### **CHAPTER 3 RESULTS**

#### 3.1 NORMAL INTESTINAL FLORA

Table 3 shows the aerobic and anaerobic bacteria and enterococci grown per ml of duodenal fluid, obtained by endoscopy. No aerobic bacteria were isolated. The anaerobic bacteria in the sample are obligate anaerobes. *Enterococcus* species was the only member of the facultative anaerobes isolated.

Table 3: Bacteria isolated from duodenal fluid (CFU)

|                | Cheet |         |      |         |
|----------------|-------|---------|------|---------|
|                | F 352 | M 286   | Mean | Std Dev |
| Diet           | IAMS  | Meat    |      |         |
| Strict Aerobes | $0^a$ | $0^{a}$ |      |         |
| Anaerobic      | 60    | 110     | 85   | 35.36   |
| Enterococci    | 300   | 100     | 200  | 141.42  |

<sup>&</sup>lt;sup>a</sup> no growth occurred after 48 hours of incubation

Table 4 shows the number of aerobic and anaerobic bacteria and enterococci isolated from 1 g of faeces from 8 healthy adult cheetahs on different diets.

Table 4: Bacterial counts (CFU) of cheetah faecal samples

|             |                      | Cheetah ID           |                      |                    |                    |                      |                    |                      |  |  |
|-------------|----------------------|----------------------|----------------------|--------------------|--------------------|----------------------|--------------------|----------------------|--|--|
|             | F309                 | F283                 | Q46                  | F282               | F318               | F331                 | F362               | F327                 |  |  |
| Aerobic     | $4.67x10^6$          | 1.56x10 <sup>9</sup> | $6.40 \times 10^5$   | $3.50 \times 10^7$ | $1.86 \times 10^6$ | $2.34x10^8$          | $4.77x10^8$        | $1.44x10^6$          |  |  |
| Median      |                      |                      |                      | 1.99               | $\times 10^{7}$    |                      |                    |                      |  |  |
| Mean        |                      |                      |                      | 2.89               | $x10^{8}$          |                      |                    |                      |  |  |
| Std Dev     |                      |                      |                      | 5.41               | $x10^{8}$          |                      |                    |                      |  |  |
| Min         |                      |                      |                      | 6.40               | $x10^{5}$          |                      |                    |                      |  |  |
| Max         |                      |                      |                      | 1.56               | $x10^{9}$          |                      |                    |                      |  |  |
| Anaerobic   | $4.66 \times 10^7$   | 6.12x10 <sup>8</sup> | 1.94x10 <sup>6</sup> | $0^{a}$            | $2.54x10^6$        | 1.32x10 <sup>6</sup> | $3.06x10^9$        | $1.30 \text{x} 10^6$ |  |  |
| Median      |                      |                      |                      | 2.54               | $\times 10^{6}$    |                      |                    |                      |  |  |
| Mean        |                      |                      |                      | 5.32               | $x10^{8}$          |                      |                    |                      |  |  |
| Std Dev     |                      |                      |                      | 1.14               | $x10^{9}$          |                      |                    |                      |  |  |
| Min         |                      |                      |                      | 1.30               | $\times 10^{6}$    |                      |                    |                      |  |  |
| Max         |                      |                      |                      | 3.06               | $x10^{9}$          |                      |                    |                      |  |  |
| Enterococci | $1.00 \text{x} 10^5$ | 5.00x10 <sup>8</sup> | $1.40 \times 10^5$   | $6.60 \times 10^3$ | $1.88 \times 10^4$ | $2.20x10^3$          | $4.60 \times 10^5$ | $7.00x10^3$          |  |  |
| Median      |                      |                      |                      | 5.94               | $x10^{4}$          |                      |                    |                      |  |  |
| Mean        |                      |                      |                      | 6.26               | $x10^{7}$          |                      |                    |                      |  |  |
| Std Dev     |                      |                      |                      | 1.77               | $10^{8}$           |                      |                    |                      |  |  |
| Min         |                      |                      |                      | 2.201              | $Ex10^3$           |                      |                    |                      |  |  |
| Max         |                      |                      |                      | 5.00               | $x10^{8}$          |                      |                    |                      |  |  |
|             | a                    | no growth            |                      | G - 40 h -         | a C i.u. a         | la ati a m           |                    |                      |  |  |

<sup>&</sup>lt;sup>a</sup> no growth occurred after 48 hours of incubation

A high proportion of bacteria isolated were *Enterococcus* species. The average number of anaerobic bacteria from the faecal samples was higher than the aerobic isolate numbers. The mean number of aerobic and anaerobic bacteria, and enterococcci isolated from the eight samples was  $2.89 \times 10^8$  (SD  $5.41 \times 10^8$ ),  $5.32 \times 10^8$  ( $1.14 \times 10^9$ ) and  $6.26 \times 10^7$  ( $1.77 \times 10^8$ ), respectively.

The mean comparative number of bacteria isolated from the eight faecal samples is shown in Figure 4.

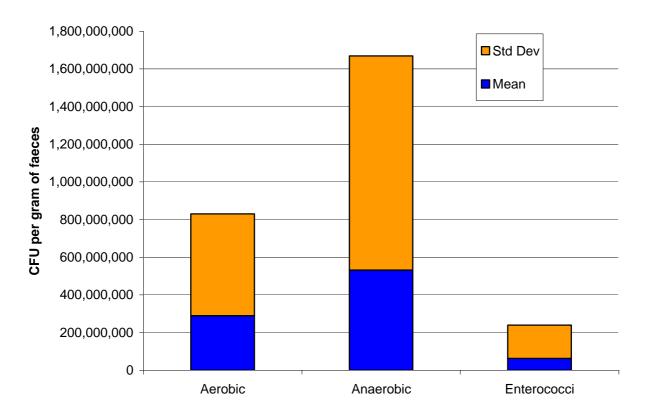



Figure 4: Bacterial numbers (CFU) isolated from cheetah faecal samples

Table 5 shows the effect of diet (IAMS adult cat or meat based) on the numbers of bacteria in the faeces of adult cheetahs.

Table 5: Bacterial counts (CFU) of faeces and diets of adult cheetahs on two diets

| Diet        | Aerobic            | Anaerobic            | Enterococci        |
|-------------|--------------------|----------------------|--------------------|
| Mean IAMS   | $2.70x10^6$        | $2.43x10^7$          | $1.20 \times 10^5$ |
| Median IAMS | $2.70x10^6$        | $2.43x10^7$          | $1.20 \times 10^5$ |
| Std Dev     | $2.91 \times 10^6$ | $3.16 \times 10^7$   | $2.83x10^4$        |
|             |                    |                      |                    |
| Mean Meat   | $3.85 \times 10^8$ | $7.35 \times 10^{8}$ | $8.34x10^{7}$      |
| Median Meat | $1.35 x 10^8$      | $2.54 \times 10^6$   | $1.29 \times 10^4$ |
| Std Dev     | $6.05 x 10^8$      | $1.33x10^9$          | $2.04x10^8$        |

Table 6 shows the different bacteria and yeasts isolated from the faeces and duodenal samples of the cheetahs. Not all genera were identified to species level.

Table 6: Bacteria and yeasts isolated from cheetah faeces

|                     | Bacteria isolated                     |
|---------------------|---------------------------------------|
| Genus               | Species                               |
| Acinetobacter spp.  | A. wolfii, A. calcoaceticus           |
| Bacillus spp        |                                       |
| Clostridium spp.    | C. perfringens                        |
| Corynebacterium spp |                                       |
| Edwardsiella spp.   | E. hoshinae                           |
| Escherichia spp.    | E. coli                               |
| Enterobacter spp.   | E. agglomerans                        |
| Enterococcus spp.   | E. durans, E. agglomerans, E. faecium |
| Lactobacillus spp.  | Group 1, Group 2                      |
| Moraxella spp.      |                                       |
| Pasteurella spp.    |                                       |
| Proteus spp.        |                                       |
| Pseudmonas spp      |                                       |
| Staphylococcus spp. | S. epidermalis                        |
| Vibrio spp.         | V. alginolyticus, V. cholera          |
|                     |                                       |
|                     | Yeasts isolated                       |

#### 3.2 BACTERIA FOR THE PROBIOTIC

Enterococcus faecium and Lactobacillus group 1 were isolated from cheetah faeces to be included in the probiotic. The bifidobacterial isolates were only present in very low numbers. The isolates of *Bifidobacterium* ssp stored did not grow in the BHI or MRS broth and could therefore not be used in the trial.

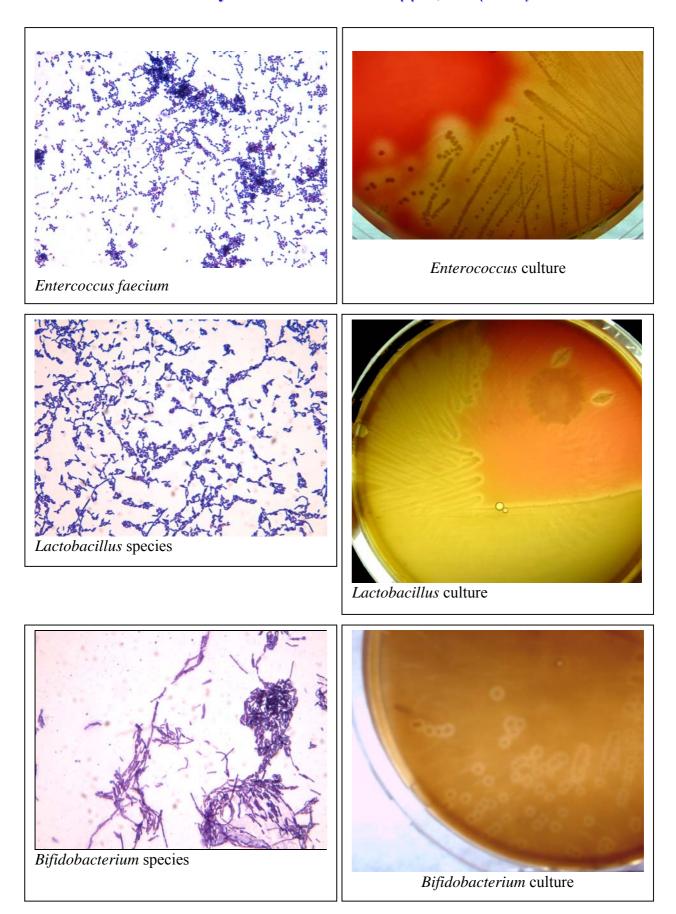



Figure 5: Smears and culture of bacteria used as probiotic

#### 3.3 HEALTH OF JUVENILE CHEETAHS

All animals were healthy at the beginning of the trial on day -70. There was episodic diarrhoea present in all camps, rarely accompanied with a depressed or altered appetite. No animal showed signs of systemic disease before, during or after the treatment period (day 0 to day 28), except diarrhoea. F 457 was treated with 2 ml Synulox (140 mg amoxycillin and 35 mg clavulanic acid per ml; Pfitzer) and 2 ml Duplocillin (procaine penicillin 150 000 IU per ml; Intervet) on day -56 due to a bite wound on the shoulder. Synulox treatment was continued for 5 consecutive days.

An outbreak of severe diarrhoea in camp 55 on day –35 was treated with Biosol (neomycin sulphate 200 mg, methscopolamine bromide 2 mg; Pharmacia and Upjohn). Each animal received 1.5 ml orally. Antibiotic therapy was continued for three days with Enteritis Tablets (sulphathiazole 75 mg, phthalylsulphathiazole 175 mg, neomycin sulphate 15 mg, streptomycin sulphate 10 mg, aminopentamide sulphate 0.025 mg, kaolin 200 mg, pectin 2 mg; Bayer Animal Health). The dosage was three tablets per animal twice daily.

There was a significant difference between the ages of the Probiotic and Control groups (two sampled t-test, P<0.0069).

#### 3.4 FAECAL SCORING

The faeces were analysed from day -70 to day 42. Days -70 to -56 showed significant difference (P=0.0137) in the Probiotic Group in comparison to days -42 to -7. This is thought to be associated with subjective differences in scoring faeces, as a different person scored the first three weeks (days -70 to -56). For statistical analysis the first three weeks were excluded from the statistics in both groups.

Table 7: Comparison of diarrhoeic scores of Probiotic and Control groups in the pre-treatment period

| Probiotic Group |               |        |        |        |  |  |  |  |  |  |  |  |
|-----------------|---------------|--------|--------|--------|--|--|--|--|--|--|--|--|
| <del>_</del>    |               |        |        |        |  |  |  |  |  |  |  |  |
| Camps           | 5             | 54     | 55     | 57     |  |  |  |  |  |  |  |  |
| Diarrhoea Score | 35.71%        | 26.32% | 42.31% | 39.39% |  |  |  |  |  |  |  |  |
|                 |               |        |        |        |  |  |  |  |  |  |  |  |
|                 | Control Group |        |        |        |  |  |  |  |  |  |  |  |
| Camps           | 6             | 53     | 56     |        |  |  |  |  |  |  |  |  |
| Diarrhoea Score | 27.54%        | 26.67% | 11.11% |        |  |  |  |  |  |  |  |  |

Table 7 compares the differences in percentage diarrhoea between different camps in the PG and CG. The percentage diarrhoea was lower in camp 56 in the pre-treatment period but it was not significant. There were no significant differences in the percentage diarrhoea between camps in the PG and CG in the pre-treatment period (days –42 to –7).

Table 8: Percentage diarrhoea in Probiotic and Control groups during probiotic trial.

|                | Percentage diarrhoea |               |        |  |  |  |  |  |
|----------------|----------------------|---------------|--------|--|--|--|--|--|
| Period         | Probiotic Group      | Control Group | Total  |  |  |  |  |  |
| Pre-treatment  | 46.85%               | 24.68%        | 37.77% |  |  |  |  |  |
| Treatment      | 30.77%               | 31.37%        | 31.03% |  |  |  |  |  |
| Post-treatment | 75.00%               | 36.00%        | 53.33% |  |  |  |  |  |

Table 8 compares the percentage diarrhoea between PG and CG during the trial. There was a significant difference (P=0.0021) in the percentage diarrhoea between the PG and CG in the pre-treatment period. There was no statistical significant difference between PG and CG during the treatment period, but a significant difference was noted in the post-treatment period (P=0.0092).

Comparing the diarrhoeic scores between the pre-treatment, treatment and post-treatment periods in the control group, there was no statistical significant difference in percentage diarrhoea during different periods. However, there was a statistical significant difference between the pre-treatment and treatment period in the PG (P=0.0363) and the treatment and post-treatment period (P=0.0004) (see Table 8 and Figure 6).

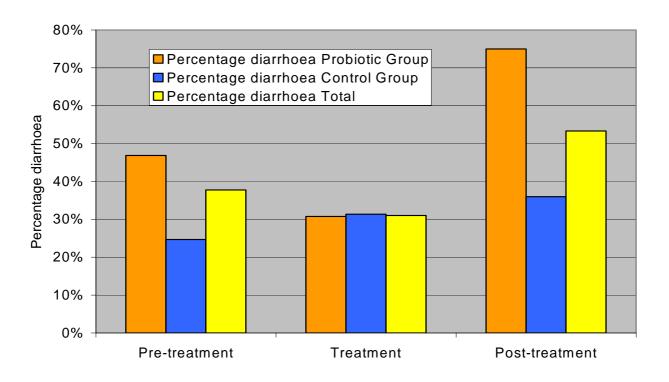



Figure 6: Comparison of percentage diarrhoea in Probiotic and Control groups during trial

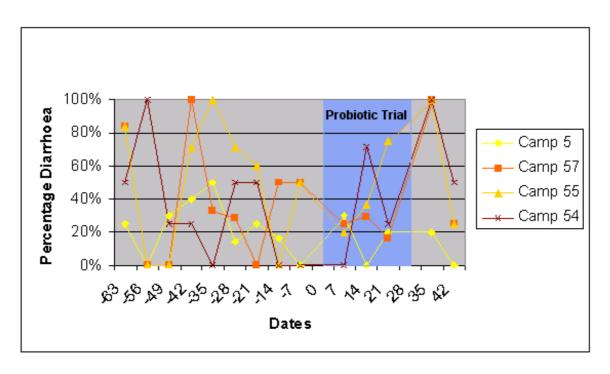



Figure 7: Percentage diarrhoea in the Probiotic Group during the trial

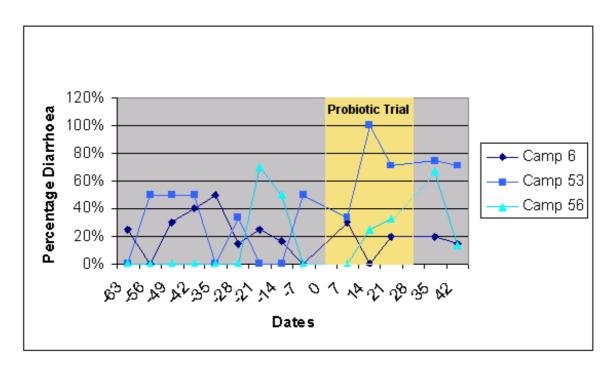



Figure 8: Percentage diarrhoea of the Control Group during the trial

Figure 7 and Figure 8 show the percentage diarrhoea of the PG and CG over time from day – 63 to day 42, on weekly intervals. The probiotic was fed from the Day 0 until Day 28.

The prevalence of bloody or mucoid faecal samples in the PG decreased to nil during the treatment period (Figure 9and Table 24)

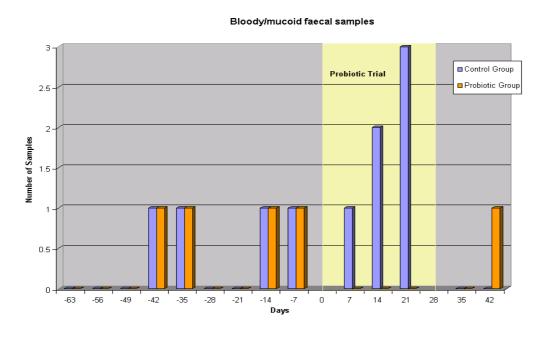



Figure 9: Prevalence of bloody/mucoid faecal samples in Probiotic Group and Control Group during trial

The lightly shaded area in Figure 9 shows the time during which the probiotic bacteria were fed to the Probiotic Group. The orange markers represent the PG and the CG is represented by the blue colour.

#### 3.5 FAECAL WATER CONTENT

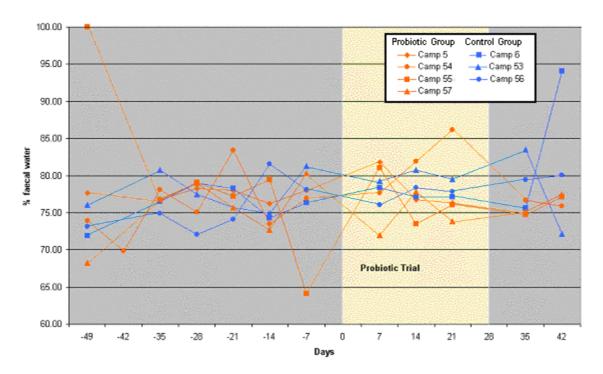



Figure 10: Percentage of faecal water in Probiotic Group and Control Group during trial

Figure 10 shows the maximal percentage of water in faeces in weekly samples collected in different camps during the trial.

There was no statistical difference in faecal water between different camps or different dates. The maximal faecal water was not affected by the administration of the probiotic bacteria.

#### 3.6 PATHOGENIC BACTERIA IN FAECES

Four diarrhoeic samples, collected in different camps, were cultured for pathogenic bacteria. No *Salmonella* spp. and no smooth *E. coli* were isolated (see Table 9).

Table 9: Bacteria isolated from diarrhoeic faeces

| Day sampled | Camp | Bacteria isolated                 |
|-------------|------|-----------------------------------|
| Day -7      | 57   | Rough E. coli                     |
| Day 14      | 53   | Rough E. coli                     |
| Day 42      | 57   | Rough E. coli and Proteus species |
| Day 42      | 55   | Rough E. coli                     |

In summary, no smooth *E.coli*, *Salmonella* or *Yersinia* were isolated from the diarrhoeic faeces during the entire trial.

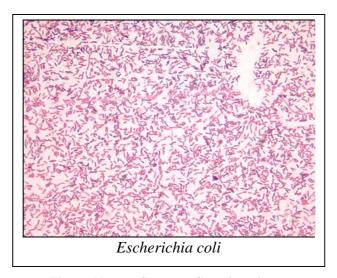



Figure 11: E. coli smear- Gram's stain

Figure 11 shows Gram-negative slender bacilli typical for *E.coli*.

#### 3.7 BODY MASS

Table 10 and Table 11 show the weight of each cheetah at Day 0 and Day 28, after the four-week treatment period. Only one weight was available for F460 as the cheetah was sold before day 28. F459 was also sold earlier, however, it was weighed on day 13. The percentage weight increase of each individual cheetah is also provided. Animals F460, F459 and F444 were excluded from the statically analysis. F444 was excluded as a result of an incorrect reading (see Table 11).

Table 10: Body mass changes of cheetah in Probiotic Group

| Camp | Animal | D.o.B.     | Age<br>months   | Weight 23.04 | 2 <sup>nd</sup><br>Weight | Date     | % increase | Comment |
|------|--------|------------|-----------------|--------------|---------------------------|----------|------------|---------|
| 5    | 460    | 01.06.2002 | 11              | 20.7         |                           |          |            | Sold    |
|      | 465    | Unknown    | 11 <sup>a</sup> | 17.7         | 19.7                      | 21.05.04 | 10.15 %    |         |
| 54   | 50     | 17.04.2002 | 13              | 25.5         | 27.7                      | 21.05.05 | 7.94 %     |         |
|      | 433    | 17.04.2002 | 13              | 29.1         | 30.2                      | 21.05.06 | 3.64 %     |         |
|      | 434    | 17.04.2002 | 13              | 27.8         | 31.3                      | 21.05.07 | 11.18 %    |         |
|      | 440    | 28.04.2002 | 13              | 23.7         | 25.9                      | 21.05.08 | 8.49 %     |         |
|      | 441    | 28.04.2002 | 13              | 22.3         | 24.4                      | 21.05.09 | 8.61 %     |         |
| 55   | 438    | 28.04.2002 | 13              | 19.8         | 21.1                      | 21.05.10 | 6.16 %     |         |
|      | 450    | 30.05.2002 | 12              | 20           | 22.1                      | 21.05.11 | 9.50 %     |         |
|      | 455    | 05.06.2002 | 11              | 23.2         | 24.9                      | 21.05.12 | 6.83 %     |         |
|      | 437    | 21.04.2002 | 13              | 17.2         | 17.8                      | 21.05.13 | 3.37 %     |         |
|      | 446    | 18.05.2002 | 12              | 16.7         | 18.6                      | 21.05.14 | 10.22 %    |         |
|      | 459    | 02.06.2002 | 11              | 19.1         | 20.8                      | 06.05.03 | 8.17 %     |         |
|      | 461    | 01.06.2002 | 11              | 17           | 17.9                      | 21.05.03 | 5.03 %     |         |
| 57   | 458    | 01.08.2002 | 9               | 16.8         | 17.8                      | 21.05.04 | 5.62 %     |         |
| ζ,   | 457    | 01.08.2002 | 9               | 13.9         | 15.54                     | 21.05.05 | 10.55 %    |         |

<sup>&</sup>lt;sup>a</sup> approximated age of cheetah

Table 11: Body mass changes of cheetah in Control Group

| Camp | Animal | D.o.B.     | Age<br>month | Weight 23.04 | 2 <sup>nd</sup><br>Weight | Date     | % increase |                   |
|------|--------|------------|--------------|--------------|---------------------------|----------|------------|-------------------|
| 6    | 430    | 16.04.2002 | 13           | 22.1         | 23.2                      | 21.05.03 | 4.74 %     |                   |
|      | 431    | 16.04.2002 | 13           | 18.6         | 19.8                      | 21.05.04 | 6.06 %     |                   |
|      | 432    | 16.04.2002 | 13           | 21.5         | 23.1                      | 21.05.05 | 6.93 %     |                   |
|      | 435    | 20.04.2002 | 13           | 27.4         | 28.2                      | 21.05.06 | 2.84 %     |                   |
|      | 436    | 20.04.2002 | 13           | 25.7         | 28.3                      | 21.05.07 | 9.19 %     |                   |
|      | 447    | 20.04.2002 | 13           | 21           | 22.7                      | 21.05.08 | 7.49 %     |                   |
| 53   | 426    | 22.03.2002 | 14           | 30.6         | 32.6                      | 21.05.09 | 6.13 %     |                   |
|      | 427    | 22.03.2002 | 14           | 33.2         | 36.3                      | 21.05.10 | 8.54 %     |                   |
|      | 428    | 22.03.2002 | 14           | 30.6         | 32.2                      | 21.05.11 | 4.97 %     |                   |
| 56   | 443    | 12.05.2002 | 12           | 26.5         | 27.1                      | 21.05.12 | 2.21 %     |                   |
|      | 444    | 12.05.2002 | 12           | 26           | 22.9                      | 21.05.13 | -13.54 %   | Incorrect reading |

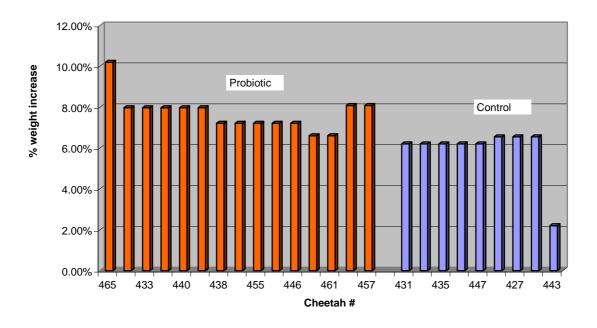



Figure 12: Comparison of percentage body mass increase in Probiotic Group and Control Group

There was no difference in weight increase between the PG and CG if actual weight change was considered, however when considered as a percentage, the PG gained considerably more weight than the CG (p = 0.026, ANOVA, p < 0.05).

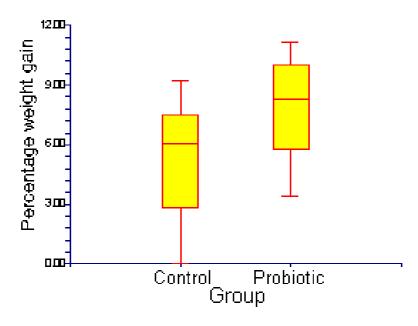



Figure 13: Box plot comparison of percentage weight gain of Probiotic Group and Control Group

The mean increase in weight of the PG was 7.754 % (SE=0.645) and of the CG 5.372 % (SE=0.778) (Tukey-Kramer test, p <0.05). The mean and standard deviation are presented in Figure 13.

#### 3.8 SERUM BIOCHEMISTRY AND HAEMATOLOGY

Except for the eosinophil count of cheetah F446, the leukocyte values of the cheetahs were all within the reference range, published by the International Species Information System (1999).

The mean haemoglobin (Hb) at the beginning of the treatment period was higher in the PG than the CG and lower at the end, however, the difference was not statistically significant. The red cell count (RCC) showed a significant decrease in the CG over time (P=0.023), but none of the animals fell outside the published reference range for RCC. There was no significant difference in mean haematocrit (Ht) in both groups over time. There was a significant difference in the mean cell volume (MCV) over time in both groups (P=0.002). The initial MCV in the CG was higher. There was a significant increase in mean cell haemoglobin concentration (MCHC) in both groups over time (P=0.000002). The MCHC was higher in the PG at the start. There was a significant decrease in white blood cell count (WBCC) in both groups over time (P=0.0014). There was a decreasing trend in segmented neutrophils but this was not significant. The mean number of banded neutrophils did not change significantly over time but the PG had lower counts at all times. There was a lot of individual variation in neutrophil count over time. The mean number of lymphocytes in both groups decreased insignificantly over time. The number of monocytes at the end of the treatment period decreased non-significantly in the PG. There was little variation in eosinophil count between groups and over time. F446 had the highest eosinophil count on Day 0 (4.23  $\times 10^3/\mu l$ ) and on Day 28 it had increased to 7.92  $\times 10^3/\mu l$ . The highest physiological reference recorded is 5.84 x10<sup>3</sup>/µl (International Species Information System, 1999).

Table 12: Biochemistry and haematology values of Probiotic and Control groups at the start (day 0) and end of treatment (day 28).

|                     |           |        | l Group<br>y 0 |        | l Group<br>28 |        | ic Group<br>y 0 |        | ic Group<br>y 28 | Referen | ice Range |
|---------------------|-----------|--------|----------------|--------|---------------|--------|-----------------|--------|------------------|---------|-----------|
| Variables           | Units     | Mean   | St dev.        | Mean   | St dev.       | Mean   | St Dev.         | Mean   | St Dev.          | Min     | Max       |
| TSP                 | g/l       | 62.35  | 4.87           | 62.05  | 2.26          | 63.24  | 2.18            | 62.52  | 2.69             | 51.00   | 88.00     |
| Alb                 | g/l       | 33.85  | 2.58           | 34.37  | 1.51          | 35.18  | 1.70            | 35.03  | 1.37             | 23.00   | 51.00     |
| Globulin            | g/l       | 28.51  | 2.69           | 27.65  | 1.37          | 28.04  | 1.61            | 27.49  | 1.98             | 17.00   | 55.00     |
| A/G                 |           | 1.19   | 0.08           | 1.25   | 0.07          | 1.26   | 0.10            | 1.28   | 0.08             | 0.60    | 1.20      |
| Bil-T               | ymol/l    | 2.45   | 0.46           | 2.68   | 0.49          | 3.08   | 0.76            | 2.67   | 0.50             | 0.00    | 29.00     |
| Cholesterol         | mmol/l    | 3.24   | 0.72           | 3.68   | 0.50          | 3.05   | 0.46            | 3.49   | 0.38             | 2.07    | 13.68     |
| Urea                | mmol/l    | 12.93  | 1.30           | 10.55  | 0.68          | 12.18  | 2.05            | 11.65  | 1.85             | 5.36    | 29.63     |
| Creatine            | ymol/l    | 207.73 | 15.75          | 210.82 | 27.91         | 195.50 | 31.89           | 198.93 | 24.81            | 53.04   | 716.04    |
| Haemoglobin         | g/l       | 138.27 | 6.33           | 134.18 | 13.39         | 133.50 | 5.18            | 137.21 | 5.48             | 6.90    | 20.20     |
| RCC                 | 1000/yl   | 8.18   | 0.40           | 7.77   | 0.69          | 7.89   | 0.42            | 7.93   | 0.38             | 4.18    | 11.10     |
| Haematocrit         | 1/1       | 0.47   | 0.02           | 0.43   | 0.04          | 25.92  | 0.02            | 0.45   | 0.03             | 0.20    | 0.58      |
| MCV                 | fL        | 57.62  | 1.87           | 56.13  | 1.96          | 56.86  | 2.25            | 55.95  | 1.53             | 34.20   | 86.10     |
| MCHC                | g/dl      | 29.36  | 0.36           | 30.87  | 0.92          | 29.80  | 0.98            | 30.99  | 0.40             | 20.50   | 48.80     |
| WBCC                | 1000/yl   | 11.55  | 2.41           | 9.81   | 1.09          | 11.76  | 2.88            | 10.50  | 2.56             | 3.70    | 25.20     |
| Seg. neutrophils    | 1000/yl   | 6.88   | 1.57           | 6.16   | 0.96          | 6.81   | 2.09            | 6.02   | 1.23             | 1.34    | 20.90     |
| Neutrophils (bands) | 1000/yl   | 0.05   | 0.11           | 0.05   | 0.08          | 0.01   | 0.05            | 0.01   | 0.03             | 0.00    | 6.30      |
| Lymphocytes         | 1000/yl   | 3.35   | 1.58           | 2.51   | 0.49          | 3.64   | 1.36            | 3.03   | 0.78             | 0.14    | 8.26      |
| Monocytes           | 1000/yl   | 0.61   | 0.38           | 0.54   | 0.33          | 0.60   | 0.25            | 0.45   | 0.21             | 0.00    | 2.59      |
| Eosinophils         | 1000/yl   | 0.66   | 0.42           | 0.50   | 0.28          | 0.64   | 0.98            | 0.96   | 2.02             | 0.00    | 5.80      |
| Basophils           | 1000/yl   | 0.02   | 0.05           | 0.04   | 0.07          | 0.03   | 0.06            | 0.03   | 0.04             | 0.00    | 0.26      |
| ThrC                | 100000/yl | 364.09 | 185.04         | 379.36 | 146.32        | 358.78 | 187.70          | 403.57 | 181.39           | 96.00   | 842.00    |

There was no significant difference in the mean number of basophils. There was no significance difference in the level of thrombocytes (ThrC), total serum protein (TSP), albumin or globulin. There was, however, a significant increase in albumin/globulin ratios (A/G) in the CG from Day 0 to Day 28 (P = 0.044). Although, total bilirubin (BilT) decreased in the PG, the difference was not significant. Cholesterol increased significantly in both groups over time (Epsilon probability level = 0.000014). Urea decreased significantly in the CG in relation to the PG and time (P = 0.0054), but there was no significant change in creatinine over time or between groups. The mean values of the PG and CG at the start (day0) and end (day 28) of the feeding of the probiotic are represented in Table 12.

#### 3.9 PATHOGEN IDENTIFICATION

PCR tests for presence of feline coronavirus in diarrhoeic faecal samples were negative, as no nucleic acid could be detected. Blood smears from M427, M440 and F446 were positive for *Babesia* species on repeated blood sampling (seeTable 25, Table 26, Table 27 and Table 28). Blood samples were further analysed by PCR and reverse line blot to identify the species of *Babesia*, as described by Penzhorn *et al.* (2001). The parasite did not match any known isolates for *Theileria/Babesia* species (Anna-Marie Bosman, University of Pretoria, personal communication, 2003).

Table 13: Faecal flotation of faeces (no of eggs/gram of faeces)

|           |      | Da            | ites          |
|-----------|------|---------------|---------------|
| Group     | Camp | 14.05.03      | 28.05.03      |
|           |      | <b>Day 21</b> | <b>Day 35</b> |
| Probiotic | 5    | 63            | 0             |
|           | 54   | 226           | 0             |
|           | 55   | 3             | 0             |
|           | 57   | 35            | 0             |
| Control   | 6    | 0             | 0             |
|           | 53   | 110           | 0             |
|           | 56   | 33            | 0             |

Results of the faecal flotations from faeces collected on day 21 and day 35 are presented in Table 13. Eggs showing the characteristics of *Toxocara leonina* and other *Toxocara* species were identified in the faeces. Adult helminths belonging to *Toxocara* spp. were identified in the faeces.

#### 3.10 INTESTINAL PERMEABILITY

The intestinal permeability of the Probiotic and Control groups was measured at the start (day 0) and the end (day 28) of the treatment period. The timing between the administration of the sugars and the collection of blood is shown in Table 29 and Table 30. The median for day 0 for all animals was 82 minutes (range 40 to 170 minutes) and for day 28 was 70 minutes

(range 44 to 112 minutes). The delayed blood collection after administration of the sugars lactulose (L) and rhamnose (R) occurred mainly in the CG. Comparing L and R-values and L/R ratios, there was no significant difference between sugar concentration in the blood before and after one hour and one and-a-half hour.

The concentration of L and R was measured in the serum and the ratios of the two sugars were calculated for each animal. Table 14 and Table 16 show the sugar concentrations for the CG and PG at the start of the trial. Table 15 and Table 17 show the sugar concentrations of the PG and CG at the end of the trial.

Table 14: Sugar concentration of Control Group at the start of treatment period

| Rhamnose | Rhamnose (R) conc. |        | (L) conc. | L/R ratio |      |  |
|----------|--------------------|--------|-----------|-----------|------|--|
| Min      | 0.00               | Min    | 0.00      | Min       | 0.00 |  |
| Max      | 6.20               | Max    | 1.10      | Max       | 0.79 |  |
| Mean     | 2.84               | Mean   | 0.56      | Mean      | 0.20 |  |
| Median   | 2.20               | Median | 0.64      | Median    | 0.19 |  |
| SD       | 2.07               | SD     | 0.47      | SD        | 0.21 |  |

Table 15: Sugar concentration of Control Group at the end of treatment period

| Rhamnose (R) conc. |      | Lactulose (L) conc. |      | L/R ratio |      |
|--------------------|------|---------------------|------|-----------|------|
| Min                | 1.40 | Min                 | 0.02 | Min       | 0.00 |
| Max                | 5.20 | Max                 | 2.50 | Max       | 0.48 |
| Mean               | 3.22 | Mean                | 0.40 | Mean      | 0.09 |
| Median             | 3.20 | Median              | 0.20 | Median    | 0.05 |
| SD                 | 1.33 | SD                  | 0.71 | SD        | 0.14 |

Table 16: Sugar concentration of Probiotic Group at the start of treatment period

| Rhamnose (R) conc. |      | Lactulose (L) conc. |      | L/R ratio |      |
|--------------------|------|---------------------|------|-----------|------|
| Min                | 0.30 | Min                 | 0.00 | Min       | 0.00 |
| Max                | 5.40 | Max                 | 2.50 | Max       | 0.92 |
| Mean               | 1.89 | Mean                | 0.55 | Mean      | 0.27 |
| Median             | 1.60 | Median              | 0.40 | Median    | 0.14 |
| SD                 | 1.30 | SD                  | 0.67 | SD        | 0.29 |

Table 17: Sugar concentration Probiotic group at the end of treatment period

| Rhamnose (R) conc. |       | Lactulose (L) conc. |       | L/R ratio |       |
|--------------------|-------|---------------------|-------|-----------|-------|
| Min                | 0.200 | Min                 | 0.010 | Min       | 0.003 |
| Max                | 7.200 | Max                 | 2.100 | Max       | 0.913 |
| Mean               | 1.993 | Mean                | 0.382 | Mean      | 0.264 |
| Median             | 1.450 | Median              | 0.130 | Median    | 0.100 |
| SD                 | 1.927 | SD                  | 0.565 | SD        | 0.308 |

Table 19 shows the changes in the L/R ratios of the individual animals in the Control and Probiotic groups, respectively. Figure 14 shows a comparison of the mean lactulose/rhamnose ratios of the CG and PG at the beginning and end of the probiotic trial.

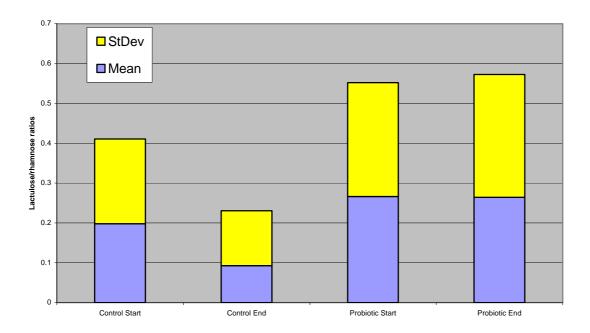



Figure 14: Comparison of lactulose/rhamnose ratios in PG and CG at the start and end of treatment period

Table 18: Differences in rhamnose (R) and lactulose (L) ratios in Control Group

| Cheetah ID | Start L/R | End L/R | Difference |
|------------|-----------|---------|------------|
| 430        | 0.214     | 0.045   | -0.169     |
| 431        | 0.045     | 0.010   | -0.036     |
| 432        | 0.006     | 0.014   | 0.008      |
| 435        | 0.140     | 0.061   | -0.080     |
| 436        | 0.190     | 0.128   | -0.062     |
| 447        | 0.224     | 0.008   | -0.217     |
| 426        | 0.188     | 0.154   | -0.034     |
| 427        | 0.000     | 0.000   | 0.000      |
| 428        | 0.150     | 0.073   | -0.077     |
| 443        | 0.786     | 0.481   | -0.305     |
| 444        | 0.233     | 0.045   | -0.187     |

Table 19: Differences in rhamnose (R) and lactulose (L) ratios in Probiotic Group

| Cheetah ID | Start L/R | End L/R | Difference |
|------------|-----------|---------|------------|
| 465        | 0.500     | 0.733   | 0.233      |
| 438        | 0.000     | 0.100   | 0.100      |
| 450        | 0.076     | 0.132   | 0.056      |
| 455        | 0.917     | 0.338   | -0.578     |
| 437        | 0.353     | 0.056   | -0.297     |
| 446        | 0.100     | 0.003   | -0.097     |
| 461        | 0.067     | 0.017   | -0.050     |
| 50         | 0.045     | 0.008   | -0.037     |
| 433        | 0.029     | 0.050   | 0.021      |
| 434        | 0.040     | 0.088   | 0.048      |
| 440        | 0.714     | 0.600   | -0.114     |
| 441        | 0.338     | 0.913   | 0.575      |
| 458        | 0.072     | 0.10    | 0.03       |
| 457        | 0.653     | 0.56    | -0.09      |
| 459        | 0.173     | a       |            |
| 460        | 0.181     | a       |            |

<sup>&</sup>lt;sup>a</sup> no second reading available since cheetah was sold

There was a significant difference in rhamnose concentration between the CG and PG on Day 0 of the treatment period (P=0.034, ANOVA, significance  $\alpha$ =0.05). The mean rhamnose

concentration of CG on Day 0 was 2.836 (SE 0.466) and the PG was 1.894 (SE 0.386). The mean concentration of rhamnose at the end in CG was 3.218 (SE: 0.466) and in PG was 1.993 (SE 0.413). There was no significant difference between lactulose concentrations between the two groups on Day 0. Both groups had a non-significant decrease in the mean lactulose concentration on Day 28. There was a significant difference in the lactulose to rhamnose ratio (L/R) between the Probiotic and the Control groups at the end of the treatment period, with the Control Group showing a decrease in the L/R ratio (P=0.044, ANOVA, significance  $\alpha$ =0.05).