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Summary 
  

There exists a need to estimate the potential financial, epidemiological and societal impact 

that diseases, and the treatment thereof, can have on society.  Markov processes are often 

used to model diseases to estimate these quantities of interest and have an advantage over 

standard survival analysis techniques in that multiple events can be studied simultaneously.  

The theory of Markov processes is well established for processes for which the process 

parameters are known but not as much of the literature has focussed on the estimation of 

these transition parameters. 

This dissertation investigates and implements maximum likelihood estimators for Markov 

processes based on longitudinal data.  The methods are described based on processes that are 

observed such that all transitions are recorded exactly, processes of which the state of the 

process is recorded at equidistant time points, at irregular time points and processes for which 

each process is observed at a possibly different irregular time point.  Methods for handling 

right censoring and estimating the effect of covariates on parameters are described. 

The estimation methods are implemented by simulating Markov processes and estimating the 

parameters based on the simulated data so that the accuracy of the estimators can be 

investigated.  We show that the estimators can provide accurate estimates of state prevalence 

if the process is stationary, even with relatively small sample sizes.  Furthermore, we indicate 

that the estimators lack good accuracy in estimating the effect of covariates on parameters 

unless state transitions are recorded exactly.  The methods are discussed with reference to the 

msm package for R which is freely available and a popular tool for estimating and 

implementing Markov processes in disease modelling. 

Methods are mentioned for the treatment of aggregate data, diseases where the state of 

patients are not known with complete certainty at every observation and diseases where 

patient interaction plays a role. 
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Chapter 1: Introduction 

1.1 Problem statement 

There exists a need to estimate the potential financial, epidemiological and societal impact 

that diseases, and the treatment thereof, can have on society.  For example, the Department of 

Health in South Africa has a limited amount of resources that is being made available to them 

by the treasury.  This budget has to be spent as fairly and effectively as possible and it would 

therefore be beneficial for the decision makers to have an idea of the potential impact that 

certain medical interventions may have.  As another example, when a healthcare funder like 

the Department of Health or a medical insurance fund has to decide if they will reimburse a 

new treatment, it may be of interest to them to estimate the long term effects of such an 

investment on the morbidity and mortality of the patients receiving the new treatment.  The 

long term financial impact may also be of interest when deciding if the new treatment should 

be reimbursed. 

When comparing the long term effects of a new treatment option with the current treatment of 

a disease one may want to consider a sequence of disease and / or treatment related events.  

Cancer patients for example can undergo surgery to have cancer cells removed and thereafter 

be in a “disease free” state.  Then the cancer cells can reappear at the same site (local 

recurrence) or the cancer cells can spread to another part of the body (metastasis) or the 

patient can die[
X

87
X

].  We know the patient will die eventually from cancer or other causes of 

death but one may want like to investigate the time until death for the new and current 

treatment options, the difference in time until death after a local recurrence and after 

metastasis, and the possible avoidance or prolonging of a local recurrence or metastasis with 

the proposed new treatment option. 

Longitudinal data consists of repeated measurements of the state of a patient and the time 

between observations and can therefore be used to answer the research questions posed in the 

preceding paragraph.  Longitudinal data is available from clinical trials since these trials are 

often done over a period of time with observations being made on patients at regular (or 

sometimes irregular) time intervals until the patient dies, is removed from the trial or the 

study ends[
X

5
X

,
X

56
X

,
X

47
X

].  An extract of two patients from a study by Klotz and Sharpless[
X

57
X

]  is 
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shown in XTable 1X to give an example of longitudinal data.  The study by Klotz and Sharpless 

will be discussed in more detail in Section X2.4X of the dissertation. 

Patient ID Time (Year) Status 

001 0 Disease free 

001 1 Disease free 

001 2 Mild disease 

001 3 Mild disease 

001 4 Mild disease 

001 5 Moderate / severe disease 

001 6 Death 

002 0 Disease free 

002 1 Disease free 

002 2 Moderate / severe disease 

002 3 Death 

Table 1: An example of longitudinal data 

Standard survival analysis techniques like Kaplan Meier survival curves[
X

55
X

] and Cox 

regression models[
X

19
X

] can be used when one wishes to study the time until a specified event 

occurs.  This however fails to describe a sequence of events and does therefore not utilise all 

the information that longitudinal data can provide if multiple events are studied.   

Markov processes posses a potential solution to the modelling of a sequence of events with 

the use of longitudinal data[
X

104
X

] and have been used on several occasions in the literature 

especially in the field of pharmacoeconomics [X

85
X

,
X

22
X

 ,
X

113
X

,
X

46
X

].  Markov processes are favourable to 

the modelling of diseases when a disease can be grouped into a set of exhaustive and 

mutually exclusive health states, thereby forming a multi-state model. 
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The theory of Markov processes is well established for processes for which the process 

parameters are known but not as much of the literature has focussed on the estimation of 

these transition parameters[
X

10
X

].  Furthermore, various assumptions are often made in terms of 

the structure of the processes that are used in the construction of Markov processes used for 

disease modelling.  These assumptions include constant risks of events over time and that all 

subjects represented by the model are homogenous in terms of their risks of future events.  

These assumptions are made to simplify the implementation of the model, but are sometimes 

not robust since transition parameters may change over time based on the occurrence of an 

event.  One example of this is the increased risk of death in the first 30 days after a 

myocardial infarction, but with the risk decreasing thereafter[
X

2
X

] which is a violation of the 

assumption of constant risks of events over time.  The Framingham heart study indicated that, 

amongst others, smoking, high blood pressure and a history diabetes increases ones risk of 

having a stroke[
X

23
X

].  This indicates that it will be inappropriate to assume a group of patients 

all have the same risk of a stroke if the group contains smokers and non-smokers, patients 

with significantly varying blood pressure levels and some with diabetes and some without 

diabetes. 

Another problem in disease modelling is that the data used to estimate the process parameters 

often contains censoring.  Censoring occurs for example when the time until an event is not 

observed but known to be greater than some non-zero value.  The state of the process can also 

be censored depending on how frequent the process is observed.  Ideally one would like to 

observe state transitions at the exact time that it occurs, but this is not always practically 

possible.  The state of the process is often observed at some predefined time points and such 

data is called panel data.   

This dissertation discusses methods for implementing Markov processes based on the 

frequency of observations, with the inclusion of estimating the effects of covariates on the 

transition parameters.  Methods for dealing with transition parameters that change over time 

are also mentioned.   

Markov processes are not suitable for modelling all disease types and answering all disease 

related questions due to the complexity that is involved in the modelling of some diseases.  It 

is therefore important to highlight situations when researchers should consider alternative 

methods.  This will be discussed in the concluding chapter of the dissertation. 
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There is a vast amount of literature available on the estimation of the processes and it will not 

be feasible to discuss all these methods in detail in this dissertation.  This dissertation will 

focus on the first article written to estimate Markov processes with a discrete time variable 

and the first article written for estimating the parameters of a continuous time process.  Then 

the literature used to construct the msm package[
X

49
X

] of R[
X

91
X

] will be discussed since this 

package is often used in practise when estimating Markov process parameters.  The methods 

will be implemented by simulating processes and estimating their parameters.  The methods 

will then be discussed and compared in terms of accuracy, complexity, and possible 

shortcomings 

The dissertation will conclude by mentioning recent advances in the literature not included in 

the msm package for R that can also be used for estimating Markov process parameters.  

Other scenarios whereby Markov processes should be avoided for disease modelling will also 

be discussed. 

All computer procedures were written in R[
X

91
X

] and are shown in Appendix X2X.  These programs 

were executed on a computer with a Intel® Geon® 3.33 GHz CPU and 24 GB RAM with a 

64 bit Windows 7[
X

77
X

] operating system.  The computer specifications are provided since 

comments are made on the run time for some procedures. 
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1.2 Dissertation outline 

This chapter will continue with a literature review which will review the current literature that 

is available on the topic of Markov processes and the estimation of Markov processes.   

Chapter 2 will provide background information for Markov processes which will consist of 

measure theory, the Markov property, Markov chains and Markov jump processes and finally 

a brief overview of some survival analysis concepts and a discussion thereof.  The terms 

Markov chains and Markov jump processes will be used in the remainder of Chapter 1 but 

will only be formally introduced in Chapter 2.  Markov chains refer to Markov processes in 

discrete time and Markov jump processes refer to Markov processes in continuous time, both 

with discrete state spaces.  The term “Markov process” will be used as a collective term for 

Markov chains and Markov jump processes. 

Chapter 3 will review maximum likelihood (ML) estimators for Markov chains and Markov 

jump processes. The chapter will start with Markov chains since the theory involved is 

thought to be easily understandable and since this is the type of Markov process for which 

ML estimators of Markov processes was initiated.  Then a Markov jump processes of which 

all transitions are observed exactly will be discussed.  This discussion involves a lot of 

seemingly complicated measure theory and therefore an alternative derivation of these results 

for Markov jump processes will be provided which is thought to follow a more 

comprehensible approach.  The assumption of observing all transitions exactly will be relaxed 

and methods for handling this type of censored data of will be discussed.  Notes will be made 

on how covariates can be included in the methods discussed and how censored time should be 

handled.  Methods for testing the goodness-of-fit models of Markov processes will also be 

described.  The methods discussed in Chapter 3 will focus on the msm package for R since, as 

we show in the literature review, this package is often used in multi-state models. 

Chapter 4 will implement the estimation techniques discussed in Chapter 3 by simulating 

Markov processes with different observation schemes and estimating the parameters thereof 

based on the simulated data. We will start with the observations that are observed exactly and 

discuss how covariate effects can be implemented.  Then we consider processes that are 

observed at equidistant times, processes that are observed at the same irregular time points 

and finally the case where all processes are observed at possibly different irregular time 

points.  We conclude with an example where all processes are observed at possibly different 
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irregular time points with the inclusion of covariate effects.  Goodness-of-fit tests will be 

implemented and discussed throughout to indicate their ability to assess model fit. 

Chapter 5 will contain a discussion of the techniques described in the preceding chapters.  

The discussion will include suggestions on when which types of the discussed estimation 

methods will be the most suitable in terms of the observation scheme of the data.  The 

discussion will end with an overview of other disease modelling techniques that are available 

which fall outside the scope of this dissertation and situations when these methods should be 

considered as opposed to Markov processes. 

The flow of the dissertation is illustrated in XFigure 1X.  All chapters will commence with a 

brief introduction to the contents of the chapter and will be concluded with a summary. 

 

 

Figure 1: Dissertation outline 
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1.3 Literature review 

The literature review consists of two sections.  The first section looks specifically at Masters 

degree and Doctorate degree dissertations and theses (for the remainder of this dissertation 

the term thesis will be used to refer to both theses and dissertations unless otherwise 

specified) that were done at South African universities on the topic of the use of Markov 

processes in disease modelling.  This was done to determine the extent to which postgraduate 

research has been done in the area of Markov processes in disease modelling at South African 

Universities.   

The aim of the second section of the literature review is to identify all influential papers and 

books that have contributed to the estimation of the parameters of Markov processes in South 

Africa and internationally.  Due to the topic of this dissertation, preference was given to 

techniques that are based on clinical data or data that are presented in a similar fashion as 

clinical data. 

The literature review did not include work that focussed on hidden Markov models as this 

falls outside the scope of this dissertation but some comments will be made about the use of 

hidden Markov models in disease models in Chapter 5. 

The outcome of the literature review for the two sections will be described separately and will 

be followed by a summary of the two sections. 

1.3.1 South African literature on Markov processes for disease modelling 

Previous theses at South African universities were searched using the UCTD database which 

is provided by the University of Cape Town.  This database contains all theses from South 

African universities.  The UCTD database was searched using the keywords ‘Markov’ and 

‘Disease’ and this yielded no results.  The database search was broadened by using only the 

term ‘Markov’.  This exercise yielded 47 results of which 12 were repetitive.  None of these 

theses were focussed on disease modelling. The results from the UCTD database were 

applications of Markov modelling in speech recognition[
X

32
X

,
X

107
X

,
X

89
X

,
X

92
X

,
X

110
X

,
X

100
X

,
X

111
X

,
X

106
X

 ,
X

63
X

,
X

88
X

,
X

11
X

,
X

101
X

,
X

83
X

,
X

108
X

], 

optical recognition[
X

79
X

,
X

17
X

,
X

98
X

,
X

114
X

,
X

72
X

,
X

109
X

,
X

59
X

,
X

80
X

], mixed-order hidden Markov models[
X

96
X

,
X

28
X

,
X

52
X

] and 

others[
X

7
X

,
X

66
X

,
X

105
X

,
X

62
X

,
X

78
X

,
X

76
X

,
X

71
X

,
X

61
X

,
X

112
X

,
X

115
X

] but none of these theses were associated with disease modelling 

or the estimation of the transition probabilities of standard Markov models. 
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Next, the UCTD database was searched using the terms ‘Disease modelling’ and this resulted 

in three theses.  One of these theses modelled the co-infection dynamics of HIV-1 and 

Tuberculosis[
X

27
X

] and the other modelled the relationships between clinical markers of HIV[
X

42
X

].  

These two theses did not use Markovian methods.  The third thesis, entitled Stochastic 

analysis of AIDS epidemiology by Labeodan MMO[
X

58
X

], is a PhD thesis that contained, 

amongst others, methods for estimating transition rates between two states of a stochastic 

model, but it was not focused on the estimation of Markov process parameters based on 

longitudinal data as intended in this dissertation. 

The UCTD database was further searched using the term ‘disease simulation’ which yielded 

the dissertation by Du Toit[
X

27
X

] on the co-infection of HIV-1 and TB. 

With the goal of identifying South African dissertations on the estimation of transition 

probabilities in Markov processes the UCTD database was searched with the term ‘transition 

matrix’ and this yielded no results. A search for the term ‘rate matrix' yielded one thesis[
X

82
X

] 

which did not have any relevance to the Markovian setting. 

1.3.2 Literature on the estimation of Markov process probabilities 

A literature review was conducted by searching for the terms ‘estimation’ AND ‘transition 

probabilities’ OR ‘transition rates’ AND ‘Markov process’ on the following databases: 

• Statistical theory & methods 

• Zentralbalt – MATH 

• MathSciNet 

• Scopus 

• Current index to Statistics 

• JStor 

• ISI web of knowledge 

Results from these searches were filtered to obtain only papers with primary focus on the 

estimation of the transition probabilities of a Markov process.  All papers dealing with hidden 

Markov processes were disregarded.  This resulted in 12 articles.  Due to the relatively low 

number of articles obtained, it was decided to generalise the search by searching for the terms 

‘Markov process’ AND ‘estimation’ AND ‘matrix’.  This was done on the following 
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databases which are thought to be the most relevant databases for the field of disease 

modelling: 

• Scopus 

• Bulletin of Mathematical Biology 

• Mathematical Biosciences 

• ISI web of knowledge 

The last mentioned literature search was limited to articles from the year 2000 onwards to 

ensure that the most recent articles are obtained.  The “classic” articles dating back prior to 

2000 for the estimation procedures were identified from the introductory notes of these more 

recent articles. 

1.3.2.1 Outcome of literature search on estimation of transition probabilities 

The theory of stochastic processes is summarised in various textbooks and articles.  Four of 

the most referenced textbooks are The Theory of Stochastic Processes by Cox et al.[X

20
X

], An 

Introduction to Probability Theory and Its Applications by Feller[
X

33
X

], Introduction to 

Stochastic Processes by Cinlar[
X

16
X

] and Stochastic Processes by Doob[
X

26
X

]. 

Many articles were found which described the implementation of Markov models in disease 

modelling.  These include the use of Markov processes in modelling hepatitis C[
X

102
X

], 

cancer[
X

31
X

,
X

56
X

 ,
X

29
X

,
X

15
X

], diabetes[
X

21
X

,
X

6
X

], diabetic retinopathy[
X

41
X

,
X

69
X

] and trachoma infection[
X

39
X

] (both are 

eye diseases), malaria[
X

90
X

], Human Immunodeficiency Virus (HIV)[
X

35
X

,
X

68
X

,
X

64
X

,
X

95
X

,
X

40
X

,
X

38
X

,
X

74
X

], and 

cardiovascular diseases[
X

51
X

,
X

97
X

,
X

57
X

]. 

Markov processes are also used in, amongst others, the social sciences[
X

53
X

,
X

103
X

,
X

104
X

], geology[
X

84
X

,
X

25
X

], 

marketing[
X

30
X

,
X

24
X

], process control[
X

13
X

], veterinary sciences[
X

37
X

], weather prediction[
X

94
X

] and 

linguistics[
X

34
X

]. 

The first and one of the most referenced articles for the estimation of the transition 

probabilities in Markov chains is the article by Anderson and Goodman which was published 

in 1957[
X

8
X

].  In this article the likelihood function for a Markov chain is derived and maximised 

to find the ML estimators for the entries of a transition probability matrix (TPM). The 

asymptotic behaviour of the estimators is also discussed.  Furthermore, methods for testing 

whether transition probabilities are equal to a specific hypothesised value are discussed. 
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In 1962 the work of discrete time Markov chain ML estimator of Anderson and Goodman[
X

8
X

] 

was extended to a continuous time Markov jump process ML estimator.  This was done by 

Albert[
X

4
X

] in a paper where the transition probabilities are derived from estimated transition 

intensities for the case of stationary intensities.  It is shown that if there is a positive 

probability for the process to be in any of the possible states for a certain time interval, ሾ0,  ,ሻݐ

the estimator will be consistent and the residuals of the estimated transition intensities will 

follow an asymptotic normal distribution.  These results are true for the case when the 

number of observations, or the time interval, tends to infinity. 

Markov models were used in the social sciences from 1964 and this led to interest towards the 

estimation of Markov process parameters[
X

104
X

].  Markov processes in the social sciences 

involved the study of, for example, the movement of people through “Single”, “Married”, 

“Divorced” states.   Tuma is one of the authors from the social sciences who contributed 

towards the use and implementation of Markov processes.  In 1979 Tuma was the lead author 

of two papers[
X

103
X

,
X

104
X

] that described the likelihood function of a Markov jump process. It is 

shown in Section X3.4X that the likelihood function in the one paper by Tuma is the same as that 

of Albert[
X

4
X

] in the case of a stationary Markov process.  Tuma does provide an alternative 

method for deriving the likelihood function which is flexible enough to incorporate 

nonstationary Markov processes and the effect of covariates on transition rates.   

Due to the nature of clinical trial data, the complete outcome of all patients is often not 

known by the time the trial is finished. Furthermore, since observation times in a clinical trial 

are often predetermined or sometimes irregular, the exact time at which a process transitions 

between states can be unknown and some transitions may not be observed at all[
X

56
X

].  This has 

led to additions to the literature.  In 1985 and 1986, Kay[
X

56
X

], and Kalbfleisch and Lawless[
X

53
X

], 

respectively considered methods for which the assumption of observing transitions exactly, or 

at equidistant time points were relaxed.    

Kalbfleisch and Lawless[
X

53
X

] provide a ML estimator for a Markov process of which all 

transitions are observed at the same irregular time points.  This method requires optimising a 

likelihood function for which closed form expressions of the ML estimators cannot be 

provided and therefore they provide an iterative quasi-Newton method to optimise the 

likelihood function.   
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The method of Kay[
X

56
X

] does not require all processes to be observed at the same time points 

and makes provision for the fact that a transition to the death state is often observed within a 

day and adds this information in the likelihood function.  The method of Kay also requires a 

likelihood function for which closed form expressions of the ML estimators are not available.   

There is often great interest in the effect that some characteristics of the units being studied  

may have on the parameters of a Markov process.  As previously discussed, it has been 

shown that smoking, diabetes and high blood pressure increase the risk of strokes.  One may 

also wish to assess the influence that a medical intervention has on the wellbeing of patients 

with a certain condition.  The methods of Kalbfleisch and Lawless[
X

53
X

] and Kay[
X

56
X

] make 

provision for the inclusion of covariate effects on the transition parameters. 

In 2002, Jackson[
X

49
X

] constructed a library for R called msm which can be used to estimate the 

parameters of Markov processes.  Jackson refers to the work by Kalbfleisch and Lawless[
X

53
X

]  

and Kay[
X

56
X

] for deriving the likelihood function of a Markov jump process which can handle 

censored data and include covariates.  These methods are then used to construct a likelihood 

function and thereafter estimate the parameters of the process. 

It would be difficult to provide an accurate estimate of the number of people using the msm 

package.  The msm user manual[
X

49
X

] invites the users thereof to inform the author when they 

use the package for the personal interest of the author.  I enquired with the author about the 

number of people that have informed him of the use of msm and he indicated in an email on 

the 10th of March 2010 that he estimates 100 people have informed him of such usage.  It 

therefore seems that the msm package is used frequently.  Published examples of the use of 

the msm package include Sweeting et al.[X

102
X

], Gautrais et al.[X

37
X

], Grassly et al.[X

39
X

] and 

Mekonnen et al.[X

73
X

].  In an unpublished article by Jackson[
X

50
X

], reference is made to seven other 

articles that have made use of the msm package and it is also mentioned in this article that the 

msm package is “frequently used” in the studies of chronic diseases.  

1.4 Summary 

The field of pharmacoeconomics is growing in South Africa and more generally the Southern 

African Development Community[
X

86
X

] and provides a possible approach for optimally 

allocating scarce financial and human resources to the Southern African population.  Due to 

the use of Markov processes in pharmacoeconomics and the growing demand for 
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pharmacoeconomics, the techniques discussed in this dissertation can be used in the future 

planning of healthcare resources in Southern Africa.  

There has been one Masters[
X

27
X

] and one Doctorate[
X

58
X

] level thesis in South Africa concerning 

disease modelling but none were focussed on specifically using Markov processes in disease 

modelling or the estimation of the parameters thereof.  This suggests that interest in disease 

modelling may be growing, but there is still a lack of locally available literature regarding the 

use of Markov models in disease modelling.  Globally, the literature on the estimation of the 

transition probabilities of Markov chains was initiated by Andersen and Goodman [ X

8
X

] in 1957.  

This was followed by the extension of these methods to the continuous time Markov jump 

process transition rates in 1962 by Albert[
X

4
X

].  Thereafter the estimation techniques developed 

so that censored observations and the effect of covariates on the process parameters could be 

incorporated. 

In this dissertation the background knowledge of Markov processes will be provided from the 

textbook by Cox et al.[X

20
X

] and Doob[
X

26
X

].  Then the ML estimators of Andersen and Goodman[
X

8
X

]  

and Albert[
X

4
X

] will be discussed in detail and implemented with an example.  The methods by 

Tuma et al.[X

104
X

] will be discussed to indicate an alternative approach to constructing a similar 

likelihood function to that of Albert.   

The msm package for R developed by Jackson[
X

49
X

] is thought to be an important and widely 

used tool in the use of Markov processes in disease modelling and therefore the methodology 

followed by this package will be explored in detail.  The methods by Kalbfleisch and 

Lawless[
X

53
X

] and also Kay[
X

56
X

] will be discussed since these methods are used in the msm 

package. 

The methods by Andersen and Goodman[
X

8
X

], Albert[
X

4
X

], Tuma et al.[X

104
X

],  Kalbfleisch and 

Lawless[
X

53
X

] and Kay[
X

56
X

] will be implemented and compared with the output from the msm 

package for R produced by Jackson[
X

49
X

]. 

Twenty one articles were mentioned in Section X1.3.2.1X that used Markov models in disease 

modelling.  These articles were investigated to assess if Markov chain or jump processes were 

used in the model construction.  This could not be determined for two of the articles, ([X68X] 

and [X29X]), due to restrictions on the access to the articles.  For the remaining 19 articles, 17 

(89%) used Markov jump processes.  It therefore seems that time is mostly considered to be 

continuous when Markov processes are used in disease models. The choice of continuous 
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time over discrete may be caused by the greater ease at which individual based simulation 

models can be implemented with Markov jump processes compared to Markov chains.  

Individual based simulation models simulate the path of a few processes individually up to a 

certain time point or until the process reaches a state from where no transitions can occur.  

With stationary Markov jump processes, the time until the next event is sampled from a 

exponential distribution, whereas the the state of the Markov chain needs to be determined at 

the end of every discrete time point which can result in many transitions to the same state.  

Methods in which time is considered to be continuous will therefore be discussed in more 

detail in this dissertation with notes being made on how to calculate the parameters of 

Markov chain processes from the estimated parameters of Markov jump processes. 

Advances in the estimation of the parameters of Markov processes since the development of 

the msm package will be mentioned in Chapter 5 along with Hidden Markov processes, 

dynamic modelling and Bayesian methods. 
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Chapter 2: Preliminary background 

Chapter 2 will provide background information on some topics being used in the dissertation.  

Markov processes are a specific type of stochastic process which is a subject that relies on 

measure theory.  We therefore begin the overview with some measure theory results, building 

up to the definition of a random variable and then a stochastic process.  The Markov property 

for stochastic processes is then discussed with an overview of two types of Markov processes 

which differ in their treatment of time.  Some results for Markov processes are provided 

followed by a few topics often used in the more general context of survival analysis. 

2.1 Measure theory 

As in many areas in statistical literature, Markov processes deal extensively with the 

probabilities of a set of possible results of an experiment whose outcome is unknown before 

the experiment starts.  We are interested in answering questions such as what possible 

outcomes the experiment can have, what the probabilities are that the process will have such 

outcomes, and how these probabilities should be measured.  This creates a need for some 

concepts and definitions from measure theory.  The definitions introduced were all taken 

from Cinlar[
X

16
X

] unless stated otherwise.  

Definition 1 

An experiment whose outcome is not known in advance is defined to be a random 

experiment.   

Definition 2 

All the possible outcomes of an experiment is defined as the sample space and will be 

denoted by the non-empty set Ω.   

In the case of a two sided coin toss experiment, for example, the sample space will be 

ሼݏ݀ܽ݁ܪ, ,݁ݒ݈݅ܣሽ.  Applied to disease modelling, the sample space may be ሼݏ݈݅ܽܶ  ሽ݀ܽ݁ܦ
which denotes the state of a patient at a specific point in time.  The sample space will expand 

as more states are considered, for example ሼܰݎ݉ݑܶ, ,ݎ݉ݑܶ  .ሽ݀ܽ݁ܦ
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An event of the sample space is a subset of the sample space and is denoted by ܣ.  In the coin 

toss example a possible event can be ݏ݀ܽ݁ܪ or ݈ܶܽ݅ݏ for example.  The outcome of an 

experiment is denoted by ߱.   

Definition 3 

The complement of ܣ is denoted by ܣ and represents the set ܣ ൌ ሼ߱ א Ω; ߱ ב  .ሽܣ

Definition 4 

The union of two events ܣ and ܣ; ݅ ് ݆ is defined as the set  

ܣ  ܣ ൌ ൛߱ א Ω: ߱ א ߱ ݎ ܣ א  .ൟܣ

The union of more than two events is be denoted by  ڂ ܣ . 

Definition 5 

The intersection of two events ܣ and ܣ; ݅ ് ݆ is  defined as the set  

ܣ ת ܣ ൌ ൛߱ א Ω; ߱ א ߱ ݀݊ܽ ܣ א  .ൟܣ

The intersection of more than two events is be denoted by  ځ ܣ . 

Definition 6 

Consider a space ܨ and a collection of subsets ܣଵ, ,ଶܣ … ك Ω.  If ܣ א  is said ܨ ,݅ ܨ

to be closed under the formation of countable unions if ڂ ܣ
ஶ
ୀଵ א  is ܨ Similarly  .ܨ

said to be closed under the formation of countable intersections if  ځ ܣ
ஶ
ୀଵ א   .ܨ

Furthermore, ܨ is said to be closed under the formation of complements if for any 

subset ܣ ك Ω, ܣ א ܨ ֜ ܣ א  The notations introduced in this paragraph were  .ܨ

taken from Rosenthal[
X

93
X

]. 

Definition 7 

The empty set is denoted by ߶ and has the following properties: ߶ ൌ ΩC and Ω ൌ ߶.  

Definition 8 

Two events ܣ and ܣ are said to be disjoint if ܣ ת ܣ ൌ ߶. 
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Definition 9 

A measure on a space ܣ is defined to be the operator ߤ such that it has the following 

properties[
X

43
X

]: 

ሻܣሺߤ •  ܣ  0 א  (nonnegativivity) ܣ

ځሺߤ • ܣ ሻ ൌ ∑ ሻܣሺߤ  if all ܣ
ᇱݏ are disjoint (countable additivity) 

Definition 10 

A counting measure, ܥ, is defined on any set ܣ, such that ܥሺܣሻ ك ܰ is the number of 

elements in the set ܣ and ܰ is the set of positive integers. ܥ has the following 

properties: 

• If ܣ is finite we have ܥሺܣሻ ൌ  ሻ is the number ofܣሺ݀ݎܽܿ ሻ whereܣሺ݀ݎܽܿ

elements in ܣ.  

• If ܣ is infinite we have ܥሺܣሻ ൌ ∞ 

Definition 11 

A probability measure of a sample space is denoted by the function ܲ and has the 

following properties: 

• 0  ܲሺܣሻ  1 for any event ܣ  

• ܲሺΩሻ ൌ 1 

• ܲሺڂ ܣ
ஶ
ୀଵ ሻ ൌ ∑ ܲሺܣሻஶ

ୀଵ  for a sequence of disjoint events ܣଵ, ,ଶܣ …  

The definition of a probability measure is taken from Rosenthal[
X

93
X

]. 

Definition 12 

A sigma algebra (written as ߪ-algebra), also known as a ߪ-field, is the set ܨ which 

contains Ω and ߶ and is closed under the formation of complements, countable unions 

and countable intersections. 
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Definition 13 

A probability space, also known as a probability triple, is denoted by ሺΩ, ,ܨ ܲሻ where 

• Ω is the sample space 

 algebra-ߪ is a ܨ •

• ܲ is a probability measure which maps ܨ ՜ ሾ0,1ሿ. 

Definition 14 

There exists a probability space ሺΩ, ,ܨ ܲሻ such that Ω ൌ ሾ0,1ሿ, ܨ contains all the 

intervals in ሾ0,1ሿ and for any interval ܫ א ሾ0,1ሿ, ܲሺܫሻ is the length of the interval and is 

as such a Lebesgue measure for the space. 

XDefinition 13 X and XDefinition 14X were taken from Rosenthal[
X

93
X

]. 

Definition 15 

A property, say ु, on a measure space ሺΩ, ,ܨ ܲሻ is said to hold almost everywhere if 

the property ु holds for all points in the set, except a set of points for which the 

measure is zero.   

The term “almost everywhere” is also often written as “almost all”. 

Two properties of probability measures that will be used in this dissertation are provided 

below: 

• The conditional probability of event ܣ given that event ܤ has occurred is denoted by  

ܲሺܤ|ܣሻ and is calculated as follows:  

 ܲሺܤ|ܣሻ ൌ ሺתሻ
ሺሻ  given that ܲሺܤሻ  0. (1)

• Two events ܣ and ܤ are said to be independent if ܲሺܣ ת ሻܤ ൌ ܲሺܣሻܲሺܤሻ.  From 

Equation X(1XX)X, we then have that if ܣ and ܤ are independent, then ܲሺܤ|ܣሻ ൌ ܲሺܣሻ. 

Definition 16 

A random variable, ܺऄ, is a function defined on a probability space ሺΩ, ,ܨ ܲሻ, which 

assigns a value to each outcome ߱ א Ω.   

 
 
 



 

  CA Marais 

  23138514 

25

Random variables are also called stochastic variables and are written in upper case and the 

realisation thereof is written in lower case letters, for example ݔऄ.  Random variables do not 

have to be written with a subscript as we do here by adding a ऄ to the notation. The subscript 

is merely added to illustrate that we talk about the state of a system at a certain point in time. 

Consider for example a disease modelling example with sample space 

ሼܰݎݑ݉ݑܶ, ,ݎݑ݉ݑܶ  ሽ.  Before a patient is observed it is not known in which one of݀ܽ݁ܦ

these three states the patients will be at certain times.  This is therefore a random experiment.  

A possible outcome for the random variable at various values of ऄ is as follows 

ଵܺሺ߱ሻ ൌ  ݎ݉ݑܶܰ

ܺଶሺ߱ሻ ൌ  ݎ݉ݑܶܰ

ܺଷሺ߱ሻ ൌ   ݎ݉ݑܶ

ܺସሺ߱ሻ ൌ  .݀ܽ݁ܦ

Definition 17 

A stochastic process is defined as the collection ሼܺऄ; ݐ א ܶሽ.  The set ܶ denotes the 

parameter space of the process.  The parameter space can be any indexing parameter 

but time is usually used being either discrete or continuous.  The exhaustive set of all 

possible values that the stochastic variable can take on is called the state space of the 

process and is denoted by ࣱ. 

If the state space is enumerable, the process is said to have a discrete state space and 

otherwise the state space is said to be continuous.  Only stochastic processes with discrete 

state spaces and a finite number of states will be considered in this dissertation.  A discrete 

state space consist of ः mutually exclusive and exhaustive states and so we have ࣱ ൌ

ሼ1, … , ःሽ.  The definitions of a random variable and a stochastic process of Cinlar[
X

16
X

] have been 

adopted to suit the purposes of this dissertation. 

An observed stochastic process, ൛ݔऄభ, ,ऄమݔ … ,  ऄൟ, can be represented graphically as a sampleݔ

function.  Since we are only concerned with Markov processes with discrete states, a sample 

function will be discontinuous where jumps occur and will therefore be represented by a step 

function.  An example of a sample function of a Markov jump process with ः ൌ 10 is shown 

in XFigure 2X. 
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Figure 2: Example of a possible sample function for a Markov jump process 

Through the probability space on which the stochastic process is defined, the joint 

distribution function of a finite number of ܺऄ’s can be determined.  For any collection from 

the parameter space, ሼऄଵ, ऄଶ, … , ऄሽ, the joint distribution function of  a set of possible 

outcomes, ൛ݔऄభ, ,ऄమݔ … ,  ऄൟ, of ܺऄ is given byݔ

ऄభ,ऄమ,…,ऄܨ
ሺݔଵ, ,ଶݔ … , ሻݔ ൌ ܲൣܺऄభ  ,ଵݔ ܺऄమ  ,ଶݔ … , ܺऄ   ൧ݔ

ൌ ܲൣ߱หܺऄభሺ߱ሻ  ,ଵݔ ܺऄమሺ߱ሻ  ,ଶݔ … , ܺऄሺ߱ሻ   .൧ݔ

 

Definition 18 

A stochastic process is said to be stationary, if for any integer ݊, and any values 

ऄଵ ൏ ऄଶ ൏ ڮ ൏ ऄ א ܶ and any value ݇ such that ऄଵ  ݇ ൏ ऄଶ  ݇ ൏ ڮ ൏ ऄ  ݇ א

ܶ the joint distribution function of ܺऄభ, ܺऄమ, … , ܺऄ is the same as the joint distribution 

function of ܺऄభା, ܺऄమା, … , ܺऄା. 
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2.2 Markov processes 

Definition 19 

A stochastic process ሼܺऄ; ऄ א ܶሽ defined on ሺΩ, ,ܨ ܲሻ is called a Markov process if 

and only if the following property holds[
X

20
X

]: 

 
ܲൣܺऄశభ ൌ ऄశభ|ܺऄݔ ൌ ,ऄݔ ܺऄషభ ൌ ,ऄషభݔ ܺऄషమ ൌ ,ऄషమݔ … ൧ 

ൌ ܲൣܺऄశభ ൌ ऄశభ|ܺऄݔ ൌ  .ऄ൧ݔ
(2) 

In laymen’s terms this means that at time ݊ the probabilities for a state of the process at the 

next time step, ݊  1, is only dependent on the current state of the process. 

Markov processes were introduced in 1907 by the Russian mathematician Andrei Andreivich 

Markov when he investigated the alternative use of vowels and consonants in the poem 

Onegin by Poeshkin. He constructed a model where successive results depended on all their 

predecessors only through the immediate predecessor. The model allowed him to obtain good 

estimates of the relative frequency of vowels in the poem[
X

36
X

].  Markov processes have 

received a significant amount of attention since then [
X

70
X

].  The properties of Markov processes 

are well known and provide a powerful set of results, especially for stationary processes. 

Some properties of Markov processes are discussed below.  This does not serve as an 

exhaustive description of the vast amount of properties that are available in the literature but 

merely focuses on some of the properties that are useful in disease modelling.  For more 

information on the properties of Markov processes and the proofs thereof, the interested 

reader is referred to Cox[
X

20
X

], Doob[
X

26
X

], Cinlar[
X

16
X

] and Feller[
X

33
X

].  Markov processes will be 

discussed separately for those with a discrete time parameter (Markov chains) and those 

processes with a continuous time parameter (Markov jump processes).  It should be noted that 

Equation X(2)X holds for Markov chains and Markov jump processes. 
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2.2.1 Markov chains 

A brief introduction of the properties of Markov chains will be provided below, all of which 

are taken from the textbook by Cox[
X

20
X

] unless stated otherwise.  For all the discussions on 

Markov chains the stochastic process ሼܺऄ; ऄ א ܶሽ defined on ሺΩ, ,ܨ ܲሻ will be considered. 

The notation of Markov processes can be simplified by the introduction of a TPM. If we let 

ܲሾܺ ൌ ݆|ܺ ൌ ݅ሿ be denoted by 
ሺ,ሻ, then the TPM of a stochastic process is the ः ൈ ः 

matrix ࡼሺ,ሻ such that 
ሺ,ሻ is the ሺ݅, ݆ሻth element of the matrix and ࡼሺ,ሻ is the identity 

matrix.  A TPM is a stochastic matrix with the properties that all the elements are nonnegative 

and less than or equal to one and that the sum of the elements in every row is one.   

Definition 20 

The 1 ൈ ः row vector ࣋
ᇱ ൌ ሺߩଵ, ,ଶߩ … ,  ःሻ is called a distribution vector and its ݇thߩ

element denotes the probability that the process will be in state ݇ at time ݆ and this is 

also known as state prevalence.  The distribution vector ࣋
ᇱ  has the property that its 

elements sum to one since the process must be in one of the states of the process at 

any given point in time. 

Due to the definitions of the TPM and the distribution vector the following useful relation is 

obtained: 

ାଵ࣋
ᇱ ൌ ࣋

ᇱ  .ሺ,ାଵሻࡼ

To calculate the probability of moving from one state of a Markov process to another between 

two predetermined time points, the Chapman-Kolmogorov Equations can be used.  The 

Chapman-Kolmogorov equations state: 

 
ሺ,ሻ ൌ  

ሺ,ሻ
ሺ,ሻ

0ࣱא

ݎ݂ ݉  ݈  ݊. (3) 

In matrix notation this is written as 

ሺ,ሻࡼ  ൌ ሺ,ሻࡼሺ,ሻࡼ ݎ݂ ݉  ݈  ݊. (4) 

In the case of a stationary Markov chain, 
ሺ,ሻ is only determined by the difference between 

݉ and ݊.  In this case the notation for the one step TPM is simplified to ࡼ and the Chapman-
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Kolmogorov Equations simplify to ࡼሺ,ሻ ൌ ିࡼିࡼ ൌ  ି.  Given, an initialࡼ

distribution vector ࣋
ᇱ , the distribution vector at any time point ݇ א ܶ can then be calculated 

with the following formula:  

࣋ 
ᇱ ൌ ࣋

ᇱ . (5)ࡼ

Equation X(5 XX)X can be generalised for a nonstationary process as follows: 

࣋ 
ᇱ ൌ ࣋

ᇱ ሺଶ,ଷሻࡼሺଵ,ଶሻࡼሺ,ଵሻࡼ …  ሺିଵ,ሻ. (6)ࡼ

It should be noted that Equation X(5XX) X can be used if ݇ is not an integer.  An example of this is 

when a Markov chain represents yearly transitions between states and the distribution vector 

needs to be calculated for a time point between the start and end of a year.  This can be done 

if ࡼ is decomposed as ࡼ ൌ  ࢫ and ࡼ is the ݅th eigenvector of  Ԣ where the ݅th column ofࢫ

is a diagonal matrix with ݅th entry equal to the ݅th eigenvalue of ࡼ. The matrix ࡼ can then be 

calculated for any real value of ݇ as follows: 

ࡼ  ൌ  ᇱ. (7)ࢫ

݇ to the power ࢫ  in Equation X(7XX)X is calculated by raising each diagonal entry ofࢫ א ሾ0, ∞ሻ 

since the off-diagonal entries of ࢫ are zero. 

Equation (7) can then be used to calculate Equation (5) for any real value of ݇.  It should be 

noted that Equation X(5XX) X will still hold if the distribution vector, ࣋
′ , contains integers 

representing the absolute number of units in each of the states.  In this case the sum of the 

elements of the distribution vector will equal the number of units being studied and it will be 

the same value for all values of ݇.  

States can be classified in terms of their accessibility to each other by the transition 

probabilities to move between them.   

Definition 21 

State ݆ is said to be accessible from state ݅ if there exists some value ݊  0 such that 


ሺሻ  0.   
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Definition 22 

If there exists some values ݊  0 and ݉  0 such that 
ሺሻ  0 and 

ሺሻ  0, states ݅ 

and ݆ are said to communicate.   

In laymen’s terms state ݆ is said to be accessible from state ݅ if it is possible for the process to 

move from state ݅ to state ݆ in a finite number of steps and these states communicate if it is 

possible to move back and forth between these states at least once in a finite number of steps. 

Definition 23 

Two, or more, states are said to be in the same equivalence class if the states 

communicate with each other.   

The states of a stochastic process can therefore be classified into equivalence classes 

depending on which states communicate with each other.   

Definition 24 

If there is only one equivalence class, all the states communicate with each other and 

the stochastic process is said to be irreducible. 

Let ݂
ሺሻ denote the probability that the process will visit state ݆ for the first time after ݊ steps 

given that the process started in state ݅ and let ݂ ൌ ∑ ݂
ሺሻஶ

ୀଵ .   

Definition 25 

State ݅ is called recurrent if ݂ ൌ 1 and transient if ݂ ൏ 1.   

In other words as time tends to infinity, once the process has left a transient state there is a 

positive probability that the process will not return to the transient state, whereas the process 

is expected to return to recurrent states at some point in time.   

Definition 26 

States for which the probability of leaving the state is zero are called absorbing 

states.   

Markov processes that model diseases will often have “Death” as a recurrent and absorbing 

state.  If a Markov chain has one recurrent state, the state will be an absorbing state.  
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For a stationary Markov chain with recurrent and transient states, there is a well known result 

that can be used to calculate the estimated amount of time that the process will spend in each 

of the transient states before the process is in one of the recurrent states.  This is useful in 

disease modelling since it can be used to estimate the amount of time that patients are in 

“Alive” states before moving to the “Death” state.   

For a stationary Markov chain with ݉ transient states and ݉ െ ः recurrent states, the one step 

TPM can be written as follows: 

ࡼ  ൌ ࡽ ࡾ
 ࡼ

൨. (8)

In Equation X(8XX) X, ࡽ refers to the ݉ ൈ ݉ TPM for the transient states, ࡾ refers to the ݉ ൈ

ሺ݉ െ ःሻ TPM for movement from the transient states to the recurrent states, the matrix  is a 

ሺ݉ െ ःሻ ൈ m matrix with all elements equal to zero which represent the zero probabilities to 

move from recurrent to transient states, and ࡼ represents the ሺ݉ െ ःሻ ൈ ሺ݉ െ ःሻ TPM for 

movements between the recurrent states.  The following property of ࡽ is useful in disease 

models: 

 
The expected number of visits from transient state ݅ to transient state ݆ before 

moving to a recurrent state is equal to the ሺ݅, ݆ሻth element of ሺࡵ െ    .ሻିଵࡽ
(9) 

In Equation X(9XX)X, the expected number of visits to a state can also be interpreted as the amount 

of time spent in the state. 

Definition 27 

The expected number of time units that the process will be in a state in a single visit is 

called the mean sojourn time of state ݅.   

The sum of the ݅th row of ሺࡵ െ  ሻିଵ is the expected amount of time for which the processࡽ

remains in transient states before moving to a recurrent state if the system starts in the ݅th 

transient state. 

For example, if we have a disease that can be approximated by a stationary Markov chain 

with sample space  

ሼ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ, ,ݎݑ݉ݑܶ݃݊݅݊݁ܤ ,ݎݑ݉ݑܶݐ݈݊ܽ݊݃݅ܽܯ ,ݏ݅ݏܽݐݏܽݐ݁ܯ  ሽ݄ݐܽ݁ܦ
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and TPM 

 ܲ ൌ

ۏ
ێ
ێ
ێ
ۍ 0.7

0.6
0.05
0.05

0

0.2
0.1
0
0
0

0.05
0.1
0.4
0
0

0
0.05
0.25
0.5
0

0.05
0.15
0.3

0.45
1 ے

ۑ
ۑ
ۑ
ې
, (10) 

we then have that 

ܳ ൌ 
0.7
0.6

0.05
0.05

0.2
0.1
0
0

0.05
0.1
0.4
0

0
0.05
0.25
0.5

, 

and so 

 ሺܫ െ ܳሻିଵ ൌ 
6.38
4.39
0.80
0.64

1.42
2.09
0.18
0.14

0.78
0.71
1.76
0.77

0.52
0.57
0.90
2.05

. 
(11) 

 

 

The sum of the rows of the matrix in Equation X(11XX) X are given by 

 ሺܫ െ ܳሻሾ,ሿ
ିଵ ൌ 

9.10
7.75
3.64
2.91


ସ

ୀଵ

. (12) 

So if a patient enters the model in the ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ state, he/she is expected to stay in the 

 state for 1.42 time units, be ݎݑ݉ݑܶ݊݃݅݊݁ܤ state for 6.38 time units, be in the ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ

in the ݎݑ݉ݑܶݐ݈݊ܽ݊݃݅ܽܯ state for 0.78 time units and be in the ݏ݅ݏܽݐݏܽݐ݁ܯ state for 0.52 

time units.  After all these visits to the transient states, the patients is expected to move to the 

death state.  It is therefore expected that such a patient will be alive for 9.10 time units from 

entering the model in the ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ state.  Similarly, a patient entering the model in the 

 state, is expected to live for 7.75 time units.  The life expectancy for ݎݑ݉ݑܶ݊݃݅݊݁ܤ

patients entering the model in the ݎݑ݉ݑܶݐ݈݊ܽ݊݃݅ܽܯ or ݏ݅ݏܽݐݏܽݐ݁ܯ follow similarly from 

Equation X(12XX) X. 

Another useful application of ሺࡵ െ  ሻିଵ is the ease at which the total cost of treatment beforeࡽ

death can be calculated if the cost per cycle of being in each of the transient states is known.  
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For a patient entering the model in state ݅, the total cost of treatment can be estimated with 

∑ ܿሺࡵ െ ሻିଵࡽ



ୀଵ  where ܿ is the cost per time unit spent in state ݆ and ሺࡵ െ ሻିଵࡽ

 is the 

ሺ݅, ݆ሻth element of ሺࡵ െ  ሻିଵ.  Similar methods can be used if an estimate of the quality of lifeࡽ

of patients is known in each state to calculate the life expectancy of patients weighed by the 

quality of life of the patients in each state. 

There are some disease models in which none of the states communicate and all states, except 

the absorbing death state, are transient.  Such models are called progressive models and apply 

to diseases where patients are in states from which they cannot be cured and the only possible 

movement is to for the patient to stay in the same state or move to a state of more severe 

disease.  Examples of such models include Sweeting[
X

102
X

], Klotz[
X

57
X

] and Perez-Ocon[
X

84
X

].  It 

should be noted that ሺࡵ െ  ሻିଵ can still be used for calculating the total number of time unitsࡽ

a patient is alive, and therefore the total cost before death, for such diseases if the ܳ matrix is 

constructed appropriately.  If the ࡽ matrix is the sub matrix of the TPM such that it contains 

the transition probabilities of moving between all the “alive” states, Equation X(8XX) X will still 

hold since ࡽ will be a upper triangular matrix for which the diagonal elements will be less 

than 1 (since there will always be a nonzero probability to die and ܲ is a stochastic matrix) 

and therefore ሺࡵ െ  ሻିଵ will exist.  This is explained by altering the process consideredࡽ

above.  Assume again that the states of a Markov process are  

ሼ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ, ,ݎݑ݉ݑܶ݃݊݅݊݁ܤ ,ݎݑ݉ݑܶݐ݈݊ܽ݊݃݅ܽܯ ,ݏ݅ݏܽݐݏܽݐ݁ܯ  .ሽ݄ݐܽ݁ܦ

These states are assumed to be ordered from the least severe disease state to the most severe 

disease state followed by death. Assume we have the following TPM: 

 ܲ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.6
0
0
0
0

0.2
0.7
0
0
0

0.05
0.1

0.45
0
0

0.1
0.05
0.25
0.65

0

0.05
0.15
0.3

0.45
1 ے

ۑ
ۑ
ۑ
ې
. (13) 

 

The TPM in Equation X(13XX)X implies that patients cannot move back to states of less severe 

disease and this is illustrated by the upper triangular form of the matrix.  The ࡽ matrix with 

transition probabilities between transient states from Equation X(13XX)X is as follows: 
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ܳ ൌ 
0.6
0
0
0

0.2
0.7
0
0

0.05
0.1

0.45
0

0.1
0.05
0.25
0.65

, 

and so 

 ሺܫ െ ܳሻିଵ ൌ 
2.5
0
0
0

1.67
3.33

0
0

0.33
0.61
1.82

0

1.19
0.91
1.30
2.86

. (14) 

The sum of the rows of the matrix in Equation X(14XX) X are given by 

 ሺܫ െ ܳሻሾ,ሿ
ିଵ ൌ 

5.68
4.85
3.11
2.86


ସ

ୀଵ

. (15) 

We now see that patients that enter the process in the ݎݑ݉ݑܶ݃݊݅݊݁ܤ state are expected to 

spend 0 time units in the ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ state as expected.  Patients from the Markov chain 

defined by Equation X(13XX) X are expected to live 5.68 time units when entering from the 

 state which is less than the life expectancy of patients entering the ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ

state in the Markov chain represented by Equation X(10XX) ݁݁ݎܨ݁ݏܽ݁ݏ݅ܦ X.  If we compare 

Equations X(12XX) X and X(15 XX) X, we see that the progressive model described by Equation X(13XX) X is 

associated with a more severe disease than that of model described by Equation X(10XX) X due to a 

lower life expectancy in all states. 

2.2.2 Markov jump processes 

As previously mentioned, Markov jump processes are a specific type of Markov process 

whereby the time parameter is continuous but with the understanding that the property stated 

in Equation X(2XX)X still holds.  Some of the properties of Markov jump processes will be 

discussed below; all of which are taken from the textbook by Doob[
X

26
X

] unless stated otherwise. 

A stochastic process ሼܺऄ; 0  ऄ ൏ ∞ሽ defined on the probability triple ሺΩ, ,ܨ ܲሻ will be 

considered for all the discussions on Markov jump processes. 

The transition probabilities of Markov jump processes can also be written in terms of a TPM 

so that ሺݏ, ሻݐ ൌ ܲሾܺ௧ ൌ ݆|ܺ௦ ൌ ݅ሿ is the ሺ݅, ݆ሻth entry of ࡼሺ௦,௧ሻ.  ࡼሺ௦,௦ሻ is understood to be the 

identity matrix. 
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The Chapman-Kolmogorov equations are still valid for the Markov jump process and so 

Equation X(4 XX)X also holds for Markov jump processes. 

Due to the continuous time nature of Markov jump processes, it is more convenient to think 

of time in very small intervals.   

Definition 28 

By making the time intervals small enough, we work with the rate of change of the 

transition probability and thereby define the transition rate (also known as transition 

intensity) at time ऄ as follows:  

 

ሺऄሻߙ ൌ lim
∆ऄ՜

,ሺऄ ऄ  ሻݐ∆ െ ,ሺऄ ऄሻ
ݐ∆  

ൌ ൞
lim

∆ऄ՜

,ሺऄ ऄ  ∆ऄሻ
ݐ∆              ݂݅ ݆ ് ݅

lim
∆ऄ՜

,ሺऄ ऄ  ∆ऄሻ െ 1
∆ऄ ݂݅ ݆ ൌ ݅

. 
(16) 

For ݅ ് ݆, ,ሺऄ ऄሻ in Equation X(16)X is equal to zero since the probability to move between two 

states is zero if no time has elapsed. 

Let ሺऄሻ be the matrix such that the ሺ݅, ݆ሻth element is ߙሺऄሻ.  The matrix ሺऄሻ is called the 

transition rate, or transition intensity, matrix.  The diagonal entries of the transition rate 

matrix have the following property: 

 
ሺऄሻߙ ൌ െ  ሺऄሻߙ

0ࣱא
ஷ

. 
(17) 

Let ߙሺऄሻ ൌ ݈݅݉
∆ऄ՜

ଵିሺऄ,ऄା∆ऄሻ


ൌ ∑ 0ࣱאሺऄሻߙ
ஷ

. 

We can write the following properties of the TPM and the transition rate matrices: 

 ߲
߲ऄ ሺऄ,ऄା∆ऄሻࡼ ൌ  ሺऄሻ (18)ሺऄ,ऄା∆ऄሻࡼ

 ߲
ݐ߲ ሺऄ,ऄା∆ऄሻࡼ ൌ െሺऄሻࡼሺऄ,ऄା∆ऄሻ (19) 
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Equations X(18) X and X(19) X are called the Kolmogorov forward and Kolmogorov backward 

equations respectively. 

2.2.2.1 Some results for stationary processes 

For the case of a stationary process we have 

ሺऄሻߙ ൌ lim
∆ऄ՜

,ሺऄ ऄ  ሻݐ∆ െ ,ሺऄ ऄሻ
ݐ∆  

ൌ lim
∆ऄ՜

,ሺ0 ∆ऄሻ െ ሺ0,0ሻ
∆ऄ  

ൌ lim
∆ऄ՜

ሺ∆ऄሻ െ ሺ0ሻ
∆ऄ  

ൌ  , sayߙ

and so we simplify the notation such that the transition rate matrix of a stationary process is 

written as . 

In an attempt to solve the differential equation in Equation X(18)X we define the following 

matrix function: 

ࢄ݁  ൌ 
ࢄ

݅!

ஶ

ୀ

݄ݐ݅ݓ ࢄ ൌ  (20) .ࡵ

Equation X(20) X can also be written conveniently as:  

 ݁ሺ௧ି௦ሻࢄ ൌ 
ࢄ

݅!

ஶ

ୀ

ሺݐ െ  ሻ. (21)ݏ
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If we take the derivative of Equation X(21XX)X with respect to ݐ we get the following: 

 

߲
ݐ߲ ݁ሺ௧ି௦ሻࢄ ൌ

߲
ݐ߲ 

୧܆

i!

ஶ

୧ୀ

ሺt െ sሻ୧ 

ൌ 
ࢄ

݅!

ஶ

ୀ

݅ሺݐ െ  ሻିଵݏ

ൌ 
ࢄ

ሺ݅ െ 1ሻ!

ஶ

ୀଵ

ሺݐ െ  ሻିଵݏ

ൌ 
ିଵࢄ

ሺ݅ െ 1ሻ!

ஶ

ୀଵ

ሺݐ െ  ࢄሻିଵݏ

ൌ 
ࢄ

݅!

ஶ

ୀ

ሺݐ െ  ࢄሻݏ

ൌ ݁ሺ௧ି௦ሻࢄࢄ. 

 

 

 

 

 

 

 

(22) 

We assume that the differential operator in Equation (22) can be taken into the infinite sum.  
Equation (22) indicates that  

ሺ௦,௧ሻࡼ  ൌ ݁ሺ௧ି௦ሻ(23)  

is a solution to the Kolmogorov forward equations in the case where the process is stationary. 

We therefore have the following equation for calculating the TPM for movements in ݐ time 

units from the transition intensity matrix: 

ሺ௧ሻࡼ  ൌ  ௧ (24)݁

where the exponential matrix function is defined in Equation X(21 XX)X. 

Equation X(23XX) X can be used to estimate the TPM of a Markov chain based on the estimation of 

the transition intensity matrix of a Markov jump process for any discretization of time. 
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The following property of the relationship shown in Equation X(24 XX)X is useful: 

ሺ௧ሻࡼ ൌ 
ݐ

݅!

ஶ

ୀ

 

ൌ ܫ  ݐ 
ଶݐଶ

2! 
ଷݐଷ

3!   ڮ

ൌ ଵିࡵ  ,ሺ݀ଵ݃ܽ݅݀ … , ݀ःሻିଵ ݐ
1!  ൫݀ଵ݃ܽ݅݀

ଶ, … , ݀ः
ଶ൯ିଵ ଶݐ

2!

 ൫݀ଵ݃ܽ݅݀
ଷ, … , ݀ௌ

ଷ൯ିଵ ଷݐ

3!   ڮ

where ݀ଵ, … , ݀ௌ are the eigenvalues of  and  is a matrix of which the ݅th column is the 

eigenvector associated with the ݅th eigenvalue ݀ of .  Now, we have: 

 

ሺ௧ሻࡼ ൌ   ݀݅ܽ݃ ቆ
݀ଵ

 ݐ

݅! , … ,
݀௦

 ݐ

݅! ቇ
ஶ

ୀ

൩  ଵି

ൌ   ݀݅ܽ݃ ൭
݀ଵ

 ݐ

݅! , … ,
ஶ

ୀ


݀௦

 ݐ

݅!

ஶ

ୀ

൱൩  ଵି

ൌ ,ሾ݀݅ܽ݃ሺ݁ௗభ௧  … , ݁ௗೞ௧ሻሿିଵ. 

(25) 

The property shown in Equation X(25 XX)X is stated in the article by Kalbfleisch and Lawless[
X

53
X

] and 

derived in this dissertation for completeness. 

Doob[
X

26
X

] proves the following three properties for a separableF

1
F stationary Markov jump 

process which will be used in deriving the ML estimator of a stationary Markov jump 

process.   

1. If the process starts in a certain state at time ऄ, the probability that the process will 

stay in that state for ߬ time units is as follows: 

 ܲൣܺऄ ൌ ݅, ऄ  ݐ  ऄ  ߬ |ܺऄబ ൌ ݅൧ ൌ ݁ିఈఛ. (26) 

The time to transition out of a state ݅ therefore has an exponential distribution with 

parameter ߙ. 

                                                            

1 The interested reader is referred to page 50‐51 of Doob[26] for a definition of a separable Markov process.  All 
Markov processes will be assumed to be separable for the purposes of this dissertation. 
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2. Consider the separable Markov jump process with initial state ܺऄబ ൌ ݅ and ߙ  0.  A 

sample function discontinuity exists with probability one for some ߬  ऄ.  If we 

know the sample discontinuity is in the interval ሾऄ, ऄ  ߬ሻ, then we have  

 ܲൣܺऄబାఛ ൌ ݆หܺऄబ ൌ ݅൧ ൌ ఈೕ

ఈ
. (27) 

 
3. Almost all sample functions are step functions with a finite number of 

jumps in any finite time interval. 
(28) 

 

2.3 Basics of survival analysis and terminology 

Survival analysis, in laymen’s terms, consists of the study of the time until a specific event 

occurs.  Examples include the study of the time until manufactured units fail to perform a 

specific duty, the time until death of a human or animal, the time until a person is involved in 

a car crash leading to an insurance claim or the time until a person’s health deteriorates to a 

specific state of worse health.  This dissertation is focussed on health applications of survival 

analysis, but many of the concepts and techniques introduced have applications in other 

sciences. 

Only a short overview of some of the terminology and concepts in survival analysis is 

provided.  These concepts and definitions are all based on the book by Collet[
X

18
X

].  As 

mentioned by Collet a more detailed account of survival analysis can be found in the book 

The Statistical Analysis of Failure Time Data written by Kalbfleisch and Prentice, published 

in 1980[55]. 

Survival data often consists of a sample of research units thought to be representative of the 

population under study for which the time until a specific event occurs is measured.  In 

medical applications this is done by recruiting patients during a recruitment period and then 

studying the patient until the event under study occurs.  This is known as a clinical trial.  Due 

to practical and financial constraints clinical trials are planned to stop at a specific date.  It is 

therefore possible that the event under study has not occurred in some patients by the time the 

study ends.  The time until event is therefore censored for such patients.  There are two types 

of censoring which are used in this dissertation and these terms are defined below. 
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Definition 29   

Right censoring occurs when the time until the event is not measured, but it is known 

to be at least a certain amount. 

In clinical trials, right censoring typically occurs when the time until death is measured and 

patients are still alive by the time the study ends.  Patients may also chose to withdraw from a 

clinical trial before the event under study is measured. 

Definition 30 

Interval censoring occurs when the time to an event is not known exactly, but it is 

known to be within a specific time interval. 

Interval censoring can for example occur if the time until cancer recurrence is studied and a 

patient is monitored at the start of the study and one year later.  If it is known that the cancer 

has not recurred at the start of the study, and it has recurred by the end of the first year, but 

the exact date of recurrence is unknown, the recurrence time is known to be between the start 

of the study and one year later and is therefore interval censored. 

In survival analysis the time to an event is a stochastic variable.  For the purposes of this 

introductory section on survival analysis we denote the time to event stochastic variable as ܶ 

and the realisation thereof as ݐ.  If we let the probability distribution function of ܶ be denoted 

by ݂ሺݐሻ, we have the following cumulative distribution function for ܶ: 

ሻݐሺܨ ൌ ܲሾܶ  ሿݐ ൌ න ݂ሺݑሻ݀ݑ
௧



. 

   .ݐ ሻ can therefore be interpreted as the probability that the time to an event is at mostݐሺܨ

Definition 31 

The survival function, ܵሺݐሻ, is defined as the probability that the event does not occur 

by time ݐ.  The survival function is therefore equal to ܲሾܶ  ሿݐ ൌ 1 െ  .ሻݐሺܨ
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Definition 32 

The hazard function, ݄ሺݐሻ, is defined to be the limiting probability that an event will 

happen between time ݐ and time ݐ   given that the event has not happened up until ,ݐ∆

time ݐ, divided by ∆ݐ.  The hazard function is defined to be 

݄ሺݐሻ ൌ lim
∆௧՜

ܲሾݐ  ܶ ൏ ݐ  ݐ|ݐ∆  ܶሿ
ݐ∆  

ൌ lim
∆௧՜

ܲሾሺݐ  ܶ ൏ ݐ  ݐሻ & ሺݐ∆  ܶሻሿ
 ݐ∆

1
ܲሾݐ  ܶሿ 

ൌ lim
∆௧՜

ܲሾݐ  ܶ ൏ ݐ  ሿ ݐ∆
ݐ∆

1
ܲሾݐ  ܶሿ . 

The hazard function is therefore a rate and not a probability and takes on any value in the 
interval ሾ0, ∞ሻ.   

The second step in the above derivation arises from Equation X(1XX) X.  The lim∆௧՜
ሾ௧ஸ்ழ௧ା∆௧ ሿ

∆௧
 is 

the derivative of ܨሺݐሻ and so we have 

 ݄ሺݐሻ ൌ
݂ሺݐሻ
ܵሺݐሻ (29) 

since ܲሾݐ  ܶሿ ൌ ܵሺݐሻ. Noting that ܵᇱሺݐሻ ൌ ௗ
ௗ௧

ሼ1 െ ሻሽݐሺܨ ൌ െ݂ᇱሺݐሻ we see that if we let 

 ݄ሺݐሻ ൌ െ
݀
ݐ݀ ln൫ܵሺݐሻ൯ (30) 

we get 

݄ሺݐሻ ൌ െ
1

ܵሺݐሻ
݀
ݐ݀ ܵሺݐሻ ൌ

݂ሺݐሻ
ܵሺݐሻ 

which satisfies Equation X(29 XX)X.  Equation X(30XX)X therefore provides a method for calculating the 

hazard function if the survival function is known.  We therefore also have that 

 ݂ሺݐሻ ൌ ݄ሺݐሻܵሺݐሻ. (31) 

If one consider the time until a person dies, the hazard rate at time ݐ is the limiting probability 

that the person dies at time ݐ   ,ݐ∆ divided by ݐ given that the person is still alive at time ݐ∆

i.e. 

 ݄ሺݐሻ ൌ lim
∆௧՜

ܲሾݐ  ܶ ൏ ݐ  ݐ|ݐ∆  ܶሿ
ݐ∆ . (32) 
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For a two state Markov process with “Alive” and “Dead” states, the transition intensity at 

time ݐ is the derivative of the transition probability from alive to dead at time ݐ, i.e.  

ሻݐ௩ ௗሺߙ ൌ lim∆௧՜
ಲೡ ವೌሺ௧,௧ା∆௧ሻ

∆௧
.  But ௩ ௗሺݐ, ݐ          ሻ is the same asݐ∆

ܲሾݐ  ܶ ൏ ݐ  ݐ|ݐ∆  ܶሿ in Equation X(32 XX)X since ௩ ௗሺݐ, ݐ   ሻ implies that a person isݐ∆

still alive at time ݐ and will be dead by time ݐ   We therefore see that the transition  .ݐ∆

intensity from state ݅ to state ݆ can be interpreted as the hazard rate for the event that will 

cause the process to move from state ݅ to state ݆. 

Definition 33 

The cumulative hazard function, ܪሺݐሻ, is defined to be  

ሻݐሺܪ ൌ න ݄ሺݑሻ݀ݑ
௧



. 

From Equation X(30 XX)X we see that ܪሺݐሻ can be written as  

ሻݐሺܪ ൌ න ൜െ
݀
ݐ݀

݈݊൫ܵሺݑሻ൯ൠ ݑ݀
௧



 

ൌ െ݈݊൫ܵሺݑሻ൯ห
௧
 

ൌ െ ݈݊൫ܵሺݐሻ൯  ݈݊൫ܵሺ0ሻ൯ 

ൌ െ ݈݊൫ܵሺݐሻ൯  ݈݊ሺ1ሻ 

ൌ െ ݈݊൫ܵሺݐሻ൯ 

and so ܵሺݐሻ ൌ ݁ିுሺ௧ሻ. 

A well known concept in survival analysis is the non-parametric Kaplan-Meier (KM) 

estimate of the survival function.  The KM estimate of the survival function is also called the 

product limit estimator.  The KM estimator is briefly described for completeness since it is a 

well known concept in survival analysis and the interested reader is encouraged to read pages 

19 to 31 of Collet[
X

18
X

] for more information.   

Suppose ݊ individuals are studied until an event occurs with the following survival times 

,ଵݐ ,ଶݐ … , ݎ  whereݐ  ݊  of these survival times are observed exactly and the rest are right 

censored.  Assume it is possible for some individuals to have the same survival time.  Let 

,ሺଵሻݐ ,ሺଶሻݐ … ,  ordered survival times.  We denote by ݊ the number of individuals ݎ ሺሻ be theݐ

for whom it is known that the event has not occurred just before time ݐሺሻ.  Each ݊ therefore 
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includes the individual(s) for whom the event is observed at time ݐሺሻ but excludes survival 

times that are right censored and less than ݐሺሻ.  Let ݀ denote the number of individuals for 

whom it is known that the event occurs at time ݐሺሻ.  The KM estimate of the probability of no 

event up to time ݐ , if  ݐ א ሾݐሺሻ,   :ሺାଵሻሻ , isݐ

መܵሺݐሻ ൌ ෑ ቆ ݊ െ ݀

݊
ቇ



ୀଵ

. 

The standard error of the KM estimate is estimated as follows: 

݁ݏ ቀ መܵሺݐሻቁ ൌ መܵሺݐሻඩ ݀

݊൫ ݊ െ ݀൯



ୀଵ

. 

The KM estimate of the hazard function at time ݐ, where  ݐ א ሾݐሺሻ,  :ሺାଵሻሻ is given byݐ

݄ሺݐሻ ൌ
݀

݊ሺݐሺାଵሻ െ ሺሻሻݐ
. 

Another well known concept in survival analysis is the Cox proportional hazard model.  This 

is used to determine the effect of characteristics associated with individuals on the hazard 

rate.  One may for example want to determine the risk of smoking and diabetes on strokes as 

done in the Framingham heart study[
X

23
X

].  The Cox proportional hazard model[
X

19
X

] provides a 

method for estimating the effect of covariates on the hazard function. 

Proportional hazard can be understood as follows.  Suppose the hazard function is computed 

for two groups of individuals, say Group A and Group B.  Now we let ݄ሺݐሻand ݄ሺݐሻ be the 

respective hazard functions of the two groups and we write ݄ሺݐሻand ݄ሺݐሻ relative to each 

other in what is known as the proportional hazards model as 

݄ሺݐሻ ൌ  .ሻݐሺ݄ߠ

where ߠ is known as the relative hazard or hazard ratio.  It is clear that 

ߠ  1 implies ݄ሺݐሻ  ݄ሺݐሻ and ߠ ൏ 1 implies ݄ሺݐሻ ൏ ݄ሺݐሻ. 

The hazard function of Group A can therefore be calculated by the hazard function of Group 

B multiplied by the relative hazard.  This idea is generalised to the Cox proportional hazard 

model where the hazard function of individual ݅ at time ݐ is written as 
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 ݄ሺݐሻ ൌ ݄ሺݐሻ݁൫ఉభ௭భାఉమ௭మାڮାఉ௭൯. (33) 

where ൛ݖଵ, ,ଶݖ … , ,ଵߚcovariates of the ݅th individual and ൛  ൟ areݖ ,ଶߚ … ,  ൟ are the effectsߚ

of the covariates on the hazard function.  Here ݄ሺݐሻ is known as the baseline hazard and 

represents the hazard of an individual for which ߚଵݖଵ  ଶݖଶߚ  ڮ  ݖߚ ൌ 0. 

2.4 Discussion 

We provided the definitions of Markov chains and Markov jump processes, ሼܺऄ; 0  ऄ ൏ ∞ሽ, 

with the domain of ऄ being discrete and continuous respectively.  We write ܺऄ for the state of 

the process at time ऄ and reserve the use of the symbol ऄ to indicate the time at which the 

state of the process is considered.  We will use the symbol ݐ to indicate the time between 

events such that ݐ can be calculated by the difference between two times for which the state 

of the process is considered.  

We provided definitions of censoring in Section X2.3X and will illustrate this with data from a 

heart transplant sample studied by Klotz and Sharpless[
X

57
X

].   

In the study by Klotz and Sharpless[
X

57
X

] heart transplant patients were assumed to be disease 

free after a heart transplant and were invited to be investigated on a yearly basis after the 

surgery.  The disease status of these patients were then categorised based on the extent to 

which their major vessels narrowed.  Patients are categorised as 1 ؠ ,݁݁ݎ݂ ݁ݏܽ݁ݏ݅ܦ 2 ؠ

or 3 ݁ݏܽ݁ݏ݅݀ ݈݀݅ܯ ؠ  Patients that died were classified as  .݁ݏܽ݁ݏ݅݀ ݁ݎ݁ݒ݁ݏ ݐ ݁ݐܽݎ݁݀ܯ

being in state 4. 

Klotz and Sharpless[
X

57
X

] observed 240 patients which were followed up for up to nine years.  

The studied recorded the state of patients that underwent heart transplant surgery from 

January 1979 until May 1990.  From 1983 it was decided that patients should be recalled two 

years after the surgery and that those that were disease free after two years should be 

followed up every second year and patients with some form of disease were invited to come 

for investigations every year.  The observations of the 240 patients are displayed in the article 

by Klotz and Sharpless[
X

57
X

] and the first 20 observations are shown in XTable 2X to illustrate the 

practical difficulties of dealing with censored data.  Table 2 shows the state of patients after 

the heart transplant, ऄ, one year after the transplant, ऄଵ, and so on.  For the purposes of 

discussion the events between ऄ and ऄଵ will be referred to as occurring in the first year, 
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between ऄଵ and ऄଶ as the second year and other references to time following similarly. Table 

2X shows that patient 1 was observed every year until death six years after the heart transplant, 

i.e. death in the seventh year. We know that patient 5 was in state 1 from the surgery until the 

seventh year and in state 3 in the ninth year. Patient 5 could have been in state 1,2 or 3 in the 

eight year but the exact state is censored. This is therefore an example of interval censoring. 

Patient 6 is known to be in the state 3 in the third year and we know the patient died in the 

fifth year. Since patients can only move to state 4 from state 3 one can assume that patient 6 

was in state 3 in the fourth year since time of death is usually observed with accuracy up to 

one day as noted by Kay[
X

56
X

].  In practice such an assumption should be validated with the data 

source and Klotz and Sharpless[
X

57
X

] did not mention the accuracy at which death times were 

recorded.  The state of patient 7 was not recorded for the second year but we know that this 

patient was in state 1 in the first and third years and therefore we know the patient was in 

state 1 in the second year based on the possible transitions of the Markov process.  Thus even 

though the state of patient 7 was not observed in the second year the true value of the state of 

the patient is not censored. 

There are many other patients in the sample of Klotz and Sharpless[
X

57
X

] but all these cases will 

not be discussed since the aim was just to indicate the types of censoring one may encounter 

in practice. 
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PatientID  ऄ  ऄ ऄଶ ऄଷ ऄସ ऄହ ऄ ऄ ऄ଼ ऄଽ 
1  1  1 2 2 2 3 4         
2  1  1 3 4                  
3  1  1 1 1 1 1 2 3 3 4 
4  1  4                        
5  1  1 1 1 1 1 1    3 4 
6  1  1 3    4               
7  1     1 1 1 1 1 2      
8  1  1 1 1 1 1 1 1 1   
9  1  4                        

10  1  1 1 1 2 2 4         
11  1  1 1 1 1 1    1 1   
12  1  1 2 3 4               
13  1  1 1 1 2 2 2 3 3   
14  1  1 1 4                  
15  1  1 4                     
16  1  1 1 1 1 1 2 2 2   
17  1  4                        
18  1  1 1 4                  
19  1  1 1 1 2 3 3    3   
20  1  1 1 1 1 1 2 2      

Table 2: Sample of 20 observation of the heart transplant patients[X

57
X

]. 
 ؠ ,܍܍ܚ ܍ܛ܉܍ܛ۲ܑ  ؠ ,܍ܛ܉܍ܛܑ܌ ܌ܔܑۻ  ؠ ,܍ܛ܉܍ܛܑ܌ ܍ܚ܍ܞ܍ܛ ܚܗ ܍ܜ܉ܚ܍܌ܗۻ  ؠ  ܐܜ܉܍۲

We indicated two methods in Section X2.2.2.1X, Equations X(24) X and X(25)X, to calculate the TPM 

matrix for a time period based on the transition intensity matrix of a stationary Markov jump 

process.  Equation X(24) X involves a infinite sum which will be approximated with finite 

number of terms in practise.  The estimated TPMs calculated from a different number of 

terms in the summation of Equation X(24)X converge as the number of terms increase.  Equation 

X(25)X has an advantage over Equation X(24)X in that one does not have to approximate an infinite 

sum, but has the potential disadvantage that it can be computationally intensive to calculate 

the eigenvalues and eigenvectors of a matrix and the inverse of the matrix of eigenvectors.  

We investigated this by using Equation X(24)X with a different number of terms in the 

summation and also Equation X(25)X to calculate the TPM in one time period of a Markov jump 

process with transition intensity matrix given as 
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ۏ
ێ
ێ
ێ
ێ
െ3.6ۍ

1.2
0.3
0.3
0.1
0

0.8
െ3.2
1.4
0.5
1.2
0

1.3
0.3

െ3.1
1.2
0.7
0

0.4
0.2
0.7

െ3.5
0.5
0

0.9 0.2
1.4 0.1
0.5 0.2

   0.4 1.1
െ2.9 0.4

0 0 ے
ۑ
ۑ
ۑ
ۑ
ې

. (34) 

The structure of the model was chosen so that it has one absorbing state but is more complex 

than a three state model so that the effect of processes with a bigger state space can be 

investigated and the entries of Equation X(34)X were chosen arbitrarily.  The estimated TPM and 

the respective process time is show in Table 3 below.  The computation time can be 

calculated in R using the proc.time() function. 

Table 3 indicates that Equation X(24)X produces consistent estimates for the TPM when 20 or 

more terms are used in the summation.  We see that the TPM calculated with 10 terms in the 

summation of Equation X(24)X produces an invalid TPM since some of the entries are less than 

zero which are inconsistent with the properties of probabilities (See XDefinition 11X).  The 

eigenvalues and eigenvectors of the transition intensity matrix in Equation X(34)X were complex 

numbers, but due to the nature of Equation X(25) X it does not produce transition probabilities 

that are complex numbers.  We see that the same TPM was estimated with Equations X(24) X and 

X(25)X when 20 or more terms are used in the summation of Equation X(24) X and that there is a 

small difference in calculation time between using Equation X(25) X   compared to Equation X(24)X. 

We choose to use Equation X(24)X with 30 terms in the summation when calculating the TPM 

from a stationary transition intensity matrix. 
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Approach for 

calculating 

TPM 

TPM Run time 

(seconds) 

Equation X(24) X 

with 10 terms  

ۏ
ێ
ێ
ێ
ێ
ۍ 0.0976

െ0.047
0.2503

െ0.0099
0.1802

0

0.3027
0.2407
0.0831
0.2422
0.155

0

0.0993
0.3077
0.1344
0.0775
0.0657

0

0.1406
0.0805
0.0280
0.1805
0.0708

0

0.1071 0.2527
0.1835 0.2345
0.2340 0.2702
0.0911 0.4185
0.2278 0.3005

0 1 ے
ۑ
ۑ
ۑ
ۑ
ې

 

0.01 

Equation X(24) X 

with 20 terms  

ۏ
ێ
ێ
ێ
ێ
0.1151ۍ
0.1128
0.0987
0.0728
0.0881

0

0.1943
0.2163
0.2000
0.1444
0.1890

0

0.1633
0.1509
0.1724
0.1293
0.1408

0

0.0888
0.0856
0.0916
0.0898
0.0838

0

0.1818 0.2568
0.2020 0.2325
0.1755 0.2618
0.1288 0.4349
0.1986 0.2996

0 1 ے
ۑ
ۑ
ۑ
ۑ
ې

 

0.01 

Equation X(24) X 

with 30 terms  

ۏ
ێ
ێ
ێ
ێ
0.1151ۍ
0.1128
0.0987
0.0728
0.0881

0

0.1943
0.2163
0.2000
0.1444
0.1890

0

0.1633
0.1509
0.1724
0.1293
0.1408

0

0.0888
0.0856
0.0916
0.0898
0.0838

0

0.1818 0.2568
0.2020 0.2325
0.1755 0.2618
0.1288 0.4349
0.1986 0.2996

0 1 ے
ۑ
ۑ
ۑ
ۑ
ې

 

0.01 

Equation X(24) X 

with 40 terms  

ۏ
ێ
ێ
ێ
ێ
0.1151ۍ
0.1128
0.0987
0.0728
0.0881

0

0.1943
0.2163
0.2000
0.1444
0.1890

0

0.1633
0.1509
0.1724
0.1293
0.1408

0

0.0888
0.0856
0.0916
0.0898
0.0838

0

0.1818 0.2568
0.2020 0.2325
0.1755 0.2618
0.1288 0.4349
0.1986 0.2996

0 1 ے
ۑ
ۑ
ۑ
ۑ
ې

 

0.01 

Equation X(25) X 

ۏ
ێ
ێ
ێ
ێ
0.1151ۍ
0.1128
0.0987
0.0728
0.0881

0

0.1943
0.2163
0.2000
0.1444
0.1890

0

0.1633
0.1509
0.1724
0.1293
0.1408

0

0.0888
0.0856
0.0916
0.0898
0.0838

0

0.1818 0.2568
0.2020 0.2325
0.1755 0.2618
0.1288 0.4349
0.1986 0.2996

0 1 ے
ۑ
ۑ
ۑ
ۑ
ې

 

0.03 

Table 3: Comparison of methods for calculating the TPM from the transition intensity matrix 

 

2.5 Summary 

We have defined a probability measure that can be used to calculate the probability of a 

certain event of an experiment. We defined a probability triple which consists of a space of all 

possible outcomes of an experiment and the measure of the probability of any subset of 
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events in the set of possible outcomes.  We defined a random variable and a stochastic 

process in terms of the probability triple.  We discussed the Markov chain and jump processes 

which are specific types of stochastic processes and provided some results for Markov 

processes that can be used to calculate the amount of time that patients are expected to live if 

they have a certain disease, when modelled as a Markov process.  Markov chains are defined 

in terms of the TPM and Markov jump processes are defined in terms of the transition 

intensity matrix.  We derived and compared two methods, Equations X(24)X and X(25)X, to 

estimate the TPM from the transition intensity matrix.  It was illustrated that these methods 

provide similar TPMs when more than 30 terms are used in Equation X(24) X and that Equation 

X(25)X is not much more computationally intensive when compared to Equation X(24)X.  

Some topics from survival analysis were discussed and the definitions of censoring was 

explained with reference to a heart transplant study by Klotz and Sharpless[
X

57
X

]. 
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Chapter 3: Maximum likelihood estimation of the 

parameters of Markov processes 

3.1 Introduction 

A valuable result has been given in Section X2.2.1X that can be used for calculating the total 

amount of time that a stationary Markov chain will be in transient states before moving to 

recurrent states.  There is no explicit formula that can be used in the case of a nonstationary 

Markov chain, but it is possible to simulate the chain with a specific initial distribution vector 

and then calculating the distribution vector over time and thereby determining the amount of 

time it will take the process to move through all the transient states.  Similar simulation 

methods can be used, if the parameters of a Markov jump process are known, to determine 

the amount of time the process spends in transient states before moving to the recurrent state.  

These methods are however only possible if the TPM is known.   

This chapter will discuss ML methods for estimating the TPM of Markov chain and Markov 

jump processes with reference to the articles by Anderson and Goodman[
X

8
X

] and Albert[
X

4
X

] 

respectively.  The ML estimator of Markov jump process will be further discussed by 

providing the ML estimator of Tuma et al.[X

104
X

] which is an alternative, more intuitive, 

derivation of the ML estimators given by Albert[
X

4
X

].  The possibility of including covariate 

effects in the estimator of Tuma et al. will also be shown. 

The ML estimators of Markov jump processes will then be extended by relaxing the 

assumptions made on the observation scheme of the processes so that state transitions do not 

have to be observed exactly.  We will discuss the methods by Kalbfleisch and Lawless[
X

53
X

] 

which assumes all process are observed at the same irregular time points and also the method 

of  Kay[
X

56
X

] for which all observations can be made at possibly different irregular time points.  

Notes will be made on how covariate effects can be included in these methods.  The methods 

of Kalbfleisch and Lawless[
X

53
X

] and Kay[
X

56
X

] are discussed since they are used in the msm 

package for R developed by Jackson[
X

49
X

] and we would like to explain the methodology of 

Jackson since this R package is so widely used, as previously mentioned. 
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3.2 Discrete time: Markov chains 

As mentioned in Section X1.3.2.1X, the first estimation procedure for the TPM of a Markov 

process is the 1957 paper by Anderson and Goodman[
X

8
X

].  In this paper a ML estimator for the 

TPM of a stationary and nonstationary Markov chain is derived.  It is assumed that the 

process is observed at a finite number of equidistant time points and that the process has 

discrete states.  No restrictions are made on the number of equivalence classes of the Markov 

process.   

Suppose that a sample of ݊ Markov chains defined on ሺΩ, ,ܨ ܲሻ with ः states is observed until 

time ܶ, i.e. ሼ ଵܺ
ଵ, ܺଶ

ଵ, … , ்ܺ
ଵ, ଵܺ

ଶ, ܺଶ
ଶ, … , ்ܺ

ଶ, … , ଵܺ
, ܺଶ

, … , ்ܺ
ሽ.  We denote by ሼܺ

ଵ, ܺ
ଶ, … , ܺ

ሽ 

the starting point of each observed process. 

From the initial state each process can make ः் possible transitions.  The probability of such 

a sequence of transitions is given by 

బ 
 భ

 ሺ0,1ሻభ
 మ

 ሺ1,2ሻ … షభ
 

 ሺܶ െ 1, ܶሻ (35) 

for the ݅th observed process due to the Chapman-Kolmogorov equation. 

Equation X(35XX) X simplifies if the process is stationary by writing ऄషభ
 ऄ

 ሺऄ െ 1, ऄሻ ൌ ऄషభ
 ऄ

 . 

Now, let ݊బ,భ,మ,…, be the number of processes for which the sequence of states observed 

in the experiment is ܺ, ଵܺ, ܺଶ, … , ்ܺ .  An example of possible observations for a process 

with ः ൌ 3 states is shown in XTable 4X.  
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Observation ID  Time  State occupied 

001  0 1

001  1 1

001  2 2

001  3 1

001  4 3

002  0 1

002  1 3

002  2 3

002  3 1

002  4 2

003  0 1

003  1 1

003  2 2

003  3 1

003  4 3

 Table 4: Sample observations 

For the sample observations shown in XTable 4X we will have ݊ଵ,ଵ,ଶ,ଵ,ଷ ൌ 2 and ݊ଵ,ଷ,ଷ,ଵ,ଶ ൌ 1.  

Now, let ݊ሺऄ െ 1, ऄሻ represent the number of individuals that are in state ݃ at time ऄ െ 1 

and in state ݆ at time ऄ (also known as transition counts) and let  

݊ሺऄ െ 1, ऄሻ ൌ  ݊ሺऄ െ 1, ऄሻ
ः

ୀଵ

ऄ  ൌ 1, … , ܶ 

and 

݊ ൌ  ݊ሺऄ െ 1, ऄሻ
்

ऄୀଵ

. 

With reference to the sample data shown in XTable 4X we will have the following values for the 

defined statistics: 
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݊ଵ,ଵሺ0,1ሻ ൌ 2 ݊ଵሺ0,1ሻ ൌ 3 ݊ଵ,ଵ ൌ 2 

݊ଵ,ଶሺ1,2ሻ ൌ 2 ݊ଵሺ1,2ሻ ൌ 2 ݊ଵ,ଶ ൌ 3 

݊ଶ,ଵሺ2,3ሻ ൌ 2 ݊ଵሺ3,4ሻ ൌ 3 ݊ଵ,ଷ ൌ 3 

݊ଵ,ଷሺ3,4ሻ ൌ 2 ݊ଶሺ2,3ሻ ൌ 2 ݊ଶ,ଵ ൌ 2 

݊ଵ,ଷሺ0,1ሻ ൌ 1 ݊ଷሺ1,2ሻ ൌ 1 ݊ଷ,ଵ ൌ 1 

݊ଷ,ଷሺ1,2ሻ ൌ 1 ݊ଷሺ2,3ሻ ൌ 1 ݊ଷ,ଷ ൌ 1 

݊ଷ,ଵሺ2,3ሻ ൌ 1   

݊ଵ,ଶሺ3,4ሻ ൌ 1   

Table 5: Transition counts for sample data 

Now, if we have observed a process with ः states for ܶ time periods and on ݊ individuals 

there are ः ൈ ܶ ൈ ݊ possible outcomes for the experiment.  The likelihood function for all 

these outcomes is as follows: 

ሻࢄ|ሺܲܮ  ൌ ෑൣబ,భሺ0,1ሻభ,మሺ1,2ሻ … షభ,ሺܶ െ 1, ܶሻ൧బ,భ,మ,…,  (36) 

where the product is taken over all the ः ൈ ܶ ൈ ݊  possible combinations of ܺ, ଵܺ, ܺଶ, … , ்ܺ.  

Equation X(36XX) X can also be written as: 

 

ሻࢄ|ሺܲܮ ൌ ቀෑൣబ,భሺ0,1ሻ൧బ,భ,మ,…, ቁ … ቀෑൣషభ,ሺܶ െ 1, ܶሻ൧బ,భ,మ,…, ቁ

ൌ ෑ ቂబ
 ,భ

 ቃ
బ,భሺ,ଵሻ

బ,భ

… ෑ షభ,൧షభ,ሺ்ିଵ,்ሻൣ

షభ,

 

ൌ ෑ ෑ ෑ ሺऄ െ 1, ऄሻೕሺऄିଵ,ऄሻ
ः

ୀଵ

.
ः

ୀଵ

்

ऄୀଵ

 

 

 

 

(37) 

 

We therefore only need to have the transition counts, ݊ሺऄ െ 1, ऄሻ, to formulate the 

likelihood function.  We therefore have that ݊ሺऄ െ 1, ऄሻ; ݃, ݆ ൌ 1 … ः; ऄ ൌ 1, … , ܶ forms a 

set of sufficient statistics for determining the ML estimators of a Markov chain. 
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The ML estimator for a stationary process will be discussed first and then generalised to the 

nonstationary case. 

For a stationary process we have that ሺऄ െ 1, ऄሻ ൌ ऄ   ൌ 1, … , ܶ and so the likelihood 

function in Equation X(37 XX) X simplifies to: 

 

ሻࢄ|ሺܲܮ ൌ ෑ ෑ ෑ 
ೕሺऄିଵ,ऄሻ

ः

ୀଵ

ः

ୀଵ

்

ऄୀଵ

 

ൌ ෑ ෑ 
ೕ

ः

ୀଵ

ः

ୀଵ

. 

(38) 

Now the likelihood in Equation X(38XX) X should be maximised by finding the values for  that 

maximises the function under the restrictions that ∑ 
ः
ୀଵ ൌ 1 and 0    1.  For a fixed 

value of ݃ in ; ݆ ൌ 1, … , ः, the transition probabilities are the same as that of a multinomial 

distribution that has been repeated ݊ ൌ ∑ ݊
ः
ୀଵ  times with observations ݊ଵ, ݊ଶ, … , ݊ः.  

As shown in Appendix X1X, the ML estimators of this multinomially distributed process are 

 

ఫෞ ൌ
݊

݊
 

ൌ
∑ ݊ሺऄ െ 1, ऄሻ்

ऄୀଵ

∑ ∑ ݊ሺऄ െ 1, ऄሻः
ୀଵ

்
ऄୀଵ

 
(39) 

For a nonstationary process one could consider ݊ሺऄ െ 1, ऄሻ for a fixed ݃ and ऄ.  Then the 

observations ݊ଵሺऄ െ 1, ऄሻ, ݊ଶሺऄ െ 1, ऄሻ, … , ݊ःሺऄ െ 1, ऄሻ are the outcomes of a 

multinomial experiment that has been repeated ݊ሺऄ െ 1, ऄሻ times with probabilities ଵሺऄ െ

1, ऄሻ, ଶሺऄ െ 1, ऄሻ, … , ःሺऄ െ 1, ऄሻ.  So following similar arguments as above, we have 

that the ML estimator of a nonstationary Markov chain is 

ఫෞ  ሺऄ െ 1, ऄሻ ൌ
݊ሺऄ െ 1, ऄሻ

∑ ݊ሺऄ െ 1, ऄሻः
ୀଵ

. (40) 

The ML estimators in Equations X(39XX)X and X(40XX)X make intuitive sense as the transition 

probability from state ݅ to state ݆ is estimated by the relative frequency of transitions from 

state ݅ to state ݆.  It should be noted that Equations X(39XX) X and X(40XX)X are valid for all Markov 

chains, irrespective of whether the chain is irreducible or not. Intuitively, it may seem that 
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one would require a large sample size to implement Equation (40) but we show in Section 

4.3.2 that the nonstationary estimator can work with relatively small sample sizes. This may 

however be specific to the process we implemented and it is adviced in practice that a 

simulation study be conducted on a process with a set of possible parameters for a process 

being studied if the sample size of a nonstationary process needs to be determined. It is 

expected that process with states that will be occupied for relatively short time periods should 

have bigger sample sizes than process in which all states are occupied for longer time periods. 

Anderson and Goodman investigated the asymptotic distribution of the ML estimators and 

indicated that √݊൫ఫෞ െ  ൯ has a limiting normal distribution with mean 0 and variance

ೕ൫ଵିೕ൯
థ

 where ߶ ൌ ∑ ∑ ሺऄߟ െ 1, ऄሻ்
ऄୀଵ

ः
ୀଵ  and ߟ represents the population 

proportion of processes for which the initial state is state ݇.  For the ः fixed, the variables 

ඥ݊߶൫ఫෞ െ  ൯ are asymptotically independent and have the same limiting distribution as

other functions of the probabilities of a multinomial distribution with ः samples, each of size 

݊߶.  Anderson and Goodman uses the asymptotic distribution of the estimated transition 

probabilities to test hypothesis about the probabilities.  These fall outside the scope of this 

dissertation and the interested reader is referred to Section 3 of the article by Anderson and 

Goodman[
X

8
X

] for more details. 

3.3 Continuous time: Markov jump processes 

The ML estimator of the transition rate matrix of a Markov jump process ሼܺऄ; 0  ऄ ൏ ∞ሽ 

defined on ሺΩ,Σ, ܲሻ and based on ݊ observations during the time interval ሾ0, ܶሻ, will be 

discussed based on the article by Albert[
X

4
X

].  The ML estimator provided by Albert is only 

applicable to stationary processes and therefore this discussion will focus on stationary 

processes with some comments and suggestions being made about nonstationary processes.  

The method of Albert is based on a sample of Markov jump processes for which the state 

transitions are recorded exactly. 

Similarly to the ML estimator of a Markov chain discussed in Section X3.2X, we need to 

construct a likelihood function for the outcomes of a Markov jump process.  The continuous 

time aspect of the Markov jump process makes the likelihood function more complicated than 

its discrete time counterpart since there is no upper limit on the number of transitions that can 
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occur in a given time interval.  We will therefore first construct a set of all possible sample 

functions for a Markov jump process that make ݇ jumps in the time interval ሾ0, ܶሻ.   

The article by Albert derives the likelihood function by writing the probability of an outcome 

of a Markov jump process in terms of an integral over a set of possible values the process can 

obtain in the time interval ሾ0, ܶሻ.  The likelihood function is then derived using results from 

measure theory and finally maximised so that the ML estimators can be obtained. The 

derivation of the probability of an outcome of the process in terms of an integral will be 

discussed in detail. The steps involved in obtaining the likelihood function from this integral 

will not be discussed in detail since this involves extensive results from measure theory which 

fall beyond the scope of this dissertation.  

Notation 

Consider a Markov jump process with ः states that is observed for the time interval ሾ0, ܶሻ.  

Suppose that ݊ outcomes of this experiment are observed and denote an outcome by ߱ א Ω.  

Now let ऄሺ߱ሻ be the time of the ݅th jump of the process with ऄሺ߱ሻ ൌ 0. We write ܺሺ߱ሻ for 

the state of the process after the jump made at time ऄሺ߱ሻ so that ܺሺ߱ሻ is the starting state of 

the process.  Now, let ܶሺ߱ሻ ൌ ऄାଵሺ߱ሻ െ ऄሺ߱ሻ be the time spent in state ܺሺ߱ሻ.  The 

realisation of the stochastic variable ܶሺ߱ሻ will be written as ݐሺ߱ሻ.  The stochastic variable 

,ሺܶሻ represents the total number of jumps observed in ሾ0ܭ ܶሻ and its realisation is the largest 

integer ݇ such that ऄሺ߱ሻ ൏ ܶ. The observed process can therefore be written as follows: 

 ሼܺ௧ሺ߱ሻ, 0  ݐ ൏ ܶሽ ൌ ൛൫ܺሺ߱ሻ, ܶሺ߱ሻ൯, … , ൫ܺିଵሺ߱ሻ, ܶିଵሺ߱ሻ൯, ܺሺ߱ሻൟ. (41) 

We therefore know the process jumped to state ܺሺ߱ሻ at some time ऄሺ߱ሻ ൏ ܶ and is still in 

this state at time ܶ but we do not observe the amount of time spent in this final observed state 

since the process is only observed until time ܶ. 

The ML estimator for the Markov jump process will be derived in terms of the transition rate 

matrix ܣ.  Only the off diagonal elements of ܣ will be estimated since that the diagonal 

elements can be calculated using Equation X(17XX) X.  To simplify notation later on we define 

ߙ
כ ൌ ൜

0     ݂݅ ݆ ൌ ݅
݆ ݂݅ ߙ ് ݅  . 
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We will write ߙ as ߙሺ݅, ݆ሻ to simplify notation and similarly, we write ߙ
כ  as כߙሺ݅, ݆ሻ and ߙ 

as ߙሺ݅ሻ. 

Set of possible sample functions and measures of the these sets 

Let the state space be represented by the set of integers ࣱ ൌ ሼ1,2, … , ःሽ.  For an observed 

process with ݊ jumps in ሾ0, ܶሻ, the set of all possible sample functions can be represented by 

 ࣱ ൌ ෑሺ ࣱ ٔ Թሻ


ୀଵ

 ٔ ࣱ (42) 

where Թ denotes the real line and ٔ a product of sets. The set of sample functions is then a 

vector consisting of the initial state, the states of the process at each jump and the length of 

time between jumps.  Referring to the sample function discussed in Section X2.1X, the part in 

brackets in Equation X(42XX) X is therefore represented by the first five solid horizontal lines in 

XFigure 2X and the extra set with which the brackets in Equation X(42XX) X is multiplied by the last 

solid line.  The set of possible sample functions can therefore be thought of as all the possible 

solid lines that can be filled into a figure similar to XFigure 2 where it is understood that all the 

different lengths of the solid lines are included in the set of possible sample functions.  

Equation X(41XX) X is therefore an element of the set described by ࣱ. 

Now that we have defined the product set of the possible outcomes of the process, ࣱ, we 

define  

ߪ  ൌ  ෑሺܥ ൈ ݈ሻ


ୀଵ

 ൈ ܥ
ஶ

ୀ

 (43) 

to be a measure on the space of all possible sample functions, for all possible values of ݇.  

Here ݈ is the Lebesgue measure on Թ and ܥ a counting measure as defined in XDefinition 14 X 

and XDefinition 10X respectively.  The full measure-theoretic construction of ߪ can be found in 

the article by Albert[
X

4
X

].  The measure ߪ is therefore constructed to measure the state of the 

process and the time spent in the state for an observed Markov jump process with ݇ 

transitions and ߪ is defined for all possible values of ݇. 

  

 
 
 



 

  CA Marais 

  23138514 

58

The probability of an event as an integral 

In the article by Albert[
X

4
X

] the following is shown: 

 

 

ܲሾܭሺܶሻ ൌ ݇, ܺ ൌ ,ݔ ܶ  ߬, … , ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, ܺ ൌ  ሿݔ

ൌ ܲሾܺ ൌ ሿ݁ିఈሺ௫ೖሻ்ݔ

ൈ න ෑ ,ݔ൫כߙ ାଵ൯݁ିൣఈ൫௫ೕሻିఈሺ௫ೖ൯൧௧ೕݔ

ିଵ

ୀ

ݐ݀

ௌೖ

 ݂݅ ݇  0 

where ܵ ൌ ൛ሺݐ, ,ଵݐ … , :ିଵሻݐ ∑ ݐ ൏ ܶ & 0  ݐ  ߬
ିଵ
ୀ ൟ. 

(44) 

Equation X(44XX) X is not written in terms of ߱ to simplify the notation. Therefore ܺ௧ is considered 

to be the same as ܺ௧ሺ߱ሻ. Now, if ݇ ൌ 0 Equation X(44 XX)X becomes 

  

ܲሾܭሺܶሻ ൌ 0, ܺ ൌ  ሿݔ ൌ ܲሾܭሺܶሻ ൌ 0|ܺ ൌ ሿܲሾܺݔ ൌ  ሿݔ

ൌ ܲሾܺ௧ ൌ ,ݔ ሺܶሻܭ ൌ 0|ܺ ൌ ሿܲሾܺݔ ൌ  ሿݔ

ൌ ܲሾܺ௧ ൌ ݐ  ݔ א ሾ0, ܶሻ|ܺ ൌ ሿܲሾܺݔ ൌ  ሿݔ

ൌ ݁ିఈሺ௫బሻ்ܲሾܺ ൌ  ሿݔ

(45) 

The last step in this derivation comes from the result in Equation X(26XX)X. 

Now, consider the case where  ݇  0.  Since we are assuming the Markov property we have 

that  

ܲሾܺ ൌ |ܺିଵݔ ൌ ,ିଵݔ … , ܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, … , ܶ  ߬ሿ

ൌ ܲሾܺ ൌ |ܺିଵݔ ൌ ,ିଵݔ ܶିଵ  ߬ିଵሿ, 

and from Equation X(27XX) X we have  

ܲሾܺ ൌ |ܺିଵݔ ൌ ,ିଵݔ ܶିଵ  ߬ିଵሿ ൌ
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ . 

Therefore  
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ܲሾܺ ൌ |ܺିଵݔ ൌ ,ିଵݔ … , ܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, … , ܶ  ߬ሿ

ൌ
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ . 
(46) 

Now, consider the following probability 

  ܲሾ ܶ  ߬|ܺ ൌ ,ݔ … , ܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, … , ܶ  ߬ሿ. (47) 

From the Markov property and since we are considering a stationary process, Equation X(47XX) X 

becomes 

ܲሾ ܶ  ߬|ܺ ൌ ,ݔ … , ܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, … , ܶ  ߬ሿ ൌ ܲሾ ܶ  ߬|ܺ ൌ  .ሿݔ

The probability ܲሾ ܶ  ߬|ܺ ൌ  ሿ is equivalent to the probability of leaving state ܺ in theݔ

time interval ሾ ܶିଵ, ܶିଵ  ߬ሿ. From Equation X(26XX) X we have that  

ܲሾ ܶ  ߬|ܺ ൌ ሿݔ ൌ 1 െ ݁ିఈሺ௫ೖሻఛೖ 

since ݁ିఈሺ௫ೖሻఛೖ is the probability to remain in state ܺ in the time interval ሾ ܶିଵ, ܶିଵ  ߬ሿ 

given that ܺ ൌ  .ݔ

Therefore we have  

 ܲሾ ܶ  ߬|ܺ ൌ ,ݔ … , ܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, … , ܶ  ߬ሿ ൌ 1 െ ݁ିఈሺ௫ೖሻఛೖ. (48) 

Using the results from Equations X(46XX) X and X(48XX) X we have  

ܲሾܺ ൌ ,ݔ ܶ  ߬, ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ ܲሾ ܶ  ߬|ܺ ൌ ,ݔ … , ܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, … , ܶ  ߬ሿ

ൈ ܲሾܺ ൌ ,ݔ ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯ܲሾܺ ൌ |ܺିଵݔ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ

ൈ ܲሾܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ

ൈ ܲሾ ܶିଵ  ߬ିଵ|ܺିଵ ൌ ,ିଵݔ ܺିଶ ൌ ,ିଶݔ ܶିଶ  ߬ିଶ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ  

ൈ ܲሾܺିଵ ൌ ,ିଵݔ ܺିଶ ൌ ,ିଶݔ ܶିଶ  ߬ିଶ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ
൫1 െ ݁ିఈሺ௫ೖషభሻఛೖషభ൯  

ൈ ܲሾܺିଵ ൌ ିଵ|ܺିଶݔ ൌ ,ିଶݔ ܶିଶ  ߬ିଶ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ

ൈ ܲሾܺିଶ ൌ ,ିଶݔ ܶିଶ  ߬ିଶ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 
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ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ
൫1 െ ݁ିఈሺ௫ೖషభሻఛೖషభ൯ 

,ିଶݔሺכߙ ିଵሻݔ
ିଶሻݔሺߙ

ൈ ܲሾܺିଶ ൌ ,ିଶݔ ܶିଶ  ߬ିଶ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

. 

. 

. 

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ ൫1 െ ݁ିఈሺ௫ೖషభሻఛೖషభ൯ 
,ିଶݔሺכߙ ିଵሻݔ

ିଶሻݔሺߙ … ൫1 െ ݁ିఈሺ௫భሻఛభ൯ 
,ଵݔሺכߙ ଶሻݔ

ଵሻݔሺߙ  

ൈ ܲሾ ଵܺ ൌ ,ଵݔ ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ ൫1 െ ݁ିఈሺ௫ೖషభሻఛೖషభ൯ 
,ିଶݔሺכߙ ିଵሻݔ

ିଶሻݔሺߙ … ൫1 െ ݁ିఈሺ௫భሻఛభ൯ 
,ଵݔሺכߙ ଶሻݔ

ଵሻݔሺߙ  

ൈ ܲሾ ܶ  ߬|ܺ ൌ ,ݔ  ଵܺ ൌ ଵሿܲሾܺݔ ൌ ,ݔ  ଵܺ ൌ  ଵሿݔ

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ ൫1 െ ݁ିఈሺ௫ೖషభሻఛೖషభ൯ 
,ିଶݔሺכߙ ିଵሻݔ

ିଶሻݔሺߙ … ൫1 െ ݁ିఈሺ௫భሻఛభ൯ 
,ଵݔሺכߙ ଶሻݔ

ଵሻݔሺߙ

ൈ  ൫1 െ ݁ିఈሺ௫బሻఛబ൯ ܲሾ ଵܺ ൌ ଵ|ܺݔ ൌ ሿܲሾܺݔ ൌ  ሿݔ

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯
,ିଵݔሺכߙ ሻݔ

ିଵሻݔሺߙ ൫1 െ ݁ିఈሺ௫ೖషభሻఛೖషభ൯ 
,ିଶݔሺכߙ ିଵሻݔ

ିଶሻݔሺߙ … ൫1 െ ݁ିఈሺ௫భሻఛభ൯ 
,ଵݔሺכߙ ଶሻݔ

ଵሻݔሺߙ  

ൈ ൫1 െ ݁ିఈሺ௫బሻఛబ൯  
,ݔሺכߙ ଵሻݔ

ሻݔሺߙ ܲሾܼ ൌ  ሿݔ

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯ ෑ ቊ
,ݔ൫כߙ ାଵ൯ݔ

൯ݔ൫ߙ
ቀ1 െ ݁ିఈ൫௫ೕ൯ఛೕቁቋ ܲሾܺ ൌ ሿݔ

ିଵ

ୀ

. 

We therefore have that 

 

ܲሾܺ ൌ ,ݔ ܶ  ߬, ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ

ൌ ൫1 െ ݁ିఈሺ௫ೖሻఛೖ൯ ෑ ቊ
,ݔ൫כߙ ାଵ൯ݔ

൯ݔ൫ߙ
ቀ1 െ ݁ିఈ൫௫ೕ൯ఛೕቁቋ ܲሾܺ ൌ ሿݔ

ିଵ

ୀ

. 
(49) 

Now we would like to write Equation X(49XX)X as a integral over all the values of ݐ א ൣ0, ߬൧ ݆ ൌ

0, … , ݇ and then integrate over all values of ߬ so that a probability equation can be obtained 

that does not contain a condition for ܶ. To do that we notice that  
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߲ାଵ

ݐ߲ … ݐ߲
ෑ ቊ

,ݔ൫כߙ ାଵ൯ݔ
൯ݔ൫ߙ

ቀ1 െ ݁ିఈ൫௫ೕ൯௧ೕቁቋ ൫1 െ ݁ିఈሺ௫ೖሻ௧ೖ൯
ିଵ

ୀ

ൌ ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

  ..ሻ݁ିఈሺ௫ೖሻ௧ೖݔሺߙ

(50) 

Equation X(50XX) X is therefore the antiderivative of 

ෑ ቊ
,ݔ൫כߙ ାଵ൯ݔ

൯ݔ൫ߙ
ቀ1 െ ݁ିఈ൫௫ೕ൯௧ೕቁቋ ൫1 െ ݁ିఈሺ௫ೖሻ௧ೖ൯

ିଵ

ୀ

 

with respect to ݐ and so Equation X(49 XX) X can be represented as a multi-integral with respect to 

,ݐ … ,   ofݐ

ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

 ሻ݁ିఈሺ௫ೖሻ௧ೖܲሾܺݔሺߙ ൌ  .ሿݔ

We know that ܶ will be in the interval ሾܶ െ ∑ ݐ
ିଵ
ୀ ,∞ሻ.  Therefore if we integrate over 

ሾܶ െ ∑ ݐ
ିଵ
ୀ ,∞ሻ, Equation X(49 XX) X does not contain a ܶ term anymore and becomes 

 

ܲሾܺ ൌ ,ݔ ܶିଵ  ߬ିଵ, ܺିଵ ൌ ,ିଵݔ … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ න … න න ܲሾܺ ൌ ሻ݁ିఈሺ௫ೖሻ௧ೖݔሺߙሿݖ ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

ݐ݀ … ݐ݀

∞

்ି∑ ௧ೕ
ೖషభ
ೕసబ

ఛೖషభ



ఛబ



. 
(51) 

Now, perform the innermost integration of Equation X(51XX)X by integrating out ݐ: 

 

ܲሾܺ ൌ ,ݔ ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ 

ൌ න … න ൞ න ݐሻ݁ିఈሺ௫ೖሻఛೖ݀ݖሺߙ

∞

்ି∑ ௧ೕ
ೖషభ
ೕసబ

ൢ ܲሾܺ ൌ ሿݔ ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ … ݐ݀

ఛೖషభ



ఛబ



ൌ න … න ൜െ݁ିఈሺ௫ೖሻ௧ೖห்ି∑ ௧ೕ
ೖషభ
ೕసబ

∞
ൠ ܲሾܺ ൌ ሿݔ ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ … ݐ݀

ఛೖషభ



ఛబ
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ൌ න … න ൜െ݁ିఈሺ௫ೖሻ∞   ݁ିఈሺ௫ೖሻቀ்ି∑ ௧ೕ
ೖషభ
ೕసబ ቁൠ

ఛೖషభ



ఛబ



ൈ ܲሾܺ ൌ ሿݔ ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ …  ݐ݀

ൌ න … න ቄ݁ିఈሺ௫ೖሻ்݁ఈሺ௫ೖሻ ∑ ௧ೕ
ೖషభ
ೕసబ ቅ ܲሾܺ ൌ ሿݔ ෑ ,ݔ൫כߙ ାଵ൯݁ିఈ൫௫ೕ൯௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ … ݐ݀

ఛೖషభ



ఛబ



 

ൌ ܲሾܺ ൌ ሿݔ න … න ݁ିఈሺ௫ೖሻ் ෑ ,ݔ൫כߙ ାଵ൯݁ିൣఈ൫௫ೕሻିఈሺ௫ೖ൯൧௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ … ݐ݀

ఛೖషభ



ఛబ



. 

 

 

(52) 

If we specify the area of integration in Equation X(52 XX)X to be over the set ܵ, which is defined in 

Equation X(44 XX)X, we get 

ܲሾܭሺܶሻ ൌ ݇, ܺ ൌ ,ݔ ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, … , ܺ ൌ ,ݔ ܶ  ߬ሿ

ൌ ܲሾܺ ൌ ሿݔ න ݁ିఈሺ௫ೖሻ் ෑ ,ݔ൫כߙ ାଵ൯݁ିൣఈ൫௫ೕሻିఈሺ௫ೖ൯൧௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ … ݐ݀

ௌೖ

 

since the set ܵ implies that ܭሺܶሻ ൌ ݇ by specifying ∑ ݐ ൏ ܶିଵ
ୀ .  This integral is understood 

to be a multi-integral. 

To summarise, we have shown that  

 

ܲሾܭሺܶሻ ൌ ݇, ܺ ൌ ,ݔ ܶ  ߬, … , ܺିଵ ൌ ,ିଵݔ ܶିଵ  ߬ିଵ, ܺ ൌ  ሿݔ

ൌ

ە
ۖ
۔

ۖ
ఈሺ௫బሻ்ܲሾܺି݁ۓ ൌ ݇ ݂݅                          ሿݔ ൌ 0

න ܲሾܺ ൌ ሿ݁ିఈሺ௫ೖሻ்ݔ ෑ ,ݔ൫כߙ ାଵ൯݁ିൣఈ൫௫ೕሻିఈሺ௫ೖ൯൧௧ೕݔ

ିଵ

ୀ

ିଵݐ݀ … ݐ݀

ௌೖ

 ݂݅ ݇   0
(53) 

which proves Equation X(44 XX) X. 

Albert shows that for an event ܤ of the Markov jump process we have the following 

probability distribution function: 

ܲሾܤሿ ൌ න ݂ሺݒሻ݀ߪሺݒሻ
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where 

ሻݒሺ݂ ൌ

ە
ۖ
۔

ۖ
ۓ ݁ିఈሺ௫బሻ்ܲሾܺ ൌ ݒ ݂݅             ሿݔ ൌ ሺݔሻ

ܲሾܺ ൌ ሿ݁ିఈሺ௫ೖሻ்ݔ ෑ ,ݔ൫כߙ ାଵ൯݁ିൣఈ൫௫ೕሻିఈሺ௫ೖ൯൧௧ೕݔ

ିଵ

ୀ

ݒ ݂݅  ൌ ൫ሺݔ, ,ሻݐ … , ሺݔିଵ, ,ିଵሻݐ ൯ݔ

 

 

 
The maximum likelihood estimators 

The likelihood function of ݊ realisations, ݒଵ, ,ଶݒ … ,  , of the Markov jump processݒ

ሼܺ௧ሺ߱ሻ, ݐ  0ሽ can be written as  

ܮ
ሺሻ ൌ ෑ ሻݒሺ݂



ୀଵ

. 

For ݊ observations, let ்ܭ
ሺሻሺ݅, ݆ሻ be the number of transitions from state ݅ to state ݆ and 

்ࣛ
ሺሻሺ݅ሻ the total amount of time that the process is in state ݅.  Taking the natural logarithm of 

ܮ
ሺሻ we get 

 

ln ሺܮ
ሺሻሻ ൌ ݈݊݊൫ܲሾܺ ൌ ݔ

ሿ൯ െ  ݔ൫ߙ
൯ܶ



ୀଵ

   ݈݊ ቀכߙ൫ݔ
, ାଵݔ

 ൯ቁ
ିଵ

ୀଵ

െ  ൣߙ൫ݔ
ሻ െ ݔሺߙ

൯൧ݐ


ିଵ

ୀଵ



ୀଵ



ୀଵ

. 

(54) 

The first term in Equation X(54 XX)X does not depend on ۯ and will therefore be denoted by C୬ 

since it does not affect the likelihood in terms of ۯ.   

The terms in the summation of ∑ ∑ ݈݊ ቀכߙ൫ݔ
, ାଵݔ

 ൯ቁିଵ
ୀଵ


ୀଵ  will only be nonzero over the 

values of ݅, ݆ for which a jump is observed form state ܺ to ܺ such that ܺ  ് ܺ א ሺ1, … ःሻ.  

Therefore ∑ ∑ ݈݊ ቀכߙ൫ݔ
, ାଵݔ

 ൯ቁିଵ
ୀଵ


ୀଵ  can be written as ∑ ∑ ்ܭ

ሺሻሺ݅, ݆ሻ݈݊൫ߙ൯ः
ୀଵ
ஷ

ः
ୀଵ . 

 The last term of Equation X(54 XX)X can be written as 

 െ  ൣߙ൫ݔ
ሻ െ ݔሺߙ

൯൧ݐ
 ൌ െ   ݔ൫ߙ

൯ݐ


ିଵ

ୀଵ



ୀଵ

   ݔ൫ߙ
൯ݐ


ିଵ

ୀଵ



ୀଵ

ିଵ

ୀଵ



ୀଵ

. (55) 
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The last term of Equation X(55XX) X depends on ݆ only through ݐ. Therefore the second term of 

Equation X(54XX) X and Equation X(55XX) X can be joined, 

 

െ  ݔ൫ߙ
൯ܶ



ୀଵ

െ   ݔ൫ߙ
൯ݐ


ିଵ

ୀଵ



ୀଵ

   ݔ൫ߙ
൯ݐ


ିଵ

ୀଵ



ୀଵ

ൌ െ   ݔ൫ߙ
൯ݐ

   ݔ൫ߙ
൯ ቌܶ െ  ݐ


ିଵ

ୀଵ

ቍ


ୀଵ

ିଵ

ୀଵ



ୀଵ

. 

(56) 

Here, ܶ െ ∑ ݐ
ିଵ
ୀଵ  is the amount of time observed for the last state visited for each observed 

process.  Therefore Equation X(56XX) X can be written as  

െ   ݔ൫ߙ
൯ݐ

   ݔ൫ߙ
൯ ቌܶ െ  ݐ


ିଵ

ୀଵ

ቍ


ୀଵ

ିଵ

ୀଵ



ୀଵ

 ൌ െ  ்ࣛ
ሺሻሺ݅ሻߙ

ः

ୀଵ

. 

The likelihood function in Equation X(54XX) X can therefore be written as 

 ln ሺܮ
ሺሻሻ ൌ ܥ    ்ܭ

ሺሻሺ݅, ݆ሻ݈݊൫ߙ൯ െ  ்ࣛ
ሺሻሺ݅ሻߙ

ः

ୀଵ

ः

ୀଵ
ஷ

ः

ୀଵ

 (57) 

Albert states that the Halmos-Savage factorization theorem can be applied to Equation X(57XX) X to 

prove that the set ቄ்ܭ
ሺሻሺ݅, ݆ሻ, ்ࣛ

ሺሻሺ݅ሻቅ
ஷ

 is a sufficient statistic for .  The interested reader 

is referred to [X44X] for more information on the Halmos-Savage factorization theorem. 

Differentiating the likelihood function in Equation X(57XX)X with respect to ߙ we note that  

݀
ߙ݀

ሺߙሻ ൌ
݀

ߙ݀
ቌ ߙ

ஷ

ቍ ൌ 1 , ݅ ് ݆. 

Therefore, we have  

 ݈݀݊ ሺܮ
ሺሻሻ

݆݅ߙ݀
ൌ

்ܭ
ሺሻሺ݅, ݆ሻ

ෝ݆݅ߙ
െ ்ࣛ

ሺሻሺ݅ሻ , i ് j. (58) 

Setting Equation X(58XX) X equal to zero and solving for ߙො
ሺሻ we get that for ݅ ് ݆ 
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ොߙ 
ሺሻ ൌ

்ܭ
ሺሻሺ݅, ݆ሻ

்ࣛ
ሺሻሺ݅ሻ

, ݅ ് ݆. (59) 

ොߙ
ሺሻ is then calculated, similarly to Equation X(17XX)X, as follows:  

ොߙ 
ሺሻ ൌ െ  ොߙ

ሺሻ

ஷ

. (60) 

The article by Albert also provides results of the large sample properties of the ML estimators 

which is stated below without proof.  The interested reader is advised to consult the article of 

Albert for more details of the derivation of these results.   

The sample size of a stochastic process can increase by increasing the number of observed 

processes (݊ሻ, or by increasing the time for which the process is observed ሺܶሻ.  The ML 

estimator of a Markov jump process has the following four properties which comes directly 

from the paper by Albert[
X

4
X

]: 

1. For a fixed value of ܶ, lim՜ஶ ොߙ
ሺሻ ൌ   if the probability of state ݅ being occupiedߙ

at least once is greater than zero 

2. For a fixed value of ܶ, the set of random variables ቄ݊
భ
మቀߙො

ሺሻ െ ቁቅߙ
ஷ

 are 

independent and asymptotically normally distributed with zero mean and variance 

equal to ߙ/  ܲሾܺ௧ ൌ ݅ሿ்݀ݐ
  if every state has a positive probability of being 

occupied. 

3. For ݊ fixed, lim்՜ஶ ොߙ
ሺሻ ൌ  is zero and if all the ܣ  if one of the eigenvalues ofߙ

cofactors on the diagonal of  are positive.  The ሺ݅, ݆ሻth cofactor of a square matrix is 

calculated as ሺെ1ሻሺାሻܥ where ܥ is the determinant of the matrix formed by 

removing the ݅th row and ݆th column of the matrix[
X

65
X

]. 

4. For ݊ fixed, the joint distribution of the set ቄܶ
భ
మ൫ߙොሺሻሺ݅, ݆ሻ െ ,ሺ݅ߙ ݆ሻ൯ቅ

ஷ
 is 

asymptotically independent and normally distributed with zero mean and variance 
equal to ߙሺ݅, ݆ሻܣ/ߩሺ,ሻ where ߩ is the product of all non zero eigenvalues of  and 
  . ሺ,ሻ is the cofactor ofܣ
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3.4 Alternative derivation of likelihood function by Tuma et al 

Tuma et al.[X

104
X

] has an alternative method to derive the likelihood function which does not 

delve into the extensive measure theory used by Albert[
X

4
X

].  The approach of Tuma et al. is 

focussed on the idea of providing a likelihood function that can handle right censored data 

and that all state transitions are recorded exactly when they occur.  A brief overview of the 

likelihood function derivation by Tuma is provided below. 

Let ݓ ൌ ቊ1 if the ݉୲୦ transition of the ݅୲୦ subject is observed
0 if the ݉୲୦ transition of the ݅୲୦ subject is censored

. 

Consider for example the ݅th subject observed in a sample of Markov jump process with three 

states.  Now suppose for example that the process is in state 1 at time ऄ, then moves to state 

2 at time ऄଵ, followed by a move back to state 1 at time ऄଶ and then the process stays in the 

this state until the study ends.  The time in state 1 from time ऄଶ is therefore right censored.  

For the example described we have ሼݓଵ, ,ଶݓ ଷሽݓ ൌ ሼ1,1,0ሽ. 

Now, let  

ݒ ൌ ൜1 if the ݉୲୦ transition of the ݅୲୦ subject is observed and consists of a jump to state j 
0     otherwise                                                                                                                                         

 

where ݒ is understood to equal unity if the ݅th observed subject starts the process in state݆. 

Tuma et al. begins their derivation of the likelihood function by considering first the 

information arising from the first jump observed for each subject. Assume n processes are 

observed.  The likelihood contribution following the first jump is2 

  ܮ ൌ ෑ ෑ ൝ൣܩሺऄଵ|ऄሻ൧ሺଵି௪భሻ௩బೕൣ ݂ሺऄଵ|ऄሻ൧௪భ௩బೕ ෑ ቈ
ሺऄሻߙ
ሺऄሻߙ 

௪భ௩బೕः

ୀଵ

ൡ
ः

ୀଵ



ୀଵ

.  (61) 

F 

For the ݅th subject, ൣG୨ሺऄଵ|ऄሻ൧ሺଵି௪భሻ௩బೕ represents the survival function in the first state and 

this term is only different from one if the first transition is not observed (i.e. censored) in 

which case all the other terms in Equation X(61 XX) X are equal to one.  This implies that the only 

                                                            

2It should be noted that the paper by Tuma et al.[103] is believed to contain a typing error since 

∏ ݆݇ߙሺऄ0ሻ

ሺऄ0ሻ݆ߙ
൨

0݆݅ݒ1݅ݓ
ः
݇ൌ1  is written as ∏ ݆݇ߙሺऄ0ሻ

ሺऄ0ሻ݆ߙ
൨

െ0݆݅ݒ1݅ݓ
ः
݇ൌ1  
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information added to the likelihood function if the first transition is censored is the 

probability that the process stays in state ݆ at least up to time ऄଵ. 

If however the first transition is observed, ൣG୨ሺऄଵ|ऄሻ൧ሺଵି௪భሻ௩బೕ equals unity and does not 

add any information to the likelihood function.  In this case ൣf୨ሺऄଵ|ऄሻ൧௪భ௩బೕ is the 

probability that the process leaves state ݆ at time ऄଵ after the process was in state ݆ at time ऄ.  

This probability is multiplied by ∏ ఈೕೖሺऄబሻ
ఈೕሺऄబሻ

൨
௪భ௩బೕ

ः
ୀଵ  where ఈೕೖሺऄబሻ

ఈೕሺऄబሻ
 is the probability that the 

process transitions from state ݆ to state ݇ א ሺ1, … , ःሻ.  

Each subject similarly contributes in this manner to the likelihood function.  Now, from 

Equation X(31XX) X, we have  ݂ሺऄଵ|ऄሻ ൌ ሺऄଵ|ऄሻ.  Equation X(61ܩሺऄሻߙ XX)X can therefore be written 

as follows: 

ܮ ൌ ෑ ෑ ൝ൣܩሺऄ1|ऄ0ሻ൧
ሺଵି௪భሻ௩బೕൣ ݂ሺऄଵ|ऄሻ൧௪భ௩బೕ ෑ ቈ

ሺऄሻߙ
ሺऄሻߙ 

௪భ௩బೕः

ୀଵ

ൡ
ः

ୀଵ



ୀଵ

 

ൌ ෑ ෑ ൝ൣܩሺऄ1|ऄ0ሻ൧
ሺଵି௪భሻ௩బೕߙሺऄሻ௪భ௩బೕܩሺऄ1|ऄ0ሻ௪భ௩బೕ ෑ ቈ

ሺऄሻߙ
ሺऄሻߙ 

௪భ௩బೕः

ୀଵ

ൡ
ः

ୀଵ



ୀଵ

 

ൌ ෑ ෑ ൝ܩሺऄ1|ऄ0ሻ௩బೕ ෑ ሺऄሻ௪భ௩బೕߙ

ः

ୀଵ

ൡ .
ः

ୀଵ



ୀଵ

 

The likelihood function of the second transition follows similarly and equals  

ܮ ൌ ෑ ෑ ൝ൣܩሺऄଶ|ऄଵሻ൧
ሺଵି௪మሻ௩భೕൣ ݂ሺऄଶ|ऄଵሻ൧௪మ௩భೕ ෑ ቈ

ሺऄଵሻߙ
ሺऄଵሻߙ 

௪మ௩భೕः

ୀଵ

ൡ
ः

ୀଵ



ୀଵ

 

ൌ ෑ ෑ ൝ܩሺऄଶ|ऄଵሻ௩భೕ ෑ ሺऄଵሻ௪మ௩భೕߙ

ः

ୀଵ

ൡ
ः

ୀଵ



ୀଵ

. 

Continuing with this reasoning, the likelihood function of all ݉ jumps for each subject equals 

 

ܮ ൌ ෑ ෑ ෑ ൝ൣܩሺऄ|ऄିଵሻ൧
ሺଵି௪ሻ௩షభ,ೕൣ ݂ሺऄ|ऄିଵሻ൧௪௩షభ,ೕ

ः

ୀଵ

ஶ

ୀଵ



ୀଵ

ൈ ෑ ቈ
ሺऄିଵሻߙ
ሺऄିଵሻߙ 

௪௩షభ,ೕः

ୀଵ

ൡ 

ൌ ෑ ෑ ෑ ෑቄൣܩሺऄ|ऄିଵሻ൧௩షభ,ೕߙሺऄିଵሻ௪௩షభ,ೕቅ
ः

ୀଵ

ः

ୀଵ

ஶ

ୀଵ



ୀଵ

. 

 

 

(62) 
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If the transition rates are stationary we have that the time between transitions follows an 

exponential distribution, as shown in Section X2.2.2.1X, and therefore ܩሺऄ݉|ऄ݉െ1ሻ ൌ

݁ିሺऄିऄషభሻఈೕ  and so Equation X(62XX) X becomes  

ܮ  ൌ ෑ ෑ ෑ ෑ ቄൣ݁ିሺऄିऄషభሻఈೕ൧
௩షభ,ೕߙሺऄିଵሻ௪௩షభ,ೕቅ

ः

ୀଵ

ः

ୀଵ

ஶ

ୀଵ



ୀଵ

. (63) 

Now, taking the natural logarithm of Equation X(63XX) X we get 

 ݈݊ሺܮሻ ൌ     ቄെሺऄ െ ऄିଵሻߙݒିଵ,  ିଵ,݈݊ݒݓ ቀߙሺऄିଵሻቁ ቅ
ः

ୀଵ

ः

ୀଵ

ஶ

ୀଵ



ୀଵ

. (64) 

The first term in Equation X(64XX) X will only be different from zero if the ሺ݉ െ 1ሻth jump is to 

state ݆ and subsequently ∑ ∑ ∑ ∑ ሺऄ݉ െ ऄ݉െ1ሻߙݒିଵ,
ः
ୀଵ

ः
ୀଵ

ஶ
ୀଵ


ୀଵ  is the same as the 

amount of the time the process spends in state ݆ multiplied by ߙ and then the sum over all 

values of ݆ א ሺ1, … , ःሻ. 

The last term in Equation X(64 XX)X will only be different from zero if the ݉th observed transition 

is from state ݆ to state ݇.  Therefore ∑ ∑ ∑ ∑ ሺऄିଵሻቁ ःߙିଵ,݈݊ ቀݒݓ
୩ୀଵ

ः
୨ୀଵ

ஶ
୫ୀଵ

୬
୧ୀଵ is, for 

݆, ݇ א ሺ1, … , ःሻ, equal to the number of times the process is observed to transition from state ݆ 

to state ݇ multiplied by ݈݊ ቀߙሺऄିଵሻቁ.   

We therefore see that Equation X(64 XX)X is equivalent to Equation X(57 XX)X.  The way in which Tuma 

et al. therefore proposes to handle right-censored observations is the same as that of Albert[
X

4
X

].  

Tuma et al. does not provide a closed form expression of the values of ߙ that maximise the 

likelihood function, but mentions that a FORTRAN computer program has been written that 

can maximise the likelihood function. 

The likelihood function of Tuma et al. does however provide the flexibility of specifying any 

distribution for the time spent in the ݆th state which makes it possible to work with a 

nonstationary process.   

Another advantage of the likelihood function proposed by Tuma et al. is that they mention 

that the transition rate can be estimated in terms of covariates, i.e. by specifying: 

ߙ ൌ ೕೖࣂ݁
ᇲࢠ 
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where ࣂ is a vector of parameters associated with characteristics, ࢠ, of the units being 

studied.  For patients, these characteristics can, amongst others, be smoking status and blood 

pressure. This flexibility in the transition rate can easily be added to the likelihood function of 

Albert by writing Equation X(57 XX)X as 

 ln ሺܮ
ሺሻሻ ൌ ܥ  

ۉ

ۈ
ۇ

  ்ܭ
ሺሻሺ݅, ݆ሻ݆݅ࣂ

Ԣࢎࢠ െ  ்ࣛ
ሺሻሺ݅ሻߙԢሺ݅ሻ

ः

ୀଵ

ः

ୀଵ
ஷ

ः

ୀଵ

ی

ۋ
ۊ



ୀଵ

 (65) 

where ்ܭ
ሺሻሺ݅, ݆ሻ is the total number of transitions from state ݅ to state ݆ for the ݄th 

process, ்ࣛ
ሺሻሺ݅ሻ is the total amount of time the ݄th process spent in state ݅,  ߙ

′ሺ݅ሻ ൌ

∑ ೖࣂ݁
ஷࢎࢠ′  and ࢎࢠ is the vector of covariates for the ݄th process. 

3.5 The method of Kalbfleisch and Lawless for irregularly observed data 

Kalbfleisch and Lawless[
X

53
X

] define a likelihood function for a Markov jump process for which 

all processes in a sample are observed at the same irregular time points.  Their method 

considers all the observed time points in a sample and that transitions can occur at the time of 

observation or during the start and end of an observation interval.  The likelihood of 

observing all the transitions in the sample is then calculated similarly as in Equation X(37XX) X.  If 

the process is observed at times ऄ, ऄଵ, … , ऄ, the likelihood is 

ܮ  ൌ ෑ ෑ ෑ ,ሺऄିଵ ऄሻೕሺऄషభ,ऄሻ
ः

ୀଵ

ः

ୀଵ



ୀଵ

  (66) 

where ݊ሺऄିଵ, ऄሻ is the number of transitions from state ݅ to ݆ in the time interval ሾऄିଵ, ऄሿ 

as used in Section X3.2X.  Taking the natural logarithm of Equation X(66XX) X, we get the log 

likelihood function: 

 ݈݊ሺܮሻ ൌ    ݊ሺऄିଵ, ऄሻ݈݊ ,ሺऄିଵൣ ऄሻ൧
ः

݆ൌ1

ः

݅ൌ1

݉

݈ൌ1
. (67) 

The approach by Kalbfleisch and Lawless considers all non-zero entries of the transition 

intensity matrix to be entries of a vector ࣂ.  For example, for the three state model with one 

absorbing state discussed in Section X4.2 X, ࣂ ൌ ሺߣଵ, ,ଵߤ λଶ,  ଶሻ if we letߤ
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 ൌ  
െߣଵ െ ଵߤ ଵߣ ଵߤ

λଶ െλଶ െ ଶߤ ଶߤ
0 0 0

൩. 

Equation X(67XX) X should now be maximised with respect to ࣂ. Kalbfleisch and Lawless proposes 

the use of a Gauss-Newton method which requires the derivative of Equation X(67XX) X with 

respect to ࣂ.  Recalling Equation X(25XX) X we have  

ሺ௧ሻࡼ ൌ ,൫݁ௗభ௧݃ܽ݅݀ … , ݁ௗः௧൯ିଵ 

where ݀ଵ, … , ݀ः are the eigenvalues of  and  is a matrix with columns containing the 

eigenvectors of  in the same order as ݀ଵ, … , ݀ः.  Kalbfleisch and Lawless shows that if we 

calculate డ
డఏೠ

 and let ࡳሺ௨ሻ ൌ  డ
డఏೠ

 ଵ we getି

ሺ௧ሻࡼ߲ 

௨ߠ߲
ൌ  ௨ܸିଵ (68) 

where ࢂ௨ is a ः ൈ ः matrix with ሺ݅, ݆ሻth entry  

݃
ሺ௨ሻ ൫݁ௗ௧ െ ݁ௗೕ௧൯

݀ െ ݀
 ݂݅ ݅ ് ݆

݃
ሺ௨ሻ݁ݐௗ௧                 ݂݅ ݅ ൌ ݆

 

and ݃
ሺ௨ሻ is the ሺ݅, ݆ሻth entry of ࡳሺ௨ሻ. 

We therefore have an easy method for calculating the derivative of ࡼሺ௧ሻ if we differentiate  

with respect to ࣂ.  Kalbfleisch and Lawless proposes the following optimisation algorithm to 

estimate ࣂ: 

௧ࣂ  ൌ ௧ିଵࣂ  ௧ିଵሻࣂ௧ିଵሻିଵܵሺࣂሺࡹ ; ݎ݁ݐ݅ ൌ 0,1, ….  (69) 

where 

 ; is a set of initial values for the parameters to be estimatedࣂ •

• ܵሺࣂሻ is the ܾ dimensional vector with ݑth entry  

ܵ௨ሺࣂሻ ൌ
߲ln ሺܮሻ

௨ߠ߲
ൌ    ݊

௨ߠ߲/ሻݐሺ߲

ሻݐሺ

ः

ୀଵ

ः

ୀଵ



ୀଵ

 

where ݐ ൌ ऄ െ  ऄିଵ and Equation X(68XX) X can be used to calculate డೕሺ௧ሻ
డఏೠ

; and 

ܾ ሻ is theߠሺࡹ • ൈ ܾ matrix with ሺݑ,  ሻth entryݒ
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ሻࣂ௨௩ሺܯ ൌ   
݊ሺऄିଵ, ऄሻ

ሻݐሺ

ः

ୀଵ

ः

ୀଵ



ୀଵ

ሻݐሺ߲
௨ߠ߲

ሻݐሺ߲
௩ߠ߲

 

where ݊ሺऄିଵ, ऄሻ ൌ ∑ ݆݊݅ሺऄିଵ, ऄሻः
݆ൌ1  as used in Section X3.2X.  The algorithm is repeated until 

 ௧ becomes theࣂ ௧ିଵ are sufficiently close and thereafter the last value ofࣂ ௧ andࣂ

estimate of ࣂ, i.e. ࣂ.  The matrix ࡹ൫ࣂ൯ିଵ
 is an estimate of the asymptotic covariance matrix 

of ࣂ.  Furthermore it is indicated that the mean sojourn time in state ݅ is estimated as 

– ൯ିଵࣂ൫ߙ
 and the asymptotic variance of the sojourn time is estimated with 

ሻିସࣂሺߙ  
ሻࣂሺߙ߲

௨ߠ߲

ሻࣂሺߙ߲
௩ߠ߲



௩ୀଵ

ሻࣂ௨௩ሺܯ


௨ୀଵ

อ
ࣂୀࣂ

 

where ܯ௨௩ሺࣂሻ is the ሺݑ,  .ሻିଵࣂሺࡹ ሻth entry ofݒ

Kalbfleisch and Lawless mention that the proposed algorithm can be used in the case of right 

censored data with the understanding that ݊ሺऄିଵ, ऄሻ is the number of subjects in state ݅ at 

time ऄିଵ for whom the state occupied at time ऄ is known.  Unlike the methods of Anderson 

and Goodman[
X

8
X

], Albert[
X

4
X

] and Tuma et al.[X

104
X

], the algorithm of Kalbfleisch and Lawless does 

therefore not use the information of the amount of time spent in a state if the time is censored. 

Covariates are included into the model by specifying the transition intensities to be functions 

of a covariate vector ࢆ ൌ ൫ܼଵ, … , ܼ൯ in the following manner: 

ሻࢆሺܣ ൌ ቀߙሺࢆሻቁ 

with  

ሻࢆሺߙ ൌ ݅ ݂݅             ೕࢼᇲࢆ݁ ് ݆

ሻࢆሺߙ ൌ െ  ሻࢆሺߙ
ஷ

݂݅ ݅ ൌ ݆   

and where ࢼ are the covariate effects associated with the transition from state ݅ to state ݆. 

Say ݎ distinct sets of covariates are observed in a sample of ݊ subjects.  Then ݎ different 

transition matrices can be formed: 

ܣ ൌ ሻࢆሺܣ ൌ ቀߙሺࢆሻቁ ;    ݄ ߳ ሺ1, … ,  ሻݎ
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If we let ݊
ሺ݄ሻሺऄ݈െ1, ऄ݈ሻ be the number of subjects with covariates ࢆ that transitioned from 

state ݅ to state ݆ between ऄିଵ and ऄ we can write the likelihood in Equation X(67XX) X as  

 ݈݊ሺܮሻ ൌ    ݆݊݅
ሺሻሺऄିଵ, ऄሻ ln ,ݓሺൣ ሻ൧ࢆ

ः

݆ൌ1
.

ः

݅ൌ1

݉

݈ൌ1
 (70) 

 

Equation X(70XX) X can be maximised using Equation X(69XX)X with ܵሺࣂሻ ൌ ∑ ܵሺሻሺࢼሻ
ୀଵ  and 

ࡹ ൌ ∑ ሻࢼሺሻሺࡹ
ୀଵ .  The algorithm described above will increase computationally as ݎ 

increases.  It is therefore advised that covariates be grouped. 

Kalbfleisch and Lawless used a Pearson-type test for goodness-of-fit which will be discussed 

in Section X3.7X. 

3.6 The method of Kay and Jackson when processes are observed at different irregular 

time points 

Kay[
X

56
X

] provided a method for ML estimators of a Markov jump process of which all 

processes in a sample are observed at possibly different irregular time points.  Such data will 

cause interval censored data since the time of state transitions will be known to be in a certain 

interval but the exact time of transition will be unknown.  If the state of the process is 

measured at two time points, the state of the process is not necessarily known between these 

observation times. 

Kay suggested that the true “alive” state from which a disease model makes a transition to the 

death state is often unknown due to irregular observation times, but the time at which the 

transition to the death state occurs is often known with precision of up to one day.  Kay used 

his methods to estimate the parameters of a process with three transient states indicating 

cancer stages and a death state. 

Consider a stationary disease process with ः states of which the ःth state is the ݄݀݁ܽݐ state.  If  

݇ transitions are observed for the ݄th patient, ݄ א ሺ1, … , ݊ሻ, but the last observed transition is 

not to the ݄݀݁ܽݐ state thereby making the time to death censored and it is known that the 

process is still in the state ܺሺሻ
ሺሻ  at the end of the observation period, the likelihood 

contribution of such an observation is 
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 ݈ሺሻ ൌ ෑ 
ሺሻ,శభ

ሺሻ ቀݐ
ሺሻቁ

ሺሻିଵ

ୀ

, ݄ ൌ 1, … , ݊. (71) 

If, however the ݇th transition of the ݄th patient is to the death state but the state of the process 

immediately before dying is unknown, the contribution to the likelihood function is 

 
݈ሺሻ ൌ ෑ ቂ

ሺሻ,శభ
ሺሻ ቀݐ

ሺሻቁቃ  
ೖሺሻషభ
ሺሻ ,

ሺሻ ቀݐሺሻିଵ
ሺሻ െ 1ቁ

ஷௌ


ሺሻ,ः

ሺ1ሻ 
ሺሻିଶ

ୀ

, 

݄ ൌ 1, … , ݊ . 

(72) 

Kay states that in some instances it may be known that the process in the not in the ݄݀݁ܽݐ 

state at time ܶ but the exact state of the process (i.e. in which of the transient states the 

process is in) is unknown.  In this case the likelihood contribution of such a observation is: 

݈ሺሻ ൌ ෑ ቂ
ሺሻ,శభ

ሺሻ ቀݐ
ሺሻቁቃ

ሺሻିଵ

ୀ

 
ೖሺሻషభ
ሺሻ ,ೕ

ःିଵ

ୀଵ

ቀܶ െ ሺሻݐ
ሺሻ ቁ , ݄ ൌ 1, … , ݊. 

The full likelihood is then created by taking the product of all the ݈ሺሻ terms and Kay states 

that the likelihood can be maximised using Newton-type methods.   

In the documentation of the R library msm, Jackson[
X

49
X

] alters Equation X(72XX)X and writes the 

likelihood contribution if the process enters the death state from an unknown “alive” state as 

 ݈ሺሻ ൌ ෑ ቂ
ሺሻ,శభ

ሺሻ ቀݐ
ሺሻቁቃ  

ೖሺሻషభ
ሺሻ ,

ሺሻ ቀݐሺሻ
ሺሻ ቁ

ஷः

ߙ
ሺሻ,ः

.
ሺሻିଶ

ୀ

 (73) 

Kay inherently argues that if the last observed state is ܺሺሻିଵ
ሺሻ  and the process is known to 

move to the dead state at time ऄሺሻ
ሺሻ  the likelihood contribution consist of the probability to 

move from state ܺሺሻିଵ
ሺሻ  to any another “alive” state in ݐሺሻିଵ

ሺሻ െ 1 time units multiplied by 

the probability to move from this state to the ݄݀݁ܽݐ state on one time unit.  This is because 

Kay considers the time of death to be recorded with precision up to one day.  Jackson on the 

other hand considers the likelihood contribution to equal the probability of moving from state 

ܺሺሻିଵ
ሺሻ  to some “alive” state ܺ

ሺሻ, ݅ ് ः in ݐሺሻ
ሺሻ  time units and then instantaneously moving 
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to the ݄݀݁ܽݐ state.  Otherwise, Jackson uses the same approach as Kay for dealing with 

censoring.  Jackson provides flexibility for observation times that are recorded with exact 

precision and where the state of the process is always observed when a transition is made.  

The likelihood function for such an observed process will be as follows: 

 ݈ሺሻ ൌ ෑ 
ሺሻ,

ሺሻቀݐ
ሺሻቁα

ሺሻ,శభ
ሺሻ

ሺሻ

ୀ

. (74) 

The msm library has an option using Equation X(74 XX) X to calculate the likelihood function if the 

exact transition times are observed by stating exacttimes=TRUE.  Jackson states that richer 

methods like the Cox regression model introduced in Section X2.3X can be used if exact 

transition times are known. 

3.7 Analysing the goodness-of-fit of the model 

Jackson[
X

49
X

] mentions two methods that can be used to assess the goodness-of-fit of a model 

such as ours.  The first method consists of a graphical comparison of the expected number of 

patients (from the ݊ observed processes) in a state with the observations at various time 

points.  To calculate the observed number of patients in a state at time ߬כ, if ߬כ falls between 

two observed time points, one can assume that the process is in the state observed prior to ߬כ.  

The validity of this assumption will depend on how often the process is observed. 

In the case of a stationary Markov chain Equations X(5XX) X and X(7 XX)X can be used to calculate the 

expected number of patients in each state at time ߬כ if the distribution vector of Equation X(5XX) X 

is set equal to the number of patients in each of the states at time ऄ.  Equation X(6XX) X can be 

used in a similar manner for nonstationary Markov chains.  Equation X(23XX)X can be used to 

calculate the TPM matrix from a transition intensity matrix in the case of a stationary Markov 

jump process and then Equation X(5XX) X and can be used as described above to calculate the 

distribution vector at time ߬כ.  If the transition intensity matrix of a nonstationary Markov 

jump process can be categorised into a number of stationary matrices, the TPM of each of 

these intensity matrices can be calculated with Equation X(23XX) X and then Equation X(6 XX) X can be 

used in a similar manner as described for the nonstationary Markov chain to calculate the 

expected number of patients in each state at time ߬כ.  The observed and estimated number of 

patients in each state can then be compared graphically for various values of ߬כ with the use 
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of the plot.prevalence.msm function in the msm package of R. If the observed and estimated 

state prevalence values are close it is an indication of a good fit. 

The second method mentioned by Jackson uses the observed and expected number of 

processes in a Pearson-type goodness-of-fit test statistic which was discussed by Aguirre-

Hernandez and Farewell[
X

3
X

].  Kalbfleisch and Lawless[
X

53
X

]  also used a Pearson-type test for 

goodness-of-fit, and Aguirre-Hernandez and Farewell[
X

3
X

] added to the ideas of  Kalbfleisch and 

Lawless.  Kalbfleisch and Lawless calculated the observed and expected number of patients 

transitioning between states ݅ and ݆ for each time interval ݐ based on the estimated process 

parameters.  The expected number of transitions from state ݅ to ݆ in the time interval ሾऄିଵ, ऄሻ 

is calculated as  

ܧ ൌ ,ො݆݅ሺऄ݄െ1 ऄ݄ሻ  ݆݊݅ሺऄ݄െ1, ऄ݄ሻ
ः

ୀଵ

 

and then the goodness-of-fit test statistic is calculated as 

 ࣮ ൌ   
൫ ܱ െ ൯ଶܧ

ܧ



ୀଵ

ः

ୀଵ

.
ः

ୀଵ

 (75) 

The subscript ܮܭ in  ࣮ of Equation X(75XX)X is used to indicate it is the test statistic introduced 

by Kalbfleisch and Lawless.  ܱ is the number of patients that transitioned between states ݅ 

and ݆ in the time interval ሾऄିଵ, ऄሻ in the sample.  Kalbfleisch and Lawless states that the test 

statistic follows an asymptotic chi-square distribution and uses this to test for the significance 

of the goodness-of-fit. 

Aguirre-Hernandez and Farewell consider groups of patients based on their characteristics 

(covariates) and calculates the observed and expected number of transitions for each group.  

The grouping of observed and expected transitions also consists of intervals on the time axis 

and the time spent in a state.  The observed number of transitions between state ݅ and ݆ in one 

such group, say ݈, is then calculated as 

 ܱ,, ൌ  ऄశభܺൣܫ ൌ ݆, ܺऄ ൌ ݅൧ (76) 

where the summation is taken over all units in group ݈ and over all values of time included in 

the grouping.  Here ܫሾ·ሿ is an indicator function.  The expected number of transitions in group 
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݈ is calculated by determining the estimated probability to transition from state ݅ to ݆ for each 

patient in group ݈ and then summing over all patients in group ݈.  The expected number of 

transitions is  

,,ܧ  ൌ  ܲൣܺऄశభ ൌ ݆, ܺऄ ൌ ݅൧.
,ሾऄऄశభሻא

 (77) 

The condition of ሾऄऄାଵሻ א ݈ in the summation of Equation X(77XX)X indicates that only time 

intervals included in group ݈ should be included in the summation.   

The Pearson-type goodness-of-fit test statistic is then calculated with the following formula: 

࣮ி ൌ 
൫ ܱ,, െ ,,൯ଶܧ

,,ܧ

. 

Aguirre-Hernandez and Farewell state that ࣮ி  does not follow a chi-square distribution since 

the estimated transition probability can differ for each process.  They therefore estimate the 

distribution of ࣮ி by forming bootstrap samples.  Each bootstrap sample is formed by 

simulating ݊ Markov processes based on the estimated parameters, ࣂ, and then estimating the 

process parameters again and calculating ܱ,, and ܧ,, based on the bootstrap sample and 

process parameters estimated from the bootstrap sample respectively.  Chapter 4 will discuss 

how a Markov chain and jump process can be simulated from the process parameters.  A 

ሺ1 െ  ሻ100% confidence interval for the test statistic is then formed from the sampledߙ

distribution of the test statistic and the model is said to have a significantly good fit if the 

observed value of ࣮ி is contained in the confidence interval.  

The Pearson-type goodness-of-fit test with bootstrap samples can be calculated with the 

pearson.msm function of the msm package by specifying the boot=TRUE option. 

3.8 Discussion 

We have discussed various ML methods for the estimation of the parameters of Markov 

processes and indicated the influence of the timing of observations on the likelihood function.  

The possible observations schemes of a Markov process are summarised below: 

• All state transitions are observed exactly.  The estimator of Albert[
X

4
X

] which is 

discussed in Section X3.3X can be used for such data if the effect of covariates on 
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transition rates are not investigated.  The estimator of Tuma et al.[X

104
X

] which is 

discussed in Section X3.4X can be used if the effects of covariates are of interest. 

• The states of all processes are observed at the same equidistant time points. The 

estimator of Anderson and Goodman[
X

8
X

] which is discussed in Section X3.2X can be used 

for such data. 

• The states of all processes are observed at the same, but not necessarily 

equidistant time points.  The estimator of Kalbfleisch and Lawless[
X

53
X

] which is 

discussed in Section X3.5X  can be used for such data. 

• The states of all processes are observed at possibly different time points which 

are irregular.  The methods of Kay[
X

56
X

] and Jackson[
X

49
X

] which are discussed in Section 

X3.6X can be used for such data. 

The methods of Albert[
X

4
X

]  and Anderson and Goodman[
X

8
X

] provide closed form expressions for 

the ML estimators of the Markov process parameters whereas the estimators of Tuma et 

al.[X

104
X

], Kalbfleisch and Lawless[
X

53
X

], Kay[
X

56
X

] and Jackson[
X

49
X

] are found by using iterative 

optimisation procedures to find the values of the parameters that maximise the likelihood 

function.  Kalbfleisch and Lawless[
X

53
X

] provide an optimisation algorithm in their article and 

functions like the nlm function in R can be used to find the parameters that maximise the 

likelihood functions of Tuma et al.[X

104
X

], Kay[
X

56
X

] and Jackson[
X

49
X

]. 

We have discussed one nonstationary ML estimator of a Markov process for which all 

processes are observed at the same equidistant time points.  This is the nonstationary 

estimator of Anderson and Goodman[
X

8
X

] which was discussed in Section X3.2X.  Aalen et al[
X

1
X

] 

used a similar approach in estimating nonstationary transition probabilities, but indicated that 

the time points at which observations are made do not have to be equidistant.  Aalen et al. 

indicates that the TPM of a nonstationary Markov chain for the interval ሾݏ,  ሿ should beݐ

estimated by splitting ሾݏ,  ሽ such that each observed transition inݐሿ into a partition of time ሼݐ

the interval ሾݏ,  ሿ is contained in a unique time interval. The estimated TPM for the intervalݐ

ሾݏ,  :ሿ then becomesݐ

ܲሺ௦,௧ሻ ൌ ෑ ܲሺ௧,௧శభሻ

௦ழ௧ழ௧శభஸ௧

. 
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Tuma et al.[X

104
X

] provided a likelihood function for which the transition rates of a Markov jump 

process can be estimated as a function of covariates.  Tuma mentions that the function can be 

applied to include the effect of time on transition rates.  Consider for example a three state 

Markov jump process of which the transition from state ݅ to state ݆ is written as ߙ ൌ

݁ఉబାఉభ௧.  The effect of time on transition rates can therefore be estimated by finding the ML 

estimates of ߚ and ߚଵ with the use of optimisation methods such as the nlm function in R.  

The type of function used to link the transition rate to time, ݁ఉబାఉభ௧ in this example, will 

depend on the relationship between time and the transition rate and it is suggested that 

process parameters be estimated for various link functions with the outcome of each method 

being compared using the observed and expected state prevalence plots described in Section 

X3.7X. 

Another approach to handling nonstationary process in the approach of Tuma et al.[X

104
X

] is by 

specifying a survival function other than the exponential for the time spent in the ݆th state in 

Equation X(62) X.   

In dealing with nonstationary processes, Kalbfleisch and Lawless[
X

53
X

] and Ocana-Riola[
X

81
X

] 

suggested that the transition intensity matrix be split into piecewise homogenous transition 

intensities which are stationary over certain time intervals.   Ocana-Riola goes further to 

suggest a method whereby different homogenous transition intensity matrices are estimated 

between all time periods for which transitions were observed.  If any two consecutive 

transition intensity matrices are the same, the one observation time is ignored and the 

homogenous transition intensity matrices are calculated again.  This process continues until 

all consecutive transition intensity matrices are different.  This method may however be 

impractical if the time period between transitions are small and many different time periods 

are observed of which most give different transition intensity matrices. 

It is also possible that the transition rate may not depend on the time from the start of the 

process, but on the time spent in a state.  Such models are called semi-Markov models and are 

described in Meira-Machado et al.[X

73
X

]  A discussion of methods that deals with this type of 

processes will not be provided since it falls outside the scope of this dissertation but software 

will be mentioned in the concluding chapter that can incorporate semi-Markov processes. 

The summary of the methods that have been given so far suggests that the treatment of time 

in Markov processes, discrete or continuous, be determined by the data available.  One may 

 
 
 



 

  CA Marais 

  23138514 

79

however wish to work with a Markov chain process even though a Markov jump process was 

estimated from the data and vice versa.  Calculating the TPM from a transition intensity 

matrix has been described in Chapter 2 so it is possible to estimate the parameters of a 

Markov chain process even if the process has been observed in such a way that would suggest 

a Markov jump process be used to estimate the process parameters.  If the data is however 

used to estimate a TPM, it is not always possible to construct the corresponding transition 

intensity matrix.   This is known as the problem of embeddability and is discussed by, 

amongst others,  Singer and Spilerman[
X

99
X

].  An example of a TPM that is not embeddable is 

provided in Equation X(78XX) X below.  This example is used in the article of Singer and 

Spilerman[
X

99
X

]. 

 ܲ ൌ 
0.15 0.35 0.50
0.37 0.45 0.18
0.20 0.60 0.20

൩. (78) 

If ः ൌ 2 the TPM, ܲ,  is embeddable if and only if ݎݐሺܲሻ  1.  There is however not a 

general set of rules if ः  2 that can be used to determine of a TPM is definitely embeddable, 

but in Section 3.1 of the article by Singer and Spilerman[
X

99
X

] some rules are provided which be 

used to determine if a TPM cannot be embedded as a transition intensity matrix.  These rules 

will not be discussed in detail here, since this falls outside the scope of this dissertation. 

As mentioned by Kalbfleisch and Lawless[
X

53
X

], embeddability does not have an influence on 

the estimation of the transition intensity matrix nor does it give an indication of the goodness-

of-fit of the estimates.  The methods provided in Chapter 3 can be used to estimate the 

transition intensity matrix from equidistant observations, with the methods depending on the 

assumptions being made on when the transitions occurred relative to the observation time.  

This will be explored in Chapter 4 where a Markov jump process will be fitted to data 

observed at equidistant time points and then the TPM will be derived from the transition 

intensity matrix and compared to the TPM estimate of the Markov chain methods from 

Section X3.2X. 

When state transitions of a Markov jump processes are not observed exactly, the likelihood 

function contains transition probabilities based on the duration between observations. See for 

example the approach by Kay and Jackson discussed in Section X3.6X.  When optimising 

likelihood functions that contain transition probabilities in terms of transition intensities like 

in Equations X(71)X, X(72) X, X(73)X and X(74)X, one can calculate the corresponding transition 
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probability for every transition rate using Equations X(24)X or X(25)X if the process is stationary.  

Tuma et al.[X

104
X

] gives the transition probabilities of a three state stationary Markov jump 

process with one absorbing state in terms of the transition rates and not in matrix notation.  

Consider for example a stationary Markov jump process with transition intensity matrix given 

by: 

 ൌ  ቈ
ଵߙ ଵଶߙ ଵଷߙ

ଶଵߙ ଶߙ ଶଷߙ
0 0 0

. 

The corresponding transition probability of a move from state ݆ to state ݇ in ݐ time units is 

then given by: 

 

ሻݐሺ ൌ
1

ଵߜ െ ଶߜ
ൣሺߙ  ଵሻ݁ఋభ௧ߜ െ ሺߙ   ଶሻ݁ఋమ௧൧ߜ

ሻݐሺ ൌ
ߙ

ଵߜ െ ଶߜ
ൣ݁ఋభ௧ െ ݁ఋమ௧൧; ݆ ് ݇ 

ሻݐଷሺ ൌ 1 
1

ଵߜ െ ଶߜ
ൣ൫ߙଷ  ଶ൯݁ఋభ௧ߜ െ ൫ߙଷ  ;ଵ൯݁ఋమ௧൧ߜ ݆ ് 3 

ሻݐଷሺ ൌ 0; ݆ ് 3 

ሻݐଷଷሺ ൌ 1 

with 

ଵߜ ൌ െ
1
2 ቂߙଵ  ଶߙ  ඥሺߙଵ െ ଶሻଶߙ   ଶଵቃߙଵଶߙ4

ଵߜ ൌ െ
1
2 ቂߙଵ  ଶߙ െ ඥሺߙଵ െ ଶሻଶߙ   .ଶଵቃߙଵଶߙ4

(79) 

It is stressed by Tuma that Equation X(79)X is only valid for a three state Markov jump process 

of which the third state is an absorbing state.  Kay[
X

56
X

] and Kalbfleisch[
X

53
X

] also used Equation 

X(79)X to write the transition probabilities of a three state system with one absorbing state in 

terms of the transition intensities.  Kay notes that obtaining transition probabilities in a format 

similar to Equation X(79)X for a process with more than three states is nontrivial and suggests 

that Equation X(25)X be used in such cases. 

When estimating the transition rates of a three state Markov jump process with one absorbing 

state using an iterative optimisation method one therefore has the option of obtaining 

transition intensities and forming a TPM in the likelihood, or using Equation X(79)X to calculate 

 
 
 



 

  CA Marais 

  23138514 

81

transition probabilities in the likelihood.  These alternatives will be explored in Section X4.5X 

and compared in terms of accuracy and computation time. 

The methods of Anderson and Goodman[
X

8
X

] use information on the number of transitions 

observed and right censoring does not influence their methods.  When including time in the 

estimators however, the treatment of right censored time in a state becomes a matter to 

question.  Albert[
X

4
X

], Tuma et al.[X

104
X

], Kay[
X

56
X

] and Jackson[
X

49
X

] includes the time spent in the last 

state in the likelihood function even if the time is censored whereas Kalbfleisch and 

Lawless[
X

53
X

] do not.  In another article of which Tuma was the lead author[
X

103
X

] it was stressed 

that the time spent in the last observed state should be included in the likelihood even if it is 

censored. 

Markov processes will be simulated in Chapter 4 for a specific set of process parameters so 

that the parameters estimates can be compared to the true data generating parameters.  The 

goodness-of-fit methods discussed in Section X3.7X will also be used to analyse the fit of the 

models and then comments will be made on the ability of the goodness-of-fit methods to 

assess the model fit. 
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Chapter 4: Implementation of methods 

4.1 Introduction 

The theory for estimating the parameters of Markov processes under various assumptions 

regarding the observations of the Markov process were described in Chapter 3.  We will now 

simulate Markov processes and implement these methods to estimate the parameters under 

various assumptions of the observation scheme.  

The parameters of processes for which the exact time of state transitions are recorded can be 

estimated with the use of the methods of Albert[
X

4
X

] and Tuma et al.[X

104
X

], which were discussed 

in Sections X3.3X and X3.4X.  These methods will be implemented first by simulating a Markov 

jump process and estimating the transition intensities based on the simulated data.  The ability 

of these methods to estimate covariate effects on transition intensities will also be 

investigated. 

The next type of observation scheme that will be considered is that of processes for which all 

observations are made at equidistant time points and this can be described by Markov chains 

due to the discretization of time.  We will simulate Markov chains and implement the 

methods of Anderson and Goodman which were discussed in Section X3.2X. 

Next we will consider an observation scheme where all processes are observed at the same 

irregular time points.  For this we will simulate Markov jump processes that are observed at 

predefined time points and use the methods of Kalbfleisch and Lawless[
X

53
X

] to estimate the 

parameters of these processes. 

The last observation scheme that will be investigated is the case where all processes are 

observed at possibly different irregular time points.  For this we will simulate Markov jump 

processes and observe each process at different randomly chosen time points and then use the 

methods of Kay[
X

53
X

] and Jackson[
X

49
X

] to estimate the process parameters. 

All estimated parameters will also be compared to that of the msm package of R.  The true 

process parameters will always be known so it is straightforward to analyse the goodness-of-

fit.  The methods discussed in Section X3.7X will also be used to analyse the goodness-of-fit and 

the ability of these methods to analyse goodness-of-fit will be discussed. 
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The methodology used to simulate Markov processes is described next. Separate strategies 

were used for simulating Markov chains and jump processes. 

4.1.1 Simulating a Markov chain 

Given the TPM of a Markov chain and the current state of the process, the state of the process 

at the next time point can be simulated as follows: 

1. If the current state of the process is state ݆, row ݆ of the TPM vector, ൫ଵ, ,ଶ … ,  ,ः൯

provides the probabilities that the process will be in each of the states at the next time 

point.  

2. Generate a random variable from a multinomial distribution with sample size one and 

probability vector ൫ଵ, ,ଶ … ,  ः൯.  The value of the random multinomial variable

indicates the state of the process at the start of the next time point with the 

understanding that the process can be in the same state as at the current time point. 

The above algorithm can be repeated for as many time points and number of samples as 

required. 

4.1.2 Simulating a stationary Markov jump process 

As shown in Equation X(26XX)X, if a stationary Markov jump process is currently in state ݅ the 

time until the state of the process changes follows an exponential distribution with rate 

parameter ߙ ൌ ∑ א୧୩୩ߙ బࣱ
୩ஷ୧

.  The probability that this will result in a jump to state ݆ ് ݅ is ఈೕ

ఈ
.  

For a stationary Markov jump process that just moved to state ݅, the time in state ݅ can 

therefore be simulated by generating a random exponentially distributed variable with rate 

parameter ߙ.  The state of the process after the transition can be simulated as a multinomially 

distributed variable with sample size one and probabilities ቄఈೕ

ఈ
; ݅ ് ݆ቅ. 

4.2 Exactly observed transitions 

We begin by describing a Markov jump process for which the transitions are observed exactly 

and implement the method suggested by Albert and discussed in Section X3.3X.  The method of 

Tuma et al.[X

104
X

] discussed in Section X3.4 X was then used to include the effect of covariates on 

transition intensities. 
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4.2.1 Exactly observed transitions based on estimator by Albert    

Example I 

A Markov jump process with three states where all patients start the process in state 1 and 

transition intensity matrix given as 

ܣ  ൌ 
െ0.35 0.15 0.2

0.2 െ0.4 0.2
0 0 0

൩ (80) 

was simulated .  It was assumed that state transitions are observed with exact precision.  This 

transition intensity matrix represents a process where states 1 and 2 communicate and 

movements from states 1 and 2 to state 3 are possible, with state 3 being an absorbing state.  

This can be thought of as being a ሼ݈݈݁ݓ, ݈݈݅, ݀݁ܽ݀ሽ disease model.   

The process was run with ݊ ൌ 1000 and ܶ ൌ 50 where ݊ refers to the number of processes 

sampled and ܶ refers to the maximum observation time for each process.  The transition 

intensity matrix was then estimated using Equations X(59XX) X and X(60 XX)X and the estimated transition 

intensity matrix is  

መܣ  ൌ  
െ0.3389036 0.1420505 0.1968531
0.1860823 െ0.3989666 0.2128843

0 0 0
൩. (81) 

It took the process on average 4.97 time units to move to the absorbing state and all the 

simulated processes were in the absorbing state at time ܶ ൌ 50.  The process was run for the 

possible combinations of ݊ ൌ 100,1000 and ܶ ൌ 5, 10 and the results of the estimator as 

described by Albert is shown in XTable 6.    It should be noted that ࣛT
ሺ୩ሻሺ݅ሻ in Equation X(59XX)X 

represents the amount of time that state ݅ was occupied during the experiment by the ݊ 

samples and it includes the observed amount of time spent in the last state even if the actual 

time in the state is censored. This was described in deriving Equation X(55XX) X. 

The crudeinits.msm function in the msm package also estimates the ሺ݅, ݆ሻth transition intensity 

by dividing the number of transitions from state ݅ to ݆ by the amount of time spent in state ݅.  

The estimates calculated from the simulated data were compared to that the of crudeinits.msm 

function and were verified as being the same.  The estimated transition intensity matrices are 
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compared with the true process parameters by calculating the sum of squared differences  

between estimated and actual parameters for all the elements of the transition intensity 

matrices.   This quantity will be denoted as “SSD” and is shown in XTable 6X. 

Scenario Parameters Estimated transition intensity matrix SSD 

1 

݊ ൌ  1000  

መܣ ൌ 
െ0.3506 0.1473 0.2043
0.1966 െ0.4103 0.2137

0 0 0
൩ 

 

0.0003220456 
ܶ ൌ  10  

2 

݊ ൌ  1000  

መܣ ൌ 
െ0.3490 0.1488 0.2003
0.1535 െ0.3608 0.2073

0 0 0
൩ 

 

0.003752216 
ܶ ൌ  5  

3 

݊ ൌ  100    

መܣ ൌ 
െ0.3761 0.1436 0.2325
0.1297 െ0.3612 0.2315

0 0 0
൩ 

 

0.00923141 
ܶ ൌ  10  

4 
݊ ൌ  100  

 

መܣ ൌ 
െ0.3424 0.1484 0.1941
0.1883 െ0.4623 0.2740

0 0 0
൩ 

 

0.00958304 
ܶ ൌ  5  

Table 6: Estimated transition intensity matrices 

XTable 6X shows that Equations X(59 XX) X and X(60 XX) X provide accurate estimates of the transition 

intensities even if the sample size and total observation time decrease to the parameters 

considered.  The reduction in total observation time from 10 to 5 time units with ݊ ൌ 1000 

produces a relatively big difference in SSD when compared to the case when ݊ ൌ 100. 

The advantage of observing transitions exactly compared to panel data that are observed at 

equidistant time points was compared by producing a transition count matrix (TCM) that 

would have been observed if the data was only observed at the end of each time period.  X.  

The estimated TPM from the panel data (ܶܲܯ௦௧) is shown in XTable 7X.  The estimated 

one step TPM for the transition intensity matrix in Equation X(81XX)X (ܶܲܯா௫௧) is calculated 

using Equation X(24XX) X and also shown in XTable 7X.  The true one step TPM based on Equation 

X(80XX)X (்ܶܲܯ௨) is also shown in XTable 7X. 
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௦௧ܯܲܶ ൌ 
0.7138 0.1043 0.1819
0.1381 0.6559 0.2032

0 0 0
൩ 

ா௫௧ܯܲܶ ൌ 
0.7143 0.1012 0.1845
0.1351 0.6733 0.1916

0 0 0
൩ 

௨்ܯܲܶ ൌ 
0.7151 0.1036 0.1813
0.1382 0.6806 0.1813

0 0 0
൩ 

 

Table 7: TPM matrices based on panel observations, exact observations and the true one step process TPM 

XTable 7X shows that the TPM estimated from exactly observed transitions are closer to the true 

one step TPM of the process when compared to what would be calculated from panel data. 

Example II 

The possible gain in accuracy of the estimated process parameters by observing transitions 

exactly compared to panel data was further investigated by considering a more complicated 

process.  Therefore a process with four transient states and one absorbing state was 

considered.  The transition intensity matrix used for this is shown in Equation X(82XX) X.  This was 

chosen such that patients have a small probability to enter state 4 and once they do they will 

move out of the state quickly.  This was chosen to assess how many transitions to state 4 

would be missed if the process is only observed at fixed time intervals.  The process was run 

with a small sample size ሺ݊ ൌ 100ሻ and with ܶ ൌ 5 to make sure some process will not be in 

the absorbing state by the time observation ends since we want to assess how well the process 

can predict state prevalence beyond observation time. 

ܣ  ൌ

ۏ
ێ
ێ
ێ
െ1.13ۍ

0.8
0.4
1.3
0

0.2
െ1.11

0.9
0.8
0

0.8
0.2

െ1.42
0.5
0

0.03
0.01
0.02

െ2.68
0

0.1
0.1
0.1

0.08
0 ے

ۑ
ۑ
ۑ
ې
  (82) 

The estimated one step TPM from observing the process only at discrete time points 

 the estimated one step TPM derived from the estimated transition intensity ,(௦௧ܯܲܶ)

matrix (ܶܲܯா௫௧) and the true step TPM (்ܶܲܯ௨) is shown in XTable 8X.  The state 

prevalence calculated from these TPMs are shown in XFigure 3X. 
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௦௧ܯܲܶ ൌ

ۏ
ێ
ێ
ێ
0.4178ۍ
0.3412

0.25
0.5
0

0.1867
0.3529
0.2778

0
0

0.2756
0.2471
0.4000

0
0

0.0133
0.0118

0
0.5
0

0.1067
0.0471
0.0833

0
1 ے

ۑ
ۑ
ۑ
ې
 

ா௫௧ܯܲܶ ൌ

ۏ
ێ
ێ
ێ
0.4485ۍ
0.3290
0.2367
0.4586

0

0.1709
0.3916
0.2604
0.1854

0

0.2865
0.1893
0.4011
0.2008

0

0.0076
0.0058
0.0074
0.1022

0

0.0865
0.0844
0.0943
0.0530

1 ے
ۑ
ۑ
ۑ
ې
 

௨்ܯܲܶ ൌ

ۏ
ێ
ێ
ێ
0.4387ۍ
0.3119
0.2467
0.3550

0

0.1921
0.4197
0.3072
0.2605

0

0.2663
0.1677
0.3448
0.2222

0

0.0078
0.0055
0.0062
0.0740

0

0.0950
0.0950
0.0951
0.0886

1 ے
ۑ
ۑ
ۑ
ې
 

Table 8: TPM matrices based on panel observations, exact observations and the true one step process TPM 

XTable 8X indicates that ܶܲܯா௫௧ is  closer to ܶܲܯ ்௨ than ܶܲܯ௦௧ with the SSD being 

0.246284 and 0.360099 respectively.  We also see that none of the transitions from state 3 to 

state 4 were observed by the panel data but it was observed in the exact transitions.  

Furthermore, only transitions from state 4 to states 1 and 4 were observed in the panel data.  

The lack of observing transitions from and to state 4 lead to wrong state prevalence in state 4 

for the panel data as seen in XFigure 3X. 
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Figure  3:  State  prevalence.  (blue  line:  based  on ࡹࡼࢀ  ,ࢋ࢚ࢋ࢘ࢉ࢙ࡰ green  line: ࡹࡼࢀ  ࢚ࢉࢇ࢞ࡱ   and  black  line: 

  ࢋ࢛࢘ࢀࡹࡼࢀ
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4.2.2 The inclusion of covariate effects based on estimator by Tuma 

The ML estimator of Tuma et al.[X

104
X

] was discussed in Section X3.4X.  This method is based on 

observations that are made exactly when transitions occur and it was shown that the 

likelihood function of Tuma et al. is the same as that of Albert[
X

4
X

].  The estimator by Tuma et 

al. does not provide a closed form expression for the transition intensity estimates like that of 

Albert, but provides for easy addition of covariates to the likelihood function.  The ML 

estimates can then be found by maximising the likelihood function using optimisation 

methods like that of the nlm function in R.   

We start by considering a process without any covariate effects and whereby state transitions 

are observed exactly.  This is similar to XExample IX and is done to assess the power of the nlm 

function to maximise the likelihood function.  A three state Markov jump process with 

transition intensity matrix as in Equation X(80XX)X was simulated with ܶ ൌ 50 and ݊ ൌ 1000.  

Then the likelihood function in Equation X(57XX)X was maximised using the nlm function in R.  

This requires the calculation of the TCM, ்ܭ
ሺሻ, and the amount of time spent in every state 

்ࣛ
ሺሻሺ݅ሻ, ݅ ൌ 1, … ः.  The likelihood function was written in R such that the elements in the 

transition intensity matrix that had to estimated were elements of a vector ࣂ ൌ ሺߣଵ, ,ଵߤ λଶ,  ଶሻߤ

so that the transition intensity matrix can be written as  

  ൌ  
െߣଵ െ ଵߤ ଵߣ ଵߤ

λଶ െλଶ െ ଶߤ ଶߤ
0 0 0

൩. (83) 

The nlm function in R is an iterative method that requires a set of initial values for the 

parameters being estimated.  The initial parameters were chosen as 

ࣂ ൌ ሺ0.2,0.15,0.15,0.25ሻ which are close to but not equal to the true process parameters, 

ࢋ࢛࢘ࢀࣂ ൌ ሺ0.15,0.2,0.2,0.2ሻ.  The parameters were estimated on the same data that was used 

to produce the estimated transition intensity matrix in Equation X(81 XX) X and produced the 

following estimate for the transition intensity matrix 

መܣ  ൌ  
െ0.3389027 0.1420500 0.1968527
0.1860818 െ0.3989656 0.2128838

0 0 0
൩ (84) 

which is the same as Equation X(81XX) X up to four decimal points.  We therefore see that using the 

nlm function in R to maximise the likelihood function in Equation X(57XX) X produces satisfactory 

results.  The effect of the starting value on the estimates was assessed by using ࣂ ൌ
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ሺ1,1,1,1ሻ as initial vector and this produced results which were equal to Equation X(84 XX)X up to 

six decimal points. 

Example III 

Next, the methodology proposed by Tuma to estimate the effect of covariates on transition 

rates was investigated.  The same transition intensity matrix as Equation X(80XX)X was used to 

simulate processes, with the exception that the probability to move from state 1 to state 2 was 

assumed to be influenced by a binary variable ݖ such that  

ଵଶߙ ൌ ݁ఉభమ,బାఉభమ,భ௭. 

For this example, the binary variable ݖ represents the gender of a patient and will therefore be 

denoted by ܵ݁ݔ from here after with ܵ݁ݔ ൌ 1 representing a female patient and ܵ݁ݔ ൌ 0 a 

male patient.  Then ݁ఉభమ,బାఉభమ,భ  would represent the transition intensity from state 1 to state 2 

of a female and ݁ఉభమ,బ that of a male patient.  The transition intensity when the covariates are 

equal to zero, i.e. ݁ఉభమ,బ in this example, will be called the baseline transition intensity.  The 

other non-zero off-diagonal transition intensities in Equation X(80 XX) X were assumed to be 

independent of gender, or any other covariate effects, and were also written in the exponent.  

The simulated transition intensity matrix can therefore be written as 

 ൌ  
െ݁12,0ߚݔ12,1ܵ݁ߚ െ 13,0ߚ݁ ݔ12,1ܵ݁ߚ12,0ߚ݁ 13,0ߚ݁

21,0ߚ݁ െ݁21,0ߚ െ 23,0ߚ݁ 23,0ߚ݁

0 0 0
 

and the objective now becomes to estimate ࣂ ൌ ൫ߚଵଶ,, ,ଵଶ,ଵߚ ,ଵଷ,ߚ ,ଶଵ,ߚ  ଶଷ,൯.  The sampleߚ

was simulated with ݊ ൌ 1000, ܶ ൌ 50 and ߚଵଶ,ଵ ൌ 0.4.  The transition intensity from state 1 

to state 2 of female patients is therefore ݁ఉభమ,భ ൌ ݁.ସ ൌ 1.491825 times, or roughly 50%, 

greater than that of males.  The gender of each patient was simulated from a Bernoulli 

variable with parameter  ൌ 0.7 so that we obtain a sample with 70% females.  The 

equivalent values of ߚଵଶ,, ,ଵଷ,ߚ ,ଶଵ,ߚ  ଶଷ, to obtain a similar transition intensity matrix as inߚ

Equation X(80XX) X were 

 
ଵଶ,ߚ ൌ ݈݊ሺ0.15ሻ ൌ െ1.89712 

ଵଷ,ߚ ൌ ଶଵ,ߚ  ൌ ଶଷ,ߚ ൌ ݈݊ሺ0.2ሻ ൌ െ1.60944  
(85) 
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so that the male patients were simulated from the same transition intensity matrix as Equation 

X(80XX)X. 

The likelihood function in Equation X(65XX)X was maximised with respect to the simulated values 

which required that a TCM for all 1000 simulated patients had to be calculated individually 

and also the state occupation times of each patient.  This can be simplified by only calculating 

the TCM of all the males and females and also the total state occupation times for the males 

and females but this was programmed in R in a more general way so that continuously valued 

covariates could be added with ease. 

The initial value for the nlm function was set to ࣂ
ᇱ ൌ ሺ݈݊ሺ0.2ሻ, 0.7, lnሺ0.15ሻ, 

݈݊ሺ0.15ሻ, ݈݊ሺ0.2ሻሻ so that the results could be compared to the example discussed above 

where the gender effect was not taken into account and the likelihood was maximised using 

the nlm function. 

The likelihood function was optimised using the nlm function in R and the estimated and true 

values of the parameters are shown in XTable 9X.  The parameters were also estimated with 

ࣂ
ᇱᇱ ൌ ሺ݈݊ሺ2ሻ, 1.5, ݈݊ሺ2ሻ, ݈݊ሺ2ሻ, ݈݊ሺ2ሻሻ as starting value and the results of this is also shown in 

XTable 9X. 

Parameter True value Estimated value with ࣂ
ᇱ  

as starting value 

Estimated value with 

ࣂ
ᇱᇱ as starting value 

 ଵଶ, െ1.89712 െ2.0051925 െ2.0051859ߚ

 ଵଷ, െ1.60944 െ1.6403000 െ1.6402966ߚ

 ଶଵ, െ1.60944 െ1.6415876 െ1.6415959ߚ

 ଶଷ, െ1.60944 െ1.6115572 െ1.6115529ߚ

 ଵଶ,ଵ 0.4 0.5337707 0.5337633ߚ

Table 9: Estimated and actual values for jump process with gender ൫ࢼ,൯ effect for different starting values 

for the nlm function 

The estimated process parameters with ࣂ
ᇱ  as starting value produces the following estimated 

transition intensity matrix for the females 
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መܣ  ൌ  
െ0.4235213 0.2295989 0.1939224
0.1936712 െ0.3932494 0.1995782

0 0 0
൩ (86) 

and the following estimated transition intensity matrix for the males 

መܣ  ൌ  
െ0.3285562 0.1346338 0.1939224
0.1936712 െ0.3932494 0.1995782

0 0 0
൩. (87) 

Equation X(87XX) X is similar to Equation X(84XX)X indicating a good fit of the transition intensity 

matrix for the males.  The estimated gender effect, ߚመଵଶ,ଵ ൌ 0.5337707, is 30% higher than 

the true gender effect ߚଵଶ,ଵ ൌ 0.4 and therefore overestimated.   

We see that the estimates resulting from ࣂ
ᇱ  and ࣂ

ᇱᇱ as initial value in the nlm function were 

similar indicating the initial values do not have a big effect.  Jackson[
X

49
X

] recommends that 

initial values of transitions intensities be set equal to the estimates of Equations X(59XX) X and X(60XX) X.  

It is therefore recommended that the parameters of the transition intensities that are not 

functions of covariates be set to the natural logarithm of the estimates from Equations X(59XX) X 

and X(60XX) X.  When providing initial estimates for the binary variable one should investigate the 

effect of various “reasonable” parameter estimates, preferably based on prior knowledge of 

the process if possible.  If we denote the initial value of the covariate effect by ߚ෨ଵଶ,ଵ, the 

proportion of females in the sample as ܵ݁ݔതതതതത, and the estimate of Equations X(59XX) X and X(60XX) X for 

the transition intensity from state 1 to state 2 with no covariate effect by ߙොଵଶ, the initial value 

for the baseline transition from state 1 to state 2 should be set equal to ݈݊ሺߙොଵଶሻ െ   .തതതതതݔ෨ଵଶ,ଵܵ݁ߚ

Various values of ߚ෨ଵଶ,ଵ were considered as initial values in the nlm function with the rest of 

the initial values calculated as described above.  It was observed that estimates similar to that 

of XTable 9X were obtained when െ15  ෨ଵଶ,ଵߚ  ෨ଵଶ,ଵߚ .30 ൌ െ15 and ߚ෨ଵଶ,ଵ ൌ 30 implies that 

the transition intensity from state 1 to state 2 of females will be respectively 3.059023 ൈ

10ି and 1.068647 ൈ 10ଵଷ times that of males.  If it is known from prior knowledge that the 

transition intensity of females cannot be less than 3.059023 ൈ 10ି or more than 

1.068647 ൈ 10ଵଷ times that of males it would make sense to use െ15  ෨ଵଶ,ଵߚ  30 when 

obtaining the ML estimates. 

The msm package can estimate covariate effects by specifying covariates in the msm 

function.  The msm package estimates the covariate effect for all transition intensities with a 
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95% confidence interval.  The following estimated covariate effects were obtained with the 

msm package: 

 
0 0.5338 ሺ0.3585; 0.7090ሻ 0.0695 ሺെ0.0905; 0.2295ሻ

െ0.2366 ሺെ0.4767; 0.0035ሻ 0 0.1083 ሺെ0.1495; 0.3661ሻ
0 0 0

൩. (88) 

We see that gender effect on the transition intensity from state 1 to state 2 estimated by the 

msm function is the same as that estimated by the nlm function.  Furthermore we see that it is 

the only element of  Equation X(88XX) X for which the 95% CI does not contain zero indicating that 

the effect is significant. 

Example IV 

Next, the addition of a continuous valued covariate was assessed by adding an age effect on 

the transition intensity from state 1 to state 2.  Age here represents the age at study initiation 

and therefore remains constant for each patient throughout the study.  One thousand Markov 

jump processes with ܶ ൌ 50 and the following transition intensity matrix were simulated, 

 ൌ  
െ݁12,0ߚݔ12,1ܵ݁ߚ݁݃ܣ12,2ߚ െ 13,0ߚ݁ ݁݃ܣ12,2ߚݔ12,1ܵ݁ߚ12,0ߚ݁ 13,0ߚ݁

21,0ߚ݁ െ݁21,0ߚ െ 23,0ߚ݁ 23,0ߚ݁

0 0 0
. 

ଵଶ,ଶߚ ଵଶ,ଶ represents the effect of age on the transition rate and was simulated withߚ ൌ 0.05.  

This means that the transition intensity from state 1 to state 2 would be ݁.ହ ൌ 1.051271 

times or roughly 5% more for every unit increase in age.  ݁݃ܣ represents a age vector and 

ݔ݁ܵ is the gender vector with ݔ݁ܵ ൌ 1 being female and ܵ݁ݔ ൌ 0 being male.  The process 

was again simulated with ߚଵଶ,ଵ ൌ 0.4.  Gender was simulated from a Bernoulli variable with 

probability parameter 0.7 and age was simulated from a ܷ݂݊݅ሺ0,100ሻ variable.  The value of 

the other parameters for the simulation were chosen as follows: 

ଵଶ,ߚ ൌ ݈݊ሺ0.15ሻ ൌ െ1.89712 

ଵଷ,ߚ ൌ ଶଵ,ߚ  ൌ ଶଷ,ߚ  ൌ ݈݊ሺ0.2ሻ ൌ െ1.60944. 

The transition intensity from state 1 to state 2 as a function of age and gender is shown in 

XFigure 4X. 
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Figure 4: Transition intensity from state 1 to state 2 as a function of age and gender 

The goal now is to find ML estimates for the vector ࣂ ൌ ൫ߚଵଶ,, ,ଵଶ,ଵߚ ,ଵଶ,ଶߚ ,ଵଷ,ߚ ,ଶଵ,ߚ   .ଶଷ,൯ߚ

The likelihood function in Equation X(65XX) X was maximised with the nlm function with ࣂ
ᇱ ൌ

ሺ݈݊ሺ0.2ሻ, 0.7,0.1, ݈݊ሺ0.15ሻ, ݈݊ሺ0.15ሻ, ݈݊ሺ0.2ሻሻ as initial value.  The estimated and true values 

of the parameters are shown in XTable 10X.  The effect of the starting value for the nlm function 

was assessed by using ࣂ
ᇱᇱ ൌ ሺ݈݊ሺ2ሻ, 1.5,1, ݈݊ሺ2ሻ, ݈݊ሺ2ሻ, ݈݊ሺ2ሻሻ and these estimates are also 

shown in XTable 10X. 
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Parameter True value Estimated value with ࣂ
ᇱ  

as starting value 

Estimated value with 

ࣂ
ᇱᇱ as starting value 

 ଵଶ, െ1.89712 െ1.8287992 െ0.2259975ߚ

 ଵଷ, െ1.60944 െ1.55452127 0.6931472ߚ

 ଶଵ, െ1.60944 െ1.5735262 0.6931472ߚ

 ଶଷ, െ1.60944 െ1.61257911 0.6931472ߚ

 ଵଶ,ଵ 0.4 0.30857580 0.5808551ߚ

 ଵଶ,ଶ 0.05 0.04998602 െ89.9771531ߚ

Table 10: Estimated and actual values for jump process with gender ൫ࢼ,൯ and age 
൫ࢼ,൯ effect with different starting values for the nlm function 

XTable 10X indicates that reasonable parameter estimates were obtained when ࣂ
′  was used as 

initial value in the nlm function.  Similarly to XExample III X, we see that the choice of initial 

value in the nlm function can have a big influence on the parameter estimates.  We have made 

suggestions in XExample IIIX for choosing initial values of the parameters corresponding to 

transition intensities that are not functions of covariates and also for effects associated with 

binary variables.  When choosing the initial value for ߚଵଶ,ଶ and ߚଵଶ,ଵ in this example an 

approach was investigated in which the estimated gender effect estimated in XExample IIIX was 

used as initial value, i.e. ߚ෨ଵଶ,ଵ ൌ 0.5337752, and various initial values for ߚଵଶ,ଶ were 

considered.  If we denote the initial estimate of the age effect by ߚ෨ଵଶ,ଶ and the mean age in the 

sample by ݁݃ܣതതതതത, the corresponding initial estimate of  

෨ଵଶ,ߚ ଵଶ, would beߚ ൌ ݈݊ሺߙොଵଶሻ െ തതതതതݔ෨ଵଶ,ଵܵ݁ߚ െ  ොଵଶ having a similarߙ തതതതത with݁݃ܣ෨ଵଶ,ଶߚ

interpretation as in XExample IIIX.  We saw that similar estimates to XTable 10X with ࣂ
′  as initial 

value were obtained when ߚ෨ଵଶ,ଶ was within the interval ሾെ0.25,0.35ሿ.  If ߚ෨ଵଶ,ଶ ൌ െ0.25 the 

transition intensity of a person of age 100 would be ݁ି.ଶହכଵ ൌ 1.388794 ൈ 10ିଵଵ times 

than that of a new born.  Similarly, if ߚ෨ଵଶ,ଶ ൌ 0.3 the transition intensity of a person of age 

100 would be ݁.ଷכଵ ൌ 1.586013 ൈ 10ଵହ times than that of a new born.  Practitioners 

should ask themselves if these estimates sound reasonable when using values ߚ෨ଵଶ,ଶ ൌ

ሺെ∞, െ0.25ሻ  ሺ0.35, ∞ሻ as initial values. 

The msm packages estimated the following effects of gender on the transition intensities 
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0 0.3084 ሺ0.1113; 0.5056ሻ െ0.05258 ሺെ0.6614; 0.5562ሻ

െ0.1206 ሺെ0.3993; 0.1582ሻ 0 0.1192 ሺെ0.1623; 0.4008ሻ
0 0 0

൩ (89) 

and the following effects of age on transition intensities, 

 
0 0.04999 ሺ0.04637; 0.05361ሻ െ0.0015 ሺെ0.0106; 0.0077ሻ

0.0024 ሺെ0.0027; 0.0075ሻ 0 െ0.0035 ሺെ0.0087; 0.0017ሻ
0 0 0

൩. (90) 

The brackets in Equation X(89XX) X and X(90 XX) X represent a 95% CI for the covariate effects.  Equation 

X(89XX)X and X(90XX) X indicates that the effects of gender and age are only significant in the transition 

intensities from state 1 to state 2.  Furthermore, we see that the covariate effects estimated by 

the msm function are similar to that in XTable 10X when ࣂ
′  was used as initial value in the nlm 

function. 

4.3 Processes that are observed at equidistant time points 

We showed in Section X3.2X that the parameters of processes that are observed at equidistant 

time points can be estimated by considering the processes to be Markov chains and then 

estimating the transition probabilities of such processes.  The methodology discussed in 

Section X4.1.1X was used to simulate Markov chains.  Equations X(39 XX) X and X(40 XX) X were then used to 

estimate the TPMs so that the ability of Equations X(39XX) X and X(40XX) X as estimators can be 

investigated to provide robust estimators.  A stationary and nonstationary Markov chain were 

considered and are discussed separately. 

4.3.1 Stationary Markov chain 

Example V 

A stationary Markov process with five states, of which the fifth state is absorbing, was 

considered for the estimation of a stationary process.  The absorbing state resembles the death 

state of a disease model and the states are ranked by severity of disease with the first state 

representing the least severe form of the disease.  The transition probabilities were chosen 

such that the probability to enter the absorbing state increases as disease severity increases to 

resemble a disease model whereby the risk of death increases as patients move to more severe 

disease states.  The probability to move back to states of less severe disease decreases as the 

disease severity increases to simulate a disease where the chances of being cured decreases as 
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the severity of disease increases.  The TPM used to simulate the process is shown in Equation 

X(91XX)X. 

 ܲ ൌ

ۏ
ێ
ێ
ێ
ۍ 0.7
0.13
0.1

0.05
0

0.1
0.2

0.05
0.05

0

0.05
0.35
0.1
0.1
0

0.05
0.2
0.5
0.4
0

0.1
0.12
0.25
0.4
1 ے

ۑ
ۑ
ۑ
ې
 (91) 

Using Equation X(9XX)X, we estimate that if the process starts in state 1 it will take 6.07 time units 

before entering the absorbing fifth state.  First, ݊ ൌ 1000 Markov chains were sampled, each 

with ܶ ൌ 50 to ensure that all chains reach the absorbing state.  All processes were started in 

state 1.  A frequency count matrix (FCM) was calculated such that the ሺ݅, ݆ሻth element of the 

FCM represents ∑ ݊ሺݐ െ 1, ሻ்ݐ
௧ୀଵ .  The msm package of R has a function statetable.msm 

which also calculates a FCM and we checked our FCM with that of the statetable.msm 

function to ensure that it was calculated correctly.  Once the FCM is constructed it is 

straightforward to implement Equation X(39XX)X to estimate the TPM.  The estimated TPM for this 

process is as follows 

 ܲ ൌ

ۏ
ێ
ێ
ێ
0.715ۍ
0.125
0.098
0.045

0

0.102
0.180
0.049
0.038

0

0.042
0.364
0.094
0.105

0

0.050
0.213
0.455
0.393

0

0.091
0.118
0.305
0.419

1 ے
ۑ
ۑ
ۑ
ې
. (92) 

If we compare Equations X(91XX)X and X(92 XX) X, it seems like the ML estimator is a robust measure for 

estimating the TPM of a stationary Markov chain.  As a measure for the goodness-of-fit of the 

estimated TPM, the observed and expected cell prevalence of each state is shown in XFigure 5X. 
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Figure 5: Observed and expected state prevalence for process with parameters in Equation X(91XX)X with 
 ൌ , ࢀ ൌ . Red dots: Observed prevalence, blue lines: Expected prevalence 

XFigure 5X indicates that the expected state prevalence provides a good fit to the observed state 

prevalence.  We also see that it was not necessary to observe the process for more than 30 

time units, since most processes reached the absorbing state by then. 

The average time for each simulation to move into the absorbing state since starting the 

process was 6.153 time units with an interquartile range of 8 െ 3 ൌ 5.  The sample mean time 

to enter the absorbing state is thus close to the 6.07 calculated for the true process parameters.  

Next, the process was simulated with ܶ ൌ 3 and ܶ ൌ 8 to assess the effect of observing a 

chain for time periods at which 25% and 75% of the chains are expected to have reached the 
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absorbing state respectively.  The number of chains simulated, ݊, was set to 1000, 500 and 

100 for these simulations so that the effect of sample size on the estimates could also be 

determined.  The estimated TPMs for these values of T are shown in XTable 11X.  The SSD’s 

for all estimated parameters are shown in XTable 12X, sorted by increasing SSD’s. 

݊ ܶ ൌ 3 ܶ ൌ 8 

1000 ܲ ൌ

ۏ
ێ
ێ
ێ
0.705ۍ
0.107
0.053
0.021

0

0.099
0.198
0.084
0.071

0

0.051
0.385
0.084
0.114

0

0.045
0.166
0.481
0.357

0

0.099
0.144
0.298
0.436

1 ے
ۑ
ۑ
ۑ
ې
  ܲ ൌ

ۏ
ێ
ێ
ێ
0.713ۍ
0.117
0.077
0.049

0

0.102
0.179
0.046
0.053

0

0.041
0.362
0.082
0.105

0

0.049
0.222
0.503
0.401

0

0.094
0.119
0.292
0.392

1 ے
ۑ
ۑ
ۑ
ې
 

500 ܲ ൌ

ۏ
ێ
ێ
ێ
0.699ۍ
0.125
0.063
0.031

0

0.108
0.205
0.127
0.092

0

0.052
0.375
0.079
0.092

0

0.040
0.116
0.460
0.308

0

0.1
0.179
0.270
0.477

1 ے
ۑ
ۑ
ۑ
ې
  ܲ ൌ

ۏ
ێ
ێ
ێ
0.712ۍ
0.110
0.080
0.037

0

0.101
0.150
0.050
0.054

0

0.041
0.405
0.070
0.097

0

0.051
0.229
0.490
0.437

0

0.094
0.106
0.310
0.374

1 ے
ۑ
ۑ
ۑ
ې
 

100 ܲ ൌ

ۏ
ێ
ێ
ێ
0.703ۍ
0.182
0.071

0
0

0.110
0.273
0.286

0.3
0

0.073
0.273
0.071

0.1
0

0.009
0.136
0.500

0.4
0

0.105
0.136
0.071

0.2
1 ے

ۑ
ۑ
ۑ
ې
 ܲ ൌ

ۏ
ێ
ێ
ێ
0.738ۍ
0.137
0.059
0.034

0

0.099
0.137
0.137
0.034

0

0.047
0.431
0.118
0.103

0

0.039
0.196
0.373
0.448

0

0.078
0.098
0.314
0.379

1 ے
ۑ
ۑ
ۑ
ې
 

Table 11: Estimated TPM of process with parameters in Equation X(91XX) 

݊ ܶ SSD 

1000 50 0.00681108 

1000 8 0.004270605 

1000 3 0.01439214 

500 8 0.01452945 

500 3 0.03762921 

100 8 0.04632581 

100 3 0.2146737 

Table 12: SSD for process with parameters shown in Equation X(91XX) 
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XTable 12X shows that for the values of ܶ and ݊ being compared, the parameters are estimated 

with more accuracy if the number of samples is increased, compared to increasing the time 

for which the process is monitored.  Table 12 shows a better fit for ݊ ൌ 1000 when ܶ ൌ 8 

compared to when ܶ ൌ 50 which is counterintuitive. Eventhough the estimates for ܶ ൌ 8 and 

ܶ ൌ 50 are relatively similar, the transition rate from state 3 to state 4 is estimated more 

accurately with ܶ ൌ 8 when compared to ܶ ൌ 50 and this difference in accruracy is big 

enough to make the SSD for ܶ ൌ 8 smaller than that of ܶ ൌ 50.  It is expected that this 

pneomenon will not always happen in practise and it is therefore still desired to have ܶ as 

large as practically possible, but we see that there may be a threshold value for ܶ after which 

an increase of ܶ beyond such a threshold will not lead to a great gain in accuracy.  The 

observed and expected state probabilities for the process simulated with ݊ ൌ 100, ܶ ൌ 3 is 

shown in XFigure 6X which indicates a good fit to prevalence in states 1,2,4 and 5 up to three 

time units. The plot is shown for ݊ ൌ 100, ܶ ൌ 3 to indicate the fit for the model with the 

greatest SSD. 
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Figure 6: Observed and expected state prevalence for process with parameters in Equation X(91XX)X with 
 ൌ , ࢀ ൌ . Red dots: Observed prevalence, blue lines: Expected prevalence 

A process with a low probability of entering one of the states was simulated to analyse the 

effect of ܶ and ݊ on the ability to provide robust estimates of the process parameters if one of 

the states has a low probability of being observed.  The following process was simulated 
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 ܲ ൌ

ۏ
ێ
ێ
ێ
ۍ 0.7

0.1
0.1

0.05
0

0.1
0.3

0.05
0.05

0

0.05
0.35
0.5
0.1
0

0.05
0.05
0.05
0.4
0

0.1
0.2
0.3
0.4
1 ے

ۑ
ۑ
ۑ
ې
. (93) 

The probability to enter state 4 is low for the process described by Equation X(93XX) X.  The 

expected time from entering into state 1 until a move into the death state is 6.03 time units as 

estimated by Equation X(9XX)X.  The estimated TPM with ܶ ൌ 50 and ݊ ൌ 1000 is shown in 

Equation X(94XX) X. 

 ܲ ൌ

ۏ
ێ
ێ
ێ
0.718ۍ
0.091
0.111
0.038

0

0.104
0.278
0.044
0.048

0

0.041
0.370
0.484
0.102

0

0.048
0.049
0.062
0.392

0

0.089
0.211
0.299
0.421

1 ے
ۑ
ۑ
ۑ
ې
. (94) 

The estimated TPM in Equation X(94XX) X provides a good fit to the TPM in Equation X(93 XX) X.  The 

influence of less observations and a smaller observation time was investigated on the TPM in 

Equation X(93XX) X.   The estimated TPM for various values of ܶ and ݊ is shown in XTable 13 X and 

the SSDs are shown in XTable 14X. 
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݊ ܶ ൌ 3 ܶ ൌ 8 

1000 ܲ ൌ

ۏ
ێ
ێ
ێ
0.711ۍ
0.114
0.105
0.020

0

0.095
0.275
0.056
0.040

0

0.053
0.358
0.457
0.140

0

0.046
0.041
0.043
0.320

0

0.095
0.212
0.340
0.48

1 ے
ۑ
ۑ
ۑ
ې
  ܲ ൌ

ۏ
ێ
ێ
ێ
0.714ۍ
0.095
0.105
0.036

0

0.100
0.282
0.042
0.065

0

0.044
0.379
0.498
0.092

0

0.049
0.054
0.059
0.376

0

0.092
0.190
0.296
0.432

1 ے
ۑ
ۑ
ۑ
ې
 

500 ܲ ൌ

ۏ
ێ
ێ
ێ
0.711ۍ
0.123
0.107
0.045

0

0.107
0.298
0.080
0.023

0

0.053
0.316
0.387
0.091

0

0.039
0.053
0.040
0.364

0

0.089
0.211
0.387
0.477

1 ے
ۑ
ۑ
ۑ
ې
  ܲ ൌ

ۏ
ێ
ێ
ێ
0.709ۍ
0.107
0.096
0.013

0

0.105
0.249
0.038
0.057

0

0.045
0.423
0.504
0.107

0

0.049
0.043
0.058
0.371

0

0.092
0.178
0.303
0.453

1 ے
ۑ
ۑ
ۑ
ې
 

100 ܲ ൌ

ۏ
ێ
ێ
ێ
0.698ۍ
0.190
0.10

0
0

0.108
0.238
0.15

0
0

0.086
0.286
0.45
0.25

0

0.014
0
0

0.75
0

0.095
0.286
0.30

0
1 ے

ۑ
ۑ
ۑ
ې
 ܲ ൌ

ۏ
ێ
ێ
ێ
0.706ۍ
0.123
0.055
0.042

0

0.121
0.211
0.068

0
0

0.049
0.456
0.438
0.083

0

0.035
0.035
0.014
0.542

0

0.089
0.175
0.425
0.333

1 ے
ۑ
ۑ
ۑ
ې
 

Table 13: Estimated TPM of process with parameters in Equation X(93XX) 

XTable 13X indicates that when 100 observations of the process with a small probability to enter 

state 4, is made, the estimated TPM suggests that it is not possible to enter state 4 from states 

2 and 3 when ܶ ൌ 3.  In this scenario it also seems like it is not possible to enter the 

absorbing state from state 4 since this was not observed.  XTable 14X indicates again that for the 

values of ܶ and ݊ considered, a smaller sample size has a greater influence on the accuracy of 

the estimators when compared to the observation time.   The observed and expected state 

prevalence for the process is shown in XFigure 7X which indicates that the estimated parameters 

provide a good approximation for the prevalence in states 1, 2, 3 and 5.  XFigure 7X fails to 

indicate the estimated parameters’ inability to describe movements to and from state 4.  This 

indicates that the observed and expected state prevalence plots as a measure of goodness-of-

fit may not be lacking when data is scarce and the probability of entering some states are 

small. 
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݊ ܶ SSD 

1000 50 0.002887786 

1000 8 0.003914031 

1000 3 0.02025226 

500 8 0.01406290 

500 3 0.03176102 

100 8 0.07185263 

100 3 0.3536935 

Table 14: SSD for process with parameters shown in Equation X(93XX) 
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Figure 7: Observed and expected state prevalence for process with parameters in Equation X(93XX)X with 
 ൌ , ࢀ ൌ . Red dots: Observed prevalence, blue lines: Expected prevalence 
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4.3.2 Nonstationary Markov chain  

Example VI 

A nonstationary five state Markov process was implemented by assuming that the survival 

time in the first state follows a Weibull(ߣ ൌ ߛ ,0.2 ൌ 2.5) distribution.  The Weibull 

distribution was used since it is often used in survival analysis and since it has a heavy tail. 

The parameters of the Weibull distribution were chosen so that the hazard function would 

increase exponentially over time to clearly show that treating this process as stationary would 

be incorrect.  The hazard function for a Weibull distribution is given by  

݄ሺݐሻ ൌ  .ఊିଵݐߛߣ 

The Weibull hazard function for the parameters ߣ ൌ ߛ ,0.2 ൌ 2.5 is plotted in XFigure 8X. 

 

Figure 8: Hazard function for Weibull distribution with ૃ ൌ . ,  ൌ .  

  We calculate the probability to stay in state 1 at every time point as follows: 
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 ଵܲ,ଵ
ሺ௧,௧ାଵሻ ൌ

ܵሺݐ  1ሻ
ܵሺݐሻ ൌ

݁ିሺఒሺ௧ାଵሻሻം

݁ିሺఒ௧ሻം ൌ
݁ିሺ.ଶሺ௧ାଵሻሻమ.ఱ

݁ିሺ.ଶ௧ሻమ.ఱ ൌ ݁ିሺ.ଶሺ௧ାଵሻሻమ.ఱାሺ.ଶ௧ሻమ.ఱ. (95) 

The form of the hazard and survival function for the Weibull distribution was taken from 

Collet[
X

18
X

]. 

The transition probabilities from state 1 to states 2, 3 and 4 were all assumed to be a third of 

0.8ሺ1 െ ଵܲ,ଵ
ሺ௧,௧ାଵሻሻ so that ଵܲ,ହ

ሺ௧,௧ାଵሻ ൌ 0.2ሺ1 െ ଵܲ,ଵ
ሺ௧,௧ାଵሻሻ.  All the transition probabilities from 

state 1 were therefore time dependent.  The rest of the TPM was assumed to be the same as 

that of Equation X(91 XX)X.  The system was simulated 1000 times with ܶ ൌ 50 and the 

nonstationary TPM was estimated using Equation X(40XX) X.  The nonstationary TPM estimator 

provides an estimated TPM for every time step.  The “list” variable type in R was used to 

estimate the TPM at every time point.  This variable type acts like a vector of which each 

element can be of a different type, including matrices. 

The observed and expected state prevalence from the estimator is shown in XFigure 9X which 

indicates that the estimated transition probabilities fit the process well. 
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Figure 9: Observed and expected state prevalence of nonstationary Markov chain estimated by Equation 
X(40XX)X. Red dots: Observed prevalence, blue lines: Expected prevalence 

The nonstationary process was also estimated by ignoring the time dependence and using 

Equation X(39 XX) X to estimate the process as if it is a stationary process.  This was done to get an 

idea of the error one can make when assuming a process is stationary when the underlying 

process is nonstationary.  The observed and expected state prevalence is shown in XFigure 10X 

which indicates that treating the data as being from a stationary process fails to reproduce the 

observed state prevalence.  We therefore see that the graphs of expected and observed state 

prevalence can be an indicator of whether a process should be treated as nonstationary or 

stationary. 
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Figure 10: Observed and expected state prevalence of nonstationary Markov chain estimated by Equation 
X(39XX)X. Red dots: Observed prevalence, blue lines: Expected prevalence 

One would expect the ability of the Equation X(39 XX) X to accurately estimate the TPM to decrease 

as the sample size decreases.  This is because the TPM is calculated at every time point and a 

small sample size was already seen in Section X4.2X as a potential problem in estimating a TPM 

when it is estimated for all time periods in a sample.  

The sample size was therefore reduced to 500 and 100 and the nonstationary TPMs were 

estimated.  The observed and expected state prevalence for these two scenarios are shown in 
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Figure 11 and Figure 12 which indicates that the nonstationary estimator of the TPM 

produces a good fit to the observed data even when the sample size is reduced.  It is still 

difficult to determine the fit of the estimates to the true data generation process and therefore 

the true state prevalence as calculated by the actual TPM was added to the plots as a green 

line.  From this we see that the estimated process parameters provide a good fit to the data 

even with a sample size of 100, with the fit of the sample with 500 processes being better as 

one would expect.  The number of time points was also reduced to assess the effect of this on 

the estimates.  The observed and expected state prevalence plots are shown in XFigure 13X and 

XFigure 14X which indicates a good fit to the observed data.  However, XFigure 13X and XFigure 14 X 

also indicate the nonstationary estimator can over fit the data since the observed and expected 

state prevalence are the same, which may mislead one to think it is a perfect fit. 
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Figure 11: Observed and expected state prevalence of nonstationary Markov chain ( ൌ  , ࢀ ൌ  ) 
estimated by Equation X(40XX)X. Red dots: Observed prevalence, blue lines: Expected prevalence, green lines: 

true prevalence 
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Figure 12: Observed and expected state prevalence of nonstationary Markov chain (n= 100, T= 50) estimated 
by Equation X(40XX)X. Red dots: Observed prevalence, blue lines: Expected prevalence, green lines: true 

prevalence 
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Figure 13: Observed and expected state prevalence of nonstationary Markov chain (n= 100, T= 8) estimated 
by Equation X(40XX)X. Red dots: Observed prevalence, blue lines: Expected prevalence, green lines: true 

prevalence 
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Figure 14: Observed and expected state prevalence of nonstationary Markov chain (n= 100, T= 3) estimated 
by Equation X(40XX)X. Red dots: Observed prevalence, blue lines: Expected prevalence, green lines: true 

prevalence 

 

4.4 Processes that are observed at the same irregular time points: The method of 

Kalbfleisch and Lawless 

The ML estimator of Kalbfleisch and Lawless[
X

53
X

] was discussed in Section X3.5X.  Kalbfleisch 

and Lawless provided a quasi-Newton algorithm which maximises the log-likelihood function 

of a Markov jump process of which all observations were made at equal irregular time points.  

Kalbfleisch and Lawless provide an example in their article of a three state Markov jump 
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process in which the smoking behaviour of children were observed at four time points.  The 

states in the process were “child has never smoked”, “child is currently a smoker”, and “the 

child has smoked but has stopped now”.  All the children in the sample started the process in 

state 1 and the process was observed times ऄଵ ൌ 0.15, ऄଶ ൌ 0.75, ऄଷ ൌ 1.1, ऄସ ൌ 1.9.  The 

TCM was provided at each of these observation times.  The algorithm of Kalbfleisch was 

programmed in R and tested with the example provided by Kalbfleisch and identical 

estimated transition intensities were obtained.   

Example VII 

We extended XExample I X by simulating a Markov jump processes with transition intensity 

matrix in Equation X(80XX) X with ݊ ൌ 1000 and observation times at ऄଵ ൌ 0.5, ऄଶ ൌ 1.2, ऄଷ ൌ

2, ऄସ ൌ 2.5, ऄହ ൌ 3.1, ऄ ൌ 4, ऄ ൌ 5.1, ऄ଼ ൌ 5.7, ऄଽ ൌ 6.9 and all processes starting in state 

1.  These observation times were chosen such that that they are not equidistant and so that 

ܶ ൌ 6.9 which is beyond the average time in takes the process to reach the absorbing state 

(4.97 time units as shown in XExample IX). 

The algorithm of Kalbfleisch considers all non-zero off-diagonal entries of the transition 

intensity matrix as entries into a vector ࣂ which has to be estimated.  For this example we will 

let ࣂ ൌ ሺߣଵ, ,ଵߤ λଶ, ଶሻ so that the transition intensity matrix is identical to Equation X(83XX)ߤ X. 

The algorithm of Kalbfleisch requires the partial derivates of  with respect to the elements 

of ࣂ which are shown below. 

߲
1ߣ߲

ൌ  
െ1 1 0
0 0 0
0 0 0

൩ 

߲
ଵߤ߲

ൌ  
െ1 0 1
0 0 0
0 0 0

൩ 

 

߲
2ߣ߲

ൌ  
0 0 0
1 െ1 0
0 0 0

൩ 

߲
ଶߤ߲

ൌ  
0 0 0
0 െ1 1
0 0 0

൩ 
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The algorithm was started with initial vector ࣂ ൌ ሺ0.2,0.15,0.15,0.25ሻ which was chosen to 

be different from but close to the true process parameters, ࢋ࢛࢘ࢀࣂ ൌ ሺ0.15,0.2,0.2,0.2ሻ, as a 

first attempt to assess the ability of the algorithm to converge to ࢋ࢛࢘ࢀࣂ.  The values of the 

next two steps in the procedure described by Equation X(69XX) X are as follows 

ࣂ ൌ ሺ0.1487,0.2018,0.2001,0.2043ሻ 

ࣂ ൌ ሺ0.1486,0.2010,0.2005,0.2031ሻ. 

We see that ࣂ is already close to ࢋ࢛࢘ࢀࣂ and that ࣂ does not differ much from ࣂ which 

shows that the algorithm is successful in estimating ࢋ࢛࢘ࢀࣂ and does so within one step. 

The effect of initial values on the algorithm was analysed by choosing ࣂ ൌ ሺ1,1,1,1ሻ.  The 

next five steps in the algorithm are shown below, 

ࣂ ൌ ሺെ1.5989, െ0.0754, െ1.3697, െ0.1521ሻ 

ࣂ ൌ ሺെ1.7886, 0.0728, െ1.4208, െ0.0072ሻ 

ࣂ ൌ ሺെ1.986, 0.2455, െ1.4801, 0.1615ሻ 

ࣂ ൌ ሺെ2.1923, 0.4395, െ1.5460, 0.3533ሻ 

ࣂ ൌ ሺെ2.4073, 0.6530, െ1.6158, 0.5631ሻ. 

We see that the ࣂ vectors do not converge when ࣂ ൌ ሺ1,1,1,1ሻ.  The tenth iteration 

produced the following parameter estimate 

ࣂ ൌ ሺെ3.9586,2.5165, െ2.2218,2.4206ሻ. 

So it seems that the process is not converging.  The eighteenth iteration produced  

ૡࣂ ൌ ሺെ400.2001,594.4464, െ194.8836,583.8143ሻ 

and the ࡹሺࣂૡሻ matrix was singular which meant that ࣂૢ could not be calculated since the 

inverse of ࡹሺࣂૡሻ needs to be calculated.  We therefore see that the initial value can 

influence the estimated process parameters when the Kalbfleisch and Lawless estimator is 

used. 

If we calculate the initial ሺ݅, ݆ሻth transition intensity by dividing the number of transitions from 

state ݅ to ݆ by the amount of time spent in state ݅ (the same as the estimator by Albert[
X

4
X

] 

discussed in Section X3.3X), we get ࣂ ൌ ሺ0.1125,0.1864,1452,0.1866ሻ with the next three 

steps being 
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ࣂ ൌ ሺ0.1471,0.2009,0.1976,0.2032ሻ 

ࣂ ൌ ሺ0.1486,0.2010,0.2005,0.2031ሻ 

ࣂ ൌ ሺ0.1486,0.2010,0.2005,0.2031ሻ. 

We see that the third and second iterations produced the same estimates indicating that the 

parameters converged quickly.  We also see that the estimated parameters are close to ࢋ࢛࢘ࢀࣂ.  

Similarly to XExample III X and XExample IVX, we see that using the estimator of Albert as initial 

values for the Kalbfleisch estimator may help when estimating the transition intensities. 

4.5 Estimator by Kay and Jackson 

Kay[
X

56
X

] considered a ML estimator of a Markov jump process where all processes are 

observed at possibly different irregular time points.  The methods by Kay was specifically 

focussed at dealing with censored transition times states.  Censored states can occur if not all 

state transitions are observed.  In the example of Klotz and Sharpless[
X

57
X

] we saw for example 

in XTable 2X, that the patient with PatID ൌ 5 was in state 1 at time ऄ and in state 3 at time ऄ଼ 

but we do not know if the patient had moved to state 2 in between times ऄ and ऄ଼, nor do we 

know the exact time at which the patient moved to state 3.  This is typical if a process is not 

observed exactly when state transitions occur.  The method of Kalbfleisch and Lawless[
X

53
X

], 

discussed in Section X3.5X   and implemented in XExample VIIX, can be used if all processes are 

observed at the same time points, even if the time points were not equidistant.  The method of 

Kay extends this by relaxing the assumption that all processes have to be observed at the 

same time point. 

Equation X(71) X shows the likelihood function for every “alive” state observed.  The estimator 

of Kay states that one expects the death of a patient to be recorded within a day and therefore 

uses Equation X(72)X as the likelihood function which incorporates all the possible states to 

which a patient could move from their last observed alive state and then dying within one day 

from that state. 

A stationary three state Markov jump process will be investigated with the effect of using a 

TPM in the likelihood function being compared with that of using Equation X(79) X in the 

likelihood to calculate transition probabilities in the likelihood function. 
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Example VIII 

A Markov jump process similar to XExample I X was simulated with the observation times being 

randomly chosen for every patient from an ܷ݂݊݅ሺ0.5,1.5ሻ distribution so that the expected 

value of the time between observations would be one time unit with a range of 0.5 to 1.5 time 

units.  One time unit is thought to represent one year in this example and so the ሺ1ሻ time unit 

in 
ሺሻ,ः

ሺ1ሻ in Equation X(72 XX)X was specified to be ଵ
ଷହ

ൌ 0.00274.  Equation X(80)X was used as 

the true transition intensity matrix in the simulation with ݊ ൌ 1000 and ܶ ൌ 50.  The nlm 

function was used to optimise the likelihood function and the initial values of the iterative 

process was set equal to the number of transitions from state ݅ to ݆ divided by the amount of 

time spent in state ݅ (the same as the ML estimator based on exactly observed state transitions 

discussed in Section X3.3X).  When using the default values for nlm function we did not estimate 

transition rates which seemed reasonable.  This problem was overcome by specifying that the 

difference in successive values of the parameter estimates do not exceed 0.1 units by 

specifying the option stepmax=0.1 in the nlm function, so as to prevent big jumps in 

successive estimates. 

The estimated parameters are provided in XTable 15X for the scenario where a TPM is used in 

the likelihood function (Scenario 1) and where Equation X(79) X is used to calculate transition 

probabilities in the likelihood (Scenario 2).  The computation time in seconds and SSD are 

also shown in XTable 15X. 

 

Scenario Estimated transition intensity matrix Computation time 

(seconds) 

SSD 

1 
መܣ ൌ  

െ0.3062 0.1107 0.1955
0.1475 െ0.3671 0.2196

0 0 0
൩ 

36.41 0.004700923

2 
መܣ ൌ  

െ0.4216 0.2065 0.2151
0.1467 െ0.3454 0.1987

0 0 0
൩ 

12.74  0.0062628 

Table 15: Estimated transition intensity matrices based on estimator by Kay with Equation X(72)X as likelihood 
function. Scenario 1 uses the TPM in the likelihood function and Scenario 2 uses Equation X(79)X in the 

likelihood function 

XTable 15X indicates that using the TPM in the likelihood function provides more accurate 

estimates of the transition intensity matrix compared to using Equation X(79)X.  Using the TPM 

 
 
 



 

  CA Marais 

  23138514 

119

in the likelihood function does however require more computation time (almost three times 

more).  We see that transition rate from state 1 to state 2 was estimated with the least 

accuracy in both scenarios. 

In the likelihood function of Jackson, the timing of patients that die are assumed to be 

recorded exactly and therefore proposes that one should use Equation X(73) X as likelihood 

function which differs from Equation X(72)X in that the transition intensity from the state before 

death is used instead of the transition probability in one day.  The influence of this was 

investigated by using the same simulated data to generate XTable 15X, but with Equation X(73)X 

being used as likelihood function instead of Equation X(72)X.  We estimated the same transition 

intensity matrices as in XTable 15X but with the computation time of optimising the likelihood 

function of Jackson being 10.71 and 12.54 seconds compared to 36.41 and 12.74 for the 

likelihood function of Kay for scenarios 1 and 2 respectively. 

We therefore see in this example that there is not a difference in the accuracy of estimated 

transition intensities when assuming the transition probability from an alive state to dead in 

one day or using the transition intensity from an alive state to death, but that there is a gain in 

computation time. 

Example IX 

The estimated transition intensity matrices in XTable 15X were based on the assumption that the 

time of death will be recorded within one day with one time unit in the simulation 

representing one year.  The effect of observing transitions to the death states within one day 

was investigated by simulating the same process as in XExample VIIIX but without transitions to 

the death state being observed within one day.  The same methodology was used for 

implementing the nlm function in R as in XExample VIIIX.  Equation X(71) X was used as the 

likelihood function so that all observations were treated as the same and the difference in 

using the TPM in the likelihood compared to using Equation X(79) X was again assessed in terms 

of accuracy and computation time.  The estimated transition intensity matrices of this 

approach is shown in XTable 16X with scenario 1 representing the approach were the TPM is 

used in the likelihood function and scenario 2 representing the case where Equation X(79) X is 

used in the likelihood function. 
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Scenario Estimated transition intensity matrix Computation time 

(seconds) 

SSD 

1 
መܣ ൌ  

െ0.3975 0.1905 0.2071
0.1523 െ0.3568 0.2045

0 0 0
൩ 

58.36  0.003983 

2 
መܣ ൌ  

െ0.2161 0.0635 0.1526
0.2054 െ0.4484 0.2431

0 0 0
൩ 

4.48  0.011615 

Table 16: Estimated transition intensity matrices based on estimator by Kay with Equation X(71)X as likelihood 
function. Scenario 1 uses the TPM in the likelihood function and Scenario 2 uses Equation X(79)X in the 

likelihood function 

We see again that using the TPM in the likelihood function provides more accurate estimates 

of the transition intensities compared to using Equation X(79)X, with the former method taking 

more than 10 times the computation time than the latter method.  When comparing XExample 

VIIIX and XExample IXX we see that observing transitions to the death state within one day does 

not provide more accurate estimates than not observing such transitions exactly.  This 

difference in accuracy is small when using the TPM in the likelihood function (Scenario 1 of 

XExample VIIIX compared with that of XExample IXX) and much bigger when using Equation X(79)X 

in the likelihood function (Scenario 2 of XExample VIIIX compared with that of XExample IXX). 

Example X 

The transition intensity matrix was estimated with the msm function in the msm package on 

the simulated data of XExample VIII X where transitions to the death state were observed exactly.  

When transitions to the death state are observed exactly, this is stated in the msm function as 

death=3 (because the death state was state 3).  The estimated transition intensity matrix is 

shown as Scenario A in XTable 17X.   

The simulated data of XExample IXX where transitions to the death state were not necessarily 

observed exactly were also used in the msm function to estimate the transition intensity 

matrix.  This is shown as Scenario B in XTable 17X.  The computation time and SSD for 

scenarios A and B described above are also shown in XTable 17 X.   
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Scenario Estimated transition intensity matrix Computation time 

(seconds) 

SSD 

A 
መܣ ൌ  

െ0.3465 0.1514 0.1951
0.1977 െ0.4151 0.2174

0 0 0
൩ 

6.28  0.000332 

B 
መܣ ൌ  

െ0.3408 0.1474 0.1934
0.1900 െ0.4126 0.2226

0 0 0
൩ 

6.44  0.000661 

Table 17: Estimated transition intensity matrices with the msm function based on observations for which the 
transition to the death state was observed exactly (Scenario A) and for data for which the transition to the 

death state was not necessarily observed exactly (Scenario B) 

XTable 17X indicates that the msm function provides more accurate estimates when transitions to 

the death state are observed exactly (Scenario A) compared to the case where such transitions 

are not observed exactly (Scenario B).  The difference in computation time is small between 

Scenarios A and B with the transition intensities of Scenario A being estimated quicker.  

When comparing XTable 17X with XTable 15X and XTable 16X we see that the msm function is more 

accurate and time efficient in estimating the process parameters compared to the likelihood 

functions we programmed in R.  Furthermore we see that the msm is more successful in using 

data in which the transitions to the death are observed exactly compared to the functions we 

programmed in R.  We suspect that the author of the msm package has invested great effort in 

methods that more successfully optimise the likelihood functions than those used by us.  

Methods for more effectively optimising the likelihood function should be an interesting area 

of investigation for future research. 

  

4.6 Discussion 

We saw that the methods of Albert[
X

4
X

] and Tuma et al.[X

104
X

] are accurate in estimating the 

transition intensities of a Markov jump process when state transitions are observed exactly 

even for a small sample.  We saw that the accuracy of the estimators increases more by 

increasing the observation time compared to increasing the sample size.  When comparing the 

methods wherein state transitions are observed exactly with that of equidistant time points we 

saw that there is not a big increase in accuracy for processes with three states where all states 

have relatively big chance of being visited.  For processes with more states of which one of 
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the states has a small probability of being occupied, much information is lost if the process 

transitions are not observed exactly. 

When including covariate effects in a model, it is always important to use several starting 

values for all parameters being estimated to get an idea of the effect of starting values on the 

estimates.  We described an approach for obtaining initial values in XExample III X and XExample 

IVX whereby several values for the initial values were used and then “reasonable” values were 

used as initial values for covariate effects.  In both these examples we saw that using zero as 

an initial value in the nlm method would provide good estimates of the true covariate effects.  

The default starting value in the msm package for starting values of covariate effects is zero 

and this may be a good value to use when estimating covariate effects.  It is still important to 

investigate the effects of other initial values on the estimates. 

For a stationary Markov chain, we see that process parameters may not be estimated 

accurately if the sample size is small and/or the probability of the process to enter a specific 

state is small. 

The nonstationary Markov chain estimator can be seen as a non-parametric type of 

distribution since no assumptions are made on the structure of the transition probabilities.  

This works well only if one is interested in interpolating state probabilities, but it is not 

possible to extrapolate state prevalence.  Prior knowledge about the shape of nonstationary 

transition probabilities may be useful if one wants to extrapolate state prevalence. 

The observed and expected state prevalence plots can be used to suggest if a nonstationary 

process should be used when a process was wrongfully treated as being stationary.  These 

plots do however not always provide a robust view of how well the true process parameters 

were estimated and can be misleading when the nonstationary TPM estimator of  Markov 

chain is implemented. 

The method of Kalbfleisch and Lawless[
X

53
X

] provided accurate estimates of the process 

parameters and converged quickly in some cases but is sensitive to the starting values in the 

algorithm.  We saw that using initial values that are similar to the method of Albert[
X

4
X

] 

produced accurate estimates of the process parameters.  The ability of the method by 

Kalbfleisch and Lawless to estimate the process parameters depends on the possibility of 

calculating eigenvalues and eigenvectors of the transition intensity matrix for the estimated 

parameters at each step of the algorithm.  This may produce problems, since the transition 
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intensity matrix in Equation X(82XX) X for example has complex eigenvalues resulting in transition 

estimates that are complex numbers. 

The methods of Kay[
X

56
X

] and Jackson[
X

49
X

] to estimate transition intensities worked well and we 

saw that it was more effective to use the TPM in the likelihood function compared to 

Equation X(79) X, but that it is computationally more intensive.  We indicated that the methods of 

Kay and Jackson to include the information of transitions to the death state being recorded 

with one day or exactly produced the same estimates for the transition intensities.  We 

obtained similar estimates for the transition intensities when compared to the msm package, 

but the msm package produced more accurate estimates, is less computationally intensive and 

uses the information of deaths being recorded exactly more effectively than our attempts.  We 

therefore encourage the use of the msm package. 

Nonstationary Markov jump processes were not estimated as this falls outside the scope of 

this dissertation and may be considered for future research.  As suggested by Kalbfleisch and 

Lawless[
X

53
X

] and Ocana-Riola[
X

81
X

], several transition intensity matrices can be considered over 

time periods for which a process is stationary.  One could also include the effect of time on 

transition rates as a covariate effect as described in Section X2.4X.  In progressive models, one 

could fit a parametric, or Cox-type survival model to the event times which can be chosen to 

be nonstationary.  Fitting nonstationary models to processes that are not progressive and for 

which the transition intensity matrices cannot be split into stationary intensity matrices may 

be troublesome.  The users of such models may want to start by trying to model the diagonal 

entries of the transition intensities as parametric hazard functions and considering the off-

diagonal entries as constant with one of the entries estimated as the difference between one 

and the sum of the other entries in a row.  This will most likely be a non-trivial process 

involving a trial and error based approach to find the best hazard function for each state.  

We describe one final example in which we simulated a five state process with covariate 

effects and where each process is observed at potentially different irregular time points.  This 

is done to summarise all the observation and process possibilities described.  The example 

will be conducted with the sole use of the msm package since we indicated that it is a very 

efficient package and we would like to assess how well it can estimate the parameters of a 

more complex situation than described in any of the examples above. 
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Example XI 

A Markov jump process with five states was simulated with observations times being 

different for all processes and randomly chosen from a ܷ݂݊݅ሺ0.5,1.5ሻ distribution.  An age 

and gender effect similar to that of XExample IVX was assumed for the transition intensity from 

state 1 to state 2.  The remaining entries in the transition intensity matrix are shown in 

Equation X(96) X.  The transition from state 1 to state 1 is calculated as one minus the sum of the 

other transition intensities in row 1 of the matrix as is therefore indicated as # in Equation 

X(96)X.  The transition from state 1 to state 2 was simulated with ߚଵଶ, ൌ 0.2, ଵଶ,ଵߚ ൌ

0.4, ଵଶ,ଶߚ ൌ 0.05 and ݊ ൌ 1000 process were simulated with ܶ ൌ 50.  The age of patients 

were simulated from a ܷ݂݊݅ሺ0,100ሻ distribution and gender was simulated from a 

 .ሺ0.7ሻ distribution with 1 representing females and 0 representing males݈݈݅ݑ݊ݎ݁ܤ

ܣ  ൌ

ۏ
ێ
ێ
ێ
ۍ #
0.8
0.4
0.2
0

݁݃ܣ12,2ߚݔ12,1ܵ݁ߚ12,0ߚ݁

െ1.2
0.9
0.4
0

0.8
0.2

െ1.6
0.3
0

0.3
0.1
0.2

െ1.7
0

0.1
0.1
0.1
0.8
1 ے

ۑ
ۑ
ۑ
ې
  (96) 

 

The process parameters were estimated with the use of the msm function and by specifying 

the covariates effects and that transitions to the death state were observed exactly.  The 

estimator of Albert[
X

4
X

] was used for initial values of the transition intensities with the initial 

values of the covariate effects set to zero.  It took 18.5 minutes to for the msm procedure to 

estimate the parameters.  The estimated transition intensity matrix is shown in Equation X(97).  

 

መܣ

ൌ

ۏ
ێ
ێ
ێ
െ0.6714ۍ

0.8746
0.1838
0.1848

0

݁.ଵହସ0.1707ܵ݁ݔ0.02388݁݃ܣ

െ1.244
0.4616
0.2471

0

0.2207
0.168

െ0.9113
0.0807

0

0.1787
0.0665
0.0813
െ1.027

0

0.1157
0.1349
0.1846
0.5145

1 ے
ۑ
ۑ
ۑ
ې
 

 

(97) 

When comparing Equations X(96)X and X(97)X we see that the transition intensities from state 1 to 

3, from state 3 to 1, from state 3 to 2, from state 4 to 2 and from state 4 to 5 were not 

estimated accurately, but the other transition intensities were estimated accurately.  We also 

see that the covariate effect of gender was underestimated and similarly for age.  We 
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therefore see that all transition intensities and the covariate effects are not always estimated 

accurately. 

The standard error of estimates generated by the msm package is derived from the hessian 

matrix of the optimisation method and this matrix needs to be positive definitive to provide 

standard errors.  For simulated data, the msm function could not provide standard errors for 

the covariate effects since the hessian matrix was not positive definite and we can therefore 

not comment on the significance of the covariate effects. 

We used the plot.prevalence.msm function in R to plot the observed and expected state 

prevalence and this is shown in XFigure 15X.  The length of stay in each state based on the 

estimated parameters in R can be calculated with the totlos function.  From the sample we 

calculated that the expected number of time units that the process is in transient states is 6.36 

time units and the estimated time in the transient states is 6.67 time units.   
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Figure 15: Observed and expected state prevalence for XExample XI 

XFigure 15X indicates that the process estimates state prevalence well and we also saw that the 

number of time units in the transient states were estimated accurately.  XFigure 15X fails to 

indicate that the transition intensities from state 1 to 3, from state 3 to 1, from state 3 to 2, 

from state 4 to 2 and from state 4 to 5 were not estimated accurately. 

We used the pearson.msm function with the boot=TRUE option to determine if the process 

provides a good fit to the data but the procedure could not calculate p-values.  We therefore 

see that it is not always possible to use the Pearson-like test discussed in Section X3.7X to assess 

goodness-of-fit. 
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4.7 Summary 

We compared various methods for estimating the parameters of Markov processes and 

indicated that the msm package of R is a useful tool in estimating process parameters.  When 

simulating a Markov jump process with five states and covariate effects and where all 

processes are observed at possibly different time points we saw that methods discussed may 

not always be able to make inference on covariate effects, but are useful in estimating state 

prevalence and the number of time units the process is in transient states.  This means that 

Markov processes should be able to provide good estimates of life expectancy and the 

number of people in each stage of a disease over time so that the morbidity and potential 

financial effects can be estimated.  The methods described also enable the use of censored 

data to estimate the parameters of Markov processes. 

Most of the methods discussed involve the estimation of the parameters of Markov jump 

processes, and Equation X(24)X can be used to calculate the appropriate TPM should one prefer 

to work with a Markov chain process. 

 
 
 



 

  CA Marais 

  23138514 

128

Chapter 5: Conclusion 

5.1 Introduction 

Markov models are being used in health economics as a tool to predict the financial and 

societal impact of diseases and the treatment thereof.  We have shown an example of how 

Markov models can be used to calculate the life expectancy and financial impact of a patient 

with a disease if such a disease is modelled as a Markov process.  The primary focus of this 

dissertation was to investigate methods to estimate the parameters of such Markov models.  

The methods were discussed with special focus on disease models, but can be generalised to 

other stochastic processes modelled as Markov processes. 

Maximum likelihood methods were discussed and implemented based on various types of 

observation schemes where the state of patients is recorded at various time points as 

longitudinal data.  Tuma et al.[X

104
X

] suggests that ML estimators are favourable to work with 

due to their good large sample properties, quantities derived from ML estimates are also ML 

estimates of the quantities and ML methods make it possible to include censored information. 

We indicated that the likelihood function depends on the timing of observations and provided 

and implemented various likelihood functions based on different observations schemes.  An 

in-depth discussion was provided for the theory behind estimating the parameters of 

processes for which the transitions between states are observed exactly (Section X3.3X) and 

when the state of all processes in a sample are observed at fixed equidistant time points 

(Section X3.2X).  These methods have closed form expressions for the ML estimators and are 

easily calculated.  The inclusion of covariate effects on transition intensities of processes 

where state transitions are observed exactly were discussed in Section X3.4X.  We also provided 

estimators for Markov processes where the state of all processes are observed at the same 

equidistant time points (Section X3.5X) and when the state of each process is observed at 

possibly different and not equally spaced time periods.  The methods of Sections X3.4X, X3.5X and 

X3.6X do not provide closed form expressions for the process parameters and must be estimated 

using iterative optimisation functions such as the nlm function in R. 

The methods were discussed under the assumption of parameters that are constant over time, 

i.e. stationary processes, with some suggestions being made on handling nonstationary 
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processes in Section X3.8X.  Methods for handling censored transition times and states were also 

discussed. 

The primary objective of this dissertation was not to give an in-depth discussion of goodness-

of-fit methods and so two goodness-of-fit methods used in the msm package were discussed 

in Section X3.7X and implemented in Chapter 4.  Tuma et al.[X

104
X

] discusses an additional 

goodness-of-fit method that was not implemented in this dissertation and could be considered 

for future research.  They also suggest that in addition to compared and expected transition 

prevalence one compare observed and expected number of movements between states and 

also the number processes that are in a specific state for different time periods 

simultaneously.  We indicated that the Pearson-like goodness-of-fit method does not always 

provide indicative results and that the observed and expected state prevalence plots can be 

used to indicate if the assumption of a stationary process is viable.  The observed and 

expected state prevalence plots do not however necessarily indicate if all the transition 

intensities are estimated accurately. 

We indicated that the msm library of R created by Jackson[
X

49
X

] provides a powerful tool that 

practitioners can use when working using Markov processes in disease modelling. 

There is a vast amount of literature available in the field of biostatistics on methods used in 

disease modelling and it was beyond the scope of this dissertation to provide a comprehensive 

discussion of all such methods.  Section X5.2X provides a discussion of some methods used in 

estimating the parameters of Markov parameters which were not discussed in the dissertation.  

In Section X5.3X we provide an short discussion on alternative methods that can be used in 

disease modelling when the Markov processes described in the first four chapters of this 

dissertation are not valid.  A thorough discussion of these methods are not provided, but the 

methods are merely mentioned to give the reader an idea of other methods that are available 

in the field of disease modelling.  

The dissertation concludes with a summary in Section X5.4X. 
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5.2 Literature not discussed 

The methods and examples discussed in this dissertation were chosen such that it is not 

restricted to progressive models.  This is because standard survival methods may be used for 

such diseases.  Consider for example a model with ሼܹ݈݈݁, ,݈݈ܫ  ሽ as state space such that ݀ܽ݁ܦ

a patient can move from the ܹ݈݈݁ state to the ݈݈ܫ state or the ݀ܽ݁ܦ state and from the ݈݈ܫ state 

to the ݀ܽ݁ܦ state but not back to the ܹ݈݈݁ state.  As discussed by Meira-Machado et al.[X

73
X

], 

Kaplan Meier and Cox type methods can be used to estimate the transition rate from the ܹ݈݈݁ 

state to the ݀ܽ݁ܦ state by considering transitions to the ݈݈ܫ state as right censored 

observations. 

A method was described for handling nonstationary processes when the processes are 

observed at equidistant time points and treated as a Markov chain process in Section X3.2X.  

Other methods were mentioned for dealing with nonstationary data when the processes are 

treated as Markov jump processes.  Hubbart et al.[X

47
X

] mentions a method by which 

nonstationary processes are written as stationary processes following a time transformation.  

This method is not discussed in detail in the dissertation and the interested reader is refered to 

the article for further details.  The incorporation of time dependent transition rates is a 

possible area for future research and has not received much attention as mentioned by 

Hubbart et al. 

Alternative statistical software for the use of multi-state processes in disease modelling has 

been developed by Meira-Machado et al.[X

73
X

] in the form of a package for R called tdc.msm[
X

66
X

].  

This package can handle semi-Markov processes, time independent and dependent covariates 

in Cox type models and nonstationary Markov processes with piecewise constant parameters.  

Other software available includes a SAS algorithm written by Hui-Min et al.[X

48
X

] and a SAS 

module created by Chang et al.[X

14
X

] which can also be used for multi-state modelling of 

Markov processes.  The algorithm of Hui-Min et al can handle stationary and nonstationary 

processes, and provide a 95% confidence interval for estimates but is not discussed in detail 

in this dissertation since it is only valid for progressive processes.  The module of Chang et 

al.[X

14
X

] can estimate covariate effects and state prevalence but cannot handle nonstationary 

data.  The module uses the Pearson-type test for goodness-of-fit and also a cross-validation 

procedure where ଶ
ଷ
 of the data is used to fit the parameters and the remaining ଵ

ଷ
 is used to test 
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the predictions.  It is not clear from the description of Chang et al. if their module can handle 

processes that are not progressive. 

A thorough investigation of the methods used in these software packages is not provided and 

is a possible topic for future research. 

It was shown in Section X4.3X that when data is scarce or some states have a relatively small 

probability of being entered ML estimators can lead to inaccurate estimates.  Furthermore, all 

the methods discussed in the first four chapters were based on longitudinal data, but this may 

not always be available.  In some cases only the number of subjects in each state is known at 

each time point, but not the specific transition path of each subject.  This type of data is called 

aggregate data, or macro data.  In another article by Kalbfleisch and Lawless[
X

53
X

] which is not 

discussed in the dissertation a least squares estimator of transition intensities for aggregate 

data is provided.   

Bayesian estimation methods also provide a possible solutions to handling aggregate data 

when prior information is available on the process parameters and this is discussed in Section 

X5.2.1X. 

5.2.1 Bayesian estimation methods 

Billard[
X

10
X

] and Meshkani[
X

75
X

] are some of the most referenced contributors for Bayesian 

methods.  Their work is however not specifically aimed at disease modelling and they 

assumed a matrix beta prior distribution which requires the assumption that none of the 

transition probabilities are zero.  This implies that the models cannot have an absorbing state 

and therefore makes it irrelevant to disease modelling since disease models mostly have a 

death state.  

Bayesian methods for aggregate data is discussed in a textbook entitled Estimating the 

Parameters of the Markov Probability Model from Aggregate Time Series Data[
X

60
X

] by Lee et 

al.  In this textbook methods are discussed for aggregate data, but similar to the work by 

Billard et al.[X

10
X

] and Meshkani et al.[X

75
X

] a matrix beta prior distribution is assumed which is not 

applicable to disease models. 

An overview of some of the Bayesian methods is provided below in the case where disease 

models are estimated without an absorbing death state.  This could be the case for example 
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where a disease for which a few possible events are possible but where the mortality rate 

following any of these events are negligible.  

Since a matrix of parameters will be estimated in the Markov chain a prior distribution of a 

matrix will be used to estimate the posterior distribution of the matrix of parameters.  One 

such prior distribution that can be used is the matrix beta distribution.  For clarity the matrix 

beta distribution will be discussed below before commencing with the discussion of Bayesian 

estimation methods. 

5.2.1.1 Matrix Beta distribution 

The random row vector,  of dimension ݎ, is said to have a multivariate beta distribution 

with parameters ሺܽଵ, ܽଶ, … , ܽሻ, if the probability distribution function of  is given by 

݂ሺଵ, ,ଶ … , ሻ ൌ Γ൫∑ ೖ
ೝ
ೖసభ ൯

∏ Γሺೖሻೝ
ೖసభ

∏ 
ೖିଵ

ୀଵ  where Γሺݎሻ ൌ ሺݎ െ 1ሻ. 

Now, if ݈ independent row vectors, each of dimension ݎ and with a multivariate beta 

distributions, are stacked underneath each other in a ݈ ൈ  has a ࡼ we say the matrix ࡼ matrix ݎ

matrix beta distribution with parameters ܣ ൌ ൣܽ൧.  The pdf of ࡼ is found by multiplying the 

pdf’s of the ݈ independent row vectors to obtain 

݂ࡼ 
ሺ,ሻ ൌ ෑ ෑ

Γሺ∑ ܽ

ୀଵ ሻ

∏ Γሺܽሻ
ୀଵ


ೖିଵ.



ୀଵ



ୀଵ

 (98) 

The expected value of a matrix is equal to the expected value of its elements.  Therefore the 

expected value of ࡼ is given in terms of its elements.  The variance of the elements is also 

provided. 

൯൫ܧ  ൌ
ܽ

∑ ܽ

ୀଵ

 (99) 

൯൫ݎܸܽ  ൌ
൯ൣ1൫ܧ െ ൯൧൫ܧ

∑ ܽ

ୀଵ  1

 (100) 

5.2.1.2  
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5.2.1.3 TPM with matrix beta prior 

Let’s assume that the ः ൈ ः TPM of a Markov chain, ࡼ, has a prior matrix beta distribution 

with parameters  ൌ ൣܽ൧.  We know that the likelihood function of ݊ observations (in terms 

of the transition count matrix ࡲ) is given by  

ܮ  ൌ ෑ ෑ 
ೕ

ः

ୀଵ

ः

ୀଵ

. (101) 

Now taking the product of Equations X(98)X and X(101) X and using only the terms involving  

the posterior distribution of ࡼ is proportional to 

݀ሺ|ࡼ, ሻࡲ ן ෑ ෑ 
ೕାೕିଵ

ः

ୀଵ

.
ः

ୀଵ

 

Therefore we have that the posterior distribution of ࡼ is matrix beta with parameter 

ᇱ ൌ ሺࡲ   .ሻ

Under squared error loss the estimate of ࡼ is given by the expected value of the posterior 

distribution.  The expected value of a matrix beta distribution is given in Equation X(99)X.  

Therefore the Bayesian estimator of the TPM is given by 

̂  ൌ ݂  ܽ

∑ ൫ ݂  ܽ൯
ୀଵ

. (102) 

 

5.2.1.4 Implementing the Bayesian estimator 

Equation X(102) X provides the Bayesian estimator which can be implemented if the FCM, ࡲ,  

and the matrix of posterior parameters  are known.  The FCM can be calculated from the 

observed data, but the value of  may be unknown.  Billard et al.[X

10
X

] provided a ML estimator 

for  when ݊ FCM’s have been observed in the past and a new FCM becomes available.  The 

information from the old data (expressed as ሺܨଵ, ,ଶܨ … ,  and the  ሻ is then used to estimateܨ

new FCM matrix is used as ࡲ ؠ    .ା in Equation X(102)Xࡲ
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Applying this to disease modelling could however be troublesome.  There are two 

possibilities for accessing past data.  The most obvious is that the FCM of ݊ previously 

Markov chains for patients with similar characteristics is available.  This will typically not be 

the case in clinical data due to the high costs of performing clinical trails, which results in 

predominantly new clinical trials being done everytime.  Therefore if a new group of patients 

are being observed in a clinical trial, the TPM estimated for them will be unique and most 

often previous data will not be available.   

The other possibility for past data is to consider the FCM for each patient (or randomly 

chosen groups of patients) separately and apply the techniques of Billard et al.  This will be 

discussed next since the possibility follows directly from application of the methods in 

Billard.  

Assume that ݊ independent Markov chains with the same TPM are observed which 

corresponds to the health progression of ݊ comparable patients up to time ܶ.  Now randomly 

divide the data into ݇  1  ݊ subsets of patients.  The ݇  1 subsets are used to be 

consistent with the notation provided by Billard et al.  For each subset, calculate the FCM so 

that the following matrices are available: ሺܨଵ, ,ଶܨ … , ,ܨ  ାଵሻ and then calculate the TPMܨ

matrix based on the methods of Billard et al with the ሺ݊  1ሻth sample corresponding to the 

ሺ݇  1ሻth subset of patients from the clinical trial.  Repeat this procedure multiple times so 

that a bootstrap sample of TPM’s is created.  The average of bootstrap sample can then be 

used as an estimate of the TPM. 

5.3 Alternative methods used in disease modelling 

Markov processes are not always appropriate to model the disease progression of patients nor 

to answer all the questions a researcher may want to investigate in terms of disease 

modelling.  It is therefore important to be aware of situations where Markov processes, as 

discussed in this dissertation, should be avoided.   

The Markov property may not always be valid when transition probabilities depend on the 

history of patients.  Meira-Machado et al.[X

73
X

] mentions that there is not much literature 

available on the estimation of transition rates of non-Markov models but provides an 

overview of the literature that is available.  They also mention that the Markov assumption 

can be validated by including a covariate representing the history of a patient and testing if 
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this variable is significant.  This can be done by using a binary variable to indicate if a patient 

was in a certain state previously.  Processes for which the Markov assumption does not hold 

can be modelled by introducing more states which represent the history of patients.  Consider 

for example a process with three states ܹ݈݈݁,  where patients can move back to ݀ܽ݁ܦ and ,݈݈ܫ

the ܹ݈݈݁ state after being in the ݈݈ܫ state.  We expect the probability of moving to the ݀ܽ݁ܦ 

state from the ݈݈ܫ state to be greater than that of from the ܹ݈݈݁ state.  If however the 

probability of moving to the dead state is increased after being in the ݈݈ܫ state but less than in 

the ݈݈ܫ state a ܹ݈݈݁ ݂݈݈ܽܫ ݎ݁ݐ state can be added to the model.  The ݈݈ܫ state is then called a 

tunnel state. 

We discuss two other situations in more detail below where the Markov processes described 

in this dissertation are not valid and for which the possible solution is more complicated than 

that described in the paragraph above. 

5.3.1 Hidden Markov models 

Hidden Markov models can be used when the true state of a process is not observed directly 

but another variables are observed which provides information on the true state of the 

process.  This includes the case where the state of the system is observed with some error 

caused for example by misclassification of a measurement procedure[
X

12
X

].  Consider for 

example a sequence of measurements, ሼ ऄܻሽ, which are related to the state of a Markov process 

ሼܺऄሽ through the function ܲሾܻ|ܺሿ.  ሼܺऄሽ is therefore the hidden Markov process.  Given the 

state of the hidden process at time ऄ, it is assumed an observation ऄܻ is independent of the 

state of the hidden process prior to ऄ.  We therefore have 

ܲሾ ऄܻ|ܺऄ, ܺऄିଵ, … , ܺሿ ൌ ܲሾ ऄܻ|ܺऄሿ ൌ ݂ሺݔ|ݕሻ. 

The goal is now to find the parameters of the hidden process that will maximise likelihood of 

observing an outcome  ܻ ൌ ሼ ܻ, ଵܻ, … , ்ܻ ሽ, i.e. 

ܲሾܻሿ ൌ  ܲሾܻ|ܺሿܲሾܺሿ
ࣱ0

 

where ࣱ represents the state space of ሼܺऄሽ.  Bureau et al.[X

12
X

] provides a more thorough 

discussion of Hidden Markov processes and the estimation of the parameters of the process 

with the inclusion of covariate effects. 
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The msm package has the ability to estimate the parameters of hidden Markov models and has 

been used by, amongst others, Mekonnen et al.[X

73
X

].  Mekonnen et al. investigate the effect of 

lower CD4 counts on the life expectancy in a population of Ethiopian factory workers and 

used a hidden Markov model to account for the misspecification of CD4 counts. 

Hidden Markov models are also used frequently in speech and optical recognition as 

indicated in the literature review in Section X1.3X. 

5.3.2 Dynamical systems models 

The methods discussed in the first four chapters of this dissertation concern what is also 

known as cohort model.  Such models consider a fixed amount of patients and model these 

patients over a period of time, typically until they are dead.  The interaction between patients 

is ignored and the possible increase or decrease in the incidence of a disease is ignored.  For 

infectious diseases the interaction between patients does however make a difference and the 

incidence of infectious disease can be seasonal.  Consider for example influenza which 

typically occur between autumn and spring resulting in fluctuating incidence rates.  One 

could use a cohort model to estimate the effect of some medical intervention, like 

vaccination, that reduces the severity of influenza on the life of patients that get the disease.  

Such a cohort model will however fail in including the possible effect of a reduced spread of 

the disease cause by vaccinated patients being less infective.  Disease models which include 

patients interaction and where there is a constant in and outflow of patients are called 

dynamic models.  Examples of such models are SIR type models which consider each patient 

to be susceptible, infectious or resistant; thus the name SIR models.  These models are also a 

type of compartmental model, but allows for more flexibility in stating the rate at which 

patients move between states and does not necessarily satisfy the Markov assumption.  SIR 

models are typically modelled as a system of partial differential equations of which the steady 

state distribution of the number of patients in each of the three compartments in the model is 

of interest.  These models are also used to calculate what is called the basic reproduction 

number, written ܴ, which represents the expected number of secondary people infected with 

a disease when one infective person is introduced into a population where everyone is 

susceptible.  The disease is said to be endemic if ܴ  1. 

Hethcote[
X

45
X

] provides an overview of some of the methods involved in the modelling of 

infectious diseases.  The “classic endemic model” discussed by Hethcote will be overviewed 
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briefly to give an example of a SIR model and the interested reader is referred to the article 

by Hethcote for more details.  We will consider a system where people can enter the 

susceptible state by being born, exit the susceptible state by moving to the infectious state or 

by dying.  People therefore enter the infectious state by becoming infective from the 

susceptible state and can move to the resistant state when their infectious period ends or they 

exit the system when they die.  Patients enter the resistant state from the infectious state when 

their infectious period ends and they stay in this state until they die.  The rate of births is 

denoted by ߤ and the mortality rate is assumed to be equal to the birth rate so that the number 

of people in the population stay constant.  The mortality rate is therefore also ߤ.  The rate at 

which people move from the susceptible state to the infectious state is dependent on the 

contact rate between infectious and susceptible.  The contact rate of people is denoted by ߚ 

and it is assumed that one contact between an infectious and susceptible person causes the 

susceptible person to become infectious.  The parameter ߚ can be rescaled if the probability 

that such a contact does causes a susceptible person to become infectious is less than one.  

The duration of infectiousness is denoted by 
ଵ
ఊ

 so that people move from the infectious state 

to the resistant state at a rate ߛ.  The system of differential equations is shown in Equation 

X(103)X. 

 

݀ܵ
ݐ݀ ൌ ܰߤ െ ܫߚ

ܵ
ܰ െ  ܵߤ

ܫ݀
ݐ݀ ൌ ܫߚ

ܵ
ܰ െ ܫߛ െ  ܵߤ

ܴ݀
ݐ݀ ൌ ܫߛ െ  ܴߤ

ܵሺ0ሻ ൌ ܵ  0 

ሺ0ሻܫ ൌ ܫ  0 

ܴሺ0ሻ ൌ ܴ  0 

ܰሺݐሻ ൌ ܵሺݐሻ  ሻݐሺܫ  ܴሺݐሻ 

(103) 

 

 

The aim is now to find the solutions to the system in Equation X(103)X, i.e. ܵሺݐሻ, ,ሻݐሺܫ ܴሺݐሻ.  The 

system can be simplified by considering the proportion of people that are susceptible, 

infectious and resistant, ݏሺݐሻ ൌ ௌሺ௧ሻ
ே

, ݅ሺݐሻ ൌ ூሺ௧ሻ
ே

, ሻݐሺݎ ൌ ோሺ௧ሻ
ே

 and then only solving for two of 
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these quantities in a new systems of differential equations since ݏሺݐሻ  ݅ሺݐሻ  ሻݐሺݎ ൌ 1.   

Hethcote indicates that the basic reproduction for the system in Equation X(103) X becomes 

ܴ ൌ
ߚ

ߛ   .ߤ

5.4 Summary 

We have discussed methods that can be used in disease modelling based on assumptions 

regarding the data and for diseases where patient interaction does not influence the effect of 

the disease and treatment thereof on society.  These methods can be used when one is 

interested in estimating the morbidity, mortality and financial effect of diseases and different 

treatment options. 

The methods are discussed based on longitudinal data where patients are followed for a 

period of time and where the state of each patient is known at certain time points.  

Furthermore we assume the state of each patient is known with complete certainty at each 

observation.  The methods were discussed under the assumption of stationary Markov 

processes with suggestions being made on the treatment of nonstationary processes. 

The methods were discussed and implemented for various observation schemes and it was 

indicated that Markov process can provide good estimates of the percentage of patients 

expected in each of the disease states.  This information can be used if the cost and quality of 

life of being in such a state is known to estimate the total cost of patients, the quality of life of 

patients and the life expectancy of patients.  The methods discussed can estimate the effect of 

covariates on process parameters, but we indicated that such estimates are not always 

estimated accurately unless state transitions are observed exactly. 

Suggestions were made for the treatment of aggregate data, diseases where the state of 

patients are not known with complete certainty at every observation and diseases where 

patient interaction plays a role. 
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Appendix 

1. Maximum likelihood estimation of a multinomial distribution 

The proof of the ML estimator for a multinomial distribution is based on the proof found on 

page 21 of the textbook Categorical Data Analysis by Argest A. 

Consider a multinomial experiment of n trials, each of which has ः possible outcomes with 

probabilities ଵ, ,ଶ … ,  .ः

If ݊ observations from a multinomial experiment is available such that ݔ is the number of 

times that the ݅th possible outcome realised, the likelihood function of this process is 

ሻݔ|ሺܮ  ൌ
݊!

,!ଵݔ ,!ଶݔ … , !ःݔ ଵ
௫భଶ

௫మ … ௌିଵ
௫ःషభሺ1 െ  ሻ

ःିଵ

ୀଵ

ି∑ ௫
ःషభ
సభ

. (104) 

Taking the natural log of Equation X(104 XX) X and omitting the terms without probabilities we get 

 ࣦሺݔ|ሻ ൌ ଵݔ ݈݊ሺଵሻ  ڮ  ःିଵݔ ݈݊ሺःିଵሻ  ൭݊ െ  ݔ

ःିଵ

ୀଵ

൱ ݈݊ ሺ1 െ  

ःିଵ

ୀଵ

ሻ. (105) 

Now, to find the ML estimate of , we differentiate Equation X(105XX) X with respect to  and set 

equal to 0 to obtain 

ࣦ݀ሺݔ|ሻ
݀

ൌ
ݔ

ఫෝ െ
ሺ݊ െ ∑ ݔ

ःିଵ
ୀଵ ሻ

1 െ ∑ పෝःିଵ
ୀଵ

ൌ 0 

֜ ݔ ൭1 െ  పෝ
ःିଵ

ୀଵ

൱ ൌ ൭݊ െ  ݔ

ःିଵ

ୀଵ

൱ ఫෝ  

 ֜ ःෞሻሺݔ ൌ ሺݔःሻఫෝ . (106) 

Now sum both sides of the equality over all values of ݆ and remembering that ∑ ఫෝ ൌ 1ः
ୀଵ , 

we get 

 ௌෞሻሺݔ
ः

ୀଵ

ൌ ሺݔௌሻఫෝ
ः

ୀଵ
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ฺ ݊ሺःෞሻ ൌ  ःݔ

 ฺ ःෞ ൌ
ःݔ

݊ . (107) 

 

Substituting Equation X(107 XX) X into Equation X(106XX) X we get 

֜ ݔ
ःݔ

݊ ൌ ሺݔःሻఫෝ  

ฺ ఫෝ ൌ
ݔ

݊ . 

This concludes the proof. 
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2. R code 

rm(list=ls(all=TRUE)) 
mPower <‐ function(x, n) { 
  power <‐ x 
  if (n > 1) { 
    for (i in 2:n) { 
      power <‐ power%*%x 
    } 
  }   
  return(power)   
} 
 
pMatrix <‐ function(Q,nlim=30,t) { 
  P <‐ matrix(0,nrow=nrow(Q),ncol=ncol(Q)) 
  diag(P) <‐ 1 
  for (n in 1:nlim) { 
    sum <‐ mPower(Q,n)*(t^n)/factorial(n) 
    P <‐ P + sum 
  } 
  return(P) 
} 
 
QTime <‐ rbind(c(‐3.6,0.8,1.3,0.4,0.9,0.2),c(1.2,‐3.2,0.3,0.2,1.4,0.1),c(0.3,1.4,‐3.1,0.7,0.5,0.2),c(0.3,0.5,1.2,‐
3.5,0.4,1.1),c(0.1,1.2,0.7,0.5,‐2.9,0.4),c(0,0,0,0,0,0)) 
apply(QTime,1,sum) 
 
tpm <‐ proc.time() 
pMatrix(QTime,nlim=10,t=1) 
proc.time() ‐ tpm 
 
tpm <‐ proc.time() 
pMatrix(QTime,nlim=20,t=1) 
proc.time() ‐ tpm 
 
tpm <‐ proc.time() 
pMatrix(QTime,nlim=30,t=1) 
proc.time() ‐ tpm 
 
tpm <‐ proc.time() 
pMatrix(QTime,nlim=40,t=1) 
proc.time() ‐ tpm 
 
tpm <‐ proc.time() 
eigen(QTime)$vector%*%diag(exp(eigen(QTime)$value*1))%*%solve(eigen(QTime)$vector) 
proc.time() ‐ tpm 
 
rm(QTime) 
rm(tpm) 
 
#####Simulate Markov chain####### 
 
RecordLongData <‐ function(TPM,AbState,InitialState,k,T,TimeSteps=1,saad) { 
  States <‐ 1:ncol(TPM) 
  set.seed(saad) 
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  nStates <‐ ncol(TPM) 
  Obs <‐ c(1,InitialState,0); #Obs: PatID|State|Time at which Pat go in 
 
  for (PatID in 1:k) { 
    if (PatID > 1) Obs <‐ rbind(Obs,c(PatID,InitialState,0)) 
    CurrentState <‐ InitialState 
    for (time in seq(0+TimeSteps,T,TimeSteps)) { 
      if (CurrentState != AbState) { 
        Probs <‐ TPM[CurrentState ,] 
        Pos <‐ rmultinom(1,1,Probs) 
        NewState <‐ States[Pos==1] 
        Obs = rbind(Obs,c(PatID,NewState,time)) 
      CurrentState <‐ NewState 
      } 
    } 
  } 

return(Obs) 
} 
 
######Function for nonstationary chain###### 
 
RecordLongDataNonStat <‐ function(TPM,AbState,InitialState,k,T,TimeSteps=1,saad) { 
  set.seed(saad) 
  nStates <‐ ncol(TPM) 
  States <‐ 1:nStates 
  Obs <‐ c(1,InitialState,0); #Obs: PatID|State|Time at which Pat go in 
  for (PatID in 1:k) { 
    if (PatID > 1) Obs <‐ rbind(Obs,c(PatID,InitialState,0)) 
    CurrentState <‐ InitialState 
    for (time in seq(TimeSteps,T,TimeSteps)) { 
        TPM[1,1] <‐ exp(‐( (0.2*time)^2.5+(0.2*(time‐TimeSteps))^2.5 )) 
        Rem <‐ 1‐TPM[1,1] 
        TPM[1,2:(AbState‐1)] <‐ rep(Rem*0.8/(nStates‐2),nStates‐2) 
        TPM[1,AbState] <‐ 1‐sum(TPM[1,‐AbState]) 
        if (CurrentState != AbState) { 
          Probs <‐ TPM[CurrentState ,] 
          Pos <‐ rmultinom(1,1,Probs) 
          NewState <‐ States[Pos==1]         
          Obs = rbind(Obs,c(PatID,NewState,time)) 
          CurrentState <‐ NewState 
        } 
    } 
  } 
  return(Obs) 
} 
 
############Jump process###############" 
 
RecordJumpProcess <‐ function(Q,k,InState,AbState,T,saad) { 
  States <‐ 1:ncol(Q) 
  set.seed(saad) 
  for (Pat in 1:k) { 
    CurrentState <‐ InState 
    CumTime <‐ 0 
    PatData <‐ c(Pat,CurrentState,0) 
    sentOuter <‐ 1 
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    while(sentOuter == 1) { 
      timeJump <‐ rexp(1,rate=‐Q[CurrentState,CurrentState]) 
      CumTime <‐ CumTime + timeJump 
      if (CumTime < T) { 
        NewStateProbs <‐ Q[CurrentState,]/(‐Q[CurrentState,CurrentState]) 
        NewStateProbs[CurrentState] <‐ 0 
        Pos <‐ rmultinom(1,1,NewStateProbs) 
        NewState <‐ States[Pos==1] 
        PatData <‐ rbind(PatData,c(Pat,NewState,CumTime)) 
        CurrentState <‐ NewState 
        if (CurrentState == AbState) sentOuter <‐ 0 
      } 
      if (CumTime >= T) { 
        PatData <‐ rbind(PatData,c(Pat,CurrentState,T)) 
        sentOuter <‐ 0 
      } 
    } 
    if (Pat == 1) Obs <‐ PatData 
    else Obs <‐ rbind(Obs,PatData) 
  } 
  return(Obs) 
} 
 
#####Include effect of gender on transition rate##### 
 
RecordJumpProcessGenderEffect <‐ function(Q,GenderVector,GenderEffect,k,InState,AbState,T,saad) { 
  States <‐ 1:ncol(Q) 
  B012 <‐ log(Q[1,2]) 
  set.seed(saad) 
  for (Pat in 1:k) { 
    Q[1,2] <‐ exp(B012+GenderEffect*GenderVector[Pat]) 
    Q[1,1] <‐ ‐sum(Q[1,‐1]) 
    CurrentState <‐ InState 
    CumTime <‐ 0 
    PatData <‐ c(Pat,CurrentState,0) 
    sentOuter <‐ 1 
    while(sentOuter == 1) { 
      timeJump <‐ rexp(1,rate=‐Q[CurrentState,CurrentState]) 
      CumTime <‐ CumTime + timeJump     
      if (CumTime < T) { 
        NewStateProbs <‐ Q[CurrentState,]/(‐Q[CurrentState,CurrentState]) 
        NewStateProbs[CurrentState] <‐ 0 
        Pos <‐ rmultinom(1,1,NewStateProbs) 
        NewState <‐ States[Pos==1] 
        PatData <‐ rbind(PatData,c(Pat,NewState,CumTime)) 
        CurrentState <‐ NewState 
        if (CurrentState == AbState) sentOuter <‐ 0 
      } 
      if (CumTime >= T) { 
        PatData <‐ rbind(PatData,c(Pat,CurrentState,T)) 
        sentOuter <‐ 0 
      } 
    } 
    if (Pat == 1) Obs <‐ PatData 
    else Obs <‐ rbind(Obs,PatData) 
  } 
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  return(Obs) 
} 
 
#####Include effect of age and gender  on transition rate##### 
 
RecordJumpProcessGenderAgeEffect <‐ 
function(Q,GenderVector,GenderEffect,AgeVector,AgeEffect,k,InState,AbState,T,saad) { 
  States <‐ 1:nStates 
  B012 <‐ log(Q[1,2]) 
  set.seed(saad) 
  for (Pat in 1:k) { 
    Q[1,2] <‐ exp(B012+GenderEffect*GenderVector[Pat]+AgeEffect*AgeVector[Pat]) 
    Q[1,1] <‐ ‐sum(Q[1,‐1]) 
    CurrentState <‐ InState 
    CumTime <‐ 0 
    PatData <‐ c(Pat,CurrentState,0) 
    sentOuter <‐ 1 
    while(sentOuter == 1) { 
      timeJump <‐ rexp(1,rate=‐Q[CurrentState,CurrentState]) 
      CumTime <‐ CumTime + timeJump 
      if (CumTime < T) { 
        NewStateProbs <‐ Q[CurrentState,]/(‐Q[CurrentState,CurrentState]) 
        NewStateProbs[CurrentState] <‐ 0 
        Pos <‐ rmultinom(1,1,NewStateProbs) 
        NewState <‐ States[Pos==1] 
        PatData <‐ rbind(PatData,c(Pat,NewState,CumTime)) 
        CurrentState <‐ NewState 
        if (CurrentState == AbState) sentOuter <‐ 0 
      } 
      if (CumTime >= T) { 
        PatData <‐ rbind(PatData,c(Pat,CurrentState,T)) 
        sentOuter <‐ 0 
      } 
    } 
    if (Pat == 1) Obs <‐ PatData 
    else Obs <‐ rbind(Obs,PatData) 
  } 
  return(Obs) 
} 
 
#####################"Stationary Markov jump procees####################### 
 
###Examples 1 and 2 
 
QSim <‐ rbind(c(‐0.35,0.15,0.2),c(0.2,‐0.4,0.2),c(0,0,0)); #Example 1 
QSim <‐ rbind(c(‐1.13,0.2,0.8,0.03,0.1),c(0.8,‐1.11,0.2,0.01,0.1),c(0.4,0.9,‐1.42,0.02,0.1),c(1.3,0.8,0.5,‐
2.68,0.08),c(0,0,0,0,0)); #Example 2 
 
DeathState <‐ ncol(QSim) 
nStates <‐ ncol(QSim) 
NumPatients <‐ 100 
MaxTime <‐ 5 
InState=1 
 
TPM <‐ pMatrix(Q,nlim=30,t=1/999999999999) 
eye <‐ matrix(0,nrow=2,ncol=2) 

 
 
 



 

  CA Marais 

  23138514 

145

diag(eye) <‐ 1 
sum(solve(eye‐TPM[1:2,1:2])[1,])/999999999999 
 
JumpData <‐ 
RecordJumpProcess(Q=QSim,k=NumPatients,InState=1,AbState=DeathState,T=MaxTime,saad=1010) 
table(JumpData[,2]) 
 
NSample <‐ matrix(ncol=ncol(QSim),nrow=nrow(QSim),0) 
ASample <‐ rep(0,nStates) 
 
for (rcount in 2:nrow(JumpData) ) { 
  if ( JumpData[rcount,1] == JumpData[rcount‐1,1] )  { 
    NSample[JumpData[rcount‐1,2],JumpData[rcount,2]] <‐ NSample[JumpData[rcount‐
1,2],JumpData[rcount,2]] + 1 
    ASample[JumpData[rcount‐1,2]] <‐ ASample[JumpData[rcount‐1,2]] + (JumpData[rcount,3]‐
JumpData[rcount‐1,3])   
  } 
  if ( JumpData[rcount,1] == (JumpData[rcount‐1,1] + 1) )  { 
    ASample[JumpData[rcount‐1,2]] <‐ ASample[JumpData[rcount‐1,2]] + (MaxTime‐
JumpData[rcount‐1,3]) 
  } 
} 
ASample[DeathState] <‐ ASample[DeathState] + (MaxTime ‐ JumpData[nrow(JumpData),3]) 
sum(ASample) 
 
sum(ASample[‐ncol(QSim)])/NumPatients 
 
QHat <‐ matrix(ncol=ncol(QSim),nrow=ncol(QSim)) 
 
for (i in 1:ncol(NSample)) { 
  for (j in 1:ncol(NSample)) { 
    if (i != j) QHat[i,j] <‐ NSample[i,j]/ASample[i] 
  } 
  QHat[i,i] <‐ ‐apply(QHat,1,sum,na.rm=TRUE)[i] 
} 
QSim 
QHat 
 
sum((QHat ‐ QSim)^2) 
 
#Estimates from msm 
library(msm) 
 
ObsDF <‐ data.frame(JumpData) 
names(ObsDF) <‐ c("PatID","State","Time") 
#statetable.msm(State,PatID,data=ObsDF) 
FirstQ <‐ rbind(c(‐1.4,0.2,0.8),c(0.8,‐1.2,0.2),c(0,0,0)) 
#FirstQ <‐ rbind(c(‐1.4,0.2,0.8,0.3,0.1),c(0.8,‐1.2,0.2,0.1,0.1),c(0.4,0.9,‐1.6,0.2,0.1),c(0.2,0.4,0.3,‐
1.7,0.8),c(0,0,0,0,0)) 
 
Qmsm <‐ crudeinits.msm(State~Time,PatID,data=ObsDF,qmatrix=FirstQ ) 
Q.msm <‐ msm(State~Time,PatID,data=ObsDF,qmatrix=FirstQ,exacttimes=TRUE ) 
 
totlos.msm(Q.msm) 
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#What if we observed the data only every time point and treated it as discrete data? 
 
#Extract discrete time point observations 
 
for (Pat in 1:NumPatients) { 
  PatData <‐ JumpData[JumpData[,1]==Pat,] 
    PatDiscr <‐ c(Pat,InState,0) 
    for (time in 1:MaxTime) { 
      Pos <‐ PatData[PatData[,3]<=time,] 
      if (length(Pos) == 3) LastState <‐ c(Pat,Pos[2],time) 
      if (length(Pos) > 3 ) LastState <‐ Pos[nrow(Pos),] 
      #if (length(PatDiscr) == 3) testRow <‐ PatDiscr  
      #if (length(PatDiscr) > 3) testRow <‐ PatDiscr[nrow(PatDiscr),]  
      #if ( sum(testRow ‐ LastState) != 0 ) PatDiscr <‐ 
rbind(PatDiscr,c(Pat,LastState[2],time)) 
      PatDiscr <‐ rbind(PatDiscr,c(Pat,LastState[2],time)) 
    } 
  if (Pat == 1) DiscrObs <‐ PatDiscr 
  if (Pat > 1) DiscrObs <‐ rbind(DiscrObs,PatDiscr) 
} 
 
#Fit TPM 
 
TCM <‐ matrix(ncol=ncol(QSim),nrow=nrow(QSim),0) 
 
for (rcount in 2:nrow(DiscrObs) ) { 
  if ( DiscrObs[rcount,1] == DiscrObs[rcount‐1,1] )  { 
    TCM[DiscrObs[rcount‐1,2],DiscrObs[rcount,2]] <‐ TCM[DiscrObs[rcount‐
1,2],DiscrObs[rcount,2]] + 1 
  } 
} 
 
TPMHat <‐ matrix(0,nrow=nrow(QSim),ncol=nrow(QSim)) 
 
for (i in 1:nrow(QSim)) { 
  for (j in 1:nrow(QSim)) { 
    TPMHat[i,j] <‐ TCM[i,j]/apply(TCM,1,sum)[i] 
  } 
} 
DiscrTPMHat <‐ TPMHat 
ExactTPMHat <‐ pMatrix(QHat,t=1) 
TrueTPMHat <‐ pMatrix(QSim,t=1) 
#The TPM of QHat is closer to the TPM of Q than TPMHat 
 
#Calculate true state prevalence and plot estimated prevalence on that 
 
maxTime <‐ 30 
TrueDistr <‐ t(as.matrix(rep(0,ncol(TPMHat)))) 
TrueDistr[InState] <‐ 1 
 
DiscreteDistr <‐ TrueDistr  
ExactDistr <‐ TrueDistr 
 
PrevMatrix <‐ matrix(0,nrow=ncol(TPMHat),ncol=5) 
PrevMatrix[,1] <‐ 1:5 
PrevMatrix[,3] <‐ TrueDistr  
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PrevMatrix[,4] <‐ DiscreteDistr  
PrevMatrix[,5] <‐ ExactDistr  
 
for (time in 1:maxTime) { 
  TrueDistr <‐ TrueDistr%*%TrueTPMHat 
  DiscreteDistr <‐ DiscreteDistr%*%DiscrTPMHat 
  ExactDistr <‐ ExactDistr%*%ExactTPMHat 
 
  PrevMatrix <‐ 
rbind(PrevMatrix,cbind(1:5,rep(time,ncol(TPMHat)),t(TrueDistr),t(DiscreteDistr),t(ExactDistr))) 
} 
 
PrevMatrix <‐ data.frame(PrevMatrix) 
names(PrevMatrix) <‐ c("State","Time","TruePrev","DiscrPrev","ExactPrev") 
 
State1 <‐ PrevMatrix[PrevMatrix[,1]==1,2:5] 
State2 <‐ PrevMatrix[PrevMatrix[,1]==2,2:5] 
State3 <‐ PrevMatrix[PrevMatrix[,1]==3,2:5] 
State4 <‐ PrevMatrix[PrevMatrix[,1]==4,2:5] 
State5 <‐ PrevMatrix[PrevMatrix[,1]==5,2:5] 
 
par(mfrow=c(3,2)) 
 
plot(State1$Time,State1$TruePrev,type="l",col="black",xlab="Time",ylab="Prevalence",main="State1") 
lines(State1$Time,State1$DiscrPrev,col="blue") 
lines(State1$Time,State1$ExactPrev,col="green") 
 
plot(State2$Time,State2$TruePrev,type="l",col="black",xlab="Time",ylab="Prevalence",main="State2") 
lines(State2$Time,State2$DiscrPrev,col="blue") 
lines(State2$Time,State2$ExactPrev,col="green") 
 
plot(State3$Time,State3$TruePrev,type="l",col="black",xlab="Time",ylab="Prevalence",main="State3",ylim=c(
0,0.3)) 
lines(State3$Time,State3$DiscrPrev,col="blue") 
lines(State3$Time,State3$ExactPrev,col="green") 
 
plot(State4$Time,State4$TruePrev,type="l",col="black",xlab="Time",ylab="Prevalence",main="State4",ylim=c(
0,0.015)) 
lines(State4$Time,State4$DiscrPrev,col="blue") 
lines(State4$Time,State4$ExactPrev,col="green") 
 
plot(State5$Time,State5$TruePrev,type="l",col="black",xlab="Time",ylab="Prevalence",main="State5") 
lines(State5$Time,State5$DiscrPrev,col="blue") 
lines(State5$Time,State5$ExactPrev,col="green") 
 
#Maximise the likelihood function with the nlm method 
 
likeNoCov <‐ function(Beta) { 
  logl <‐ 0 
  BetaCount <‐ 1 
  for (j in 1:nStates) { 
    if (j != DeathState) { 
      sum2 <‐ 0 
      for (k in 1:nStates) { 
        if (j != k ) { 
          logl <‐ logl + NSample[j,k]*log(Beta[BetaCount]) 
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          sum2 <‐ sum2 + Beta[BetaCount] 
          BetaCount <‐ BetaCount + 1 
        } 
      } 
      logl <‐ logl ‐ ASample[j]*sum2 
    } 
  } 
  return(‐logl) 
} 
 
As <‐ c(‐0.205,0.02,0,0.2,‐0.025,0,0.05,0.05,0) 
As <‐ c(0.3,0.3,0.1,0.2) 
As <‐ rep(1,4) 
As <‐ c(0.2,0.15,0.15,0.25) 
As <‐ c(0.2,0.8,0.3,0.1,0.8,0.2,0.1,0.1,0.4,0.9,0.2,0.1,0.2,0.4,0.3,0.8) 
As <‐ c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) 
 
#Data <‐ rbind(NSample,ASample) 
library(stats4) 
nlm(likeNoCov,p=As) 
 
#####################"Stationary Markov jump procees with gender effect####################### 
#Example 3 
 
QSim <‐ rbind(c(‐0.25,0.1,0.15),c(0.01,‐0.16,0.15),c(0,0,0)) 
QSim <‐ rbind(c(‐2.5,2,0.5),c(1.5,‐2,0.5),c(0,0,0)) 
QSim <‐ rbind(c(‐1.4,0.2,0.8,0.3,0.1),c(0.8,‐1.2,0.2,0.1,0.1),c(0.4,0.9,‐1.6,0.2,0.1),c(0.2,0.4,0.3,‐
1.7,0.8),c(0,0,0,0,0)) 
QSim <‐ rbind(c(‐0.35,0.15,0.2),c(0.2,‐0.4,0.2),c(0,0,0)) 
 
#Generate gender 
NumPatients <‐ 1000 
set.seed(1604) 
Gender <‐ rbinom(n=NumPatients,size=1,prob=0.7) 
GenderEffect <‐ 0.4 
exp(GenderEffect) 
#exp(Gender*GenderEffect) 
 
DeathState <‐ ncol(QSim) 
nStates <‐ ncol(QSim) 
 
NumPatients <‐ 1000 
MaxTime <‐ 50 
 
JumpData <‐ 
RecordJumpProcessGenderEffect(Q=QSim,GenderVector=Gender,GenderEffect=GenderEffect,AbState=DeathS
tate,InState=1,k=NumPatients,T=MaxTime,saad=1010) 
 
NSample <‐ vector("list",NumPatients) 
ASample <‐ vector("list",NumPatients) 
 
for (Pat in 1:NumPatients ) { 
  NSample[[Pat]] <‐ matrix(0,nrow=nStates,ncol=nStates) 
  ASample[[Pat]] <‐ matrix(0,nrow=nStates,ncol=1) 
 
  PatData <‐ JumpData[JumpData[,1] == Pat,] 
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  for (rcount in 2:nrow(PatData) ) { 
    NSample[[Pat]][PatData[rcount‐1,2],PatData[rcount,2]] <‐ NSample[[Pat]][PatData[rcount‐
1,2],PatData[rcount,2]] + 1 
    ASample[[Pat]][PatData[rcount‐1,2]] <‐ ASample[[Pat]][PatData[rcount‐1,2]] + 
(PatData[rcount,3]‐PatData[rcount‐1,3]) 
  } 
  ASample[[Pat]][PatData[nrow(PatData),2]] <‐ ASample[[Pat]][PatData[nrow(PatData),2]] + (MaxTime ‐ 
PatData[nrow(PatData),3]) 
   
} 
 
testSumN <‐ matrix(0,nrow=nStates,ncol=nStates) 
testSumA <‐ matrix(0,nrow=nStates,ncol=1) 
 
for (i in 1:NumPatients) { 
  testSumN <‐ testSumN + NSample[[i]] 
  testSumA <‐ testSumA + ASample[[i]] 
} 
sum(testSumA) 
 
QHat <‐ matrix(ncol=ncol(QSim),nrow=ncol(QSim)) 
 
for (i in 1:ncol(testSumN)) { 
  for (j in 1:ncol(testSumN )) { 
    if (i != j) QHat[i,j] <‐ testSumN[i,j]/testSumA[i] 
  } 
  QHat[i,i] <‐ ‐apply(QHat,1,sum,na.rm=TRUE)[i] 
} 
QSim 
QHat 
 
#Gender = 1 is in NSample[[1]] and Gender = 0 is in NSample[[2]]. ASample is similar 
 
likeGender <‐ function(Beta) { 
  logl <‐ 0 
  for (PatCount in 1:NumPatients) { 
    BetaCount <‐ 2 
    for (j in 1:nStates) { 
      if (j != DeathState) { 
        sum2 <‐ 0 
        for (k in 1:nStates) { 
          if (j == 1 & k == 2) { 
            logl <‐ logl + 
NSample[[PatCount]][1,2]*(Beta[1]+Beta[length(Beta)]*Gender[PatCount]) 
            sum2 <‐ sum2 + 
exp(Beta[1]+Beta[length(Beta)]*Gender[PatCount]) 
          } else if (j != k ) { 
            logl <‐ logl + NSample[[PatCount]][j,k]*Beta[BetaCount] 
            sum2 <‐ sum2 + exp(Beta[BetaCount]) 
            BetaCount <‐ BetaCount + 1 
          } 
        } 
        logl <‐ logl ‐ ASample[[PatCount]][j]*sum2 
      } 
    } 
  } 
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  return(‐logl) 
} 
 
B121Guess <‐ ‐15 
exp(B121Guess) 
 
Betas <‐ c(log(c(0.2,0.15,0.15,0.2)),0.7) 
Betas <‐ c(log(c(2,2,2,2)),1.5) 
Betas <‐ c(log(QHat[1,2])‐B121Guess*mean(Gender),log(c(QHat[1,3],QHat[2,1],QHat[2,3])),B121Guess) 
 
Betas <‐ c(rep(log(0.5),4),1.2) 
 
As <‐ c(0.2,0.8,0.3,0.1,0.8,0.2,0.1,0.1,0.4,0.9,0.2,0.1,0.2,0.4,0.3,0.8) 
As <‐ c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) 
 
Betas <‐ c(rep(log(0.5),16),1.2) 
Betas <‐ c(log(c(0.4,1,0.5,0.5,0.2,0.4,0.1,0.3,0.5,1.4,0.1,0.4,0.6,0.2,0.5,0.2)),0.4) 
Betas <‐ c(log(c(0.2,0.8,0.3,0.1,0.8,0.2,0.1,0.1,0.4,0.9,0.2,0.1,0.2,0.4,0.3,0.8)),0.4) 
 
library(stats4) 
 
test <‐ nlm(likeGender,p=Betas) 
 exp(test$estimate) 
 
QMale <‐ rbind(c(‐exp(test$estimate)[1]‐
exp(test$estimate)[2],exp(test$estimate)[1],exp(test$estimate)[2]),c(exp(test$estimate)[3],‐
exp(test$estimate)[3]‐exp(test$estimate)[4],exp(test$estimate)[4]),c(0,0,0)) 
QFemale <‐ rbind(c(‐exp(test$estimate[1]+test$estimate[5])‐
exp(test$estimate)[2],exp(test$estimate[1]+test$estimate[5]),exp(test$estimate)[2]),c(exp(test$estimate)[3],‐
exp(test$estimate)[3]‐exp(test$estimate)[4],exp(test$estimate)[4]),c(0,0,0)) 
 
QMale  
QFemale  
 
#What does msm give? 
 
library(msm) 
 
ObsDF <‐ data.frame(JumpData) 
names(ObsDF) <‐ c("PatID","State","Time") 
ObsDF$Sex <‐ Gender[ObsDF[,1]] 
 
#statetable.msm(State,PatID,data=ObsDF) 
FirstQ <‐ rbind(c(‐1.5,0.2,0.8),c(0.8,‐1.4,0.2),c(0,0,0)) 
 
FirstQ <‐ rbind(c(‐1.5,0.2,0.8,0.3,0.5),c(0.8,‐1.4,0.2,0.3,0.1),c(0.8,0.1,‐1.3,0.3,0.1),c(0.8,0.2,0.3,‐
1.4,0.1),c(0,0,0,0,0)) 
QmsmIn <‐ crudeinits.msm(State~Time,PatID,data=ObsDF,qmatrix=FirstQ ) 
 
Qmsm <‐ 
msm(State~Time,PatID,data=ObsDF,qmatrix=QmsmIn,exacttimes=TRUE,opt.method="nlm",covariates=~Sex) 
qmatrix.msm(Qmsm,covariates=list(Sex=1)) 
 
###############"Stationary Markov jump procees with gender and age effect################### 
#Example 4 
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QSim <‐ rbind(c(‐0.25,0.1,0.15),c(0.01,‐0.16,0.15),c(0,0,0)) 
QSim <‐ rbind(c(‐2.5,2,0.5),c(1.5,‐2,0.5),c(0,0,0)) 
QSim <‐ rbind(c(‐1.4,0.2,0.8,0.3,0.1),c(0.8,‐1.2,0.2,0.1,0.1),c(0.4,0.9,‐1.6,0.2,0.1),c(0.2,0.4,0.3,‐
1.7,0.8),c(0,0,0,0,0)) 
QSim <‐ rbind(c(‐0.35,0.15,0.2),c(0.2,‐0.4,0.2),c(0,0,0)) 
 
NumPatients <‐ 1000 
MaxTime <‐ 50 
 
#Generate gender 
 
set.seed(1604) 
Gender <‐ rbinom(n=NumPatients,size=1,prob=0.5) 
GenderEffect <‐ 0.4 
exp(GenderEffect) 
#exp(Gender*GenderEffect) 
 
#Generate age 
set.seed(1604) 
Age <‐ runif(n=NumPatients,min=0,max=100) 
AgeEffect <‐ 0.05 
exp(AgeEffect) 
#exp(Age*AgeEffect) 
 
AgePlot <‐ Age[order(Age)] 
 
plot(AgePlot,exp(QSim[1,2]+AgePlot*AgeEffect+GenderEffect),type='l',col='green',ylab='Transition intensity 
from state 1 to 2',xlab='Age') 
lines(AgePlot,exp(QSim[1,2]+AgePlot*AgeEffect),col='blue') 
legend(x=50,y=250,c('Female','Male'),col=c('green','blue'),pch=18) 
 
DeathState <‐ ncol(QSim) 
nStates <‐ ncol(QSim) 
 
JumpData <‐ 
RecordJumpProcessGenderAgeEffect(Q=QSim,GenderVector=Gender,GenderEffect=GenderEffect,AgeVector=
Age,AgeEffect=AgeEffect,AbState=DeathState,InState=1,k=NumPatients,T=MaxTime,saad=1010) 
 
NSample <‐ vector("list",NumPatients) 
ASample <‐ vector("list",NumPatients) 
 
for (Pat in 1:NumPatients ) { 
  NSample[[Pat]] <‐ matrix(0,nrow=nStates,ncol=nStates) 
  ASample[[Pat]] <‐ matrix(0,nrow=nStates,ncol=1) 
  PatData <‐ JumpData[JumpData[,1] == Pat,] 
  for (rcount in 2:nrow(PatData) ) { 
    NSample[[Pat]][PatData[rcount‐1,2],PatData[rcount,2]] <‐ NSample[[Pat]][PatData[rcount‐
1,2],PatData[rcount,2]] + 1 
    ASample[[Pat]][PatData[rcount‐1,2]] <‐ ASample[[Pat]][PatData[rcount‐1,2]] + 
(PatData[rcount,3]‐PatData[rcount‐1,3]) 
  } 
  ASample[[Pat]][PatData[nrow(PatData),2]] <‐ ASample[[Pat]][PatData[nrow(PatData),2]] + (MaxTime ‐ 
PatData[nrow(PatData),3]) 
   
} 
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testSumN <‐ matrix(0,nrow=nStates,ncol=nStates) 
testSumA <‐ matrix(0,nrow=nStates,ncol=1) 
 
for (i in 1:NumPatients) { 
  testSumN <‐ testSumN + NSample[[i]] 
  testSumA <‐ testSumA + ASample[[i]] 
} 
sum(testSumA) 
 
QHat <‐ matrix(ncol=ncol(QSim),nrow=ncol(QSim)) 
 
for (i in 1:ncol(testSumN)) { 
  for (j in 1:ncol(testSumN )) { 
    if (i != j) QHat[i,j] <‐ testSumN[i,j]/testSumA[i] 
  } 
  QHat[i,i] <‐ ‐apply(QHat,1,sum,na.rm=TRUE)[i] 
} 
QSim 
QHat 
 
likeGenderAge <‐ function(Beta) { 
  logl <‐ 0 
  for (PatCount in 1:NumPatients) { 
    BetaCount <‐ 2 
    for (j in 1:nStates) { 
      if (j != DeathState) { 
        sum2 <‐ 0 
        for (k in 1:nStates) { 
          if (j == 1 & k == 2) { 
            logl <‐ logl + 
NSample[[PatCount]][1,2]*(Beta[1]+Beta[length(Beta)‐
1]*Gender[PatCount]+Beta[length(Beta)]*Age[PatCount]) 
            sum2 <‐ sum2 + exp(Beta[1]+Beta[length(Beta)‐
1]*Gender[PatCount]+Beta[length(Beta)]*Age[PatCount]) 
          } else if (j != k ) { 
            logl <‐ logl + NSample[[PatCount]][j,k]*Beta[BetaCount] 
            sum2 <‐ sum2 + exp(Beta[BetaCount]) 
            BetaCount <‐ BetaCount + 1 
          } 
        } 
        logl <‐ logl ‐ ASample[[PatCount]][j]*sum2 
      } 
    } 
  } 
  return(‐logl) 
} 
 
As <‐ c(0.2,0.8,0.3,0.1,0.8,0.2,0.1,0.1,0.4,0.9,0.2,0.1,0.2,0.4,0.3,0.8) 
As <‐ c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) 
Betas <‐ c(log(c(0.2,0.15,0.15,0.2)),0.7,0.1) 
Betas <‐ c(log(c(2,2,2,2)),1.5,1) 
B121Guess <‐ 0.5337752 
B122Guess <‐ 0.35 
exp(B122Guess*100) 
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Betas <‐ c(log(QHat[1,2])‐B121Guess*mean(Gender)‐
B122Guess*mean(Age),log(c(QHat[1,3],QHat[2,1],QHat[2,3])),B121Guess,B122Guess) 
nlm(likeGenderAge,p=Betas)$estimate 
 
Betas <‐ c(rep(log(0.5),16),1.2,1.05) 
Betas <‐ c(log(c(0.4,1,0.5,0.5,0.2,0.4,0.1,0.3,0.5,1.4,0.1,0.4,0.6,0.2,0.5,0.2)),0.4,0.05) 
Betas <‐ c(log(c(0.2,0.8,0.3,0.1,0.8,0.2,0.1,0.1,0.4,0.9,0.2,0.1,0.2,0.4,0.3,0.8)),0.4,0.05) 
 
library(stats4) 
 
test <‐ nlm(likeGenderAge,p=Betas) 
exp(test$estimate) 
 
#What does msm give? 
 
library(msm) 
ObsDF <‐ data.frame(JumpData) 
names(ObsDF) <‐ c("PatID","State","Time") 
ObsDF$Sex <‐ Gender[ObsDF[,1]] 
ObsDF$Age <‐ Age[ObsDF[,1]] 
 
#statetable.msm(State,PatID,data=ObsDF) 
#FirstQ <‐ rbind(c(‐1.5,0.2,0.8,0.3,0.5),c(0.8,‐1.4,0.2,0.3,0.1),c(0.8,0.1,‐1.3,0.3,0.1),c(0.8,0.2,0.3,‐
1.4,0.1),c(0,0,0,0,0)) 
FirstQ <‐ rbind(c(‐1,0.2,0.8),c(0.8,‐1,0.2),c(0,0,0)) 
 
QmsmIn <‐ crudeinits.msm(State~Time,PatID,data=ObsDF,qmatrix=FirstQ ) 
Qmsm <‐ 
msm(State~Time,PatID,data=ObsDF,qmatrix=QmsmIn,exacttimes=TRUE,opt.method="nlm",covariates=~Sex+A
ge) 
qmatrix.msm(Qmsm,covariates=list(Sex=0,Age=0)) 
 
##########################Stationary Markov Chain######################################## 
#Example 5 
 
TPM <‐ 
rbind(c(0.7,0.1,0.05,0.05,0.1),c(0.13,0.2,0.35,0.2,0.12),c(0.1,0.05,0.1,0.5,0.25),c(0.05,0.05,0.1,0.4,0.4),c(0,0,0,0,
1)) 
TPM <‐ 
rbind(c(0.7,0.1,0.05,0.05,0.1),c(0.1,0.3,0.35,0.05,0.2),c(0.1,0.05,0.5,0.05,0.3),c(0.05,0.05,0.1,0.4,0.4),c(0,0,0,0,1
)) 
 
apply(TPM,1,sum) 
#How long does it take for the process to reach the death state if the process starts in state 1? 
Que <‐ TPM[1:(nrow(TPM)‐1),1:(nrow(TPM)‐1)] 
eye <‐ matrix(0,ncol=ncol(Que),nrow=nrow(Que)); diag(eye) <‐ 1 
sum(solve((eye ‐ Que))[1,]) 
 
InitialState=1 
K=100 
AbState <‐ 5 
StatMarkovChain <‐ RecordLongData(TPM=TPM,AbState=AbState,InitialState=InitialState,k=K,T=3,saad=1010) 
 
#Calculate the transition counts 
 
TCM <‐ matrix(ncol=ncol(TPM),nrow=nrow(TPM),0) 
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for (rcount in 2:nrow(StatMarkovChain) ) { 
  if ( StatMarkovChain[rcount,1] == StatMarkovChain[rcount‐1,1] )  { 
    TCM[StatMarkovChain[rcount‐1,2],StatMarkovChain[rcount,2]] <‐ 
TCM[StatMarkovChain[rcount‐1,2],StatMarkovChain[rcount,2]] + 1 
  } 
} 
TCM[nrow(TPM),ncol(TPM)] <‐ 1 
 
#Make sure we get the same estimate for the FCM as that calculated by statetable.msm 
library(msm) 
 
ObsDF <‐ data.frame(StatMarkovChain) 
names(ObsDF) <‐ c("PatID","State","Time") 
statetable.msm(State,PatID,data=ObsDF) 
 
TPMHat <‐ matrix(0,nrow=nrow(TPM),ncol=nrow(TPM)) 
for (i in 1:nrow(TPM)) { 
  for (j in 1:nrow(TPM)) { 
    TPMHat[i,j] <‐ TCM[i,j]/apply(TCM,1,sum)[i] 
  } 
} 
 
TPM 
round(TPMHat,3) 
SSD <‐ sum((TPM‐TPMHat)^2) 
apply(TPMHat,1,sum) 
 
#How long did it take the process to reach the absorbing state? 
 
SurvTime <‐ StatMarkovChain[StatMarkovChain[,2] == AbState,3] 
#Did everybidy die? 
length(SurvTime) 
 
summary(SurvTime) 
 
#Make observed vs Expected plot 
 
maxTime <‐ max(StatMarkovChain[,3]) 
ExpDistr <‐ t(as.matrix(rep(0,ncol(TPM)))) 
ExpDistr[InitialState] <‐ 1 
 
for (time in 0:maxTime) { 
  TimePrev <‐ data.frame(table(StatMarkovChain[StatMarkovChain[,3]==time,2])) 
  TimePrev$Obs <‐ TimePrev[,2]/K 
  TimePrev[,1] <‐ as.numeric(TimePrev[,1]) 
  for (stateCount in 1:ncol(TPM)) { 
    if(is.na(match(stateCount ,TimePrev[,1]))) TimePrev <‐ rbind(TimePrev,c(stateCount,0,0)) 
  } 
  TimePrev <‐ TimePrev[order(TimePrev[,1]),] 
  TimePrev[AbState,3] <‐ 1‐sum(TimePrev[TimePrev[,1] != AbState,3]) 
   
  TimePrev$Exp <‐ t(ExpDistr) 
  ExpDistr <‐ ExpDistr%*%TPMHat 
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  if (time == 0) PrevMatrix <‐ cbind(TimePrev[,c(1,3,4)],rep(time,nrow(TimePrev))) 
  if (time > 0) PrevMatrix <‐ rbind(PrevMatrix,cbind(TimePrev[,c(1,3,4)],rep(time,nrow(TimePrev)))) 
} 
names(PrevMatrix) <‐ c("State","ObsPrev","ExpPrev","Time") 
State1 <‐ PrevMatrix[PrevMatrix[,1]==1,2:4] 
State2 <‐ PrevMatrix[PrevMatrix[,1]==2,2:4] 
State3 <‐ PrevMatrix[PrevMatrix[,1]==3,2:4] 
State4 <‐ PrevMatrix[PrevMatrix[,1]==4,2:4] 
State5 <‐ PrevMatrix[PrevMatrix[,1]==5,2:4] 
 
par(mfrow=c(3,2)) 
 
plot(State1$Time,State1$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State1") 
lines(State1$Time,State1$ExpPrev,col="blue") 
 
plot(State2$Time,State2$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State2") 
lines(State2$Time,State2$ExpPrev,col="blue") 
 
plot(State3$Time,State3$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State3") 
lines(State3$Time,State3$ExpPrev,col="blue") 
 
plot(State4$Time,State4$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State4") 
lines(State4$Time,State4$ExpPrev,col="blue") 
 
plot(State5$Time,State5$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State5") 
lines(State5$Time,State5$ExpPrev,col="blue") 
 
##########################Nonstationary Markov Chain######################################## 
#Example 6 
 
#TPMSim <‐ 
rbind(c(0.7,0.0,0.01,0.01,0.01),c(0,0.33,0.35,0.31,0.01),c(0,0.29,0.2,0.5,0.01),c(0,0.14,0.45,0.4,0.01),c(0,0,0,0,1
)) 
TPMSim <‐ 
rbind(c(0.7,0.01,0.01,0.01,0.1),c(0.13,0.2,0.35,0.2,0.12),c(0.1,0.05,0.1,0.5,0.25),c(0.05,0.05,0.1,0.4,0.4),c(0,0,0,
0,1)) 
 
XTime <‐ 1:20 
Hazard <‐ 0.2*2.5*XTime^1.5 
plot(XTime,Hazard,type='l',xlab='Time',ylab='Hazard function') 
 
InitialState=1 
K <‐ 100 
AbState <‐ 5 
NonStatMarkovChain <‐ 
RecordLongDataNonStat(TPM=TPMSim,AbState=AbState,InitialState=InitialState,k=K,T=3,saad=1010) 
 
#Calculate the transition counts and probabilities 
 
MaxTime <‐ max(NonStatMarkovChain[,3]) 
TCMList <‐ vector("list",MaxTime) 
TPMList <‐ vector("list",MaxTime) 
 
for (timeCount in 0:(MaxTime‐1)) { 
  TimeData <‐ NonStatMarkovChain[NonStatMarkovChain[,3]==timeCount | 
NonStatMarkovChain[,3]==timeCount+1,]  
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  TCM <‐ matrix(ncol=ncol(TPMSim),nrow=nrow(TPMSim),0) 
  for (rcount in 1:(nrow(TimeData)‐1) ) { 
    if ( TimeData[rcount,1] == TimeData[rcount+1,1] )  { 
      TCM[TimeData[rcount,2],TimeData[rcount+1,2]] <‐ 
TCM[TimeData[rcount,2],TimeData[rcount+1,2]] + 1 
    } 
  } 
  TCM[AbState,AbState] <‐ 1 
  TPMEst <‐ TCM 
  for (rows in 1:nrow(TCM)) { 
    if (sum(TCM[rows,]) > 0) TPMEst[rows,] <‐ TCM[rows,]/sum(TCM[rows,]) 
  } 
  TCMList[[timeCount+1]] <‐ TCM 
  TPMList[[timeCount+1]] <‐ TPMEst 
} 
 
#Compare observed and expected graphically 
 
ExpDistr <‐ t(as.matrix(rep(0,ncol(TPMSim)))) 
ExpDistr[InitialState] <‐ 1 
TrueDistr <‐ ExpDistr 
 
nStates <‐ ncol(TPMSim) 
 
for (time in 0:(MaxTime‐1)) { 
  TimePrev <‐ data.frame(table(NonStatMarkovChain[NonStatMarkovChain[,3]==time,2])) 
  TimePrev$Obs <‐ TimePrev[,2]/K 
  TimePrev[,1] <‐ as.numeric(TimePrev[,1]) 
  for (stateCount in 1:ncol(TPMSim)) { 
    if(is.na(match(stateCount ,TimePrev[,1]))) TimePrev <‐ rbind(TimePrev,c(stateCount,0,0)) 
  } 
  TimePrev <‐ TimePrev[order(TimePrev[,1]),] 
  TimePrev[AbState,3] <‐ 1‐sum(TimePrev[TimePrev[,1] != AbState,3]) 
 
  TPMTrue <‐ TPMSim 
  TPMTrue[1,1] <‐ exp(‐( (0.2*(time+1))^2.5+(0.2*time)^2.5 )) 
  Rem <‐ 1‐TPMTrue[1,1] 
  TPMTrue[1,2:(AbState‐1)] <‐ rep(Rem*0.8/(nStates‐2),nStates‐2) 
  TPMTrue[1,AbState] <‐ 1‐sum(TPMTrue[1,‐AbState]) 
 
  TimePrev$Exp <‐ t(ExpDistr) 
  TimePrev$True <‐ t(TrueDistr) 
  ExpDistr <‐ ExpDistr%*%TPMList[[time+1]] 
  TrueDistr <‐ TrueDistr%*%TPMTrue 
 
 
  if (time == 0) PrevMatrix <‐ cbind(TimePrev[,c(1,3,4,5)],rep(time,nrow(TimePrev))) 
  if (time > 0) PrevMatrix <‐ rbind(PrevMatrix,cbind(TimePrev[,c(1,3,4,5)],rep(time,nrow(TimePrev)))) 
} 
rm(nStates) 
names(PrevMatrix) <‐ c("State","ObsPrev","ExpPrev","TruePrev","Time") 
State1 <‐ PrevMatrix[PrevMatrix[,1]==1,2:5] 
State2 <‐ PrevMatrix[PrevMatrix[,1]==2,2:5] 
State3 <‐ PrevMatrix[PrevMatrix[,1]==3,2:5] 
State4 <‐ PrevMatrix[PrevMatrix[,1]==4,2:5] 
State5 <‐ PrevMatrix[PrevMatrix[,1]==5,2:5] 
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par(mfrow=c(3,2)) 
 
plot(State1$Time,State1$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State1") 
lines(State1$Time,State1$ExpPrev,col="blue") 
lines(State1$Time,State1$TruePrev,col="green") 
 
plot(State2$Time,State2$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State2",ylim=c(0,
0.08)) 
#plot(State2$Time,State2$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State2") 
lines(State2$Time,State2$ExpPrev,col="blue") 
lines(State2$Time,State2$TruePrev,col="green") 
 
plot(State3$Time,State3$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State3",ylim=c(0,
0.04)) 
#plot(State3$Time,State3$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State3") 
lines(State3$Time,State3$ExpPrev,col="blue") 
lines(State3$Time,State3$TruePrev,col="green") 
 
plot(State4$Time,State4$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State4",ylim=c(0,
0.06)) 
#plot(State4$Time,State4$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State4") 
lines(State4$Time,State4$ExpPrev,col="blue") 
lines(State4$Time,State4$TruePrev,col="green") 
 
plot(State5$Time,State5$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State5") 
#plot(State5$Time,State5$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State5") 
lines(State5$Time,State5$ExpPrev,col="blue") 
lines(State5$Time,State5$TruePrev,col="green") 
 
#What would happen if we treat the process as stationary? 
 
#Calculate the transition counts and probabilities 
 
TCM <‐ matrix(ncol=ncol(TPMSim),nrow=nrow(TPMSim),0) 
 
for (rcount in 2:nrow(NonStatMarkovChain) ) { 
  if ( NonStatMarkovChain[rcount,1] == NonStatMarkovChain[rcount‐1,1] )  { 
    TCM[NonStatMarkovChain[rcount‐1,2],NonStatMarkovChain[rcount,2]] <‐ 
TCM[NonStatMarkovChain[rcount‐1,2],NonStatMarkovChain[rcount,2]] + 1 
  } 
} 
TCM[AbState,AbState] <‐ 1 
 
TPMHat <‐ TCM 
 
for (i in 1:nrow(TPMSim)) { 
  TPMHat[i,] <‐ TCM[i,]/sum(TCM[i,]) 
} 
 
TPMHat 
 
#Make observed vs Expected plot 
maxTime <‐ max(NonStatMarkovChain[,3]) 
ExpDistr <‐ t(as.matrix(rep(0,ncol(TPMSim)))) 
ExpDistr[InitialState] <‐ 1 
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for (time in 0:maxTime) { 
  TimePrev <‐ data.frame(table(NonStatMarkovChain[NonStatMarkovChain[,3]==time,2])) 
  TimePrev$Obs <‐ TimePrev[,2]/K 
  TimePrev[,1] <‐ as.numeric(TimePrev[,1]) 
  for (stateCount in 1:ncol(TPMSim)) { 
    if(is.na(match(stateCount ,TimePrev[,1]))) TimePrev <‐ rbind(TimePrev,c(stateCount,0,0)) 
  } 
  TimePrev <‐ TimePrev[order(TimePrev[,1]),] 
  TimePrev[AbState,3] <‐ 1‐sum(TimePrev[TimePrev[,1] != AbState,3]) 
   
  TimePrev$Exp <‐ t(ExpDistr) 
  ExpDistr <‐ ExpDistr%*%TPMHat 
  if (time == 0) PrevMatrix <‐ cbind(TimePrev[,c(1,3,4)],rep(time,nrow(TimePrev))) 
  if (time > 0) PrevMatrix <‐ rbind(PrevMatrix,cbind(TimePrev[,c(1,3,4)],rep(time,nrow(TimePrev)))) 
} 
names(PrevMatrix) <‐ c("State","ObsPrev","ExpPrev","Time") 
State1 <‐ PrevMatrix[PrevMatrix[,1]==1,2:4] 
State2 <‐ PrevMatrix[PrevMatrix[,1]==2,2:4] 
State3 <‐ PrevMatrix[PrevMatrix[,1]==3,2:4] 
State4 <‐ PrevMatrix[PrevMatrix[,1]==4,2:4] 
State5 <‐ PrevMatrix[PrevMatrix[,1]==5,2:4] 
 
par(mfrow=c(3,2)) 
 
plot(State1$Time,State1$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State1") 
lines(State1$Time,State1$ExpPrev,col="blue") 
 
plot(State2$Time,State2$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State2") 
lines(State2$Time,State2$ExpPrev,col="blue") 
 
plot(State3$Time,State3$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State3") 
lines(State3$Time,State3$ExpPrev,col="blue") 
 
plot(State4$Time,State4$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State4") 
lines(State4$Time,State4$ExpPrev,col="blue") 
 
plot(State5$Time,State5$ObsPrev,type="p",col="red",xlab="Time",ylab="Prevalence",main="State5") 
lines(State5$Time,State5$ExpPrev,col="blue") 
 
#####################Kalbfleisch estimator####################### 
#Example 7 
 
#Start with 3 state process 
 
#Q <‐ rbind(c(‐0.25,0.1,0.15),c(0.1,‐0.25,0.15),c(0.1,1.2,‐1.3)) 
#Q <‐ rbind(c(‐0.25,0.1,0.15),c(0.1,‐0.25,0.15),c(0,0,0)) 
QSim <‐ rbind(c(‐0.35,0.15,0.2),c(0.2,‐0.4,0.2),c(0,0,0)) 
QSim <‐ rbind(c(‐1.13,0.2,0.8,0.03,0.1),c(0.8,‐1.11,0.2,0.01,0.1),c(0.4,0.9,‐1.42,0.02,0.1),c(1.3,0.8,0.5,‐
2.68,0.08),c(0,0,0,0,0)) 
 
NumPatients <‐ 1000 
DeathState <‐ ncol(QSim) 
nStates <‐ ncol(QSim) 
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InState <‐ 1 
MaxTime <‐ 10 
 
JumpData <‐ 
RecordJumpProcess(Q=QSim,k=NumPatients,InState=InState,AbState=DeathState,T=MaxTime,saad=1010) 
 
ObTimes <‐ c(0.5,1.2,2,2.5,3.1,4,5.1,5.7,6.9) 
 
#Get state of the process at observation times 
 
for (Pat in 1:NumPatients) { 
  PatData <‐ JumpData[JumpData[,1]==Pat,] 
    PatDiscr <‐ c(Pat,InState,0) 
    for (time in ObTimes) { 
      Pos <‐ PatData[PatData[,3]<=time,] 
      if (length(Pos) == 3) LastState <‐ c(Pat,Pos[2],time) 
      if (length(Pos) > 3 ) LastState <‐ Pos[nrow(Pos),] 
      PatDiscr <‐ rbind(PatDiscr,c(Pat,LastState[2],time)) 
    } 
  if (Pat == 1) DiscrObs <‐ PatDiscr 
  if (Pat > 1) DiscrObs <‐ rbind(DiscrObs,PatDiscr) 
} 
 
 
#Calculate transition counts (Nijl) at observed time points 
 
#MaxTime <‐ ObTimes[length(ObTimes)] 
CountInfo <‐ vector("list",length(ObTimes)) 
 
for (timeCount in 1:length(ObTimes) ) { 
  CurrentTime <‐ ObTimes[timeCount] 
  PrevTime <‐ ifelse (timeCount ==1, 0, ObTimes[timeCount‐1]) 
 
  TimeData <‐ DiscrObs[DiscrObs[,3]==CurrentTime | DiscrObs[,3]==PrevTime,]  
  TCM <‐ matrix(0,ncol=ncol(QSim),nrow=nrow(QSim)) 
  for (rcount in 1:(nrow(TimeData)‐1) ) { 
    if ( TimeData[rcount,1] == TimeData[rcount+1,1] )  { 
      TCM[TimeData[rcount,2],TimeData[rcount+1,2]] <‐ 
TCM[TimeData[rcount,2],TimeData[rcount+1,2]] + 1 
    } 
  } 
  CountInfo[[timeCount]] <‐ TCM 
} 
 
#Check CountInfo 
 
NTestSum <‐ matrix(0,nrow=ncol(QSim),ncol=ncol(QSim)) 
for (i in 1:length(CountInfo) ) { 
  NTestSum <‐ NTestSum + CountInfo[[i]] 
} 
 
library(msm) 
NTestSum 
ObsDF <‐ data.frame(DiscrObs) 
names(ObsDF) <‐ c("PatID","State","Time") 
QShape <‐ rbind(c(‐1,0.2,0.8),c(0.8,‐1,0.2),c(0,0,0)) 
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QShape <‐ rbind(c(‐1.7,0.2,0.8,0.3,0.4),c(0.8,‐1.2,0.2,0.1,0.1),c(0.8,0.2,‐1.2,0.1,0.1),c(0.8,0.1,0.2,‐
1.2,0.1),c(0,0,0,0,0)) 
 
statetable.msm(State,PatID,data=ObsDF) 
crudeinits.msm(State~Time,PatID,data=ObsDF,qmatrix=QShape) 
 
ADerT <‐ vector("list",4) 
ADerT[[1]] <‐ rbind(c(‐1,1,0),rep(0,3),rep(0,3)) 
ADerT[[2]] <‐ rbind(c(‐1,0,1),rep(0,3),rep(0,3)) 
ADerT[[3]] <‐ rbind(rep(0,3),c(1,‐1,0),rep(0,3)) 
ADerT[[4]] <‐ rbind(rep(0,3),c(0,‐1,1),rep(0,3)) 
#ADerT[[5]] <‐ rbind(rep(0,3),rep(0,3),c(1,0,‐1)) 
#ADerT[[6]] <‐ rbind(rep(0,3),rep(0,3),c(0,1,‐1)) 
 
ADerT <‐ vector("list",16) 
ADerT[[1]] <‐ rbind(c(‐1,1,0,0,0),rep(0,5),rep(0,5),rep(0,5),rep(0,5)) 
ADerT[[2]] <‐ rbind(c(‐1,0,1,0,0),rep(0,5),rep(0,5),rep(0,5),rep(0,5)) 
ADerT[[3]] <‐ rbind(c(‐1,0,0,1,0),rep(0,5),rep(0,5),rep(0,5),rep(0,5)) 
ADerT[[4]] <‐ rbind(c(‐1,0,0,0,1),rep(0,5),rep(0,5),rep(0,5),rep(0,5)) 
 
ADerT[[5]] <‐ rbind(rep(0,5),c(‐1,1,0,0,0),rep(0,5),rep(0,5),rep(0,5)) 
ADerT[[6]] <‐ rbind(rep(0,5),c(‐1,0,1,0,0),rep(0,5),rep(0,5),rep(0,5)) 
ADerT[[7]] <‐ rbind(rep(0,5),c(‐1,0,0,1,0),rep(0,5),rep(0,5),rep(0,5)) 
ADerT[[8]] <‐ rbind(rep(0,5),c(‐1,0,0,0,1),rep(0,5),rep(0,5),rep(0,5)) 
 
ADerT[[9]] <‐ rbind(rep(0,5),rep(0,5),c(‐1,1,0,0,0),rep(0,5),rep(0,5)) 
ADerT[[10]] <‐ rbind(rep(0,5),rep(0,5),c(‐1,0,1,0,0),rep(0,5),rep(0,5)) 
ADerT[[11]] <‐ rbind(rep(0,5),rep(0,5),c(‐1,0,0,1,0),rep(0,5),rep(0,5)) 
ADerT[[12]] <‐ rbind(rep(0,5),rep(0,5),c(‐1,0,0,0,1),rep(0,5),rep(0,5)) 
 
ADerT[[13]] <‐ rbind(rep(0,5),rep(0,5),rep(0,5),c(‐1,1,0,0,0),rep(0,5)) 
ADerT[[14]] <‐ rbind(rep(0,5),rep(0,5),rep(0,5),c(‐1,0,1,0,0),rep(0,5)) 
ADerT[[15]] <‐ rbind(rep(0,5),rep(0,5),rep(0,5),c(‐1,0,0,1,0),rep(0,5)) 
ADerT[[16]] <‐ rbind(rep(0,5),rep(0,5),rep(0,5),c(‐1,0,0,0,1),rep(0,5)) 
 
GFunction <‐ function(B) { 
  G <‐ vector("list",16) 
  for (i in 1:16) { 
    G[[i]] <‐ solve(B)%*%ADerT[[i]]%*%B 
  } 
  return(G) 
} 
 
VFunction <‐ function(G,D,t) { 
  V <‐ vector("list",16) 
  for (i in 1:16) { 
    V[[i]] <‐ matrix(0,ncol=ncol(QSim),nrow=nrow(QSim)) 
    for (j in 1:ncol(QSim) ) { 
      for (k in 1:ncol(QSim) ) { 
        if (j != k) V[[i]][j,k] <‐ G[[i]][j,k]*( exp(D[j]*t) ‐ exp(D[k]*t) )/(D[j] ‐ D[k]) 
   
        if (j == k) V[[i]][j,k] <‐ G[[i]][j,k]*t*exp(D[j]*t) 
      } 
    } 
  } 
  return(V) 
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} 
 
 
SFunction <‐ function(QEst,G,D,B) { 
  S <‐ matrix(0,nrow=16,ncol=1) 
  for (ParNum in 1:16) { 
    som <‐ 0 
    for (L in 1: length(ObTimes)) { 
      for (j in 1:ncol(QEst) ) { 
        for (k in 1:ncol(QEst) ) { 
          time <‐ ifelse(L == 1, ObTimes[L],ObTimes[L]‐ObTimes[L‐1]) 
          Pjk <‐ pMatrix(QEst,nlim=30,t=time)[j,k] 
          Der <‐ (B%*%VFunction(G,D,time)[[ParNum]]%*%solve(B))[j,k]  
          #if (Pjk > 0.0001) som <‐ som + CountInfo[[L]][j,k]*Der / Pjk 
          som <‐ som + CountInfo[[L]][j,k]*Der / Pjk 
        } 
      } 
    } 
    S[ParNum] <‐ som 
  } 
  return(S) 
} 
 
MFunction <‐ function(G,D,B,QEst) { 
  M <‐ matrix(0,nrow=16,ncol=16) 
  for (u in 1:16) { 
    for (v in 1:16) { 
      som <‐ 0 
      for (L in 1: length(ObTimes)) { 
        for (j in 1:ncol(QEst) ) { 
          for (k in 1:ncol(QEst) ) { 
            time <‐ ifelse(L == 1, ObTimes[L],ObTimes[L]‐ObTimes[L‐
1]) 
            Pjk <‐ pMatrix(QEst,t=time)[j,k] 
            DerU <‐ (B%*%VFunction(G,D,time)[[u]]%*%solve(B))[j,k]  
            DerV <‐ (B%*%VFunction(G,D,time)[[v]]%*%solve(B))[j,k] 
            Ni <‐ sum(CountInfo[[L]][j,]) 
            #if (Pjk > 0.0001) som <‐ som +  Ni * DerU * DerV / Pjk  
            som <‐ som +  Ni * DerU * DerV / Pjk  
          } 
        } 
      } 
      M[u,v] <‐ som   
    }  
  } 
  return(M) 
} 
 
#ThetaCurrent <‐ exp(as.vector(c(0.15,0.2,0.15,0.2,0.2,1))) 
ThetaCurrent <‐ (as.vector(c(0.20,0.15,0.15,0.25))) 
ThetaCurrent <‐ (as.vector(rep(1,4))) 
ThetaCurrent <‐ (as.vector(c(0.1125,0.1864,0.1452,0.1866))) 
ThetaCurrent <‐ 
(as.vector(c(0.2069,0.3508,0.0136,0.1010,0.3588,0.1711,0.0053,0.1082,0.2868,0.3869,0.0103,0.0882,0.4219,0
.1266,0.2532,0.1477))) 
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for (iter in 1:4) { 
   
  #QEst <‐ rbind(c(‐ThetaCurrent[1]‐
ThetaCurrent[2],ThetaCurrent[1],ThetaCurrent[2]),c(ThetaCurrent[3],‐ThetaCurrent[3]‐
ThetaCurrent[4],ThetaCurrent[4]),c(ThetaCurrent[5],ThetaCurrent[6],‐ThetaCurrent[5]‐ThetaCurrent[6]))   
  #QEst <‐ rbind(c(‐ThetaCurrent[1]‐
ThetaCurrent[2],ThetaCurrent[1],ThetaCurrent[2]),c(ThetaCurrent[3],‐ThetaCurrent[3]‐
ThetaCurrent[4],ThetaCurrent[4]),c(0,0,0))   
  QEst <‐ rbind(c(‐ThetaCurrent[1]‐ThetaCurrent[2]‐ThetaCurrent[3]‐
ThetaCurrent[4],ThetaCurrent[1],ThetaCurrent[2],ThetaCurrent[3],ThetaCurrent[4]),c(ThetaCurrent[5],‐
ThetaCurrent[5]‐ThetaCurrent[6]‐ThetaCurrent[7]‐
ThetaCurrent[8],ThetaCurrent[6],ThetaCurrent[7],ThetaCurrent[8]),c(ThetaCurrent[9],ThetaCurrent[10],‐
ThetaCurrent[9]‐ThetaCurrent[10]‐ThetaCurrent[11]‐
ThetaCurrent[12],ThetaCurrent[11],ThetaCurrent[12]),c(ThetaCurrent[13],ThetaCurrent[14],ThetaCurrent[15],‐
ThetaCurrent[13]‐ThetaCurrent[14]‐ThetaCurrent[15]‐ThetaCurrent[16],ThetaCurrent[16]),c(0,0,0,0,0))   
   
  B <‐ eigen(QEst,symmetric=FALSE)$vectors 
  D <‐ eigen(QEst,symmetric=FALSE)$values 
  G <‐ GFunction(B) 
  ThetaNew <‐ ThetaCurrent + solve(MFunction(G,D,B,QEst))%*%SFunction(QEst,G,D,B) 
  print(round(ThetaNew,4)) 
  #if (is.complex(ThetaNew)) ThetaNew <‐ Re(ThetaNew) 
 
  ThetaCurrent <‐ ThetaNew 
} 
ThetaCurrent 
 
ThetaCurrent <‐ as.vector(c(0.21693,0.09228167,0,0.36539406)) 
 
#Try example in article 
 
rm(list=ls(all=TRUE)) 
 
NSample <‐ vector("list",4) 
 
NSample[[1]] <‐ rbind(c(93,3,2),c(0,8,10),c(0,1,8)) 
NSample[[2]] <‐ rbind(c(89,2,2),c(0,7,5),c(0,5,15)) 
NSample[[3]] <‐ rbind(c(83,3,3),c(0,9,5),c(0,2,20)) 
NSample[[4]] <‐ rbind(c(76,3,4),c(0,6,8),c(0,0,28)) 
 
ADerT <‐ vector("list",3) 
ADerT[[1]] <‐ rbind(c(‐1,1,0),rep(0,3),rep(0,3)) 
ADerT[[2]] <‐ rbind(rep(0,3),c(0,‐1,1),rep(0,3)) 
ADerT[[3]] <‐ rbind(rep(0,3),rep(0,3),c(0,1,‐1)) 
 
Times <‐ c(0.15,0.6,0.35,0.8) 
 
GFunction <‐ function(B) { 
  G <‐ vector("list",3) 
  for (i in 1:3) { 
    G[[i]] <‐ solve(B)%*%ADerT[[i]]%*%B 
  } 
  return(G) 
} 
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VFunction <‐ function(G,D,t) { 
  nStates <‐ 3 
  V <‐ vector("list",3) 
  for (i in 1:3) { 
    V[[i]] <‐ matrix(0,ncol=nStates,nrow=nStates) 
    for (j in 1:nStates) { 
      for (k in 1:nStates) { 
        if (j != k) V[[i]][j,k] <‐ G[[i]][j,k]*( exp(D[j]*t) ‐ exp(D[k]*t) )/(D[j] ‐ D[k]) 
   
        if (j == k) V[[i]][j,k] <‐ G[[i]][j,k]*t*exp(D[j]*t) 
      } 
    } 
  } 
  return(V) 
} 
 
SFunction <‐ function(QEst,G,D,B) { 
 
  S <‐ matrix(0,nrow=3,ncol=1) 
  for (ParNum in 1:3) { 
    som <‐ 0 
    for (L in 1:length(Times)) { 
      time <‐ Times[L] 
      for (j in 1:ncol(QEst) ) { 
        for (k in 1:ncol(QEst) ) { 
          Pjk <‐ pMatrix(QEst,nlim=30,t=time)[j,k] 
          Der <‐ (B%*%VFunction(G,D,time)[[ParNum]]%*%solve(B))[j,k]  
          if (Pjk > 0.0001) som <‐ som + NSample[[L]][j,k]*Der / Pjk 
        } 
      } 
    } 
    S[ParNum] <‐ som 
  } 
  return(S) 
} 
 
MFunction <‐ function(G,D,B,QEst) { 
  M <‐ matrix(0,nrow=3,ncol=3) 
  for (u in 1:3) { 
    for (v in 1:3) { 
      som <‐ 0 
      for (L in 1:length(Times)) { 
        for (j in 1:ncol(QEst) ) { 
          for (k in 1:ncol(QEst) ) { 
            time <‐ Times[L] 
            Pjk <‐ pMatrix(QEst,t=time)[j,k] 
            DerU <‐ (B%*%VFunction(G,D,time)[[u]]%*%solve(B))[j,k]  
            DerV <‐ (B%*%VFunction(G,D,time)[[v]]%*%solve(B))[j,k] 
            Ni <‐ sum(NSample[[L]][j,]) 
            if (Pjk > 0.0001) som <‐ som +  Ni * DerU * DerV / Pjk  
          } 
        } 
      } 
      M[u,v] <‐ som   
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    }  
  } 
  return(M) 
} 
 
ThetaCurrent <‐ as.vector(c(0.2,1.26,0.27)) 
 
for (iter in 1:15) { 
   
  QEst <‐ rbind(c(‐ThetaCurrent[1],ThetaCurrent[1],0),c(0,‐
ThetaCurrent[2],ThetaCurrent[2]),c(0,ThetaCurrent[3],‐ThetaCurrent[3]))   
  B <‐ eigen(QEst,symmetric=FALSE)$vectors 
  D <‐ eigen(QEst,symmetric=FALSE)$values 
  G <‐ GFunction(B) 
  ThetaNew <‐ ThetaCurrent + solve(MFunction(G,D,B,QEst))%*%SFunction(QEst,G,D,B) 
 
  #if (is.complex(ThetaNew)) ThetaNew <‐ Re(ThetaNew) 
  #ThetaNew[ThetaNew < 1] <‐ 1 
  print(ThetaNew) 
  ThetaCurrent <‐ ThetaNew 
} 
exp(ThetaCurrent) 
 
 
 
QHat <‐ rbind(c(‐0.136,0.136,0),c(0,‐2.28,2.28),c(0,0.470,‐0.470)) 
pMatrix(QHat,nlim=30,t=0.15)[3,3]*9 
 
 
#####################Kay estimator####################### 
#Examples 8 ‐ 10 
 
#Start with 3 state process and with no censoring to see if function works 
 
QSim <‐ rbind(c(‐0.35,0.15,0.2),c(0.2,‐0.4,0.2),c(0,0,0)) 
QSim <‐ rbind(c(‐1.13,0.2,0.8,0.03,0.1),c(0.8,‐1.11,0.2,0.01,0.1),c(0.4,0.9,‐1.42,0.02,0.1),c(1.3,0.8,0.5,‐
2.68,0.08),c(0,0,0,0,0)) 
 
NumPatients <‐ 1000 
DeathState <‐ ncol(QSim) 
nStates <‐ ncol(QSim) 
InState=1 
NumPatients <‐ 1000 
MaxTime <‐ 50 
 
JumpData <‐ 
RecordJumpProcess(Q=QSim,AbState=DeathState,InState=InState,k=NumPatients,T=MaxTime,saad=1010) 
 
#Extract discrete time point observations with death being observed within one day 
 
for (Pat in 1:NumPatients) { 
  PatData <‐ JumpData[JumpData[,1]==Pat,] 
  PatObs <‐ c(Pat,InState,0) 
  CumTime <‐ 0 
  sent  <‐ 1 
  while (sent ==1 ) { 
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    NewTime <‐ runif(1,min=0.5,max=1.5) 
    #NewTime <‐ max(rexp(1,rate=1),1/365) 
    CumTime <‐ CumTime + NewTime 
    Pos <‐ PatData[PatData[,3]<=CumTime,] 
    if (length(Pos) == 3) LastState <‐ Pos 
    if (length(Pos) > 3 ) LastState <‐ Pos[nrow(Pos),] 
    if (LastState[2] != DeathState) LastState[3] <‐ CumTime 
    PatObs <‐ rbind(PatObs,LastState) 
    if (LastState[2] == DeathState | CumTime > MaxTime) sent <‐ 0 
  } 
  if (Pat == 1) DiscrObs <‐ PatObs 
  if (Pat > 1) DiscrObs <‐ rbind(DiscrObs,PatObs) 
} 
 
#Extract discrete time point observations with death not necesarily being observed within one day 
 
for (Pat in 1:NumPatients) { 
  PatData <‐ JumpData[JumpData[,1]==Pat,] 
  PatObs <‐ c(Pat,InState,0) 
  CumTime <‐ 0 
  sent  <‐ 1 
  while (sent ==1 ) { 
    NewTime <‐ runif(1,min=0.5,max=1.5) 
    #NewTime <‐ rexp(1,rate=1) 
    CumTime <‐ CumTime + NewTime 
    Pos <‐ PatData[PatData[,3]<=CumTime,] 
    if (length(Pos) == 3) LastState <‐ Pos 
    if (length(Pos) > 3 ) LastState <‐ Pos[nrow(Pos),] 
    LastState[3] <‐ CumTime 
    PatObs <‐ rbind(PatObs,LastState) 
    if (LastState[2] == DeathState | CumTime > MaxTime) sent <‐ 0 
  } 
  if (Pat == 1) DiscrObsNoDeath <‐ PatObs 
  if (Pat > 1) DiscrObsNoDeath <‐ rbind(DiscrObsNoDeath,PatObs) 
} 
 
likeKayNoCenMatrixNLM <‐ function(As) { 
 
  QEst <‐ matrix(0,nrow=5,ncol=5) 
  QEst[1,2] <‐ As[1] 
  QEst[1,3] <‐ As[2] 
  QEst[1,1] <‐ ‐sum(QEst[1,‐1]) 
 
  QEst[2,1] <‐ As[3] 
  QEst[2,3] <‐ As[4] 
  QEst[2,2] <‐ ‐sum(QEst[2,‐2]) 
 
  like <‐ 0 
  for (Pat in 1:NumPatients) { 
    PatData <‐ DiscrObsNoDeath[DiscrObsNoDeath[,1] == Pat,] 
    for (rcount in 2:nrow(PatData) ) { 
      tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
      TPMtemp <‐ pMatrix(QEst,nlim=30,t=tyd) 
      Add <‐ TPMtemp[PatData[rcount‐1,2],PatData[rcount,2]] 
      like <‐ like + log(Add) 
    } 
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  } 
  return(‐like) 
} 
 
likeKayNoCenPFunctionNLM <‐ function(As) { 
 
  Alpha <‐ matrix(0,ncol=3,nrow=3) 
  Alpha[1,2] <‐ As[1] 
  Alpha[1,3] <‐ As[2] 
  Alpha[1,1] <‐ ‐sum(Alpha[1,‐1]) 
 
  Alpha[2,1] <‐ As[3] 
  Alpha[2,3] <‐ As[4] 
  Alpha[2,2] <‐ ‐sum(Alpha[2,‐2]) 
 
  R <‐ c(‐Alpha[1,1],‐Alpha[2,2]) 
 
  Lambda1 <‐ ‐(R[1]+R[2] + sqrt( (R[1]‐R[2])^2 + 4*As[1]*As[2] ) )/2 
  Lambda2 <‐ ‐(R[1]+R[2] ‐ sqrt( (R[1]‐R[2])^2 + 4*As[3]*As[4] ) )/2 
 
 
  like <‐ 0 
  for (Pat in 1:NumPatients) { 
    PatData <‐ DiscrObsNoDeath[DiscrObsNoDeath[,1] == Pat,] 
    for (rcount in 2:nrow(PatData) ) { 
      tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
      CurSt <‐ PatData[rcount‐1,2] 
      NewSt <‐ PatData[rcount,2] 
 
      if (NewSt == CurSt) Add <‐ ( (R[‐CurSt]+Lambda1)*exp(Lambda1*tyd) ‐ (R[‐
CurSt]+Lambda2)*exp(Lambda2*tyd) )/(Lambda1 ‐ Lambda2) 
      if (NewSt == DeathState) Add <‐   1 + ( (Alpha[CurSt,3] + 
Lambda2)*exp(Lambda1*tyd) ‐ (Alpha[CurSt,3] + Lambda1)*exp(Lambda2*tyd) ) / (Lambda1 ‐ Lambda2) 
      if (NewSt != DeathState & NewSt != CurSt) Add <‐ ( 
Alpha[CurSt,NewSt]*(exp(Lambda1*tyd) ‐ exp(Lambda2*tyd)) ) / (Lambda1‐Lambda2) 
       
      like <‐ like + log(Add) 
    } 
     
  } 
  return(‐like) 
} 
 
likeKayWithCenMatrixNLM <‐ function(As) { 
 
  QEst <‐ matrix(0,nrow=5,ncol=5) 
  QEst[1,2] <‐ As[1] 
  QEst[1,3] <‐ As[2] 
  QEst[1,1] <‐ ‐sum(QEst[1,‐1]) 
 
  QEst[2,1] <‐ As[3] 
  QEst[2,3] <‐ As[4] 
  QEst[2,2] <‐ ‐sum(QEst[2,‐2]) 
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  PosStates <‐ 1:ncol(QEst) 
  like <‐ 0 
  for (Pat in 1:NumPatients) { 
    PatData <‐ DiscrObs[DiscrObs[,1] == Pat,] 
    for (rcount in 2:nrow(PatData) ) { 
      if (PatData[rcount,2] != DeathState) { 
        tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
        TPMtemp <‐ pMatrix(QEst,nlim=30,t=tyd) 
        Add <‐ TPMtemp[PatData[rcount‐1,2],PatData[rcount,2]] 
        like <‐ like + log(Add) 
      } 
      if (PatData[rcount,2] == DeathState) { 
        tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
        TPMMissingJump <‐ pMatrix(QEst,nlim=30,t=tyd‐1/365) 
        TPMDeathJump <‐ pMatrix(QEst,nlim=30,t=1/365) 
        for (stateCount in PosStates[PosStates!=DeathState] ) { 
          Add <‐ TPMMissingJump[PatData[rcount‐
1,2],stateCount]*TPMDeathJump[stateCount,DeathState] 
          like <‐ like + log(Add) 
        } 
      } 
    } 
     
  } 
  return(‐like) 
 
} 
 
P13 <‐ function(A13,lambda1,lambda2,tyd) { 
  PR <‐ 1 + ( (A13+lambda2)*exp(lambda1*tyd) ‐ (A13+lambda1)*exp(lambda2*tyd) ) / (lambda1‐
lambda2) 
  return(PR) 
} 
 
P23 <‐ function(A23,lambda1,lambda2,tyd) { 
  PR <‐ 1 + ( (A23+lambda2)*exp(lambda1*tyd) ‐ (A23+lambda1)*exp(lambda2*tyd) ) / (lambda1‐
lambda2) 
  return(PR) 
} 
 
P11 <‐ function(R2,lambda1,lambda2,tyd) { 
  PR <‐ ( (R2+lambda1)*exp(lambda1*tyd) ‐ (R2+lambda2)*exp(lambda2*tyd) )/(lambda1 ‐ lambda2) 
 
  return(PR) 
} 
 
P22 <‐ function(R1,lambda1,lambda2,tyd) { 
  PR <‐ ( (R1+lambda1)*exp(lambda1*tyd) ‐ (R1+lambda2)*exp(lambda2*tyd) )/(lambda1 ‐ lambda2) 
  return(PR) 
} 
 
 
 
 
P12 <‐ function(A12,lambda1,lambda2,tyd) { 
  PR <‐ (A12*(exp(lambda1*tyd) ‐ exp(lambda2*tyd)) ) / (lambda1‐lambda2) 
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  return(PR) 
} 
 
P21 <‐ function(A21,lambda1,lambda2,tyd) { 
  PR <‐ (A21*(exp(lambda1*tyd) ‐ exp(lambda2*tyd)) ) / (lambda1‐lambda2) 
  return(PR) 
} 
 
likeKayWithCenPFunctionNLM <‐ function(As) { 
 
  A12 <‐ As[1] 
  A13 <‐ As[2] 
  A21 <‐ As[3] 
  A23 <‐ As[4] 
 
  R <‐ c(A12+A13,A21+A23) 
 
  Lambda1 <‐ ‐(R[1]+R[2] + sqrt( (R[1]‐R[2])^2 + 4*A12*A21 ) )/2 
  Lambda2 <‐ ‐(R[1]+R[2] ‐ sqrt( (R[1]‐R[2])^2 + 4*A12*A21 ) )/2 
 
 
  like <‐ 0 
  for (Pat in 1:NumPatients) { 
    PatData <‐ DiscrObs[DiscrObs[,1] == Pat,] 
    for (rcount in 2:nrow(PatData) ) { 
      tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
      CurSt <‐ PatData[rcount‐1,2] 
      NewSt <‐ PatData[rcount,2] 
 
      if (NewSt == CurSt) Add <‐ ( (R[‐CurSt]+Lambda1)*exp(Lambda1*tyd) ‐ (R[‐
CurSt]+Lambda2)*exp(Lambda2*tyd) )/(Lambda1 ‐ Lambda2) 
 
      if (CurSt == 1 & NewSt == 3) Add <‐ P11(R[1],Lambda1,Lambda2,tyd‐
1/365)*P13(A13,Lambda1,Lambda2,1/365)+P12(A12,Lambda1,Lambda2,tyd‐
1/365)*P23(A23,Lambda1,Lambda2,1/365) 
      if (CurSt == 2 & NewSt == 3) Add <‐ P21(A21,Lambda1,Lambda2,tyd‐
1/365)*P13(A13,Lambda1,Lambda2,1/365)+P22(R[2],Lambda1,Lambda2,tyd‐
1/365)*P23(A23,Lambda1,Lambda2,1/365) 
 
      if (CurSt == 1 & NewSt == 2) Add <‐ P12(A12,Lambda1,Lambda2,tyd) 
      if (CurSt == 2 & NewSt == 1) Add <‐ P21(A21,Lambda1,Lambda2,tyd) 
       
      #if (is.na(log(Add))) print (Pat) 
      like <‐ like + log(Add) 
      rm(Add) 
    } 
     
  } 
  return(‐like) 
} 
 
 
likeJacWithCenMatrixNLM <‐ function(As) { 
  QEst <‐ matrix(0,nrow=5,ncol=5) 
  QEst[1,2] <‐ As[1] 
  QEst[1,3] <‐ As[2] 
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  QEst[1,1] <‐ ‐sum(QEst[1,‐1]) 
 
  QEst[2,1] <‐ As[3] 
  QEst[2,3] <‐ As[4] 
  QEst[2,2] <‐ ‐sum(QEst[2,‐2]) 
 
  PosStates <‐ 1:ncol(QEst) 
 
  like <‐ 0 
  for (Pat in 1:NumPatients) { 
    PatData <‐ JumpData[JumpData[,1] == Pat,] 
    for (rcount in 2:nrow(PatData) ) { 
      if (PatData[rcount,2] != DeathState) { 
        tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
        TPMtemp <‐ pMatrix(QEst,nlim=30,t=tyd) 
        like <‐ like + log(TPMtemp[PatData[rcount‐1,2],PatData[rcount,2]]) 
      } 
      if (PatData[rcount,2] == DeathState) { 
        tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
        TPMMissingJump <‐ pMatrix(QEst,nlim=30,t=tyd) 
        for (stateCount in PosStates[PosStates!=DeathState] ) { 
          like <‐ like + log(TPMMissingJump[PatData[rcount‐
1,2],stateCount]*QEst[stateCount,DeathState]) 
        } 
      } 
    } 
     
  } 
  return(‐like) 
} 
 
likeJacWithCenPFunctionNLM <‐ function(As) { 
 
  A12 <‐ As[1] 
  A13 <‐ As[2] 
  A21 <‐ As[3] 
  A23 <‐ As[4] 
   
  R <‐ c(A12+A13,A21+A23) 
  Lambda1 <‐ ‐(R[1]+R[2] + sqrt( (R[1]‐R[2])^2 + 4*A12*A21 ) )/2 
  Lambda2 <‐ ‐(R[1]+R[2] ‐ sqrt( (R[1]‐R[2])^2 + 4*A12*A21 ) )/2 
 
  like <‐ 0 
  for (Pat in 1:NumPatients) { 
    PatData <‐ DiscrObs[DiscrObs[,1] == Pat,] 
    for (rcount in 2:nrow(PatData) ) { 
      tyd <‐ PatData[rcount,3] ‐ PatData[rcount‐1,3] 
      CurSt <‐ PatData[rcount‐1,2] 
      NewSt <‐ PatData[rcount,2] 
 
      if (CurSt == DeathState) print("Error") 
       
      if (NewSt == CurSt) Add <‐ ( (R[‐CurSt]+Lambda1)*exp(Lambda1*tyd) ‐ (R[‐
CurSt]+Lambda2)*exp(Lambda2*tyd) )/(Lambda1 ‐ Lambda2) 
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      if (CurSt == 1 & NewSt == 3) Add <‐ 
P11(R[1],Lambda1,Lambda2,tyd)*A13+P12(A12,Lambda1,Lambda2,tyd)*A23 
      if (CurSt == 2 & NewSt == 3) Add <‐ 
P21(A21,Lambda1,Lambda2,tyd)*A13+P22(R[2],Lambda1,Lambda2,tyd)*A23 
 
      if (CurSt == 1 & NewSt == 2) Add <‐ P12(A12,Lambda1,Lambda2,tyd) 
      if (CurSt == 2 & NewSt == 1) Add <‐ P21(A21,Lambda1,Lambda2,tyd) 
       
      like <‐ like + log(Add) 
      rm(Add) 
    } 
     
  } 
  return(‐like) 
} 
 
#Get initial values from msm 
 
library(msm) 
ObsDF <‐ data.frame(DiscrObs) 
ObsDFNoDeath <‐ data.frame(DiscrObsNoDeath) 
 
names(ObsDF) <‐ c("PatID","State","Time") 
names(ObsDFNoDeath) <‐ c("PatID","State","Time") 
 
QShape <‐ rbind(c(‐1,0.2,0.8),c(0.8,‐1,0.2),c(0,0,0)) 
QShape <‐ rbind(c(‐1.7,0.2,0.8,0.3,0.4),c(0.8,‐1.2,0.2,0.1,0.1),c(0.8,0.2,‐1.2,0.1,0.1),c(0.8,0.1,0.2,‐
1.2,0.1),c(0,0,0,0,0)) 
 
QIn <‐ crudeinits.msm(State~Time,PatID,data=ObsDF,qmatrix=QShape) 
QInNoDeath <‐ crudeinits.msm(State~Time,PatID,data=ObsDFNoDeath,qmatrix=QShape) 
 
ptm <‐ proc.time() 
QMSM <‐ msm(State~Time,PatID,data=ObsDF,qmatrix=QIn,death=3) 
QMSMTime <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
QMSMNoDeath <‐ msm(State~Time,PatID,data=ObsDFNoDeath,qmatrix=QIn) 
QMSMNoDeathTime <‐ proc.time() ‐ ptm 
 
As <‐ c(QIn[1,2],QIn[1,3],QIn[2,1],QIn[2,3]) 
AsNoDeath <‐ c(QInNoDeath[1,2],QInNoDeath[1,3],QInNoDeath[2,1],QInNoDeath[2,3]) 
 
As <‐ 
c(QIn[1,2],QIn[1,3],QIn[1,4],QIn[1,5],QIn[2,1],QIn[2,3],QIn[2,4],QIn[2,5],QIn[3,1],QIn[3,2],QIn[3,4],QIn[3,5],QIn
[4,1],QIn[4,2],QIn[4,3],QIn[4,5]) 
 
library(stats4) 
 
ptm <‐ proc.time() 
Est1 <‐ nlm(likeKayNoCenMatrixNLM,p=AsNoDeath,stepmax=0.1) 
Est1Time <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
Est3 <‐ nlm(likeKayNoCenPFunctionNLM,p=AsNoDeath,stepmax=0.1) 
Est3Time <‐ proc.time() ‐ ptm 
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ptm <‐ proc.time() 
Est5 <‐ nlm(likeKayWithCenMatrixNLM,p=As,stepmax=0.1) 
Est5Time <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
Est7 <‐ nlm(likeKayWithCenPFunctionNLM,p=As,stepmax=0.1) 
Est7Time <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
Est9 <‐ nlm(likeJacWithCenMatrixNLM,p=As,stepmax=0.1) 
Est9Time <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
Est11 <‐ nlm(likeJacWithCenPFunctionNLM,p=As,stepmax=0.1) 
Est11Time <‐ proc.time() ‐ ptm 
 
GetMatrix <‐ function(vec) { 
  TIM <‐ matrix(0,nrow=3,ncol=3) 
  TIM[1,2] <‐ vec[1] 
  TIM[1,3] <‐ vec[2] 
  TIM[1,1] <‐ ‐sum(TIM[1,‐1]) 
   
  TIM[2,1] <‐ vec[3] 
  TIM[2,3] <‐ vec[4] 
  TIM[2,2] <‐ ‐sum(TIM[2,‐2]) 
  return (TIM) 
} 
 
GetMatrix <‐ function(vec) { 
  TIM <‐ matrix(0,nrow=5,ncol=5) 
  TIM[1,2] <‐ vec[1] 
  TIM[1,3] <‐ vec[2] 
  TIM[1,4] <‐ vec[3] 
  TIM[1,5] <‐ vec[4] 
  TIM[1,1] <‐ ‐sum(TIM[1,‐1]) 
   
  TIM[2,1] <‐ vec[5] 
  TIM[2,3] <‐ vec[6] 
  TIM[2,4] <‐ vec[7] 
  TIM[2,5] <‐ vec[8] 
  TIM[2,2] <‐ ‐sum(TIM[2,‐2]) 
 
  TIM[3,1] <‐ vec[9] 
  TIM[3,2] <‐ vec[10] 
  TIM[3,4] <‐ vec[11] 
  TIM[3,5] <‐ vec[12] 
  TIM[3,3] <‐ ‐sum(TIM[3,‐3]) 
 
  TIM[4,1] <‐ vec[13] 
  TIM[4,2] <‐ vec[14] 
  TIM[4,3] <‐ vec[15] 
  TIM[4,5] <‐ vec[16] 
  TIM[4,4] <‐ ‐sum(TIM[4,‐4]) 
  return (TIM) 
} 
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GetMatrix(As) 
GetMatrix(Est1$estimate); Est1Time 
GetMatrix(Est3$estimate); Est3Time 
GetMatrix(Est5$estimate); Est5Time 
GetMatrix(Est7$estimate); Est7Time 
GetMatrix(Est9$estimate); Est9Time 
GetMatrix(Est11$estimate); Est11Time 
 
SSD1 <‐ GetMatrix(Est1$estimate) ‐ QSim; diag(SSD1) <‐ 0; sum(SSD1^2) 
SSD3 <‐ GetMatrix(Est3$estimate) ‐ QSim; diag(SSD3) <‐ 0; sum(SSD3^2) 
SSD5 <‐ GetMatrix(Est5$estimate) ‐ QSim; diag(SSD5) <‐ 0; sum(SSD5^2) 
SSD7 <‐ GetMatrix(Est7$estimate) ‐ QSim; diag(SSD7) <‐ 0; sum(SSD7^2) 
SSD9 <‐ GetMatrix(Est9$estimate) ‐ QSim; diag(SSD9) <‐ 0; sum(SSD9^2) 
SSD11 <‐ GetMatrix(Est11$estimate) ‐ QSim; diag(SSD11) <‐ 0; sum(SSD11^2) 
 
sum((GetMatrix(Est1$estimate) ‐ QSim)^2) 
sum((GetMatrix(Est3$estimate) ‐ QSim)^2) 
sum((GetMatrix(Est5$estimate) ‐ QSim)^2) 
sum((GetMatrix(Est7$estimate) ‐ QSim)^2) 
sum((GetMatrix(Est9$estimate) ‐ QSim)^2) 
sum((GetMatrix(Est11$estimate) ‐ QSim)^2) 
 
QMSMNoDeath  
 
SSDQMSM <‐ QMSM$Qmatrices$baseline ‐ QSim; diag(SSDQMSM) <‐ 0; sum(SSDQMSM^2) 
SSDQMSMNoDeath <‐ QMSMNoDeath$Qmatrices$baseline ‐ QSim; diag(SSDQMSMNoDeath) <‐ 0; 
sum(SSDQMSMNoDeath^2) 
 
ptm <‐ proc.time() 
Est1_5state <‐ nlm(likeKayNoCenMatrixNLM,p=As,stepmax=0.1) 
Est1Time_5state <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
Est5_5state <‐ nlm(likeKayWithCenMatrixNLM,p=As,stepmax=0.1) 
Est5Time_5state <‐ proc.time() ‐ ptm 
 
ptm <‐ proc.time() 
Est9_5state <‐ nlm(likeJacWithCenMatrixNLM,p=As,stepmax=0.1) 
Est9Time_5state <‐ proc.time() ‐ ptm 
 
QMSM_5state <‐ QMSM 
QMSMNoDeath_5State <‐ QMSMNoDeath 
 
 
 
#######Example 11: 5 state process with age and gender effect with transitions not observed exactly 
 
QSim <‐ rbind(c(‐1.4,0.2,0.8,0.3,0.1),c(0.8,‐1.2,0.2,0.1,0.1),c(0.4,0.9,‐1.6,0.2,0.1),c(0.2,0.4,0.3,‐
1.7,0.8),c(0,0,0,0,0)) 
 
NumPatients <‐ 1000 
MaxTime <‐ 50 
 
#Generate gender 
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set.seed(1604) 
Gender <‐ rbinom(n=NumPatients,size=1,prob=0.7) 
GenderEffect <‐ 0.4 
 
#Generate age 
set.seed(1604) 
Age <‐ runif(n=NumPatients,min=0,max=100) 
AgeEffect <‐ 0.05 
 
DeathState <‐ ncol(QSim) 
nStates <‐ ncol(QSim) 
InState <‐ 1 
 
JumpData <‐ 
RecordJumpProcessGenderAgeEffect(Q=QSim,GenderVector=Gender,GenderEffect=GenderEffect,AgeVector=
Age,AgeEffect=AgeEffect,AbState=DeathState,InState=1,k=NumPatients,T=MaxTime,saad=1010) 
 
 
#Extract discrete time point observations with death being observed within one day 
 
for (Pat in 1:NumPatients) { 
  PatData <‐ JumpData[JumpData[,1]==Pat,] 
  PatObs <‐ c(Pat,InState,0) 
  CumTime <‐ 0 
  sent  <‐ 1 
  while (sent ==1 ) { 
    NewTime <‐ runif(1,min=0.5,max=1.5) 
    CumTime <‐ CumTime + NewTime 
    Pos <‐ PatData[PatData[,3]<=CumTime,] 
    if (length(Pos) == 3) LastState <‐ Pos 
    if (length(Pos) > 3 ) LastState <‐ Pos[nrow(Pos),] 
    if (LastState[2] != DeathState) LastState[3] <‐ CumTime 
    PatObs <‐ rbind(PatObs,LastState) 
    if (LastState[2] == DeathState | CumTime > MaxTime) sent <‐ 0 
  } 
  if (Pat == 1) DiscrObs <‐ PatObs 
  if (Pat > 1) DiscrObs <‐ rbind(DiscrObs,PatObs) 
} 
 
library(msm) 
 
ObsDF <‐ data.frame(DiscrObs) 
names(ObsDF) <‐ c("PatID","State","Time") 
ObsDF$Sex <‐ Gender[ObsDF[,1]] 
ObsDF$Age <‐ Age[ObsDF[,1]] 
 
FirstQ <‐ rbind(c(‐1.5,0.2,0.8,0.3,0.5),c(0.8,‐1.4,0.2,0.3,0.1),c(0.8,0.1,‐1.3,0.3,0.1),c(0.8,0.2,0.3,‐
1.4,0.1),c(0,0,0,0,0)) 
 
QmsmIn <‐ crudeinits.msm(State~Time,PatID,data=ObsDF,qmatrix=FirstQ ) 
 
ptm <‐ proc.time() 
Qmsm <‐ msm(State~Time,PatID,data=ObsDF,qmatrix=QmsmIn,death=5,covariates=~Sex+Age) 
proc.time() ‐ ptm 
  
qmatrix.msm(Qmsm,covariates=list(Sex=0,Age=0)) 
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Qmsm 
 
par(mfrow=c(3,2)) 
plot.prevalence.msm(Qmsm, maxtime = 30) 
 
ptm <‐ proc.time() 
LoS <‐ totlos.msm(Qmsm) 
proc.time() ‐ ptm 
 
LoS[1]+LoS[2]+LoS[3]+LoS[4] 
 
test <‐ DiscrObs[DiscrObs[,2]==DeathState,] 
summary(test[,3]) 
 
test <‐ JumpData[JumpData[,2]==DeathState,] 
summary(test[,3]) 
 
#Do pearson's test 
 
ptm <‐ proc.time() 
GoodFit <‐ pearson.msm(Qmsm,boot=TRUE) 
proc.time() ‐ ptm; #21003 seconds (5.8 hours) 
 
ptm <‐ proc.time() 
GoodFit2 <‐ pearson.msm(Qmsm,boot=TRUE,covgroups=1) 
proc.time() ‐ ptm 
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