tunnelling of electrons with 

energies close to the Fermi energy in the semiconductor. This is known as ‘field’ emission 

[22]. If the temperature is raised, electrons are excited to higher energies and tunnelling 

probability increases very rapidly because the electrons ‘see’ a thinner and lower barrier. 

Although the number of excited electrons decrease very rapidly with increasing energy, there 

is a maximum contribution to the current from electrons which have energy well above the 

bottom of the conduction band. This mechanism is known as thermionic-field emission. 

When the tunnelling current dominates the current flow, the transmission coefficient is given 

by [3] 
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where 00E  is the characteristic energy level given by 
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The tunnelling current density is given by 
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2.4.7.3 Generation recombination current. 

This mechanism is as a result of the generation and recombination of carriers within the space 

charge region. The recombination normally takes place via localized centres, and the most 

effective centres are those with the energies lying near to the centre of the gap. The theory of 

the current due to such a recombination centre is the same for a Schottky diode as for p-n 

junction [22], and the current density is given by 
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where rir wqnJ τ2/0 = , in  is the intrinsic electron concentration, proportional to 

)2/exp( kTqEg− , w  is the depletion width and rτ  is the lifetime within the depletion 

region. The two main processes for recombination are direct and indirect recombination [24]. 

In the direct recombination process, an electron falls from the conduction band and 

recombines directly with a hole in the valence band. This is also called band to band 

recombination. This process is common as radiative transitions in direct bandgap 

semiconductors. For this process energy is conserved as the electrons and holes recombining 

are located close to the band edges of the semiconductor. In indirect recombination, an 

electron falls into a trap where it can later recombine with a hole.  

2.4.8 Barrier height determination 

The Schottky barrier height of a metal-semiconductor contact can be determined by current –

voltage (I-V) and the capacitance-voltage (C-V) measurement techniques. First, considering 

the I-V measurement technique, the barrier heights are deduced from the I-V characteristics, 

which are analysed by the thermionic emission model given by the Eq. (2.37). The 

extrapolated value of current at zero voltage in the semi-log forward bias ln I-V 

characteristics is the saturation current Io, and the barrier height can be obtained from the 

equation 
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        (2.45) 

where A  is the diode effective are. 
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The barrier height can also be determined using the capacitance-voltage measurement 

technique. In this technique, the concept of the induced or image charge in the metal and 

semiconductor is used. To use this type of method for barrier height determination, it must be 

assumed that the diode should be nearly ideal such that the doping concentration remains 

uniform in the semiconductor. From the plot of 1/C2 vs V, the barrier height can be calculated 

as given in Eq. (2.18).  

2.4.9 Barrier height inhomogeneities 

The most interesting form of Schottky barrier height (SBH) inhomogeneity is the presence of 

small regions of the metal-semiconductor interface with a low SBH, embedded in an interface 

with an otherwise uniform high SBH [25]. This will result in the lateral variations of the 

electrostatic potential at the interface, causing the current to flow preferentially through the 

lower barriers in the potential distribution [26]. Assuming a Gaussian distribution of the 

inhomogeneous barrier heights with a mean value Bφ  and a standard deviation sσ in the form 

[27]: 
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where πσ 2/1 s  is the normalization constant. The total current I (V) is given by [27] 
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On integration 
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where 0I is the saturation current, apφ  and apn are the apparent barrier height and apparent 

ideality factor at zero bias respectively: 
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It is also assumed that the standard deviation sσ  and the mean value of the Schottky barrier 

height Bφ  are linearly bias-dependent on Gaussian parameters that are given by 

VBB 20 ρφφ +=  and Vss 30 ρσσ += , where 2ρ  and 3ρ  are the voltage coefficient that may 

depend on temperature (T) and they quantify the voltage deformation of the barrier height 

distribution [27,28]. The decrease of zero-bias barrier height is caused by the existence of the 

Gaussian distribution and the extent of influence is determined by the standard deviation 

itself [26,27]. The effect is particularly significant at low temperatures, as at low 

temperatures, charge carriers have very low energies to surpass the barrier, tunnelling of 

electrons is the dominant process. Because the barrier is non-homogeneous, further tunnelling 

through the low barrier regions cause the deviation of the barrier height from the value that 

could be obtained for a uniformly distributed barrier at the metal-semiconductor interface 

[29]. From Eq. (2.50), the plot of apφ  versus 1000/T should be a straight line giving 0Bφ  and 

0sσ  from the intercept and slope respectively. The standard deviation is a measure of the 

barrier homogeneity.  The lower the value of 0sσ corresponds to a more homogeneous barrier 

height and better diode rectifying properties.  

Following the barrier height inhomogeneities correction, the Richardson plot is modified by 

combining Eqs. (2.49) and (2.50): 
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where **A  is the modified Richardson constant. A plot of the modified ��
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versus 1000/T yields a straight line with the slope giving the mean barrier height and the 

intercept giving the modified Richardson constant. 

 

2.5 Annealing studies and germanides formation 

Annealing is a heat treatment wherein a material is altered, causing changes in its properties 

[30]. Isothermal annealing is when the heat treatment is carried out at a constant temperature, 

and isochronal annealing, is when the heat treatment is carried out at constant time duration. 

Annealing occurs by the diffusion of atoms within a solid material, so that the material 

progresses towards its equilibrium state. To avoid oxidation, annealing is carried out in Ar 

gas. The solid state reaction at subeutectic temperatures between a thin metal film and a 

single-crystal semiconductor has attracted much interest because of its importance in 

Schottky barrier and contact formation, epitaxial growth and device reliability [31]. Inter-

diffusion, contaminations, chemical reaction, compound formation, interface roughening, 

defect generation, dopant migration, etc. can all be derived by thermodynamics due to the 

thermal annealing [32]. It is well known that the chemical reactions between metals and 

semiconductors at an interface can play an important role in the electrical properties of 

devices. During the annealing process, metals may react with germanium and new 

compounds (germanides) would form, resulting in the change of barrier heights. Hence, the 

change of barrier heights may be attributed to the combined effects of interfacial reaction and 

phase transformation [33].  Thermal degradation at high annealing temperatures includes two 

mechanisms: agglomeration and phase transformation [34]. Agglomeration starts with grain 

boundary grooving and results in islands formation. Agglomeration is driven by the 

minimization of the total surface/interface energy of the germanide and germanium substrate 

[35].  In this work, the effects of thermal treatment on the electrical and morphological 

evolution characteristics of metal germanides at different annealing temperatures were 

investigated. 
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2.6 Fundamentals of defects in semiconductors 

2.6.1 Introduction 

It is generally known that a perfect crystal lattice does not exist in real crystals. Defects or 

imperfections are always found in all crystalline solids. The existence of defects has a 

profound effect on the physical properties of a crystal. These imperfections may introduce 

electronic energy states into the semiconductor bandgap, either as shallow levels or deep 

levels. Shallow level defects are located near the valence band for acceptors and conduction 

band for donors. These shallow levels, which are ionized at room temperature, are normally 

created by impurity elements used as dopants in semiconductors and provide free carriers to 

form p-type or n-type semiconductor.  Deep level defects are those found deeper in the band 

gap than dopant levels. The deep levels do not contribute much to the free charge carriers, as 

they have higher ionization energies. The deep level defects act either as traps or as 

recombination centres in the semiconductors, depending on the capture cross section of the 

electrons and holes [36]. The semiconductor free carrier density is reduced by traps, whereas 

recombination centres introduce generation-recombination currents in rectifying devices. In 

the electronic industry the trap-induced carrier reduction is utilised to form areas of high 

resistivity for device isolation [36]. Depending on the application, these defects may either be 

beneficial or detrimental for optimum device functioning [37]. The discussion in this section 

is more focused on the vacancy defects, interstitial defects, the E-centre and the A-centre. 

2.6.2 Vacancy Defect 

A vacancy defect (V) is created when an atom moves out of its regular site, and is shown in 

Fig. 2.9. A vacancy lattice site is considered as the simplest of all defects [38]. In some 

semiconductors (e.g. Ge ), the vacancy can have up to five charge states, V++, V+, V0, V- and 

V=.  
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Fig. 2.9 Schematic representation of the vacancy, Interstitial and Substitutional defects 

Fig. 2.10 (a) depicts a vacancy defect in a diamond lattice. In order to form a vacancy, four 

bonds are broken. The broken bonds (dangling) bonds can form new bonds leading to atomic 

displacements [39]. The number of electrons which occupy these dangling bonds depend on 

the charge state of the vacancy. These small atomic displacements of the neighbours of the 

vacancy can be inward or outward displacements, which may either, preserve the local 

symmetry (relaxation) or alter it (distortion). The amplitude of these displacements as well as 

the new symmetry depends on the type of the bonding [39]. The split-vacancy is shown in 

Fig. 2.10 (b), where a one neighbour of the vacancy is displaced half way between its original 

position and the centre of the vacancy. This configuration is also known as the saddle-point 

configuration for vacancy migration in the diamond lattice. The split-vacancy is often 

important primarily to help describe the transition state in vacancy migration [40]. The 

divacancy results from the removal of two neighbouring atoms. In general the divacancies 

can be created in semiconductors by particle irradiation either as a primary defect (when 

collision casacade is dense enough) or as a secondary defect by pairing of single vacancies 

diffusing randomly.  

 

         (a)                                      (b) 

Fig. 2.10 Configuration of (a) the vacancy in a diamond lattice and (b) the saddle-point. 
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2.6.3 Interstitial Defect 

An interstitial defect is due to an atom occupying a site in the crystal structure, which is not 

its regular lattice site as depicted in Fig. 2.9. It can be of the same species as the atoms of the 

lattice or of different species (interstitial impurity). The energy of formation of an interstitial 

defect is higher than the corresponding energy for a vacancy. The introduction of interstitial 

results in large lattice strain, and the motion of such defect reduce this strain; hence 

interstitial occurs more readily than a vacancy. In radiation damage, interstitials and 

vacancies occur in equal numbers, and more often the interstitial is associated with a nearby 

vacancy, the vacancy having resulted from the same collision event. This Frenkel or 

interstitial-vacancy pair can be taken as a single defect. 

2.6.4 The E-centre and A-centre 

The E-centre or vacancy-donor pair is the dominant defect produced in electron- or gamma-

irradiated float zone silicon, oxygen lean silicon-germanium and germanium [41]. The E-

centre results from a vacancy trapped next to a substitutional donor atom. It can form either 

as a primary defect or when the impurity atom captures a mobile vacancy. It has been found 

that the E-centre has at least three charge states in Ge: the double negative, the single 

negative, and the neutral [42]. For the V-Sb pair, the ionization enthalpy of the double-

acceptor is naH∆ = 0.377 eV as determined by reverse biasing DLTS [43,44], and that of the 

single acceptor is paH∆  = 0.307 eV as determined by forward-pulsing DLTS [43,44]. The A-

centre or vacancy-oxygen complex is produced when a vacancy is trapped next to an oxygen 

atom in an interstitial position. Also an A-centre defect can be formed as a primary defect or 

when an oxygen impurity traps a mobile vacancy.  The A-centre defect concentration is 

dependent on the O impurity concentration in the sample. The A-centre is a dominant defect 

induced by irradiation with high energy particles (electrons, protons, etc) in Si crystals grown 

by the Czochralski method [45] and oxygen-rich Ge crystals [46]. In Si the A-centre is known 

to exist in two charge states: singly negatively charged and neutral with the corresponding 

acceptor level at about Ec-0.17 eV [46,47]. It was argued in Refs. [48,49] that the A-centre in 

Ge has three charge states, double negative (VO--), singly negative (VO-) and neutral (VO0) 

and confirmed by Markevich et al. [46] that the Ec�0.21 eV and Ev+0.27 eV traps in Ge are 

related to (--/-) and (-/0) levels of the A-centre. 
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2.7 Aspects of Deep Level Transient Spectroscopy 

2.7.1 Introduction 

Deep levels are quantum states which are within the forbidden bandgap of the semiconductor; 

deep levels influence the electrical and the optical properties of semiconductor materials. 

Since deep level defects can be detrimental to or enhance the operation of devices fabricated 

on semiconductors, it is important to know the electrical properties of these deep levels. 

Many processes that occur in deep levels are nonradiative, and therefore cannot be observed 

by optical techniques. Deep level transient spectroscopy (DLTS) is one of the techniques 

used to determine the electrical properties of deep defects. 

2.7.2 Deep level transient spectroscopy 

In this study, deep level transient spectroscopy (DLTS) was used to evaluate and characterise 

the electrically-active defects induced in Ge Schottky contacts during contact fabrication and 

annealing processes. This is a powerful and sensitive high-frequency capacitance transient 

thermal scanning technique, which is useful for observing traps in semiconductors. This 

technique was developed by Lang [50] in 1974, and it monitors the change in capacitance of 

the depletion layer of a p-n junction or Schottky diode as a result of charge transfer between 

the deep levels and conduction or valence bands. It displays the spectrum of traps in a crystal 

as positive and negative peaks on a flat baseline as a function of temperature. The sign of the 

peak shows whether the deep level is near the valence band or conduction band, the height of 

the peak is proportional to the trap concentration, and the position, in temperature, of the peak 

is determined by the thermal emission properties of the trap [50]. Furthermore, one can 

measure the activation energy, and electron- and hole-capture cross sections for each trap. 

2.7.3 Emission and capture of carriers by trapping centres 

Whenever the thermal equilibrium condition of a system is perturbed, there are processes that 

take place to restore the system to equilibrium. This may involve the emission and capture of 

the electrons and holes. A defect level is defined as an electron trap as one which tends to 

have deficiency of electrons, and thus capable of capturing them from the conduction band. 

Likewise, a hole trap is one which is full of electrons, and thus capable of having a trapped 

electron recombining with a hole [50]. An electron trap occurs when the electron capture rate 
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cn from the conduction band is much larger than the hole capture rate cp from the valence 

band, i.e. 

cn >> cp, and a hole trap has to have cp >> cn. A recombination centre is one for which cn and 

cp are almost similar, i.e. cn ≈ cp. Fig. 2.11 depicts the four common processes that a deep 

level (ET) can interact with the conduction band and the valence band. If the trap is neutral it 

may capture an electron from the conduction band (Fig. 2.11 (a)), characterized by cn. After 

an electron capture, one of the two events can take place, the centre can either emit the 

electron back to the conduction band, i.e. electron emission en (Fig. 2.11 (b)), or it can 

capture a hole from the valence band, depicted in Fig 2.11 (c) as cp. Similarly for a hole trap, 

occupied by a hole, either it emits the hole back to the valence band ep in Fig 2.11 (d) or 

captures an electron (Fig. 2.11 (a)). 

 

Fig. 2.11 Emission and capture processes involved by trapping at a deep level ET. 

Shockley et al. [51], Hall [52] and Bourgoin et al. [53], have extensively discussed the 

kinetics of emission and capture of carriers from defect levels. The electron and hole capture 

rates are given by: 

nvc nnn ><= σ ,        (2.53) 

pvc ppp ><= σ ,        (2.54) 
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where nσ  and pσ  are defect’s capture cross-sections for capturing electrons and holes 

respectively, and n is the electron concentration, p is the hole concentration and <vn�� is the 

average electron thermal velocity: 
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3
m
kT

vn         (2.55) 

where m* is the effective mass of the electron, k is the Boltzmann constant, and T is the 

temperature in Kelvin. A similar equation can be written for vp. The thermal emission rate en, 

of electrons deep level to the conduction band is proportional to the Boltzmann factor      

exp(-ET/kT), and can be written as [54,55] 
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where TCT EEE −=∆ , is the activation energy of the defect level, g  is the degeneracy of the 

defect level, T is the temperature in Kelvin, CN  is the effective density of states in the 

conduction band given by 
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where CM  is the number of conduction-band minima,  h  is Planck’s constant. The emission 

rate for holes is also expressed in an analogous way. 

If the capture cross-section of the defect is assumed to be independent of temperature, the 

product Cn Nv ><  in Eq. (2.56) has 2T dependence. It follows that an Arrhenius plot of 
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T
en  as a function of 

1
T

 should be a linear relationship from which the defect’s energy 

TE  and capture cross-section nσ  may be determined. These two parameters are referred to as 

the defect’s signature. The defect signature is one of the essential parameters used to identify 

a defect during electrical characterization. If the capture cross-section is assumed to be 

temperature-dependent, it takes the form [56]: 
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where ∞σ is the capture cross-section extrapolated to ∞=T  and  σE∆  is the thermal 

activation energy of the capture cross-section (i.e. thermal barrier for carrier capture). The 

temperature dependence of a capture cross-section may be determined from the plot of 

)ln( nσ versus
T
1

 , where σE∆  is extracted from the slope and ∞σ  after extrapolation to 

∞=T . The corrected activation energy for a deep level which exhibits a temperature-

dependent capture cross-section is given by  

 σEEE Ta ∆+∆=∆          (2.59) 

A more general expression of the thermal emission rate can now be written as, 
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The parameter TE∆ , is the Gibbs free energy change for the ionization of the state given by 

[57] 

STHET ∆−∆=∆         (2.61) 

where H∆  and S∆  are the changes in enthalpy and entropy due to the change in charge state 

of the level. Substituting Eq. (2.61) into 2.56 yields 
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Therefore, the Arrhenius plot yields the activation enthalpy of the deep level, and not the free 

energy, which can only be determined from the optical measurements [54,55]. 

2.7.4 Capacitance transient 

The DLTS technique uses a fast, sensitive capacitance meter to measure the capacitance of a 

reverse-biased Schottky, MOS or p-n junction [50]. This discussion is limited to Schottky 

barrier diodes. The capacitance of a reverse-biased diode is related to the width of the 

depletion region (Eq. (2.15)), which also depends on the charge in the depletion region �����
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(Eq. (2.11)), due to dopants as well as deep defects. When a reverse bias is applied to the 

metal-semiconductor system, a space-charge region is created i.e. region depleted of mobile 

free carriers. In this space-charge region there are ionised impurities. If the trapped charges in 

deep levels, in this space-charge region can be altered then the occupancy can be detected by 

monitoring the junction capacitance.  

Consider a Schottky diode on an n-type semiconductor, as shown in Fig. 2.12 (1), with an 

electron trap which introduces a deep level trap TE . The deep levels under the Fermi level are 

assumed to be filled and those above are empty as governed by the Fermi distribution 

function. In Fig. (2.12), shaded and open circles indicate filled and empty traps respectively.  

At the start of the DLTS cycle, a majority carrier filling pulse is applied across the diode (Fig. 

2.12 (2)). This pulse will collapse the space-charge region, increasing the capacitance of the 

Schottky diode drastically, and trapping electrons in those levels that are now below the 

Fermi level. After the filling pulse is removed, the reverse bias is returned to its quiescent 

level (Fig. 2.12 (3)). The increase in the reverse bias increases the width of the depletion 

region again. Since some of the deep level traps in the space-charge region are filled, the 

charge density in the space-charge region is less than it was in Fig. 2.12 (1). Therefore the 

depletion width is slightly wider and the capacitance slightly lower than it was in (1). This 

excess charge in the space-charge region may be transferred to the conduction band through 

the emission process as depicted in Fig. 2,12 (4), causing the charge density in the depletion 

region to increase, reducing its width and increasing the capacitance of the junction. The 

density of occupied defect levels at time t  after removing the filling pulse is given by [55]. 

)exp()( teNtN nT −=            (2.63)           

where  ne  is the electron thermal emission rate and  TN  is the defect concentration. If it is 

assumed that DT NN << , there will not be  much change in the depletion width during the 

emission of carriers. Therefore it is assumed that the emission of carriers from the space-

charge region may be described by an exponential decay (Eq. (2.63)). The capacitance of the 

Schottky diode is assumed to have the form: 

)exp()( teCCtC n−∆−= ∞        (2.64) 

 
 
 



35 

�

where )(tC  is the capacitance transient at time t , ∞C  is the quiescent reverse bias 

capacitance at time ( t ) = ∞  and C∆  is the difference between ∞C  and the capacitance 

measured at 0)( =t . The concentration of a specific trap can be determined from the change 

in capacitance as a function of the region being sampled. If the carrier charge density DN  and 

trap level concentration  TN  are spatially uniform, and TN  is much lower than DN , then the 

defect concentration is given by the following approximation 

C
C

NN DT

∆≈ 2         (2.65) 

 

 

Fig. 2.12 The capacitance transient due to an electron trap in n-type material. (1): Quiescent state, 

(2): Filling pulse, (3) Reverse bias; (4) Exponential decay as carriers are emitted.  
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2.7.5  Principles of DLTS 

Lang [50] introduced the ‘rate window’ concept to deep level characterization. The 

measurement system produces a maximum output only when a transient with a rate within 

this narrow window occurs. As the emission rate is strongly temperature dependent, a thermal 

scan only reveals the presence of different traps at characteristic temperature when their 

emission rates coincide with the rate window. Also the maximum signal output is 

proportional to the defect concentration. Early DLTS systems employed the dual-gated 

(double boxcar) signal filter for determining the rate window and averaging transients to 

enhance the signal-to-noise ratio (SNR) of the output, enabling detection of low 

concentration defects [50,54]. The DLTS signal is obtained from the difference between the 

capacitance measured at time 2t  and the capacitance at time 1t  and produces an output 

proportional to their average difference. As depicted in Fig. 2.13 (a), at low temperature there 

is a slow transient, such that the DLTS signal )()( 21 tCtCS −=  is very low. As the 

temperature is increased, the transient decay rate increases causing a greater change in the 

capacitance between times 1t  and 2t , and resulting in the DLTS signal increase. This increase 

in DLTS signal continues until the transient decays so fast that most of the decay occurs 

before 1t . A further increase in time will now decrease the DLTS signal. Fig. 2.13 (b) shows a 

peak that is observed when the DLTS signal is plotted as a function of temperature. The time 

constant at which the maximum DLTS signal is observed is given by: 

��
�

�
��
�

�

−
=

2

1

21
max

ln
t
t

ttτ          (2.66) 

In most of the modern analogue DLTS systems, a lock-in amplifier is used to analyse the 

DLTS transient.  In a lock-in amplifier set-up, response to the transient is the integral product 

of the capacitance signal and the weighting function )(tw  given by 

�=
τ

τ
τ

0

)()(
1

)( dttwtCS         (2.67) 

where �
�

�
�
�

�=
τ
πt

tw
2

sin)(  is a sine wave of fixed frequency. 
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The result obtained is the same as that obtained from the double boxcar method. Since the 

lock-in amplifier method uses more of the signal, therefore it is less sensitive to noise than 

the double boxcar method. For an exponential transient with a sine wave weighting function, 

the DLTS signal reaches a maximum when �
�

�
�
�

�=
τ

λ
423.0
1

. 

 

 

 

Fig. 2.13 (a) The change in capacitance transient with increasing temperature and (b) the DLTS 

signal obtained from the transients plotted as a function of temperature, after ref. 50.  
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2.7.6  Defect depth profiling 

The concentration of deep levels is given in Eq. (2.65). This equation is only applicable if the 

minority carrier pulse or majority carrier pulse is large and long enough to completely fill the 

trap and CC <<∆ . The appropriate pulse for deep level concentration determination can be 

checked by making several scans with increasing larger and longer pulses, until the deep 

level peak no longer increase in size. Lang [50] has reported that, using Eq. 2.65, TN  is 

underestimated, especially for thin films and at low reverse bias voltage. In order to find the 

corrected expression for TN  one has to consider the region λ , where the deep level crosses 

the Fermi level a distance λ  shallower than the depletion region edge as depicted in          

Fig. 2.14. The traps in this region are occupied and do not contribute to capacitance change 

when filling pulse is applied. The width of this region is given [58].  

2
1

2

(2
��
�

�
��
�

� −
=

D

TF

Nq
EEελ         (2.68) 

whereε  is the semiconductor dielectric constant FE  is the Fermi level and q  is the electronic 

charge. The depth profiling technique uses a fixed bias voltage and a variable filling pulse 

[59]. In this method, the incremental change in capacitance )( C∆δ  is monitored as the 

majority carrier pulse PV  is varied by a small amount PVδ . The relative incremental change in 

capacitance due to the pulse increment is given by [58]. 

P
D

T

D

V
xN
xN

NqwC
C δεδ

)(
)(

2 ��
�

�
��
�

�
=�

�

�
�
�

� ∆
      (2.69) 

where x  is the depth below the junction, DN  is the ionized shallow impurity concentration 

and w  is the depletion width, corresponding to a steady-state reverse biased condition. 

The carrier charge density )(xN D  is obtained from VC −  measurements, and the corrected 

deep level concentration can be expressed as [58]; 

122)()0(2
−
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where λ−x  and ppx λ−  are the depletion region width before and after applying a filling 

pulse respectively and pλ  is the value of λ  during the pulse. Values of 10-5-10-6 for 
C
C∆

 can 

be achieved in the low noise measurements and a low defect concentration of the order     

1010 cm-3 is detectable if the shallow dopants concentration is 1610≈DN cm-3. 

 

Fig. 2.14 Energy band diagram, the λ  and space charge for an n-type metal-semiconductor 

junction with deep levels for unbiased and after applying a quiescent reverse bias of Va (after 

ref. 58) 

2.7.7  Principles of Laplace-DLTS 

DLTS technique has limitations in separating closely spaced transients due to its poor 

emission rate and time constant resolution. In 1990, Dobaczewski et al [56,60] developed an 

improved high-resolution version of DLTS, called Laplace-DLTS (LDLTS). 

Generally, there are two DLTS classes of transient processing methods, which are analog and 

digital signal processing. Analog signal processing is carried out in real-time process which 

involves extracting the capacitance transients as temperature is ramped. The output produced 
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by an analog filter will be proportional to the signal input within a particular time constant 

range. The digital signal processing digitizes the analog transient output of the capacitance 

meter and averages many of these digitized transients to reduce noise. The concept of 

digitizing capacitance at constant temperature and extracting the time constant is the basis of 

high resolution of LDLTS. A numerical algorithm is employed to extract all accessible time 

constants from the transients. 

For the quantitative description of non-exponential behaviour in the capacitance transients, 

we need to assume that the recorded transients f(t) are characterized by a spectrum of 

emission rates [61] 

0

( ) ( ) stf t F s e ds
∞

−= �         (2.71) 

where f(t) is the Laplace transform of the true spectral density F(s). To determine a real 

spectrum of emission rates in the transient, an inverse Laplace transform for the function f(t) 

should be performed, producing a spectrum of delta-like peaks for multi-, mono-exponential 

transients. 

LDLTS gives an intensity output as a function of emission rate. The area under each peak is 

related to the initial trap concentration. The measurement is carried out at a fixed 

temperature, and capacitance transients are recorded and averaged. LDLTS provides an order 

of magnitude higher energy resolution than the conventional DLTS technique [61]. 

Consequently, LDLTS can separate states with very similar emission rates. 

2.7.8 Field dependence of the emission rate 

Although it is often assumed that the electric field affecting deep levels in the space-charge 

region is negligible, there is strong evidence that in some cases the emission rate does depend 

upon the applied bias and doping. The electric field will distort the shape of the potential 

well. This distortion of the potential well may enhance the emission probability of a carrier 

trapped in the well, adversely affecting the accurate determination of defect concentration 

[62], as saturation of the defect peak amplitudes may occur depending on the effect of the 

electric field on the emission of electrons from the defect. Pons et.al [63], have reported that 

the DLTS signal of a defect that saturates quickly with an increase in filling pulse amplitude 

has an emission rate that depends strongly on electric field strength in the space-charge 
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region. The influence of the electric field can affect the emission process in different ways, as 

depicted in Fig. 2.15. The most well known emission enhancement mechanism is the Poole-

Frenkel mechanism [64]. This mechanism enhances the emission rate of a defect by lowering 

the deep level potential. The Poole-Frenkel effect leads to a decrease ( PFE∆ ) of the ionisation 

energy ( TE∆ ) of a coulombic well placed in an electric field F , and 

πε
qF

EPF =∆          (2.72) 

where ε  is the dielectric constant of the material and q  the electron charge.  

When substituted in Eq. 2.56, the emission rate of the defect is now given by  

  �
�
�

�
�
�
�

�
=

πε
qF

kT
een

1
exp)0('        (2.73)  

where )0(e  is the emission rate at zero electric field, k  is the Boltzmann’s constant and T  is 

the absolute temperature. 

The dependence of the emission rate ( '
ne ) on electric field  F  for a coulombic well, i.e. 

)ln( '
ne  proportional to 2

1

F , has been used as experimental evidence to distinguish between 

donor and acceptor defects. The linearity of this dependence shows a charge leaving a centre 

of opposite sign. This implies a donor type trap in n-type material and acceptor type defect in 

p-type material.  

 

Fig. 2.15 Field-enhanced emission mechanisms 
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The other mechanisms shown in Fig. 2.15 are phonon-assisted tunnelling and direct 

tunnelling. These mechanisms favour the deeper-lying defects, with direct tunnelling 

mechanism being dominant in the high field regions (> 108 Vm-1). 

The phonon-assisted tunnelling mechanism occurs in defects with a significant electron-

lattice coupling. Because of this coupling, the trapped defect can occupy a set of stationary 

quasi-levels separated by ω� , where ω�  is the phonon energy. From these quasi levels, 

elastic tunnelling can then occur to the conduction band. The coupling constant is given by 

[65], 

ω�
E

S
∆=          (2.74) 

where E∆  is the vibrational energy  loss. 

The field emission rate due to phonon-assisted tunnelling is represented by [63], 

� −∆∏=
p

pppf fe )1)(( ,1        (2.75) 

where )1( ,1 pf−  is the Fermi-Dirac probability of finding an empty conduction band state, 

)( p∆Γ  is the tunnelling emission probability for an electron at a quasi level p with energy 

p∆  above the ground state and pΠ  is the probability of finding the electron at quasi level p .  

The probability ( pΠ ) of finding the trapped electron at a given quasi-level pcE ∆− , where 

,.....2,1,0 ±±=p may be calculated from [63]; 

( )�
∞+
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−−

�
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�

�

�
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�

�
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�

�
�
�

� +−=Π
0

2//

2
1

2expexp1
n

p
kTnkT

p nSJωω ��     (2.76) 

where pJ is a Bessel function of the first kind and n  the integer number of phonons. This 

model is based on the assumption that the phonons have a single well-defined angular 

frequency ω . 
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