
THE ANALYSIS OF ENUMERATIVE SOURCE

CODES

AND THEIR USE IN

BURROWS–WHEELER COMPRESSION

ALGORITHMS

by

Andre Martin McDonald

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

February 5, 2010

Study leader: Professor J. C. Olivier

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



THE ANALYSIS OF ENUMERATIVE SOURCE

CODES

AND THEIR USE IN

BURROWS–WHEELER COMPRESSION

ALGORITHMS

by

Andre Martin McDonald

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

February 5, 2010

Study leader: Professor J. C. Olivier

 
 
 



Many people supported me while I worked on this project. I would like to
extend my gratitude to:

Mom and Dad for helping me through all the tough times — you are an example to
other parents, and I am fortunate to be your son;

Corne Olivier for providing me with opportunities to grow (both personally and profes-
sionally), and who remained steadfast in his support. You went above and beyond the
call of duty as study leader;

Prof. Gideon Kuhn for the insightful discussions and for your valuable advice — you
are an inspiration to the next generation of engineers;

Prof. Hendrik Ferreira from the University of Johannesburg, for your advice and the
opportunities you have provided me;

Profs. Frans Willems and Tjalling Tjalkens from the Technical University of Eind-
hoven, for your hospitality, advice, and the technical discussions;

Prof. Han Vinck for your hospitality during my visit to Germany, and for provid-
ing me with the opportunity to learn from your group;

Prof. Jos Weber for your friendly advice;

Anel Bekker, for remaining patient while I worked on this project, and for your support.
You are very special, and I am a richer person for knowing you;

Charl Bruwer, who remained a true friend in difficult times.

And last, but definitely not least, I would like to thank God for providing
me with the ability to explore His wonderful creation, and for all the joy
this has provided me over the years. I hope to fulfil my potential to better
the lives of others.

 
 
 



SUMMARY

THE ANALYSIS OF ENUMERATIVE SOURCE CODES AND THEIR
USE IN BURROWS–WHEELER COMPRESSION ALGORITHMS

by
Andre Martin McDonald

Study leader: Professor J. C. Olivier

Master of Engineering (Electronic Engineering)
Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology
University of Pretoria

In the late 20th century the reliable and efficient transmission, reception and storage
of information proved to be central to the most successful economies all over the world.
The Internet, once a classified project accessible to a selected few, is now part of the
everyday lives of a large part of the human population, and as such the efficient storage
of information is an important part of the information economy. The improvement of
the information storage density of optical and electronic media has been remarkable,
but the elimination of redundancy in stored data and the reliable reconstruction of the
original data is still a desired goal.

The field of source coding is concerned with the compression of redundant data and
its reliable decompression. The arithmetic source code, which was independently pro-
posed by J. J. Rissanen and R. Pasco in 1976, revolutionized the field of source coding.
Compression algorithms that use an arithmetic code to encode redundant data are typ-
ically more effective and computationally more efficient than compression algorithms
that use earlier source codes such as extended Huffman codes. The arithmetic source
code is also more flexible than earlier source codes, and is frequently used in adaptive
compression algorithms. The arithmetic code remains the source code of choice, despite
having been introduced more than 30 years ago.

The problem of effectively encoding data from sources with known statistics (i.e.
where the probability distribution of the source data is known) was solved with the
introduction of the arithmetic code. The probability distribution of practical data is
seldomly available to the source encoder, however. The source coding of data from
sources with unknown statistics is a more challenging problem, and remains an active
research topic.

Enumerative source codes were introduced by T. J. Lynch and L. D. Davisson in
the 1960s. These lossless source codes have the remarkable property that they may
be used to effectively encode source sequences from certain sources without requiring
any prior knowledge of the source statistics. One drawback of these source codes is
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the computationally complex nature of their implementations. Several years after the
introduction of enumerative source codes, J. G. Cleary and I. H. Witten proved that
approximate enumerative source codes may be realized by using an arithmetic code.
Approximate enumerative source codes are significantly less complex than the original
enumerative source codes, but are less effective than the original codes. Researchers
have become more interested in arithmetic source codes than enumerative source codes
since the publication of the work by Cleary and Witten.

This thesis concerns the original enumerative source codes and their use in Burrows–
Wheeler compression algorithms. A novel implementation of the original enumerative
source code is proposed. This implementation has a significantly lower computational
complexity than the direct implementation of the original enumerative source code. Sev-
eral novel enumerative source codes are introduced in this thesis. These codes include
optimal fixed–to–fixed length source codes with manageable computational complexity.

A generalization of the original enumerative source code, which includes more com-
plex data sources, is proposed in this thesis. The generalized source code uses the
Burrows–Wheeler transform, which is a low–complexity algorithm for converting the
redundancy of sequences from complex data sources to a more accessible form. The
generalized source code effectively encodes the transformed sequences using the origi-
nal enumerative source code. It is demonstrated and proved mathematically that this
source code is universal (i.e. the code has an asymptotic normalized average redundancy
of zero bits).
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SAMEVATTING

DIE ANALISE VAN TEL–BRONKODES EN DIE GEBRUIK DAARVAN
IN BURROWS–WHEELER KOMPRESSIEALGORITMES

deur
Andre Martin McDonald

Studieleier: Professor J. C. Olivier

Meester van Ingenieurswese (Elektroniese Ingenieurswese)
Departement van Elektriese, Elektroniese en Rekenaaringenieurswese
Fakulteit van Ingenieurswese, Bou–omgewing en Inligtingstegnologie

Universiteit van Pretoria

Die betroubare en doeltreffende versending, ontvangs en berging van inligting vorm
teen die einde van die twintigste eeu die kern van die mees suksesvolle ekonomieë in
die wêreld. Die Internet, eens op ’n tyd ’n geheime projek en toeganklik vir slegs ’n
klein groep verbruikers, is vandag deel van die alledaagse lewe van ’n groot persentasie
van die mensdom, en derhalwe is die doeltreffende berging van inligting ’n belangrike
deel van die inligtingsekonomie. Die verbetering van die bergingsdigteid van optiese en
elektroniese media is merkwaardig, maar die uitwissing van oortolligheid in gebergde
data, asook die betroubare herwinning van oorspronklike data, bly ’n doel om na te
streef.

Bronkodering is gemoeid met die kompressie van oortollige data, asook die be-
troubare dekompressie van die data. Die rekenkundige bronkode, wat onafhanklik
voorgestel is deur J. J. Rissanen en R. Pasco in 1976, het ’n revolusie veroorsaak
in die bronkoderingsveld. Kompressiealgoritmes wat rekenkundige bronkodes gebruik
vir die kodering van oortollige data is tipies meer doeltreffend en rekenkundig meer ef-
fektief as kompressiealgoritmes wat vroeëre bronkodes, soos verlengde Huffman kodes,
gebruik. Rekenkundige bronkodes, wat gereeld in aanpasbare kompressiealgoritmes ge-
bruik word, is ook meer buigbaar as vroeëre bronkodes. Die rekenkundige bronkode
bly na 30 jaar steeds die bronkode van eerste keuse.

Die probleem om data wat afkomstig is van bronne met bekende statistieke (d.w.s.
waar die waarskynlikheidsverspreiding van die brondata bekend is) doeltreffend te
enkodeer is opgelos deur die instelling van rekenkundige bronkodes. Die bronenkodeer-
der het egter selde toegang tot die waarskynlikheidsverspreiding van praktiese data.
Die bronkodering van data wat afkomstig is van bronne met onbekende statistieke is
’n groter uitdaging, en bly steeds ’n aktiewe navorsingsveld.

T. J. Lynch and L. D. Davisson het tel–bronkodes in die 1960s voorgestel. Tel–
bronkodes het die merkwaardige eienskap dat bronsekwensies van sekere bronne effek-
tief met hierdie foutlose kodes geënkodeer kan word, sonder dat die bronenkodeerder
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enige vooraf kennis omtrent die statistieke van die bron hoef te besit. Een nadeel van
tel–bronkodes is die hoë rekenkompleksiteit van hul implementasies. J. G. Cleary en
I. H. Witten het verskeie jare na die instelling van tel–bronkodes bewys dat benaderde
tel–bronkodes gerealiseer kan word deur die gebruik van rekenkundige bronkodes. Be-
naderde tel–bronkodes het ’n laer rekenkompleksiteit as tel–bronkodes, maar benaderde
tel–bronkodes is minder doeltreffend as die oorspronklike tel–bronkodes. Navorsers het
sedert die werk van Cleary en Witten meer belangstelling getoon in rekenkundige
bronkodes as tel–bronkodes.

Hierdie tesis is gemoeid met die oorspronklike tel–bronkodes en die gebruik daarvan
in Burrows–Wheeler kompressiealgoritmes. ’n Nuwe implementasie van die oorspronk-
like tel–bronkode word voorgestel. Die voorgestelde implementasie het ’n beduidende
laer rekenkompleksiteit as die direkte implementasie van die oorspronklike tel–bronkode.
Verskeie nuwe tel–bronkodes, insluitende optimale vaste–tot–vaste lengte tel–bronkodes
met beheerbare rekenkompleksiteit, word voorgestel.

’n Veralgemening van die oorspronklike tel–bronkode, wat meer komplekse data-
bronne insluit as die oorspronklike tel–bronkode, word voorgestel in hierdie tesis. The
veralgemeende tel–bronkode maak gebruik van die Burrows–Wheeler omskakeling. Die
Burrows–Wheeler omskakeling is ’n lae–kompleksiteit algoritme wat die oortolligheid
van bronsekwensies wat afkomstig is van komplekse databronne omskakel na ’n meer
toeganklike vorm. Die veralgemeende bronkode enkodeer die omgeskakelde sekwensies
effektief deur die oorspronklike tel–bronkode te gebruik. Die universele aard van hierdie
bronkode word gedemonstreer en wiskundig bewys (d.w.s. dit word bewys dat die kode
’n asimptotiese genormaliseerde gemiddelde oortolligheid van nul bisse het).
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Mathematical notation

Several of the mathematical expressions presented in this thesis contain vectors, random
variables, and matrices. All vectors are printed in bold — an 𝑛–element vector is
expressed as

x𝑛 = {𝑥1, 𝑥2, . . . 𝑥𝑛}
= 𝑥1𝑥2 . . . 𝑥𝑛 (1)

where 𝑥1, 𝑥2, . . . 𝑥𝑛 denotes the vector elements. All sequences are expressed using vec-
tor notation. In certain cases, the vector x𝑛 is denoted by x (i.e. the length of the
vector does not form part of its symbol).

Some of the expressions of this thesis involve one or more subsequences of an original
sequence. A subsequence of the original sequence x is expressed as

x𝑗𝑖 = {𝑥𝑖, 𝑥𝑖+1, . . . 𝑥𝑗} (2)

if 𝑗 ≥ 𝑖, and
x𝑗𝑖 = {𝑥𝑖, 𝑥𝑖−1, . . . 𝑥𝑗} (3)

if 𝑗 < 𝑖.
All random variables are expressed using capital letters. A vector of random vari-

ables is expressed as

X𝑛 = {𝑋1, 𝑋2, . . .𝑋𝑛}
= 𝑋1𝑋2 . . .𝑋𝑛 (4)

where 𝑋1, 𝑋2, . . .𝑋𝑛 denotes the random variables. Random sequences are expressed
using vector notation, and subsequences of random sequences are expressed in the same
manner as the subsequences of ordinary sequences. The vector X𝑛 is also denoted as
X in certain cases.

Matrices appear in a very small fraction of the expressions presented in this thesis,
and are expressed using capital letters that are printed in bold. Matrices are clearly
identified in the text in order to distinguish them from vectors of random variables.
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AEP Asymptotic equipartition property

ASCII American standard code for information interchange

avg. Average

AWFC Advanced weighted frequency count

bit Binary digit

BWT Burrows–Wheeler transform

CACM Communications of the Association for Computing Machinery

CCIR Consultative Committee on International Radio

CCITT International Telegraph and Telephone Consultative Committee

CD Compact disk

CDF Cumulative distribution function

codec Coder–decoder

CT Context tree

DCC Data Compression Conference

DCT Distance coding transform

DNA Deoxyribonucleic acid

DVD Digital video disk

ECG Electrocardiogram

EOF End of file

EOL End of line
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EXP Exponent

FSM Finite state machine

FSMX Finite–order FSM

GIF Graphics interchange format

GNU GNU’s not UNIX

GSM Global system for mobile communications

gzip GNU zip

i.i.d. Independent and identically distributed

IFT Inversion frequencies transform

ITU International Telecommunication Union

ITU–T ITU telecommunication standardization sector

JPEG Joint Photographic Experts Group

kB Kilobyte

KT Krichevsky–Trofimov

LBIV Left–bigger inversion vector

LIPT Length index preserving transform

LSB Least significant bit

LSS Least significant symbol

LUP List update problem

LZ77 Lempel–Ziv 1977

LZ78 Lempel–Ziv 1978

LZW Lempel–Ziv–Welch

MB Megabyte

MSB Most significant bit

MSS Most significant symbol

p.i.i.d. Piecewise independent and identically distributed

PPM Prediction by partial match

PPM∗ PPM with unbounded context length
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prob. Probability

RLE Run–length encoder

RLE–0 Zero run length

RMB RLE mantissa buffer

SBR Sort–by–rank

seq. Sequence

SOR Start of run

src. Source

theo. Theory / Theoretical

TS(0) Deterministic time–stamp algorithm

VLSI Very large scale integration

w.r.t. With respect to

WFC Weighted frequency count
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LIST OF SYMBOLS

𝛽𝑚(⋅) Refer to equation 6.8 on page 142.
𝛿 An arbitrarily small, positive, real–valued constant (pages 5 and 161).

A real–valued constant between 0 and 0.5 (page 115).
A real–valued constant between 0 and 1 (pages 116 and 160).

𝛿(⋅, ⋅) The Kronecker delta function.
$ The end–of–file symbol.
𝜖 The escape symbol.
𝛾 A parameter of an algorithm for updating symbol frequency counts

(page 87).
A real–valued constant greater than zero (page 177).

Λ The set of all possible values that the source parameter 𝜃 may assume
(page 27).
The concatenation function for two or more sequences (elsewhere).

𝜆 The parameter of a Poisson probability distribution.
𝜆𝑗 , 𝜆𝑛 Constants that are related to Stirling’s approximation of the factorial of

an integer.
𝜇 A real–valued constant greater than zero.
𝜇𝑐 The average time required by a practical implementation of a source

encoder to encode a source sequence (seconds).
𝜇𝑑 The average time required by a practical implementation of a source

decoder to decode a source sequence (seconds).
Ω A random–valued parameter of an information source.
𝜎 A constant that is approximately equal to 0.08607.
𝜎𝑐 The standard deviation of the time required by a practical

implementation of a source encoder to encode a source sequence
(seconds).

𝜎𝑑 The standard deviation of the time required by a practical
implementation of a source decoder to decode a source sequence
(seconds).

Θ A random–valued parameter of an information source.
𝜃 A deterministic parameter of an information source.
𝜃(𝑗) The number of primes less than or equal to the integer 𝑗.

0𝑚 The 𝑚–bit sequence that consists only of zero–valued bits.
1(⋅) An operator that is evaluated as unity if its operand is true, and zero if

not.
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𝒜 The symbol alphabet of an information source.
𝒜𝑛 The 𝑛–fold Cartesian product of the symbol alphabet 𝒜.
𝒜𝑛
𝛿 A set that consists of all 𝑛–bit sequences with a weight of 𝑤 bits,

where 𝑤 ∈ {0, 1, . . . ⌊𝛿𝑛⌋}.
∣𝒜∣ The cardinality of the symbol alphabet 𝒜 (symbols).
𝑎𝑖 The short notation for 𝑎𝑖(𝑚, 𝑘) (page 137).

The 𝑖th symbol of a symbol alphabet (elsewhere).
𝑎𝑖(𝑚, 𝑘) The exponent of the prime number 𝑝𝑖 in the prime–factor–based

decomposition of the binomial coefficient 𝐵𝑚,𝑘.

𝔹 The set {0, 1}.
B𝑚′

The binary word that is assigned to the random 𝑞–ary source
symbol 𝑋.

𝐵𝑖 Bit 𝑖 of the binary word that is assigned to the random 𝑞–ary
source symbol 𝑋.

𝐵𝑛,𝑚 The binomial coefficient
(
𝑛
𝑚

)
.

𝐵𝑚(⋅) Refer to section 6.1.1.3 on page 142.
BWT(⋅) The forward Burrows–Wheeler transform function.
BWT−1(⋅, ⋅) The reverse Burrows–Wheeler transform function.
b𝑚

′
The binary word that is assigned to the deterministic 𝑞–ary source
symbol 𝑥.

𝑏𝑖 Bit 𝑖 of the binary word that is assigned to the deterministic 𝑞–ary
source symbol 𝑥.

𝑏𝑗,𝑘 Bit 𝑗 of the binary word that is assigned to the 𝑞–ary symbol 𝑥𝑘 of
the deterministic source sequence x.

𝑏
(𝑗)
𝑛,𝑘 The branch value between the integers 𝑁𝑛,𝑘 and 𝑁𝑛+1,𝑘+𝑗 in the

general version of Pascal’s triangle.

C A source code.
𝐶 The total number of i.i.d. symbol segments in a BWT output

sequence.
𝒞𝑛 The set of all uniquely decodable fixed–to–variable length source

codes for sequences of 𝑛 source symbols.
Cx The codeword that is assigned to the random source sequence X.

𝐶(x𝑗1) The number of source sequences in the set 𝑆𝑏 with a prefix equal

to x𝑗1.
𝐶D(𝑗) The total number of bit operations involved in the computation of

the factorial 𝑗!
𝒞𝑛,𝑚(⋅, ⋅) The concatenation function for an 𝑛–symbol sequence and an

𝑚–symbol sequence.
𝐶LB(𝑛) The size of the binomial coefficient lookup table that is used to

encode sequences of up to 𝑛 symbols (bits).
𝐶LF(𝑛) The size of the factorial lookup table that is used to encode

sequences of up to 𝑛 symbols (bits).
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𝑐 A real–valued constant (page 45).
The integer codeword that is assigned to an index sequence (as
used in the example on page 105).

𝑐𝑖 The running total prior to decoding the 𝑖th index of an index
sequence.

𝑐x The integer codeword that is assigned to the deterministic
source sequence x.

cx The codeword that is assigned to the deterministic source
sequence x.

c𝑗 Refer to lemma 6.2.4 on page 213.
c′𝑗 Refer to equation 6.220 on page 214.
c𝑗,𝑘 Refer to equation 6.207 on page 212.
c′𝑗,𝑘 Refer to equation 6.213 on page 213.
c1,𝑗,𝑘 Refer to equation 6.208 on page 212.
𝑐𝑖(𝑗) The exponent of the prime number 𝑝𝑖 in the prime factor

decomposition of the integer 𝑗.

𝐷 The set {d ∈ ℕ
𝑤 : 1 ≤ 𝑑𝑖 ≤ 𝑛 ∧ 𝑑𝑖 > 𝑑𝑗 ∀ 𝑖 > 𝑗}.

𝒟𝑛,𝑚(⋅) The division function for an (𝑛+𝑚)–symbol sequence (the
sequence is divided into an 𝑛–symbol and an 𝑚–symbol
sequence).

𝐷(𝛿∣∣𝑝) The Kullback–Leibler divergence between the bit distributions
{𝛿, 1− 𝛿} and {𝑝, 1− 𝑝}, where 0 < 𝛿, 𝑝 < 1.

𝐷(𝑝(x𝑛)∣∣𝑞(x𝑛)) The Kullback–Leibler divergence between the distributions
𝑝(x𝑛) and 𝑞(x𝑛).

𝑑𝑛 Refer to equation 5.3 on page 130.
𝑑𝑥 Refer to equation 5.2 on page 130.
dx The degree vector {𝑑1,x, 𝑑2,x . . . 𝑑𝑤,x} of the nonzero–valued

bits of the bit sequence x.
𝑑𝑖,x The degree of the (𝑛− 𝑖+ 1)th nonzero–valued bit of the

sequence x.

ℰ A set that consists of all the suffixes of all the sequences that
are associated with the leaf nodes of a tree.

𝑒𝑖,𝑘 The integer in row 𝑖 and column 𝑘 of the coding matrix
(refer to equation 4.8 on page 107).

EOF The end–of–file symbol.
EOL The ASCII end–of–line symbol.

𝐹 A discrete monotone function.
𝑓(⋅) The next–state function that is associated with an FSM source

(page 39).
The function that appears in the definition of the Lee–weight
of a source sequence (page 123).

The function that is defined as 𝑓 ≜ 𝑓2 ∘ 𝑓1 (refer to equation
6.6 on page 141).
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𝑓1(⋅) Refer to section 6.1.1.3 on page 141.
𝑓2(⋅) Refer to equation 6.7 on page 142.
𝑓3(⋅) Refer to equation 6.48 on page 155.
𝑓𝑟𝑟(𝑥𝑖) The integer that is assigned to the source symbol 𝑥𝑖 by the recency–

rank encoder.
𝑓𝑖𝑛𝑡(𝑥𝑖) The integer that is assigned to the source symbol 𝑥𝑖 by the encoder

of the interval code.
𝑓(𝑦∣x𝑘) A source model’s frequency count of the symbol 𝑦, immediately

prior to encoding symbol 𝑥𝑘+1 of the sequence x.

𝐺 A discrete monotone function.
𝑔1(⋅) Refer to equation 6.9 on page 142.
𝑔2(⋅) Refer to equation 6.47 on page 155.
𝑔3(⋅) Refer to equation 6.106 on page 178.
𝑔4(⋅) Refer to equation 6.202 on page 211.

𝐻 The average ‘amount’ of information that an information source
produces (bits).

ℋ𝑛(⋅) A function that maps a sequence to its 𝑛–symbol prefix.
𝐻(𝑋) The entropy of the source symbol 𝑋 (bits).
𝐻(𝒳 ) The entropy rate of an information source (bits per symbol).

𝐻̂(𝑖) Refer to equations 6.97 and 6.194 on pages 176 and 209.
𝐻(X𝑛) The entropy of the source sequence X𝑛 (bits).
𝐻𝑦(𝑋) The entropy of a symbol that the FSM closure of a context–tree

source produces in state s′𝑦 (bits).
𝐻̂x(𝒳 ) The entropy rate associated with the empirical distribution of the

source sequence X (bits per symbol).

𝐻̂(𝑖, 𝑗) Refer to equations 6.98 and 6.195 on pages 176 and 209.
𝐻(X𝑛∣Θ) The conditional entropy of the source sequence X𝑛 (bits).
ℎ(⋅) The binary entropy function.

ℐ The BWT index that is associated with a random source sequence.
𝐼 A suffix array (page 38).

The BWT index that is associated with a deterministic source
sequence (pages 169 and 204).

𝐼𝑛 The set {𝑗 ∈ ℕ0 : 0 ≤ 𝑗 ≤ 2𝑛 − 1}.
𝐼(𝑘) Element 𝑘 of the suffix array 𝐼.
𝑖𝑆𝑏
(x𝑛) The index of the sequence x𝑛 in the ordered set 𝑆𝑏.

𝐼(X𝑛; Θ) The mutual information of the sequence X𝑛 and the parameter Θ
(bits).

𝐾𝑛 A real–valued constant between 0 and 1, defined for each integer 𝑛
greater than one.

𝑘 The number of blocks in a block segment (page 119).
The length of each codeword of a fixed–to–fixed length source code,
measured in bits (elsewhere).
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𝑘ave The mean number of source bits that are represented by a codeword
of a variable–to–fixed length source code (refer to equation 4.16 on
page 111).

𝑘1(𝑛) The length of a level–one block of the segmentation algorithm, under
the assumption that source sequences of 𝑛 symbols are encoded
(symbols).

𝑘2(𝑛) The length of a level–two block of the segmentation algorithm, under
the assumption that source sequences of 𝑛 symbols are encoded
(symbols).

ℒ𝒯 The set of leaf nodes of the tree that is defined by the set 𝒯 .
𝐿(𝑋) The average length of codewords that are assigned to individual

source symbols 𝑋 (bits).
𝐿(X𝑛) The average length of codewords that are assigned to source

sequences X𝑛 (bits).
𝐿C (X

𝑛∣𝜃) The conditional average codeword length that is associated with the
source code C (bits).

𝑙𝐴 The length of a codeword that is produced by the encoder of an
arithmetic code, measured in bits (refer to equation 6.44 on page
151).

𝑙𝑘 A level of the full binary tree that is associated with an extended
Huffman code.

𝑙(x) The length of the codeword that is assigned to the sequence x (bits).
𝑙(𝑎𝑖) The length of the codeword that is assigned to the alphabet symbol

𝑎𝑖 (bits).
𝑙C (x

𝑛) The length of the codeword that is assigned to the sequence x𝑛 by
the encoder of the source code C (bits).

𝑙𝑖(x) The length of the 𝑖th field of the codeword that is assigned to the
sequence x (bits).

𝑙𝑠𝑠 The length of a subsequence (bits).
𝑙′𝑗(x) Refer to equation 6.219 on page 214.

𝑙
(𝑠)
1,𝑖 (x) The length of the codeword that is assigned to the 𝑖th i.i.d. symbol

segment of the BWT output sequence, where it is assumed that the
sequence x is encoded (bits).

𝑙𝑖,𝑗(x) The length of the 𝑖th field of the codeword that is assigned to the 𝑗th
i.i.d. symbol segment of the BWT output sequence, where it is
assumed that the sequence x is encoded (bits).

𝑙′𝑗,𝑘(x) Refer to equation 6.212 on page 213.
𝑙𝑖,𝑗,𝑘(x) The length of the 𝑖th field of the codeword that is assigned to the

subsequence 𝑆𝑗,𝑘(x) (bits).
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𝑙′𝑣,𝑖,𝑗,𝑘(x) The length of the 𝑣th field of the codeword that is assigned to the
subsequence 𝑆𝑗,𝑘(y

′
𝑖), where y

′
𝑖 denotes the 𝑖th symbol segment of the

BWT output sequence (which may include symbols from up to 𝑚
additional segments), and where it is assumed that the sequence x is
encoded (bits).

𝑙𝑣,𝑖,𝑗,𝑘(x) The length of the 𝑣th field of the codeword that is assigned to the
subsequence 𝑆𝑗,𝑘(y𝑖), where y𝑖 denotes the 𝑖th i.i.d. symbol segment
of the BWT output sequence, and where it is assumed that the
sequence x is encoded (bits).

𝑙𝑣,𝑖,𝑗,𝑘(x) The length of 𝑣th field of the codeword that is assigned to the
subsequence 𝑆𝑗,𝑘(y𝑖), where y𝑖 denotes the 𝑖th expected i.i.d. symbol
segment of the BWT output sequence, and where it is assumed that
the sequence x is encoded (bits).

𝑙𝑣,𝑖,𝑗,𝑘(x) The length of the 𝑣th field of the codeword that is assigned to the
subsequence 𝑆𝑗,𝑘(v𝑖), where v𝑖 denotes the sequence of symbols that
the context–tree source produces in its 𝑖th lexicographically–ranked
state, and where it is assumed that the sequence x is encoded (bits).

𝑙(𝑤, 𝑘) The number of bits that are required to encode the weights of the 𝑘
blocks in a block segment, where 𝑤 denotes the total weight of the
blocks (refer to equation 4.33 on page 119).

𝑀(𝑟) The metric of the 𝑟th level–one block of the segmentation algorithm.
𝑚 The length, in bits, of each short block of the combinatorial source

code (refer to section 4.1.7 on page 121).
The length, in symbols, of the longest context of a finite–memory
source or context–tree source (elsewhere).

𝑚′ Refer to equation 6.174 on page 200.
𝑚𝑘 The number of codewords of an extended Huffman code that occupy

level 𝑙𝑘 of a full binary tree.
𝑚𝑎𝑏 The frequency count of the bit pair 𝑎𝑏 in a source sequence.
𝑚(𝑖, 𝑘) Refer to equation 4.25 on page 113.

ℕ The set of natural numbers, {1, 2, 3, . . .}.
ℕ0 The set of natural numbers, including zero, {0, 1, 2, . . .}.
N Refer to equations 6.238 and 6.279 on pages 217 and 223.
N′′ Refer to equation 6.281 on page 223.
𝑁𝑗,𝑘 The total number of 𝑗–symbol 𝑞–ary sequences with a Lee–weight of 𝑘

(page 124).
The length of the random subsequence 𝑆𝑗,𝑘(X), measured in bits
(elsewhere).

𝑁𝑖(0) The number of zero–valued bits in the 𝑖th level–one block of the
segmentation algorithm.

𝑁𝑖(1) The number of nonzero–valued bits in the 𝑖th level–one block of the
segmentation algorithm.
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𝑁(𝑛, 𝑙, 𝑞) Refer to equation 4.43 on page 124.
𝑛 The length of a source sequence (symbols).
n′ Refer to equations 6.240 and 6.282 on pages 217 and 223.
n′′ Refer to equation 6.284 on page 223.
𝑛𝑖 The length of the 𝑖th i.i.d. symbol segment of the BWT

output sequence (symbols).
𝑛𝑖 The expected length of the 𝑖th i.i.d. symbol segment of the

BWT output sequence (symbols).
𝑛′′
𝑖 An integer element of the set {0, 1, . . . 𝑛}.

𝑛𝑦𝑦 The short notation for 𝑛𝑦𝑦(x
𝑛
𝑖 ), which denotes the number of

bit pairs 𝑦𝑦 that are present in the sequence x𝑛𝑖 (page 128).
𝑛𝑗,𝑘 The length of the deterministic subsequence 𝑆𝑗,𝑘(x) (bits).
𝑛′
𝑗,𝑘 An integer element of the set {0, 1, . . . 𝑛}.

𝑛𝑖,𝑗,𝑘 The length of the deterministic subsequence 𝑆𝑗,𝑘(y𝑖), where y𝑖
denotes the 𝑖th i.i.d. symbol segment of the BWT output
sequence (bits).

𝑛′
𝑖,𝑗,𝑘 An integer element of the set {0, 1, . . . 𝑛′′

𝑖 }.
𝑛̂𝑖,𝑗,𝑘 The length of the deterministic subsequence 𝑆𝑗,𝑘(v𝑖), where v𝑖

denotes the sequence of symbols that the context–tree
source produces in its 𝑖th lexicographically–ranked state
(bits).

𝑛(s) The total number of symbols that occur within context s of
a source sequence.

𝑛𝑑(s) The total number of distinct symbols that occur within
context s of a source sequence.

𝑛𝑧(x
𝑛) The number of times that the symbol 𝑧 (or conditioning

class 𝑧) appears in the sequence x𝑛.
𝑛𝑧𝑦(x

𝑛) The number of times that the symbol 𝑦 appears within
conditioning class 𝑧 of the sequence x𝑛.

𝑛(𝑥𝑖, s) The number of times that the symbol 𝑥𝑖 appears within
context s of the sequence x.

𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑗) The number of sequences in the ordered set 𝑆𝑏 with the prefix

{𝑥1, 𝑥2, . . . 𝑥𝑗}.

𝑂(⋅) Bachmann–Landau (big–O) notation.

P The state probability vector of the FSM closure of a context–
tree source.

𝑃 The pattern set that is associated with a source code (refer to
section 4.1.9 on page 124).

𝑃𝑏 The block–error probability of a source code (refer to equation
6.31 on page 147).
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Pr(𝑥) The probability of a random source symbol 𝑋 being equal to 𝑥.
Pr(x𝑛) The probability of a random source sequence X𝑛 being equal to x𝑛.
𝑃𝑐(x

𝑖) The Krichevsky–Trofimov estimate of the probability of
occurrence of the sequence x𝑖.

Pr(𝑋 = 𝑦) The probability of the random source symbol 𝑋 being equal to 𝑦.
𝑝 The probability that a random source bit from a stationary binary

memoryless source has a nonzero value.
𝑝 Refer to equation 6.73 on page 160.
𝑝𝑖 The running product after the 𝑖th step of the computation of a

factorial (refer to equation 5.5 on page 131).
The 𝑖th prime number (page 137).
The probability that the FSM closure of a context–tree source is in
state s′𝑖 (elsewhere).

𝑝𝑗,𝑘 The probability of a state transition to state s′𝑘 of the FSM closure
of a context–tree source, conditioned on the FSM closure being
in state s′𝑗 (refer to equations 6.90 and 6.167 on pages 173 and 195).
Refer to equation 6.244 on page 218.

𝑝′′𝑗,𝑘 Refer to equation 6.247 on page 219.
𝑝𝑖,𝑗,𝑘 Refer to equation 6.287 on page 224.
𝑝′′𝑖,𝑗,𝑘 Refer to equation 6.290 on page 225.
𝑝max The probability of occurrence of the most likely symbol in a symbol

alphabet.
pre(x𝑛) A prefix of the sequence x𝑛.

𝒬 The set that consists of the reversed states of a finite–memory
source.

𝒬𝑐 The set of states that correspond to novel symbol contexts. The
novel symbol contexts are a result of applying the BWT to
sequences from a context–tree source.

𝒬′ The union of the sets 𝒬 and 𝒬𝑐.
𝒬(x𝑛, 𝑑𝑤,𝑥) The number of 𝑛–bit source sequences with a weight of 𝑤 that are

found to be numerically smaller than the sequence x𝑛 (only those
source sequence bits with a degree less than or equal to 𝑑𝑤,x are
considered during the comparison).

𝑞 The probability that a random source bit from a stationary binary
memoryless source has a value of zero (page 109).
The number of symbols in the symbol alphabet of a 𝑞–ary source
(elsewhere).

𝑞𝑖 The probability that a context–tree source is in its 𝑖th
lexicographically–ranked state.

q The set {0, 1, . . . 𝑛}2𝑚′−1.
q1 The set {0, 1, . . . 𝑛}∣𝒮∣.
q2 The set {0, 1, . . . 𝑛}∣𝒮∣(2𝑚′−1).
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𝑅 A p.i.i.d. symbol probability distribution.
𝑅𝑎 The code rate of a fixed–to–fixed length source code, measured in

bits per symbol (refer to equation 6.77 on page 161).
𝑅𝑛 The entropy–normalized redundancy of a source code (refer to

equation 6.78 on page 163).
𝑅′
𝑠 The normalized strong minimax redundancy of a source code (bits

per symbol).
𝑅′
𝑤 The normalized weak minimax redundancy of a source code (bits

per symbol).
ℛ(⋅) The sequence reversal function.
𝑅(X𝑛) The average per–codeword redundancy of a source code, assuming

that 𝑛–symbol sequences X𝑛 are encoded (bits).
𝑅′(X𝑛) The normalized average per–codeword redundancy of a source code,

assuming that 𝑛–symbol sequences X𝑛 are encoded (bits per symbol).
𝑅′
𝑚𝑖𝑛,𝑎𝑣𝑒 The normalized minimum average redundancy of a source code

(bits per symbol).
𝑅′

C (X
𝑛, 𝜃) The normalized redundancy of the source code C , conditioned on

the source parameter 𝜃 (bits per symbol).
𝑟𝑎 Refer to equation 4.15 on page 110.
𝑟𝑖 Refer to equation 4.29 on page 114.
𝑟𝑖(𝑥) The number of times that the symbol 𝑥 appears in the first 𝑖

symbols of a BWT output sequence.

𝒮 A finite set of states that is associated with a context–tree source.
S The state–transition probability matrix of the FSM closure of a

context–tree source.
𝒮 ′ A finite set of states that is associated with the FSM closure of a

context–tree source.
∣𝒮∣ The number of states that are associated with a context–tree source.
∣𝒮 ′∣ The number of states that are associated with the FSM closure of a

context–tree source.
Str,c The compact transition matrix of a context–tree source’s FSM

closure.
𝑆𝑏 An ordered set of sequences.
𝑆𝑖 Refer to equation 6.49 on page 156.
𝑆𝑗,𝑘(⋅) Refer to equation 6.178 on page 202.
s𝑖 The 𝑖th state of the state set that is associated with a context–tree

source.
s′𝑖 The 𝑖th state of the state set that is associated with the FSM

closure of a context–tree source.

s
(𝑡)
𝑖 The state in which a source resides at time instance 𝑖.
SOR The start–of–run symbol.
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suf(x𝑛) A suffix of the sequence x𝑛.
suf𝑐(𝑙) A set that consists of all the suffixes of the sequence that is associated

with leaf node 𝑙 of a tree.

𝒯 A set that consists of tree nodes.
𝒯 ′ A set of nodes that constitute a refined tree.
𝒯2 The set of source sequences that are correctly encoded and decoded by

the variable weight, fixed–to–fixed length source code.
𝒯 ′
2 The set of source sequences that are correctly encoded and decoded by

the alternative to the variable weight, fixed–to–fixed length source
code.

𝑇𝑗 The index of the first symbol in the BWT output sequence that
occurred within the 𝑗th lexicographically–ranked source context.

𝑇 𝑗 The expected index of the first symbol in the BWT output sequence
that occurred within the 𝑗th lexicographically–ranked source context.

𝑡𝑥,𝑦 The destination state of the transition that occurs when a source
produces the symbol 𝑥 in state s′𝑦.

𝑡ℎ The run–length threshold of a run–length code.
𝑡𝑚𝑎𝑥 The maximum number of source symbols that are potentially assigned

nonzero–valued weights by the WFC algorithm as it updates the
symbol ranks during a single iteration.

V𝑖(X) The sequence of symbols, from the random sequence X, that was
produced by a context–tree source in its 𝑖th lexicographically–ranked
state.

V𝑖 The short notation for V𝑖(X).
v𝑖(x) The sequence of symbols, from the deterministic sequence x, that was

produced by a context–tree source in its 𝑖th lexicographically–ranked
state.

v𝑖 The short notation for v𝑖(x).
𝑣′𝑖 The length of segment 𝑖 of the BWT output sequence (which may

include bits from up to 𝑚 additional segments).
𝑣′′𝑖 The weight of segment 𝑖 of the BWT output sequence (which may

include bits from up to 𝑚 additional segments).
𝑣𝑚,𝑖 The exponent of the prime number 𝑝𝑖 in the prime–factor–based

decomposition of the factorial 𝑚! (refer to equation 5.18 on page 138).

W Refer to equations 6.239 and 6.280 on pages 217 and 223.
𝑊 The weight of a random source sequence (bits).
W𝑛 The shortened BWT output sequence, assuming that the BWT was

applied to a random source sequence that was reversed and appended
with the end–of–file symbol.
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𝑊 (x) The weight of the deterministic bit sequence x (bits).
𝑊𝑗,𝑘 The weight of the random subsequence 𝑆𝑗,𝑘(X) (bits).
𝑊𝑖(𝑎𝑗) The weight that the WFC algorithm assigns to the alphabet symbol 𝑎𝑗

immediately prior to transforming the 𝑖th BWT output sequence
symbol.

𝑤 The weight of a deterministic source sequence (bits).
𝑤′ Refer to equation 6.67 on page 159.
w′ Refer to equations 6.241 and 6.283 on pages 217 and 223.
w𝑛 The shortened BWT output sequence, assuming that the BWT was

applied to a deterministic source sequence that was reversed and
appended with the end–of–file symbol.

𝑤(𝑛) The length of the sequence intervals that are encoded independently
from one another, measured in symbols (refer to section 3.3.2.4 on page
83).

𝑤𝑗,𝑘 The short notation for 𝑤𝑗,𝑘(x).
𝑤′
𝑗,𝑘 An integer element of the set {0, 1, . . . 𝑛𝑗,𝑘}.

𝑤𝑑
𝑘 The number of 𝑞–ary symbols that are equal to 𝑑 in the sequence x𝑛𝑘 .

𝑤𝑓 (𝑡) The weight function of the WFC algorithm.
𝑤𝑖,𝑗,𝑘 The short notation for 𝑤𝑗,𝑘(y𝑖), where y𝑖 denotes the 𝑖th i.i.d. symbol

segment of the BWT output sequence.
𝑤′
𝑖,𝑗,𝑘 An integer element of the set {0, 1, . . . 𝑛′

𝑖,𝑗,𝑘}.
𝑤̂𝑖,𝑗,𝑘 The short notation for 𝑤𝑗,𝑘(v𝑖), where v𝑖 denotes the sequence of

symbols that a context–tree source produces in its 𝑖th lexicographically–
ranked state.

𝑤𝐿(x
𝑛) The Lee–weight of the source sequence x𝑛.

𝑤𝑗,𝑘(x) The weight of the deterministic subsequence 𝑆𝑗,𝑘(x) (bits).

𝑋 A random source symbol.
X𝑛 The random source sequence {𝑋1, 𝑋2, . . .𝑋𝑛}.
X̂𝑛 The output sequence of a source decoder, when used to decode the

codeword Cx of the random sequence X𝑛.

X𝑗
𝑖 The random sequence {𝑋𝑖, 𝑋𝑖+1, . . .𝑋𝑗}.

𝑋𝑖 The 𝑖th symbol of a random source sequence X.
𝑥 A deterministic source symbol.
x𝑛 The deterministic source sequence {𝑥1, 𝑥2, . . . 𝑥𝑛}.
𝑥𝑖 The 𝑖th symbol of the deterministic source sequence x.

x𝑗𝑖 The deterministic sequence {𝑥𝑖, 𝑥𝑖+1, . . . 𝑥𝑗}.

Y𝑛 The BWT output sequence, assuming that the BWT was applied to a
random 𝑛–symbol source sequence that was reversed.

𝑦′ The complement of the bit 𝑦.
y′
𝑖 The 𝑖th symbol segment of the BWT output sequence (which may

include symbols from up to 𝑚 additional segments).
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y𝑖 The 𝑖th i.i.d. symbol segment of the BWT output sequence.
y𝑖 The 𝑖th expected i.i.d. symbol segment of the BWT output sequence.
𝑦0(𝑖) The running total of the zero–valued bits in a source sequence,

immediately prior to processing its 𝑖th bit (refer to section 4.1.3 on page
108).

𝑦1(𝑖) The running total of the nonzero–valued bits in a source sequence,
immediately prior to processing its 𝑖th bit (refer to section 4.1.3 on page
108).

Z𝑛+1 The BWT output sequence, assuming that the BWT was applied to a
random source sequence that was reversed and appended with the
end–of–file symbol.

𝑍 The set {𝑧 ∈ ℕ0 : 0 ≤ 𝑧 ≤ (𝑛
𝑤

)− 1}.
z𝑛+1 The BWT output sequence, assuming that the BWT was applied to a

deterministic source sequence that was reversed and appended with the
end–of–file symbol.

𝑧𝑤 Refer to equation 6.3 on page 140.
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CHAPTER 1

Introduction

In the late 20th century the reliable and efficient transmission, reception and storage
of information proved to be central to the most successful economies of the world. The
Internet, once a classified project accessible to a select few, is now part of the everyday
lives of a large percentage of the human population, and as such the efficient storage
of information is an important part of the information economy.

The monetary values associated with information and information technology are
staggering — in 2007, for example, a total of 29 922 million US dollars worth of recorded
music was sold worldwide [1]. Cisco systems, which develops and manufactures routers
and switches for the transmission and reception of information, sold 39 500 million
US dollars worth of equipment in 2008 alone [2]. It is estimated that there were 3 399
million GSM cellular telephone subscriptions worldwide in October 2008 [3]. If each
subscription represented a natural person, this total would represent more than half
of the planet’s population. Given these enormous numbers, it is clearly worthwhile to
improve our capacity to store and transmit information.

It appears that the demand for information increases more rapidly than the rate
at which cutting–edge technology can supply information. Researchers are starting to
encounter fundamental physical limits in the design of information technology. Smaller
and denser microprocessors, for example, operate at higher temperatures, and require
special means of cooling. Physical limits are a constraint in the design of optical and
electronic storage media. The improvement of the information storage density of these
storage media has been impressive, but engineers are struggling to maintain their earlier
rate of improvement.

Researchers are currently examining alternative means of storing and transmitting
information in order to satisfy our increasing demand for it. These technologies are
typically very expensive. A different approach to increasing the capacity of information
technology to store and transmit information centers on the information itself. Digital
electronics operate using two voltage levels, and therefore store and manipulate data
in a binary format. The storage and transmission capacity of a digital device depends
on the manner in which it represents information as a sequence of zero–valued bits and
nonzero–valued bits. The art of source coding, or data compression, is concerned with
the effective representation of information, in a manner that requires less capacity to
store, transmit or receive.

Many of the technologies we use on a daily basis would not be possible were it not
for source coding — examples include audio CDs, movie DVDs, cellular telephones,
and even fax machines. To illustrate the impact of source coding, consider a typical
100–minute movie stored on a DVD. To store this movie in an uncompressed digital
format, one can use the CCIR 601 standard [4]. Approximately 20 megabytes of memory
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CHAPTER 1 Introduction

is required to store one second of the movie in this format. A typical single–layer DVD
would be able to store approximately 4 minutes of the movie if it was uncompressed.
A total of 25 DVDs would be required to store the entire 100–minute movie. The
uncompressed representation of the movie is not only inefficient, but impractical as
well. The actual source code that is used to represent a movie on a DVD reduces the
size of the data by a factor of at least 25, which clearly illustrates the effectiveness (and
necessity) of source coding.

The above example illustrates that data compression is an important enabling tech-
nology, and that research in this field is a worthwhile pursuit. Data compression was
once considered the domain of a relatively small group of scientists and engineers, but
has evolved into a multi–million dollar a year industry.

The arithmetic source code, which was independently proposed by J. J. Rissanen
and R. Pasco in 1976, revolutionized the field of source coding. Compression algorithms
that use an arithmetic code to encode redundant data are typically more effective and
computationally more efficient than compression algorithms that use earlier source
codes such as extended Huffman codes. The arithmetic source code is also more flexible
than earlier source codes, and is frequently used in adaptive compression algorithms.
The arithmetic code remains the source code of choice, despite having been introduced
more than 30 years ago.

The problem of effectively encoding data from sources with known statistics (i.e.
where the probability distribution of the source data is known) was solved with the
introduction of the arithmetic code. The probability distribution of practical data is
seldomly available to the source encoder, however. The source coding of data from
sources with unknown statistics is a more challenging problem, and remains an active
research topic.

Enumerative source codes were introduced by T. J. Lynch and L. D. Davisson in the
1960s [5,6]. These lossless source codes have the remarkable property that they may be
used to effectively encode source sequences from certain sources without requiring any
prior knowledge of the source statistics. The initial enumerative source codes were only
applicable to sources without memory, as well as to first–order Markov sources [7].
One drawback of these source codes is the computationally complex nature of their
implementations.

Several years after the introduction of enumerative source codes, J. G. Cleary and
I. H. Witten [8] proved that approximate enumerative source codes may be realized
by using an arithmetic code. Approximate enumerative source codes are significantly
less complex than the original enumerative source codes, but are less effective than
the original codes. Researchers have become more interested in arithmetic source codes
than enumerative source codes since the publication of the work by Cleary and Witten.

1.1 The topic of this thesis

This thesis reinvestigates the original, exact enumerative source codes, and considers
their use in Burrows–Wheeler compression algorithms. The exact enumerative codes
for memoryless sources are generalized to sources with memory by using the Burrows–
Wheeler transform [9]. This reversible transform typically changes the output of a
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CHAPTER 1 Introduction

stationary ergodic context–tree source into a data sequence with a biased first–order
distribution [10]. This data sequence may be source coded in a universal fashion using
the exact enumerative source codes for memoryless sources.

Another topic that is addressed by this thesis concerns the development of efficient
enumerative source code implementations. Both the computational complexity and the
memory requirements of an enumerative source code implementation are of importance.
A novel implementation of the original enumerative source code is proposed. This
implementation has a significantly lower computational complexity than the direct
implementation of the original enumerative source code.

A number of novel enumerative source codes are proposed in this thesis. These
codes include optimal fixed–to–fixed length source codes with manageable computa-
tional complexity. Proofs regarding the unique decodability of these source codes are
provided, and the performance of these codes are investigated both mathematically
and empirically.

The motivation behind the use of enumerative source codes is twofold. Firstly, to
the best of the author’s knowledge, the generalization of enumerative source codes to
sources with memory by using the Burrows–Wheeler transform has not been investi-
gated in the literature. The effectiveness of these codes is of theoretical interest, as the
original enumerative codes are universal source codes. Secondly, by developing more
efficient implementations of exact enumerative source codes, these source codes may
become practical.

This thesis is set out as follows. Chapter 2 follows the introduction and provides a
brief history of source coding, and also introduces concepts which are referred to and
used in the later chapters. Chapter 3 contains a summary of the literature that con-
cerns the Burrows–Wheeler transform, as well as a summary of source codes that use
this transform. Chapter 4 contains a summary of existing enumerative source codes.
Chapter 5 covers the efficient computation of large binomial coefficients, which is a
computationally intensive routine performed by enumerative source code implemen-
tations. Chapter 6 contains the mathematical analysis and the proofs regarding the
unique decodability of the existing and novel enumerative source codes. Empirical re-
sults regarding the effectiveness of the proposed source codes are also presented in this
chapter. Chapter 7 presents several conclusions regarding enumerative source codes
and their use in Burrows–Wheeler–based compression algorithms.
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CHAPTER 2

The history of source coding

This survey of source coding starts with the birth of information theory, and continues
with more specific advances in source coding. Much of the information presented in
this chapter was obtained from reference [11].

2.1 Shannon and the birth of information theory

Source coding has its roots in the landmark paper of Claude Shannon [12], which was
published in 1948. Shannon established some of the fundamental laws of source coding
and data transmission in his paper. By modeling information sources as stochastic
processes, Shannon derived a measure of the average amount of information that a
source produces. This measure, which is referred to as the entropy 𝐻 of an information
source, may be interpreted as the minimum number of bits that may be used, on
average, to uniquely represent each source symbol. If fewer bits are used on average to
represent each source symbol, some source symbols can not be assigned codewords that
are uniquely decodable. Any excess bits that are used to represent the source symbols
(i.e. in excess of the source entropy) are considered redundant.

Shannon [12] derived an expression for the entropy of a memoryless information
source (i.e. a source that produces independent symbols) by posing three axioms that
an information measure should satisfy. This approach to deriving an expression for the
entropy of an information source is known as the axiomatic approach. It was proved
that the expression for the entropy of an information source, as derived by Shannon,
is the only expression that satisfies the three axioms.

A more pragmatic approach to deriving an expression for the information content
of a source involves the derivation of certain source statistics in which the expression
for source entropy appears, and interpreting this expression as an information measure.
The pragmatic approach does not rely on the definition of any axioms, and produces
the same expression for source entropy as the axiomatic approach.

Shannon [12] proved that the asymptotic equipartition property (AEP)1 applies to
memoryless information sources. The AEP of memoryless sources is equivalent to the
weak law of large numbers for independent and identically distributed (i.i.d.) random
variables defined over a finite number of positive values. The property states that each
sequence of 𝑛 symbols from a memoryless source, where 𝑛 is sufficiently large, may be
placed within one of two sets, namely

1Experts in the field of statistical mechanics are familiar with the AEP. McMillan [13] was the first
to use the term AEP in the context of information sources.
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CHAPTER 2 The history of source coding

1. an atypical set, with elements having a total probability of occurrence that is
negligible, or

2. a typical set, with approximately 2𝑛𝐻 distinct elements that are equiprobable,
each with a probability of occurrence approximately equal to 2−𝑛𝐻.

Shannon [12] proved that the AEP holds for memoryless sources, and noticed that
it applies to stationary Markov sources as well. Khinchin [14] proved that the AEP
applies to Markov sources in 1953. McMillan [13] subsequently proved that the AEP
applies to any stationary ergodic source with finite alphabet — this theorem became
known as the Shannon–McMillan theorem.

A fixed–to–fixed length source code for memoryless sources may be derived using
the AEP as follows. Let each 𝑛–symbol sequence that belongs to the typical set be
assigned a distinct codeword of 𝑛𝐻 + 𝛿 bits (where 𝛿 is an arbitrarily small positive
constant), and let all sequences belonging to the atypical set be disregarded. This source
code may be used to correctly encode and decode sequences from a memoryless source
with a probability that approaches unity as the length of the sequences is increased.

The fixed–to–fixed length source code that was derived using the AEP is not opti-
mal in terms of its probability of correctly encoding and decoding finite–length source
sequences. An optimal fixed–to–fixed length source code assigns each of the most prob-
able source sequences a unique codeword, and disregards the remaining sequences.
Shannon [12] proved that the probability of correctly encoding and decoding sequences
from a source using any fixed–to–fixed length source code with a code rate less than
the entropy of the source tends to zero asymptotically. This theorem is known as the
strong converse source coding theorem.

It is impossible to successfully encode and decode each finite–length sequence from a
source using any nontrivial fixed–to–fixed length code, as each source sequence cannot
be assigned a unique codeword. An alternative source code assigns variable–length
codewords to fixed–length source sequences — this source code is referred to as a
fixed–to–variable length source code. Source sequences may be successfully encoded
and decoded with a probability of unity using a proper fixed–to–variable length source
code. The average codeword length (or equivalently, the average code rate) of a fixed–
to–variable length source code is of interest.

Shannon [12] proved the existence of fixed–to–variable length source codes having
codewords with average lengths that exceed the entropy of an information source by
no more than one bit. The minimum average codeword length of noiseless (i.e. without
error) source codes was not established in Shannon’s paper of 1948 [12], however. The
construction of an optimal fixed–to–variable length source code (i.e. a code with a
minimum average codeword length) for an arbitrary symbol probability distribution
also remained an unsolved problem.

Shannon and Fano independently developed the same fixed–to–variable length source
code for symbols with arbitrary probability distributions [15,16]. This source code be-
came known as the Shannon–Fano code. The construction of a Shannon–Fano code
for symbols with an arbitrary distribution proceeds as follows (refer to figure 2.1 on
page 6). The symbols are initially sorted in a nonincreasing fashion according to their
probabilities of occurrence. The ordered list of symbols is split in such a manner that
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Figure 2.1: The construction of a Shannon–Fano code for the symbol alphabet that
appears at the top of the figure. Unbracketed numbers represent probabilities of occur-
rence, and bracketed numbers represent the bits assigned to symbol codewords. The
Shannon–Fano code appears at the left–hand side of the figure.
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CHAPTER 2 The history of source coding

the sums of the symbol probabilities of the two sublists are as equal as possible. The
codewords of all symbols in the first sublist are appended with a zero–valued bit, and
the codewords of all symbols in the second sublist are appended with a nonzero–valued
bit. The two sublists are recursively sorted and divided in an identical, independent
fashion. The recursive sorting and division of the sublists terminate upon obtaining
sublists that each contain only a single symbol. The Shannon–Fano code that is ob-
tained in this manner is a prefix code (i.e. a code with no codeword that is a prefix of
any other codeword), and is uniquely decodable.

The Shannon–Fano code is not guaranteed to be optimal in terms of having the
shortest average codeword length for an arbitrary symbol probability distribution [16].
Its suboptimality is a result of the manner in which the list (and each sublist) is split.
The Shannon–Fano code of the symbol alphabet of figure 2.1 has an average codeword
length of 2.66 bits, compared to the source entropy of 2.63 bits. The optimal unextended
code for this source has codewords with an average length of 2.66 bits, which proves
that the Shannon–Fano code is in some cases optimal.

2.2 Huffman source codes

Huffman [17] introduced a systematic technique for the construction of lossless source
codes for information sources with arbitrary symbol distributions. The average code-
word lengths of these prefix codes are minimal, but only under the assumption that
their codewords must consist of an integer number of bits.

2.2.1 Construction

Huffman [17] derived an algorithm for constructing an optimal fixed–to–variable length
source code by observing that a codebook (i.e. a set of codewords) has to satisfy cer-
tain requirements in order for it to be considered optimal. The algorithm constructs
an optimal codebook in an iterative fashion, and each iterative codebook fulfils the
requirements for optimality. This approach guarantees that the final codebook is opti-
mal.

The construction of a Huffman code for the symbol alphabet of figure 2.1 is il-
lustrated in figure 2.2. The algorithm for constructing a binary Huffman code first
sorts the symbols in a nonincreasing fashion according to their probabilities of occur-
rence [17]. The algorithm subsequently (and repeatedly) merges the two least probable
symbols into a single composite symbol, and assigns a zero–bit label to one of the
merged symbols, and a nonzero–bit label to the other. The composite symbol has a
probability of occurrence equal to the sum of the probabilities of the merged symbols.
The algorithm repeats its initial steps by sorting the new set of symbols, and merging
the two least probable symbols. These steps are repeated until the set contains only a
single composite symbol with a probability of occurrence equal to unity.

The merging of the alphabet symbols may be illustrated using a diagram that
resembles a tree (refer to figure 2.2). The root of the tree corresponds to the final
composite symbol, while the leaves correspond to the original alphabet symbols. This
tree diagram may be used to assign codewords to the original symbols. A codeword is
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Figure 2.2: The construction of a Huffman code for the symbol alphabet that appears
at the bottom of the figure. Unbracketed numbers denote probabilities of occurrence,
and bracketed numbers denote codeword bits. The Huffman code appears at the top
of the figure.
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assigned to an alphabet symbol by traversing the tree from the corresponding leaf to
the root, and attaching the bit labels that are encountered on the path as prefixes to
the initially empty codeword.

The final codebook has a minimum average length when used to encode symbols
from the distribution for which it was designed [17]. The Huffman code for the symbol
distribution of figure 2.2 has an average codeword length of 2.66 bits, which exceeds
the entropy of the source by only 0.03 bits.

2.2.2 The source encoder and decoder

The source encoder of a Huffman code replaces each source symbol with its codeword
from the codebook [17]. The source encoder does not need to delimit each codeword,
as Huffman codes are prefix codes (and therefore uniquely decodable). The source
encoder does require a complete Huffman codebook in order to encode an arbitrary
source symbol, however.

The source decoder processes the sequence of codewords in a bit–by–bit fashion,
starting at the first bit of the first codeword. It traverses the tree that is associated
with the code, starting at its root and moving towards its leaves. The decoder moves
from one composite symbol to the next as each bit is processed. It selects the correct
path by matching the bit labels of the composite symbols on the path to the bits of
the codeword. Upon reaching a leaf node of the tree, the source decoder produces the
source symbol associated with that leaf as output. The source decoder proceeds by
restarting at the root of the tree, as the coded bits that follow those already processed
correspond to a new codeword.

2.2.3 Performance

It was proved that the average codeword length of a Huffman code is bounded as [16]

𝐻(𝑋) ≤ 𝐿(𝑋) < 𝐻(𝑋) + 1, (2.1)

where 𝐿(𝑋) is the average codeword length of the Huffman code, 𝑋 is a random
source symbol with the distribution for which the code was constructed, and 𝐻(𝑋)
is the source entropy. Gallager [18] refined the upper bound on the average codeword
length as

𝐿(𝑋) < 𝐻(𝑋) + 𝑝max + 𝜎, (2.2)

where 𝑝max is the largest probability of occurrence associated with any of the source
symbols, and 𝜎 is a constant that is approximately equal to 0.08607.

2.2.4 Applications and variations

Huffman codes are used in modern standards such as the CCITT2 T.𝑥 fax recom-
mendations [19] and the JPEG standard [20], despite the fact that these codes were
introduced over 50 years ago. Several variations of the original Huffman codes have
also been proposed since their introduction in 1952. Some of these variations are sum-
marized in what follows.

2The CCITT changed its name to the ITU–T in 1993 [19].
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CHAPTER 2 The history of source coding

2.2.4.1 𝑄–ary Huffman codes

The codewords of a 𝑄–ary Huffman code consist of symbols from an alphabet of 𝑄
distinct symbols. The average codeword lengths of 𝑄–ary Huffman codes are minimal.
These codes are suitable for implementation on devices that use more than two distinct
voltage levels on their input and output interfaces. The construction of these codes is
summarized in references [4, 16].

2.2.4.2 Huffman–prefixed codes

Huffman–prefixed codes are appropriate codes for sources with very large symbol alpha-
bets [16]. These source codes are constructed by first partitioning the source alphabet
into equivalence classes, so that symbols with roughly the same probability of occur-
rence belong to the same class. Each class has a probability that is equal to the sum
of the probabilities of occurrence of its symbols.

An ordinary Huffman code is subsequently constructed for the equivalence classes
[16]. The codeword for a source symbol is obtained by concatenating a Huffman code-
word (the prefix) and an index codeword (the suffix). The Huffman codeword represents
the class to which the source symbols belongs, and the index codeword represents the
index of the symbol in the class.

2.2.4.3 Length–constrained Huffman codes

A length–constrained Huffman code is an ordinary Huffman code, but with codewords
that are limited in length to a certain number of symbols [21–24]. Length–constrained
Huffman codes are appropriate in cases where one or more alphabet symbols have
very small probabilities of occurrence. These symbols are assigned very long codewords
during the construction of an ordinary Huffman code. Excessively long codewords are
impractical, as they are typically only decoded after a significant delay (long delays are
unacceptable in time–constrained telecommunication and multimedia applications).

2.2.4.4 Extended Huffman codes

Extended Huffman codes are effective when used to encode symbols with a severely
biased distribution, symbols from small alphabets, or symbols from sources with mem-
ory [16]. Ordinary Huffman codes are typically ineffective when used to encode symbols
with these properties. To illustrate this point, one may consider a source that produces
binary symbols. The entropy of this source is less than or equal to one bit per symbol.
An ordinary Huffman code for this source has an average codeword length of one bit,
regardless of the symbol distribution3. It follows that the redundancy of the Huffman
codewords equals the redundancy of the source.

Extended Huffman codes overcome the limitations of ordinary Huffman codes by
assigning codewords to groups of 𝑛 source symbols, instead of assigning codewords to
individual symbols [16]. An extended code associates a unique codeword with each

3This statement is true under the condition that none of the alphabet symbols has a zero probability
of occurrence.
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CHAPTER 2 The history of source coding

distinct combination of 𝑛 source symbols. An extended code has a normalized average
codeword length that is bounded as

𝐻(X𝑛)

𝑛
≤ 𝐿(X𝑛)

𝑛
<

𝐻(X𝑛)

𝑛
+
1

𝑛
, (2.3)

where X𝑛 is a sequence of 𝑛 random source symbols with the distribution that the
code was constructed for. This bound reveals that extended Huffman codes are able to
exploit source memory. The upper bound on the normalized average codeword length
of an extended Huffman code approaches the entropy rate of the source asymptotically.

It is impractical to derive extended Huffman codes for long sequences of source
symbols, as the number of possible source sequences grows exponentially w.r.t. the
sequence length [16]. Many of the codewords that are assigned during the construction
of an extended Huffman code for longer source sequences are unlikely ever to be used.

2.2.4.5 Adaptive Huffman codes

Adaptive Huffman codes may be used if the source encoder and decoder have no apri-
ori knowledge regarding the distribution of the source symbols [16]. These codes are
appropriate for encoding symbols from nonstationary sources (i.e. the symbol distri-
bution changes over time). The source encoder does not require access to the entire
source sequence in order to encode its initial symbols using an adaptive Huffman code.

Both the source encoder and decoder of an adaptive Huffman code estimate the
symbol distribution according to the source symbols that were previously encoded or
decoded [16]. The source encoder and decoder of some adaptive Huffman code im-
plementations maintain identical codebooks that are updated periodically, or when
significant changes are observed in the estimate of the symbol distribution.

Rudimentary implementations of adaptive Huffman codes reconstruct the entire
Huffman codebook as it is updated [16]. Many of these implementations have an ex-
cessively high computational complexity. Practical implementations that modify only
certain codewords in the Huffman codebook during each update were proposed in the
literature [18,25]. The codebooks of these implementations typically contain only those
symbols that were encountered previously in the source sequence. These implementa-
tions use an escape symbol to add novel symbols to the codebook — the source encoder
encodes the escape symbol if it encounters a novel symbol in the source sequence.

Many papers regarding adaptive Huffman codes were published in the literature,
with the more important papers summarized in reference [16]. A number of distinct
adaptive Huffman code implementations, as well as several modifications to existing
implementations, were proposed. McIntyre et. al. [26] suggested, however, that adap-
tive Huffman codes only be used to source code long symbol sequences (when compared
to the size of the alphabet). This is due to the fact that adaptive source codes only be-
come effective as their empirically–derived estimates of the symbol distribution become
accurate.

2.2.4.6 Efficient implementations

Both memory–efficient codebook construction algorithms [23,27,28], as well as decoding
algorithms with low computational complexity [29–32], were proposed in the literature.
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CHAPTER 2 The history of source coding

2.3 The Kraft inequality

Kraft [33] derived an inequality regarding the codewords of any variable–length prefix
code. Consider any binary prefix code with 𝑚 codewords of lengths 𝑙(𝑎𝑖), where 𝑎𝑖 is
the 𝑖th of 𝑚 alphabet symbols. Kraft proved that the inequality

𝑚∑
𝑖=1

2−𝑙(𝑎𝑖) ≤ 1 (2.4)

is satisfied by the binary prefix code. This inequality became known as Kraft’s inequal-
ity4. A counterpart to Kraft’s theorem regarding the codewords of a prefix code concerns
the construction of a prefix code [16]. This theorem states that it is always possible to
construct a prefix code that has codewords with lengths 𝑙(𝑎𝑖) (where 𝑖 = 1, 2, . . .𝑚),
provided that the codeword lengths satisfy Kraft’s inequality.

Several years after Kraft’s work, McMillan [34] proved that Kraft’s inequality is not
only satisfied by the codewords of all prefix codes, but by the codewords of all uniquely
decodable source codes as well. This theorem implies that one need only consider prefix
codes during the construction of variable–length source codes with minimum average
codeword length, as any uniquely decodable nonprefix code may be converted to a
prefix code with codewords of identical length.

A lower bound on the minimum average codeword length of any uniquely decodable
variable–length source code may be derived using Kraft’s inequality [11]. Any code that
satisfies Kraft’s inequality can not have an average codeword length shorter than the
source entropy when used to encode symbols from a memoryless source. As all uniquely
decodable variable–length source codes satisfy Kraft’s inequality, the lower bound

𝑚∑
𝑖=1

Pr(𝑋 = 𝑎𝑖)𝑙(𝑎𝑖) ≥ 𝐻(𝑋) (2.5)

applies to all uniquely decodable variable–length source codes.

2.4 Arithmetic source codes

One major shortcoming of extended Huffman codes is that the source encoder has to
construct a Huffman codebook with codewords for all source sequences of a certain
length prior to encoding any source sequence [16]. Arithmetic source codes do not have
this shortcoming, and are computationally feasible source codes.

2.4.1 History

Arithmetic coding has its roots in Shannon’s paper of 1948 [12], in which an ‘arithmetic
process’ of source coding was proposed. This precursor to the arithmetic code has

4Some authors refer to equation 2.4 as the Kraft–McMillan inequality.
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CHAPTER 2 The history of source coding

become known as the Shannon–Fano–Elias code5. The construction of a Shannon–
Fano–Elias code involves the evaluation of the cumulative distribution function (CDF)
of the alphabet symbols at each symbol. The codeword of a source symbol is obtained
by expressing the corresponding value of the CDF as a binary number and appropriately
truncating it.

The average codeword length of a Shannon–Fano–Elias code for a memoryless source
is only slightly longer than the entropy of the source, but it is not necessarily minimal
[11]. The computational complexity of the original Shannon–Fano–Elias code, like that
of the Huffman code, increases rapidly as the code is extended to multiple alphabet
symbols. An original Shannon–Fano–Elias code that is extended to a large number of
alphabet symbols is therefore impractical.

Despite early work on improving a recursive implementation of the Shannon–Fano–
Elias code [35,36], it wasn’t until 1976 that most of the problems associated with this
code, including the issue of finite precision, were resolved [4]. Modern arithmetic codes
were independently proposed by Rissanen [37] and Pasco [38] in 1976. A more general
arithmetic code, as well as a practical implementation of the code, were proposed in
1979 [39]. A subsequent paper made arithmetic codes popular in the source coding
community [40].

2.4.2 The source encoder

Unlike Huffman codes, it is unnecessary to construct a codebook that contains a com-
plete set of codewords in order to encode or decode a source symbol using an arithmetic
code [4]. The encoder of an arithmetic code encodes a source sequence by dividing a
numeric interval repeatedly into subintervals that are proportional in length to the
symbols’ probabilities of occurrence. The arithmetic coding of symbols from a memo-
ryless source is illustrated in figure 2.3 on page 14. An alphabet of three symbols (a, b
and c), as well as the probabilities of occurrence of the symbols, are provided in this
figure.

The source coding of the sequence baca is demonstrated in figure 2.3. The source
encoder sets the initial numeric interval to [0, 1). This interval is divided into subin-
tervals, and each subinterval is associated with one of the alphabet symbols [4]. The
length of each subinterval is directly proportional to the probability of occurrence of
the symbol it is associated with. In figure 2.3, the initial interval is divided into the
subintervals [0, 0.6), [0.6, 0.9) and [0.9, 1.0) according to the probabilities of occurrence
of the alphabet symbols a, b and c.

The source encoder proceeds by selecting the numeric subinterval that is associated
with the first source symbol, and dividing this interval into subintervals [4]. Each subin-
terval is associated with one of the alphabet symbols. The length of each subinterval is
again proportional to the probability of occurrence of the symbol it is associated with.
In figure 2.3, the source encoder selects the subinterval [0.6, 0.9), as it is associated
with the source symbol b. It divides this interval into three subintervals, as illustrated
in the figure.

5According to Verdu [11], Elias was not involved in developing the original arithmetic process of
source coding. For the purpose of this thesis, his surname is retained in the name of the code in order
to distinguish it from the Shannon–Fano code of section 2.1.
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ba bb bc

baca bacb bacc

a b c

baa bab bac

0.762

0.7782

1

0.9

0.78

0.78

Midpoint = 0.7674

baca = 11000100

0

0.6

0.6

0.762

0.6

0.6

0.78

0.708

0.7728

0.9

0.87

Symbol probabilities

p(a)

p(b)

=

=

=

p(c)

0.3

0.1

Figure 2.3: Arithmetic coding of the sequence baca, as produced by a memoryless source
with the symbol alphabet a, b and c. The symbol distribution is provided towards the
right–hand side of the figure. The codeword for the sequence baca is 11000100.

Each numeric interval of figure 2.3 is divided according to a first–order probability
distribution, as the source symbols are independent from one another. If the source
had memory, the intervals may instead have been divided according to the symbol
distribution conditioned on those source symbols already encoded [16]. This approach
would improve the effectiveness of the source code, as it would enable the source encoder
to exploit the source memory.

The process illustrated in figure 2.3 continues with the selection of the numeric
interval that is associated with the next symbol in the source sequence, and its division
[4]. The selection and division of the intervals repeat until the final source symbol
has been considered, and the final interval has been obtained. The source encoder
produces a codeword for the source sequence by appropriately truncating the binary
representation of any number in the final numeric interval.

A sufficient number of bits must be retained in the codeword in order to guarantee
the correct identification of the final interval by the source decoder [4]. If the codeword
is obtained by truncating the binary representation of the midpoint between the upper
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and lower boundaries of the interval, it is sufficient to retain

𝑙(x𝑛) =

⌈
log2

(
1

Pr(x𝑛)

)⌉
+ 1 (2.6)

bits in the codeword to guarantee the flawless recovery of the final interval. The term
Pr(x𝑛) in equation 2.6 denotes the probability of occurrence of the source sequence.

The source encoder obtains the final numeric interval of [0.762, 0.7728) during the
source coding of the sequence baca, as illustrated in figure 2.3. The midpoint of this
interval equals 0.7674. Equation 2.6 implies that a codeword of eight bits is sufficient to
guarantee the correct recovery of the final interval and the source sequence. The binary
representation of the midpoint, which equals 0.11000100011..., is therefore truncated
to eight bits in order to obtain the codeword 11000100 (only the fractional part of the
binary number is used).

2.4.3 The source decoder

The decoder of the arithmetic code operates in a similar fashion as the encoder [4].
It first divides the numeric interval [0, 1) in half, and selects one of the subintervals
according to the first bit of the codeword. It selects the first subinterval if the first
codeword bit equals 0, and the second subinterval if the first codeword bit equals 1.
The source decoder proceeds by dividing the subinterval that was selected in half, and
selecting the next subinterval according to the second bit of the codeword (in the same
manner as the first subinterval).

The source decoder continues to select and divide subintervals until it has considered
all the bits of the codeword [4]. Let the final subinterval that the source decoder selects
be referred to as the codeword interval. After selecting the codeword interval, the source
decoder finds the longest symbol sequence with a numeric interval that contains the
codeword interval (i.e. the codeword interval lies within the interval associated with
the symbol sequence that was found by the source decoder). This symbol sequence is
the recovered source sequence.

Consider the numeric intervals that the source decoder selects as it decodes the code-
word that was assigned to the source sequence baca in figure 2.3. The sequence of inter-
vals are [0, 1), [0.5, 1), [0.75, 1), [0.75, 0.875), [0.75, 0.8125), [0.75, 0.78125), [0.765625,
0.78125), [0.765625, 0.7734375) and [0.765625, 0.76953125). The codeword interval lies
within the interval associated with the sequence baca, which equals [0.762, 0.7728).
The relationship between the intervals may be expressed as

[0.765625, 0.76953125) ⊂ [0.762, 0.7728). (2.7)

The source decoder therefore selects the sequence baca as the decoded sequence.
It is possible to modify the source decoder to produce the decoded symbols as it

calculates successive numeric intervals, instead of producing all the decoded symbols
after calculating the codeword interval [4]. The source decoder may produce a decoded
symbol once the most recent numeric interval lies within the interval associated with the
symbol. It is therefore unnecessary to process the entire codeword prior to recovering
the initial symbols of the source sequence. The source encoder may be similarly modified
to produce the initial codeword bits prior to considering the entire source sequence.
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2.4.4 Performance

If an arithmetic code is used to produce a single codeword for each sequence of 𝑛 source
symbols, its normalized average codeword length is bounded as [4]

𝐻(X𝑛)

𝑛
≤ 𝐿(X𝑛)

𝑛
<

𝐻(X𝑛)

𝑛
+
2

𝑛
, (2.8)

where X𝑛 is a sequence of 𝑛 random source symbols with the distribution according
to which source sequences are encoded. The upper bound on the normalized average
codeword length of an arithmetic code is approximately equal to the upper bound on
the normalized average codeword length of an extended Huffman code (refer to equation
2.3). The Huffman code becomes impractical if extended to longer source sequences,
however. An arithmetic code does not have this drawback, as its source encoder does
not construct the entire codebook with all source sequences of 𝑛 symbols.

2.4.5 Applications and implementations

Arithmetic coding is arguably the most effective lossless source coding technique that
is also practical. Arithmetic codes are used in document compression software [41] as
well as command–line compression and archiving software utilities such as bzip [42].
Arithmetic codes are also used in applications that involve the source coding of image
and video data [43], and are part of several standards [4].

Many adaptive source code implementations use arithmetic codes, as an imple-
mentation may perform the source modeling and source coding steps independently
from one another if it uses these codes [4]. Arithmetic codes may be used to encode
source sequences according to arbitrary probability distributions that change over time.
Adaptive arithmetic code implementations need not reconstruct a codebook in order
to adapt to a changing symbol distribution [44]. The prediction by partial match al-
gorithm, which is an adaptive, context–based source coding algorithm, uses arithmetic
codes [45].

Many papers regarding the implementation of efficient arithmetic codes, as well as
solutions to several implementation issues, were published in the literature. Some of
these papers are summarized in what follows.

1. The number of bits that are required to represent a numeric interval using a
digital computer increases as the interval becomes shorter. As the numeric inter-
vals of arithmetic code implementations become shorter w.r.t. the length of the
source sequence that is to be encoded, it follows that the source encoder and de-
coder require arbitrary–precision arithmetic in order to encode and decode source
sequences of any length [4]. This fact complicates the implementation of an arith-
metic encoder and decoder on a digital computer, as digital computers cannot
represent and manipulate numbers with arbitrary precision. The requirement of
arbitrary–precision arithmetic may be eliminated by appropriately rescaling each
numeric interval as soon as it becomes too short. An implementation that uses
only limited–precision arithmetic is provided in reference [4].
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2. In some applications it is necessary to encode a source sequence without the
source decoder having apriori knowledge regarding the length of the sequence
[16]. Some implementations of the source decoder of an arithmetic code rely on
knowledge of the sequence length in order to successfully decode each codeword.
An implementation may define an ‘end of input’ symbol to overcome this problem.
The source encoder encodes this symbol at the end of the source sequence. The
‘end of input’ symbol informs the source decoder that any successive codeword
bits belong to a new codeword.

3. The source coding and decoding of a source sequence using an arithmetic code
are often illustrated using real number intervals (refer to figure 2.3) [4, 16]. It
is possible to implement both the source encoder and decoder of an arithmetic
code in such a manner that they use only integer numbers and integer arithmetic.
An example of an integer–arithmetic implementation of an arithmetic code is
provided in reference [4].

4. Conventional implementations of arithmetic codes multiply several numbers as
sequences are encoded and decoded. The frequent multiplication of numbers in-
creases the computational complexity of the source encoder and decoder. This
drawback was eliminated with the introduction of multiplication–free arithmetic
codes, which are discussed in reference [46].

2.5 The prediction by partial match algorithm

The prediction by partial match (PPM) algorithm is an adaptive, context–based source
code implementation that uses arithmetic codes [4,45]. The algorithm is able to exploit
source memory, thereby improving the effectiveness of the source code. It is one of the
most effective lossless source code implementations for practical data such as English
text [47]. The PPM algorithm was first proposed in reference [45], and has undergone
several modifications in order to improve both its effectiveness and efficiency since its
introduction — several of the more relevant improvements are summarized in reference
[47]. One drawback of PPM implementations with unbounded context order is their
high computational complexity, which increases quadratically w.r.t. the length of the
source sequence (in the worst case) [47].

The PPM algorithm is effective when used to encode sequences from certain Markov
sources. A finite–order Markov source has finite memory, which implies that the prob-
ability distribution of each of its source symbols is a function of only a finite number
of symbols that precede it in the source sequence [47]. The distribution of a particular
letter of English text is strongly influenced by those letters in the same word (and
perhaps a few neighbouring words) — distant letters in other sentences typically have
little impact on its distribution. It follows that Markov sources are, to a certain degree,
suitable for modelling English text. This observation partly explains why the PPM
algorithm is able to effectively encode English text.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 17

 
 
 



CHAPTER 2 The history of source coding

2.5.1 Source modeling

The source encoder of a PPM implementation processes a source sequence sequentially
(i.e. symbol–by–symbol, starting at the first symbol of the sequence) [47]. It constructs
a source model according to the frequency counts of the source symbols it encoded
previously. The encoder iteratively refines the source model as it encodes consecutive
source symbols.

The source model provides an estimate of the probability distribution of the source
symbol that follows the most recently processed source symbol [47]. The encoder of
the arithmetic code encodes successive source symbols according to the source model.
As the source model is constructed according to the frequency counts of the symbols
that were previously encoded, the source decoder may construct a source model that
is identical to that of the encoder. It follows that the source decoder may recover the
source sequence without additional information from the source encoder.

The order–𝑚 context of a source symbol 𝑥𝑖 is defined as the 𝑚–symbol sequence
x𝑖−1
𝑖−𝑚 that precedes the symbol 𝑥𝑖 in the source sequence [47]. The PPM algorithm
maintains a list of all contexts, up to some maximum order, that were encountered in
the previously encoded source sequence. It records the frequency counts of all symbols
that immediately follow each of these contexts. The algorithm derives a probability
distribution for the symbol that follows each context according to the symbol fre-
quency counts of that context. PPM implementations may differ w.r.t. the manner in
which they derive the symbol distribution associated with each context. Some of the
approaches to deriving a symbol distribution from empirical symbol frequency counts
that are relevant to the PPM algorithm are summarized in section 2.5.3 on page 19.

In order to source code a symbol, the PPM algorithm selects an appropriate context
from its list of contexts, and uses the symbol distribution of that context as it encodes
the symbol [47]. The manner in which the PPM algorithm selects an appropriate con-
text is discussed in what follows.

2.5.2 Context selection and context updates

The following summary was adapted from reference [47]. Suppose that the source en-
coder has to encode the symbol 𝑥𝑖 = a. Let the actual context of symbol 𝑥𝑖 equal the
𝑚 symbols that precede it, or x𝑖−1

𝑖−𝑚. As the PPM algorithm is unaware of the order of
the actual context, it has to select an appropriate context from its list of contexts. The
algorithm selects the longest matching context x𝑖−1

𝑖−𝑗𝑚𝑎𝑥
that is present in the list, and

considers the frequency counts that it collected for symbols following that context.
There are two possibilities regarding the empirical frequency counts of the sym-

bols that follow the longest matching context. In the first case, the symbol a has a
nonzero frequency count in the longest matching context. The source encoder encodes
the symbol according to the symbol distribution of the longest matching context in this
case, and proceeds by updating the empirical frequency counts. In the second case, the
symbol a has a zero frequency count in the longest matching context. As the source
encoder cannot encode the symbol a using this context (it has a zero probability of
occurring in the longest matching context), it encodes an escape symbol. The escape
symbol informs the source decoder that the source symbol did not occur previously in
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the current context. An escape symbol is defined in the symbol distribution of each
context, and a frequency count is maintained for the escape symbol of each context.

After encoding the escape symbol, the encoder considers the symbol frequency
counts that are associated with the second–longest matching context x𝑖−1

𝑖−𝑗𝑚𝑎𝑥+1. It pro-
ceeds by encoding the source symbol 𝑥𝑖 (where 𝑥𝑖 = a) according to the distribution
associated with the second–longest matching context, provided that the symbol a has
a nonzero frequency count in this context. If the source symbol a has a frequency count
of zero in the second–longest matching context, the source encoder encodes a second
escape symbol. In the case of the source encoder encoding a second escape symbol,
it repeatedly considers shorter contexts until a context is reached in which the source
symbol a has a nonzero frequency count, or the zero–order context is reached.

If the source encoder reaches the zero–order context, and finds that the symbol a
has a zero frequency count in this context (i.e. the symbol a did not occur previously
in the source sequence), it considers the order (-1) context. The order (-1) context has
a predefined symbol distribution that includes all symbols of the source alphabet. All
symbols of the predefined distribution are equiprobable. The definition of an order (-1)
context guarantees that the source encoder of the PPM algorithm will always be able
to encode any source symbol, even if it did not occur previously in the source sequence.

After encoding the source symbol a, the source encoder increments the frequency
counts of this symbol in all the matching contexts [48]. The manner in which the
source encoder updates the frequency counts of the escape symbol depends on the
implementation.

2.5.3 Derivation of the context distribution

The PPM algorithm estimates the probability distribution of the symbol that follows
each context in its list of contexts [47]. Each estimate is derived according to the
frequency counts of the source symbols that were encountered in the context. The
selection of an appropriate probability of occurrence for the escape symbol complicates
the derivation of each symbol distribution, as there is no canonical method for deriving
it [48]. Several methods for deriving the symbol distribution of a context, as well as an
appropriate probability of occurrence for its escape symbol, were proposed and assessed.
Some of these methods are summarized in what follows. The following summary was
adapted from reference [48].

Cleary et. al. [8] proposed a method for estimating the symbol distribution of a
context that is derived from Laplace’s law of succession. This method assigns the
escape symbol 𝜖 of each context a frequency count of one, regardless of the actual
number of times it was encoded. The probability distribution of the symbol 𝑋𝑖, which
occurs in the context s = x𝑖−1

𝑖−𝑗 , is specified as

𝑝(𝑥𝑖∣s) = 𝑛(𝑥𝑖, s)

𝑛(s) + 1
, 𝑥𝑖 ∕= 𝜖, (2.9)

where 𝑛(𝑥𝑖, s) is the frequency count of the alphabet symbol 𝑥𝑖 in context s, 𝑛(s) is
the total frequency count of all symbols in context s, and 𝜖 denotes the escape symbol.
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The probability of the escape symbol is specified as

𝑝(𝜖∣s) = Pr(𝑋𝑖 = 𝜖∣s)
=

1

𝑛(s) + 1
. (2.10)

This method is known as method A in the literature. The distributions that are ob-
tained using method A are (to a certain degree) inaccurate, as it specifies a constant,
nonzero probability of occurrence for the escape symbol. The escape symbol of each
context is assigned a nonzero probability of occurrence even if all alphabet symbols were
previously encountered in the context, in which case the escape symbol is unnecessary.

Cleary et. al. [8] proposed a second method for defining the symbol distribution of
a context. This method is known as method W in the literature. It specifies a more
appropriate probability of occurrence for the escape symbol. Method W specifies the
symbol distribution of the context s = x𝑖−1

𝑖−𝑗 as

𝑝(𝑥𝑖∣s) = 𝑛(𝑥𝑖, s) + 1

𝑛(s) + ∣𝒜∣ , 𝑥𝑖 ∕= 𝜖, (2.11)

where ∣𝒜∣ denotes the number of symbols that belong to the source alphabet 𝒜, and
where 𝑛(𝑥𝑖, s) > 0. If the symbol 𝑥𝑖 did not previously occur in context s (i.e. 𝑛(𝑥𝑖, s) =
0), method W assigns a zero probability of occurrence to the symbol. The probability
of occurrence of the escape symbol is specified as

𝑝(𝜖∣s) = Pr(𝑋𝑖 = 𝜖∣s)
=

∣𝒜∣ − 𝑛𝑑(s)

𝑛(s) + ∣𝒜∣ , (2.12)

where 𝑛𝑑(s) denotes the number of distinct symbols that were encountered in context
s. The probability of occurrence of the escape symbol is proportional to the number of
distinct alphabet symbols that have not occurred in context s.

Other noteworthy methods for estimating the symbol distribution of a context
according to symbol frequency counts are briefly discussed in what follows.

∙ Cleary et. al. [45] proposed method B for estimating the symbol distribution of
a context. PPM implementations that use method B regard an alphabet symbol
novel in a certain context if its frequency count in that context is smaller than
two.

∙ Witten et. al. [49] proposed methods P and X for estimating the symbol distribu-
tion of a context. These methods use a Poisson process as a model for the symbol
occurrences, and derive a context distribution according to this model.

An important observation regarding the estimation of the symbol distribution of a
context concerns the exclusion of symbols. Consider the first occurrence of the symbol
a in a specific context s of a source sequence. All distinct symbols that previously
occurred in the same context would not match the symbol a. It follows that the PPM
algorithm may exclude all distinct symbols previously encountered in context s when
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deriving a context distribution for the lower–order contexts that are associated with
context s. Some PPM implementations temporarily rescale the symbol distributions of
the lower–order contexts in order to take advantage of this observation.

Moffat [50] investigated the manner in which the PPM algorithm updates symbol
frequency counts and proposed a mechanism for improving the effectiveness of the PPM
algorithm. This mechanism is known as the update–exclusion mechanism. Moffat stated
that updates to the symbol frequency counts should be limited to the contexts that
were actually used to encode source symbols, instead of the lower–order contexts in
which the symbols were merely observed. The update–exclusion mechanism implements
this approach to updating the symbol frequency counts. Symbol distributions that
are derived using the update–exclusion mechanism are typically more accurate than
symbol distributions that are derived using the conventional approach, and improve
the effectiveness of the source code.

2.5.4 Contexts of unbounded order

The sequence of contexts that the PPM algorithm selects from its list as it encodes
consecutive symbols of the source sequence should ideally match the true contexts of
those symbols [47]. The source encoder is typically unaware of the true contexts of the
source symbols. As the source encoder has no knowledge of the true symbol contexts, it
encodes each source symbol according to the symbol distribution of the longest context
(up to some maximum order) that matches the symbols preceding the source symbol.
The maximum context orders6 of PPM implementations for source coding English text
typically do not exceed seven.

The maximum context order of a PPM implementation has a direct impact on
its effectiveness [47]. If the maximum context order is too small, the implementation
cannot accurately represent the source memory in the source model, which reduces
the effectiveness of the source code. If the maximum context order is too large, the
source model may be inaccurate when used to encode shorter source sequences. Di-
rect implementations of the PPM algorithm also require significantly more memory to
accommodate a greater number of contexts.

PPM∗ is an implementation of the PPM algorithm that specifies no maximum
context order [51]. The PPM∗ implementation records all symbol contexts that were
encountered in the source sequence and maintains a set of symbol frequency counts for
each of these contexts. Cleary et. al. [51] observed a rapid increase in the order of those
contexts that the PPM∗ implementation uses as it encodes successive source symbols.
It was found that the performance of the PPM∗ implementation may be improved by
resolving this problem.

The aforementioned problem of the PPM∗ implementation was resolved by modi-
fying its context selection mechanism [47]. Let a symbol context in which only a single
symbol appeared be referred to as a deterministic context. A PPM∗ implementation
that uses the modified context selection mechanism encodes a symbol according to the
distribution of the shortest deterministic context that matches its preceding symbols.

6The name of a PPM implementation often includes its maximum context order (e.g. PPM–5 and
PPM–7).
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If the source encoder has no matching deterministic context in its list of contexts, it
uses the distribution of the longest matching ordinary context as it encodes the sym-
bol. The modified context selection mechanism improves the effectiveness of the PPM∗

implementation in certain cases [48].

2.5.5 Efficient implementations

Two drawbacks of PPM and PPM∗ implementations are their high computational com-
plexity and excessive memory requirements [47]. A large fraction of the computational
burden of direct PPM implementations involves the search for appropriate contexts, in
the list of all recorded contexts, that match the symbols of the source sequence. The
substantial memory requirements of direct PPM implementations are a consequence of
the rapid increase in the number of possible symbol contexts w.r.t. the maximum con-
text order, as the implementations maintain symbol frequency counts for each context
that was encountered. The worst–case memory requirement of direct PPM implemen-
tations increases quadratically w.r.t. the length of the source sequence.

Memory–efficient PPM∗ implementations were proposed in references [51–53]. These
implementations store symbol contexts in a context–tree data structure [47, 51]. This
data structure represents all the contexts that were encountered in the source sequence
as a tree. The zero–order context is represented by the root of the tree, and the first–
order contexts are represented by the children of the root. The higher–order contexts
are represented by the offspring of the appropriate lower–order nodes.

Each context–tree node with a single descendent may be combined with that de-
scendent in order to reduce the total number of nodes in the tree [47,51]. Context trees
that have their nodes combined in this manner are referred to as path–compressed con-
text trees. As the leaves of a context tree correspond to contexts that were observed
exactly once in the source sequence, many PPM∗ implementations maintain a pointer
at each leaf of the context tree. Each pointer indicates the position of the corresponding
context in the source sequence. A path–compressed context tree with pointers at its
leaves has a memory requirement that increases linearly w.r.t. the length of the source
sequence.

PPM∗ implementations that store symbol contexts in a context tree require a com-
putationally efficient algorithm for constructing and expanding it [47]. Bunton [52,53]
proposed the use of a suffix–tree data structure for storing the symbol contexts of a
source sequence, as computationally efficient construction and expansion algorithms
have been developed for this data structure. A suffix tree is a context tree in which
each of the suffixes of the source sequence is represented by a distinct path from the
root node of the tree to one of its leaf nodes. McCreight [54] proposed a nonsequential
construction algorithm for suffix trees. The computational complexity of this algorithm
increases linearly w.r.t. the length of the source sequence.

The source decoder of a PPM∗ implementation requires sequential construction and
expansion algorithms for its suffix tree, because it does not have access to the entire
source sequence as it decodes consecutive source symbols [47]. Ukkonen [55] proposed
a sequential suffix–tree construction and expansion algorithm with a computational
complexity that increases linearly w.r.t. the length of the source sequence. Larsson [56]
proposed a PPM∗ implementation that uses Ukkonen’s sequential suffix–tree construc-
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tion algorithm. Larsson’s PPM∗ implementation does not have a computational com-
plexity that increases linearly w.r.t. the length of the source sequence, however. This
property of Larsson’s PPM∗ implementation is due to the super–linear computational
complexity of the PPM∗ probability estimation routine and context escape mechanism.

Effros [47] proposed a PPM∗ implementation with a worst–case computational com-
plexity and a worst–case memory requirement that increase linearly w.r.t. the length
of the source sequence. This implementation stores symbol contexts in a prefix–tree
data structure instead of a suffix–tree data structure. Effros proposed a sequential con-
struction algorithm for prefix trees. The derivation of this algorithm is similar to the
derivation of the suffix–tree construction algorithm of McCreight [54]. The computa-
tional complexity of Effros’ prefix–tree construction algorithm increases linearly w.r.t.
the length of the source sequence.

A PPM∗ implementation that uses a prefix tree instead of a suffix tree may combine
each step in adding a new context to the tree with the search for a shorter context in
which the most recent source symbol is not novel [47]. The number of calculations that
the PPM∗ implementation of Effros [47] performs is reduced in this manner. Effros’
PPM∗ implementation also limits the number of times that the source encoder may
move to a shorter deterministic context as it searches for an appropriate context to
use when it encodes a symbol. It was empirically verified that this property of Effros’
PPM∗ implementation reduces its effectiveness by a marginal degree.

2.6 Universal source codes

Following the introduction of Huffman codes in 1952 [17], several researchers inves-
tigated the source coding of sequences with unknown distributions (i.e. the source
encoder and decoder are unaware of the true distribution of the source sequences).
Kolmogorov [11, 57] assigned the term ‘universal’ to any source code of this type —
more precise definitions of universal source codes were to follow in later publications.
Universal source codes are of great practical interest, as prior statistical knowledge of a
source is often not available in practice. Examples of universal source code implemen-
tations include command–line compression and archiving utilities such as gzip [58].

The following sections cover two source models that are relevant to typical universal
source codes, as well as early publications regarding universal source codes. These
sections are followed by a summary of several mathematical definitions and theorems
regarding universal source codes. The final section contains a summary of universal
Lempel–Ziv source codes.

2.6.1 Composite sources

The source encoder and decoder of a universal source code do not have apriori knowl-
edge of one or more of the source parameters, or in some cases the source type [59].
The goal of the source encoder remains the minimization of the average number of bits
that it requires to represent a source sequence without any distortion. A starting point
to deriving an effective universal source code is to construct a source model that in-
corporates the encoder’s lack of knowledge regarding the source. Several source models
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may be constructed, depending on the encoder’s knowledge of the source. Two source
models are considered in what follows.

The source encoder may have knowledge of the source type (or class), but not of
the values of one or more of its parameters [59]. As an example, consider a stationary
binary memoryless source with parameter 𝜃 = Pr(𝑋𝑖 = 1). A source encoder that is
unaware of the value of the parameter may model it as a random variable Θ. The
random variable Θ has a distribution that may be known or unknown. This model of
the source is known as a composite source model, as the value of the source parameter
is ‘randomly selected’ prior to the source generating the source sequence.

Another source model that incorporates the encoder’s uncertainty regarding the
source involves the definition of a set of possible sources [59]. The actual source that
produces the source sequence is randomly drawn from the set of sources. The source
encoder may model the overall source as having a random parameter Ω that represents
the actual source that was selected. As an example, consider a set that contains three
sources:

1. a stationary binary memoryless source with parameter 𝜃 = 0.25,

2. a stationary two–state Markov source with a known transition probability matrix
S, and

3. a stationary block–independent source with a fully specified 𝑛–dimensional prob-
ability distribution 𝑝(𝑥1, 𝑥2, . . . 𝑥𝑛) for the symbols in each block.

In this example, the value of the random variable Ω is drawn from the set {1, 2, 3}
according to a known or unknown distribution (each of the set elements corresponds
to one of the sources). This model of the source is a composite source model, as the
actual source is randomly selected prior to it generating the source sequence.

2.6.2 Early universal codes

Early publications concerning lossless universal source codes appeared between 1965
and 1973 [59]. These papers proved that universal source codes exist for certain source
models7. Some of these papers are summarized in what follows.

Lynch [5] proposed a universal source code that may be used to encode the indices
(or locations) of nonredundant samples in a source sequence. This code is an example
of an enumerative source code. Enumerative source codes are summarized in chapter 4
on page 100. Lynch’s enumerative source code is summarized in section 4.1.1 on page
101.

Davisson [6] provided a simple analytic basis for the source code proposed by
Lynch [5]. Davisson used Lynch’s code in a source code for sequences that contain
both redundant and nonredundant samples. In order to investigate the performance

7These proofs were of a constructive nature. In a constructive proof, the author constructs a source
code and proves that it is asymptotically optimal in a certain sense when used to encode sequences
from the composite source. The first author that proved general theorems regarding the existence of
universal source codes by using concepts from information theory was Davisson [59].
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of this source code, Davisson defined a source that produces redundant and nonre-
dundant samples. The redundant and nonredundant samples of this source have fixed
probabilities of occurrence, and all samples are statistically independent from one an-
other. Davisson proved that the normalized average codeword length of this source
code approaches the entropy of the source in an asymptotic fashion (i.e. as the length
of the source sequence tends to infinity). The source code requires no prior knowledge
regarding the probabilities of occurrence of the redundant and nonredundant samples.
Davisson’s enumerative source code is summarized in section 4.1.2 on page 107.

Schalkwijk [60] proposed a universal, variable–to–fixed length enumerative source
code. This source code is related to the source codes that were proposed by Lynch and
Davisson [5,6]. Schalkwijk proved that the variable–to–fixed length source code, when
used to encode bits from a stationary binary memoryless source, has an average code
rate that asymptotically approaches the source entropy. The source code requires no
prior knowledge of the source parameter. This source code is summarized in section
4.1.3 on page 108.

Cover [7] proposed a general approach to constructing enumerative source codes.
Cover used this approach to construct a fixed–to–variable length source code for se-
quences from stationary first–order binary Markov sources. The encoder of this source
code first encodes the frequency counts of the consecutive pairs of bits that were en-
countered in the source sequence. It proceeds by encoding the index at which the source
sequence would appear if it were present in an ordered list of all bit sequences with
the same length and the same frequency counts of bit pairs as the source sequence.
Cover proved that this source code is universal by proving that its normalized average
codeword length asymptotically approaches the entropy of a first–order Markov source.
The source code requires no prior knowledge of the source parameters. It is summarized
in section 4.1.4 on page 112.

Shtarkov et. al. [61] proposed a universal source code that is similar to the enumer-
ative code that was proposed by Cover [7]. Shtarkov et. al. proved that this code is
universal if used to encode sequences from any stationary finite–order, finite–alphabet
Markov source. The normalized average redundancy of the codewords of this source
code is proportional to log(𝑛)/𝑛 bits per symbol, where 𝑛 is the length of the source
sequence.

Ziv [62] considered fixed–to–fixed length universal source codes. Ziv used the proba-
bility of incorrectly recovering the original source sequence from a codeword as a perfor-
mance measure for determining whether a fixed–to–fixed length source code is universal.
A universal fixed–to–fixed length source code for discrete–time finite–alphabet sources
was proposed. The error probability of this source code approaches zero asymptotically,
provided that the code rate exceeds the entropy of the source.

2.6.3 Universal coding theorems and performance measures

Davisson [59] laid the foundation for future work concerning universal source codes by
publishing an extensive paper regarding the subject. Davisson proved several theorems
regarding universal source codes by using concepts from information theory. He unified
the constructive techniques of previous authors (as summarized in section 2.6.2) into
a general, theoretical framework. Several of the theorems that Davisson proposed are
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summarized in this section.
The definition of a universal source code is relevant to the theorems that are pre-

sented in this section. Davisson [59] defined a universal source code as a code that

1. does not require access to past or future sequences from the source as its encoder
is used to encode a source sequence, and

2. meets a certain performance specification asymptotically (w.r.t. the length of the
source sequence).

Davisson [59] introduced several performance measures, as well as conditions regard-
ing the existence of universal source codes (where universality is defined according to
the performance measures). In the case of fixed–to–variable length source codes, the
performance measure that Davisson’s definition of universality refers to is ordinarily
selected as the redundancy of the code. If the redundancy of a fixed–to–variable length
source code approaches zero asymptotically, it is considered universal.

The redundancy of a source code has more than one mathematical definition. Davis-
son [59] proposed conditions that source codes have to satisfy in order to be universal
w.r.t. each definition of redundancy. The definitions of redundancy that Davisson con-
sidered, as well as theorems regarding universality w.r.t. these definitions, are provided
in what follows.

2.6.3.1 Minimum average redundancy

Consider a source code C that is used to encode an 𝑛–symbol random sequence X𝑛

from a source with an unknown parameter Θ [59]. Let the conditional average codeword
length of the source code be defined as

𝐿C (X
𝑛∣𝜃) =

∑
x𝑛∈𝒜𝑛

𝑙C (x
𝑛)Pr(x𝑛∣𝜃), (2.13)

where 𝑙C (x
𝑛) is the length of the codeword assigned to source sequence x𝑛, 𝒜 is the

symbol alphabet, and Pr(x𝑛∣𝜃) is the probability of occurrence of the source sequence
x𝑛, conditioned on the source parameter 𝜃. The normalized redundancy of the source
code C , conditioned on the source parameter 𝜃, is defined as

𝑅′
C (X

𝑛, 𝜃) =
1

𝑛

[
𝐿C (X

𝑛∣𝜃)−𝐻(X𝑛∣𝜃)
]
, (2.14)

where 𝐻(X𝑛∣𝜃) is the conditional entropy of the source. The normalized minimum
average redundancy of any sequence of source codes that is used to encode symbol
sequences from a composite source with a parameter density function

𝑤(𝜃) = Pr(Θ = 𝜃) (2.15)

is defined as

𝑅′
𝑚𝑖𝑛,𝑎𝑣𝑒 = lim

𝑛→∞
inf

C∈𝒞𝑛

∫
Λ

𝑅′
C (X

𝑛, 𝜃)𝑤(𝜃)𝑑𝜃, (2.16)
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where 𝒞𝑛 is the set of all uniquely decodable fixed–to–variable length source codes
(for sequences of 𝑛 symbols), and Λ is the set of all possible values that the source
parameter 𝜃 may assume. If the normalized minimum average redundancy associated
with source coding sequences from a certain source is zero, a sequence of source codes
that attains this limit (i.e. with a zero normalized minimum average redundancy) is
known collectively as a weighted universal source code.

Davisson [59] proved that a necessary and sufficient condition for the existence of
weighted universal source codes is that the normalized average mutual information
between X𝑛 and Θ tends to zero asymptotically. This condition may be expressed as

lim
𝑛→∞

1

𝑛
𝐼(X𝑛; Θ) = lim

𝑛→∞
1

𝑛

[
𝐻(X𝑛)−𝐻(X𝑛∣Θ)

]
= 0. (2.17)

If a weighted universal code for sequences from a certain source exists, it may be
obtained by constructing a Huffman code for sequences with the so–called ‘mixture’
distribution. This distribution is defined as

Pr(x𝑛) =

∫
Λ

Pr(x𝑛∣𝜃)𝑤(𝜃)𝑑𝜃. (2.18)

2.6.3.2 Strong minimax redundancy

The normalized strong minimax redundancy associated with source coding sequences
from a composite source (with parameter Θ) is defined as [59]

𝑅′
𝑠 = lim

𝑛→∞
inf

C∈𝒞𝑛
sup
𝜃∈Λ

𝑅′
C (X

𝑛, 𝜃), (2.19)

where 𝑅′
C (X

𝑛, 𝜃) is defined in equation 2.14. If the normalized strong minimax redun-
dancy associated with source coding sequences from a certain source is zero, a sequence
of source codes that attains this limit is collectively referred to as a strong minimax
universal source code.

Davisson [59] derived a necessary and sufficient condition for the existence of strong
minimax universal source codes for a source. This condition is the existence of a se-
quence of probability mass functions {𝑞(x𝑛)}∞𝑛=1 such that the normalized Kullback–
Leibler divergence between Pr(x𝑛∣𝜃) and 𝑞(x𝑛) tends to zero asymptotically and uni-
formly over 𝜃 ∈ Λ. This condition may be expressed as

lim
𝑛→∞

1

𝑛
sup
𝜃∈Λ

𝐷(Pr(x𝑛∣𝜃)∣∣𝑞(x𝑛)) = lim
𝑛→∞

1

𝑛
sup
𝜃∈Λ

∑
x𝑛∈𝒜𝑛

Pr(x𝑛∣𝜃) log
[
Pr(x𝑛∣𝜃)
𝑞(x𝑛)

]

= 0. (2.20)

Uniform convergence implies that for any 𝜖 > 0, there exists some 𝑛0 such that, for
any 𝑛 > 𝑛0 and any 𝜃,

1

𝑛
𝐷(Pr(x𝑛∣𝜃)∣∣𝑞(x𝑛)) < 𝜖. (2.21)

Uniform convergence therefore implies that the choice of 𝑛0 is independent from the
parameter 𝜃.
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If 𝑞(x𝑛) is selected as the mixture distribution Pr(x𝑛) of equation 2.18, a suffi-
cient condition for the existence of strong minimax universal source codes may be
derived [59]. The sufficient condition is that the normalized average mutual informa-
tion between X𝑛 and Θ tends to zero asymptotically and uniformly over 𝜃 ∈ Λ. This
condition may be expressed as

lim
𝑛→∞

1

𝑛
sup
𝜃∈Λ

𝐼(X𝑛; 𝜃) = 0. (2.22)

2.6.3.3 Weak minimax redundancy

The normalized weak minimax redundancy associated with source coding sequences
from a composite source (with parameter Θ) is defined as [59]

𝑅′
𝑤 = inf

C∈𝒞
sup
𝜃∈Λ

lim
𝑛→∞

𝑅′
C (X

𝑛, 𝜃). (2.23)

If the normalized weak minimax redundancy associated with source coding sequences
from a certain source is zero, a source code that attains this limit is referred to as a
weak minimax universal source code.

Davisson [59] proved that the necessary and sufficient condition for the existence of
strong minimax universal source codes is also a necessary and sufficient condition for
the existence of weak minimax universal source codes, except that the convergence of
the normalized Kullback–Leibler divergence to zero need not be uniform over 𝜃 ∈ Λ.
In the case of weak minimax universal source codes, the convergence of the normalized
Kullback–Leibler divergence need only be pointwise. Pointwise convergence implies
that, for any 𝜖 > 0 and any 𝜃, there exists some 𝑛0(𝜃) such that, for any 𝑛 > 𝑛0(𝜃),
equation 2.21 is satisfied. Pointwise convergence therefore implies that the choice of 𝑛0

may be dependent on 𝜃.

2.6.4 Universal coding of composite sources with denumer-

able parameter values

Davisson [59] proved that weighted universal source codes exist for composite sources
with a parameter Θ that may assume only a denumerable number of values. If the
parameter Θ satisfies this condition and has a finite number of possible values, both
strong and weak minimax universal source codes exist for the source8. This theorem
implies that all types of universal source codes considered up to this point exist for a
composite source that randomly selects the actual source from a finite set of sources.

2.6.5 Lempel–Ziv source codes

Ziv et. al. [63, 64] proposed the first and second universal Lempel–Ziv source codes in
1977 and 1978, respectively. Ziv et. al. proved that the encoders of the Lempel–Ziv
source codes, when used to encode sequences from ergodic sources, produce sequences

8These statements assume that the source satisfies other conditions over and above those stated.
The interested reader is referred to reference [59] for details regarding these conditions.
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with an average length that asymptotically approaches the source entropy [16]. These
source codes are therefore universal.

Lempel–Ziv source codes are dictionary–based source codes [16]. A dictionary–based
source code maintains a dictionary (i.e. a list) of sequences that are known as phrases, as
well as a codeword for each phrase. The encoder of a Lempel–Ziv source code encodes
a sequence by progressively dividing it into phrases that correspond to the phrases
of the dictionary. The division of the source sequence into phrases is referred to as
parsing. The source encoder progressively encodes the phrases of the source sequence
by replacing each phrase with its codeword.

The source decoder of a Lempel–Ziv source code requires access to the same dic-
tionary as the encoder in order to correctly decode successive codewords [16]. This
requirement forces the source encoder to consider only those source symbols that it en-
coded previously when it determines how dictionary phrases and codewords should be
updated. The source decoder is able to correctly update its dictionary and successfully
decode the sequence of codewords by remaining in step with the source encoder9.

Dictionary–based source codes vary regarding the manner in which their dictio-
naries are updated and parsing is performed [16]. The Lempel–Ziv source codes parse
source sequences from the start of the sequence to the end of the sequence. The en-
coder of a Lempel–Ziv source code updates its dictionary with new phrases as parsing
proceeds, and considers those symbols encoded previously as it formulates changes to
the dictionary. Dictionaries that are updated in this manner are referred to as dynamic
dictionaries.

One favourable property of Lempel–Ziv source codes is the low computational
complexity of their implementations [16]. The computational complexity of typical
Lempel–Ziv source code implementations increases linearly w.r.t. the length of the
source sequence. This property of Lempel–Ziv source code implementations led to their
widespread use in applications that require the rapid source coding and decoding of
sequences. The Lempel–Ziv source codes are widely used in compression and archiving
software utilities such as winzip [65] and gzip [58].

The universal Lempel–Ziv source codes of 1977 [63] and 1978 [64] are summarized
in what follows.

2.6.5.1 Lempel–Ziv 1977

Ziv [63] proposed their first dictionary–based universal source code in 1977. This source
code is commonly abbreviated as LZ77 in the literature [16]. The first implementations
of the LZ77 algorithm had a computational complexity that increased quadratically
w.r.t. the length of the source sequence. Rodeh et. al. [66] later developed a LZ77
implementation with computational complexity that increases linearly w.r.t. the length
of the source sequence.

The source encoder of the LZ77 code updates its dictionary according to the part of
the source sequence it parsed [16]. The phrases of the dictionary consist of all substrings
of the parsed sequence. The source encoder parses the remainder of a source sequence
by finding its longest prefix that matches a phrase in the dictionary. The source encoder

9The source encoders of some dictionary–based source codes represent the dictionary as part of
the encoded data (i.e. the dictionary is encoded). These source codes are not regarded in this thesis.
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replaces each prefix with a codeword from its dictionary. The codeword contains three
fields, namely

1. the symbol index, in the parsed section of the source sequence, at which the prefix
starts,

2. the length of the prefix, and

3. the first symbol that follows the prefix in the remaining source sequence.

If the dictionary of the source encoder does not contain a phrase that matches a
prefix of the remaining source sequence, the index and length fields of the codeword
are set to zero [16]. This situation occurs if the first symbol of the remaining source
sequence does not appear in the parsed source sequence. The source decoder obtains
the novel symbol from the final field of the codeword in this case. The source encoder
disregards the first symbol of the remaining source sequence as it continues to parse
the sequence.

2.6.5.2 Lempel–Ziv 1978

Ziv et. al. [64] proposed their second dictionary–based universal source code in 1978.
This source code is abbreviated as LZ78 in the literature [16]. The LZ78 source code
has a straightforward implementation with a computational complexity that increases
linearly w.r.t. the length of the source sequence. The normalized redundancy of the
sequence produced by the encoder of the LZ78 source code tends to zero more rapidly
w.r.t. the source sequence length than the normalized redundancy of the LZ77 source
code [67].

The source encoder of the LZ78 source code parses a source sequence in the same
manner as the LZ77 source code (i.e. it finds the longest prefix in the remaining source
sequence that matches a phrase in its dictionary) [16]. The format of the codewords,
as well as the manner in which the source encoder updates its dictionary, differ from
the LZ77 source code. The dictionaries of both the encoder and decoder of the LZ78
source code initially contain all distinct single–symbol phrases. Each dictionary phrase
is assigned an integer as a codeword, and successive phrases that are added to the
dictionary are assigned incrementally larger integers as codewords.

The source encoder encodes the longest matching prefix of the remaining source
sequence by replacing it with its codeword [16]. The encoder proceeds by adding the
phrase that was replaced to the dictionary, but with the symbol that follows it in the
source sequence concatenated at its end. The source encoder leaves the first symbol of
the remaining source sequence uncoded as it continues to parse the sequence.

2.6.5.3 Performance and implementations

The Lempel–Ziv source codes were empirically demonstrated as being less effective than
source code implementations such as PPM when used to encode practical data [47].
The main advantage of the Lempel–Ziv codes is the low computational complexity of
their implementations [16]. Lempel–Ziv source codes are used in both hardware and
software applications that require the rapid source coding and decoding of sequences.
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The older V.42bis modem standard [68], as well as the more recent V.44 modem
standard [69] incorporate variants of the LZ78 source code. Lempel–Ziv source codes
are also widely used in compression and archiving software utilities such as gzip [58]
(which uses a variant of the LZ77 code) and compress [70] (which uses a variant of the
LZ78 code). The specification of the GIF [71] image file format incorporates a variant
of the LZ78 source code for image compression.
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CHAPTER 3

The Burrows–Wheeler transform

This chapter presents an in–depth study of the literature that is relevant to the
Burrows–Wheeler transform and its application to source coding. The chapter con-
tains a summary of the forward and reverse Burrows–Wheeler transforms, as well as
efficient implementations of these algorithms. A discussion of the statistical properties
of the forward Burrows–Wheeler transform output is provided, and these properties
are expressed mathematically.

The chapter includes a summary of the recency–rank code, which is a transform
often used in Burrows–Wheeler–based source code implementations. The chapter con-
cludes with a summary of an elementary Burrows–Wheeler–based source code and its
components. Several of the variations of the elementary source code that were proposed
in the literature are also considered.

3.1 The Burrows–Wheeler transform

One of the more recent advances in the field of source coding is that of the Burrows–
Wheeler transform, or BWT [9]. The purpose of the BWT is to enable the effective
source coding of sequences from complex sources using simple source codes, but without
redesigning the source codes. This objective is achieved by transforming each ‘complex’
source sequence (i.e. a sequence of symbols that are statistically dependent on one
another) into a ‘simpler’ sequence (i.e. a sequence of symbols with an asymptotically
piecewise independent distribution) prior to encoding it [10].

To illustrate the role of the BWT, suppose that a simple source code is only ef-
fective when used to encode i.i.d. symbols with a biased distribution. When the BWT
is applied to source sequences with higher–order redundancy (i.e. symbols that are
strongly dependent on their preceding contexts), sequences of asymptotically piecewise
i.i.d. symbols are frequently produced [10]. The distribution of the symbols in each
piecewise segment is typically biased, and each segment of the transformed sequence
may be effectively encoded using the simple source code.

The BWT is reversible, and slightly increases the length of the source sequence [10].
This increase is proportional to log2(𝑛) bits, where 𝑛 is the length of the source sequence
that is to be encoded. Implementations of both the forward and reverse transforms
with computational complexity that increases linearly with respect to the length of
the source sequence exist. The forward and reverse transforms are discussed in greater
detail in the following sections.
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Table 3.1: The first table associated with the forward BWT of the sequence bananas

(adapted from reference [10]). The first symbol of the original sequence (b) is printed
in bold.

b a n a n a s
a n a n a s b
n a n a s b a
a n a s b a n
n a s b a n a
a s b a n a n
s b a n a n a

3.1.1 The forward transform

This section contains a description of the forward BWT, as well as a summary of several
forward BWT implementations. The distribution of the BWT output sequence is also
considered.

3.1.1.1 Description

The forward transform is best described by means of an example. Suppose that the
forward transform is to be applied to the source sequence bananas [10]. The first step
of the forward transform involves the construction of a table (refer to table 3.1). The
original sequence is inserted in the first row of the table. The second row of the table
equals the first row of the table that is cyclically shifted to the left. Similarly, the third
row equals a cyclically left–shifted version of the second row. A table with an equal
number of columns and rows is obtained by repeating the shift operation a number of
times equal to the length of the source sequence minus one.

Let the following context of a specific symbol be defined as the suffix that follows
that symbol in the source sequence. Each row of the table starts with a following context
of the original sequence, and the last column contains the symbol that precedes each
following context (with the exception of the first row). A prefix of the source sequence
follows each following context in the second row to the last row of the table.

The second step of the forward transform consists of lexicographically sorting the
rows of the first table relative to one another (refer to table 3.2 on page 34) [10]. During
this step, all following contexts that are lexicographically similar are placed in adjacent
rows of the table. The final column of the sorted table contains the symbols that precede
the sorted contexts — those symbols that precede lexicographically similar following
contexts are located adjacent to one another in this column. This column is the output
sequence of the forward transform. The forward BWT of the sequence bananas is the
sequence bnnsaaa, as indicated in table 3.2.

An algorithm for reversing the transformed sequence requires additional information
regarding the row–sorted table in order to successfully perform the reversal [10]. An
integer index is sufficient for this purpose, as demonstrated in section 3.1.2.1. This
index equals the number of the row in the sorted table that contains the original source
sequence, and is known as the BWT index. In the example, the fourth row of table
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Table 3.2: The row–sorted table associated with the forward BWT of the sequence
bananas (adapted from reference [10]). The output sequence of the forward BWT is
printed in bold.

a n a n a s b
a n a s b a n
a s b a n a n
b a n a n a s
n a n a s b a
n a s b a n a
s b a n a n a

3.2 contains the original sequence bananas. The BWT index of the example therefore
equals four — the sequence bananas is transformed to the double (bnnsaaa,4), or

BWT(bananas) = (bnnsaaa, 4). (3.1)

3.1.1.2 Implementation

Computationally efficient implementations of both the forward and reverse Burrows–
Wheeler transforms are required in order for these transforms to have any practical use.
The computational complexity as well as the memory requirement of each implementa-
tion have to be considered. The reverse transform is straightforward to implement [16].
Its implementation has a low computational complexity and requires little memory.
It is significantly more difficult to develop an efficient implementation of the forward
transform.

A rudimentary implementation of the forward transformmight use tables, as demon-
strated in the example of section 3.1.1.1. This implementation is impractical due to its
memory requirement of 𝑂(𝑛2), where 𝑛 is the length of the source sequence. A practi-
cal implementation has to represent the following contexts of the source sequence in a
more efficient manner.

The computationally intensive routine of the forward transform of a sequence is
typically the sorting of the following contexts of the sequence [16]. To motivate this
statement, consider a digitized colour photograph, which typically contains very long
runs of the same pixel in its raw, uncompressed image format. When sorting contexts
that contain long runs of identical symbols, a typical sort algorithm frequently has to
compare many of these identical symbols in order to resolve comparison ties between
the contexts. The large number of symbol comparisons renders the worst–case compu-
tational complexity of the algorithm unacceptable. Several solutions for this problem
were proposed — these solutions, as well as other techniques for reducing the compu-
tational complexity of the forward transform, are discussed in what follows.

Resolution of comparison ties One approach to improving the worst–case compu-
tational complexity of the sort algorithm lies in the resolution of comparison ties that
occur during the comparison of sequences that contain long runs of identical symbols.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 34

 
 
 



CHAPTER 3 The Burrows–Wheeler transform

The symbol runs may be replaced with run lengths (i.e. the source sequence is run–
length coded) prior to applying the forward transform [10]. This approach shortens the
time that the sort algorithm requires to compare similar contexts as it may use the
run lengths to resolve the comparison ties. The use of a run–length code reduces the
effectiveness of the BWT, as it removes symbol contexts from the source sequence [16].

Another approach to reducing the worst–case computational complexity of the sort
algorithm involves the declaration of a maximum sort length [10]. A sort algorithm
compares two contexts of the source sequence up to a number of symbols that equals
the maximum sort length in this approach. If two contexts are identical up to the
maximum sort length, the comparison tie is resolved according to the contexts’ position
in the original source sequence.

Both the run–length code and the maximum sort length approach reduce the com-
putational complexity of the forward transform, but at the cost of reducing the effec-
tiveness of the BWT and therefore a BWT–based source code [16]. Other techniques
for reducing the computational complexity of the forward transform, but which involve
no loss in effectiveness, are summarized in what follows.

Efficient sort algorithms A more efficient sort algorithm may be used in the im-
plementation of the forward transform, instead of relying on a mechanism that resolves
comparison ties during the execution of a conventional sort algorithm [16]. Several sort
algorithms that are relevant to the implementation of the forward transform are pre-
sented in what follows. Sadakane [72] wrote an informative summary of these algorithms
— some of the material from this summary is used in the following discussion.

The Quicksort algorithm [73], which is arguably one of the most popular sort al-
gorithms currently in use, is fairly efficient when used during the forward transform
of most source sequences [9]. Implementations of the Quicksort algorithm also require
relatively little memory. The worst–case computational complexity of this algorithm is
excessive, however. Alternative sort algorithms with improved worst–case performance
should be considered for use in implementations of the forward transform.

The Bentley–Sedgewick algorithm [74] is a practical, general–purpose algorithm for
sorting symbol sequences. It may be interpreted as a combination of the Quicksort [73]
and the most significant symbol (MSS) radix–sort algorithms. The algorithm sorts a
set of sequences in a recursive fashion and with a pivot symbol that is selected at the
start of each instance of the algorithm.

The MSSs of the unsorted sequences are compared to the pivot symbol during the
initial steps of the Bentley–Sedgewick algorithm [74]. The sequences are subsequently
divided into three groups. The groups contain sequences with MSSs that are (respec-
tively) smaller than, equal to, or larger than the pivot symbol. The sequences in each of
these groups are sorted recursively according to their MSSs, except for the sequences
of the ‘equal to’ group, which are sorted according to their second–most significant
symbols.

The Bentley–Sedgewick algorithm eliminates unnecessary comparisons between se-
quences with identical prefixes by placing these sequences within the same group [74].
The efficiency of the algorithm depends on the selection of appropriate pivot symbols,
however. The Bentley–Sedgewick algorithm is used in the BWT–based compression
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and archiving utility bzip2 [42].
The Andersson–Nilsson algorithm [75] is an iterative radix–sort algorithm for a

set of symbol sequences. The algorithm changes the order of the sequences in such a
manner that they are sorted w.r.t. their prefixes of 𝑖 symbols after the 𝑖th iteration.
The algorithm assigns the sequences to data structures of two types, namely groups
and buckets. At the end of the 𝑖th iteration of the algorithm, each group contains only
sequences that are identical up to their 𝑖th MSSs (i.e. the sequences have identical
prefixes of 𝑖 symbols). Each group may therefore be associated with a distinct prefix
of 𝑖 symbols at the end of the 𝑖th iteration, and no two groups are associated with the
same prefix of this length.

All unsorted sequences are assigned to a single group at the start of the algorithm’s
first iteration [75]. During the 𝑖th iteration of the algorithm, all sequences with 𝑖th MSSs
that are identical are placed within the same bucket, so that each bucket contains only
sequences with the same 𝑖th MSSs. The buckets are traversed in lexicographical order
w.r.t. the 𝑖th MSSs of their sequences. The sequences in a bucket are returned to the
back of their groups as the bucket is traversed, thereby sorting the sequences in each
group according to their 𝑖th MSSs. As the 𝑖− 1 MSSs of the sequences in each group
are identical, these sequences are sorted up to their 𝑖th MSSs at the end of the 𝑖th
iteration of the algorithm.

The algorithm splits each group into subgroups at the end of each iteration [75].
Each of the subgroups contains only sequences with the same prefix of 𝑖 symbols at
the end of the 𝑖th iteration. The subgroups are maintained in lexicographic order w.r.t.
the prefixes shared by their sequences. The algorithm continues to iterate until each
group contains a single sequence. At this point, the sorted set of sequences is obtained
by traversing the groups. Sadakane [72] observed that the computational complexity
of this algorithm is low, despite its conceptual simplicity.

Suffix–sort algorithms The forward transform may be modified in order to reduce
its computational complexity [10]. One such modification involves attaching an ‘end
of file’ (EOF) symbol to the end of the source sequence that is to be transformed. The
EOF symbol may not appear elsewhere in the source sequence, and it is considered to
be the last symbol in the lexicographic order of the symbol alphabet.

Attaching an EOF symbol to the source sequence has two benefits [10]. The first
benefit is the elimination of edge effects. Some contexts of a source sequence may
be sorted w.r.t. symbols that transcend the end of the sequence during its forward
transform. This property is not beneficial to the transform as it implies that the symbols
at the end of the source sequence precede the symbols at the beginning of the sequence.
A comparison between any two contexts would terminate at the EOF symbol should
it be reached. Attaching an EOF symbol to the source sequence therefore delimits the
contexts at the end of the sequence.

The second benefit of attaching an EOF symbol to the source sequence is that it
simplifies the forward transform of the sequence [10]. Instead of sorting all the cyclic
shifts of the original source sequence, the forward transform of the source sequence that
is appended with an EOF symbol involves sorting the 𝑛 distinct suffixes of the original
source sequence of length 𝑛. An efficient implementation of this forward transform may
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be developed, as efficient techniques for sorting the suffixes of a symbol sequence are
available.

Baron et. al. [76] proposed three novel suffix–sort algorithms, and used each of
these algorithms in an implementation of the forward transform. Each algorithm has
a different degree of worst–case computational complexity. The worst–case computa-
tional complexity of each algorithm does not increase linearly w.r.t. the length of the
source sequence, but at a greater rate. The empirical performance of each algorithm
was found to be competitive with the performance of other suffix–sort algorithms, how-
ever. The algorithms make use of a memory–efficient suffix–list data structure, and are
antisequential (i.e. each source sequence is processed in reverse order).

The Karp–Miller–Rosenberg algorithm [77] locates repeating patterns in a symbol
sequence, and may be used to sort the suffixes of a source sequence. The algorithm
is similar to the Andersson–Nilsson algorithm (refer to page 36). It exploits a certain
property of a suffix set in order to sort it more efficiently.

The Karp–Miller–Rosenberg algorithm assigns the suffixes of a source sequence to
groups [77]. It iteratively divides the groups in such a manner that each group contains
only suffixes with the same prefix. Only those suffixes that share longer prefixes remain
in the same group as the division of the groups proceeds. After dividing a group, its
subgroups are arranged in lexicographical order according to the prefixes shared by
their suffixes. The groups are divided repeatedly until each group contains only a
single suffix. At this point, the sorted suffix set is obtained by traversing the groups in
lexicographical order.

The algorithm assigns each subgroup a unique integer that represents its rank
among the sorted subgroups at the end of each iteration [77]. It is able to divide
the subgroups with greater efficiency by using these integer ranks. Let the suffixes of a
source sequence be referred to as its primary suffixes. Instead of dividing the subgroups
according to the 𝑖th MSSs of their primary suffixes during iteration 𝑖, the algorithm
divides the subgroups according to the suffixes of their primary suffixes. As the suffix
of a primary suffix is another primary suffix, the algorithm compares primary suffixes
according to the integer ranks of the subgroups that contain their suffixes during the
division of a subgroup.

In contrast to the Andersson–Nilsson algorithm, the Karp–Miller–Rosenberg algo-
rithm sorts the suffixes of each group according to more than one symbol during each
iteration [77]. The Karp–Miller–Rosenberg algorithm possesses the so–called ‘doubling’
property, which states that the suffixes of each group are sorted according to a prefix
with a length that doubles with each consecutive iteration of the algorithm. The suf-
fixes of a source sequence may be sorted in ⌈log2(𝑛)⌉ iterations of the algorithm, where
𝑛 is the length of the source sequence.

The Manber–Myers algorithm [78] uses a variant of the Karp–Miller–Rosenberg
algorithm [77] to sort a suffix set. It assigns the suffixes of a source sequence to groups,
and iteratively divides these groups into smaller subgroups in such a manner that
the suffixes of each subgroup share the same prefix. The subgroups are maintained in
lexicographic order according to the prefixes shared by their suffixes. The algorithm
possesses the doubling property — the suffixes of each group are sorted according to a
prefix with a length that doubles with each consecutive iteration of the algorithm.
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The Manber–Myers algorithm uses what is referred to as a suffix array to divide
each group of suffixes efficiently [78]. Each element of this array is a pointer to the
start of a distinct suffix in the source sequence. The elements of the suffix array are
maintained in lexicographic order according to the prefixes of the distinct suffixes.

The algorithm traverses the suffix array 𝐼 from its first element to its last element
prior to dividing the groups of suffixes during each iteration [78]. The first element of
the suffix array, 𝐼(0), points to a suffix that belongs to the group with the smallest
lexicographical rank. The suffix that starts at index 𝐼(0)−⌊2𝑖−1⌋ of the source sequence
has the smallest prefix of 2𝑖 symbols of all suffixes in its group at the start of the (𝑖+1)th
iteration. This suffix is moved to the front of its group. The suffix starting at index
𝐼(𝑘) − ⌊2𝑖−1⌋ of the source sequence, for each consecutive value of 𝑘, has the next
smallest prefix of 2𝑖 symbols of all suffixes in its group at the start of the (𝑖 + 1)th
iteration. It is inserted behind the last suffix that was moved towards the front of its
group during iteration 𝑖+ 1.

The suffixes of each group are sorted up to their prefixes of 2𝑖 symbols after the
traversal of the suffix array during the (𝑖 + 1)th iteration [78]. The algorithm divides
each group according to these prefixes, and arranges the subgroups in lexicographic
order according to the prefixes of their suffixes. It rearranges the elements of the suffix
array in lexicographic order prior to starting the next iteration.

The pointers to the suffixes of a source sequence may be stored in a tree data
structure instead of an array data structure [54]. A suffix tree is a data structure with
a root node, internal nodes and leaf nodes. The nodes of the tree are connected with
edges, and each edge is associated with a subsequence of the source sequence. Each
edge is labelled with the subsequence that is associated with it.

Each leaf node of a suffix tree is associated with a distinct suffix of the source
sequence — the suffix is equal to the concatenation of the edge labels along the path
from the root node of the suffix tree to the leaf node [54]. The internal nodes of the
suffix tree are arranged in such a manner that those suffixes with a common prefix
share the edges associated with the prefix. The suffix tree of the sequence abcabcabc$,
where $ denotes the EOF symbol, is presented in figure 3.1.

The suffixes of a source sequence may be sorted by using the suffix tree of the
sequence [10]. Let all edges that depart from the same internal node of the suffix tree
of a source sequence be ordered lexicographically according to their labels. If the suffix
tree is traversed in a depth–first manner from its root node to its leaf nodes, the 𝑖th
leaf node that is encountered during the traversal is associated with the 𝑖th smallest
suffix of the sequence.

If all edges that depart from the same internal node of a suffix tree are not ordered
lexicographically, the labels of these edges have to be compared in order for the edges
to be traversed in a lexicographical order. All comparisons between edges that depart
from the same node of the suffix tree are trivial, as each of these edges has a label with
a distinct MSS. All edges that depart from the same internal node of the tree have
labels with distinct MSSs, as edges with the same parent node and with labels that
share the same MSS would have been merged during the construction of the tree.

McCreight [54] proposed an efficient, iterative algorithm for the construction of the
suffix tree of a source sequence. The algorithm inserts a distinct suffix of the source
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abcabcabc
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abc$abc$abc$

Figure 3.1: The suffix tree of the sequence abcabcabc$.

sequence into an initially empty tree during each iteration. The suffixes are inserted
into the tree in ascending length order. The algorithm inserts certain suffixes more
efficiently into the suffix tree by exploiting certain properties of suffixes with identical
prefixes, and by incorporating additional information into the tree structure.

The construction and the depth–first traversal of a suffix tree may be performed
with a worst–case computational complexity of 𝑂(𝑛) and with 𝑂(𝑛) memory, where
𝑛 is the length of the source sequence [54]. Suffix trees typically require three to five
times as much memory as suffix arrays [78]. Both suffix trees and suffix arrays require
memory that increases only linearly with respect to the length of the sequence, however.

3.1.1.3 Output distribution

Source codes are designed to effectively encode sequences from a certain probabilistic
information source or a certain class of sources. Sources vary from those that are very
simple to those that have a more complex structure. A simple source may produce
i.i.d. symbols according to some distribution, while some of the more complex sources
produce symbols that are statistically dependent on one another.

The performance of a source code that is used to encode sequences from an abstract
source provides a general indication of its performance should it be used to encode real–
life data. Two of the more complex source models are introduced in this section. These
models produce symbols with statistical properties that match those of real–life data
such as English text more closely than many of the simpler sources [10].

Finite state machine sources A finite state machine (FSM) source is characterized
by a finite set of states 𝒮, a finite alphabet 𝒜, a next–state function 𝑓 : 𝒮×𝒜 → 𝒮, and
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the conditional probability mass functions 𝑝(𝑥∣s), 𝑥 ∈ 𝒜, s ∈ 𝒮 [10]. The probability
of the source producing the sequence x𝑛 = {𝑥1, 𝑥2, . . . 𝑥𝑛}, conditioned on the initial
state s

(𝑡)
0 , equals

Pr(x𝑛∣s(𝑡)0 ) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖∣s(𝑡)𝑖−1), (3.2)

where s
(𝑡)
𝑖 = 𝑓(s

(𝑡)
𝑖−1, 𝑥𝑖), and s

(𝑡)
𝑖 denotes the state in which the source resides during

the 𝑖th time instant.
Finite–order finite state machine (FSMX) sources constitute a subset of the class of

FSM sources [10]. The 𝑚 most recent symbols produced by an order–𝑚 FSMX source
uniquely determine the current state of the source. The state set 𝒮 of a FSMX source
is a minimum suffix set of sequences — this implies that, for every symbol 𝑥 where
𝑝(𝑥∣s) ∕= 0 with s ∈ 𝒮, the sequence s𝑥 has exactly one suffix that is present in 𝒮. The
next–state function of the FSMX source may be expressed as

s
(𝑡)
𝑖 = 𝑓(s

(𝑡)
𝑖−1, 𝑥𝑖)

= suf(s
(𝑡)
𝑖−1𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑛, (3.3)

where suf(s
(𝑡)
𝑖−1𝑥𝑖) is the suffix of the concatenation of the sequence s

(𝑡)
𝑖−1 and the symbol

𝑥𝑖.

Finite–memory and tree sources The transition to the next state of both FSM
and FSMX sources depends only on the most recent state and the most recent symbol
produced by the source. Certain authors consider this condition to be restrictive and
unnecessary [10]. Source models that are not restricted by this condition were proposed
in the literature [79, 80]. Two of these source models are discussed in what follows1.

Effros et. al. [10] made use of what is referred to as finite–memory sources in ana-
lyzing BWT–based source codes. This source class may be regarded as a generalization
of the class of FSMX sources. The next–state function of an order–𝑚 finite–memory
source depends on at most the 𝑚 most recent symbols produced by that source. This
relationship may be expressed as

s
(𝑡)
𝑖 = suf(𝑥𝑖−𝑚+1𝑥𝑖−𝑚+2 . . . 𝑥𝑖). (3.4)

The states s
(𝑡)
𝑖 are the finite–length symbol contexts of the source, and each context

has a certain symbol distribution associated with it.
Finite–memory sources are very similar to tree sources. A tree source is character-

ized by a tree data structure [81]. This data structure has a root node, internal nodes
and leaf nodes. Parent nodes are connected to child nodes with edges, and each edge
is associated with a single symbol of the source alphabet. Any edge symbol is unique
among the symbols of the edge’s siblings. Each node of a 𝑞–ary tree source has at most
𝑞 child nodes. All the internal nodes of a full 𝑞–ary tree source, including the root node,
have exactly 𝑞 child nodes.

Assume that each tree node is associated with a symbol sequence that equals the
concatenation of the edge symbols that are encountered upon traversing the tree from

1This thesis uses the definitions of these source models that appear in references [10, 81].
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Figure 3.2: An example of a full binary tree source and its minimum suffix set [81].

its root to the specific node [81]. The sequences that are associated with the leaf nodes
of a full 𝑞–ary tree may be used to construct a minimum suffix set. The suffixes of this
set are equal to the sequences that are associated with the leaf nodes, but in reverse
order. An example of a full binary tree source, with a minimum suffix set that was
derived from it, are presented in figure 3.2 on page 41.

The sequences that are associated with the leaves of the full 𝑞–ary tree source are
referred to as the states of the source [81]. Each state of a full 𝑞–ary tree source of
depth 𝑚 has a maximum length of 𝑚 symbols. Each state of the tree source is assigned
a certain probability mass function 𝑝(𝑥∣s), where 𝑥 ∈ 𝒜 and s ∈ 𝒮. A source symbol is
generated according to the probability mass function of the state in which the source
currently resides.

A unique state–transition pattern is associated with each sequence produced by the
source [81]. The next state of the source depends on at most the previous 𝑚 symbols
produced by the source. This relationship may be expressed as

s
(𝑡)
𝑖 = ℛ(suf(𝑥𝑖−𝑚+1, 𝑥𝑖−𝑚+2, . . . 𝑥𝑖)), (3.5)

where ℛ(⋅) denotes sequence reversal. This equation is equivalent to the expression
for finite–memory sources (refer to equation 3.4) [10, 81]. It follows that the minimum
suffix set of the tree source is equal to the source’s set of preceding contexts.

The probability of a tree source producing a certain sequence x𝑛 equals

Pr(x𝑛∣s(𝑡)0 ) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖∣s(𝑡)𝑖−1). (3.6)
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This equation is identical to the equation for finite–memory sources [10, 81].
The primary difference between a tree source and an FSM source is the fact that a

state transition of an FSM source depends only on the most recent state and the most
recent symbol that the source produced [10,81]. A state transition of a tree source may
depend on up to 𝑚 of the most recent symbols that the source produced, where 𝑚
is the depth of the tree. As an example, consider the tree source of figure 3.2, which
has a depth equal to three. The states of this tree source are 0, 100, 101 and 11. The
preceding contexts that are associated with the states are 0, 001, 101 and 11. Assume
that the tree source is in context 0 at some point in time, and that it produces the
symbol 1 while in that context. The length–three suffix of the symbol sequence equals
𝑥𝑖−201, where 𝑥𝑖−2 is the last symbol that was produced prior to entering state 0. The
transition to the next state of the tree source clearly depends on the symbol 𝑥𝑖−2 and
not only on the most recent context (0) and symbol (1), as the next context may only
equal 001 or 101.

If a tree source cannot be represented as an FSM source, it may be extended in
order to represent it as an equivalent FSM source [81]. The extension process consists
of adding additional nodes to the tree source. Several definitions that are required in
order to summarize the extension process are provided in what follows.

Assume that the set 𝒯 defines a tree source with tree nodes 𝑡 ∈ 𝒯 [81]. A tree
defined by 𝒯 ′ is said to be a refinement of the tree defined by 𝒯 if 𝒯 ⊆ 𝒯 ′. Let the
set of leaf nodes of the tree defined by 𝒯 be expressed as ℒ𝒯 . Furthermore, for each
𝑙 ∈ ℒ𝒯 , let sufc(𝑙) denote a set that contains all the suffixes of the sequence that is
associated with the leaf node 𝑙, and let ℰ = ∪𝑙∈ℒ𝒯 sufc(𝑙).

A refined tree 𝒯 ′ that is defined as 𝒯 ′ = 𝒯 ∪ ℰ is referred to as the FSM closure of
the tree source defined by 𝒯 [81]. The FSM closure of a tree source 𝒯 is the smallest
possible extension of the tree 𝒯 that may be successfully represented as an equivalent
FSM source. All state transitions of the extended tree source depend on only the most
recent state of the source, as well as the most recent symbol that the source produced.

To illustrate the tree extension process, consider the tree source of figure 3.2 [81].
The union of all the suffixes that are associated with all the leaf node sequences is
given by ℰ = {0, 1, 11, 100, 101, 00, 01}. The only sequences in this set that are not
associated with nodes in the tree source of figure 3.2 are 00 and 01. The FSM closure
of the tree source is obtained by adding the leaves that are associated with these
sequences to the tree. The FSM closure of the tree source of figure 3.2 is presented in
figure 3.3. The extended tree may be represented as an equivalent FSM source using a
state–transition diagram, as demonstrated in figure 3.4 on page 43.

The forward transform of finite–memory source sequences Researchers in-
vestigated the distribution of the BWT output sequence in order to motivate the per-
formance of BWT–based source codes. Effros [82] and Viswesvariah et. al. [83] inves-
tigated the distribution of the BWT output sequence when the transform is applied
to sequences from various sources. In a comprehensive paper regarding BWT–based
source codes, Effros et. al. [10] statistically characterized the output of the forward
BWT when applied to source sequences produced by finite–memory sources. This sec-
tion summarizes these characteristics.
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Figure 3.3: FSM closure of the binary tree source of figure 3.2 [81].
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Figure 3.4: The state–transition diagram of the FSM closure of figure 3.3.
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The theoretical investigation of the BWT, as performed by Effros et. al. [10], as-
sumes that the source sequences are reversed and subsequently appended with the
EOF symbol before being transformed. The reversal of a source sequence causes the
reversed preceding contexts of the sequence to be sorted relative to one another during
the forward transform2. The forward transform is expressed as

(Z𝑛+1, ℐ) = BWT(ℛ(X𝑛)$), (3.7)

where $ represents the EOF symbol, X𝑛 is the source sequence, ℛ(⋅) denotes sequence
reversal, Z𝑛+1 is the transformed source sequence, and ℐ is the index of the original
source sequence in the sorted transform table (i.e. the BWT index).

As row ℐ of the sorted table contains the original sequence, the EOF symbol is the
final symbol in this row. The ℐth symbol of the transformed sequence therefore equals
the EOF symbol. The 𝑛–symbol sequence W𝑛, which is defined as

W𝑛 = {𝑍1, 𝑍2, . . . 𝑍ℐ−1, 𝑍ℐ+1, . . . 𝑍𝑛+1}
= {Zℐ−1

1 ,Z𝑛+1
ℐ+1}, (3.8)

does not contain the EOF symbol. The source sequence X𝑛 may be obtained from the
sequence W𝑛 by first inserting the EOF symbol at index ℐ of this sequence, and subse-
quently performing the reverse transform on this sequence. The probability distribution
of the sequence W𝑛 is derived in this section.

In order to derive a probability distribution for the BWT output sequence, it is
necessary to investigate how the addition of the EOF symbol to the reversed source
sequence affects the forward transform [10]. The change in the forward transform is
explained in what follows. Observe that there are 𝑚 rows in the sorted transform table
with the EOF symbol present among the first 𝑚 symbols of the row, and 𝑛−𝑚+1 rows
that do not share this property (𝑚 is the length of the longest context of the source). As
the minimum suffix set associated with the finite–memory source is complete, a prefix
of each of the 𝑛−𝑚+ 1 rows with no EOF symbol among the initial 𝑚 symbols equals
a reversed version of one of the suffixes in the minimum suffix set of the source. Next
consider one of the 𝑚 rows with the EOF symbol present among its initial 𝑚 symbols.
It is possible that no prefix of this row equals a reversed version of any suffix in the
minimum suffix set of the source. If this is the case, the last symbol of this row will
be associated with a context that is not related to one of the contexts of the original
source during the forward transform of the sequence. Let the set 𝒬𝑐 be defined as

𝒬𝑐 = {(𝑋𝑖−1, 𝑋𝑖−2, . . .𝑋2, 𝑋1, $) :

1 ≤ 𝑖 ≤ 𝑚 ∧ [(𝑋𝑖−1, 𝑋𝑖−2, . . .𝑋1) ∕= ℛ(s) ∀ s ∈ 𝒮]},
(3.9)

and let 𝒬′ = 𝒬∪𝒬𝑐, where 𝒬 = {ℛ(s) : s ∈ 𝒮}. It follows that
∣𝒬′∣ ≤ ∣𝒮∣+𝑚. (3.10)

2The conclusions that follow also apply to source sequences that are not reversed prior to the
forward transform [10]. This observation is a consequence of the fact that any reversed finite–memory
source sequence is equivalent to a sequence from a (possibly different) finite–memory source.
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Effros et. al. [10] proved that the distribution of the BWT output sequence, when
applied to a finite–memory source sequence, equals

Pr(W𝑛, ℐ) =
𝐶∏
𝑗=1

𝑇𝑗+1−1∏
𝑖=𝑇𝑗

𝑝(𝑊𝑖∣ℛ(q′
𝑗)), (3.11)

where 𝐶 = ∣𝒬′∣ ≤ ∣𝒮∣ + 𝑚, q′
𝑗 ∈ 𝒬′, and the sequences q′

𝑗 are sorted in ascending
order w.r.t. the integer 𝑗. The distribution 𝑝(𝑊𝑖∣ℛ(q′

𝑗)) is the conditional distribution
associated with state ℛ(q′

𝑗) of the finite–memory source. The integer 𝑇𝑗 be defined as

𝑇𝑗 = 1 +

𝑛∑
𝑖=1

𝑗−1∑
𝑘=1

1(pre(X1
𝑖 $) = q′

𝑘), (3.12)

where pre(⋅) denotes the prefix of a sequence, and 1(⋅) equals unity if its argument is
true (and zero if not). The integer 𝑇𝑗 equals the index of the first symbol in the BWT
output sequence that precedes context q′

𝑗 in the reversed source sequence.
Equation 3.11 resembles the distribution of a piecewise independent and identically

distributed (p.i.i.d.) symbol sequence [10]. Each piecewise segment consists of only those
symbols that occur within a certain source context, or state. A remarkable aspect of the
BWT is that it is able to produce output sequences with the distribution of equation
3.11, but without the algorithm requiring any apriori knowledge of the finite–memory
source or its parameters.

Effros et. al. [10] observed that the distribution of equation 3.11 differs from that of
a true p.i.i.d. symbol sequence in certain aspects — the interested reader is referred to
reference [10] for details regarding the differences. Viswesvariah et. al. [83] investigated
the normalized Kullback–Leibler divergence between the BWT output distribution and
a p.i.i.d. distribution, and found that it converged to zero as the source sequence length
tended to infinity. It was proved that

1

𝑛
𝐷(Pr(Y𝑛)∣∣𝑅) ≤ 𝑐√

𝑛
(3.13)

for some constant 𝑐, where 𝑅 is a p.i.i.d. symbol distribution, 𝐷(⋅) is the Kullback–
Leibler divergence, and Y𝑛 is the output sequence of the BWT when applied to a
reversed source sequence.

3.1.2 The reverse transform

This section is a summary of the reverse BWT and its implementation.

3.1.2.1 Description

The original source sequence may be recovered from the BWT output sequence and
the BWT index by using two observations regarding the transformed sequence [16]:

1. The transformed sequence is a permutation of the original sequence.
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Table 3.3: The first (a) and second (b) tables of the reconstruction of the original
sequence bananas (adapted from reference [10]).

b a b
n a n
n a n
s → b s
a n a
a n a
a s a

Table 3.4: The third (a) and fourth (b) tables of the reconstruction of the original
sequence bananas (adapted from reference [10]).

b a a n b
n a a n n
n a a s n
s b → b a s
a n n a a
a n n a a
a s s b a

2. The first symbol of each following context may be obtained by sorting the trans-
formed sequence.

The reverse transform is carried out by iteratively reconstructing the table that contains
the sorted contexts (refer to table 3.2 on page 34). Once the table is reconstructed, the
BWT index is used to obtain the original sequence from the table.

The reverse transform is illustrated by the same example that was used to illustrate
the forward transform [10]. The first step of the reverse transform is to place the
transformed sequence bnnsaaa in the final column of an empty table (refer to table
3.3(a) on page 46). As the first column of the original table contains the sequence in
lexicographical order, and the final column is a permutation of the original sequence,
the first column equals the final column that is sorted lexicographically.

As the rows of the original table of sorted contexts are the cyclic shifts of the
original sequence, the symbols in the final column of the table precede those in the first
column [10]. The second table (table 3.3(b)) therefore contains all pairs of symbols that
appear next to each other in the original sequence. If these symbol pairs are sorted, the
first two columns of the original table are obtained. The columns of the second table
are therefore cyclically shifted to the right (refer to table 3.4(a)), the rows of this table
are sorted, and the transformed sequence is placed in its final column. The result is the
fourth table of the reverse transform (refer to table 3.4(b)).

From this point onwards, the remainder of the original table may be reconstructed
by iteratively [10]

1. shifting all columns of the table one column to the right (in a cyclic fashion),
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Table 3.5: The fifth (a) to twelfth (h) tables of the reconstruction of the original se-
quence bananas (adapted from reference [10]). The recovered sequence is equal to the
fourth row of the final table (bananas), and is printed in bold.

b a n a n a b
n a n a n a n
n a s a s b n
s b a → b a n s
a n a n a n a
a n a n a s a
a s b s b a a

↙
b a n a a n a n b
n a n a a n a s n
n a s b a s b a n
s b a n → b a n a s
a n a n n a n a a
a n a s n a s b a
a s b a s b a n a

↙
b a n a n a n a n a b
n a n a s a n a s b n
n a s b a a s b a n n
s b a n a → b a n a n s
a n a n a n a n a s a
a n a s b n a s b a a
a s b a n s b a n a a

↙
b a n a n a a n a n a s b
n a n a s b a n a s b a n
n a s b a n a s b a n a n
s b a n a n → b a n a n a s
a n a n a s n a n a s b a
a n a s b a n a s b a n a
a s b a n a s b a n a n a

2. sorting the rows of the table, and

3. inserting the transformed sequence into the final column of the table.

The reconstruction of the original table that contains the sorted contexts of the se-
quence bananas is completed in tables 3.5(a) to 3.5(h) on page 47 [10]. Upon complete
reconstruction of the original table, the BWT index is used to obtain the original
sequence from the table — in the case of the example, the index equals four. The
recovered sequence is therefore the fourth row of the reconstructed table, or bananas.
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The reverse transform may be expressed as

BWT−1(bnnsaaa, 4) = bananas. (3.14)

3.1.2.2 Implementation

The reverse transform has a straightforward and computationally simple implementa-
tion [16]. The computational complexity of the implementation increases linearly w.r.t.
the length of the source sequence. Instead of iteratively reconstructing the columns
of the sorted table as demonstrated in section 3.1.2.1 and tables 3.3(a) to 3.5(h), the
reverse transform may be carried out by iteratively traversing the symbols of the trans-
formed sequence.

The key to developing an efficient implementation of the reverse transform is an
observation regarding the first and final columns of the sorted table (refer to table 3.2
on page 34) [16]. The 𝑖th occurrence of any alphabet symbol a in the final column of
the table has the same index in the source sequence as the 𝑖th occurrence of the same
alphabet symbol a in the first column of the table. To prove this statement, observe that
all the a symbols in the first column are lexicographically sorted relative to one another
according to the symbols that follow them. The proof of the statement follows from
the fact the symbols of the last column precede the symbols in the first column, and
that all the a symbols in the final column are sorted relative to one another according
to the symbols that follow them.

The iterative traversal of the transformed symbols is carried out as follows [16].
The transformed sequence is sorted to obtain a sequence equal to the first column of
the sorted table. The BWT index that was produced during the forward transform
is subsequently used. The symbol that occurs at this index of the sorted sequence is
the first symbol of the original sequence. The symbol that matches this first symbol is
located in the transformed sequence. Suppose that this symbol is present at index 𝑚
of the transformed sequence. As the symbol at index 𝑚 of the sorted sequence follows
the first symbol of the original sequence, the second symbol of the original sequence is
recovered. The symbol that matches this second symbol is subsequently located in the
transformed sequence. These steps repeat until the entire sequence has been recovered.

3.2 The recency–rank code

This section contains a summary of the recency–rank code, which was proposed by
Elias [84]3. The recency–rank code forms part of many BWT–based source codes, and
is typically used to encode the BWT output sequence [16]. The recency–rank code is
also known as the move–to–front code or the book–stack code in the literature.

The recency–rank code is not a conventional source code as it does not assign shorter
codewords to certain sequences, and longer codewords to others [84]. It replaces each
symbol of the input sequence with an integer, and is reversible. The recency–rank code

3Elias [84] actually proposed two related codes, namely the recency–rank code and the interval
code. The interval code is of lesser importance than the recency–rank code as it has certain negative
properties. It is only mentioned briefly in this thesis.
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is therefore equivalent to a transform — the terms ‘recency–rank code’ and ‘recency–
rank transform’ are used interchangeably in the remainder of this thesis.

The purpose of the recency–rank code is to produce a sequence of integers with
a distribution that is more stationary than the symbol distribution of its input se-
quence [85]. It converts the local stationarity of certain input sequences to a global
stationarity [86]. The integer sequences may be encoded with reasonable effectiveness
using a nonadaptive source code, as the source code need not constantly adapt to a
changing symbol distribution.

The operation and implementation of the recency–rank encoder and decoder are
summarized in this section. The distribution of the recency–rank encoder output se-
quence, in the case of the code being applied to both i.i.d. and p.i.i.d. sequences, is also
investigated.

3.2.1 The forward transform

The forward recency–rank transform is summarized in this section. The summary in-
cludes a description of the transform and its implementation. The distribution of the
recency–rank encoder output sequence is also considered.

3.2.1.1 Description

The encoders of the interval and recency–rank codes, when applied to the input se-
quence x𝑛 = {𝑥1, 𝑥2, . . . 𝑥𝑛}, produce the 𝑛–element integer sequences {𝑓𝑖𝑛𝑡(𝑥1), 𝑓𝑖𝑛𝑡(𝑥2),
. . . 𝑓𝑖𝑛𝑡(𝑥𝑛)} and {𝑓𝑟𝑟(𝑥1), 𝑓𝑟𝑟(𝑥2), . . . 𝑓𝑟𝑟(𝑥𝑛)} respectively [10]. The integer 𝑓𝑖𝑛𝑡(𝑥𝑖) of
the interval coded sequence equals the number of symbols that have occurred since
the previous occurrence of symbol 𝑥𝑖 in the input sequence. The integer 𝑓𝑟𝑟(𝑥𝑖) of the
recency–rank coded sequence equals the number of distinct symbols that have occurred
since the previous occurrence of symbol 𝑥𝑖 in the input sequence. The integers of the
transformed sequences may be mathematically expressed as

𝑓𝑖𝑛𝑡(𝑥𝑖) = min{𝑘 ≥ 1 : 𝑥𝑖−𝑘 = 𝑥𝑖} (3.15)

and
𝑓𝑟𝑟(𝑥𝑖) = ∣{𝑥𝑘 : 𝑖− 𝑓𝑖𝑛𝑡(𝑥𝑖) < 𝑘 ≤ 𝑖}∣. (3.16)

The forward transforms are carried out in a symbol–by–symbol fashion, starting with
the first symbol in the input sequence, and ending with the final symbol in the sequence.

Three relevant observations regarding interval and recency–rank codes are provided
below.

1. Interval coding produces integers that may be as large as the length of the input
sequence [84]. In contrast to interval coding, recency–rank coding produces a
maximum of ∣𝒜∣ distinct integers, where ∣𝒜∣ equals the number of symbols in the
source alphabet.

2. It was proved that 𝑓𝑟𝑟(𝑥𝑖) ≤ 𝑓𝑖𝑛𝑡(𝑥𝑖) for all 𝑖 [10]. Any source code for integer
sequences that produces codewords with lengths proportional to the magnitude of
the integers will therefore have a shorter or equal average codeword length when
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applied to recency–rank coded sequences, instead of interval coded sequences
(assuming both codes are applied to the same sequences).

3. The definitions of both the interval and recency–rank codes assume that all sym-
bols in the alphabet have been encountered previously at all indices of the input
sequence. This assumption does not hold true at the beginning of the input se-
quence. The issue may be resolved by assuming that all alphabet symbols occur,
in order from the lexicographically largest to the lexicographically smallest, im-
mediately prior to the first symbol of the input sequence.

The remainder of this thesis will follow the example of Effros et. al. [10] and disregard
interval codes, due to their negative properties.

3.2.1.2 Implementation

The forward recency–rank transform has a straightforward yet efficient implementa-
tion [16]. Assume that the source alphabet contains 𝑘 symbols. The implementation
first initializes a 𝑘–element symbol array with element 𝑖 equal to the (𝑖 + 1)th lexico-
graphically smallest symbol of the alphabet, where 0 ≤ 𝑖 ≤ 𝑘−1. This array is referred
to as the rank array for the remainder of this thesis. The elements of the rank array
are updated after transforming each input symbol so that the symbol at index 𝑖 of the
array has a recency rank of 𝑖, where 0 ≤ 𝑖 ≤ 𝑘−1. The symbol at the front of the rank
array is the most recent alphabet symbol in the input sequence, and the symbol at the
back of the rank array the least recent alphabet symbol in the input sequence.

The implementation processes the symbol sequence iteratively in a symbol–by–
symbol fashion [16]. At the start of the 𝑖th iteration, it locates symbol 𝑥𝑖 in the rank
array. Suppose that symbol 𝑥𝑖 is located at index 𝑗 of the rank array. The integer
𝑗, which equals the rank of symbol 𝑥𝑖, is the 𝑖th output integer produced by the
implementation. The rank array is subsequently updated by moving symbol 𝑥𝑖 to the
front of the rank array (i.e. it is assigned a rank of zero). All elements of the rank array
with index smaller than 𝑗 are shifted one step towards the back of the array. Symbol
𝑥𝑖 therefore becomes the symbol with the lowest rank, and all symbols that were
initially of lower rank have their ranks incremented by one. The algorithm proceeds
by transforming the remaining symbols of the input sequence, and updating the rank
array after transforming each symbol.

Instead of searching for the location of symbol 𝑥𝑖 in the rank array during iteration
𝑖, the algorithm may ‘look up’ the location of the symbol using another array [16]. To
illustrate the symbol lookup process, suppose that the algorithm maintains a separate
𝑘–element lookup array. Element 𝑖 − 1 of this lookup array contains a pointer to the
location, in the rank array, of the 𝑖th lexicographically smallest alphabet symbol. This
approach allows for swift access to the symbols in the rank array. It has the drawback
of having to update the lookup array at the end of each iteration, which increases
the computational complexity of the forward transform. It was demonstrated that an
implementation which uses the lookup array approach requires more processing time
to transform typical sequences than the original implementation, provided the symbol
alphabet is not excessively large.
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3.2.1.3 Output distribution

The distribution of the recency–rank encoder output sequence depends largely on the
distribution of the input sequence to which it is applied. The transform of i.i.d. input
symbols, as well as p.i.i.d. input symbols is considered in this thesis.

The forward transform of i.i.d. input symbols Suppose that a certain source
produces a sequence of i.i.d. symbols. Upon applying the recency–rank transform to the
sequence, a dependency is typically introduced between each symbol of the sequence
and one or more of the symbols that precede it in the sequence [10]. The rank that is
assigned to each symbol is therefore a function of the symbols that precede it in the
sequence. This property also applies to the probability distribution that is associated
with the rank of each symbol.

The fact that a symbol depends on its predecessors in the input sequence implies
that the rank probability distribution changes from symbol to symbol [10]. In order to
effectively encode an i.i.d. sequence that was transformed using the recency–rank code,
a source code that is able to resolve the dependency between a source symbol’s rank
and the ranks of its predecessors is required. If a rudimentary source code for i.i.d.
sequences is used to encode the recency–rank encoder output, the code may be less
effective compared to the case where the source code is applied to the untransformed
sequence.

The forward transform of p.i.i.d. input sequences Suppose that the recency–
rank transform is applied to a sequence of p.i.i.d. symbols, and that the symbol dis-
tribution of each piecewise segment is highly biased. The ranks assigned to the sym-
bols of each piecewise segment of this sequence will typically have a nonincreasing
probability distribution over increasing rank, due to the bias of each segment symbol
distribution [16]. As each segment symbol distribution becomes more biased, the rank
distribution associated with the symbols within each segment typically becomes more
biased towards lower ranks.

The transitions between the piecewise segments of a p.i.i.d. symbol sequence are
of interest to the characterization of the recency–rank encoder output sequence [16].
If two neighbouring segments have similar symbol probability distributions, the rank
array will not be significantly reordered as the implementation begins to transform the
second segment. This observation suggests that the rank distribution does not change
significantly between the two segments. If the two neighbouring segments have dissimi-
lar symbol distributions, significant reordering of the rank array typically occurs as the
implementation begins to transform the second segment. This reordering of the rank
array produces a short burst of high–valued ranks at the initial symbols of the second
segment. As the transform of the second segment proceeds, less significant changes
are made to the rank array, and the rank distribution again assumes a nonincreasing
profile.

If the recency–rank transform is applied to a sequence of piecewise i.i.d. symbols,
the distribution of its output ranks is typically nonincreasing [16]. The sequence of
ranks typically contains short bursts of high–valued ranks at the transition points be-
tween some of the piecewise segments. Some authors neglect to mention the bursts of
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high–valued ranks in their characterization of the output sequence, and state that the
recency–rank transform shifts the local stationarity of the input sequence to a global
stationarity [86], or that the rank distribution is more stationary than the distribu-
tion of the input symbols [85]. While these statements are true, it is important to
remain aware of the bursts of high–valued ranks between segments, as these bursts are
problematic for some statistical encoders.

3.2.2 The reverse transform

The reverse recency–rank transform is summarized in this section. The summary in-
cludes a description of the reverse transform and its implementation.

3.2.2.1 Description

The original sequence is recovered symbol–by–symbol from the sequence of ranks, start-
ing with the first rank and ending with the final rank in the sequence [16]. To reverse
transform the rank 𝑗 at index 𝑖 of the transformed sequence, the algorithm finds the
(𝑗 + 1)th distinct symbol in the recovered sequence, moving backward from symbol
𝑖−1 to the first symbol of the recovered sequence. The (𝑗+1)th distinct symbol equals
the recovered symbol at index 𝑖 of the recovered sequence, or 𝑥𝑖.

The reverse transform assumes that the alphabet symbols appear in order from the
lexicographically largest to smallest immediately prior to the first symbol in the original
input sequence [16]. This assumption guarantees the successful recovery of the input
sequence, provided the forward transform was carried out under the same assumption.

3.2.2.2 Implementation

In order to recover the symbol 𝑥𝑖 from the rank 𝑗 at index 𝑖 of the transformed sequence,
an implementation of the reverse transform may search for the (𝑗+1)th unique symbol
in a backward direction starting at index 𝑖−1 of the recovered sequence. An alternative
to searching for each symbol is to use the rank array [16]. The rank array is initialized at
the start of the reverse transform, and in the same manner as in the forward transform.

The implementation of the reverse transform operates as follows [16]. Each rank is
reverse transformed, starting at the first rank of the transformed sequence and pro-
ceeding to the last rank of the sequence. Upon encountering the rank 𝑗 at index 𝑖 of the
transformed sequence, the symbol at index 𝑗 of the rank array is accessed. The symbol
present at this index of the array is the recovered symbol at index 𝑖 of the recovered
sequence. The rank array is updated in an identical fashion to the rank array of the
forward transform after recovering each symbol.

3.3 BWT–based source codes

This section concerns source codes that make use of the Burrows–Wheeler transform. A
block diagram of an elementary BWT–based source code is used to illustrate the design
of these codes, and to present the basic properties of these codes. Many alterations and
additions to the elementary BWT–based source code were proposed in the literature.
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Figure 3.5: A block diagram of an elementary BWT–based source code [16].

The purpose of these modifications is to improve the performance of the elementary
code — the more significant modifications are summarized at the end of this chapter.

3.3.1 The elementary BWT–based source code

The elementary BWT–based source code that is discussed in this section is similar to
a source code that was examined by Fenwick [16]. A block diagram of the elementary
source code is presented in figure 3.5 on page 53. Each block of the elementary source
code is discussed in what follows.

3.3.1.1 The data source

This thesis is ultimately concerned with the source coding of sequences from abstract
data sources with memory. Tree sources are considered, as this type of source produces
symbol sequences with statistical properties that are similar to those of real–life data
such as English text [10]. Sequences from those sources that produce independent
symbols do not accurately represent this type of data. The discussion of the elementary
BWT–based source code assumes that an appropriate tree source produces the source
sequence that is to be encoded.

Effros et. al. [10] stated that the symbol contexts present in practical data such as
English text are typically quite long. To illustrate this property, consider reading the
first half of a very long sentence and having to predict the next word of the sentence.
The next word of the sentence is best predicted by examining as many of the words of
the first half of the sentence as possible. If one only reads the final few words of the first
half of the sentence, one typically cannot predict the next word with great accuracy.

Effros et. al. [10] observed that few distinct symbols typically appear in a symbol
context of English text. This property implies that an accurate model of the practical
data would define a biased distribution for the symbols that occur in each context, or
keep many of the alphabet symbols from occurring in each context.

3.3.1.2 The forward BWT

The first step that the elementary source code carries out is the application of the
forward Burrows–Wheeler transform to the source sequence [16]. The symbols of the
BWT output sequence are asymptotically (w.r.t. the length of the sequence) p.i.i.d.,
as the source symbols that are produced in each context of the source are i.i.d. [10].
The forward transform places those source symbols that share a common context in
the same piecewise segment of the transformed sequence.
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The usefulness of the BWT lies in two properties of its output sequences [10]. The
first property is the statistical independence between the symbols in each piecewise seg-
ment of the output sequence. The second property is the stationary nature of the symbol
distribution within each piecewise segment of the output sequence. The effective source
coding of the BWT output sequence is (typically) computationally less complex and
more straightforward than the effective source coding of the original source sequence.
The BWT provides elementary source codes the ability to remove a large fraction of
the redundancy from the source sequences, without having to construct and maintain
a complex model of the source.

The BWT transforms source sequences without any prior knowledge of the source
statistics [10]. In practice the source encoder has no prior knowledge of the symbol
distribution that is associated with the sequence it is to encode. Without knowledge
of the underlying source model, the locations of the transition points between the
piecewise segments of the BWT output sequence are unknown. The source coding
of the BWT output, when applied to real–life data, is complicated by the fact that
the transition points between its piecewise segments are unknown. Many BWT–based
source codes maintain a simple model of the BWT output that depends exclusively on
the local statistics of the BWT output sequence [85].

If the BWT is applied to sequences from accurate source models of English text, its
output typically contains runs of identical symbols within one or more of its piecewise
segments [16]. This is a consequence of the fact that only a few distinct alphabet
symbols occur in many of the contexts of a source that accurately models English
text [10]. This property may be exploited to improve the effectiveness of the BWT–
based source code.

The forward transform is ideally carried out over the entire source sequence that is
to be encoded. This approach is not necessarily practical, as the memory required by the
forward BWT implementation is proportional to the source sequence length, and may
become excessive [10]. Practical implementations of BWT–based source codes, such
as the bzip2 compression and archiving software utility, uniformly divide the source
sequence into blocks of a certain length [87]. Each block is transformed independently
from the other blocks, after which the entire sequence is source coded [10].

3.3.1.3 The recency–rank encoder

The second step that the elementary source code carries out is the recency–rank coding
of the BWT output sequence [16]. The recency–rank encoder transforms the locally
stationary output of the BWT into a sequence that is nearly stationary over its entire
length [86]. It transforms runs of identical symbols in the BWT output sequence into
runs of the rank zero [16]. Long segments that contain only a few distinct symbols
are transformed into segments of equal length that contain lower–valued ranks. The
symbol distribution of the recency–rank encoder output sequence is typically biased
towards lower–valued ranks.

The symbol distributions of the piecewise segments in the BWT output sequence
can often be distinguished from one another, whereas the rank distributions of the
piecewise segments are often indistinguishable. Some source encoders for the recency–
rank encoder output sequence encode all ranks according to a source model with a
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single, zero–order context [16]. The rank distribution of the model is updated to reflect
the local distribution of the sequence as its source coding proceeds. The recency–rank
encoder output may, in some cases, be encoded effectively using a source code that
does not adapt to any changes in the rank distribution of the sequence. An example of
this type of source code is an integer code, which was considered by Effros et. al. [10]
for encoding the recency–rank encoder output.

Fenwick [16] observed that the recency–rank encoder output consists of low–entropy
intervals and short, high–entropy intervals located in between the low–entropy intervals.
The high–entropy intervals correspond to the transition points between the piecewise
segments of the BWT output sequence. These intervals contain distinct high–valued
ranks that are produced as the rank array is rearranged to match a new symbol dis-
tribution during recency–rank coding. The rank array is typically rearranged when
the recency–rank encoder moves from one segment in the BWT output sequence to
another. The short bursts of high–valued ranks in the recency–rank encoder output
are problematic to certain adaptive source codes. These issues are discussed in section
3.3.1.4.

While the recency–rank encoder greatly simplifies the coding of the BWT output
sequence, it does have a drawback. It introduces a dependency between each symbol
in the BWT output sequence and all the symbols that precede it in the sequence [10].
An optimally effective source code would need to resolve the dependency between the
symbols in order to source code the sequence. This requirement implies a less straight-
forward and computationally more complex source code. Effros et. al. [10] suggested
that the recency–rank encoder only be used if it can produce a nonasymptotic gain in
coding effectiveness.

The previous observation regarding the optimal source coding of the recency–rank
encoder output motivated the development of BWT–based source codes that omit the
recency–rank encoder. Effective BWT–based source codes that do not use the recency–
rank encoder were demonstrated [16,88]. The recency–rank encoder nevertheless forms
part of many BWT–based source codes. Several improvements and alternatives to the
basic recency–rank encoder are presented in section 3.3.2.3 on page 65.

3.3.1.4 The source encoder

Early BWT–based source codes used arithmetic codes with a variety of source models
to encode the recency–rank encoder output sequence (refer to figure 3.5). Fenwick [16]
initially used the CACM arithmetic encoder of Witten et. al. [89], and subsequently
used an improved version of the same encoder (which was developed by Moffat et.
al. [90]). The improved version of the CACM encoder was intended for use in a PPM
implementation, and proved to be significantly less effective when used to encode the
recency–rank encoder output sequence than the original CACM encoder [16].

The poor performance of the improved CACM arithmetic encoder of Moffat et.
al. [90] was eventually attributed to its assumption of a multiple–context source model
[16]. The output of the recency–rank encoder is not accurately modeled as having a
large number of rank contexts. Fenwick [16, 91] reported that a source model with a
single zero–order context is more effective when used during the source coding of the
recency–rank encoder output.
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Figure 3.6: The cascaded source model [16, 88].

The approach of using a source model with a single zero–order context to encode
the recency–rank encoder output is reasonable, as the rank distributions of many piece-
wise segments in the BWT output sequence are often indistinguishable. However, the
presence of high–entropy intervals between the low–entropy intervals of the recency–
rank encoder output is problematic to adaptive source codes [16]. Two problems need
to be addressed by an appropriate source code for encoding the recency–rank encoder
output.

1. The source encoder must have the ability to accommodate ranks with both
low and high probabilities of occurrence [16]. Lower–valued ranks appear much
more frequently in the recency–rank encoder output sequence than higher–valued
ranks. This requirement forces the source model of the encoder to maintain a sig-
nificant difference between its rescaling limit for the accumulated symbol counts
and the per–symbol increment.

2. The source encoder must adapt rapidly as it moves from a low–entropy segment to
a high–entropy segment in the recency–rank encoder output sequence [16]. This
requirement forces the source model to maintain a small ratio of the rescaling
limit for the accumulated symbol counts to the per–symbol increment, as the
frequent rescaling of symbol counts is required in order to rapidly adapt to the
new distribution.

These two problems are in conflict regarding the requirements they impose on the
source model.

The conflicting requirements that are imposed on the source model with a single
zero–order context may be resolved by using a different source model. Fenwick [16,88]
proposed a source model that consists of multiple contexts, and referred to this model as
the cascaded model. The contexts of this model are arranged in levels, and each context
contains a number of ranks (refer to figure 3.6). The lower–level contexts contain those
ranks with a relatively high probability of occurrence, while the higher–level contexts
contain ranks with a lower probability of occurrence. Each distinct rank is assigned
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Figure 3.7: The structured source model [16, 92].

to a single level only. The contexts of adjacent levels are connected with an escape
symbol mechanism, which is represented by the arrows of figure 3.6. By placing the
likely and unlikely ranks in different contexts, the problem of maintaining a wide range
of accurate probabilities of occurrence for the ranks is resolved.

A source encoder uses the cascaded model as follows [16]. The encoder always
considers the context at the bottom level of the model when it starts to encode a new
rank, regardless of any previous ranks that it encoded. To encode a rank, the encoder
first determines the level of the context in which the rank resides. It then produces a
sequence of escape symbols to signify that it is moving to the appropriate context. If
the rank is located in the bottom–level context, no escape symbols are produced. The
rank is subsequently encoded according to the distribution that is associated with the
context.

The structured model is another multiple–context source model that may be used to
effectively encode the recency–rank encoder output [16,92]. The model may be likened
to a tree trunk with branches (refer to figure 3.7). The trunk is divided into levels, and
each level is associated with only a single branch. Each branch corresponds to a single
context, and each distinct rank is assigned only to a single branch.

An encoder uses the structured model as follows [16]. The encoder first determines
the trunk level of the branch that contains the rank that is to be encoded. It next
produces the level number as output. The rank is subsequently encoded according to
the distribution of the context that is associated with the branch.

The contexts of the structured source model may adapt at different rates to a change
in the distribution of the recency–rank encoder output4 [16]. The rates of adaptation
are specified by assigning different values to the rescaling limits and the per–symbol in-
crements of the branch contexts. With an appropriate assignment of ranks to branches,
and the proper selection of context parameters, the requirements of rapid adaptation
and the accommodation of a wide range of rank probabilities may be met.

Fenwick [16] reported a significant gain in source coding performance when using
the cascaded and structured source models. The design of appropriate source models
for encoding the recency–rank encoder output is discussed in greater detail in section
3.3.2.4 on page 77.

Fenwick [93] suggested that a run–length encoder be used to encode the runs of

4This observation also holds for the contexts of the cascaded model.
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zero–valued ranks in the recency–rank encoder output. The run–length code provides
an effective representation of the runs of zero–valued ranks. It is also beneficial to
certain source encoders that follow it in the elementary BWT–based source code. By
removing long runs of zero–valued ranks, it ensures that the source model of an adaptive
code does not overestimate the probability of the zero–valued rank immediately after
each run has been encoded (i.e. the source model may become overly biased towards the
zero–valued rank due to the large number of zero–valued ranks that were encountered).

3.3.2 Improvements and additions to the elementary code

This section presents a summary of several improvements and additions to the elemen-
tary BWT–based source code of figure 3.5. The summary is divided into sections, and
each section deals with one block of the elementary source code. A section regarding
the preprocessing of the BWT input sequence is also included in the summary.

3.3.2.1 Preprocessing the BWT input sequence

The output at each stage of the BWT–based source code may be altered by process-
ing the source sequence prior to its transformation by the BWT implementation [16].
The intelligent preprocessing of the BWT input sequence may improve the effective-
ness and/or efficiency of the overall source code. Several preprocessing techniques are
summarized in what follows.

Run–length coding Run–length coding the BWT input sequence, as stated in sec-
tion 3.1.1.2, improves the efficiency of some BWT implementations [16]. The run–length
code is detrimental to the effectiveness of the BWT, as it removes certain contexts from
the source sequence. By run–length coding the input of the BWT implementation, its
output sequence loses some of its structure, and becomes more difficult to encode ef-
fectively. Run–length coding therefore has a negative impact on the effectiveness of the
overall source code.

Fenwick [88, 92] used a run–length code in which a sequence of six identical source
symbols signals a run. The six symbols are followed by a length codeword, which
represents the number of symbols that remain in the run. Fenwick found that run–
length coding reduces the effectiveness of the overall source code by around 0.1%. This
figure was derived from the source coding of real–life data using a BWT–based source
code [16]. Balkenhol et al. [94] suggested that the use of a run–length code should be
avoided unless it shortens the source sequence by more than 30%.

If the forward BWT implementation uses suffix trees or suffix arrays, the prepro-
cessing of the BWT input with a run–length encoder is unnecessary, as it does not
drastically improve the efficiency of these implementations [16].

Partial input alphabets Source sequences frequently contain only a small fraction
of the distinct alphabet symbols that a source may produce [16]. English text, for
example, typically contains the uppercase and lowercase letters of the Latin alphabet,
the digits 0 to 9, and punctuation marks such as the period, comma, etc. English text
documents rarely contain all of the control symbols that are defined in the original
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128–symbol ASCII alphabet. This characteristic of source sequences may be exploited
in order to improve the effectiveness of a source code.

If the source alphabet contains 𝑞 distinct symbols, and only 𝑟 of these symbols
appear in a source sequence, a maximum of ⌈log2(𝑟)⌉ bits are required to uniquely
represent each symbol in the sequence, where 1 < 𝑟 < 𝑞. To successfully use the
partial alphabet, the source encoder has to inform the source decoder as to which of
the alphabet symbols appear in the sequence and which are absent [16]. One method
of informing the source decoder appends a bit vector to the source–coded data. This
bit vector contains one bit for each distinct alphabet symbol — a bit equals one if the
symbol is present in the sequence, and zero if it is absent.

The use of a partial input alphabet may also improve the performance of the
recency–rank encoder, as well as some source encoders [16]. If a partial input alphabet
is used, only those symbols that appear in the source sequence are present in the rank
array of the recency–rank encoder. Any movement in the rank array would initially
generate ranks with a smaller range of possible values than would be the case with
the full source alphabet. This rank sequence may be encoded more effectively than the
ordinary rank sequence.

Some adaptive source encoders also benefit from the use of a partial input alpha-
bet [16]. The source encoder need not incorporate the unused symbols in its model
of the source. The omission of the unused symbols from the source model may im-
prove the effectiveness of the source code, depending on the source encoder and its
implementation.

Fenwick [16] observed that the overhead of a partial alphabet often exceeds the
gain in performance that it grants. The overhead of the partial input alphabet refers
to the mechanism that the source encoder uses to inform the source decoder as to
which symbols are present in the sequence. Fenwick proposed two bit sequences that
the source encoder may produce in order to inform the source decoder, provided that
ASCII text is being source coded. These sequences are

∙ a bit vector with one bit for each distinct alphabet symbol (as discussed previ-
ously), and

∙ a bit that indicates full mode or half mode (i.e. a ‘mode’ bit).
If more than 240 distinct symbols are present in the source sequence, the full symbol
alphabet may be used — this mode of operation is referred to as the full mode. Only
the first seven bits of each ASCII symbol is used in the half mode (i.e. the ASCII
symbols with nonzero most significant bits are omitted from the alphabet). The use of
a mode bit involves significantly less overhead than the use of a bit vector. A source
encoder may choose between a bit vector and a mode bit, depending on which one is
more appropriate for each source sequence.

Balkenhol et. al. [95] investigated the overhead of partial alphabets, as well as the
use of multiple partial alphabets (i.e. different partial alphabets are used in different
intervals of the source sequence, or alternatively the BWT output sequence). The use
of multiple partial alphabets is reasonable, as each piecewise segment of the BWT
output sequence typically contains only a very small fraction of the total number of
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distinct alphabet symbols. These segments may be encoded more effectively if the
source encoder is aware of the partial alphabet of each segment.

Balkenhol et. al. [95] considered the use of a set of sliding windows in defining
the partial alphabet for each piecewise segment of the BWT output sequence. This
approach is necessary as the exact transition points between the piecewise segments
are unknown in practice. The lengths of the sliding windows are proportional to the
average length of the segments, and are therefore proportional to the length of the
source sequence.

Permutation of the symbol alphabet The BWT of a source sequence is depen-
dent on the lexicographical order of the symbols in the symbol alphabet [16]. If the
lexicographical order of the symbols changes, the BWT typically produces a different
output sequence5. The process of changing the lexicographical order of the alphabet
symbols is referred to as the permutation of the symbol alphabet. The permutation
of the symbol alphabet changes the statistical characteristics of the BWT output se-
quence, as the symbol contexts of the source sequence are sorted differently if the
lexicographical order of the symbols changes.

Suppose that contexts with similar symbol distributions are defined as being lexico-
graphically similar to one another. The distributions of these lexicographically similar
contexts would belong to segments that neighbour one another in the BWT output
sequence. The source model of an adaptive source code would remain accurate during
the source coding of these segments, as the empirical distribution of the symbols does
not change significantly from segment to segment. The improved accuracy of the source
model, which is a consequence of the permutation of the symbol alphabet, improves
the effectiveness of the source code.

The permutation of the symbol alphabet was investigated by Chapin et. al. [96], as
well as Kruse et. al. [97]. Chapin et. al. [96] observed a reduction in the effectiveness
of a BWT–based source code that may be as high as 20% when the alphabet symbols
are randomly permuted. This observation motivates a more structured approach to the
permutation of the symbol alphabet.

One straightforward approach to the permutation of the ASCII alphabet is to ar-
range all the vowels next to one another in the lexicographical order of the alphabet
symbols [96]. Multiple permutations of the alphabet symbols exist in which the vowels
are arranged next to one another. One of these permutations starts with the symbols
a e i o u b c d f g. The lowercase vowels of this permutation are the lexicographi-
cally smallest letters among the lowercase letters of the permutation. As similar letters
often follow the vowels in words, alphabet reordering causes the BWT to position these
letters next to one another in the BWT output sequence.

A second approach to the permutation of the symbol alphabet assumes that the
source sequence contains only first–order contexts (i.e. the context of a symbol is its
preceding symbol) [96]. In this approach, a histogram is constructed for the symbols
that appear in each first–order context of the source sequence. The histograms are used
to determine the degree of dissimilarity between the symbol distributions of contexts.
A cost is associated with each pair of contexts — the cost is proportional in magnitude

5The BWT may produce the same output sequence in certain cases.
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to the dissimilarity between the empirical symbol distributions of the two contexts.
The alphabet symbols are permuted in order to reduce the total cost that is associated
with lexicographically traversing the contexts. The optimal permutation minimizes the
total cost.

The search for the optimal alphabet permutation of the second approach may be
defined in terms of the traveling salesman problem [96]. Suppose that the contexts are
associated with the cities that the salesman visits, and that the costs associated with
all context pairs are calculated. The minimum cost solution to the traveling salesman
problem implies an effective alphabet permutation. Four different definitions of the
cost were considered by Chapin et. al. [48,96]. These definitions include the Kullback–
Leibler divergence between two distributions, as well as the number of symbol swaps
that are necessary to change the frequency–ranked symbol order of one distribution to
another.

Chapin et. al. [96] investigated the performance of BWT–based source codes that
use the two approaches to alphabet permutation. The authors observed that the over-
head associated with the complete reordering of the alphabet typically exceeds any
improvement in the effectiveness of the source code. The first approach to alphabet
permutation improves the effectiveness of the overall source code slightly, and it in-
volves very little overhead [16].

Balkenhol et. al. [95] proposed an alphabet permutation technique that is a modified
version of a technique that was proposed by Chapin et. al. [96]. The performance gain
that is associated with this technique is relatively small, however. The technique may
only be applied to certain types of source sequences, and is therefore inflexible.

The preprocessing of text data If the source encoder is informed that English
text in the form of ASCII symbols is to be source coded, it may apply additional
transforms to the source sequence in order to improve the effectiveness of the source
code6 [98]. These transforms are only appropriate when applied to ASCII text data
and have a detrimental effect on performance when applied to data that is not ASCII
text. General–purpose source codes and their implementations typically do not use
these transforms. The text–specific transforms that are summarized in this section are
not implemented in any of the source codes associated with this thesis, due to their
restrictive assumption regarding the source sequence type.

Grabowski [99] proposed several ‘reversible filters’ that may be applied to a text
sequence prior to it being encoded. The first filter is the capital conversion filter. This
filter converts any uppercase letter at the start of a word to lowercase, and sets a flag to
indicate the change. A second filter inserts a space symbol after each ‘end of line’ (EOL)
ASCII symbol in the source sequence. The EOL symbol is typically used to terminate
a paragraph of ASCII text. The motivation behind the insertion of the space symbol
concerns the preceding context of the first letter of the paragraph. The EOL symbol
is artificial, and not an appropriate context for the first letter of the paragraph. The
insertion of the space symbol implies that the first letter of the paragraph is also the
first letter of a word. The space symbol, when used as the preceding context of the first
letter in a paragraph, may be used to predict the letter with greater accuracy.

6The summary presented in this section was adapted from reference [98].
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The third filter proposed by Grabowski [99] concerns phrase substitution. This
filter replaces groups of letters (i.e. phrases) with certain symbols. The symbols indicate
which phrases the filter replaced — each distinct symbol is associated with one distinct
phrase. The filter may associate the alphabet symbols that do not appear in the source
sequence with phrases. The selection of an appropriate set of phrases typically improves
the performance of the source code.

Grabowski [99] proposed several text–specific improvements in addition to those
discussed. Deorowicz [98] claimed that these improvements have only a marginal im-
pact on the performance of the source code. It was empirically demonstrated that the
application of the three reversible filters reduced the size of the source–coded Calgary
corpus text files [100] by up to 3%. However, the three reversible filters significantly
degraded the performance of the source code when applied to binary files.

Awan et. al. [101,102] proposed a text–specific transform known as the length index
preserving transform, or LIPT. The LIPT requires that the source encoder be informed
that the source sequence is text, and that the language of the text is known. If the
source encoder has a precompiled dictionary for the language of the text, the LIPT
may be applied to the source sequence. The precompiled dictionary contains a list of
words, and associates a codeword with each of the words.

The LIPT processes the source sequence word–by–word, starting with the first word
of the sequence [101,102]. If a word of the source sequence is present in the dictionary,
it is substituted with its codeword. Deorowicz [98] stated that the LIPT technique
improves the effectiveness of a source code that is applied to the text files of the
Calgary corpus [100] by approximately 5%. This is a significant improvement.

The preprocessing of binary data Several preprocessing techniques that are ben-
eficial to the source coding of certain binary data files were proposed [98]. These tech-
niques are detrimental to the performance of a source code when applied to a file that
does not contain the correct type of binary data. Due to the wide variety of binary
data files, these techniques are not considered in the remainder of this thesis.

3.3.2.2 The forward BWT

The BWT is a fertile research topic. Researchers proposed several improvements to
the transform [16, 94, 96, 103], and also implemented the transform in source codes for
different types of data [104–107]. Some researchers proposed transforms that are related
to the BWT — each of these transforms may be used as an alternative to the ordinary
BWT [108–110].

Improvements to the transform The BWT may sort the cyclic shifts of the source
sequence in a forward direction or a backward direction. If one direction consistently
brings about better source coding performance than the other, the BWT may be im-
proved to take advantage of this trend.

The direction in which the BWT sorts the cyclic shifts of the source sequence was
investigated in the literature [16, 94]. The cyclic shifts are ordinarily sorted in the
forward direction by initially comparing the leading symbols of the cyclic shifts (the
MSSs), followed by the second symbols of the cyclic shifts, up to the trailing symbols
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(the LSSs) of the cyclic shifts. The cyclic shifts may also be sorted in the backward
direction by initially comparing the trailing symbols of the cyclic shifts (the LSSs),
followed by the second–to–last symbols of the cyclic shifts, and ending at the leading
symbols (the MSSs) of the cyclic shifts. If the cyclic shifts are sorted in a forward
direction, the source symbols that precede the same context are placed within the
same piecewise segment of the BWT output sequence. If the sort is performed in the
backward direction, the source symbols that follow the same context are placed within
the same piecewise segment of the BWT output sequence.

It may seem appropriate to group together those symbols that follow identical
contexts in data such as English text, as many letters of a sentence may be accurately
predicted by examining the letters that precede them. Shannon [111] proved that there
is very little difference between using contexts that precede letters or contexts that
follow letters for the purpose of accurately predicting English text. This fact suggests
that a source code would be more or less equally effective when applied to the output
sequences of the forward–sort BWT and the backward–sort BWT, provided the source
sequences are English text.

The choice of the sort direction may impact the performance of source codes that
are used to encode sequences from finite–memory sources [10]. If a source sequence from
any finite–memory source is reversed, the reversed sequence is equivalent to an ordinary
source sequence from a different finite–memory source. This finite–memory source may
be defined over a greater number of states than the original finite–memory source. As
the normalized average redundancies of some universal source codes are proportional to
the number of source states, the choice of the sort direction may impact the performance
of a universal source code when applied to sequences from finite–memory sources.

Fenwick [16] compared the performance of BWT–based source codes w.r.t. the sort
direction. The sizes of the source–coded files of the Calgary corpus [100] were used as a
measure of performance. Both sort directions and both a basic and an advanced imple-
mentation of a source code were considered. Fenwick observed no significant difference
between the sizes of the source–coded files that correspond to both sort directions. This
observation holds true for the basic source code, as well as the advanced source code.
The source coding of the geo file of the Calgary corpus is significantly more effective if
the backward sort direction is used, however. This file contains floating–point numbers,
and has a particular structure that accounts for the difference in performance. This file
is a special case.

Balkenhol et. al. [94] stated that the backward sort direction should be used if
the source alphabet contains approximately 256 symbols. Fenwick [16] argued that
it is misleading to choose a sort direction based on the size of the alphabet. Fenwick
proposed that each file be source coded using both sort directions in the BWT, and that
the sort direction that brings about the best performance be used. In this approach the
source decoder has to be informed regarding the choice of sort direction to successfully
decode each file.

Chapin et. al. [96] proposed the reflexive–sort BWT, which is an improved version
of the conventional BWT. Instead of sorting the cyclic shifts of the source sequence
lexicographically in either ascending or descending order, the reflexive–sort BWT al-
ternately uses the ascending and descending lexicographical sort orders.
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The reflexive–sort BWT sorts the cyclic shifts of the source sequence as follows [96].
Assume that the BWT uses a radix–sort algorithm to sort the cyclic shifts. The cyclic
shifts are first placed in a group and sorted in ascending lexicographical order according
to the MSS of each cyclic shift. The group is then divided into subgroups according to
the MSSs of the cyclic shifts. Each subgroup is associated with the identical MSSs of
the cyclic shifts it contains. The cyclic shifts in each subgroup are subsequently sorted
according to the second MSS of each cyclic shift, but only the cyclic shifts of every
second subgroup (in the ordered list of subgroups) are sorted in ascending order. The
cyclic shifts of the remaining subgroups are sorted in descending order. These reflexive–
sort BWT proceeds by repeatedly dividing the subgroups and sorting the cyclic shifts
within each subgroup until each subgroup contains only a single cyclic shift. The sorted
cyclic shifts are obtained by traversing the final subgroups.

By alternating the sort order, the cyclic shifts of the source sequence are sorted
in an order that resembles the sequence of codewords of a Gray code [16]. Each suc-
cessive codeword of a Gray code differs from the previous codeword with respect to a
single symbol — the remaining symbols of the codewords are identical. The goal of the
reflexive–sort BWT is to place symbols from contexts with more similar symbol dis-
tributions next to one another in the BWT output sequence. This improvement has a
beneficial effect on the performance of the source encoder that encodes the transformed
sequence.

Butterman et. al. [103] proposed an error–resistant version of the BWT that is useful
in the transmission of data over noisy communication channels. Adaptive lossless source
codes typically suffer from error propagation. Error propagation refers to a single bit
error in the source–coded sequence causing several of the remaining bits in the sequence
to be incorrectly decoded. Source code implementations that make use of the BWT
typically discard those source–coded blocks that contain one or more bit errors, as the
reverse BWT scatters bit errors throughout these blocks [42].

The error–resistant version of the BWT, as proposed by Butterman et. al. [103],
encodes additional information as part of the transformed sequence. The additional
information enables the reverse BWT to recover at least certain sections of the source
sequence if bit errors are present in the transformed sequence. The error–resistant
nature of this version of the BWT was demonstrated empirically by source coding files
from the Calgary [100] and Canterbury [112] corpora, introducing bit errors to the
source–coded files, and decoding the corrupted files.

Isal et. al. [106] proposed an implementation of the BWT that is applied to se-
quences of phrases, instead of symbols. The source encoder compiles a dictionary that
contains all the distinct phrases appearing in the source sequence. It then substitutes
each phrase in the source sequence with an integer that equals its index in the dictio-
nary. The BWT is finally applied to the sequence of integers. The output of the BWT
contains piecewise segments of integers that are asymptotically i.i.d. The overall source
code is flexible, as the dictionary entries may be defined as words, symbol digrams, syl-
lables, or any other combination of symbols and letters. The dictionary of the source
encoder is encoded and constitutes part of the source–coded sequence.
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The transformation of different types of data Some researchers successfully
implemented the BWT in source codes for data that is not text. Elsayed et. al. [104]
implemented the BWT in a lossless source code for audio signals. The source encoder
applies the BWT to integer samples that represent the audio signal. A recency–rank
code is applied to the BWT output sequence, after which a Huffman encoder or arith-
metic encoder is used to encode the recency–rank encoder output sequence. The BWT–
based source code outperforms several lossless audio source codes, including a source
code that uses the integer discrete cosine transform, as well as a source code that uses
the integer wavelet transform.

Adjeroh et. al. [105] implemented the BWT in a source code for DNA sequences.
The BWT is applied to the source sequence, and its output sequence is expressed
as a suffix tree. The suffix tree is used to identify patterns that repeat in the DNA
sequence. The source encoder may encode the repeating patterns in a more effective
manner, thereby improving its performance.

Alternative transforms Mantaci et. al. [108] proposed a transform that may be
regarded as an extension of the BWT. The proposed transform is applied to a multiset
of words. All cyclic shifts of the words are sorted lexicographically. If a comparison tie
between two words is not resolved at the end of one of the words, that word is repeated,
and the comparison continues. The final letters of the lexicographically–sorted cyclic
shifts constitute the output sequence of the transform.

Arnavut et. al. [109, 110] proposed a series of transforms that may be regarded as
generalizations of the Burrows–Wheeler transform. The first transform [109] is known
as the lexical permutation sorting algorithm. Arnavut et. al. [110,113] generalized the
lexical permutation sorting algorithm to multiset permutations, and introduced the
linear–order transform.

Arnavut et. al. [113] demonstrated that the linear–order transform is computation-
ally less complex than the BWT. The linear–order transform of certain types of data,
such as pseudo–colour images, may be source coded with nearly the same degree of effec-
tiveness as the Burrows–Wheeler transform of the data. Arnavut et. al. [114] proposed
a source code for electrocardiogram (ECG) signals that uses the linear–order trans-
form. This source code is more effective than a similar BWT–based source code [114],
the gzip algorithm [58], as well as the shorten lossless waveform encoder.

3.3.2.3 The recency–rank encoder

This section contains a summary of several topics concerning the recency–rank code.
The recency–rank code has received considerable attention in the literature. Researchers
proposed a large number of improvements and modifications to the recency–rank code.
Some researchers investigated the possibility of omitting the recency–rank encoder
from BWT–based source codes. Several alternatives to the recency–rank code were
also proposed.

The aim of the summary is to highlight some of the more significant improvements
and alternatives to the recency–rank code, and not to be exhaustive. To motivate some
of the improvements to the recency–rank code, it is first necessary to introduce the list
update problem.
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The list update problem This summary of the list update problem was adapted
from the summary of reference [98]. The list update problem (LUP) is defined as
follows [115]. A list of items is defined, and a sequence of requests regarding the items
in the list is specified. A request may be an insertion, deletion or access to an item
in the list. Only the requests to access an item in the list need be considered for the
purpose of this thesis.

A cost is associated with servicing each request in the sequence. The cost of servicing
a request to access an item in the list equals the item’s index in the list. After servicing
each request, the requested item may be moved any number of positions closer to the
top of the list, and at no cost. This move is referred to as a free transposition. Any
other list item that was located between the original position of the requested item
and the bottom of the list may also be moved closer to the top of the list, but at unity
cost. This move is known as a paid transposition.

An algorithm for solving the LUP services the requests to access items in the list,
and produces a sequence of transpositions of items in the list. The total cost of a
solution equals the sum of the number of paid transpositions and the total cost of
servicing the requests. An appropriate algorithm for solving the LUP should attempt
to minimize the total cost of its solution.

An online algorithm for solving the LUP does not have access to the entire sequence
of requests before it starts to service them. In contrast, an offline algorithm has access
to the entire sequence of requests before it starts to solve the LUP. An optimal offline
algorithm for solving the LUP produces a solution that has the smallest total cost
among all possible solutions of the LUP. The optimal offline algorithm has a computa-
tional complexity that increases exponentially with respect to the length of the request
sequence.

Online algorithms for solving the LUP may be divided into two classes. A deter-
ministic online algorithm for solving the LUP always produces the same solution in
response to the same sequence of requests. A randomized online algorithm for solving
the LUP may produce different solutions if the same sequence of requests is presented
to it repeatedly.

The theory behind the LUP and its solution was not initially applied in the field
of source coding [48]. It was used to develop procedures for updating identifier lists
and hash tables, thereby enabling efficient access to the data these structures contain.
It was also applied to efficiently update simpler data structures that are employed in
situations where sufficient memory is not available for the use of more sophisticated
data structures. The LUP and the recency–rank encoder were only recently used to
develop more effective source codes [116].

The recency–rank encoder may be interpreted as an algorithm for solving the LUP.
The relationship between the LUP and the recency–rank encoder may be clarified
by interpreting the output sequence of the BWT as a sequence of requests to access
symbols in an ordered list, which corresponds to the rank array. The recency–rank
encoder produces the sequence of costs (ranks) that is associated with the sequence of
requests, and moves the requested symbol to the front of the list after each request.
As the recency–rank encoder only moves the requested symbol to the front of the rank
array, it does not perform any paid transpositions.
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The goal of the recency–rank encoder is to produce a sequence of integers with
a distribution that is as biased as possible, thereby improving the effectiveness of the
source encoder that is applied to its output [16]. One approach to producing a sequence
of costs with a distribution that is biased towards zero involves the minimization of
the total cost of servicing the requests for items in the list. This approach does not
guarantee a sequence of biased costs, but its application typically does produce this
type of sequence.

The conventional LUP does not specify a distribution for the sequence of requests.
The recency–rank encoder may reasonably assume that the BWT output is p.i.i.d.,
however. Prior knowledge regarding the distribution of the requests may be used to
improve the performance of an algorithm for solving the LUP.

Deorowicz [98] observed that the recency–rank encoder is remarkably effective when
applied in a BWT–based source code, despite its simplicity. The effectiveness of the
recency–rank encoder is a consequence of the distribution of the symbols in the BWT
output sequence — those symbols that were recently requested in the rank array are
likely to be requested again in the near future.

Improvements to the recency–rank code One characteristic of the recency–rank
encoder that was addressed in the literature is that it moves an improbable symbol
to the front of the rank array immediately upon encountering it in the BWT output
sequence [16]. An improbable symbol will likely remain in the front half of the rank
array for a considerable period of time, despite the fact that it is unlikely to appear
again in the remainder of the BWT output sequence. Unlikely symbols may clutter
the front of the rank array, momentarily pushing some of the more probable symbols
towards the back of the array.

The clutter of unlikely symbols at the front of the rank array has a balancing effect
on the distribution of the ranks that the recency–rank encoder produces [16]. This
effect is detrimental to the performance of the source encoder that is applied to the
sequence of ranks. Burrows et. al. [9] suggested that the recency–rank encoder might
be more effective if it refrains from immediately moving all symbols that it encounters
to the front of the rank array.

Several authors proposed algorithms that avoid moving each symbol to the front of
the rank array upon encountering it. These algorithms may be interpreted as variants
of the recency–rank encoder. Some of the more noteworthy algorithms are discussed in
what follows.

The ‘move–one–from–front’ algorithm [16, 94] attempts to reduce the clutter of
unlikely symbols at the front of the rank array. A symbol that is not present in the
first two positions of the rank array is moved to the second position of the rank array
as it is encountered in the BWT output sequence. The symbol in the second position
of the rank array is moved to the front of the rank array upon being encountered in
the BWT output sequence.

The move–one–from–front algorithm delays the movement of symbols to the front of
the rank array, but it does not completely eliminate the clutter at the front of the rank
array [16, 94]. The usefulness of the move–one–from–front algorithm is evident when
processing long runs of a certain alphabet symbol that are separated by a few distinct
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symbols. The run symbol remains at the front of the rank array as this sequence is
transformed, and more zero–valued ranks are produced than would be the case had the
conventional recency–rank code been used.

The modified move–one–from–front algorithm [48,95,117] is identical to the move–
one–from–front algorithm, except regarding the movement of symbols in the second
position of the rank array. If the symbol in the second position of the rank array is
encountered in the BWT output sequence, it is moved to the front of the rank array
provided that the previous rank that the algorithm produced does not equal zero. If
the previous output rank equals zero, the encountered symbol remains in the second
position of the rank array. This modification stops any distinct symbol within a long
run of identical alphabet symbols from moving the run symbol to the second position
of the rank array.

The ‘move–one–from–front–2’ algorithm [16, 48] is a variation of the move–one–
from–front algorithm. All symbols that are encountered are moved to the front of the
rank array, except if

∙ the encountered symbol is not present in the first two positions of the rank array,
or

∙ at least one of the previous two ranks produced by the algorithm equals zero.

If at least one of these conditions is satisfied, the encountered symbol is moved to the
second position of the rank array. If the encountered symbol is present in the first
position of the rank array, it remains in this position.

The ‘sticky’ move–to–front algorithm [16] attempts to avoid clutter at the front of
the rank array by moving certain symbols towards the back of the rank array. Upon
encountering a symbol, the algorithm moves it to the front of the rank array. If the
next symbol in the BWT output sequence does not equal the symbol at the front of
the rank array, the symbol at the front of the rank array is moved towards the back
of the rank array by approximately 40% of the number of positions it moved to reach
the front of the rank array. It appears that the value of 40% was selected through trial
and error.

The ‘move–to–front–when–even’ algorithm [118] selectively updates the rank array
in an attempt to delay the movement of symbols to the front of the rank array. The
algorithm records the number of times each alphabet symbol was encountered in the
BWT output sequence as it transforms this sequence. If a certain alphabet symbol is
encountered in the BWT output sequence, and that symbol had been encountered 𝑖−1
times previously in the sequence, the symbol is moved to the front of the rank array
provided that 𝑖 is an even number. If 𝑖 is not an even number, the symbol remains at
its current position in the rank array.

The ‘move–fraction’ algorithm [93, 118, 119] updates the rank array by moving the
encountered symbol only a fraction of the distance to the front of the rank array.
Suppose that the algorithm encounters the 𝑖th symbol of the rank array in the BWT
output sequence. This symbol is moved a total of ⌈𝑖/𝑘⌉ − 1 positions towards the
front of the rank array, where 𝑘 is an integer parameter of the algorithm (with 𝑘 ≥ 1).
Bachrach et. al. [119] implemented the move–fraction algorithm with 𝑘 ≥ 2 in a BWT–
based source code, and found that the code performed poorly. Fenwick [93] observed a
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drop in source coding performance upon replacing the recency–rank encoder with the
move–fraction algorithm in a BWT–based source code with 𝑘 equal to 8 or 32.

The ‘most recent item’ algorithm [48, 120] updates the rank array according to
those alphabet symbols that occurred at least once since the previous occurrence of
the symbol that is to move in the rank array. Suppose that the algorithm encounters
the symbol a in the BWT output sequence. It compiles a list of all symbols that were
encountered since the previous occurrence of symbol a in the BWT output sequence,
and finds the symbol in the list with the highest rank. The symbol a is placed im-
mediately behind this symbol in the rank array. If a symbol is encountered twice in
succession, it is moved to the front of the rank array.

The ‘best 𝑥 of 2𝑥 − 1’ algorithm [16, 121] updates the rank array differently than
other variants of the recency–rank encoder. Suppose that the algorithm has access to a
list of all possible alphabet symbol pairs. This list also contains, for each symbol pair,
the number of times each of the two symbols appeared in the previous 2𝑥−1 occurrences
of either of the two symbols. Upon encountering a certain symbol in the BWT output
sequence, the algorithm examines all symbol pairs in the list that contain the alphabet
symbol that was encountered. All symbol pairs in which the encountered symbol has
a count of 𝑥 or more are marked. The algorithm subsequently finds the symbol with
the lowest rank among all the symbols in the marked pairs. The encountered symbol
is moved in front of this symbol in the rank array.

The ‘transpose’ algorithm [48,120] is a well known deterministic algorithm for solv-
ing the LUP, and may be used as an alternative to the recency–rank code. It updates
the rank array in an extremely conservative fashion. After encountering a symbol in
the BWT output sequence, the algorithm moves the symbol a single position closer to
the front of the rank array. The more likely symbols slowly move to the front of the
rank array as the transformation of the sequence proceeds, while the less likely symbols
eventually drift to the back of the array.

The ‘time–stamp’ algorithm [98,122] is an algorithm for solving the LUP that may
be used as an alternative to the recency–rank code. The deterministic version of the
time–stamp algorithm, which is referred to as TS(0) in the literature, is relevant to
source coding. In order to illustrate the time–stamp algorithm, assume that it encoun-
ters the alphabet symbol a in the BWT output sequence. The time–stamp algorithm
first produces the index of the symbol a in the rank array as output, and next up-
dates the rank array. The rank array is updated by first compiling a list of all alphabet
symbols that occurred at most once since the previous occurrence of the symbol a in
the BWT output sequence. The algorithm finds the symbol in the list with the lowest
rank, and moves the symbol a in front of this symbol in the rank array. Upon encoun-
tering a distinct alphabet symbol for the first time in the BWT output sequence, the
time–stamp algorithm does not update the rank array.

Albers et. al. [123] investigated the performance of the TS(0) algorithm analyti-
cally, and stated that it is typically more effective than the recency–rank encoder for
the purpose of source coding. The TS(0) algorithm was implemented in a BWT–based
source code, but this implementation proved to be less effective than a similar imple-
mentation that uses the recency–rank code. The effectiveness of each implementation
was judged according to the total size of the source–coded files that it produces when
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applied to the files of the Calgary corpus [100].
The ‘sort–by–rank’ (SBR) algorithm [118,124] is a deterministic algorithm for solv-

ing the LUP that is relevant to source coding. It defines a rank array of distinct alphabet
symbols that is updated after transforming each symbol of the BWT output sequence.
The algorithm calculates two integers for each symbol of the alphabet prior to updating
the rank array.

After producing the rank of the 𝑖th symbol of the BWT output sequence, the sort–
by–rank algorithm calculates the integers 𝑤1(𝑦, 𝑖) and 𝑤2(𝑦, 𝑖) for each alphabet symbol
𝑦 [118, 124]. The first integer, 𝑤1(𝑦, 𝑖), equals the index of the last occurrence of the
alphabet symbol 𝑦 in the BWT output sequence, considering all symbols up to the 𝑖th
symbol of the sequence. The second integer, 𝑤2(𝑦, 𝑖), is similarly defined, except that
the index of the second–to–last occurrence of the symbol 𝑦 is used, instead of its last
occurrence. If the symbol 𝑦 is not present in the first 𝑖 symbols of the BWT output
sequence, the integers 𝑤1(𝑦, 𝑖) and 𝑤2(𝑦, 𝑖) are set to zero.

The SBR algorithm subsequently calculates the number of symbols that have oc-
curred since the last occurrence of each symbol of the alphabet [118, 124]. This quan-
tity may be expressed as 𝑠1(𝑦, 𝑖) = 𝑖 − 𝑤1(𝑦, 𝑖). The number of symbols that have
occurred since the second–to–last occurrence of each alphabet symbol is defined as
𝑠2(𝑦, 𝑖) = 𝑖−𝑤2(𝑦, 𝑖). This quantity is also calculated for each symbol of the alphabet.

The SBR algorithm recalculates the rank of each symbol of the alphabet, and
updates the rank array accordingly [118, 124]. Each alphabet symbol 𝑦 is assigned a
weight that is calculated according to the equation

𝑟𝛼(𝑦, 𝑖) = (1− 𝛼)𝑠1(𝑦, 𝑖) + 𝛼𝑠2(𝑦, 𝑖)
2, (3.17)

where 𝛼 is a parameter between zero and one, and 𝑖 is the index of the symbol in
the BWT output sequence that was most recently transformed. Upon calculating the
weights 𝑟𝛼(𝑦, 𝑡) for all alphabet symbols, the updated symbol ranks (and the updated
rank array) are obtained by sorting the symbols in nondecreasing order according to
their weights.

The SBR algorithm may be interpreted as a generalization of the recency–rank
encoder and the time–stamp algorithm [118]. If the parameter 𝛼 is set to zero, the
output of the SBR algorithm equals the output of the recency–rank encoder. The
output of the time–stamp algorithm is equal to the output of the SBR algorithm if the
parameter 𝛼 is set to unity. For values of 𝛼 that lie between zero and unity, the output
of the SBR algorithm has characteristics of both the recency–rank encoder output and
time–stamp algorithm output.

Dorrigiv et. al. [118] implemented the SBR algorithm in a BWT–based source code.
The effectiveness of the implementation, as a function of the parameter 𝛼, was investi-
gated. The implementation encoded the majority of source sequences most effectively
if the parameter 𝛼 was set equal to either zero or unity, and not a fractional value. Dor-
rigiv et. al. [118] suggested that the source encoder should choose between the values
of zero and unity for the parameter 𝛼 by first determining which of these two values
brings about the shortest source–coded sequence. The value of 𝛼 that is associated
with the shortest source–coded sequence is saved as part of this sequence, as the source
decoder requires the correct value of 𝛼 in order to successfully recover the BWT output
sequence.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 70

 
 
 



CHAPTER 3 The Burrows–Wheeler transform

Alternatives to the recency–rank code Some researchers proposed alternatives
to the recency–rank encoder. These alternative transforms have the same purpose as
that of the recency–rank encoder, which is to convert the output of the BWT into a
sequence of integers with a biased, stationary distribution. The alternative transforms
differ significantly from the recency–rank encoder regarding their approaches to the
conversion, however. The more relevant alternatives to the recency–rank encoder are
summarized in this section.

Frequency count transform The frequency count transform [118] is an algo-
rithm for solving the LUP. The algorithm defines an array that contains the distinct
alphabet symbols, and records the number of times each distinct alphabet symbol ap-
pears in the BWT output sequence. The frequency counts are recorded as the transform
of the BWT output sequence proceeds in a symbol–by–symbol manner.

The algorithm replaces each symbol of the BWT output sequence with its index
in the array of alphabet symbols [118]. The algorithm maintains the array of alphabet
symbols in nonincreasing order according to the symbol frequency counts. The array
is updated after the transformation of each consecutive symbol.

The symbols that are more likely to occur in the BWT output sequence occupy the
front of the array. This fact suggests that the frequency count transform would likely
produce a large number of small integers as output. The frequency count transform
is often slow in adapting to a change in the symbol distribution of the BWT output
sequence, however. Its slow rate of adaptation is due to the fact that it only uses the
frequency counts of the symbols during each update of the array, and that it does not
consider the recency of the symbols at all.

Dorrigiv et. al. [125] found that an implementation of a BWT–based source code
that uses the frequency count transform is less effective than identical implementations
that use the time–stamp algorithm (refer to page 69) or the recency–rank encoder.
The effectiveness of each implementation was judged according to the total size of the
source–coded files that it produces when applied to the files of the Calgary corpus [100].
This observation suggests that an effective alternative to the recency–rank encoder
should incorporate a symbol recency metric in its updates of the array.

Weighted frequency count transform Deorowicz [98, 126] observed that the
recency–rank encoder does not take the frequency count of any symbol into consider-
ation as it updates the rank array. By disregarding the frequency counts, the recency–
rank encoder may move an unlikely symbol to the front of the rank array upon en-
countering it in the BWT output sequence. The movement of unlikely symbols to the
front of the rank array may be reduced by considering both the frequency counts and
the recency of the symbols during each update of the array.

Deorowicz [98, 126] proposed an alternative to the recency–rank encoder that up-
dates the rank array according to the frequency counts and the recency of the symbols.
This novel transform is referred to as the weighted frequency count (WFC) transform.

The WFC transform updates the rank array prior to transforming each consecutive
symbol of the BWT output sequence [98, 126]. The rank of each alphabet symbol in
the rank array is recalculated using a mathematical function. If the WFC transform
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recalculates the symbol ranks with an appropriate mathematical function, the distri-
bution of the ranks it produces may have a greater bias than the distribution of the
recency–rank encoder output.

The WFC transform associates a weight with each symbol of the alphabet [98,
126]. Its initial step in updating the rank array is the recalculation of the weight
of each alphabet symbol. The alphabet symbols are subsequently ranked according
to nonincreasing weight. The rank array is finally updated according to the newly–
calculated symbol ranks.

The weight of each alphabet symbol equals the sum of several smaller weights
[98, 126]. Each of the smaller weights corresponds to one occurrence of the particular
symbol in the BWT output sequence. The smaller weights are proportional to the
recency of the symbols. Immediately prior to transforming the 𝑖th symbol of the BWT
output sequence, the WFC transform calculates the weight of the 𝑗th distinct alphabet
symbol 𝑎𝑗 according to the function

𝑊𝑖(𝑎𝑗) =

𝑖−1∑
𝑘=1

𝑤(𝑖− 𝑘)𝛿(𝑎𝑗, 𝑥𝑘), (3.18)

where 𝑥𝑘 is the 𝑘th symbol in the BWT output sequence, and

𝛿(𝑝, 𝑞) =

{
1 if 𝑝 = 𝑞,
0 otherwise.

(3.19)

The term 𝑤(𝑖−𝑘) of equation 3.18 represents the smaller weight that is associated with
the 𝑘th symbol of the BWT output sequence. Each of the smaller weights is calculated
according to the equation

𝑤(𝑡) = 𝑤𝑓(𝑡), (3.20)

where 𝑤𝑓(𝑡) is referred to as the weight function.
Deorowicz [126] considered several weight functions. In order to select a suitable

weight function from among those considered, Deorowicz implemented the WFC trans-
form in identical BWT–based source codes, and specified a different weight function
for each code. The files of the Calgary corpus [100] were encoded using the source
codes, and the effectiveness of each weight function was judged from the sizes of the
source–coded files. One of the most effective weight functions that was considered is
expressed as

𝑤𝑓(𝑡) =

⎧⎨
⎩

1 if 𝑡 = 1,
1
𝑝𝑡

if 1 < 𝑡 ≤ 64,
1
2𝑝𝑡

if 64 < 𝑡 ≤ 256,
1
4𝑝𝑡

if 256 < 𝑡 ≤ 1024,
1
8𝑝𝑡

if 1024 < 𝑡 ≤ 𝑡max,

0 if 𝑡 > 𝑡max,

(3.21)

where 𝑝 is a parameter, and 𝑡max specifies the total number of symbols of the BWT
output sequence that are assigned nonzero weights. The parameters 𝑝 and 𝑡max were
assigned values of 4 and 2048 during the source coding of the Calgary corpus files.

The WFC transform is computationally more complex than the recency–rank en-
coder, as it updates the entire rank array after transforming each symbol [86, 98].
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Deorowicz [98] proposed that the range of the weight function be quantized to integer
powers of two in order to reduce the computational complexity of the transform. By
quantizing the range of the weight function, several of the smaller weights of the sym-
bols in the BWT output sequence do not change between consecutive updates of the
rank array. These weights need not be recalculated. The quantization of the range of
the weight function does sacrifice some of the precision of the WFC transform, how-
ever. The loss of precision may reduce the effectiveness of the source code that uses
the WFC transform.

Abel [86] proposed a more effective weight function than the function of equation
3.21. The effectiveness of the weight function was judged according to the performance
of a BWT–based source code that uses the WFC transform and the weight function.
The proposed weight function is defined over twelve nonzero levels, instead of the five
nonzero levels of equation 3.21.

Abel [86] proposed a variation of the WFC transform that is known as the advanced
weighted frequency count (AWFC) transform. The AWFC transform introduces a de-
pendency between the calculation of the smaller weights and the symbol distribution
of the input sequence of the WFC transform. The purpose of this dependency is to
improve the source coding of individual source sequences.

Abel [86] proposed an adaptive weight function with three parameters. Two of the
parameters were selected through trial and error according to the empirical performance
of the source code. The third parameter equals the percentage of distinct alphabet
symbols with individual frequency counts that exceed twice the symbol allocation. The
symbol allocation is defined as the fraction 𝑛/𝑚, where 𝑛 equals the length of the
source sequence, and 𝑚 is the number of distinct symbols in the alphabet.

Inversion frequencies transform Arnavut et. al. [127] proposed the inversion
frequencies transform (IFT) as an alternative to the recency–rank code. This summary
of the IFT was adapted from references [86, 98].

The IFT associates a codeword with each symbol in the BWT output sequence.
Each codeword depends on the symbol’s index in the BWT output sequence, as well as
the symbol’s position in the lexicographical order of distinct alphabet symbols. Suppose
that the codeword of symbol 𝑥𝑖 in the BWT output sequence is to be calculated, and
assume that 𝑥𝑖 = c. The codeword of this symbol equals the number of symbols that
are lexicographically larger than symbol c, but which occur between symbol 𝑥𝑖 and the
previous occurrence of the symbol c in the BWT output sequence.

Instead of substituting each symbol of the BWT output sequence with its codeword,
the IFT first produces a single integer for each distinct symbol of the alphabet. Each
integer equals the number of appearances of its alphabet symbol in the BWT output
sequence — these integers are required by the source decoder to successfully perform
the reverse transform. The IFT finally produces, for each distinct alphabet symbol
in lexicographical order, the codewords that are associated with all occurrences of
the alphabet symbol in the BWT output sequence. In order to correctly reverse the
transform, the codeword of the first occurrence of each distinct alphabet symbol in
the BWT output sequence is set equal to the index of the symbol in the BWT output
sequence. Efficient implementations of both the forward and reverse transforms were
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presented in the literature [128].
Identical symbols that are located in the vicinity of one another in the BWT out-

put sequence are assigned integer codewords with small values by the IFT. The IFT
therefore produces integers that are biased towards zero when applied to typical BWT
output sequences. There is a significant difference between the distribution of the IFT
output and the distribution of the recency–rank encoder output, however.

The difference between the output distributions of the IFT and the recency–rank
encoder is due to the fact that the IFT codewords of lexicographically large symbols
are typically small integers, regardless of their position in the BWT output sequence.
This statement follows from the fact that there are few distinct alphabet symbols that
are lexicographically larger than these symbols. As the codewords of lexicographically
large symbols are located next to one other in the IFT output sequence, the source
encoder may encode these symbols effectively. Deorowicz [126] remarked, however, that
the overhead associated with the representation of the symbol frequency counts may
limit the usefulness of the IFT to longer sequences only.

Abel [86] proposed an improvement to the IFT that involves a change in the lexico-
graphical order of the symbol alphabet. Assume that the lexicographical order of the
symbol alphabet is changed so that the frequently occurring symbols of the BWT out-
put sequence are considered lexicographically smaller than the infrequently occurring
symbols. As the BWT output sequence contains fewer symbols that are lexicographi-
cally large, the less frequent symbols are assigned smaller integer codewords. The BWT
output sequence also contains a greater fraction of symbols that are lexicographically
small, however — the IFT may possibly produce a greater fraction of integers with
larger values than before. It is not immediately obvious whether to assign lexicograph-
ical ranks to symbols in the ascending or descending order of symbol frequency counts
in order to bias the distribution of the IFT output integers towards zero.

Abel [86] implemented the IFT in a BWT–based source code, and assigned lexi-
cographical ranks to symbols that are arranged in both the increasing and decreasing
order of frequency counts. This implementation was used to determine which method of
assigning lexicographical ranks to symbols typically produces the most effective source
code. The implementation of the source code was used to encode the files of the Calgary
corpus [100]. The majority of the Calgary corpus files were source coded more effectively
when lexicographical ranks were assigned to symbols in the ascending frequency count
order. The only files of the Calgary corpus that were encoded more effectively when
lexicographical ranks were assigned to symbols in the order of descending frequency
counts were the binary files geo and obj1.

Abel [86] proposed a heuristic for selecting an appropriate order in which to assign
lexicographical ranks to symbols. The heuristic states that lexicographical ranks should
be assigned to symbols in the order of decreasing frequency counts if the percentage of
alphabet symbols with individual frequency counts exceeding twice the average symbol
allocation is less than 10%7. If this is not the case, the lexicographical ranks are assigned
to symbols in the order of ascending frequency counts.

7Refer to the discussion regarding the AWFC (page 73) for the definition of the average symbol
allocation.
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Distance coding transform Binder [129] proposed the distance coding trans-
form (DCT) as an alternative to the recency–rank code. The DCT is related to the
interval code that was proposed by Elias [84]. This summary of the DCT was adapted
from reference [98].

The DCT is applied to the BWT output sequence, and produces two concatenated
integer sequences as output. The transform initially finds the first occurrence of each
distinct alphabet symbol in the BWT output sequence. The integer indices of the first
occurrences of all distinct alphabet symbols in the BWT output sequence constitute
the first integer output sequence of the DCT. The integers of the first output sequence
are typically arranged in lexicographical order w.r.t. the symbols they represent.

The second output sequence of the DCT contains one integer for each symbol of the
BWT output sequence. The DCT processes the BWT output sequence in a symbol–
by–symbol fashion, starting at the front of the sequence and ending at the back of
the sequence. The transform finds the number of symbols that are located between
each symbol of the BWT output sequence and its next occurrence in the BWT output
sequence. If a total of 𝑘 symbols are located between a certain symbol and the next
occurrence of the same symbol in the BWT output sequence, the transform produces
the integer 𝑘+1 as output. Upon encountering the final instance of any symbol in the
BWT output sequence, the transform produces the integer zero.

The DCT produces small integers when applied to identical alphabet symbols that
appear in close proximity to one another. The distribution of the DCT output, assuming
that the DCT is applied to typical BWT output sequences, is biased towards the
smaller integers. This is due to the fact that the BWT output sequence consists of
p.i.i.d. symbols, and that each piecewise segment has a biased symbol distribution (it
is assumed that the BWT is applied to a source sequence from a finite–memory source
or a tree source).

Binder [129] proposed three improvements to the DCT, as summarized by Deorow-
icz [98]. The first improvement concerns the integers of the second output sequence of
the DCT. The DCT may exclude all symbol pairs that it already encountered when
counting the number of symbols that appear between consecutive occurrences of the
same symbol in the BWT output sequence. The BWT output sequence may be suc-
cessfully recovered from the DCT output sequence in this case, as the reverse transform
has knowledge of the locations of the symbol pairs it encountered previously.

The second improvement concerns the final run of zeros at the end of the trans-
formed sequence [98]. These trailing zeros are superfluous, and may be omitted. The
third improvement concerns runs of identical symbols in the BWT output sequence.
The DCT need not produce any integers for these symbols, and may proceed to the
final symbol in the run. This improvement yields a reversible transform, as the reverse
DCT is aware that no other symbols appear within the run. It may therefore insert the
correct number of missing run symbols.

Switching algorithms Chapin [48, 121] proposed that different algorithms for
solving the LUP be used to transform different intervals of the BWT output sequence.
This proposal is motivated by the observation that some algorithms for solving the
LUP are more effective when applied to certain intervals of the sequence than other
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algorithms.
Chapin [48, 121] recommended that the conventional recency–rank encoder be ap-

plied to shorter intervals. The best two of three algorithm was proposed for the purpose
of transforming longer intervals. In order to transform the BWT output sequence ef-
fectively, the implementation of the source code should switch between the algorithms
in a dynamic fashion. The switching should be carried out in such a manner that the
source decoder is able detect each switch, as this is necessary to successfully recover
the sequence.

Chapin [48, 121] employed a switching algorithm that was proposed by Volf et.
al. [130] to switch between the recency–rank encoder and its alternatives. The switching
algorithm estimates the lengths of the source–coded intervals that would be obtained
if each transform was applied to each interval [48]. A dynamic program is used to
keep track of the estimates. The switching algorithm finally selects the transforms that
brought about the shortest source–coded sequence.

Postprocessing of the recency–rank encoder output Balkenhol et. al. [95] pro-
posed a technique for processing the output of the recency–rank encoder. The postpro-
cessing of the recency–rank encoder output has the purpose of improving the effective-
ness of the source encoder that follows the recency–rank encoder in the BWT–based
source code.

The postprocessing of the recency–rank encoder output produces two rank se-
quences [95, 98]. The first sequence is identical to the recency–rank encoder output
sequence, but with all ranks higher than two replaced with the rank two. The first
sequence correctly identifies those symbol ranks that are equal to zero and one, as
well as the positions of the symbol ranks that are higher than one in the recency–rank
encoder output sequence. The second sequence is equal to the recency–rank encoder
output sequence, but with all ranks of zero and one omitted from the sequence. The
second sequence contains the true values of those symbol ranks that were identified as
being higher than one in the first sequence.

The ratio of the frequency counts of the most likely rank and the least likely rank
in the recency–rank encoder output sequence is typically quite large [16]. By replacing
all ranks in the recency–rank encoder output sequence that are higher than two with a
rank of two, the alphabet associated with the first postprocessed sequence is reduced
to three ranks (i.e. zero, one and higher than one). The frequency count associated
with the third rank of the alphabet (i.e. the higher–than–one rank) equals the sum of
the frequency counts of all ranks that are higher than one. The ratio of the frequency
counts of the most likely rank and the least likely rank is significantly smaller in the first
postprocessed sequence than in the ordinary recency–rank encoder output sequence.

The abovementioned property of the first postprocessed sequence is beneficial to
adaptive source encoders [16]. Adaptive source encoders need to maintain a good trade-
off between rapid adaptation to changing source statistics and the accuracy of the rank
probability estimates. An additional advantage of the postprocessing step is that the
source coding of the first and second postprocessed sequences may be performed (and
optimized) separately from each other [95].

One advantage of the postprocessing step concerns the transition points between the
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piecewise segments of the BWT output sequence [95]. Each transition point usually ap-
pears as a short burst of the higher–than–one rank in the first postprocessed sequence.
The locations of the transition points may in some cases be estimated from the first
postprocessed sequence, and used to improve the source coding of the postprocessed
sequence.

The postprocessing step has the disadvantage of lengthening the sequence of ranks
that is to be source coded [95]. The number of additional ranks that need to be encoded
equals the number of ranks in the second postprocessed sequence

3.3.2.4 The source encoder

Researchers applied several source encoders to the recency–rank encoder output se-
quence of BWT–based source code implementations with varying degrees of success.
These encoders include universal integer encoders [16], adaptive Huffman encoders [9],
and adaptive arithmetic encoders such as PPM encoders [45] and Witten’s CACM
encoder [89].

Fenwick [16] observed that source encoders with multiple–context models (such
as the PPM encoder [45]) are typically ineffective when applied to the recency–rank
encoder output. A thorough characterization of the BWT and recency–rank encoder
output sequences is necessary in order to design effective source encoders for BWT–
based source codes, and to understand why certain source encoders perform poorly.
This section is a summary of several source encoders and their implementation in
BWT–based source codes.

Initial source encoders Burrows et. al. [9] proposed that either a Huffman en-
coder or an arithmetic encoder be used to encode the recency–rank encoder output in
the original BWT–based source code. Burrows et. al. implemented a Huffman source
encoder in the original BWT–based source code. The Huffman encoder updates the
Huffman tree for each consecutive 16 kilobyte block of the rank sequence. This source
encoder is able to adapt to changes in the rank distribution, provided the changes do
not occur too rapidly.

Fenwick [16, 93] investigated a BWT–based source code that uses the CACM en-
coder of Witten et. al. [89] to encode the sequence of ranks. The effectiveness of the pro-
posed code is within 1.6% of the effectiveness of the PPMC implementation [50], where
effectiveness refers to the reduction in the size of the Calgary corpus data set [100].

Fenwick [93] investigated the performance of a BWT–based source code that uses
the DCC–95 implementation of an arithmetic encoder [90]. The BWT–based source
code that uses the DCC–95 arithmetic encoder proved to be significantly less effective
than the BWT–based source code that uses the CACM encoder [89]. The DCC–95
encoder was designed for use in PPM source code implementations — this assumption
regarding its use is the reason for its lack of performance in BWT–based source code
implementations [93].

A PPM source code implementation defines multiple contexts in its model of the
source [16, 93]. The DCC–95 encoder infrequently rescales the symbol counts in order
to maintain an accurate multiple–context source model. The CACM implementation

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 77

 
 
 



CHAPTER 3 The Burrows–Wheeler transform

that Fenwick [93] investigated assumes that a single–context source model is used. This
encoder rescales the symbol counts more frequently.

A BWT–based source code implementation that uses the CACM encoder is more
successful at adapting to statistical changes in the recency–rank encoder output se-
quence than an implementation that uses the DCC–95 encoder, due to its frequent
rescaling of the symbol counts [93]. Recall that recency–rank encoder output sequences
contain several high–entropy bursts, which correspond to transitions between certain
piecewise segments of the BWT output sequence. The CACM encoder is more effec-
tive than the DCC–95 encoder when used to encode these sequences in a BWT–based
source code implementation, as it adapts more successfully to the high–entropy bursts.

The conventional multiple–context source model is not an accurate representation
of the recency–rank encoder and its output [16]. Some BWT–based source code im-
plementations maintain only a single–context source model, and rely on the source
encoder to update the model in an appropriate fashion.

The bzip2 and bred3 implementations This summary of the bzip2 and bred3

source code implementations was adapted from reference [48]. The predecessor of the
bzip2 command–line compression and archiving utility, bzip, encodes the rank se-
quence using an arithmetic code [87]. The subsequent version of the utility, bzip2,
encodes the rank sequence using Huffman codes, due to patent–related restrictions on
the use of arithmetic codes. The bzip2 implementation is closely related to the bred3
implementation [131], which is summarized in this section.

The bred3 implementation is similar to the elementary BWT–based source code of
figure 3.5 on page 53. The recency–rank encoder output sequence of the bred3 imple-
mentation is run–length encoded. The output of the run–length encoder is uniformly
partitioned into blocks of a certain length.

The bred3 implementation maintains a set of several Huffman codes. It is assumed
for the purpose of this discussion that the set contains eight Huffman codes. The bred3
algorithm iterates over the blocks of integers and selects the most appropriate Huffman
code that should be used to encode each block. The decision regarding which Huffman
code to use for source coding a block of integers is based on a goodness–of–fit metric
between the code and the block.

The bred3 algorithm encodes each block of integers using the appropriate Huffman
code, and records the length of each encoded integer block. It adds the overall length
of the source–coded integer blocks to the length of the Huffman code tables, as well
as the lengths of the selectors and delimiters that are associated with each block. This
total may be interpreted as the cost of encoding the sequence of blocks.

After calculating the cost of encoding the blocks, the bred3 algorithm merges some
of the original, uncoded blocks of integers according to the particular Huffman codes
that were assigned to the blocks. The algorithm proceeds by creating a total of eight
new Huffman codes according to the distribution of the integers in the blocks.

After creating the new Huffman codes, the bred3 algorithm repeats its initial steps
of matching the integer blocks to Huffman codes, and calculating the total cost of en-
coding the sequence of blocks with the new codes. If the algorithm observes a significant
reduction in the cost of encoding the sequence of blocks, it again merges some of the
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blocks, and creates a new set of Huffman codes according to the integers of the blocks.
These steps continue to repeat until the reduction in the cost of encoding the sequence
of blocks becomes insignificant. The bred3 algorithm concludes by source coding the
blocks of integers using the final set of Huffman codes.

The Shannon encoder of Fenwick This summary was adapted from reference [98].
Fenwick [93] proposed a BWT–based source code that uses an arithmetic encoder and a
multiple–context source model. The source encoder processes the recency–rank encoder
output sequence before encoding it with the arithmetic encoder. The recency–rank
encoder output sequence is processed by replacing each rank with a certain codeword
of a prefix code. The codewords of the prefix code are provided in table 3.6.

Each codeword of the prefix code has a binary prefix [93]. Some codewords also
have a decimal suffix, which is represented by the bracketed number in certain rows of
table 3.6. The structure of each prefix may be interpreted in terms of a test subject
that predicts a certain rank in the recency–rank encoder output sequence. The prefix is
equivalent to a sequence of answers in response to the predictions of the test subject —
a zero–valued bit indicates a correct prediction, and a nonzero–valued bit an incorrect
prediction.

As the zero–valued rank is most likely, the test subject initially predicts that the
rank equals zero. If this is not the case, the test subject predicts that the rank equals
one, as this is the second–most likely rank. The sequence of predictions continues
in the order of decreasing rank likelihood. The prediction of the rank resembles an
experiment that Shannon [111] performed to determine the entropy of English text.
This resemblance motivated Fenwick’s choice of name for the algorithm.

Upon replacing each rank with its codeword, the binary prefix and the decimal
suffix of each codeword are encoded separately from each other. The bits of the binary
prefixes are encoded using an arithmetic code and a multiple–context source model.
The 𝑛th bits of all the prefixes are always encoded in the same context, with the
exception of the first bit of each prefix. The first bit of each prefix is encoded in one
of two contexts — the choice of context depends on whether the previously encoded
rank equals zero or not. The decimal suffixes of the codewords are encoded using an
arithmetic code with a single–context model.

Arithmetic codes and the structured source model The structured source
model was introduced in section 3.3.1.4 on page 57. This section is a summary of
several implementations that use this model.

Fenwick [16] proposed a BWT–based source code implementation that uses arith-
metic codes, as well as the structured source model of figure 3.7 on page 57. The
structured model has nine levels, and each consecutive level contains twice the number
of ranks of the preceding level, with the exception of the first two levels (which contain
one rank each). Fenwick’s implementation of the BWT–based source code encodes both
the level numbers and the ranks in zero–order contexts.

Fenwick [16] assumed that the source uses the 8–bit ASCII alphabet, which contains
256 symbols. This assumption implies that the recency–rank encoder may only produce
a maximum of 256 distinct ranks. Fenwick assigned these ranks to the levels of the
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Table 3.6: The prefix code that is applied to the recency–rank encoder output sequence
by the Shannon encoder [93].

Rank Codeword

0 0
1 10
2 110
3 1110
4 1111(4)
5 1111(5)
...

...
255 1111(255)

Table 3.7: Fenwick’s assignment of ranks to the levels of the structured source model
[16].

Level number Ranks Number of ranks

0 0 1
1 1 1
2 2–3 2
3 4–7 4
4 8–15 8
5 16–31 16
6 32–63 32
7 64–127 64
8 128–255 128

structured source model as indicated in table 3.7.
A level count is defined as the total number of ranks that appear in the recency–

rank encoder output, but which also belong to a specific level of the structured source
model. Fenwick [16] assigned ranks to the levels of the structured source model in order
to reduce the difference between the level counts, as well as the difference between
the frequency counts of the ranks within each level [98]. This assignment of ranks
to levels facilitates the accurate estimation of each rank’s probability of occurrence.
Wirth [48] stated that Fenwick’s assignment of ranks to levels is optimal if the ranks
follow Zipf’s law. Zipf’s law [132] implies that a rank’s probability of occurrence is
inversely proportional to the magnitude of the rank.

Fenwick [93] used the implementation of the BWT–based source code and the struc-
tured source model of table 3.7 to source code the files of the Calgary corpus [100].
The implementation was found to be less effective than the implementation that uses
Fenwick’s Shannon encoder. The performance of the proposed implementation was im-
proved by applying a run–length code to the recency–rank encoder output sequence
prior to source coding it.

Balkenhol et. al. [95] used a structured source model in an implementation of a
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BWT–based source code. The implementation postprocesses8 the recency–rank encoder
output sequence, and encodes the postprocessed sequence using arithmetic codes.

The postprocessed recency–rank encoder output consists of two sequences [95]. The
implementation proposed by Balkenhol et. al. [95] encodes the two sequences separately.
The source coding of the first postprocessed sequence is discussed in section 3.3.2.4 on
page 89. This section concerns the source coding of the second postprocessed sequence,
as well as the structured source model that is used during the source coding of this
sequence.

The second postprocessed sequence contains all the ranks of the original recency–
rank encoder output sequence that are higher than one [95]. Two approaches may be
followed to encode the source data that these ranks represent. The first approach is to
source code the ranks of the second postprocessed sequence directly, using an arithmetic
code with an appropriate source model for the ranks. The second approach is to source
code the symbols of the BWT output sequence that correspond to the ranks of the
second postprocessed sequence.

Balkenhol et. al. [95] used the second approach to encoding the second postprocessed
sequence in the implementation of a BWT–based source code. The second approach
was found to be effective, as the properties of the second postprocessed sequence may
be used to develop an appropriate structured source model for the relevant symbols of
the BWT output sequence. This approach is summarized in what follows.

Balkenhol et. al. [95] proposed a structured source model with four levels. The
implementation of the source code assigns all distinct alphabet symbols9 to each level
of the structured source model. The frequency counts of the symbols in each level
are updated as source coding proceeds. The fourth level is an order (-1) context, as
it maintains an equiprobable distribution over all symbols, and does not update any
frequency counts.

The implementation of the BWT–based source code halves all the symbol frequency
counts of a level as soon as one of its symbol frequency counts exceeds a certain count
limit [95]. The halving of the frequency counts implicitly defines a sliding window over
the second postprocessed sequence — the symbols corresponding to the ranks that are
inside the window remain part of the frequency counts of the level. The length of the
sliding window is not static, as it depends on the frequency counts of the symbols, and
therefore the symbol sequence.

Balkenhol et. al. [95] specified different count limits for the first three levels of
the structured source model. The rate at which the estimate of a context symbol
distribution adapts to changes in the local distribution of the BWT output sequence
depends on the count limit that is assigned to the level. Balkenhol et. al. proposed
count limits that are linear functions of the source sequence length.

The four levels of the structured coding model of Balkenhol et. al. [95] are named
according to their rates of adaptation to changes in the BWT output sequence [16].
The first three levels are referred to as the fast adaptation, medium adaptation and
slow adaptation levels. The symbol frequency counts of the fourth level are not updated

8Refer to section 3.3.2.3 on page 76 for a summary of postprocessing.
9The implementation may also use a partial input alphabet, thereby eliminating unused symbols

from the source model.
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— the fourth level is therefore referred to as the no adaptation level.
The implementation initially considers each rank of the recency–rank encoder out-

put sequence in a rank–by–rank fashion, starting at the front of the sequence [95]. If
the rank equals zero, the implementation does not update any frequency count of the
structured source model, and the source symbol that corresponds to the rank is not
encoded. If the rank equals one, it increments the frequency count of the symbol that
is associated with the rank in all levels of the structured source model. It does not
encode the symbol, however, as it is not part of the second postprocessed sequence.
If the implementation encounters a rank that is higher than one, it first encodes the
symbol that corresponds to the rank. The implementation subsequently updates the
frequency count of the symbol in all levels of the structured source model.

The implementation produces two outputs for each symbol of the BWT output
sequence that it encodes [95]. The first output equals the level number of the context
that was used to encode the symbol. The second output equals the encoded symbol.

The implementation of Balkenhol et. al. [95] first attempts to use the symbol dis-
tribution estimate that is associated with the fast adaptation level when encoding each
successive symbol. If the symbol has a frequency count of zero in this context, it at-
tempts to encode the symbol according to the distribution estimate of the medium
adaptation level. In the event of the symbol having a frequency count of zero in this
context, the implementation attempts to use the symbol distribution estimate of the
slow adaptation level. If the symbol has a zero frequency count in all contexts of the first
three levels, it is encoded according to the uniform distribution of the no adaptation
level.

An arithmetic code is used to encode the level numbers [95]. Frequency counts
are maintained for the level numbers — these frequency counts are used to define a
distribution according to which the level numbers are encoded. A threshold is associated
with the level–number counts. Level–number counts are halved as soon as any level–
number count exceeds the threshold.

By disregarding all ranks that equal zero during the update of the structured source
model, the implementation avoids an unfavourable situation in which the source model
is excessively biased by a run of the same symbol [95]. Balkenhol et. al. refer to this
situation as the ‘pressure of runs’. The structured source model of Balkenhol et. al.
simultaneously satisfies the conflicting requirements of rapid adaptation to changing
source statistics, and the maintenance of an accurate source model with a wide range
of symbol probabilities.

Arithmetic codes and the cascaded source model The cascaded source model
was introduced in section 3.3.1.4 on page 56. Fenwick [16,88] developed a BWT–based
source code implementation that uses an arithmetic code with a cascaded source model.
The implementation encodes the ranks of the recency–rank encoder output sequence
using the arithmetic code. The cascaded source model has three levels — the first
level contains ranks 0 to 3, the second level contains ranks 4 to 15, and the final level
contains all the remaining ranks. This implementation proved to be as effective as a
similar implementation of Fenwick [16] that uses a structured source model.

Balkenhol et. al. [94, 133] used a cascaded source model in an implementation of a
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Table 3.8: The assignment of ranks to the levels of the cascaded source model of Balken-
hol et. al. [94] (adapted from reference [98]).

Level number Ranks Number of ranks

0 0, 1, >1 3
1 2, >2 2
2 3, 4, >4 3
3 5–8, >8 5
4 9–16, >16 9
5 17–32, >32 17
6 33–64, >64 33
7 65–128, >128 65
8 129–255 127

BWT–based source code. The implementation encodes the ranks of the recency–rank
encoder output sequence using an arithmetic code. Balkenhol et. al. assigned ranks to
the levels of the cascaded model according to table 3.8. The implementation keeps the
levels of the source model from becoming cluttered with ranks that do not occur by
using a partial input alphabet. Balkenhol et. al. also considered the use of contexts
with order 𝑘 in some levels of the cascaded source model, where 𝑘 > 0 [16, 98]. This
modification improved the performance of the implementation.

Arithmetic codes and the Krichevsky–Trofimov estimator Effros et. al. [10]
used an arithmetic code with the Krichevsky–Trofimov (KT) estimator [134] in an im-
plementation of a BWT–based source code. The implementation encodes the symbols of
the BWT output sequence directly. The implementation uses the Krichevsky–Trofimov
estimator to obtain an estimate of the probability distribution of each consecutive sym-
bol in the BWT output sequence.

Let 𝑟𝑖(𝑥) denote the number of times that symbol 𝑥 was encountered in the first
𝑖 symbols of the BWT output sequence, and let 𝑟0(𝑥) = 0 for all 𝑥. Furthermore, let
𝑟𝑖(𝑥) = 𝑟𝑖(𝑥) + 1/2. The KT estimate of the probability of a sequence x

𝑖 is recursively
defined as

𝑃𝑐(x
𝑖) = 𝑃𝑐(x

𝑖−1)
𝑟𝑖−1(𝑥𝑖)∑
𝑥∈𝒜 𝑟𝑖−1(𝑥)

, 1 ≤ 𝑖 ≤ 𝑛, (3.22)

where 𝑃𝑐(x
0) ≜ 1, and 𝑛 equals the length of the BWT output sequence.

Effros et. al. [10] investigated the performance of the proposed implementation when
used to encode sequences from finite–memory sources. Two cases were considered. In
the first case, the implementation has prior knowledge regarding the locations of all
transition points between the p.i.i.d. segments of the BWT output sequence. In the
second case, the implementation does not have any information regarding the source,
and cannot calculate the locations of any transition points between the p.i.i.d. segments
of the BWT output sequence. The two cases are discussed in what follows.

In the first case, the implementation applies the arithmetic code independently to
each segment of p.i.i.d. symbols in the BWT output sequence [10]. Effros et. al. [10]
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proved that this source code is strongly minimax universal for finite–memory sources
with finite state spaces. The normalized redundancy of the code converges to zero
(w.r.t. the source sequence length) at a rate that is equal to a constant multiple of the
optimal convergence rate, which was derived by Rissanen [135]. The magnitude of the
constant depends on the size of the symbol alphabet, and converges to unity as the
size of the alphabet increases.

In the second case, the implementation source codes the BWT output sequence
without any knowledge of the transition points [10]. The implementation encodes the
sequence by dividing it into intervals of equal length, and applying the arithmetic
code independently to each interval. The implementation has to select an appropriate
interval length 𝑤(𝑛) in this case, as the performance of the source code depends on it.

The choice of an appropriate interval length depends on the length of the BWT
output sequence, as the number of transition points between the p.i.i.d. segments of the
BWT output sequence is finite and independent of the sequence length 𝑛 [10]. Effros.
et. al. [10] proposed an equation that may be used to select an appropriate interval
length. If the implementation uses the equation to select the interval length, the overall
source code is a strong minimax universal source code for finite–memory sources with
finite state spaces.

Integer codes An integer code10 associates variable–length binary codewords with
the integers of the infinite alphabet ℕ = {1, 2, 3, . . .} [16]. A sequence of integers is
encoded with an integer code by substituting each integer with its codeword. Each
codeword of typical integer codes is self delimiting and uniquely decodable, regardless
of the magnitude of the integer that the codeword represents.

Conventional source codes, such as the Huffman codes, are designed to minimize
the average length of the codewords that are used to represent source sequences [16].
The design of an optimal conventional code requires knowledge of the distribution of
the source symbols. If the symbol distribution is unknown, a universal source code or
an adaptive source code may be used. An adaptive source code assigns codewords to
symbols according to an estimate of the symbol distribution. The codewords may be
changed as the estimate of the distribution changes.

The codewords of an integer code are defined independently from the distribution
of the integers, and cannot be adapted to a changing integer distribution [16]. Each
integer code may be used to optimally11 encode integers from a specific distribution.
This distribution is a function of the lengths of the codewords, and is referred to as
the distribution that the integer code implies.

The similarity between the distribution of the integers that are to be encoded
and the distribution that the integer code implies determines the effectiveness of the
source code [16]. Suppose that a specific integer code is used to encode integers from
a certain distribution. The average redundancy of the codewords that are produced is
proportional to the Kullback–Leibler divergence between the actual integer distribution
and the implied distribution [11]. An integer code would therefore prove effective if used
to encode integers from a distribution that is similar to the implied distribution.

10These codes are also known as universal codes or variable–length codes in the literature [16].
11Optimality refers to the minimum average codeword length in this case.
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Table 3.9: Certain codewords of the 𝛼, 𝛽 and 𝛾 codes proposed by Elias [136] (adapted
from reference [16]).

Integer Elias–𝛼 Elias–𝛽 Elias–𝛾

1 1 1 1
2 01 10 010
3 001 11 011
4 0001 100 00100
5 00001 101 00101
6 000001 110 00110
7 0000001 111 00111
8 00000001 1000 0001000

An appropriate integer code for the recency–rank encoder output sequence would
imply a distribution that decreases with respect to increasing integers, as the ranks
typically follow a decreasing distribution. A variety of different integer codes were
proposed [16, 44], but only some integer codes are appropriate for use in BWT–based
source codes. The Elias–𝛾 integer code [136] was used to effectively encode the recency–
rank encoder output sequence [118], and is discussed in what follows.

Dorrigiv et. al. [118] used the Elias–𝛾 code [136] in an implementation of a BWT–
based source code. Each codeword of the Elias–𝛾 code is a concatenation of two code-
words from different codes [16]. The prefix of each codeword of the Elias–𝛾 code is a
codeword of the Elias–𝛼 integer code, but with its final bit omitted. The suffix of each
codeword of the Elias–𝛾 code is a codeword of an Elias–𝛽 integer code. Some of the
codewords of the Elias codes are provided in table 3.9.

The Elias–𝛽 codeword of an integer equals the conventional binary–coded represen-
tation of the integer [16, 136]. The most significant bit of the binary–coded integer is
the leading bit of the codeword. The leading zeros of each codeword are omitted. The
Elias–𝛽 codeword represents the value of the integer that is encoded using the Elias–𝛾
code.

The codewords of an Elias–𝛽 code are not self–delimiting [16,136]. This property dis-
tinguishes it from typical integer codes, which have codewords that are self–delimiting.
The suffix of each Elias–𝛾 codeword is delimited by an Elias–𝛼 codeword. The Elias–𝛼
codeword represents the bit length of the suffix of the Elias–𝛾 codeword. The Elias–𝛼
codeword of the integer 𝑖 has 𝑖−1 zero–valued bits and a final nonzero–valued bit. The
final nonzero–valued bit of the Elias–𝛼 codeword is omitted when used as part of an
Elias–𝛾 codeword, as it is redundant.

The implementation of Dorrigiv et. al. [118] uses the Elias–𝛾 code [136] to encode
the output of the recency–rank encoder. The recency–rank encoder output sequence is
encoded in a rank–by–rank fashion. The implementation represents a rank of 𝑖 with
the Elias–𝛾 codeword of the integer 𝑖+1, as the Elias–𝛾 code has no codeword for the
integer zero.

Dorrigiv et. al. [118] proposed an improvement to the source encoder that makes
use of the Elias–𝛾 code. This improvement is beneficial to the effectiveness of the source
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encoder when applied to sequences containing long runs of the rank zero. The source
encoder encodes all ranks that are higher than zero as before. Upon encountering a run
of 𝑗 zero–valued ranks in the recency–rank encoder output sequence (where 𝑗 ≥ 1), the
source encoder first produces the Elias–𝛾 codeword of the integer one. It subsequently
produces the codeword of the integer 𝑗 + 1, thereby encoding the length of the run.
This codeword is produced even if the run contains only a single zero–valued rank. The
source encoder proceeds by encoding the next nonzero–valued rank of the sequence.

Arithmetic codes and frequency increments A significant problem associated
with using an adaptive arithmetic code to encode either the BWT output sequence
or the recency–rank encoder output sequence is to accurately estimate the probability
distribution of the future symbols or ranks in the sequence [16]. Source models that
are used in implementations of the PPM algorithm typically fail to produce accurate
estimates of the true symbol or rank distribution.

The reason behind the inaccuracy of the PPM source models, when used to model
the BWT output sequence or recency–rank encoder output sequence, lies in the sta-
tistical properties of the symbols and ranks of these sequences [16]. In the case of
the BWT output sequence, the probability distribution of the symbols changes from
segment to segment, and the segment transition points are typically unknown. The
recency–rank encoder output sequence contains short bursts of high–valued ranks be-
tween long segments of low–valued ranks. The PPM source models do not accurately
represent these sequences — another approach is required to obtain accurate estimates
of the distribution of the symbols or ranks in these sequences.

Balkenhol et. al. [95] modified the mechanism for updating the symbol frequency
counts in the source model of an arithmetic code implementation in an attempt to pro-
duce more accurate estimates of the symbol distribution of the BWT output sequence.
The problem of appropriately updating the symbol frequency counts is referred to as
the generalized frequency update problem. Balkenhol et. al. modified the implemen-
tation according to several observations regarding the BWT output sequence. It was
observed that the degree of statistical similarity between two symbols in the BWT
output sequence typically depends on the distance between them (i.e. the number of
symbols that appear between them). Symbols that are located close to each other are
more likely to have similar distributions than symbols that are distant from each other.

The previous observation regarding the statistical similarity between nearby sym-
bols in the BWT output sequence may be used to estimate the symbol distribution at
certain stages of the sequence with greater accuracy [95]. The observation implies that
the estimate of a certain alphabet symbol’s probability of occurrence should decrease
as the distance to its previous occurrence in the sequence increases. The recency–rank
encoder does incorporate this approach, as it assigns lower–valued ranks to identical
symbols that occur in the vicinity of one another. An accurate probability estimate of
an alphabet symbol also reflects the number of times the symbol appears in the BWT
output sequence, however.

Two approaches to updating the symbol frequency counts in the source models
of arithmetic encoders are relevant to this summary [95]. The first approach is to
increment a symbol frequency count by a constant upon encountering the symbol in
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the sequence. The symbol frequency counts are halved as soon as a threshold or a limit is
exceeded by any symbol count. This technique implicitly defines a sliding window over
the sequence, with symbols inside the window remaining part of the symbol frequency
counts. The halving of the symbol frequency counts enables the arithmetic code to
adapt to changes in the distribution of the symbols. The first approach is typically
followed in the implementation of PPM algorithms.

The second approach updates the symbol frequency counts according to a certain
equation [95]. Suppose that the frequency count for a certain alphabet symbol 𝑦, af-
ter having encoded the first 𝑘 symbols of the BWT output sequence, is expressed as
𝑓(𝑦∣x𝑘). The symbol frequency counts may be updated according to the equation

𝑓(𝑦∣x𝑘) = 𝛾−1𝑓(𝑦∣x𝑘−1) + 𝛿(𝑦, 𝑥𝑘), (3.23)

where 𝛾 > 1 and

𝛿(𝑝, 𝑞) =

{
1 if 𝑝 = 𝑞,
0 otherwise.

(3.24)

By using equation 3.23, the frequency counts of all but the most recently encoded
symbol are decreased during each update. Balkenhol et. al. [95] stated that the symbol
frequency counts need not be updated after encoding each symbol in the sequence. The
increment may also be set to zero if the encoder is source coding a run of symbols,
thereby preventing the model from becoming overly biased towards the run symbol.

Run–length codes As the recency–rank encoder output sequence typically contains
many runs of the rank zero, it is reasonable to encode this sequence using a run–length
code [16]. A run–length coded sequence is not only an effective representation of a
sequence with many runs, but it is also beneficial to the source coding of the ranks
that do not occur in runs.

An adaptive arithmetic code increments and rescales the rank frequency counts
of the source model according to the ranks that were recently encountered in the
sequence [16]. The adaptive code’s estimate of the rank distribution is therefore likely
to be biased at the end of a long run of a certain rank. If this is the case, the symbols
that follow the run may be encoded using an inaccurate source model, thereby reducing
the effectiveness of the overall source code [95]. By run–length coding the sequence prior
to source coding it with an adaptive arithmetic code, the arithmetic code is made aware
of the runs, and may avoid biasing the source model [86].

A general run–length encoder processes the recency–rank encoder output sequence
in a rank–by–rank fashion, starting at the front of the rank sequence [86]. It determines
whether the current rank of the sequence is part of a run. If the rank is part of a run,
it determines the length of the run. A run of ranks is replaced only if the length of
the run equals or exceeds a threshold 𝑡ℎ. All ranks that do not occur in a run, or that
occur in a run with fewer than 𝑡ℎ ranks are left unchanged.

A run that contains 𝑚 occurrences of a certain rank 𝑦, where 𝑚 ≥ 𝑡ℎ, is replaced
by a sequence containing [86]

1. an optional escape symbol SOR (start of run),

2. one or more instances of the rank 𝑦, and
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3. a codeword that represents the length of the run.

After replacing a run with the appropriate sequence, the run–length encoder proceeds
to the first rank that follows the run in the recency–rank encoder output sequence.
Run–length codes differ from one another regarding [86]

∙ the mechanism that is used to signal the start of a run,

∙ the manner in which the length of the run is encoded, and
∙ the value of the threshold 𝑡ℎ.

The start of a run may be signaled by inserting an escape symbol SOR in the run–length
encoded sequence. It is typically placed in front of each encoded run. The escape symbol
should not appear elsewhere in the sequence, as the source decoder would not be able
to distinguish between the two instances of the symbol. An alternative approach to
signaling the start of a run is to leave the initial ranks of the run uncoded. The number
of ranks that are left uncoded should equal or exceed the threshold 𝑡ℎ in order to be
recognized as the start of a run.

The effectiveness of a run–length code depends on the codewords that represent the
lengths of the runs [86]. An optimal set of codewords may be selected if the distribution
of the run lengths is known, but this information is typically not available. The run–
length decoder must be able to delimit the codewords of the run lengths in order to
successfully decode them.

Wheeler12 proposed a run–length code that is appropriate for use in implemen-
tations of the BWT–based source code [16, 93]. This run–length code became known
as the zero run–length (RLE–0) code in the literature [98]. Fenwick [16] reported an
improvement of 1% in the effectiveness of a BWT–based source code implementation
that first encodes the recency–rank encoder output sequence with the zero run–length
code.

The RLE–0 code increases the number of ranks in the rank alphabet by one [16].
The RLE–0 encoder does not replace any run consisting of ranks that are higher than
zero by its run length, regardless of the length of the run. Upon encountering a rank 𝑚
that is higher than one in the recency–rank encoder output sequence, the run–length
encoder replaces it with the rank 𝑚+ 1. If the zero–valued rank is encountered in the
sequence, the encoder replaces it (and all zero–valued ranks that occur in the same
run) with a codeword that represents the length of the run, regardless of the length of
the run.

The codeword associated with the length of a run of zero–valued ranks consists of
the integers zero and one [16]. The codeword of the run length 𝑗 is the conventional
binary–coded representation of the integer 𝑗 + 1, but with the least significant bit
leading the codeword, and the most significant bit omitted. The omission of the most
significant bit of the codeword does not influence the decodability of the run–length
code, as the rank following the run is always encoded with an integer that is larger than
one. The zero run–length codewords that are associated with runs of various lengths
are provided in table 3.10 on page 89.

12It appears that Wheeler didn’t publish his work regarding the run–length code. Fenwick presented
the run–length code in reference [93].
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Table 3.10: Certain codewords of Wheeler’s zero run–length code for the recency–rank
encoder output sequence.

Run length Codeword

1 0
2 1
3 00
4 10
5 01
6 11
7 000
8 100

Abel [86] proposed two new run–length codes that are related to codes proposed
by Maniscalco [137, 138]. Maniscalco proposed a set of codewords for the lengths of
symbol runs. The codeword of each run length is divided into two parts. The first part
is referred to as the exponent of the codeword, and is proportional to the logarithm
of the run length. The exponent delimits the second part of the codeword, which is a
binary–coded representation of the run length.

Source coding of the postprocessed recency–rank encoder output Balkenhol
et. al. [95] implemented a BWT–based source code that postprocesses the recency–rank
encoder output sequence prior to source coding it. The postprocessed recency–rank
encoder output consists of two sequences — refer to section 3.3.2.3 on page 76 for
details regarding the postprocessing. The second postprocessed sequence contains all
the ranks of the recency–rank encoder output sequence that are higher than one. The
source coding of this sequence was summarized in section 3.3.2.4 on page 81. The first
postprocessed sequence equals the recency–rank encoder output sequence, but with
all ranks higher than two replaced by the rank two. The source encoder for the first
postprocessed sequence is summarized in this section.

The first postprocessed sequence is a ternary sequence [95]. The source encoder for
the ternary sequence models it as the output of a Markov model, and uses the frequency
counts of the ranks to estimate the rank distribution associated with each state. The
ternary sequence is encoded with a universal source code for Markov sources.

Balkenhol et. al. [95] observed that the transition points between the piecewise
segments of the BWT output sequence are manifested in the recency–rank encoder
output sequence as bursts of ranks greater than one. This observation motivates the
use of a Markov model with an order that is greater than zero. Balkenhol et. al. imple-
mented several instances of the same source code for the ternary sequence, but used a
Markov source model with a different order in each implementation. The most effective
implementation used a Markov source model of order three.

Balkenhol et. al. [95] assigned certain states of the Markov source model to sets.
The states of a set share the same rank frequency counts, and share the same estimate
of the rank distribution. Upon encountering a rank in any of the states of the set, the
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shared frequency count of the rank is incremented. Each set is assigned a threshold
— if any of the shared rank frequency counts exceeds the threshold, all of the shared
frequency counts of the set are halved. The halving of frequency counts enables the
source code to adapt to changes in the first postprocessed sequence.

By assigning certain states of the Markov source model to sets, the accuracy of the
model may be improved [95]. The negative impact that runs of the rank zero have on
the accuracy of the source model may also be eliminated by separating the all–zero
state 000 from the other states of the Markov source model.

Exclusion of the recency–rank encoder Fenwick [16, 88] and Wirth [48] investi-
gated the performance of BWT–based source code implementations that do not use the
recency–rank encoder. These implementations source code the BWT output sequence
directly.

The motivation behind the omission of the recency–rank encoder concerns the op-
timal source coding of the BWT output sequence [10]. Each rank of the recency–rank
encoder output sequence is a function of the ranks that precede it in the sequence.
This fact implies that each rank is a function of several symbols of the BWT out-
put sequence. These symbols may have different probabilities of occurrence. A source
encoder for the recency–rank encoder output sequence would have to resolve the intri-
cate relationships between the ranks in order to encode the ranks optimally (i.e. with
minimum redundancy). An optimal source encoder for the BWT output sequence is
conceptually simpler than the optimal encoder for the recency–rank encoder output
sequence, as the dependency between the symbols of the BWT output sequence is
somewhat simpler to resolve.

Fenwick [16, 88] investigated an implementation that encodes the symbols of the
BWT output sequence directly using an arithmetic code. The implementation uses the
multiple–context source model of a PPM–based source code. The implementation was
used to source code the files of the Calgary corpus [100], and proved to be less effective
than similar implementations that use the recency–rank encoder. Fenwick concluded
that the lack of performance was due to the multiple–context source model of the
PPM–based source code, which is not an accurate representation of the BWT and its
output.

Wirth [48] investigated several implementations of BWT–based source codes that
omit the recency–rank encoder. An arithmetic code was used to encode the BWT
output sequence in all of the implementations. Several source models were implemented,
including the structured multiple–context model of Balkenhol et. al. [95].

Instead of incrementing the frequency count of a symbol by one upon encountering
it in the BWT output sequence, Wirth [48] used an increment that increases expo-
nentially as source coding proceeds. By using the exponentially increasing increment
instead of the unity increment, a more accurate source model was obtained. Wirth
also investigated the use of contexts with order larger than zero, and the impact that
these contexts have on the performance of the implementation. The estimation of the
transition points between the piecewise segments of the BWT output sequence was
considered, and various segmentation algorithms were investigated.

Several of Wirth’s implementations were quoted as being effective; however, the
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best of these implementations is less effective than some of the implementations that
use the recency–rank encoder [16, 48].

Source coding of the IFT and DCT outputs The integers of both the IFT (sec-
tion 3.3.2.3 on page 73) and the DCT (section 3.3.2.3 on page 74) output sequences
are defined over the alphabet {0, 1, 2, . . . 𝑛}, where 𝑛 is the length of the source se-
quence [98]. This alphabet is ordinarily much larger than the alphabets of the original
source sequence and the recency–rank encoder output sequence. An implementation of
a BWT–based source code requires accurate estimates of the output integer distribu-
tion in order to effectively encode these sequences.

Deorowicz [98] proposed two techniques for source coding the IFT and DCT output
sequences. The first technique involves the division of the alphabet {0, 1, 2, . . . 𝑛} into
several groups, so that all integers in the interval {2𝑖, 2𝑖 + 1, . . . 2𝑖+1− 1}, where 𝑖 ≥ 0,
belong to the same group13. The source encoder maintains frequency counts for the
integers that occur in each group, as well as frequency counts for the groups them-
selves. The frequency counts are incremented as consecutive integers of the sequence
are encoded.

An integer of the IFT or DCT output sequence is encoded by first encoding the
number of the group to which the integer belongs, followed by the integer itself [98].
An arithmetic code is used to encode both the group number and the integer. The
arithmetic code uses the frequency counts to estimate the distributions of the groups
and the integers. This technique is essentially an implementation of the structured
source model, as discussed in section 3.3.1.4 on page 57.

The second technique of Deorowicz [98] replaces each integer of the transformed
sequence with a codeword of a binary prefix code. Deorowicz proposed that the Elias–𝛾
code [136] be used as the binary prefix code. The bits of each codeword are encoded
independently from one another using a binary arithmetic code. This technique was
quoted as being the most effective among the techniques examined by Arnavut [110],
who developed the IFT.

The source codes for the IFT output sequence may also be used to encode the output
sequence of the DCT [98]. Alternative source codes for the DCT output sequence have
been proposed, however. These source codes are not relevant to this thesis.

Construction of explicit context trees Larsson [139] proposed a novel source
code that may be used to encode the BWT output sequence directly. The source code
was designed under the assumption that the source sequences are produced by a tree
source (refer to section 3.1.1.3 on page 40 for a summary of tree sources). The source
code requires the construction of a suffix tree of the source sequence. It uses the suffix
tree to estimate the structure of the tree source, and uses this estimate as a model of the
source. The BWT output sequence is subsequently encoded using an arithmetic code
and the source model. The effectiveness of the source code depends on the accuracy of
the source model.

Recall that the path from the root node of a suffix tree to each leaf node of the
tree corresponds to a suffix of the original source sequence [139]. The source symbol

13The integer zero belongs to a group that contains no other integers.
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that precedes each suffix may be predicted from the suffix itself. The initial symbols
of the suffix are often sufficient to accurately predict the preceding symbol, however.
These initial symbols correspond to the nodes of a tree source. As a path from the root
node of a suffix tree to each of its internal nodes corresponds to the initial symbols of
a suffix, it follows that an estimate of the tree source may be obtained by pruning the
suffix tree of the source sequence.

The pruning of the suffix tree is carried out as follows [139]. Following the con-
struction of the complete suffix tree, the encoder iterates over all the internal nodes
of the tree, starting at the parent nodes of the leaves and moving towards the root.
It counts the number of leaf nodes that ultimately descend from each internal node.
This number equals the total number of contexts in the source sequence that share the
common prefix corresponding to the path from the root to the internal node. It subse-
quently obtains the frequency counts of all alphabet symbols that the BWT produces
in its traversal of the subtree rooted at the internal node. These frequency counts im-
ply a distribution for the symbols that precede all the contexts that share the common
prefix. The algorithm subsequently compares this distribution with the distribution
that corresponds to its parent node. If it detects no significant deviation between the
distribution and that of its parent, the pruning algorithm merges the node with its
parent.

The pruned tree is encoded as part of the source–coded sequence, as the source de-
coder requires it to decode the sequence [139]. The number of bits that are required to
represent the tree is reduced by pruning it. The overly aggressive pruning of the suffix
tree may remove certain contexts from the model that correspond to valid contexts of
the source. The removal of these contexts may significantly reduce the effectiveness of
the source code that uses the model. A tradeoff exists between the shorter representa-
tion of the model in the source–coded sequence, and the accuracy of the model.

Prior to encoding the pruned tree, Larsson [139] proposed that the tree undergo
another round of pruning. The algorithm that performs the first round of pruning
does not take the number of bits that are required to represent the encoded tree into
consideration. Some nodes of the pruned tree typically have very little impact on the
effectiveness of the source code, but require a significant number of bits to represent.
The second round of pruning removes these nodes from the pruned tree. The final tree
is source coded by traversing the nodes of the tree, and encoding the number of child
nodes that belong to each node. The counts are represented as exponent–mantissa
pairs. The exponents are encoded using a first–order arithmetic encoder.

Larsson proposed two alternative approaches to source coding the BWT output
sequence [139]. In the first approach, the source encoder records the frequency counts
of the symbols that are produced in each context of the source model prior to encoding
the symbols. These frequency counts are used to estimate the true distribution of the
symbols that occur in each context. An arithmetic code is subsequently used to encode
the BWT output sequence according to the distribution of each context of the source
model.

In the second approach to source coding the BWT output sequence, the source
encoder accumulates frequency counts for the symbols that occur in each context of
the source model as each consecutive symbol is encoded [139]. Upon encountering a
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Figure 3.8: The block diagram of the RLE–EXP source code [86].

new symbol in a context, the source encoder uses an escape symbol mechanism to
switch to a shorter context.

Larsson [139] claimed that the proposed source code is computationally less com-
plex than the PPM algorithm; however, the proposed code was demonstrated as being
ineffective when used to encode short to moderately long sequences. Larsson stated
that the performance of the source code may be improved by encoding the pruned tree
more effectively, and by improving the pruning algorithm.

3.3.3 Alternative BWT–based source codes

Some BWT–based source codes do not have the structure of the elementary BWT–
based source code. These alternative BWT–based source codes have block diagrams
that differ from figure 3.5 on page 53. Several alternative BWT–based source codes are
discussed in what follows.

3.3.3.1 The RLE–EXP source code

Abel [86] proposed an alternative BWT–based source code that is known as the RLE–
EXP source code. The block diagram of this source code is presented in figure 3.8. The
significant difference between the RLE–EXP source code and the elementary BWT–
based source code is the insertion of a run–length encoder immediately after the forward
BWT. The run–length code associated with this encoder is known as the RLE–EXP
run–length code.

Abel’s motivation for inserting the run–length encoder between the forward BWT
and the recency–rank encoder is twofold [86].

1. The recency–rank encoder need not encode as many symbols as would be the
case without the run–length encoder, as the run–length encoder removes several
run symbols from the BWT output sequence. As the run–length encoder is more
efficient than the recency–rank encoder, the overall source code is more efficient.

2. By removing the symbol runs from the BWT output sequence, the source encoder
does not increment its frequency counts of the run symbols. The source model is
therefore not unnecessarily biased in favour of the run symbol.

The RLE–EXP run–length code does not use any escape symbols to signal the start
of a symbol run, as escape symbols disrupt the context structure of the BWT output
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sequence [86]. This disruption causes the recency–rank encoder to produce more high–
valued ranks, thereby reducing the effectiveness of the source code. The RLE–EXP
run–length code produces a threshold run14 to signal the start of a run.

The codeword of each run length is divided into two parts [86]. The first part of each
codeword is referred to as the exponent. The exponent contains ⌈log2(𝑙 − 1)⌉ repetitions
of the run symbol, where 𝑙 is the length of the run. The exponent delimits the second
part of the codeword by indicating its length. The second part of the codeword is the
conventional binary–coded representation of the run length 𝑙.

Abel [86] stated that the binary–coded representation of the run lengths disrupts
the context structure of the BWT output sequence. The binary–coded run lengths are
therefore removed from the output of the run–length encoder, and forwarded to the
source encoder without being encoded by the recency–rank encoder. The sequence of
binary–coded run lengths is referred to as the RLE mantissa buffer, or RMB.

Abel [86] investigated several alternatives to the recency–rank encoder, and used
some of these alternatives in an RLE–EXP source code implementation. The RLE–
EXP source code implementation was found to be most effective if the recency–rank
encoder was replaced by the inversion frequencies transform, or IFT (refer to section
3.3.2.3 on page 73 for a summary of the IFT).

Abel [86] proposed a novel source encoder for the RLE–EXP source code imple-
mentation. Each integer of the IFT output sequence is replaced with a codeword. The
codeword of a certain integer 𝑘 is divided into two parts. The first part of the codeword
is referred to as the exponential part, and consists of an integer that equals ⌈log2(𝑘)⌉.
The first part of the codeword delimits the second part, which is the conventional
binary–coded representation of the integer 𝑘. After replacing all integers of the IFT
output sequence with their codewords, the codewords are encoded using an arithmetic
code.

Suppose that the codeword of the integer 𝑘 is to be encoded using the arithmetic
code [86]. The exponential part of the codeword is encoded using a structured source
model with two levels (refer to section 3.3.1.4 on page 57 for a summary of the struc-
tured source model). The first level of the structured source model contains the integers
zero to four, and the second level contains all integers larger than four.

The binary–coded integers (i.e. the second part of each codeword) are sorted w.r.t.
their lengths prior to being encoded using an arithmetic code [86]. The distribution that
the arithmetic code selects to encode the conventional binary–coded representation of
the integer 𝑘 depends on the length of the binary number. All binary numbers with
a single bit are encoded using the distribution 𝑚1, which is defined over two distinct
elements (0 and 1). All binary numbers with two bits are encoded using the distribution
𝑚2, which is defined over four elements (00, 01, 10 and 11). The distribution that is used
to encode binary numbers with three bits, 𝑚3, is defined over eight distinct elements.

All binary numbers with four or more bits are divided into two parts prior to being
source coded [86]. The first part constitutes the initial three bits of the binary number,
and is encoded using the distribution 𝑚3. The second part contains the remaining
bits of the binary number — these bits are encoded sequentially using a separate
distribution 𝑚0, which is defined over the elements 0 and 1. The distribution 𝑚3 is

14A threshold run has a length equal to the threshold of the run–length code.
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Figure 3.9: The block diagram of the RLE–BIT source code [86].

used to encode the first three bits of each binary number as these bits have a more
stationary distribution than the remaining bits.

The source encoder of the RLE–EXP source code also encodes the sequence of run
lengths produced by the run–length encoder [86]. Each binary–coded run length is
encoded in exactly the same manner as the binary–coded integers of the IFT output
sequence.

3.3.3.2 The RLE–BIT source code

Abel [86] proposed a second alternative to the elementary BWT–based source code.
The block diagram of this source code, which is referred to as the RLE–BIT source
code, is presented in figure 3.9.

The RLE–BIT source code uses a run–length code that resembles the RLE–0 code
proposed by Wheeler — refer to section 3.3.2.4 on page 88 for a summary of the RLE–
0 code [16, 86, 93]. This run–length code uses an escape symbol to signal the start of
a run. The run–length encoder is divided into two blocks. The first block, which is
referred to as the RLE–BIT–0 block, is inserted immediately before the recency–rank
encoder. The second block, which is referred to as the RLE–BIT–1 block, is inserted
immediately after the recency–rank encoder.

The RLE–BIT–0 block of the run–length encoder removes all symbols that occur
in each run of the BWT output sequence, except for the first symbol of each run [86].
It also records the start position of each run in the BWT output sequence, as well as
the length of each run. The run start positions and run lengths are forwarded to the
RLE–BIT–1 block, without being encoded by the recency–rank encoder.

The RLE–BIT–1 block of the run–length encoder increments each rank of the
recency–rank encoder output sequence by two [86]. After incrementing each rank by
two, the integers zero and one no longer appear in the recency–rank encoder output se-
quence. These integers may be used to encode the length of each run. The RLE–BIT–1
block replaces each run length with its conventional binary–coded representation, and
removes the most significant bit from this codeword. Each codeword is inserted into
the appropriate position of the recency–rank encoder output sequence. The start of the
run is therefore signaled by the integers zero and one.

Abel [86] proposed a novel source encoder for the RLE–BIT source code. The source
model that is used to encode the RLE–BIT–1 output sequence is divided into two
parts. The first part of the model is associated with the source coding of the integers
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zero, one and two, which are the most frequently occurring integers of the sequence.
These integers may be interpreted as a ternary sequence that is similar to the first
postprocessed recency–rank encoder output sequence in a BWT–based source code
implementation of Balkenhol et. al. [95]. This sequence may be encoded using the same
source encoder as Balkenhol et. al. (refer to section 3.3.2.3 on page 76 for a summary of
postprocessing, and to section 3.3.2.4 on page 89 for a summary of the source encoder).

The second part of the model is associated with the source coding of all integers
larger than two. Abel [86] proposed a structured source model for this purpose. The
source model has eight levels, with the integers {3, 4, . . . 257} divided between the levels.

Abel [86] stated that the RLE–BIT source code may not use the IFT as an alter-
native to the recency–rank encoder, as the IFT does not preserve the length of the
BWT output sequence. The WFC transform may be used as an alternative to the
recency–rank encoder, however.

3.3.3.3 The hybrid RLE–EXP / RLE–BIT source code

Abel [86] proposed a third BWT–based source code that may be interpreted as a
combination of the RLE–EXP and RLE–BIT source codes. The third source code was
proposed due to several observations regarding the performance of the RLE–EXP and
RLE–BIT source codes.

Abel [86] found that an implementation of the RLE–EXP source code that used
the IFT instead of the recency–rank encoder encoded the larger files of the Calgary
corpus [100] effectively. The same implementation was not as effective when used to
source code shorter files, due to the overhead of the source code. The RLE–BIT source
code proved to be more effective when used to source code shorter files.

The third BWT–based source code of Abel [86] uses the RLE–EXP source code to
encode files with sizes exceeding 256 kB, and the RLE–BIT source code to encode the
shorter files. The RLE–EXP source code implementation uses the IFT as an alternative
to the recency–rank encoder, and the RLE–BIT source code implementation uses the
AWFC transform. This hybrid RLE–EXP / RLE–BIT source code proved to be very
effective when used to source code the files of the Calgary corpus [100].

3.3.3.4 Online source codes

Conventional BWT–based source codes have two drawbacks. The first drawback is the
offline nature of these source codes — the source encoder requires access to the entire
source sequence prior to transforming and encoding it. The source decoder also requires
access to the entire source–coded sequence prior to decoding it. The second drawback
concerns the fact that a conventional source encoder is unable to directly infer the
context structure of the source from the BWT output sequence.

Yokoo [140] proposed a novel BWT–based source code that addresses the two draw-
backs of conventional BWT–based source codes. The encoder of this source code applies
the BWT in an online manner, and encodes the source sequence (instead of the BWT
output sequence) directly. The BWT is only used to obtain information regarding the
context structure of the source sequence.
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The BWT–based source code proposed by Yokoo [48,140] is used to encode a source
sequence in a symbol–by–symbol fashion, starting at the front of the source sequence.
Suppose that the 𝑖th symbol of the source sequence is to be encoded. The source encoder
initially applies the forward BWT to the first 𝑖− 1 symbols of the source sequence. It
proceeds by recording the prefix15 that corresponds to the preceding context of the 𝑖th
symbol of the source sequence.

The source encoder locates the recorded prefix in the row–sorted BWT table, and
compares the recorded prefix to those prefixes in neighbouring rows of the table [48,140].
The similarity of two prefixes may be measured by the length of the common suffix
that they share. The source encoder ranks the symbols that follow the prefixes of the
neighbouring rows according to the degree to which their prefixes are similar to the
recorded prefix. Those symbols that follow prefixes similar to the recorded prefix are
assigned a low rank, while the symbols that follow prefixes that are dissimilar to the
recorded prefix are assigned high ranks. The source encoder obtains a rank for each
symbol of the alphabet in this manner. The 𝑖th symbol of the BWT output sequence
is subsequently replaced with its rank.

The final step of the source encoder is to encode each rank [48]. Yokoo [140] proposed
several static source codes for this purpose. These codes are simple and have low
computational complexity, but are not as effective as some arithmetic codes.

The source code proposed by Yokoo [48,140] uses information regarding the contexts
of the source sequence to assign lower ranks to symbols that occur in similar contexts to
the current context. The rank distribution is therefore biased towards the lower–valued
ranks, which implies that the ranks may be encoded more effectively.

3.3.3.5 Inversion coding

Arnavut [141] proposed a novel BWT–based source code. The source code uses a novel
alternative to the recency–rank encoder that is known as the inversion coder. The design
of the inversion coder requires knowledge of discrete mathematics and permutations —
it is not within the scope of this thesis to examine these subjects in detail. The relevant
theory that is required to understand the function of the encoder is introduced.

The inversion coder interprets the BWT output sequence as a multiset permuta-
tion [141]. A multiset is essentially an ordinary set that may contain multiple instances
of the same element. The inversion coder first collects the frequency counts of the al-
phabet symbols that are present in the BWT output sequence, and uses these counts
to construct the identity permutation of the multiset permutation. The identity per-
mutation contains all the symbols of the BWT output sequence, but in nondescending
lexicographical order.

The inversion coder subsequently calculates the canonical sorting permutation that
is associated with the multiset permutation [141]. The 𝑖th element of the canonical
sorting permutation is the index, in the original multiset permutation, of the 𝑖th symbol
of the identity permutation. The indices of identical symbols occur in ascending order
relative to one another in the canonical sorting permutation. The BWT output sequence

15The BWT is performed in such a manner that preceding contexts, or prefixes, of the source
sequence are sorted lexicographically.
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may be recovered using the frequency counts of the alphabet symbols, as well as the
canonical sorting permutation.

The goal of the inversion coder is to encode the canonical sorting permutation as
effectively as possible [141]. The inversion coder therefore calculates an inversion vector
of the canonical sorting permutation. The inversion vector is a simpler representation
of the canonical sorting permutation, and may be encoded effectively with a source
code that is conceptually simple. The canonical sorting permutation may be recovered
from one of its inversion vectors.

Inversion vectors and their generation were investigated in the literature [142]. Ar-
navut [141] used the left–bigger inversion vector (LBIV) to represent the canonical
sorting permutation. The 𝑖th element of the LBIV equals the number of elements in
the first 𝑖− 1 elements of the canonical sorting permutation that are larger than value
𝑖 of the canonical sorting permutation.

The canonical sorting permutation may be divided into segments corresponding to
distinct alphabet symbols, as the identity permutation is sorted in lexicographical order
[141]. As the integer elements in each segment of the canonical sorting permutation
appear in ascending order, the integers inside each segment of the LBIV appear in
nonascending order.

Many consecutive integers that appear in the canonical sorting permutation of the
BWT output sequence differ by one, as the BWT output sequence tends to contain
runs of the same symbol [141]. This statement implies that the LBIV segments tend
to contain runs of the same integer. This characteristic of the LBIV may be exploited
by encoding the absolute difference between consecutive integers of the LBIV, which
would ideally equal zero. The sequence of absolute difference values between consecutive
integers of an LBIV segment is known as a decorrelated segment sequence.

The source encoder encodes the decorrelated segment sequences using an arithmetic
code with a structured source model [141]. It also encodes the frequency counts for each
alphabet symbol in the BWT output sequence, as these counts are necessary to recover
the canonical sorting permutation, and therefore the BWT output sequence. The source
code proved to be effective when used to encode the larger files of the Calgary [100]
and Canterbury [112] corpora.

3.3.3.6 Wavelet–tree source codes

Foschini et. al. [143] introduced a novel BWT–based source code that uses a wavelet
tree [144] to represent the BWT output sequence. The wavelet tree is source coded
using a run–length code and the Elias–𝛾 integer code [136].

A wavelet tree contains a root node, several internal nodes, and leaf nodes [143].
Each parent node has exactly two child nodes. Each leaf node corresponds to a distinct
alphabet symbol. Each internal node, as well as the root node, is associated with a
symbol sequence. The symbol sequence associated with the root node equals the BWT
output sequence. Suppose that a parent node is associated with a sequence, and that
the distinct symbols of the sequence constitute a set. This set may be interpreted as a
subalphabet. The symbols of the parent node sequence are defined over this subalpha-
bet, as the subalphabet is a subset of the symbol alphabet.
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During the construction of the wavelet tree, each parent node divides its subal-
phabet into two subsets [143]. It extracts all symbols that belong to the first subset
from the sequence it is associated with, in a symbol–by–symbol fashion, starting at the
front of the sequence. This sequence of extracted symbols is associated with its left
child node. The symbols that remain in the sequence belong to the second subset. This
sequence is assigned to the right child node of the parent.

The sequence that is associated with each parent node may be represented as a
sequence of binary digits [143]. Each symbol that was extracted from the sequence,
and assigned to the sequence of the left child node, is assigned a zero–valued bit.
Each of the remaining symbols is assigned a nonzero–valued bit. The subalphabet of
each parent node should ideally be divided in such a manner that the bit sequence
associated with the symbol sequence of the parent contains long runs of zero–valued
and nonzero–valued bits.

The wavelet tree is encoded by the source encoder as follows [143]. The source
encoder traverses the nodes of the wavelet tree in a breadth–first manner. It encodes
the bit sequence associated with each node using a binary run–length code. Each bit
sequence may be interpreted as a sequence of alternating runs of zero–valued bits and
nonzero–valued bits — the run–length encoder therefore produces the integer length of
each of the alternating runs. This sequence of run lengths is encoded using an integer
code. The choice of the Elias–𝛾 integer code was empirically motivated.

Foschini et. al. [143] implemented the BWT–based source code and compared its
performance to other source code implementations by applying it to the files of the
Calgary [100] and Canterbury [112] corpora. It was concluded that the implementation
of the BWT–based source code is competitive with the bzip2 and gzip source code im-
plementations in terms of effectiveness. The implementation required less computation
time than the bzip2 implementation to source code the same files.
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CHAPTER 4

Enumerative source codes

This chapter presents a summary of the literature that concerns enumerative source
codes. An enumerative source code may be constructed by considering all sequences of
a certain length that a source can produce. All these sequences are divided into groups,
but in such a manner that all equiprobable sequences are assigned to the same group.
Both the source encoder and decoder are aware of the groups and the sequences that
belong to each group. A source sequence is encoded by producing the number of the
group to which the sequence belongs, as well as its index in the group.

One drawback of enumerative source codes is the high degree of computational
complexity involved in the enumeration of all source sequences of a certain length. It
is not feasible to enumerate all source sequences longer than a few tens of bits, as the
number of possible source sequences increases exponentially w.r.t. the source sequence
length. Encoders of enumerative source codes typically calculate the codeword of each
source sequence, instead of searching for each source sequence and its codeword in a list
of all source sequences and codewords. The calculation remains computationally com-
plex, however. Chapter 5 explores several techniques for reducing the computational
complexity involved in the calculation of the codewords.

Enumerative source codes emerged in the 1960s [5, 6], and received some attention
in the literature during the 1970s [7, 60]. In 1984, Cleary et. al. [8] proved that both
exact and approximate enumerative source coding may be performed using an arith-
metic source code and an appropriate adaptive model of the source. Enumerative source
code implementations that use arithmetic codes are significantly more efficient than di-
rect implementations of enumerative source codes. The specification of an appropriate
source model for the exact enumerative source coding of sequences from higher–order
sources using an arithmetic code is excessively complex, however. Approximate enu-
merative source codes were developed to address this problem. These source codes are
nearly as effective as the exact enumerative source codes, and are applicable to more
complex sources.

Much of the interest in enumerative source codes shifted to arithmetic source codes
after the publication of the research by Cleary et. al. [8]. The literature does contain
more recent publications regarding enumerative source codes, however [81, 145–152].
Both the earlier and the more recent publications are summarized in this chapter.

Two types of enumerative source codes may be distinguished. Enumerative codes of
the first type are referred to as blockwise enumerative codes [5–7,60,145,146,152]. The
encoder of a blockwise enumerative source code partitions a long source sequence into
blocks, and independently encodes each block of the sequence. The first enumerative
code proposed in the literature was a blockwise enumerative source code [5].

Enumerative source codes of the second type are referred to as symbolwise enu-
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merative codes. These source codes are the exact and approximate enumerative source
codes that were proposed by Cleary et. al. [8]. Symbolwise enumerative source code im-
plementations use arithmetic source codes. A source sequence is encoded in a symbol–
by–symbol manner using this type of source code. Both blockwise and symbolwise
enumerative codes are discussed in this chapter.

4.1 Blockwise enumerative source codes

An encoder of a blockwise enumerative source code produces a single codeword for an
entire sequence of source symbols. A long source sequence is encoded by dividing it
into blocks of consecutive symbols, and separately encoding the symbol sequence of
each block.

The first blockwise enumerative source code was developed to encode the indices
of nonredundant data samples in a sequence of samples [5,6]. Schalkwijk [60] encoded
sequences of i.i.d. bits with an enumerative source code that is related to the first
enumerative source code. The enumerative source code for sequences of i.i.d. bits was
generalized to include sources that produce sequences of nonbinary i.i.d. symbols [60],
as well as two–state Markov sources that produce bit sequences (i.e. first–order binary
Markov sources) [7].

4.1.1 The first enumerative source code

Lynch [5] proposed the first enumerative source code. The first enumerative code was
used in a source code implementation that removed redundant data samples from a
sequence of samples. This implementation is summarized in what follows.

The implementation of the source code encodes a sequence of data samples [5]. It
inserts time words between neighbouring blocks of 𝑛 consecutive samples of the source
sequence. The implementation proceeds by selecting and removing redundant samples
that occur between each pair of consecutive time words.

In order to successfully recover the original source sequence, it is necessary to encode
the indices of the nonredundant samples between consecutive time words of the original
source sequence [5]. Each index is calculated relative to the index of the most recent
time word. The implementation may equivalently encode the indices of the redundant
samples in the original source sequence.

The indices of the nonredundant samples need not be explicitly encoded by the
implementation [5]. It may instead consider all possible combinations of choosing the
nonredundant samples from the samples between consecutive time words. A unique
integer may be associated with each distinct pattern of redundant and nonredundant
samples between consecutive time words. The implementation may encode this integer
instead of the indices of the nonredundant samples. A practical implementation requires
an efficient technique for mapping the patterns to integers, however.

Suppose that 𝑛 − 𝑚 redundant samples are to be removed from a sequence of 𝑛
samples [5]. The 𝑚 nonredundant samples may be chosen from the 𝑛–sample sequence

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 101

 
 
 



CHAPTER 4 Enumerative source codes

in

𝐵𝑛,𝑚 =

(
𝑛

𝑚

)
(4.1)

distinct ways. Equivalently, one may consider an integer sequence of length 𝑚 that is
referred to as the index sequence. The elements of the index sequence equal the distinct
indices of the 𝑚 nonredundant samples of the 𝑛–sample sequence. It is assumed that
index sequences are sorted in ascending order, and that no index sequence contains
any duplicate integers. It follows that a total of 𝐵𝑛,𝑚 monotonically increasing index
sequences exist.

The source encoder proposed by Lynch [5] encodes the monotonically increasing
index sequence, thereby producing an integer codeword that corresponds to the index
sequence. This integer codeword represents a specific pattern of redundant and nonre-
dundant samples. The index sequence is encoded by using a variation of a method that
was proposed by Gordon [153]. Gordon’s method uses what is referred to as a path–
count matrix to represent all valid index sequences, as well as the values that each
integer of the index sequence may assume [5]. The path–count matrix for sequences
with 𝑛 equal to seven and 𝑚 equal to five is presented in figure 4.1 on page 103.

The path–count matrix is a matrix of nodes [5]. Each of the 𝑚 columns of the
matrix corresponds to one of the integer elements of the index sequence. The leftmost
column of the matrix corresponds to the first integer of the index sequence; the second–
to–left column represents the second integer of the index sequence, etc. Each of the 𝑛
rows of the matrix corresponds to one of the samples that occurs between consecutive
time words. The bottom row of the matrix corresponds to the first sample between
consecutive time words; the second–to–bottom row represents the second sample be-
tween consecutive time words, etc. Each node of the matrix corresponds to a specific
element of the index sequence being assigned a specific value. The index of the element
equals the column number of the node, and the value that is assigned to it equals the
row number. The columns are numbered from left to right, and the rows are numbered
from bottom to top.

The index sequence may be represented as a path through the path–count matrix,
as illustrated in figure 4.1 on page 103 [5]. Each path begins at the node labeled ‘start’
and terminates at the node labeled ‘end’ — these two nodes represent two consecutive
time words. Each node on the path (with the exception of the ‘start’ and ‘end’ nodes)
implies that a specific element of the index sequence is assigned a certain sample index.
The fact that the index sequence is sorted restricts the number of valid paths through
the matrix. Figure 4.1 contains all valid paths through the path–count matrix that
contains seven rows and five columns.

In order to develop an efficient source code for the index sequence that corresponds
to a path through the path–count matrix, the accumulated number of paths that enter
each node of the matrix are counted [5]. The paths are counted by starting at the
leftmost column of the path–count matrix, and proceeding in a column–by–column
fashion to the rightmost column of the matrix. The number of paths that enter each
node of the path–count matrix of figure 4.1 is denoted by a number above the node.

A total of 21 paths enter the node of figure 4.1 that is marked by the label ‘end’ [5].
The number of paths that enter this node equals the total number of valid paths through
the path–count matrix, and therefore the total number of valid index sequences. As a
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Figure 4.1: The path–count matrix for sequences of seven samples (𝑛 = 7). Five of the
samples of each sequence are nonredundant (𝑚 = 5). This figure was adapted from
reference [5].

total of

𝐵7,5 =

(
7

5

)
= 21 (4.2)

valid index sequences exist for the case where 𝑛 = 7 and 𝑚 = 5, the structure of the
path–count matrix is verified.

The enumerative source code maps each valid path through the path–count matrix
to a distinct integer codeword [5]. The integer codeword is calculated as the sum of 𝑚

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 103

 
 
 



CHAPTER 4 Enumerative source codes

0000000

000000

00000

0000

000

00

0

1

11

11

11

11

11

11

11

1

2

33

44

55

6

66

77

88

1010

1515 20

2121 3535

2828 5656 70

Figure 4.2: Derivation of the coding matrix from the path–count matrix (adapted from
reference [5]).

integers. Each of the integers in the sum is associated with one of the nodes on the
corresponding path through the path–count matrix. Lynch [5] used a coding matrix
to establish the relationship between the nodes on the path through the path–count
matrix and the actual integers of the sum. The coding matrix is derived from the
path–count matrix as illustrated in figure 4.2 on page 104.

The coding matrix is a matrix of integers [5]. Each integer equals the path count
of a specific node of the path–count matrix1. The path counts that correspond to the
nodes of the path–count matrix are enclosed by a solid–line rectangle in figure 4.2.
The coding matrix is obtained by shifting the rectangle of the path–count matrix one
column to the right. The second column of the path–count matrix therefore corresponds
to the first column of the coding matrix; the third column of the path–count matrix
corresponds to the second column of the coding matrix, etc.

The enumerative source encoder calculates the integer codeword of a path through
the path–count matrix as follows [5]. It replaces the path count of the node in row 𝑖
and column 𝑗 of the path–count matrix with the integer in row 𝑖 and column 𝑗 of the

1The coding matrix is derived under the assumption that 𝑛 and 𝑚 may be arbitrarily large.
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Figure 4.3: A path–count matrix (a) and coding matrix (b). Both matrices contain the
path that corresponds to the index sequence {1, 3, 4, 6, 7}, where 𝑛 = 7 and 𝑚 = 5
(adapted from reference [5]).

coding matrix. It subsequently adds the new path counts of the nodes that lie on the
path through the path–count matrix to obtain the codeword. The same codeword may
be obtained by drawing the same path in the coding matrix, and adding the integers
on the path.

Suppose that the codeword of the index sequence {1, 3, 4, 6, 7} is to be calculated
under the assumption that 𝑛 = 7 and 𝑚 = 5, and that the index of the first element
of any sequence equals one. The index sequence is associated with a path through
the path–count matrix as illustrated in figure 4.3(a) — note that the bottom row of
the matrix is considered to be the first row of the matrix. In order to calculate the
codeword, the same path is drawn in the coding matrix, as illustrated in figure 4.3(b).
The codeword of the index sequence is obtained by adding the integers that lie on
the path through the coding matrix. The integer codeword for the index sequence
{1, 3, 4, 6, 7} is calculated as

𝑐 = 0 + 1 + 1 + 5 + 6

= 13. (4.3)

Lynch [5] did not prove that the enumerative encoder produces a distinct (and
therefore uniquely decodable) integer codeword for each distinct index sequence. In this
thesis it is proved that the codewords are uniquely decodable — this proof is provided
in section 6.1.1.4 on page 142. Lynch did propose a source decoder that may be used
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to decode each integer codeword, however. This source decoder requires knowledge of
the number of columns (𝑚) and the number of rows (𝑛) of the coding matrix.

The source decoder first constructs the coding matrix with 𝑚 columns and 𝑛
rows [5]. It initializes a running total that is set equal to the integer codeword. Af-
ter constructing the coding matrix, the source decoder iterates over the columns of the
coding matrix, starting at the rightmost column and ending at the leftmost column. It
finds the largest integer in each column that does not exceed the running total. This
integer is subtracted from the running total prior to the start of the next iteration.
After iterating over all the columns of the coding matrix, the source decoder marks
each row that contains an integer that was subtracted from the running total. The
numbers of the marked rows constitute the index sequence.

The validity of the source decoder is demonstrated by using it to decode the integer
codeword 13, which is associated with the index sequence {1, 3, 4, 6, 7}. The source de-
coder first constructs the coding matrix with five columns and seven rows, as illustrated
in figure 4.3(b) on page 105. It also assigns a value of 13 to the running total 𝑐5, which
is the value of the integer codeword. Starting in the rightmost column of the coding
matrix, it finds the largest integer in the column that does not exceed the running
total. This integer equals six. The source decoder subtracts six from the running total
𝑐5, obtaining an updated running total that equals

𝑐4 = 𝑐5 − 6
= 7. (4.4)

The source decoder next considers the fourth column of the coding matrix. The largest
integer in this column that does not exceed the running total equals five. The updated
running total is obtained as

𝑐3 = 𝑐4 − 5
= 2. (4.5)

The source decoder proceeds by finding the largest integer in the third column of the
coding matrix that does not exceed the running total. This integer, which equals one,
is subtracted from the running total to obtain its updated value as

𝑐2 = 𝑐3 − 1
= 1. (4.6)

The largest integer of the second column of the coding matrix that does not exceed
the running total equals one, which is subtracted from the running total to obtain the
value

𝑐1 = 𝑐2 − 1
= 0. (4.7)

The source decoder subsequently finds the largest integer of the first column that does
not exceed the running total. This integer equals zero, which is subtracted from the
running total 𝑐1.
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Having iterated over all columns of the coding matrix, the source decoder marks
each row of the matrix that contains an integer that was subtracted from the running
total [5]. The first, third, fourth, sixth and seventh rows of the coding matrix in the
example contain the relevant integers. This outcome implies that the index sequence of
the example contains the integers one, three, four, six and seven. As this is the correct
index sequence, the codeword was successfully decoded by the source decoder.

4.1.2 The comments of Davisson

Lynch [5] did not derive any bounds on the effectiveness of the first enumerative source
code. Davisson [6] investigated the performance of the first enumerative source code,
and provided an analytical definition of both the source encoder and decoder.

Davisson [6] recognized that the integer elements of the coding matrix [5] are equal
to the binomial coefficients. Suppose that the coding matrix has 𝑚 columns numbered
from one to 𝑚, starting at the leftmost column of the matrix, and 𝑛 rows numbered
from one to 𝑛, starting at the bottom row of the matrix. The integer in row 𝑖 and
column 𝑘 of the coding matrix, 𝑒𝑖,𝑘, may be expressed as

𝑒𝑖,𝑘 =

(
𝑖− 1
𝑘

)
, (4.8)

where (
𝑛

𝑘

)
≜ 0 ∀ 𝑛 < 𝑘 (4.9)

by definition. The relationship between the elements of the coding matrix and the
binomial coefficients reveals that the coding matrix contains Pascal’s triangle above its
antidiagonal2.

Davisson [6] provided an analytical definition of the enumerative source encoder.
The source encoder calculates the integer codeword of the index sequence x𝑚 =
{𝑥1, 𝑥2, ...𝑥𝑚} using the equation

𝑐x =
𝑚∑
𝑖=1

(
𝑥𝑖 − 1

𝑖

)
, (4.10)

where 1 ≤ 𝑥𝑖 ≤ 𝑛.
Davisson [6] also provided an analytical definition of the enumerative source de-

coder. The running total at the start of the iteration that concerns column 𝑗 of the
coding matrix may be expressed as

𝑐𝑗 = 𝑐x −
𝑚∑

𝑖=𝑗+1

(
𝑥𝑖 − 1

𝑖

)
. (4.11)

The integer elements of the index sequence are calculated in sequence from 𝑥𝑚 to 𝑥1

2The left side of Pascal’s triangle is missing from the coding matrix, however.
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using the expression

𝑥𝑗 = max(𝑢) : 𝑐𝑗 −
(
𝑢− 1
𝑗

)
≥ 0 (4.12)

= min(𝑢) : 𝑐𝑗 −
(
𝑢

𝑗

)
< 0. (4.13)

Davisson [6] proposed a source code implementation for removing redundant data
samples from a sample sequence. The implementation of Davisson is similar to the
implementation proposed by Lynch [5]. Addendum A on page 255 contains a detailed
summary of the implementation that was proposed by Davisson.

The implementation of Davisson [6] concatenates a binary prefix to each integer
codeword of the enumerative code. This prefix is the conventional binary–coded rep-
resentation of the integer 𝑚, which is the number of nonredundant samples, between
each pair of consecutive time words, that are retained. The binary prefix consists of
⌈log2(𝑛+ 1)⌉ bits. By attaching the prefix to each codeword, the implementation can
remove a variable number of redundant samples between different pairs of consecutive
time words.

Davisson [6] derived the average code rate of the proposed implementation, which
is the average number of bits that the implementation requires to represent a source
sample. The average code rate was compared to the minimum rate that is necessary
to encode source sequences of which the run lengths of samples follow a geometric
distribution. Davisson proved that the code rate of the proposed implementation ap-
proaches the entropy of the source asymptotically as the number of samples 𝑛 between
consecutive time words tends to infinity. The derivation of the average code rate is
quite condensed, however — a comprehensive derivation is carried out in addendum
A.

Davisson [6] remarked that the average code rate of the implementation may con-
verge slowly to the entropy of the source as 𝑛 increases. Davisson also derived the
average code rate of an implementation that uses a run–length code instead of an enu-
merative code. It was demonstrated that the code rate of this implementation is nearly
optimal for a certain source. Davisson remarked that it is questionable whether an
enumerative code produces codewords that are significantly shorter on average than
the codewords of the run–length code for this source. As the run–length code is simple
to implement, it may be the superior choice in certain cases.

4.1.3 Variable–to–fixed length enumerative source codes

Schalkwijk [60] proposed a variable–to–fixed length enumerative source code that is
related to the enumerative source code of Lynch [5]3. Schalkwijk used the same enu-
merative source code as the code proposed by Lynch to encode source sequences of bits.
Instead of encoding the indices of nonredundant samples in a sequence, the enumera-
tive source code is used to encode the indices of nonzero–valued bits in a bit sequence.

3It appears possible that Schalkwijk [60] was unaware of the work by Lynch [5], as it was not cited
in his publication.
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The source decoder reconstructs the original source sequence using the indices of the
nonzero–valued bits, as well as the length of the original sequence.

Schalkwijk [60] proved that the enumerative source code may be used to rank
distinct bit sequences of equal weight and length. The proof was carried out by mathe-
matical induction on the length of the source sequence. The integer codewords assigned
to 𝑛–bit sequences x𝑛 of equal weight 𝑚 satisfies the expression 0 ≤ 𝑐x ≤

(
𝑛
𝑚

)− 1.
Schalkwijk [60] developed a variable–to–fixed length source code for sources that

produce i.i.d. bits. Each bit of the source sequence X𝑛 = {𝑋1, 𝑋2, . . .𝑋𝑛} has a prob-
ability distribution that may be expressed as

Pr(𝑋𝑖 = 𝑥𝑖) =

{
𝑞 if 𝑥𝑖 = 0,
𝑝 if 𝑥𝑖 = 1,

(4.14)

where 𝑝+𝑞 = 1, and 0 ≤ 𝑝, 𝑞 ≤ 1. The mean number of zero–valued and nonzero–valued
bits in a source sequence is equal to 𝑛𝑞 and 𝑛𝑝, respectively.

The encoder of the variable–to–fixed length source code processes the source se-
quence in a bit–by–bit manner, starting at the front of the sequence [60]. It maintains
running totals of the number of zero–valued bits and nonzero–valued bits that it en-
counters in the sequence. Let the running totals of the zero–valued and nonzero–valued
bits, immediately prior to processing bit 𝑖 of the sequence, be denoted by 𝑦0(𝑖) and
𝑦1(𝑖) respectively. Upon 𝑦0(𝑖) equaling 𝑛𝑞 or 𝑦1(𝑖) equaling 𝑛𝑝, for any value of 𝑖, the
source encoder produces a codeword for the source bits that are reflected by the running
totals, and resets both running totals to zero.

Suppose that the running total of the zero–valued bits equals 𝑛𝑞 prior to the source
encoder processing bit 𝑖 of the source sequence (i.e. 𝑦0(𝑖) = 𝑛𝑞) [60]. The source encoder
first copies the previous 𝑦0(𝑖) + 𝑦1(𝑖) bits from the source sequence, which are the bits
reflected by the running totals. It subsequently appends a total of 𝑛𝑝− 𝑦1(𝑖) nonzero–
valued bits to the sequence of copied bits, thereby obtaining a sequence of 𝑛 bits that
contains 𝑛𝑞 zero–valued bits and 𝑛𝑝 nonzero–valued bits. This sequence is encoded
using the enumerative source code for bit sequences of equal length and weight.

Suppose instead that the running total of the nonzero–valued bits equals 𝑛𝑝 prior
to the running total of the zero–valued bits being equal to 𝑛𝑞 [60]. The source encoder
again copies the previous 𝑦0(𝑖) + 𝑦1(𝑖) bits from the source sequence, but appends a
total of 𝑛𝑞 − 𝑦0(𝑖) zero–valued bits to the copied sequence in this case. This 𝑛–bit
sequence contains 𝑛𝑞 zero–valued bits and 𝑛𝑝 nonzero–valued bits. It is encoded using
the enumerative source code for bit sequences of equal length and weight.

The source encoder doesn’t need to encode the number of zero–valued bits or
nonzero–valued bits of each sequence that it encodes [60]. Each sequence contains a
total of 𝑛𝑞 zero–valued and 𝑛𝑝 nonzero–valued bits. The source encoder only produces
the integer codeword of the sequence, using the encoder of the enumerative source
code. It encodes this integer using the conventional binary–coded representation of an

integer. Each codeword requires
⌈
log2

(
𝑛
𝑛𝑝

)⌉
bits to represent.

The source decoder of the variable–to–fixed length source code divides the encoded

sequence into blocks containing
⌈
log2

(
𝑛
𝑛𝑝

)⌉
bits each [60]. The sequence of each block

is decoded using the enumerative source code for bit sequences, thereby obtaining
an 𝑛–bit sequence for each block. As these 𝑛–bit sequences contain redundant bits

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 109

 
 
 



CHAPTER 4 Enumerative source codes

(i.e. the bits that were appended to the original source sequence), the source decoder
independently processes the bits of each sequence in a bit–by–bit manner, starting
at the first bit of each sequence. It maintains running totals of the zero–valued bits
and nonzero–valued bits that it encounters in each sequence. As soon as the running
total of the zero–valued bits equals 𝑛𝑞, or the running total of the nonzero–valued
bits equals 𝑛𝑝, the source decoder removes the remaining bits from the sequence. It
finally concatenates all the processed sequences, thereby obtaining the original source
sequence.

The effectiveness of the variable–to–fixed length source code depends on the average
number of bits that are appended to each variable–length sequence. It is reasonable to
expect that the fraction of appended bits in each 𝑛–bit sequence becomes smaller as
longer sequences are considered, due to the law of large numbers. The effectiveness of
the variable–to–fixed length source code should therefore improve when implemented
with larger values of 𝑛. This is indeed the case, as proved by Schalkwijk [60].

Schalkwijk [60] derived expressions for the effectiveness of the variable–to–fixed
length enumerative source code. The effectiveness of the source code is expressed in
terms of the average number of source bits that are represented by each bit that the
source encoder produces. The source encoder represents a total of

𝑟−1
𝑎 =

𝑛⌈
log2

(
𝑛
𝑛𝑝

)⌉ (4.15)

source bits and appended bits per codeword bit. The appended bits do not convey any
information, and should be distinguished from the source bits in order to evaluate the
effectiveness of the source code, however.

In order to derive an appropriate bound on the rate of the variable–to–fixed length
source code, Schalkwijk [60] associated each source sequence with a random walk
through a coding array. This coding array is different from the coding matrix used
by the source code implementation of Lynch [5], however. The coding array is a two–
dimensional array of nodes with 𝑛𝑞 + 1 columns and 𝑛𝑝+ 1 rows.

The rows of the coding array are numbered from zero to 𝑛𝑝, starting at the bottom
row of the array [60]. The columns of the coding array are numbered from zero to
𝑛𝑞, starting at the leftmost column of the array. All nodes in the same row of the
array represent sequences with the same number of nonzero–valued bits. The number
of nonzero–valued bits in each sequence of a row is equal to the row number. Nodes
in the same column of the array represent sequences with the same number of zero–
valued bits. The number of zero–valued bits in each sequence of a column is equal to
the column number.

A source sequence may be represented with the coding array by processing the
sequence in a bit–by–bit fashion, and moving a marker from one node of the array to
another depending on the value of each bit [60]. The marker is initially placed at the
bottom–left node of the coding array. As each consecutive bit of the source sequence is
processed, the marker moves either to the node above it (if the source bit is nonzero)
or to the node on its right (if the source bit is zero). Upon reaching the final column or
the final row, the sequence is padded to 𝑛 bits using nonzero–valued bits or zero–valued
bits, and the marker is moved to the top–right node of the coding array.
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Schalkwijk [60] derived the probabilities associated with the marker reaching the
nodes in the final column and final row of the coding array. These probabilities were
used to derive a probability distribution for the number of source bits that appear in
each 𝑛–bit sequence that is encoded. The mean of this distribution, 𝑘ave, is expressed
as

𝑘ave = 𝑛

[
1−
(
𝑛

𝑛𝑝

)
𝑝𝑛𝑝𝑞𝑛𝑞

]
. (4.16)

Stirling’s approximation [44] of the factorial of an integer 𝑛,

𝑛! ≈ (2𝜋𝑛)1/2𝑛𝑛𝑒−𝑛, (4.17)

may be substituted into equation 4.16 to obtain the approximation

𝑘ave ≈ 𝑛[1− (2𝜋𝑝𝑞𝑛)−1/2]. (4.18)

The approximation of the mean value 𝑘ave (equation 4.18) becomes more accurate as
𝑛 increases. The average fraction of source bits per 𝑛–bit sequence is approximated as

𝑘ave
𝑛
≈ 1− (2𝜋𝑝𝑞𝑛)−1/2. (4.19)

The limit of the average fraction of source bits per 𝑛–bit sequence, as 𝑛 tends to infinity,
equals

lim
𝑛→∞

𝑘ave
𝑛

= 1− lim
𝑛→∞

(2𝜋𝑝𝑞𝑛)−1/2

= 1. (4.20)

The number of source bits per encoded bit, as 𝑛 tends to infinity, may therefore be
calculated as

𝑟−1
𝑎 = lim

𝑛→∞
𝑘ave⌈

log2
(
𝑛
𝑛𝑝

)⌉
= lim

𝑛→∞
𝑛⌈

log2
(
𝑛
𝑛𝑝

)⌉
= [ℎ(𝑝)]−1, (4.21)

where ℎ(⋅) is the binary entropy function. The last step of equation 4.21 is obtained by
approximating the binomial coefficient using Stirling’s approximation of the factorial
of an integer. Equation 4.21 proves that the source code is asymptotically optimal in
terms of its effectiveness.

Schalkwijk [60] generalized the enumerative source code for sequences of bits to
include 𝑞–ary symbol sequences, where 𝑞 ≥ 2. The codeword for a length–𝑛 sequence
x𝑛 of 𝑞–ary symbols may be calculated using the expression

𝑐x =

𝑛∑
𝑘=1

𝑥𝑘−1∑
𝑑=0

{
(𝑛− 𝑘)!/

[
(𝑤𝑑

𝑘 − 1)!
𝑞−1∏

𝑖=0,𝑖∕=𝑑
(𝑤𝑖

𝑘)!

]}
, (4.22)
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where (−1)! = ∞ and 𝑤𝑑
𝑘 is the number of symbols in the sequence x

𝑛
𝑘 that equal 𝑑,

with 0 ≤ 𝑑 ≤ 𝑞−1. An implementation of this algorithm may use a 𝑞–dimensional array
of multinomial coefficients. Schalkwijk stated that this source code may be verified by
mathematical induction on the length of the source sequence. Schalkwijk did not define
the decoder of the enumerative code for 𝑞–ary symbol sequences analytically, however.

Schalkwijk [60] claimed that the computational complexity of the variable–to–fixed
length source code is comparable to that of the Elias source code [154], assuming
that both are implemented using relatively short block lengths. The Elias source code
is essentially a fixed–to–variable length arithmetic code. Arithmetic codes had to be
implemented using short block lengths at the time reference [60] was published. This
was due to the fact that the probability interval of a source sequence, as produced
by an arithmetic code, shrinks exponentially as the sequence becomes longer. Digital
computer implementations of the Elias source code had limited accuracy at the time,
and could not accurately represent very short probability intervals.

The problem of accurately representing short probability intervals with a digital
computer has since been resolved [16]. Modern implementations of arithmetic codes
may be applied to sequences that are arbitrarily long. An arithmetic source code may
also be used to encode sequences with arbitrary symbol distributions. These advantages
are part of the reason for the success of arithmetic codes.

Schalkwijk [60] mentioned a fixed–to–variable length source code for sequences of
i.i.d. bits. The encoder of this source code first encodes the weight of the source se-
quence, after which the source sequence is encoded using the enumerative source code.
This source code was not investigated in reference [60], but it is regarded in section
6.2.1 on page 166.

4.1.4 Generalization of enumerative source codes

Cover [7] proposed a general enumerative source code for bit sequences. This gen-
eral enumerative source code may be used to obtain the index of any sequence x𝑛 =
{𝑥1, 𝑥2, . . . 𝑥𝑛} in any ordered subset of all bit sequences of length 𝑛.

The enumerative source code proposed by Cover [7] concerns any ordered subset 𝑆𝑏
of all bit sequences of length 𝑛,

𝑆𝑏 ⊆ {0, 1}𝑛. (4.23)

The sequences of the subset 𝑆𝑏 are sorted in ascending order under the assumption
that the first bit of each sequence (𝑥1) is the most significant bit. Cover stated that
the index of any sequence x𝑛 ∈ 𝑆𝑏 may be calculated using the expression

𝑖𝑆𝑏
(x𝑛) =

𝑛∑
𝑗=1

𝑥𝑗𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑗−1, 0), (4.24)

where 𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑗−1, 0) denotes the number of sequences in 𝑆𝑏 with the prefix

{𝑥1, 𝑥2, . . . 𝑥𝑗−1, 0}.
Cover [7] did not provide a rigorous mathematical proof of the validity of equation

4.24, but justified it using a simple argument. Equation 4.24 may instead be verified as
follows. Consider a full binary tree with 𝑛+ 1 levels, including the root node. Assume
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that the left child of each internal tree node is labeled with the value zero, and that the
right child of each internal tree node is labeled with the value one. Let each path from
the root node to a leaf node correspond to a bit sequence that equals the concatenation
of the node labels on the path.

Suppose that the index of the 𝑛–bit sequence x𝑛, in a certain subset 𝑆𝑏, is to
be calculated. This index may be calculated by traversing all nodes in the tree that
correspond to the path associated with the sequence. At each internal node on the
path, the path may either branch to the left child node or the right child node.

If the path branches to the right child node, all sequences associated with the
descendents of the left child node are smaller than the sequence x𝑛. If the path branches
to the left child node, none of the sequences associated with the descendents of the right
child node are smaller than the sequence x𝑛. By adding the number of descendents (i.e.
the number of leaf nodes) of the left child node at each internal node where the path
branches to the right child node, the total number of bit sequences smaller than x𝑛

may be calculated.
In order to verify equation 4.24, observe that each nonzero term of the sum may be

associated with an internal node of the tree where the path branches to the right child
node (i.e. 𝑥𝑗 equals one). Each of these terms equals the number of descendents of the
internal node’s left child, but which belong to the subset 𝑆𝑏.

The elements of the subset 𝑆𝑏 determine whether the function 𝑛𝑆𝑏
(⋅) can be readily

evaluated. Cover [7] considered various subsets, and derived an expression for the func-
tion 𝑛𝑆𝑏

(⋅) that is associated with each subset. Some of these expressions are provided
in what follows.

1. If 𝑆𝑏 is the entire set of 𝑛–bit sequences, 𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑘) = 2𝑛−𝑘. Any sequence

of this set is assigned an integer codeword by interpreting it as the conventional
binary–coded representation of an integer, and calculating its decimal value.

2. If 𝑆𝑏 is the set of all 𝑛–bit sequences with equal weight 𝑤,

𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑘−1, 0) =

(
𝑛− 𝑘

𝑚(𝑤, 𝑘)

)
, (4.25)

where 𝑚(𝑤, 𝑘) = 𝑤 −∑𝑘−1
𝑖=1 𝑥𝑖. This expression is equivalent to the analytical

definition of the enumerative source encoder for bit sequences that was proposed
by Schalkwijk [60].

3. If 𝑆𝑏 is the set of all 𝑛–bit sequences with weights between (and including) 𝑤− 𝑟
and 𝑤 + 𝑟 (in other words, ∣∑𝑛

𝑖=1 𝑥𝑖 − 𝑤∣ ≤ 𝑟),

𝑛𝑆𝑏
(𝑥1, 𝑥2 . . . 𝑥𝑘−1, 0) =

𝑤+𝑟∑
𝑖=𝑤−𝑟

(
𝑛− 𝑘

𝑚(𝑖, 𝑘)

)
. (4.26)

The usefulness of this expression becomes apparent when considering a source
that produces i.i.d. bits, with Pr(𝑋𝑖 = 1) = 𝑝. According to the law of large
numbers, the normalized weight of any sequence of length 𝑛 from this source
satisfies

1

𝑛

𝑛∑
𝑖=1

𝑥𝑖 → 𝑝 (4.27)
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as 𝑛 tends to infinity. An enumerative source code may be constructed for se-
quences from this source by setting 𝑤 equal to 𝑛𝑝, and selecting a sufficiently large
value for 𝑟 to ensure that the probability of the source producing a sequence x𝑛

that is not present in 𝑆𝑏 is negligible. Length–𝑛 sequences from this source may
then be encoded using the enumerative source encoder defined by equations 4.24
and 4.26.

Cover [7] extended the general enumerative source code to include ordered subsets of
integer sequences, in addition to subsets of bit sequences. The subset 𝑆𝑏 that consists of
all 𝑛! permutations of the sequence x𝑛 = {1, 2, 3, . . . 𝑛} was investigated. The expression

𝑖𝑆𝑏
(x𝑛) =

𝑛∑
𝑖=1

𝑟𝑖(𝑛− 𝑖)! (4.28)

holds for this subset, where

𝑟𝑖 = ∣{𝑥𝑗 : 𝑖+ 1 ≤ 𝑗 ≤ 𝑛 ∧ 𝑥𝑗 < 𝑥𝑖}∣. (4.29)

Cover [7] also extended the general enumerative source code to include ordered sub-
sets of discrete monotone functions. Consider an integer–valued function 𝐹 : {0, 1, . . .𝑚}
→ {0, 1, . . . 𝑛}. If 𝐹 (𝑖) ≤ 𝐹 (𝑖+ 1) for all 𝑖 the function 𝐹 is referred to as a monotone
nondecreasing function. If 𝐹 (𝑖) < 𝐹 (𝑖 + 1) for all 𝑖 the function 𝐹 is referred to as
a strictly monotone increasing function. If 𝐹 (𝑚) = 𝑛, the function 𝐹 is referred to
as a distribution function. A function 𝐹 is considered smaller than a function 𝐺 if
𝐹 (𝑦) < 𝐺(𝑦) where 𝑦 = min(𝑘) : 𝐹 (𝑘) ∕= 𝐺(𝑘).

Cover [7] derived enumerative source codes for the functions in the following ordered
subsets of discrete monotone functions:

1. 𝑆𝑏 = {𝐹 : 𝐹 monotone nondecreasing function},
2. 𝑆𝑏 = {𝐹 : 𝐹 monotone nondecreasing distribution function},
3. 𝑆𝑏 = {𝐹 : 𝐹 strictly monotone increasing function}, and
4. 𝑆𝑏 = {𝐹 : 𝐹 strictly monotone increasing distribution function}.

Cover stated that discrete convex functions may also be enumerated in a similar man-
ner, but did not derive an enumerative source code for these functions in reference [7].

Cover [7] proposed an enumerative source code for sequences from the two–state,
first–order, binary Markov source of figure B.1 on page 260. A detailed summary of
this source code is provided in addendum B on page 259. This section contains only a
short description of the source code.

The bit sequences from the first–order Markov source may be enumerated by count-
ing the occurrences of all distinct pairs of consecutive bits (i.e. {00, 01, 10, 11}) in each
source sequence [7]. The frequency counts of the distinct bit pairs of a source sequence
are collectively referred to as the count profile of the sequence.

All sequences of the first–order Markov source that have the same count profile are
equiprobable, and constitute an ordered subset of sequences. The enumerative source
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encoder for bit sequences from the first–order Markov source calculates and encodes
the index of a sequence in its subset [7]. The enumerative source encoder also encodes
the count profile of each sequence, as the source decoder requires the count profile in
order to select the correct subset.

Cover [7] stated that the code rate of the proposed source code approaches the
entropy rate of the source asymptotically. A comprehensive derivation of the rate of
the code is not provided in reference [7], however. The expression for the rate of the
code is derived in addendum B on page 259.

4.1.5 Fixed–to–fixed length enumerative source codes

An 𝑛–bit to 𝑘–bit fixed–length source code assigns a 𝑘–bit codeword to each 𝑛–bit
source sequence, where 𝑘 < 𝑛. This source code is lossy, as the number of distinct source
sequences exceeds the number of distinct codewords4. Some codewords are therefore
assigned to more than one distinct source sequence, and may be incorrectly decoded
by the source decoder.

A block–error probability 𝑃𝑏 is associated with a fixed–to–fixed length source code
and a specific source. The block–error probability is defined as the probability that the
source decoder will incorrectly decode the codeword of a random sequence from the
source. An optimal fixed–to–fixed length source code (i.e. a code that has the minimum
block–error probability 𝑃𝑏 when used to encode sequences from a certain source) assigns
each of the 2𝑘 most likely 𝑛–bit source sequences a distinct 𝑘–bit codeword.

Theoretical bounds on the code rate and block–error probability of certain fixed–
to–fixed length source codes have been derived [155]. The derivation of the bounds that
are discussed in this thesis was carried out under the assumptions that each source code
is applied to sequences X𝑛 = {𝑋1, 𝑋2, . . .𝑋𝑛} of i.i.d. bits, and that each source bit
has the distribution of equation 4.14 on page 109. The distribution is restricted to the
case where 0 < 𝑝 < 0.5. The bounds concern fixed–to–fixed length source codes that
assign a distinct codeword to each source sequence in the set 𝒜𝑛

𝛿 , which contains all
source sequences with weight 𝑤 ≤ ⌊𝛿𝑛⌋, where 0 < 𝛿 ≤ 0.5. This set is also referred to
as a Hamming ball.

The first bound concerns the code rate (i.e. the number of codeword bits per source
bit) [155]. This bound is valid provided that 0 < 𝑝 < 𝛿 ≤ 0.5. The bound on the code
rate is derived as

𝑅𝑎 =
𝑘

𝑛

=
⌈log2 ∣𝒜𝑛

𝛿 ∣⌉
𝑛

≤ ℎ(𝛿) +
1

𝑛
, (4.30)

where ℎ(⋅) is the binary entropy function.
The second bound concerns the block–error probability 𝑃𝑏 associated with the

source code and the source [155]. This bound is valid for the case where 0 < 𝑝 < 𝛿 ≤ 0.5.
4This statement is valid if each distinct 𝑛–bit sequence has a nonzero probability of being produced

by the source.
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The bound is derived as

𝑃𝑏 = Pr(X𝑛 /∈ 𝒜𝑛
𝛿 )

≤ 2−𝑛𝐷(𝛿∣∣𝑝), (4.31)

where 𝐷(𝛿∣∣𝑝) is the binary divergence function (i.e. the Kullback–Leibler divergence),
which is defined as

𝐷(𝛿∣∣𝑝) = 𝛿 log2

(
𝛿

𝑝

)
+ (1− 𝛿) log2

(
1− 𝛿

1− 𝑝

)
. (4.32)

These bounds imply that it is possible to encode sequences of i.i.d. bits using a fixed–
length source code with a code rate that does not exceed ℎ(𝑝) + 𝜖 codeword bits per
source bit, where 𝜖 is a positive constant that tends to zero as the sequence length 𝑛
tends to infinity. The block–error probability of this source code approaches zero as
the sequence length 𝑛 tends to infinity.

Willems [155] investigated a fixed–to–fixed length enumerative source code for a
source that produces sequences of i.i.d. bits X𝑛 = {𝑋1, 𝑋2, . . .𝑋𝑛}, where each bit has
the same distribution as defined for the derivation of the bounds. The enumerative
source encoder obtains the index of any source sequence with weight 0 ≤ 𝑤 ≤ ⌊𝛿𝑛⌋
in the set 𝒜𝑛

𝛿 , where 0 ≤ 𝛿 ≤ 1. This index is encoded as a fixed–length bit sequence
with a length of ⌈log2 ∣𝒜𝑛

𝛿 ∣⌉ bits. The sequences in the set 𝒜𝑛
𝛿 may be interpreted as

binary–coded integers that are sorted in ascending order according to their values (this
is equivalent to a lexicographical order). The first bit of each sequence is considered
the most significant bit.

The implementation of the fixed–to–fixed length enumerative source code of Willems
[155] represents source sequences in the set 𝒜𝑛

𝛿 using a matrix of nodes (refer to figure
4.4). This matrix is similar to the coding matrix used by Lynch [5], as well as the
coding array of Schalkwijk [60].

The node matrix has 𝑛+ 1 columns and ⌊𝛿𝑛⌋+ 1 rows [155]. A source sequence is
represented with the node matrix by processing the sequence in a bit–by–bit manner,
and moving a marker from one node to another as each bit is processed. The marker
is initially placed at the bottom–left node of the node matrix. Upon encountering a
zero–valued bit in the source sequence, the marker is moved to the node in the column
to its right. If a nonzero–valued bit is encountered in the source sequence, the marker
is moved to the node in the row above it. An 𝑛–bit sequence in the set 𝒜𝑛

𝛿 is therefore
represented as a path from the bottom–left node of the matrix to one of the end nodes,
which are coloured black in figure 4.4.

Each node of the node matrix is assigned a count [155]. Each count equals the total
number of paths that leave the node and terminate at an end node. These counts are
referred to as path counts. The end nodes are assigned path counts of one. Each node
that borders the end nodes is assigned a path count that equals the number of end
nodes that may be reached by passing through it. Each of the remaining nodes of the
node matrix is assigned a path count that is the sum of the path count of the node
above it and the path count of the node to its right5. The path count of the bottom–
left node equals the number of distinct paths that reach an end node. This path count
equals the number of distinct 𝑛–bit source sequences in the set 𝒜𝑛

𝛿 .

5If the node is in the top row of the matrix, it is assigned the path count of the node to its right.
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Figure 4.4: Representation of six–bit source sequences using a node matrix, where
⌊𝛿𝑛⌋ = 3 (adapted from reference [155]).

Consider a path through the node matrix that corresponds to a certain sequence
x𝑛 in the set 𝒜𝑛

𝛿 [155]. Let each of the path’s nodes from which the marker moves
to the node in the row above it (i.e. each node that corresponds to a nonzero–valued
bit in the sequence) be referred to as a nonzero–bit node. As the source sequence
is processed from the MSB to the LSB, all sequences that correspond to paths that
branch to the node on the right–hand side of a nonzero–bit node are smaller than the
sequence x𝑛. The number of paths that branch to the node on the right–hand side of
each nonzero–bit node equals the path count of the node to its right.

The integer codeword of a sequence x𝑛 in the set 𝒜𝑛
𝛿 is calculated by considering

all nonzero–bit nodes on the node matrix path that corresponds to the source sequence
[155]. All the path counts of the nodes on the right–hand side of the nonzero–bit nodes
are added together. This sum equals the total number of sequences in the set 𝒜𝑛

𝛿 that
are smaller than the source sequence. The sum of the path counts is therefore equal to
the integer codeword of the sequence x𝑛.

The source decoder of the enumerative source code maintains a running total that
is initially set equal to the integer codeword [155]. The source decoder iterates over the
rows of the node matrix, starting at the bottom row of the matrix. It subtracts the
path count of a certain node in each row from the running total prior to continuing
with the next iteration. Each path count that is subtracted from the running total
equals the largest path count among the nodes in the row that does not exceed the
running total.

Let the node with the largest path count that does not exceed the running total
in each row be referred to as a branching node [155]. The node immediately to the
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left of each branching node is a nonzero–bit node. As the path of the source sequence
branches to the node above each nonzero–bit node, the source decoder may obtain
the indices of all nonzero–valued bits in the sequence. As the remaining bits of the
sequence are zero–valued bits, the source sequence may be successfully recovered from
the codeword.

4.1.6 Hierarchical enumerative source codes

Oktem et. al. [145] proposed a hierarchical enumerative source code for sequences
of bits. This blockwise source code may be used to effectively encode bits that are
statistically independent, but not necessarily identically distributed.

The source encoder of the enumerative code initially divides the source sequence into
blocks of equal length [145]. It repeatedly subdivides these blocks until the sequence is
divided into short blocks of equal length. The repeated division of the sequence implies
a hierarchy of blocks. The shortest blocks belong at the bottom level of the hierarchy,
while the entire sequence belongs at the top level of the hierarchy.

The source encoder independently encodes each of the blocks at the bottom level of
the hierarchy using a fixed–to–variable length enumerative source code for sequences
of i.i.d. bits [145]. The codeword of each block consists of a prefix and a suffix. The
prefix equals the weight of the block sequence. The suffix equals the index of the block
sequence in an ordered set of all sequences of the same length and weight. The suffix
is encoded using the conventional binary–coded representation of integers.

The block hierarchy is motivated by considering the rate of adaptation of the fixed–
to–variable length enumerative source code [145]. If the source encoder of the fixed–
to–variable length source code is used to independently encode longer block sequences,
it cannot adjust to rapid, drastic changes in the distribution of the source bits. If it
is used to independently encode shorter block sequences, it may adapt to more rapid
changes in the distribution.

The drawback of encoding shorter block sequences with the fixed–to–variable length
source code concerns the prefix of each codeword [145]. The prefix of each codeword
is the binary–coded representation of the weight of a block sequence, and is necessary
to successfully decode the codeword. The weights of several shorter blocks require
more bits to represent in total than the sum of the weights of the shorter blocks6. A
tradeoff exists between the rate of adaptation of the source encoder, and the effective
source coding of the sequence weight. The hierarchy of blocks may be used obtain the
advantages of encoding both shorter blocks and longer blocks (i.e. rapid adaptation
and little overhead).

The source encoder of the hierarchical source code does not encode the weights of the
block sequences at the bottom level of the hierarchy directly [145]. It initially encodes
the total weight of the sequence (i.e. the top–level block). It subsequently iterates over
the levels of the hierarchy, starting at the second–from–top level and ending at the
bottom level. At each level of the hierarchy, it produces a number of codewords. Each
codeword represents the individual weights of all block sequences that form part of the
same block in the next higher level of the hierarchy.

6This statement is valid as the logarithm function is a concave function.
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Let all blocks of a certain level of the hierarchy that form part of the same block in
the next higher level be referred to as a block segment [145]. The source encoder uses
the total weight of the block sequences in each block segment as it produces a single
codeword for the individual weights of the block sequences in that block segment. It
does not encode the total weight of the block sequences in a block segment, however.
The reason for not encoding the total weight of the block sequences in a block segment
may be understood by considering the source decoder.

The source decoder decodes the block weights in a level–by–level manner, starting
at the top level of the hierarchy [145]. Suppose that the source decoder is to recover
the block weights of a block segment in a certain level of the hierarchy. The weight of
each block sequence in the next higher level of the hierarchy is known to the source
decoder before it starts to decode the individual block weights of the block segment.
It is therefore able to decode the individual block weights successfully. Upon reaching
the bottom level of the hierarchy, the source decoder recovers the weights of the indi-
vidual block sequences, and decodes each of the block codewords to recover the source
sequence.

The source encoder encodes the individual weights of the block sequences in a
block segment as follows [145]. It interprets the total weight of the block sequences as
a sequence of unity–weight elements. The sequence contains a total of 𝑤 unity–weight
elements, assuming that the total weight of the block sequences equals 𝑤 bits. Certain
unity–weight elements in the sequence are separated by division elements — the weight
elements between each pair of consecutive division elements belong to a certain block
of the segment. The sequence contains a total of 𝑘−1 division elements, assuming each
block segment consists of 𝑘 blocks.

Each sequence of unity–weight elements and division elements may be represented
as a bit sequence by associating unity–weight elements with zero–valued bits, and the
division elements with nonzero–valued bits [145]. An enumerative code is used to encode
each of these bit sequences. The integer codeword of each sequence equals its index
in an ordered set of all bit sequences of length 𝑤 + 𝑘 − 1, and with a weight of 𝑘 − 1
bits. Each integer is encoded using its conventional binary–coded representation. Each
codeword requires a total of

𝑙(𝑤, 𝑘) =

⌈
log2

(
𝑤 + 𝑘 − 1
𝑘 − 1

)⌉
(4.33)

bits to represent.
Oktem et. al. [145] observed that the individual weights of the block sequences in a

block segment may be ineffectively encoded in some scenarios. As an example, consider
the case where the total weight of the block sequences in a segment equals the total
length of the block sequences in the segment. All block sequences of this segment consist
solely of nonzero–valued bits. The source encoder need not produce any codeword in
this case. The source encoder will, however, produce a codeword with a nonzero length
(refer to equation 4.33).

Oktem et. al. [145] improved the hierarchical enumerative source code by encod-
ing the block weights of a block segment differently depending on whether the block
segment has a majority of zero–valued or nonzero–valued bits. If the block segment
contains a majority of nonzero–valued bits, the source encoder encodes the number of
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zero–valued bits in the block sequences of the segment. If the block segment contains a
majority of zero–valued bits, the weights of the block sequences are encoded as before.
The source encoder need not indicate whether it encodes the number of zero–valued or
nonzero–valued bits of the blocks in a segment, as the source decoder may obtain this
information from the blocks on the higher levels of the hierarchy.

Oktem et. al. [145] implemented the hierarchical enumerative source code, and
compared the performance of the implementation to the performance of two alternative
source code implementations. An adaptive arithmetic source code implementation, as
well as the Unix software utility compress [70] (which is essentially an implementation
of the LZW source code7) were considered. The implementations were used to source
code the output of three abstract information sources, two of which were nonstationary.

The proposed implementation proved to be significantly more effective than the
other implementations when used to encode source sequences from the two nonstation-
ary sources [145]. It was slightly less effective than the adaptive arithmetic code when
used to encode sequences from the stationary source. The implementations were not
compared in terms of their computational complexity, however.

Oktem et. al. [146] generalized the hierarchical enumerative source code in order
to improve its effectiveness when used to encode bits that are statistically dependent
on one another. The general source code may be used to effectively encode bits from
nonstationary first–order binary Markov sources (refer to figure B.1 on page 260 for
the state–transition diagram of a first–order binary Markov source).

The general hierarchical enumerative source code may be interpreted as an improve-
ment of the enumerative source code for first–order binary Markov sources, which was
proposed by Cover [7]. The enumerative code proposed by Cover is summarized in sec-
tion 4.1.4 on page 112. The source encoder of Cover’s enumerative source code obtains
the count profile of a source sequence prior to encoding it. It subsequently calculates
the integer index of the source sequence in an ordered set that contains all bit se-
quences with the same count profile. The source encoder encodes the count profile of
the sequence, as well as the integer index.

Oktem et. al. [146] observed that the weight of a source sequence may be expressed
in terms of its count profile. Let the frequency count of the bit pair 𝑎𝑏 in the source
sequence be denoted by 𝑚𝑎𝑏, where 𝑎𝑏 ∈ {0, 1}2. The weight of the source sequence
may be expressed as

𝑤 = 𝑚01 +𝑚11, (4.34)

assuming that the first bit of the source sequence has a zero value. It follows that

𝑚00 +𝑚10 = 𝑛− 𝑤 − 1, (4.35)

where 𝑛 is the length of the sequence.
The encoder of the general hierarchical enumerative source code encodes the weights

associated with the block sequences of each block segment on each level of the hierar-
chy [146]. The weights are encoded in an identical fashion to the ordinary hierarchical
enumerative source code. In addition, the source encoder encodes the frequency count
𝑚11 of each block sequence at the bottom of the hierarchy using the conventional

7Refer to section 2.6.5 on page 28 for a summary of Lempel–Ziv source codes.
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binary–coded representation of integers. A total of ⌈log2(𝑤𝑖)⌉ bits are required to rep-
resent the frequency count 𝑚11 of a block sequence with a weight of 𝑤𝑖 bits, where
𝑤𝑖 > 0.

By encoding both the weight and the frequency count 𝑚11 of each block sequence,
the source encoder enables the source decoder to calculate the remaining bit–pair fre-
quency counts of each block sequence at the bottom of the hierarchy as follows [146].
It first calculates the frequency count 𝑚01 using equation 4.34, the sequence weight
and the value of 𝑚11. The source decoder next obtains the frequency count 𝑚10, as
this frequency count is equal to 𝑚01 (assuming the first and last bits of the sequence
are both zero–valued) [7]. The frequency count 𝑚00 is subsequently calculated using
equation 4.35.

Oktem et. al. [146] demonstrated the effectiveness of the general hierarchical enu-
merative source code by implementing it, and using it to encode bit sequences from
three abstract, first–order binary Markov sources. One of the three sources was a
stationary first–order Markov source, while the remaining sources were piecewise–
stationary first–order Markov sources. The code rate of the implementation was com-
pared to the code rate of an implementation that uses an adaptive arithmetic code, as
well as the code rate of the Unix software utility compress [70].

The general hierarchical enumerative source code proved to be more effective than
the source codes it was compared to [146]. The computational complexity of the imple-
mentation was not compared to the complexity of the other implementations, however.
Oktem et. al. did state that the binomial coefficients required by both the enumerative
encoder and decoder should be stored in a look–up table to improve the efficiency of
the implementation.

4.1.7 Binary combinatorial codes

Dai et. al. [149] proposed a fixed–to–variable length enumerative source code that is
known as a binary combinatorial code. The source encoder of this source code calculates
the integer codeword of the source sequence, which equals its index in an ordered set of
all sequences with the same length and weight as the source sequence. It encodes the
weight of the source sequence, as well as its integer index. The integer index is encoded
using the conventional binary–coded representation of an integer. The source encoder
encodes the weight of the source sequence differently than conventional enumerative
source codes.

Dai et. al. [149] stated that the encoder of a conventional enumerative source code
has to perform 𝑛–bit integer addition and storage to rank an 𝑛–bit source sequence.
This requirement limits the block length of blockwise enumerative source codes, as
the majority of modern digital computer systems have word lengths of 32 or 64 bits.
The source coding of longer source sequences is more effective, as the length of the
conventional binary codeword of the source sequence weight 𝑤 is a logarithmic function
of the sequence length.

The encoder of the source code proposed by Dai et. al. [149] uniformly divides a long
source sequence into short blocks of 𝑚 bits, and independently encodes the sequence
of each block. The weight of each block sequence is encoded using a Huffman code, as
the conventional binary–coded representation of the integer weights of short blocks is
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ineffective. A static Huffman code is constructed for the weights of the block sequences.
Dai et. al. [149] assumed that the source produces i.i.d. bits, which implies that the

weight of a source sequence has a binomial distribution. As the Poisson distribution
may be interpreted as an approximation of the binomial distribution, the Huffman
code is designed for weights with a Poisson distribution. The parameter of the Poisson
distribution is selected as

𝜆 = 𝑚𝑝, (4.36)

where 𝑝 denotes the probability of a source bit having a nonzero value, and 𝑚 is the
length of each block sequence.

The proposed source code was implemented and used to encode discrete cosine
transform coefficients from a video codec, as well as a binary image of VLSI layout
data [149]. The implementation proved to be more effective and more efficient than
implementations of a Huffman code and an arithmetic code. The authors did not specify
how the source code may be generalized in order to effectively encode bits that are
statistically dependent on one another, however.

4.1.8 The efficient enumerative source codes of Ryabko

Ryabko [152] proposed an enumerative source code implementation with a computa-
tional complexity that increases sublinearly w.r.t. the length of the source sequence.
The efficient implementation was derived by rewriting the expression for the integer
codeword of a source sequence.

Suppose that an ordered subset 𝑆𝑏 of all length–𝑛 symbol sequences is specified,
with each symbol belonging to the alphabet 𝒜 (i.e. 𝑆𝑏 ⊆ 𝒜𝑛). The index8 of a sequence
x𝑛 in the ordered subset 𝑆𝑏 may be calculated as [7]

𝑖𝑆𝑏
(x𝑛) =

𝑛∑
𝑖=1

∑
{𝑦:𝑦<𝑥𝑖}

𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑖−1, 𝑦), (4.37)

where 𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑖−1, 𝑦) denotes the number of sequences in 𝑆𝑏 with the prefix

{𝑥1, 𝑥2, . . . 𝑥𝑖−1, 𝑦}.
Ryabko [152] defined several intermediate terms, and expressed the index of equa-

tion 4.37 using the intermediate terms. The intermediate terms are defined as

𝑃 (𝑥1) =
𝑛𝑆𝑏
(𝑥1)

∣𝑆𝑏∣ (4.38)

and

𝑃 (𝑥𝑘∣𝑥1, 𝑥2, . . . 𝑥𝑘−1) =
𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑘)

𝑛𝑆𝑏
(𝑥1, 𝑥2, . . . 𝑥𝑘−1)

, (4.39)

where 𝑘 = {2, 3, . . . 𝑛}, as well as

𝑄(𝑥𝑘∣𝑥1, 𝑥2, . . . 𝑥𝑘−1) =
∑

{𝑦:𝑦<𝑥𝑘}
𝑃 (𝑦∣𝑥1, 𝑥2, . . . 𝑥𝑘−1), (4.40)

8Refer to section 4.1.4 on page 112 for the origin of this expression.
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where 𝑘 = {1, 2, . . . 𝑛}.
The index of a source sequence x𝑛 may be expressed using the intermediate terms

as [152]

𝑖𝑆𝑏
(x𝑛) = ∣𝑆∣(𝑄(𝑥1) +𝑄(𝑥2∣𝑥1)𝑃 (𝑥1) +𝑄(𝑥3∣𝑥1, 𝑥2)𝑃 (𝑥1)𝑃 (𝑥2∣𝑥1) + . . .

)
= ∣𝑆∣

𝑛∑
𝑖=1

[
𝑄(𝑥𝑖∣𝑥1, 𝑥2, . . . 𝑥𝑖−1)

𝑖−1∏
𝑗=1

𝑃 (𝑥𝑗∣𝑥1, 𝑥2, . . . 𝑥𝑗−1)

]

= ∣𝑆∣
𝑛/2−1∑
𝑖=0

[ 2𝑖∏
𝑗=1

𝑃 (𝑥𝑗∣𝑥1, . . . 𝑥𝑗−1)

][
𝑄(𝑥2𝑖+1∣𝑥1, . . . 𝑥2𝑖)

+ 𝑄(𝑥2𝑖+2∣𝑥1, . . . 𝑥2𝑖+1)𝑃 (𝑥2𝑖+1∣𝑥1, . . . 𝑥2𝑖)
]
. (4.41)

The implementation proposed by Ryabko [152] represents each intermediate term
using a total of 2 log(𝑛) + 𝑂(1) digits. It uses the Schonhager–Strassen [156] method
of multiplying and dividing numbers to efficiently evaluate equation 4.41.

Ryabko [152] stated that the computational complexity of the encoder and decoder
is proportional to 𝑂(log3(𝑛). log log(𝑛)) as 𝑛 tends to infinity, where 𝑛 is the length
of the source sequence. The computational complexity is expressed in terms of the
number of operations that are performed on single–bit words.

4.1.9 Q–ary enumerative source codes

Schalkwijk [60] proposed an enumerative source code for sequences of 𝑞–ary symbols,
where 𝑞 ≥ 2. The source encoder of this enumerative code calculates the index of a
sequence of 𝑞–ary symbols in an ordered set that contains sequences with the same
length as the source sequence, and with the same number of symbols of each type. The
calculation of the index involves the computation of multinomial coefficients if 𝑞 > 2,
as is evident from equation 4.22 on page 111.

Schalkwijk [60] did not comment on the computational complexity of the source
encoder for sequences of 𝑞–ary symbols, where 𝑞 > 2. Tanaka et. al. [150] speculated
that this enumerative code may be ineffective or overly complex to implement. Tanaka
et. al. subsequently derived a new enumerative source code for sequences of 𝑞–ary
symbols.

The novel enumerative source code proposed by Tanaka et. al. [150] produces a
codeword for each length–𝑛 sequence of symbols. Each codeword consists of a prefix
that represents the Lee–weight of the 𝑞–ary source sequence, and a suffix that represents
the index of the source sequence in an ordered set of all sequences with Lee–weight and
length equal to that of the source sequence.

The Lee–weight of a sequence is defined using a function 𝑓 : 𝒜 → {0, 1, . . . ∣𝒜∣−1},
where 𝒜 denotes the alphabet of the source symbols [150]. The function 𝑓 maps each
distinct alphabet symbol to a distinct integer in the specified range. The Lee–weight of
a sequence is defined as the sum of the integers assigned to the symbols of the sequence.
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The Lee–weight of the sequence x𝑛 is expressed as

𝑤𝐿(x
𝑛) =

𝑛∑
𝑖=1

𝑓(𝑥𝑖). (4.42)

In order to derive an enumerative source code that uses the Lee–weight, Tanaka
et. al. [150] considered a specific combinatorial problem. The problem involves the
calculation of the number of sequences of length 𝑙, where 𝑛 ≤ 𝑙 ≤ 𝑞𝑛, that can be
constructed by concatenating 𝑛 patterns of the set 𝑃 , where 𝑃 = {u𝑖 : 1 ≤ 𝑖 ≤ 𝑞},
and u𝑖 is the 𝑖–bit sequence {0, 0, 0, . . .0, 1}. The patterns of the set 𝑃 may be used
repeatedly during the construction of each sequence. The number of distinct sequences
that may be constructed equals

𝑁(𝑛, 𝑙, 𝑞) =

⌊(𝑙−𝑛)/𝑞⌋∑
𝑗=0

(−1)𝑗
(
𝑛

𝑗

)(
𝑙 − 1− 𝑗𝑞

𝑛− 1
)
. (4.43)

The integer 𝑁𝑛,𝑘 may be interpreted as the total number of length–𝑛 𝑞–ary symbol
sequences with Lee–weights equal to 𝑘, where 𝑁𝑛,𝑘 ≜ 𝑁(𝑛, 𝑛+𝑘, 𝑞) [150]. These integers
may be used to define a general version of Pascal’s triangle. Row 𝑛 of the general triangle
contains 𝑛(𝑞 − 1) + 1 integers, where 𝑛 ≥ 0. Integer 𝑘 of row 𝑛 of the general version
of Pascal’s triangle is equal to the integer 𝑁𝑛,𝑘, where 0 ≤ 𝑘 ≤ 𝑛(𝑞 − 1). The general
version of Pascal’s triangle is equal to the conventional triangle if 𝑞 is set equal to two.

Tanaka et. al. [150] defined branch values between integers in consecutive rows of
the general version of Pascal’s triangle. The branch value between integers 𝑁𝑛,𝑘 and
𝑁𝑛+1,𝑘+𝑗 is defined as

𝑏
(𝑗)
𝑛,𝑘 =

𝑗−1∑
ℎ=0

𝑁𝑛,𝑘+𝑗−ℎ, (4.44)

where 𝑁𝑛,𝑘+𝑗−ℎ ≜ 0 if 𝑘 + 𝑗 − ℎ < 0 or 𝑘 + 𝑗 − ℎ > 𝑛(𝑞 − 1).
Tanaka et. al. [150] proved that any length–𝑛 sequence of 𝑞–ary symbols with a

Lee–weight of 𝑘 may be expressed as a distinct path in the general version of Pascal’s
triangle. The transitions between the integers of the triangle depend on the symbols
of the sequence. The sum of the branch values on the path associated with a sequence
equals the index of the sequence in an ordered set of all 𝑛–symbol sequences with the
same Lee–weight as the source sequence.

The encoder of the enumerative source code of Tanaka et. al. [150] encodes the
Lee–weight of a source sequence as a 𝑞–ary number with

⌈
log𝑞((𝑞 − 1)𝑛+ 1)

⌉
digits.

The index of the source sequence is encoded as a 𝑞–ary number with
⌈
log𝑞(𝑁𝑛,𝑤𝐿(x𝑛))

⌉
digits.

Tanaka et. al. [150] investigated the effectiveness of the proposed source code when
used to encode finite–length sequences, as well as sequences with lengths that tend
to infinity. The sequences consisted of i.i.d. symbols. It was proved that the proposed
source code is weighted universal, but not minimax universal. The proposed source code
has an average codeword length that is smaller than the average codeword length of the
𝑞–ary enumerative source code proposed by Schalkwijk [60], assuming that the source
codes are used to encode short sequences. The enumerative source code of Schalkwijk
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proved to be more effective than the proposed source code when used to encode longer
source sequences.

4.1.10 The efficient enumerative source codes of Hertz et. al.

Hertz et. al. [151] proposed a technique for reducing the computational complexity of
two enumerative source codes for sequences of 𝑞–ary symbols, where 𝑞 ≥ 2. The original
enumerative codes were proposed by Schalkwijk [60] and Tanaka et. al. [150]. Imple-
mentations of both enumerative source codes rely on the addition of certain coefficients
in order to calculate the index of the source sequence in an ordered set. In the case of
Schalkwijk’s enumerative code the coefficients are binomial or multinomial coefficients.
The coefficients of the source code proposed by Tanaka et. al. may be computed using
equation 4.43.

Hertz et. al. [151] proved that the number of coefficients that are added in order to
obtain the codeword of a source sequence using the enumerative codes of Schalkwijk
[60] and Tanaka et. al. [150] is equal to the Lee–weight of the source sequence9. The
average Lee–weight of the source sequences may be reduced by mapping the more
likely alphabet symbols to smaller integers (refer to equation 4.42), thereby reducing
the computational complexity of the implementation. By specifying an appropriate
permutation of the alphabet symbols, the source encoder may minimize the average
Lee–weight of the source sequences, provided that the source symbol distribution is
known.

The reduced–complexity encoder of Schalkwijk’s [60] enumerative source code for
𝑞–ary symbols encodes a source sequence as follows [151]. The source encoder produces
the same codeword prefix as before. It subsequently determines the appropriate per-
mutation of the alphabet symbols — the symbols of this permutation are sorted in
the order of nonincreasing frequency counts. This permutation is considered the new
symbol alphabet, with the first symbol of the permutation being the lexicographically
smallest symbol. The encoder uses the permuted symbol alphabet as it calculates the
codeword suffix. By using the permuted symbol alphabet during the calculation of the
codeword suffix, the computational complexity of the source encoder is reduced.

The source decoder that is paired with the reduced–complexity encoder decodes the
codeword prefix as before [151]. It subsequently sorts the alphabet symbols in the order
of nonincreasing symbol frequency counts, thereby obtaining the symbol permutation
that was used by the source encoder. The source decoder proceeds by decoding the
suffix of the codeword using the permuted symbol alphabet, after which it obtains the
original source sequence by reversing the permutation of the alphabet symbols.

Hertz et. al. [151] stated that the computational complexity associated with the
encoder and decoder of the enumerative source code proposed by Tanaka et. al. [150]
may be reduced by using the same permutation of the alphabet symbols as used by
the reduced–complexity encoder of the enumerative source code of Schalkwijk [60]. As
the encoder of the source code proposed by Tanaka et. al. produces a codeword prefix
that represents the Lee–weight of the source sequence, and not the frequency counts of

9It is assumed that the function 𝑓 of equation 4.42 maps lexicographically smaller symbols to
smaller integers by default.
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the distinct alphabet symbols, the source encoder has to explicitly encode the alphabet
symbol permutation in order to guarantee that the codewords are uniquely decodable.

The reduced–complexity source encoder of the enumerative source code proposed
by Tanaka et. al. [150] calculates both the prefix and the suffix of each codeword
using the permuted symbol alphabet [151]. As the source decoder obtains the symbol
permutation directly from the source–coded sequence, it decodes each codeword using
the permuted symbol alphabet. The original source sequence is obtained by reversing
the permutation of the alphabet symbols.

Hertz et. al. [151] considered the effective source coding of the alphabet symbol
permutation, as is required by the reduced–complexity encoder of the enumerative
source code proposed by Tanaka et. al. [150]. The permutation may be encoded more
effectively if the source sequence does not contain all distinct symbols of the alphabet.
Hertz et. al. subsequently proved that the reduced–complexity encoder of the enumer-
ative source code proposed by Tanaka et. al. [150] produces codewords that are shorter
on average than the codewords of the original source encoder. This observation holds
true if each source sequence is significantly longer than the number of distinct alphabet
symbols.

Hertz et. al. [151] considered the implementation of the enumerative source code
proposed by Tanaka et. al. [150]. It was concluded that the general version of Pascal’s
triangle may become prohibitively large to represent using a lookup table if long source
sequences are to be encoded. Hertz et. al. proposed the use of chained lists to reduce
the amount of memory that is required to represent the triangle. The implementation
may use a recursive method for calculating the codeword of a source sequence if the
memory requirement of the triangle remains excessive. This method may also be used
in an implementation of the enumerative source code proposed by Schalkwijk [60].

4.2 Symbolwise enumerative source codes

The encoder of a symbolwise enumerative source code does not calculate the codeword
of an entire source sequence in a single instance. It encodes a source sequence in a
symbol–by–symbol manner, starting at the front of the sequence. The symbols of the
sequence are encoded using an arithmetic encoder with an appropriate adaptive source
model [8]. The length of the codeword that a symbolwise enumerative source encoder
produces when used to encode a source sequence is identical to the length of the
codeword that would be produced were a blockwise enumerative source encoder used.

Although Rissanen et. al. [157] and Rissanen [158] were the first to prove that
arithmetic source coding and enumerative source coding are equivalent, Cleary et.
al. [8] proved that enumerative source coding may be performed using an arithmetic
source code. Enumerative source coding may be performed by deriving an appropriate
adaptive source model that an arithmetic encoder uses as it encodes each source symbol.
The model is derived using the frequency counts of the symbols in the source sequence.
The symbol distribution of the model is a function of the symbols that were encoded
previously, as well as the total frequency counts of the distinct alphabet symbols that
appear in the source sequence.

Cleary et. al. [8] derived an expression for the symbol distribution of a source model
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that may be used with an arithmetic encoder in order to perform enumerative source
coding. The conditional distribution of the symbol 𝑋𝑖 in the 𝑛–symbol source sequence
X𝑛 is expressed as

Pr(𝑋𝑖 = 𝑦∣x𝑖−1
1 ) =

𝐶(x𝑖−1
1 𝑦)

𝐶(x𝑖−1
1 )

, (4.45)

where 𝐶(x𝑗1) equals the number of source sequences in the ordered set 𝑆𝑏 with prefix
equal to x𝑗1, and 1 ≤ 𝑖 ≤ 𝑛. It is assumed that 𝐶(x0

1) = ∣𝑆𝑏∣.
To illustrate the derivation of an appropriate symbol distribution, Cleary et. al. [8]

considered a binary memoryless source, and defined the ordered set 𝑆𝑏 as containing
all sequences with the same length and weight as the source sequence. The distribution
of bit 𝑋𝑖, conditioned on the sequence x

𝑖−1
1 , was derived by observing that the number

of source sequences in the set 𝑆𝑏 with prefix x𝑖−1
1 equals the number of valid ways in

which the bits of the sequence x𝑛𝑖 may be arranged. Cover [7] proved that

𝐶(x𝑖−1
1 ) =

(𝑛− 𝑖+ 1)!

𝑛0(x
𝑛
𝑖 )!𝑛1(x

𝑛
𝑖 )!

, (4.46)

where 𝑛0(x
𝑛) and 𝑛1(x

𝑛) equal the frequency counts of the zero–valued and nonzero–
valued bits in the sequence x𝑛, respectively. Substitution of this expression into equa-
tion 4.45 provides an expression for the conditional symbol distribution

Pr(𝑋𝑖 = 𝑦∣x𝑖−1
1 ) =

𝑛𝑦(x
𝑛
𝑖 )

𝑛− 𝑖+ 1
, (4.47)

where 𝑦 ∈ {0, 1}.
Wirth [48] provided an expression for the symbol distribution of an enumerative

source model under the assumption that the source produces i.i.d. 𝑞–ary symbols, where
𝑞 ≥ 2. The ordered set 𝑆𝑏 was defined as containing all sequences with the same length
and the same number of each distinct alphabet symbol as the source sequence. The
expression

𝐶(x𝑖−1
1 ) =

(𝑛− 𝑖+ 1)!∏
𝑦∈𝒜 𝑛𝑦(x𝑛𝑖 )!

(4.48)

may be evaluated to obtain the number of sequences with prefix x𝑖−1
1 in the set 𝑆𝑏. By

substituting this expression into equation 4.45, the conditional symbol distribution

Pr(𝑋𝑖 = 𝑦∣x𝑖−1
1 ) =

𝑛𝑦(x
𝑛
𝑖 )

𝑛− 𝑖+ 1
, (4.49)

where 𝑦 ∈ 𝒜, is obtained.
Cleary et. al. [8] found that the symbol distribution of the enumerative source

model is significantly more complex to derive if the source symbols are statistically
dependent on one another. The distribution of the enumerative source model that may
be used to encode bits from a first–order binary Markov source10 was derived in order
to motivate this statement. An appropriate distribution may be derived by considering

10This source model is equivalent to the first–order binary Markov source as considered by Cover [7],
and illustrated in figure B.1 on page 260.
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the frequency counts of the distinct bit pairs in the source sequence, instead of the
individual bits.

Assume that 𝑛𝑦𝑦 ≜ 𝑛𝑦𝑦(x
𝑛
𝑖 ) where 𝑦 ∈ {0, 1}, and that 𝑦′ = 1 − 𝑦. Cleary et.

al. [8] proved that the conditional probability distribution associated with bit 𝑋𝑖 may
be expressed as

Pr(𝑋𝑖 = 𝑦∣x𝑖−1
1 ) =

𝑛𝑦𝑦
𝑛𝑦𝑦 + 𝑛𝑦′𝑦

(4.50)

and

Pr(𝑋𝑖 = 𝑦′∣x𝑖−1
1 ) =

{
𝑛𝑦′𝑦

𝑛𝑦𝑦+𝑛𝑦′𝑦
if 𝑛𝑦𝑦 > 0,

1 if 𝑛𝑦𝑦 = 0,
(4.51)

where 𝑥𝑖−1 = 𝑦 and 𝑖 ≥ 2. The expression

Pr(𝑋1 = 𝑦) =
𝑛𝑦𝑦′(𝑛𝑦𝑦 + 𝑛𝑦′𝑦)

𝑛𝑦𝑦′(𝑛𝑦𝑦 + 𝑛𝑦′𝑦) + 𝑛𝑦′𝑦(𝑛𝑦′𝑦′ + 𝑛𝑦𝑦′)
, (4.52)

where 𝑛𝑦𝑦 ≜ 𝑛𝑦𝑦(x
𝑛), is valid for the first bit of the sequence. A comparison between

equation 4.47 and equations 4.50 to 4.52 reveals that the expression for the enumera-
tive source model distribution is significantly more complex in the case of a first–order
Markov source, compared to a source that produces i.i.d. bits. The derivation of enu-
merative source models for more sophisticated sources becomes exceedingly complex.
This trend appears to limit the practicality of source codes that rely on exact enumer-
ation.

Cleary et. al. [8] made use of conditioning classes to manage the complexity involved
in deriving symbol distributions of source models. A conditioning class may be inter-
preted as a distinct preceding context of one or more symbols in the source sequence.
The conditional probability distribution of a source symbol 𝑋𝑖 is solely a function of
the frequency counts of the symbols that follow the same conditioning class as the
symbol 𝑋𝑖. Only two conditioning classes are defined for source bits from a first–order
binary Markov source. One of these conditioning classes corresponds to a zero–valued
preceding bit, and the other to a nonzero–valued preceding bit.

The symbolwise enumerative source code discussed up to this point uses conditional
symbol distributions for exact enumeration. Cleary et. al. [8] proposed two symbolwise
enumerative source codes that perform approximate enumeration. The source encoder
of an approximate enumerative source code encodes each symbol of the source se-
quence using an adaptive source model with a symbol distribution that approximates
the symbol distribution for exact enumeration. The motivation behind the use of an
approximate symbol distribution is to avoid the complexity inherent in the derivation
of the exact symbol distribution.

The first approximate enumerative source code approximates the number of ways
in which the distinct symbols that follow each conditioning class may be arranged [8].
Let the total number of times that symbol 𝑦 appears after a certain conditioning class
𝑧 in the source sequence x𝑛 be denoted by 𝑛𝑧𝑦(x

𝑛), and define

𝑛𝑧(x
𝑛) =

∑
𝑦∈𝒜

𝑛𝑧𝑦(x
𝑛). (4.53)
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The symbols that follow a certain conditioning class 𝑧 in the source sequence may be
arranged in a maximum of

𝑛𝑧(x
𝑛)!∏

𝑦∈𝒜 𝑛𝑧𝑦(x𝑛)!
(4.54)

possible ways. The first approximate enumerative source code approximates the number
of sequences with prefix x𝑖−1

1 in the set 𝑆𝑏 as the product of several integers, where
each integer equals the number of possible ways of arranging the symbols that follow
a certain conditioning class. The approximation is expressed as

𝐶(x𝑖−1
1 ) =

∏
𝑧∈𝒵

𝑛𝑧(x
𝑛
𝑖 )!∏

𝑦∈𝒜 𝑛𝑧𝑦(x𝑛𝑖 )!
. (4.55)

Equation 4.55 is an approximation of the true number of sequences in the set 𝑆𝑏 that
share the prefix x𝑖−1

1 , as some of the combinations that are included in the count cor-
respond to invalid sequences (i.e. sequences in which invalid transitions occur between
certain conditioning classes) [8]. This approximation is typically an overestimation of
the actual number of sequences that share the specific prefix (and which are elements
of the set 𝑆𝑏). The probability distribution of the symbol 𝑋𝑖, conditioned on the prefix
x𝑖−1
1 of the source sequence and the number of symbols that occur in each conditioning
class, may be obtained by substituting equation 4.55 into equation 4.45.

The second approximate enumerative source code proposed by Cleary et. al. [8] uses
what is referred to as the fixed frequency model. The fixed frequency model is derived
using the frequency counts of the symbols that appear in each conditioning class of
the source sequence. The conditional probability distribution of the symbol 𝑋𝑖, which
occurs in conditioning class 𝑧, is defined as

Pr(𝑋𝑖 = 𝑦∣x𝑖−1
1 ) =

𝑛𝑧𝑦(x
𝑛)

𝑛𝑧(x𝑛)
. (4.56)

This approximation is less accurate than the first approximation, as it completely
disregards any symbols that may have appeared previously in the source sequence.

Cleary et. al. [8] distinguished between parameterized enumerative source codes
and adaptive source codes. The source encoder of a parameterized enumerative source
code encodes the model parameters (i.e. the frequency counts of the symbols that
occur in each distinct conditioning class) as part of the source–coded sequence. It
may only encode the symbol counts upon having access to the entire interval of the
source sequence over which the symbol frequency counts are to be collected, however.
Adaptive source codes estimate the model parameters in an adaptive fashion using
those source symbols encoded previously. These codes may be applied in situations
where the distribution of the source sequence is unknown apriori.

Cleary et. al. [8] proposed methods A and B for estimating the symbol distribution
according to the symbol frequency counts of each conditioning class in an adaptive
manner. These methods were discussed in section 2.5.3 on page 19. Cleary et. al. found
that adaptive source codes that use methods A and B were more effective than both
approximate enumerative source codes when used to encode certain practical data.
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CHAPTER 5

Efficient computation of binomial
coefficients

The enumerative source code implementations proposed in chapter 6 of this thesis
have to compute large binomial coefficients in order to encode source sequences and
decode their codewords. The average magnitude of the binomial coefficients that have
to be computed is directly proportional to the length of the source sequences. Universal
enumerative source codes are ideally used to encode longer source sequences, as the
normalized average redundancy of this type of code is inversely proportional to the
length of the source sequences. The efficient computation of large binomial coefficients is
a prerequisite of universal enumerative source code implementations that are practical.

Three approaches to computing large binomial coefficients are summarized in this
chapter. The first and second approaches are impractical, and are included in the
summary to illustrate the degree of complexity involved in the computation of large
binomial coefficients. The third approach involves the decomposition of large numbers
into their prime factors, and is more practical than the alternative approaches. This
approach was used in all the enumerative source code implementations proposed in
chapter 6.

5.1 Approach 1: Direct computation

Consider the computation of the binomial coefficient

𝐵𝑚,𝑘 =

(
𝑚

𝑘

)

=
𝑚!

𝑘!(𝑚− 𝑘)!
, (5.1)

where 𝑚 and 𝑘 are nonnegative integers, and 𝑘 ≤ 𝑚. The multiplicative terms com-
mon to the numerator and denominator of equation 5.1 may be cancelled prior to the
computation of the binomial coefficient. The number of calculations that have to be
performed in order to obtain the value of the binomial coefficient may therefore be
reduced by first computing the integers

𝑑𝑥 = max(𝑘,𝑚− 𝑘) (5.2)

and
𝑑𝑛 = min(𝑘,𝑚− 𝑘), (5.3)
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and subsequently computing the binomial coefficient using the expression

𝐵𝑚,𝑘 =

∏𝑚−𝑑𝑥
𝑖=1 (𝑑𝑥 + 𝑖)

𝑑𝑛!
. (5.4)

The factorial 𝑑𝑛! has to be computed in order to evaluate equation 5.4. The factorial
is computed by multiplying a running product with a succession of integers. The 𝑗th
step of the computation may be expressed as

𝑝𝑗 = 𝑗(𝑝𝑗−1), (5.5)

where
𝑝𝑗 = 𝑗! (5.6)

is the running product after the 𝑗th step of the computation, with 1 ≤ 𝑗 ≤ 𝑑𝑛 and
𝑝0 ≜ 1.

A lower bound on the number of bit operations involved in the computation of a
factorial with the running–product approach is subsequently derived. This derivation
is carried out under the assumption that the number of bit operations involved in the
multiplication of two binary numbers is lower bounded by the length of the product
(expressed in bits). This lower bound is reasonable, as a processor has to assign the
correct values to the bits of the registers that represent the product, in addition to any
other bit operations.

The running product 𝑝𝑗 of equation 5.6 equals the factorial 𝑗!. A lower bound on
the number of bits needed to represent a factorial is therefore required to derive a lower
bound on the number of bit operations involved in the computation of a factorial. The
number of bits that are required to represent the factorial 𝑗! may be lower bounded
using Stirling’s approximation of the factorial, which is expressed as [44]

𝑗! =
√
2𝜋𝑗

(
𝑗

𝑒

)𝑗
𝑒𝜆𝑗 , (5.7)

where
1

12𝑗 + 1
< 𝜆𝑗 <

1

12𝑗
(5.8)

and 𝑗 > 0. The lower bound on the number of bits that are required to represent the
factorial 𝑗! is derived as

⌈log2(𝑗! + 1)⌉ ≥ ⌈log2(𝑗!)⌉
>

1

2
log2(2𝜋𝑗) + 𝑗 log2

(
𝑗

𝑒

)
+

1

12𝑗 + 1
log2(𝑒), (5.9)

where 𝑗 > 0. The lower bound of equation 5.9 is used to derive a lower bound on the
total number of bit operations involved in the computation of the factorial 𝑗! with the
running–product approach. This lower bound is expressed as

𝐶D(𝑗) ≥
𝑗∑
𝑖=1

⌈log2(𝑖! + 1)⌉

>

𝑗∑
𝑖=1

[
1

2
log2(2𝜋𝑖) + 𝑖 log2

(
𝑖

𝑒

)
+

1

12𝑖+ 1
log2(𝑒)

]
, (5.10)
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Figure 5.1: A lower bound on the number of bit operations involved in the computation
of the factorial 𝑗! with the running–product approach, as a function of the integer 𝑗.

where 𝑗 > 0.
The lower bound on the number of bit operations involved in the computation of the

factorial 𝑗! with the running–product approach is plotted in figure 5.1 as a function of
the integer 𝑗. The figure reveals that the number of bit operations increases rapidly with
respect to the integer 𝑗. It requires more than 108 bit operations to compute the factorial
5000!. Considering the fact that an enumerative source code implementation might be
required to compute this factorial in order to encode a single source sequence of 104

bits, it is evident that a more efficient approach to computing binomial coefficients is
required.

A lower bound on the number of bit operations required to compute the binomial
coefficient 𝐵𝑚,𝑘 may be derived by using equation 5.10 as a lower bound on the number
of bit operations involved in the computation of the factorial 𝑑𝑛! of equation 5.4. The
lower bound on the number of bit operations that are required to compute the binomial
coefficient 𝐵𝑚,𝑘, with 𝑚 = 104, is plotted in figure 5.2 on page 133 as a function of the
integer 𝑘. The figure reveals that an excessive number of bit operations are required to
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Figure 5.2: A lower bound on the number of bit operations required to compute the
binomial coefficient 𝐵𝑚,𝑘, as a function of the integer 𝑘. The case where 𝑚 = 104 is
considered.

compute the majority of binomial coefficients 𝐵𝑚,𝑘, where 𝑚 = 104. It requires more
than 106 bit operations to compute any binomial coefficient 𝐵𝑚,𝑘 with 𝑚 = 104 and
350 ≤ 𝑘 ≤ 9650. As an enumerative source code implementation typically computes
multiple binomial coefficients to encode a single source sequence, it is clear that the
direct approach to calculating binomial coefficients is not suitable for enumerative
source code implementations.

5.2 Approach 2: Computation using a lookup table

Instead of directly computing each binomial coefficient, an enumerative source code
implementation may use a precomputed lookup table to reduce the number of calcu-
lations that are required to encode each source sequence. The lookup table may either
contain the factorials of several integers, or it may contain several binomial coefficients.
The use of both types of lookup table is investigated in this section.
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5.2.1 Lookup table of factorials

Consider an enumerative source code implementation that obtains the factorial of an
integer from a precomputed lookup table, instead of directly computing the factorial.
In order to compute a certain binomial coefficient 𝐵𝑚,𝑘, it first obtains the factorials
𝑚!, 𝑘! and (𝑚 − 𝑘)! from the lookup table. It subsequently computes the coefficient
using equation 5.1.

In order to determine whether an enumerative source code implementation that uses
a lookup table of factorials is feasible, a lower bound on the number of bits required to
represent the lookup table is derived. The derivation does not take into account any
overhead associated with delimiting the factorials of the table. The derivation uses the
lower bound of equation 5.9 for the number of bits required to represent the factorial
of an integer.

In order to successfully encode any source sequence with a length of 𝑛 bits, the enu-
merative source code implementation requires a lookup table of the factorials {0!, 1!, 2!,
. . . 𝑛!}. The size of this lookup table is lower bounded according to the expression

𝐶LF(𝑛) ≥
𝑛∑
𝑖=0

⌈log2(𝑖! + 1)⌉

>
𝑛∑
𝑖=1

[
1

2
log2(2𝜋𝑖) + 𝑖 log2

(
𝑖

𝑒

)
+

1

12𝑖+ 1
log2(𝑒)

]
, (5.11)

where 𝑛 > 0.
The lower bound of equation 5.11 is plotted in figure 5.3 on page 135 as a function

of the source sequence length 𝑛. The bound on the size of the lookup table is expressed
in megabytes. The figure reveals that the size of the lookup table increases rapidly with
respect to the source sequence length 𝑛. The enumerative source code implementation
requires a lookup table that is larger than one megabyte in order to encode source
sequences longer than 1419 bits.

Table 5.1 on page 136 contains the lengths of the longest source sequences, as a
function of the lookup table size, that the enumerative source code implementation
can successfully encode. Due to the rapid increase in the size of the lookup table,
the implementation requires a lookup table larger than 66.3 megabytes to successfully
encode all source sequences up to 104 bits long. The use of a lookup table that contains
factorials is clearly an impractical approach to the computation of binomial coefficients.

5.2.2 Lookup table of binomial coefficients

Instead of obtaining factorials from a lookup table, and using the factorials to compute
binomial coefficients, an enumerative source code implementation may instead obtain
the binomial coefficients directly from a precomputed lookup table. This implementa-
tion encodes a source sequence by adding certain binomial coefficients that it obtains
from the lookup table. This enumerative source code implementation performs signif-
icantly fewer calculations to encode a source sequence than an implementation that
computes the binomial coefficients.
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Figure 5.3: Lower bounds on the sizes of the lookup tables of factorials and binomial
coefficients, as a function of the source sequence length.

In order to successfully encode any 𝑛–bit source sequence, the enumerative source
code implementation requires the binomial coefficients 𝐵𝑚,𝑘, where 0 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛.
A lower bound on the number of bits that are required to represent the binomial
coefficient 𝐵𝑚,𝑘 may be derived by using Stirling’s approximation of the factorial 𝑗!, as
provided in equations 5.7 and 5.8 [44]. The lower bound is derived as

⌈log2(𝐵𝑚,𝑘 + 1)⌉ ≥
⌈
log2

(
𝑚!

𝑘!(𝑚− 𝑘)!

)⌉

>
1

2
log2

(
𝑚

2𝜋𝑘(𝑚− 𝑘)

)
+𝑚 log2(𝑚)− 𝑘 log2(𝑘)

− (𝑚− 𝑘) log2(𝑚− 𝑘) +

(
1

12𝑚+ 1
− 1

12𝑘
− 1

12(𝑚− 𝑘)

)
log2(𝑒),

(5.12)

where 0 < 𝑘 < 𝑚 and 𝑚 > 1.
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Table 5.1: The maximum length of source sequences that can be successfully encoded
using factorial lookup tables of various sizes.

Lookup table size Source sequence length

1 kB 63 bits
10 kB 174 bits
100 kB 490 bits
1 MB 1 419 bits
10 MB 4 126 bits
66.32 MB 10 000 bits

A lower bound on the size of the lookup table may be obtained by substituting the
lower bound of equation 5.12 into the expression

𝐶LB(𝑛) ≥
𝑛∑

𝑚=0

𝑚∑
𝑘=0

⌈log2(𝐵𝑚,𝑘 + 1)⌉

>
𝑛∑

𝑚=2

𝑚−1∑
𝑘=1

⌈log2(𝐵𝑚,𝑘 + 1)⌉ , (5.13)

where 𝑛 > 1. This expression does not take into account any overhead associated with
delimiting the binomial coefficients of the table.

The lower bound on the size of the lookup table that the enumerative source code
implementation requires to successfully encode all 𝑛–bit source sequences is plotted
as a function of the integer 𝑛 in figure 5.3 on page 135. The figure reveals that the
lookup table of binomial coefficients that is required to encode all 𝑛–bit sequences
is consistently larger than the lookup table of factorials that is required to encode
sequences of the same length. Lookup tables of binomial coefficients are considered
impractical, as the smaller lookup tables of factorials are considered impractical.

5.3 Approach 3: Prime factor decomposition

The third approach to computing large binomial coefficients was used in all practical
implementations of the enumerative source codes proposed in chapter 6 of this thesis.
This approach may be used to encode source sequences of more than 104 bits with an
acceptably low degree of computational complexity1, and without lookup tables that
are excessively large. The same approach may be used to realize a computationally–
efficient enumerative source decoder.

The third approach relies on the prime factor decomposition of integers larger than
zero. Let the total number of primes smaller than or equal to the integer 𝑗 be denoted

1The computational complexity is deemed sufficiently low for simulating the enumerative source
codes on a laptop PC, and in a reasonable amount of time. The simulations involve the source coding
of source sequences, the decoding of the codewords, and the measurement of the average codeword
length.
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by 𝜃(𝑗), where 𝑗 > 0. The integer 𝑗 may be decomposed into its prime factors as

𝑗 = 𝑝
𝑐1(𝑗)
1 𝑝

𝑐2(𝑗)
2 . . . 𝑝

𝑐𝜃(𝑗)(𝑗)

𝜃(𝑗)

=

𝜃(𝑗)∏
𝑖=1

𝑝
𝑐𝑖(𝑗)
𝑖 , (5.14)

where 𝑝𝑖 is the 𝑖th prime number, and 𝑐𝑖(𝑗) is the exponent of the prime number 𝑝𝑖 in
the prime factor decomposition of the integer 𝑗.

The factorial 𝑗! may be expressed as the product of its prime factors, but the number
of primes in the product increases very rapidly w.r.t. the integer 𝑗. An alternative
expression for the factorial 𝑗! may be derived by observing that the factorial 𝑗! equals
the product of the integers from unity to 𝑗, and that the exponents of identical prime
numbers in the prime factor decompositions of these integers may be added together.
The factorial 𝑗! may therefore be expressed as

𝑗! = 𝑝
∑𝑗

𝑞=1 𝑐1(𝑞)

1 𝑝
∑𝑗

𝑞=1 𝑐2(𝑞)

2 . . . 𝑝
∑𝑗

𝑞=1 𝑐𝜃(𝑗)(𝑞)

𝜃(𝑗)

=

𝜃(𝑗)∏
𝑖=1

𝑝
∑𝑗

𝑞=1 𝑐𝑖(𝑞)

𝑖 . (5.15)

Equation 5.15 is used to derive an alternative expression for the binomial coefficient
𝐵𝑚,𝑘, where 0 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛. This expression is derived as

𝐵𝑚,𝑘 =
𝑚!

𝑘!(𝑚− 𝑘)!

= 𝑝𝑎11 𝑝𝑎22 . . . 𝑝
𝑎𝜃(𝑚)

𝜃(𝑚)

=

𝜃(𝑚)∏
𝑖=1

𝑝𝑎𝑖𝑖 , (5.16)

where

𝑎𝑖 ≜ 𝑎𝑖(𝑚, 𝑘)

=

𝑚∑
𝑞=1

𝑐𝑖(𝑞)−
𝑘∑
𝑞=1

𝑐𝑖(𝑞)−
𝑚−𝑘∑
𝑞=1

𝑐𝑖(𝑞). (5.17)

The evaluation of the alternative expression for the binomial coefficient 𝐵𝑚,𝑘 involves
several integer additions and subtractions. These integers correspond to the prime
factor exponents of the integers from unity to 𝑚.

An enumerative source code implementation that needs to decompose several inte-
gers into their prime factors in order to encode each source sequence is computationally
inefficient. In order to avoid the computational burden of decomposing an integer into
its prime factors, an enumerative source code implementation may use two precom-
puted lookup tables. The first table contains all of the 𝜃(𝑛) prime numbers smaller
than or equal to the integer 𝑛, where 𝑛 is the length of the longest source sequence
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that the implementation is required to encode. The second lookup table contains the
integers

𝑣𝑚,𝑖 =
𝑚∑
𝑞=1

𝑐𝑖(𝑞) (5.18)

for all 𝑚 ∈ {1, 2, . . . 𝑛} and all 𝑖 ∈ {1, 2, . . . 𝜃(𝑛)}. The integer 𝑣𝑚,𝑖 equals the exponent
of the prime number 𝑝𝑖 in the expression for the factorial 𝑚! (refer to equation 5.15).

In order to compute a binomial coefficient 𝐵𝑚,𝑘, an enumerative source code imple-
mentation obtains the integers 𝑣𝑚,𝑖, 𝑣𝑘,𝑖 and 𝑣𝑚−𝑘,𝑖, for all 𝑖 ∈ {1, 2, . . . 𝜃(𝑚)}, from the
second lookup table. It computes the exponent of each prime number in the expression
for the binomial coefficient (equation 5.16) as

𝑎𝑖(𝑚, 𝑘) = 𝑣𝑚,𝑖 − 𝑣𝑘,𝑖 − 𝑣𝑚−𝑘,𝑖. (5.19)

It subsequently obtains the prime numbers of the set {𝑝1, 𝑝2, . . . 𝑝𝜃(𝑚)} from the first
lookup table, and evaluates equation 5.16 to obtain the binomial coefficient 𝐵𝑚,𝑘.

A mathematical analysis of the computational complexity of the third approach
to computing large binomial coefficients is beyond the scope of this thesis. The com-
putational complexity of the third approach was instead determined by measuring
the average time that a practical enumerative source code implementation requires to
encode several source sequences and decode their codewords (when using the third
approach). These results are presented in section 6.1.2.6 on page 165.

The sizes of the first and second lookup tables of the third approach to computing
large binomial coefficients were determined by generating the two tables. An enumer-
ative source code implementation was able to successfully encode any source sequence
of up to 104 bits (and decode its codeword) with these tables. A total of 5 948 bytes
were required to represent the first table, while the second table occupied a total of
125 488 bytes. The total size of both tables equaled 131 436 bytes, which is not an
excessive number of bytes.

Figure 5.3 on page 135 reveals that the implementation which uses a lookup table of
factorials is able to encode source sequences of up to approximately 550 bits if it uses a
lookup table of the same size as the tables of the practical source code implementation
(i.e. the third approach). The figure of 550 bits is 18 times smaller than the maximum
length of the source sequences that may be encoded using the practical implementation.
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CHAPTER 6

Mathematical analysis and practical
performance

This chapter contains a mathematical analysis of several enumerative source codes,
some of which are novel. It contains mathematical definitions of the source encoder
and decoder of each code. Proofs regarding the unique decodability of the source codes
are also presented in this chapter.

The effectiveness of each source code is investigated both theoretically and empir-
ically. The summary of each enumerative source code includes a theoretical bound on
the effectiveness of the code. The source codes were implemented and used to encode
sequences from abstract information sources in order to compare their performance.

6.1 Single–field enumerative source codes

Each codeword of a single–field enumerative source code contains only a single binary–
coded integer, unlike the codewords of more sophisticated enumerative source codes.
These enumerative source codes are introduced in order to gain insight into the per-
formance and characteristics of the more sophisticated enumerative source codes.

Some of the single–field enumerative source codes serve as building blocks for multi–
field enumerative source codes. The single–field enumerative source codes may be used
to effectively encode bit sequences from simple abstract sources, however.

6.1.1 Constant weight, fixed–to–fixed length code

The constant weight, fixed–to–fixed length code is a single–field enumerative source
code that is used to encode sequences from a specific information source. This abstract
information source is referred to as the fixed–weight binary source, and is introduced
in what follows.

6.1.1.1 The fixed–weight binary source

The fixed–weight binary source is characterized by two integer parameters. These pa-
rameters are denoted by 𝑛 and 𝑤, where 𝑛 > 0 and 0 ≤ 𝑤 ≤ 𝑛. The source produces a
sequence of 𝑛 bits in a single instance, and each sequence contains exactly 𝑤 nonzero–
valued bits.

139

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

The fixed–weight binary source with parameters 𝑛 and 𝑤 can produce a total of(
𝑛

𝑤

)
=

𝑛!

𝑤!(𝑛− 𝑤)!
(6.1)

distinct 𝑛–bit sequences with 𝑤 nonzero–valued bits. All of the distinct source se-
quences are equiprobable, and all source sequences are statistically independent from
one another. The per–sequence entropy of the source equals

𝐻(X𝑛) = log2

(
𝑛

𝑤

)
(6.2)

bits.

6.1.1.2 Derivation of the source code

Several terms are introduced prior to the derivation of the constant weight, fixed–
to–fixed length source code. These definitions concern the relationship between bit
sequences and binary numbers, and are used throughout the remainder of this thesis.

A source sequence of bits is considered equivalent to a binary number. Each bit of
an 𝑛–bit source sequence x𝑛 = {𝑥1, 𝑥2, . . . 𝑥𝑛} has a certain level of significance, as is
the case with the bits of a binary number. For the purpose of this thesis, the trailing
bit of a sequence (𝑥𝑛) is considered the least significant bit, and the leading bit (𝑥1) is
considered the most significant bit.

Each bit in a source sequence has an integer degree that is associated with it. The
degree of a bit may be interpreted as its level of significance. The smallest degree equals
unity, and is associated with the least significant bit of a sequence. The largest degree
equals 𝑛, where 𝑛 is the length of the source sequence. This degree is associated with
the most significant bit of a sequence. The degree of bit 𝑥𝑖 of an 𝑛–bit source sequence
x𝑛 equals 𝑛− 𝑖+ 1.

The degrees of the 𝑤 nonzero–valued bits of the source sequence x𝑛 are assigned to
the vector dx, where dx = {𝑑1,x, 𝑑2,x, . . . 𝑑𝑤,x}. The elements of the vector are arranged
in ascending order (i.e. 𝑑𝑖,x > 𝑑𝑘,x for all 𝑖 > 𝑘).

The constant weight, fixed–to–fixed length source code is derived by considering an
𝑛–bit source sequence x𝑛 of weight 𝑤, as produced by the fixed–weight binary source
with parameters 𝑛 and 𝑤. It is assumed that 𝑛 > 1 and 1 < 𝑤 ≤ 𝑛 in order to complete
the derivation. The most significant nonzero–valued bit in the source sequence x𝑛 has a
degree equal to 𝑑𝑤,x. All source sequences with no nonzero–valued bits of degree 𝑑𝑤,x or
larger are numerically smaller than the source sequence x𝑛, regardless of the remaining
bits of the sequence. There exists a total of

𝑧𝑤 =

(
𝑑𝑤,x − 1

𝑤

)
(6.3)

distinct source sequences that satisfy this requirement.
Certain 𝑛-bit source sequences of weight 𝑤 have a nonzero–valued bit with a degree

of 𝑑𝑤,x, but no nonzero–valued bits with a larger degree. Some of these sequences
may be numerically smaller than the source sequence x𝑛. The total number of these
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numerically smaller sequences may be established by considering the bits of x𝑛 that
have degrees smaller than 𝑑𝑤,x. Observe that no sequence having any nonzero–valued
bits with degree 𝑗, where 𝑑𝑤−1,x < 𝑗 < 𝑑𝑤,x, as well as a nonzero–valued bit with degree
𝑑𝑤,x, is numerically smaller than the source sequence x

𝑛. It is therefore sufficient to
consider only those source sequence bits with degrees smaller than or equal to 𝑑𝑤−1,x

in order to determine how many of the remaining sequences are numerically smaller
than x𝑛.

Let the function 𝑄(x𝑛, 𝑑𝑤,x) represent the number of 𝑛–bit source sequences of
weight 𝑤 that are found to be numerically smaller than the sequence x𝑛 by only con-
sidering those source sequence bits with a degree smaller than or equal to 𝑑𝑤,x. The
recursive expression

𝑄(x𝑛, 𝑑𝑤,x) = 𝑧𝑤 +𝑄(x𝑛, 𝑑𝑤−1,x), (6.4)

where 𝑄(x𝑛, 𝑑0,x) ≜ 0, may be derived from the previous statements. This expression
may be simplified as

𝑄(x𝑛, 𝑑𝑤,x) =

𝑤∑
𝑖=1

𝑧𝑖

=
𝑤∑
𝑖=1

(
𝑑𝑖,x − 1

𝑖

)
, (6.5)

where
(
𝑎
𝑏

)
≜ 0 for all 𝑎 < 𝑏. The sum of equation 6.5 equals the total number of distinct

𝑛–bit source sequences, each having a weight of 𝑤 bits, that are numerically smaller
than x𝑛. This equation is equivalent to equation 4.10 on page 107, which is an expression
for the integer codeword of an index sequence, as produced by the enumerative source
code of Lynch [5, 6].

The binary number that corresponds to the integer 𝑄(x𝑛, 𝑑𝑤,x) is padded with
zero–valued bits on the side of its most significant bit to obtain a 𝑘–bit binary number.
The 𝑘–bit binary number is the codeword of the source sequence x𝑛. If the original,
unpadded binary number is longer than 𝑘 bits, the source sequence that corresponds
to the binary number cannot be assigned a unique codeword. This source sequence is
assigned a codeword of 𝑘 zero–valued bits. This codeword is incorrectly decoded by the
source decoder.

6.1.1.3 Definition of the source code

The constant weight, fixed–to–fixed length source code is formally defined in terms of
mathematical functions as follows. Let 𝑓 : 𝔹𝑛 (→ 𝑍 where 𝔹 = {0, 1} and 𝑍 = {𝑧 ∈
ℕ0 : 0 ≤ 𝑧 ≤ (𝑛

𝑤

) − 1}. The function 𝑓 maps an 𝑛–bit source sequence with weight 𝑤
to its index in the numerically–ordered set of all 𝑛–bit sequences with weight 𝑤. The
function 𝑓 may be decomposed as

𝑓 = 𝑓2 ∘ 𝑓1. (6.6)

The trivial function 𝑓1 : 𝔹
𝑛 (→ 𝐷, where 𝐷 = {d ∈ ℕ

𝑤 : 1 ≤ 𝑑𝑖 ≤ 𝑛 ∧ 𝑑𝑖 > 𝑑𝑗 ∀ 𝑖 > 𝑗},
or dx = 𝑓1(x), is defined over all source sequences x

𝑛. The elements of the vector
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d ≡ dx equal the degrees of the 𝑤 nonzero–valued bits of x𝑛 in ascending order. The
function 𝑓2 : 𝐷 (→ 𝑍, or 𝑧 = 𝑓2(d), maps the degree vector associated with the source
sequence to the integer index of the source sequence in the numerically–ordered set of
all 𝑛–bit source sequences with weight 𝑤. It is defined as

𝑓2(d) =
𝑤∑
𝑖=1

(
𝑑𝑖 − 1

𝑖

)
, (6.7)

where
(
𝑎
𝑏

)
≜ 0 for all 𝑎 < 𝑏. Let the function 𝛽𝑚 : ℕ0 (→ 𝔹

𝑚 be defined as

𝛽𝑚(𝑦) =

{
𝐵𝑚(𝑦) if 0 ≤ 𝑦 ≤ 2𝑚 − 1,
0𝑚 if 𝑦 > 2𝑚 − 1, (6.8)

where 0𝑚 denotes the 𝑚–bit sequence that consists of zero–valued bits. The function
𝐵𝑚(𝑦) maps the integers in its domain of 0 ≤ 𝑦 ≤ 2𝑚 − 1 to their respective binary
numbers, which are zero–padded to 𝑚 bits on the side of the most significant bit
as necessary. The source encoder of the constant weight, fixed–to–fixed length source
code is defined using the function 𝑔1 : 𝔹

𝑛 (→ 𝔹
𝑘. The codeword of the sequence x𝑛 is

expressed as

cx = 𝑔1(x)

= 𝛽𝑘
(
𝑓(x)

)
. (6.9)

6.1.1.4 Proof of unique decodability

This section contains a proof regarding the unique decodability of the constant weight,
fixed–to–fixed length (𝑛–bit to 𝑘–bit) source code, as used to encode sequences from a
fixed–weight binary source with parameters 𝑛 and 𝑤. It is proved that this source code
is uniquely decodable if the condition 𝑘 ≥ ⌈log2 (𝑛𝑤)⌉ is satisfied.

If the parameter 𝑤 of the fixed–weight binary source equals zero or 𝑛, the source
produces only one distinct sequence, and the proof regarding the unique decodability
of the source code is trivial. The proof that is presented in this section is carried out
under the assumption that 0 < 𝑤 < 𝑛, where 𝑛 > 1.

In order to prove that the source code is uniquely decodable, it is first proved that
the function 𝑓 = 𝑓2 ∘ 𝑓1 is invertible. The first step of this proof is to establish that the
function 𝑓2 is invertible. The invertibility of the function 𝑓2 is established by proving
that the function 𝑓2 is both injective and surjective.

Consider two elements 𝑥 and 𝑦 in the domain of a function ℎ. The function ℎ is
injective if ℎ(𝑥) ∕= ℎ(𝑦) for all 𝑥 and 𝑦 with 𝑥 ∕= 𝑦. A surjective function ℎ has the
property that, for every element 𝑦 in the codomain of ℎ, there exists some element 𝑥
in its domain that satisfies the equation ℎ(𝑥) = 𝑦.

Lemma 6.1.1. The function 𝑓2 is injective.

Proof. In order to prove that the function 𝑓2 is injective, it is sufficient to prove that

𝑤∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
∕=

𝑤∑
𝑘=1

(
ℎ𝑘 − 1

𝑘

)
(6.10)
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under the assumption that there exists one or more elements 𝑗𝑖 with 𝑗𝑖 ∕= ℎ𝑖, and where
j,h ∈ 𝐷. Let

𝑟 = max(𝑖) : 𝑗𝑖 ∕= ℎ𝑖 (6.11)

and without loss of generality assume that 𝑗𝑟 > ℎ𝑟. The remainder of the proof is
divided into two sections. The first section addresses the case where ℎ𝑟 ≤ 𝑟, and the
second section addresses the case where ℎ𝑟 > 𝑟.

In order to prove that equation 6.10 is valid under the assumption that ℎ𝑟 ≤ 𝑟, it
is sufficient to consider the case where ℎ𝑟 = 𝑟, as ℎ𝑟 ≥ 𝑟 by definition. If ℎ𝑟 = 𝑟, the
equation

𝑟∑
𝑘=1

(
ℎ𝑘 − 1

𝑘

)
= 0 (6.12)

holds, as ℎ𝑖 = 𝑖 for 1 ≤ 𝑖 ≤ 𝑟. Due to the assumption that 𝑗𝑟 > ℎ𝑟, the inequality(
𝑗𝑟 − 1
𝑟

)
> 0 (6.13)

holds. It follows that

𝑟∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
>

𝑟∑
𝑣=1

(
ℎ𝑣 − 1

𝑣

)
, (6.14)

as each binomial coefficient is nonnegative. This inequality is used to prove that

𝑤∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
=

𝑟∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
+

𝑤∑
𝑣=𝑟+1

(
𝑗𝑣 − 1
𝑣

)

=
𝑟∑

𝑣=1

(
𝑗𝑣 − 1
𝑣

)
+

𝑤∑
𝑣=𝑟+1

(
ℎ𝑣 − 1

𝑣

)

>
𝑟∑

𝑣=1

(
ℎ𝑣 − 1

𝑣

)
+

𝑤∑
𝑣=𝑟+1

(
ℎ𝑣 − 1

𝑣

)

>

𝑤∑
𝑣=1

(
ℎ𝑣 − 1

𝑣

)
. (6.15)

The proof concerning the case where ℎ𝑟 ≤ 𝑟 is therefore complete.
The remainder of the proof addresses the case where ℎ𝑟 > 𝑟. The equation

𝑟∑
𝑘=1

(
ℎ𝑘 − 1

𝑘

)
=

𝑟−1∑
𝑣=0

(
ℎ𝑟−𝑣 − 1
𝑟 − 𝑣

)
(6.16)

is obtained by setting 𝑣 equal to 𝑟 − 𝑘. The inequality

ℎ𝑟−𝑣 ≤ ℎ𝑟 − 𝑣, (6.17)
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where 𝑣 ≥ 0, is substituted into equation 6.16 to obtain the inequality

𝑟∑
𝑘=1

(
ℎ𝑘 − 1

𝑘

)
≤

𝑟−1∑
𝑣=0

(
ℎ𝑟 − 𝑣 − 1

𝑟 − 𝑣

)

≤
𝑟∑

𝑣=0

(
ℎ𝑟 − 𝑣 − 1

𝑟 − 𝑣

)
, (6.18)

where the last step follows from the fact that all binomial coefficients are greater than
or equal to zero. This inequality may be rewritten as

𝑟∑
𝑘=1

(
ℎ𝑘 − 1

𝑘

)
<

𝑟∑
𝑣=0

(
ℎ𝑟 − 𝑣 − 1

𝑟 − 𝑣

)
(6.19)

due to the fact that
(
ℎ𝑟−𝑟−1

0

)
= 1 under the assumption that ℎ𝑟 ≥ 𝑟 + 1. The identity

𝑟∑
𝑖=0

(
𝑛− 𝑖

𝑟 − 𝑖

)
=

(
𝑛 + 1

𝑟

)
(6.20)

is substituted into equation 6.19 to obtain the inequality

𝑟∑
𝑘=1

(
ℎ𝑘 − 1

𝑘

)
<

(
ℎ𝑟
𝑟

)

<

(
𝑗𝑟 − 1
𝑟

)
, (6.21)

where the last step follows from the fact that 𝑗𝑟 > ℎ𝑟. The left–hand side of equation
6.10 may therefore be simplified as

𝑤∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
=

𝑟∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
+

𝑤∑
𝑣=𝑟+1

(
𝑗𝑣 − 1
𝑣

)

=

𝑟∑
𝑣=1

(
𝑗𝑣 − 1
𝑣

)
+

𝑤∑
𝑣=𝑟+1

(
ℎ𝑣 − 1

𝑣

)

>

𝑟∑
𝑣=1

(
ℎ𝑣 − 1

𝑣

)
+

𝑤∑
𝑣=𝑟+1

(
ℎ𝑣 − 1

𝑣

)

>
𝑤∑
𝑣=1

(
ℎ𝑣 − 1

𝑣

)
, (6.22)

thereby completing the proof.

Lemma 6.1.2. The function 𝑓2 is surjective.

Proof. The largest and smallest integers in the range of function 𝑓2 are determined
in order to complete the proof. The smallest integer in the range of function 𝑓2 is
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associated with the degree vector d = {1, 2, . . .𝑤}. The smallest integer equals

𝑓2(d) =
𝑤∑
𝑖=1

(
𝑑𝑖 − 1

𝑖

)

=

𝑤∑
𝑖=1

(
𝑖− 1
𝑖

)
= 0, (6.23)

as
(
𝑛
𝑘

)
≜ 0 for all 𝑛 < 𝑘.

The largest integer in the range of function 𝑓2 is associated with the degree vector
d = {𝑛− 𝑤 + 1, 𝑛− 𝑤 + 2, . . . 𝑛}. The largest integer equals

𝑓2(d) =

𝑤∑
𝑖=1

(
𝑑𝑖 − 1

𝑖

)

=
𝑤−1∑
𝑗=0

(
𝑛− 𝑗 − 1
𝑤 − 𝑗

)

=

(
𝑛

𝑤

)
− 1, (6.24)

where the first step involves the substitution 𝑗 = 𝑤 − 𝑖, and the last step follows from
equation 6.20 and the fact that (

𝑛− 𝑤 − 1
0

)
= 1 (6.25)

for all 𝑤 < 𝑛 (which corresponds to the nontrivial proof).
The largest and smallest elements in the range of function 𝑓2, as well as the fact

that the range of the function contains integer elements, imply that the function has
a maximum of

(
𝑛
𝑤

)
distinct elements in its range. The domain of function 𝑓2 contains

exactly
(
𝑛
𝑤

)
distinct elements. The fact that function 𝑓2 is injective implies that the

function contains exactly
(
𝑛
𝑤

)
elements in its range. The range of function 𝑓2 is therefore

equal to its codomain.
The fact that the range and codomain of function 𝑓2 are equal implies that there

exists, for each element 𝑧 in the codomain of function 𝑓2, some element d in the domain
of function 𝑓2 so that 𝑓2(d) = 𝑧. The function 𝑓2 is therefore surjective.

Theorem 6.1.1. The function 𝑓2 is invertible.

Proof. Function 𝑓2 is invertible as it is both injective and surjective (refer to lemmas
6.1.1 and 6.1.2).

Theorem 6.1.2. The constant weight, fixed–to–fixed length (𝑛–bit to 𝑘–bit) source
code, when used to encode sequences from a fixed–weight binary source with parameters
𝑛 and 𝑤, is uniquely decodable if 𝑘 ≥ ⌈log2 (𝑛𝑤)⌉.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 145

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

Proof. The source code is proved as being uniquely decodable by proving that function
𝑔1, as defined in equation 6.9, is invertible if 𝑘 ≥

⌈
log2

(
𝑛
𝑤

)⌉
. It is therefore assumed

that 𝑘 ≥ ⌈log2 (𝑛𝑤)⌉, from which it follows that

2𝑘 ≥ 2⌈log2 (𝑛𝑤)⌉
≥ 2log2 (

𝑛
𝑤)

≥
(
𝑛

𝑤

)
(6.26)

and that (
𝑛

𝑤

)
− 1 ≤ 2𝑘 − 1. (6.27)

The left–hand side of equation 6.27 equals the largest integer that function 𝑓 associates
with any element in its restricted domain1, which consists of all source sequences from a
fixed–weight binary source with parameters 𝑛 and 𝑤. As the maximum value of function
𝑓 is smaller than or equal to 2𝑘 − 1, function 𝛽𝑘 in equation 6.9 may be replaced by
function 𝐵𝑘 from equation 6.8 to obtain the equation

cx = 𝑔1(x)

= 𝐵𝑘

(
𝑓(x)

)
. (6.28)

Function 𝑓1 is invertible provided that the integer 𝑛 is known. It follows that function
𝑓 is invertible, as both functions 𝑓1 and 𝑓2 are invertible (refer to theorem 6.1.1 for a
proof regarding the invertibility of function 𝑓2). The inverse of function 𝑓 is expressed
as

𝑓−1 = 𝑓−1
1 ∘ 𝑓−1

2 . (6.29)

It follows that function 𝑔1 is invertible, as both functions 𝑓 and 𝐵𝑘 are invertible. The
inverse of function 𝑔1 is derived as

x = 𝑔−1
1 (cx)

= 𝑓−1
(
𝐵−1
𝑘 (cx)

)
. (6.30)

6.1.1.5 Theoretical performance

The theoretical performance of the constant weight, fixed–to–fixed length (𝑛–bit to
𝑘–bit) source code is investigated in this section. It is assumed that the source code
is used to encode sequences from a fixed–weight binary source with parameters 𝑛 and
𝑤. The performance of the source code is characterized in terms of its block–error
probability, as well as the redundancy of its codewords.

The block–error probability of a source code is defined by considering a random
source sequence X𝑛. Suppose that the source code is used to encode this sequence,

1This statement follows from equation 6.6 and the maximum value of function 𝑓2, as determined
in lemma 6.1.2.
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thereby obtaining its codeword Cx. The source decoder is subsequently applied to the
codeword Cx. Let the output of the source decoder be denoted by X̂𝑛. A block error
is said to occur if X̂𝑛 ∕= X𝑛. The block–error probability is defined as

𝑃𝑏 ≜ Pr(X̂𝑛 ∕= X𝑛). (6.31)

The block–error probability of the constant weight, fixed–to–fixed length source
code is derived in what follows. Theorem 6.1.2 states that the source code is uniquely
decodable if the codeword length 𝑘 satisfies the inequality 𝑘 ≥ ⌈log2 (𝑛𝑤)⌉. The block–
error probability 𝑃𝑏 of the source code is therefore equal to zero if 𝑘 ≥

⌈
log2

(
𝑛
𝑤

)⌉
.

If the codeword length 𝑘 satisfies the inequality 𝑘 ≤ ⌈log2 (𝑛𝑤)⌉− 1, the block–error
probability of the source code is larger than zero. The number of source sequences that
are correctly recovered by the source decoder equals 2𝑘, as each codeword is associated
with at least one source sequence. The remaining

(
𝑛
𝑤

) − 2𝑘 source sequences are not
correctly decoded from the codewords assigned to them. The block–error probability of
the source code equals the fraction of source sequences that are incorrectly recovered,
as all source sequences are equiprobable. The block–error probability of the source code
may therefore be expressed as

𝑃𝑏 =

{
0 if 𝑘 ≥ ⌈log2 (𝑛𝑤)⌉ ,

1− 2𝑘(𝑛
𝑤

)−1
if 𝑘 ≤ ⌈log2 (𝑛𝑤)⌉− 1. (6.32)

The redundancy of the constant weight, fixed–to–fixed length source code with a
block–error probability of zero is considered in what follows. In order to derive a bound
on the redundancy of the code, the codeword length is selected as

𝑘 =

⌈
log2

(
𝑛

𝑤

)⌉
(6.33)

bits, as this is the minimum codeword length that guarantees a uniquely decodable
code.

The average per–codeword redundancy of the constant weight, fixed–to–fixed length
source code is defined as the difference between the average codeword length and the
per–sequence entropy of the source. As the codewords of the constant weight, fixed–to–
fixed length source code are of equal length 𝑘, the average per–codeword redundancy
of the source code, measured in bits, may be bounded as

𝑅(X𝑛) = 𝑘 −𝐻(X𝑛)

=

⌈
log2

(
𝑛

𝑤

)⌉
− log2

(
𝑛

𝑤

)
< 1, (6.34)

where the expression for the per–sequence entropy was substituted from equation 6.2.

6.1.1.6 Practical results

This section presents the block–error probability and redundancy associated with a
practical implementation of the constant weight, fixed–to–fixed length code. The re-
sults were obtained by using the implementation to encode sequences from the fixed–
weight binary source in two configurations. The performance of the implementation
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was compared to the performance of a Huffman code, an arithmetic code and an ideal
variable–length code in each case.

The source codes that were compared to the constant weight, fixed–to–fixed length
source code are summarized in the following section. This section is followed by a
discussion of each configuration of the source code implementation, as well as the
presentation of the source coding results. The results are discussed, and the source
codes are compared to one another.

Alternative source codes An 𝑛–bit extended Huffman code was considered for the
source coding of sequences from the fixed–weight binary source. The Huffman code
was not implemented in software, as the exact length of each codeword of the extended
Huffman code may be derived mathematically. This derivation is subsequently carried
out.

The extended Huffman code associates its codewords with a total of
(
𝑛
𝑤

)
leaf nodes

of a full binary tree. The codewords occupy (at most) two consecutive levels of the
binary tree, due to the fact that the source sequences are equiprobable. Assume that
the tree levels are numbered according to their depth (relative to the root node), and
that the root node is located on level zero of the tree. The codewords of the Huffman
code are located on the levels numbered

𝑙1 =

⌈
log2

(
𝑛

𝑤

)⌉
(6.35)

and
𝑙2 = 𝑙1 − 1. (6.36)

Let the number of codewords located on level number 𝑙1 of the tree be denoted by 𝑚1,
and the number of codewords located on level number 𝑙2 of the tree be denoted by 𝑚2.
The number of codewords on each of these levels may be derived using the equation

𝑚1 +𝑚2 =

(
𝑛

𝑤

)
, (6.37)

as well as Kraft’s inequality [16], which is expressed as

𝑚12
−𝑙1 +𝑚22

−𝑙2 ≤ 1. (6.38)

Kraft’s inequality holds with equality for the Huffman code under consideration, as
the binary tree containing the codewords is full. The inequality may be manipulated
to obtain the equation

𝑚1 + 2𝑚2 = 2𝑙1

= 2⌈log2 (𝑛𝑤)⌉. (6.39)

By substituting equation 6.37 into equation 6.39, the number of codewords of length
𝑙2 is derived as

𝑚2 = 2⌈log2 (𝑛𝑤)⌉ −
(
𝑛

𝑤

)
. (6.40)
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Table 6.1: Parameters and quantities associated with the first configuration of the
constant weight, fixed–to–fixed length code.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 500 bits
Source sequence weight 𝑤 125 bits
Codeword length 𝑘 1 – 500 bits

Trials per codeword length — 10 000 trials
Per–sequence source entropy 𝐻(X𝑛) 401.04 bits

By substituting equation 6.40 into equation 6.37, the number of codewords of length
𝑙1 is derived as

𝑚1 = 2

(
𝑛

𝑤

)
− 2⌈log2 (𝑛𝑤)⌉. (6.41)

The arithmetic source code that was compared to the constant weight, fixed–to–
fixed length code was not implemented. A bound on the average length of the codewords
that an arithmetic code produces was used in the comparison. This bound is expressed
as [4]

𝐻(X𝑛) ≤ 𝐿(X𝑛) < 𝐻(X𝑛) + 2, (6.42)

where 𝐿(X𝑛) is the average length of the codewords produced by the encoder. Equation
2.6 on page 15, which expresses the length of each codeword in terms of the probability
of occurrence of the corresponding source sequence, was also used in the comparison.

The ideal variable–length source code is a hypothetical source code that was com-
pared to the constant weight, fixed–to–fixed length code. An ideal variable–length
source code produces a codeword of length − log2(Pr(x𝑛)) bits when used to encode a
source sequence x𝑛 that occurs with a probability of Pr(x𝑛). The ideal variable–length
source code has an average codeword length that equals the per–sequence entropy of
the source.

Configuration 1: Variable codeword length The first configuration involved the
selection of fixed values for 𝑛 (the length of each source sequence) and 𝑤 (the weight
of each source sequence). The length 𝑘 of the codewords that the constant weight,
fixed–to–fixed length code produced was varied in order to investigate the block–error
probability associated with each source code2. The parameters of the first configuration
are presented in table 6.1.

The source coding results associated with the constant–weight source code in the
first configuration are presented in figure 6.1 on page 150. This figure contains a plot of
the block–error probabilities of the source codes as a function of the codeword length
of the constant weight, fixed–to–fixed length source code. The constant weight, fixed–
to–fixed length source code is referred to as the proposed code in the discussion of the
results.

2A block–error probability was associated with each variable–length lossless source code by inter-
preting all codewords with lengths exceeding the value of 𝑘 as containing an error. This method of
comparing fixed–length and variable–length source codes was used by Caire et. al. [85].
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Figure 6.1: Block–error probabilities of various source codes as a function of the code-
word length of the constant weight, fixed–to–fixed length code in the first configuration.

Figure 6.1 reveals that the theoretical block–error probability curve of the proposed
code (equation 6.32) and the block–error probability curve of the practical implemen-
tation overlap. This observation implies that the proposed source code was correctly
implemented.

The block–error probabilities of the source codes are nonincreasing functions of
the codeword length 𝑘. Shannon proved that no fixed–to–fixed length source code can
encode and decode source sequences with a block–error probability that is arbitrarily
close to zero if the rate of the code is lower than the entropy of the source, regardless of
the length of the source sequences [44]. The per–sequence entropy of the fixed–weight
source, with parameters as provided in table 6.1, was calculated as 401.04 bits using
equation 6.2. Figure 6.1 confirms that the block–error probabilities of all the source
codes are significantly larger than zero upon considering codewords shorter than 401
bits3.

3Shannon’s theorem, as presented in this section, refers to the code rate of the source code. The
curves of figure 6.1 are plotted as functions of the codeword length and not the code rate. The
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A comparison of the curves of figure 6.1 reveals that the variable–length source codes
(the Huffman code, arithmetic code and ideal variable–length code) do not perform as
well as the proposed source code. This observation is consistent with the observations
of Caire et. al. [85] regarding the suboptimal performance of variable–length source
codes that are applied in fixed–length source coding scenarios. The variable–length
source codes are designed to produce codewords with a minimum average length. The
minimization of the average codeword length is not equivalent to the goal of minimizing
the block–error probability, which applies to the design of fixed–length source codes.

Figure 6.1 reveals that the extended Huffman source code has a lower block–error
probability than the ideal variable–length source code, assuming a codeword length of
401 bits. This observation may be justified by considering the lengths of the codewords
of the ideal variable–length code. A codeword of the ideal variable–length source code
has a length of − log2(Pr(x𝑛)) bits, where Pr(x𝑛) denotes the corresponding source
sequence’s probability of occurrence. As all source sequences are equiprobable, the
codewords all have the same length, which is equal to the per–sequence entropy of the
source. This fact implies that all codewords of the ideal variable–length source code
will be associated with block errors, as the per–sequence source entropy exceeds 401
bits. The Huffman code cannot represent codewords with a fractional number of bits,
however. A fraction of

𝑚2

𝑚1 +𝑚2
≈ 0.9495 (6.43)

of the codewords of the extended Huffman code have a length of 401 bits, and the
remaining codewords have a length of 402 bits. The block–error probability of the
Huffman source code is therefore lower than the block–error probability of the ideal
variable–length source code if 𝑘 equals 401 bits.

The final observation regarding figure 6.1 concerns the arithmetic code. The curve
associated with the arithmetic code was computed using equation 2.6 on page 15.
According to this equation, the length of each codeword of the arithmetic code equals

𝑙𝐴 = ⌈− log2(Pr(x𝑛))⌉+ 1
= 403 (6.44)

bits. It follows that the arithmetic code is outperformed by the extended Huffman code
in terms of block–error probability, as its codewords are longer than the codewords of
the extended Huffman code.

Configuration 2: Variable source sequence weight The second configuration of
the constant weight, fixed–to–fixed length code involved source sequences of a fixed
length 𝑛. The weight of the source sequences from the fixed–weight binary source
was varied in order to investigate the average codeword length and redundancy of
each source code. The length of the codewords of the constant weight, fixed–to–fixed
length source code was specified to guarantee its unique decodability. The appropriate
codeword length for each value of 𝑤 was obtained by evaluating equation 6.33 with
each value of 𝑤. The parameters of the second configuration of the proposed source
code are presented in table 6.2 on page 152.

conclusions drawn with respect to Shannon’s theorem still hold, however.
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Table 6.2: Parameters and quantities associated with the second configuration of the
constant weight, fixed–to–fixed length code.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 500 bits
Source sequence weight 𝑤 0 – 500 bits
Codeword length 𝑘 Eq. 6.33 bits

Trial runs per source sequence weight — 10 000 trials
Per–sequence source entropy 𝐻(X𝑛) Eq. 6.2 bits

The length of the codewords produced by the implementation of the proposed source
code is plotted as a function of the source sequence weight in figure 6.2 on page 153.
This figure includes a plot of the per–sequence source entropy as a function of the
source sequence weight. The curve of the per–sequence entropy of the fixed–weight
binary source resembles the curve of the binary entropy function. The relationship
between the two curves may be established by substituting Stirling’s approximation of
the factorial 𝑛! [44] into the equation for the per–sequence entropy, thereby obtaining
the approximation

𝐻(X𝑛) = log2

(
𝑛

𝑤

)

≈ 𝑛ℎ

(
𝑤

𝑛

)
(6.45)

to the per–sequence entropy of the fixed–weight source with parameters 𝑛 and 𝑤, where
ℎ(⋅) denotes the binary entropy function. The accuracy of the approximation improves
w.r.t. the source sequence length 𝑛.

Figure 6.2 suggests that the codeword length of the proposed source code is approx-
imately equal to the per–sequence entropy of the fixed–weight binary source. The dif-
ference between the codeword length of the proposed source code and the per–sequence
entropy of the source (i.e. the redundancy) is investigated in what follows.

The average per–codeword redundancy 𝑅(X𝑛) of the constant weight, fixed–to–
fixed length source code is plotted in figure 6.3 on page 154. The average redundancy
of the practical implementation of the proposed source code is upper bounded by
the blue curve, which represents the bound of equation 6.34. The statement that the
average per–codeword redundancy of the proposed source code does not exceed the
per–sequence source entropy by more than one bit is therefore verified.

A comparison of the redundancy of the proposed source code and the redundancy of
the extended Huffman code reveals that the Huffman code is significantly less redundant
than the proposed code. This observation may be justified by considering the fact
that the proposed source code is a fixed–length source code, and that the length of
all its codewords is greater than or equal to the per–sequence entropy of the source.
The variable–length Huffman code is not constrained in this fashion — several of the
codewords of the Huffman code typically contain fewer bits than the per–sequence
entropy of the source. The average codeword length of the Huffman code can therefore
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Figure 6.2: Per–sequence source entropy and codeword length of the constant weight,
fixed–to–fixed length code in the second configuration, as a function of the source
sequence weight.

approach the per–sequence source entropy more closely than the codeword length of
the proposed source code, yet still exceed the source entropy.

The curve of the average per–codeword redundancy of the arithmetic code was com-
puted using equation 6.42. This curve is a bound on the performance of the arithmetic
code, and should not serve as an absolute measure of its performance. It merely proves
that the average per–codeword redundancy of the arithmetic code does not exceed two
bits.

6.1.2 Variable weight, fixed–to–fixed length code

The variable weight, fixed–to–fixed length (𝑛–bit to 𝑘–bit) source code is a single–field
enumerative source code that may be considered a generalization of the constant weight,
fixed–to–fixed length source code. It may be used to encode 𝑛–bit source sequences of
any weight 𝑤. The binary memoryless source is an example of an abstract source that
produces sequences which may be effectively encoded using the variable weight, fixed–
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Figure 6.3: Average per–codeword redundancies of certain variable–length codes, as well
as the constant weight, fixed–to–fixed length source code in the second configuration.

to–fixed length source code.

6.1.2.1 Derivation of the source code

Consider a set 𝑆𝑏 that consists of all 𝑛–bit sequences, and assume that this set is
ordered according to two rules. The first rule states that all sequences with weight 𝑖
precede all sequences with weight 𝑗 in the ordered set, for all values of 𝑖 and 𝑗 with
𝑖 < 𝑗. The second rule states that equal–weight sequences in the set are ordered relative
to one another by interpreting these sequences as binary numbers, and ordering the
numbers numerically in ascending order. The second rule produces a sequence order
that is identical to the order of the equal–weight sequences of the constant weight,
fixed–to–fixed length source code.

The index of a source sequence x𝑛 in the ordered set 𝑆𝑏 equals the number of
sequences that precede it in the set. Consider an 𝑛–bit source sequence x𝑛 with a
weight of 𝑤 bits. The number of sequences with weight 𝑤 that precede the sequence x𝑛

in the ordered set 𝑆𝑏 may be calculated using equation 6.5. The remaining sequences
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that precede the sequence x𝑛 in the ordered set consist of all distinct 𝑛–bit sequences
with weights 0 ≤ 𝑤′ < 𝑤. As a total of

(
𝑛
𝑤′
)
distinct 𝑛–bit sequences of weight 𝑤′ exist,

the total number of distinct 𝑛–bit sequences with weights 0 ≤ 𝑤′ < 𝑤 may be derived
as

𝑡 =

𝑤−1∑
𝑤′=0

(
𝑛

𝑤′

)
. (6.46)

The index of the source sequence x𝑛 in the ordered set 𝑆𝑏 is obtained by adding the
total number of distinct 𝑛–bit sequences with weights 0 ≤ 𝑤′ < 𝑤 and the number
of 𝑛–bit sequences with weight 𝑤 that are numerically smaller than the sequence x𝑛,
where 𝑤 is the weight of the source sequence.

The integer index of the source sequence x𝑛 in the ordered set 𝑆𝑏 is encoded us-
ing the conventional binary–coded representation of an integer. The binary number is
padded to a length of 𝑘 bits with zero–valued bits on the side of its most significant
bit (if necessary). If the binary–coded representation of a certain index is longer than
𝑘 bits, the source sequence that corresponds to the index cannot be assigned a unique
codeword. This source sequence is assigned a codeword that consists of 𝑘 zero–valued
bits. This codeword is incorrectly decoded by the source decoder.

6.1.2.2 Definition of the source code

The mathematical definition of the variable weight, fixed–to–fixed length source code
uses several of the functions that were introduced in section 6.1.1.3. Let the source
encoder of the variable weight, fixed–to–fixed length source code correspond to the
function 𝑔2 : 𝔹

𝑛 (→ 𝔹
𝑘. The codeword produced by the source encoder, when used to

encode the source sequence x𝑛, is expressed as

cx = 𝑔2(x)

= 𝛽𝑘

(
𝑓(x) +

𝑤−1∑
𝑤′=0

(
𝑛

𝑤′

))
, (6.47)

where 𝑤 is the weight of the source sequence x𝑛, and 𝑘 is the length of the codeword.

6.1.2.3 Proof of unique decodability

This section contains a proof of the fact that the variable weight, fixed–to–fixed length
source code is uniquely decodable when used to encode source sequences from a certain
set. It is shown that function 𝑔2 of equation 6.47 is invertible if its domain is restricted
to the sequences of the set.

Consider the function 𝑓3 : 𝔹
𝑛 (→ 𝐼𝑛, which is defined as

𝑓3(x) = 𝑓(x) +
𝑤−1∑
𝑤′=0

(
𝑛

𝑤′

)
, (6.48)

where 𝑤 is the weight of the source sequence x𝑛, and 𝐼𝑛 = {𝑗 ∈ ℕ0 : 0 ≤ 𝑗 ≤ 2𝑛 − 1}.
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Lemma 6.1.3. The codomain of function 𝑓3 may be divided into 𝑛 + 1 disjoint sub-
sets. All sequences of equal weight 𝑤 in the domain of the function are injectively and
surjectively mapped to the elements of the (𝑤 + 1)th subset, where 𝑤 ∈ {0, 1, . . . 𝑛}.
Proof. Let the set 𝑆𝑖, where 𝑖 ∈ {0, 1, . . . 𝑛}, be defined as

𝑆𝑖 =

{ 𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
,

𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
+ 1, . . .

𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
+

(
𝑛

𝑖

)
− 1
}
. (6.49)

Set 𝑆𝑖 is the (𝑖 + 1)th set of the 𝑛 + 1 disjoint subsets into which the codomain of
function 𝑓3 is divided.

In order to prove that the codomain subsets are disjoint, it is sufficient to prove
that

𝑆𝑖 ∩ 𝑆𝑗 = ∅ (6.50)

for all 𝑖, 𝑗 with 𝑖 ∕= 𝑗. Equation 6.50 is derived as follows. The largest integer of the set
𝑆𝑖 equals

𝑚𝑥 =

𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
+

(
𝑛

𝑖

)
− 1. (6.51)

The smallest integer of the set 𝑆𝑖+𝑘, where 𝑘 > 0, equals

𝑚𝑛 =

𝑖+𝑘−1∑
𝑗=0

(
𝑛

𝑗

)
. (6.52)

It follows that

𝑚𝑥 =
𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
+

(
𝑛

𝑖

)
− 1

=
𝑖∑

𝑗=0

(
𝑛

𝑗

)
− 1

<
𝑖∑

𝑗=0

(
𝑛

𝑗

)
+

𝑖+𝑘−1∑
𝑗=𝑖+1

(
𝑛

𝑗

)

< 𝑚𝑛. (6.53)

Due to the fact that 𝑚𝑥 < 𝑚𝑛, and that 𝑚𝑥 and 𝑚𝑛 are respectively the largest and
smallest integers of the sets 𝑆𝑖 and 𝑆𝑖+𝑘, equation 6.50 holds for all 0 ≤ 𝑖 < 𝑛 and all

𝑗 = 𝑖+ 𝑘

> 𝑖. (6.54)

As 𝑆𝑖 ∩𝑆𝑗 = 𝑆𝑗 ∩ 𝑆𝑖, equation 6.50 holds for all 0 < 𝑖 ≤ 𝑛 and all 𝑗 < 𝑖. It follows that
equation 6.50 holds for all integers 𝑖, 𝑗 with 𝑖 ∕= 𝑗. The proof regarding the disjoint
nature of the sets is therefore complete.
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It is subsequently proved that the union of all sets 𝑆𝑖, where 𝑖 ∈ {0, 1, . . . 𝑛}, consists
of all the elements in the codomain of function 𝑓3. In order to complete the proof, the
equation

𝑛∪
𝑖=0

𝑆𝑖 = 𝐼𝑛 (6.55)

is derived from several observations. Let the largest integer of the set 𝑆𝑖 be denoted by
𝑚𝑥, and the smallest integer of the set 𝑆𝑖+1 by 𝑚𝑛. It follows that

𝑚𝑛 −𝑚𝑥 =
𝑖∑

𝑗=0

(
𝑛

𝑗

)
−

𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
−
(
𝑛

𝑖

)
+ 1

= 1. (6.56)

This equation implies that

𝑆𝑖 ∪ 𝑆𝑖+1 =

{
𝑣 ∈ ℕ0 :

𝑖−1∑
𝑗=0

(
𝑛

𝑗

)
≤ 𝑣 ≤

𝑖+1∑
𝑗=0

(
𝑛

𝑗

)
− 1
}
. (6.57)

Equation 6.57 is used to derive the expression

𝑛∪
𝑖=0

𝑆𝑖 =

{
𝑣 ∈ ℕ0 : 0 ≤ 𝑣 ≤

𝑛∑
𝑗=0

(
𝑛

𝑗

)
− 1
}

= {𝑣 ∈ ℕ0 : 0 ≤ 𝑣 ≤ 2𝑛 − 1}, (6.58)

thereby proving that equation 6.55 holds.
The final statement of lemma 6.1.3 that remains to be proved is that all bit se-

quences of a certain weight 𝑤 in the domain of function 𝑓3 are injectively and surjec-
tively mapped to the elements of 𝑆𝑤, where 𝑤 ∈ {0, 1, . . . 𝑛}. It was established that
function 𝑓 is invertible in the proof of theorem 6.1.2. Function 𝑓 therefore maps all
𝑛–bit sequences of equal weight 𝑤 both injectively and surjectively to the

(
𝑛
𝑤

)
distinct

integer elements in the set {0, 1, . . . (𝑛
𝑤

)− 1}. As the sum
𝑡 =

𝑤−1∑
𝑤′=0

(
𝑛

𝑤′

)
(6.59)

remains constant when evaluated in terms of all 𝑛–bit sequences with equal weight 𝑤, it
follows that function 𝑓3 maps all 𝑛–bit sequences with equal weight 𝑤 both injectively
and surjectively to the elements of the set

𝑆𝑤 =

{ 𝑤−1∑
𝑗=0

(
𝑛

𝑗

)
,

𝑤−1∑
𝑗=0

(
𝑛

𝑗

)
+ 1, . . .

𝑤−1∑
𝑗=0

(
𝑛

𝑗

)
+

(
𝑛

𝑤

)
− 1
}
. (6.60)

The proof of the lemma is therefore complete.

Lemma 6.1.4. The function 𝑓3 is invertible.
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Proof. It is proved that function 𝑓3 is both injective and surjective. All 𝑛–bit sequences
of equal weight 𝑤, where 𝑤 ∈ {0, 1, . . . 𝑛}, are mapped injectively and surjectively to
the elements of subset 𝑆𝑤 of the codomain of function 𝑓3, as proved in lemma 6.1.3.
The function 𝑓3 is therefore injective, as the subsets 𝑆𝑤, where 𝑤 ∈ {0, 1, . . . 𝑛}, are
disjoint (refer to lemma 6.1.3). The function 𝑓3 is surjective, as the union of all subsets
𝑆𝑤, where 𝑤 ∈ {0, 1, . . . 𝑛}, equals the codomain of function 𝑓3, and all sequences of
equal weight 𝑤 are surjectively mapped to the same subset 𝑆𝑤. The conclusion that
function 𝑓3 is invertible follows from the fact that it is both injective and surjective.

Theorem 6.1.3. The variable weight, fixed–to–fixed length source code is uniquely
decodable if 𝑓3(x) < 2𝑘 (i.e. if the index of the source sequence in the ordered set 𝑆𝑏 is
smaller than 2𝑘, where 𝑘 is the codeword length).

Proof. It is proved that the source code is uniquely decodable by proving that function
𝑔2 of equation 6.47 is invertible over all source sequences x

𝑛 for which the condition
𝑓3(x) < 2𝑘 holds. If it is assumed that the inequality 𝑓3(x) < 2𝑘 holds, the function
𝛽𝑘 may be replaced with the function 𝐵𝑘 in equation 6.47. As 𝐵𝑘 and 𝑓3 are invertible
(refer to lemma 6.1.4), function 𝑔2 is invertible. The inverse of function 𝑔2 is obtained
as

x = 𝑓−1
3 (𝐵−1

𝑘 (cx))

= 𝑓−1

(
𝐵−1
𝑘 (cx)−

𝑤−1∑
𝑗=0

(
𝑛

𝑗

))
. (6.61)

The weight 𝑤 of the source sequence x𝑛 may be recovered from the codeword cx using
the equation

𝑤 = max(𝑟) :

[
𝐵−1
𝑘 (cx)−

𝑟−1∑
𝑖=0

(
𝑛

𝑖

)]
≥ 0.

6.1.2.4 Proof of optimality

The variable weight, fixed–to–fixed length source code achieves the minimum block–
error probability when used to encode sequences from certain binary memoryless sources.
This property of the source code is subsequently proved.

Theorem 6.1.4. The variable weight, fixed–to–fixed length source code is optimal in
terms of its block–error probability when used to encode sequences x𝑛 of i.i.d. bits from
a stationary binary memoryless source, where Pr(𝑋𝑖 = 1) < 0.5 for all 1 ≤ 𝑖 ≤ 𝑛.

Proof. Assume that the variable weight, fixed–to–fixed length source code does not
achieve the minimum block–error probability, but that an alternative fixed–to–fixed
length source code does. Denote the sets of source sequences that are correctly decoded
by the variable weight, fixed–to–fixed length source code and the alternative source code
as 𝑇2 and 𝑇 ′

2, respectively. If the assumption holds, then there has to exist two source
sequences x𝑛 and y𝑛 that satisfy the conditions
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1. x𝑛 ∈ 𝑇 ′
2,

2. x𝑛 /∈ 𝑇2, and

3. ∃ y𝑛 ∈ 𝑇2 : Pr(x
𝑛) > Pr(y𝑛).

The inequality Pr(x𝑛) > Pr(y𝑛) implies that

Pr(x𝑛) > min
z𝑛∈𝑇2

Pr(z𝑛). (6.62)

Let the weight of the bit sequence x𝑛 be denoted by 𝑊 (x). Equation 6.62 implies that

𝑊 (x) < max
z∈𝑇2

𝑊 (z), (6.63)

due to the fact that Pr(𝑍𝑖 = 1) < 0.5 for all 1 ≤ 𝑖 ≤ 𝑛. Let the weight 𝑤′ be defined
according to the equation

𝑤′ = max
z∈𝑇2

𝑊 (z). (6.64)

It follows from lemma 6.1.3 that all sequences q : 𝑓3(q) ≤
∑𝑤′−1

𝑗=0

(
𝑛
𝑗

)− 1 belong to the
set 𝑇2, as the inequality

𝑓3(z) >
𝑤′−1∑
𝑗=0

(
𝑛

𝑗

)
− 1 (6.65)

holds for any z : 𝑊 (z) = 𝑤′. As all sequences q : 𝑊 (q) < 𝑤′ satisfy the inequality

𝑓3(q) ≤
𝑤′−1∑
𝑗=0

(
𝑛

𝑗

)
− 1, (6.66)

it follows that all sequences q : 𝑊 (q) < 𝑤′ belong to the set 𝑇2. This fact proves
that equation 6.63 cannot be satisfied for any x𝑛 /∈ 𝑇2, which contradicts the as-
sumption that the alternative fixed–to–fixed length source code achieves the minimum
block–error probability. The variable weight, fixed–to–fixed length source code there-
fore achieves the minimum block–error probability.

6.1.2.5 Theoretical performance

The theoretical block–error probability of the variable weight, fixed–to–fixed length
source code is derived in this section. It is assumed that the source code is used to
encode 𝑛–bit sequences x𝑛 from stationary binary memoryless sources with Pr(𝑋𝑖 =
1) < 0.5 for all 1 ≤ 𝑖 ≤ 𝑛. The source coding of both finite–length source sequences,
as well as source sequences with lengths that tend to infinity, are considered.

Performance w.r.t. finite–length sequences Let the weight 𝑤′ be defined as

𝑤′ = max
y∈𝑇2

𝑊 (y), (6.67)

where 𝑇2 is the set of all 𝑛–bit source sequences correctly decoded by the variable
weight, fixed–to–fixed length source code with codewords of length 𝑘 bits, and 𝑊 (y)
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is the weight of the source sequence y𝑛. The number of source sequences of weight 𝑤′

that are not elements of the set 𝑇2 equals

𝑞 =
𝑤′∑
𝑖=0

(
𝑛

𝑖

)
− 2𝑘. (6.68)

The exact block–error probability is therefore derived as

𝑃𝑏 = 𝑞𝑝𝑤
′
(1− 𝑝)𝑛−𝑤

′
+

𝑛∑
𝑖=𝑤′+1

(
𝑛

𝑖

)
𝑝𝑖(1− 𝑝)𝑛−𝑖, (6.69)

where 𝑝 ≜ Pr(𝑋𝑖 = 1).
An upper bound on the block–error probability of the variable weight, fixed–to–fixed

length source code is also derived. The derivation uses the inequality [155]

𝑛∑
𝑖=𝛿𝑛

(
𝑛

𝑖

)
𝑝𝑖(1− 𝑝)𝑛−𝑖 ≤ 2−𝑛𝐷(𝛿∣∣𝑝), (6.70)

which is valid if the condition 0 < 𝑝 < 𝛿 ≤ 1 is satisfied. The function 𝐷(𝑝∣∣𝑞) is
the binary divergence function (or the Kullback–Leibler divergence function), which is
defined as

𝐷(𝑝∣∣𝑞) ≜ 𝑝 log2

(
𝑝

𝑞

)
+ (1− 𝑝) log2

(
1− 𝑝

1− 𝑞

)
. (6.71)

Let the weight 𝑤′ be defined according to equation 6.67. If all weight–𝑤′ source se-
quences that are elements of the set 𝑇2 are associated with block errors, the block–error
probability may be bounded as

𝑃𝑏 ≤
𝑛∑

𝑖=𝑤′

(
𝑛

𝑖

)
𝑝𝑖(1− 𝑝)𝑛−𝑖

≤ 2−𝑛𝐷(𝑝∣∣𝑝), (6.72)

where

𝑝 ≜ 𝑤′

𝑛
. (6.73)

The bound on the block–error probability is valid provided that the inequality

0 < 𝑝 < 𝑝 ≤ 1 (6.74)

is satisfied.

Asymptotic performance The performance of the variable weight, fixed–to–fixed
length source code, when used to encode source sequences with lengths that tend to
infinity, is characterized according to Shannon’s source coding theorem [44]. The source
coding theorem4 states that it is possible for a fixed–to–fixed length source code with
a rate of

𝑘

𝑛
= ℎ(𝑝) + 𝛿 (6.75)

4All references to the source coding theorem in this section are made under the assumption that
sequences from a stationary binary memoryless source are encoded.
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codeword bits per source bit to achieve a block–error probability 𝑃𝑏 that tends to zero
if sequences of 𝑛 bits, where 𝑛 tends to infinity, are encoded (𝛿 denotes an arbitrarily
small positive constant). The function ℎ(⋅) is the binary entropy function. The variable
weight, fixed–to–fixed length source code is an example of a fixed–to–fixed length source
code predicted to exist by the source coding theorem, due to its optimal block–error
probability (refer to theorem 6.1.4).

The strong converse source coding theorem states that the block–error probability
of any fixed–to–fixed length source code that is used to encode source sequences of 𝑛
bits, where 𝑛 tends to infinity, approaches unity if the rate of the source code satisfies

𝑘

𝑛
< ℎ(𝑝). (6.76)

The block–error probability of the variable weight, fixed–to–fixed length source
code, when used to encode sequences with lengths that tend to infinity, is therefore
derived as

𝑃𝑏 →
{
0 if 𝑅𝑎 > ℎ(𝑝),
1 if 𝑅𝑎 < ℎ(𝑝),

where the code rate 𝑅𝑎 is expressed as

𝑅𝑎 =
𝑘

𝑛
. (6.77)

6.1.2.6 Practical results

The variable weight, fixed–to–fixed length source code was used to encode sequences
of i.i.d. bits in two configurations. The block–error probability of the source code was
investigated in each case. Both of the configurations, as well as the block–error proba-
bilities, are presented in what follows. The variable weight, fixed–to–fixed length source
code is referred to as the proposed source code in the remainder of this section.

Configuration 1: Variable source sequence length The first configuration of the
proposed source code involved three binary memoryless sources. The output of each
source was encoded using four instances of the proposed source code. Each source code
instance was used to encode source sequences of a different length, but the source code
instances were selected to have approximately the same code rate. The details of the
three binary memoryless sources are provided in table 6.3, and the parameters and
quantities of the source codes5 are provided in table 6.4. The weight 𝑤′ associated with
each source code, as defined by equation 6.67, is provided in table 6.4.

The source coding results associated with the proposed source code in the first
configuration are presented in figure 6.4 on page 163. This figure contains a plot of
the block–error probabilities of the source codes, which were used to encode sequences
from each source. The block–error probability is plotted as a function of the source
sequence length. Each curve is associated with one of the three sources, and either a
theoretical calculation or the practical implementations.

5The term ‘instance’ is omitted in the remainder of this section.
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Table 6.3: Source parameters and quantities associated with the first configuration of
the variable weight, fixed–to–fixed length code.

Parameter / Quantity Symbol Unit Source 1 Source 2 Source 3

Prob. nonzero–valued bit 𝑝 — 0.089 0.109 0.16
Per–symbol entropy 𝐻(𝑋) bits 0.4331 0.4969 0.6343

Table 6.4: Source code parameters and quantities associated with the first configuration
of the variable weight, fixed–to–fixed length code.

Parameter / Quantity Symbol Unit Code 1 Code 2 Code 3 Code 4

Src. sequence length 𝑛 bits 10 50 100 500
Codeword length 𝑘 bits 6 30 60 303

Code rate 𝑅𝑎 — 0.6 0.6 0.6 0.606
Maximum decodable
src. sequence weight 𝑤′ bits 3 9 16 76

The figure reveals that the curves associated with the practical implementations
overlap the curves of the theoretically–optimal block–error probability (i.e. the exact
block–error probability of equation 6.69). This observation implies that the source codes
were correctly implemented, and that the performance of each source code is indeed
optimal.

Figure 6.4 reveals that the block–error probability curves associated with source one
and source two decrease with an increase in the source sequence length, but that the
block–error probability curve associated with source three increases with an increase in
the source sequence length. This observation may be justified by considering the rates of
the codes, as well as the per–symbol entropy of each of the sources. All the source codes
have rates approximately equal to 0.6. Shannon’s source coding theorem [44] states that
the block–error probability of a source code cannot approach zero asymptotically if the
rate of the source code is lower than the entropy of the source. Tables 6.3 and 6.4 reveal
that all the source codes have rates that exceed the per–symbol entropy of sources one
and two, but that all the source codes have rates lower than the per–symbol entropy
of source three, which equals 0.6343 bits. The block–error probabilities of the source
codes, when used to encode sequences from source three, asymptotically approach unity
due to the strong converse source coding theorem.

Figure 6.4 reveals that the curves associated with the upper bounds on the block–
error probabilities of the source codes (equation 6.72), when used to encode sequences
from sources one and two, are not exceeded by the curves of the practical implemen-
tations. No upper bound on the block–error probabilities associated with the source
coding of sequences from source three is provided, as source codes three and four do
not satisfy equation 6.74 if it is evaluated in terms of source three.

Configuration 2: Variable source entropy The second configuration of the pro-
posed source code involved the source coding of sequences from a single binary memo-
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Figure 6.4: Block–error probabilities of the variable weight, fixed–to–fixed length source
code in the first configuration, as a function of the source sequence length.

ryless source. The proposed source code was implemented with a fixed code rate. The
per–symbol entropy of the source was varied by changing the probability distribution
of the bits of the source sequences for each successive set of trials. The purpose of this
configuration was to characterize the block–error probability of the proposed source
code as a function of the source entropy. The parameters and quantities associated
with the proposed source code in the second configuration are provided in table 6.5.

The source coding results associated with the proposed source code in the second
configuration are presented in figure 6.5 on page 165. This figure contains a plot of
the block–error probability of the proposed source code, as a function of the entropy–
normalized redundancy of the source code. The entropy–normalized redundancy of the
source code is defined as the normalized difference between the rate of the code and
the per–symbol entropy of the source, or

𝑅𝑛 =
𝑅𝑎 −𝐻(𝑋)

𝐻(𝑋)
. (6.78)

Figure 6.5 includes the curve of the theoretical block–error probability of the pro-
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Table 6.5: Parameters and quantities associated with the second configuration of the
variable weight, fixed–to–fixed length source code.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 500 bits
Codeword length 𝑘 303 bits

Code rate 𝑅𝑎 0.606 —
Maximum decodable source

sequence weight 𝑤′ 76 bits
Prob. nonzero–valued source bit 𝑝 0.089 – 0.109 —
Per–symbol source entropy 𝐻(𝑋) 0.4331 – 0.4969 bits

posed code (equation 6.69), the curve of the upper bound on the block–error probability
of the proposed code (equation 6.72), as well as the block–error probability curve of
the practical implementation of the proposed code. The curves of the block–error prob-
ability decrease with an increase in the redundancy of the proposed source code, as
expected. The curve of the theoretical block–error probability of the proposed source
code overlaps with the block–error probability curve of the practical implementation of
the proposed source code. This observation implies that the proposed source code was
correctly implemented. The block–error probability of the proposed source code does
not exceed the upper bound of equation 6.72.

Figure 6.5 includes two curves that are associated with fixed–to–variable length
source codes. These source codes were applied as fixed–to–fixed length source codes.
The variable–length codes were used to encode 𝑛–bit fixed–length source sequences.
A block error was declared for each variable–length codeword that was longer than 𝑘
bits, where 𝑘 is the codeword length of the proposed source code. All variable–length
codewords shorter than 𝑘 bits were padded to a length of 𝑘 bits using zero–valued bits.
A curve of the theoretical block–error probability of the ideal variable–length source
code, as well as a curve of the block–error probability of a Matlab arithmetic code
implementation, are included in the figure.

The ideal variable–length source code produces a codeword of length − log2(Pr(x𝑛))
bits when used to encode a source sequence x𝑛 with a probability of occurrence of
Pr(x𝑛). Figure 6.5 reveals that the block–error probability of this source code is sig-
nificantly higher than the block–error probability of the proposed source code. This
observation confirms the observation of Caire et. al. [85] regarding the suboptimal na-
ture of fixed–to–variable length source codes that are applied as fixed–to–fixed length
source codes.

The curve associated with the Matlab implementation of the arithmetic code was
obtained from reference [85]. The arithmetic code was implemented as a nonuniversal
code that had exact apriori knowledge of the probability distribution of the source bits.
Figure 6.5 reveals that the arithmetic code has a higher block–error probability than
the ideal variable–length code, as well as the optimal fixed–to–fixed length source code.
The suboptimal nature of the arithmetic code, when used as a fixed–to–fixed length
source code, is apparent.
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Figure 6.5: Block–error probability of the variable weight, fixed–to–fixed length source
code in the second configuration, as a function of the code redundancy. Certain parts
of this figure were adapted from reference [85].

Computational complexity The average processing time of a practical implemen-
tation of the variable weight, fixed–to–fixed length source code was measured in order
to investigate the computational complexity of the prime factor decomposition ap-
proach to computing large binomial coefficients (refer to section 5.3 on page 136). The
implementation encoded source sequences of 𝑛 = 104 bits, and produced codewords of
𝑘 = 5000 bits. It was therefore required that the implementation be able to compute all
binomial coefficients

(
𝑎
𝑏

)
, where 𝑎 ∈ {0, 1, . . . 104} and 𝑏 ∈ {0, 1, . . . 𝑎}. The source se-

quences were generated by a stationary binary memoryless source, and the probability
of occurrence of a nonzero–valued bit was set equal to 𝑝 = 0.1.

The variable weight, fixed–to–fixed length source code was implemented on a mod-
ern laptop PC. The processing times associated with encoding the source sequences and
decoding the codewords were measured. The practical implementation of the source en-
coder required an average of 𝜇𝑐 = 0.434 seconds to encode a source sequence, with a
standard deviation of 𝜎𝑐 = 0.018 seconds. The practical implementation of the source
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decoder required an average of 𝜇𝑑 = 2.388 seconds to decode a codeword, with a stan-
dard deviation of 𝜎𝑑 = 0.038 seconds. The time required to encode a source sequence
and decode the codeword is not excessive if the magnitude of the binomial coefficients
that the implementation computes is taken into consideration.

6.2 Multi–field enumerative source codes

This section contains a summary of two lossless enumerative source codes that are more
sophisticated than the single–field enumerative source codes. The enumerative source
codes that are introduced in this section are referred to as multi–field enumerative
codes, as these codes have variable–length codewords that consist of more than one
field. One of the multi–field enumerative source codes presented in this section is novel.

The summary of each source code starts with the derivation of the code, as well as
the mathematical definition of the code. Each summary includes a proof of the unique
decodability of the source code, as well as bounds on the performance of the source
code. Each summary concludes with a presentation and a discussion of the source
coding results that were obtained using a practical implementation of the source code.

6.2.1 The weight–and–index variable–length code

The weight–and–index source code is a fixed–to–variable length, lossless, blockwise enu-
merative source code. The source code may be used to effectively encode bit sequences
in a universal manner from a variety of sources. The first field of each codeword of this
source code represents the weight of the corresponding fixed–length source sequence.
The second field of each codeword represents the index of the corresponding fixed–
length source sequence in an ordered set that contains all source sequences with the
same length and weight.

6.2.1.1 Derivation of the source code

The weight–and–index source code may be used to separately encode bit sequences from
binary memoryless sources and binary context–tree sources6 in a universal manner. This
statement implies that the source code produces codewords with a normalized average
redundancy that tends to zero as the source sequence length 𝑛 tends to infinity. The
source code has no apriori knowledge of the distribution of the source bits. The exact
structure of the source code depends on whether it is applied to sequences from a binary
memoryless source or a binary context–tree source, and whether it is used in a universal
or nonuniversal configuration7. The weight–and–index source code for sequences from
binary memoryless sources is solely a universal source code.

The derivation of the weight–and–index source code is divided into two sections.
The first section concerns the source coding of sequences from binary memoryless

6These sources are referred to as tree sources in section 3.1.1.3 on page 40.
7The source encoder requires information on whether it is encoding sequences from a binary memo-

ryless source or a binary context–tree source in order to universally encode sequences from the specific
source.
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sources, and the second section concerns the source coding of sequences from binary
context–tree sources.

Binary memoryless sources The first field of each codeword of the weight–and–
index source code for binary memoryless sources represents the weight of the 𝑛–bit
source sequence that is associated with the codeword. The weight of each source se-
quence assumes one of 𝑛+1 distinct values. The weights are encoded using the conven-
tional binary–coded representation of the integers. The weight of each source sequence
x𝑛 is encoded in a total of

𝑙1(x) = ⌈log2(𝑛+ 1)⌉ (6.79)

bits.
Two observations regarding the effectiveness of the conventional binary–coded rep-

resentation of the source sequence weights are relevant. The first observation concerns
the overhead that is associated with representing the weight of each source sequence
in an integer number of bits. This overhead does not exceed one bit, but may become
significant if the source code is used to encode short source sequences (the overhead
contributes significantly to the length of each codeword).

The second observation concerns the assumption regarding the probability dis-
tribution of the source sequence weights. By encoding all distinct source sequence
weights in an equal number of bits, the source encoder implicitly assumes that the
weights are equiprobable. The optimal source encoder encodes the sequence weight 𝑤
in − log2(Pr(𝑤)) bits, where Pr(𝑤) denotes the probability of occurrence of the se-
quence weight 𝑤. The distinct source sequence weights are not equiprobable — in the
case of the binary memoryless source, the weight 𝑊 of each source sequence has a
binomial distribution

Pr(𝑊 = 𝑤) =

(
𝑛

𝑤

)
𝑝𝑤(1− 𝑝)𝑛−𝑤, (6.80)

where 𝑝 ≜ Pr(𝑋𝑖 = 1). A source encoder that encodes each distinct source sequence
weight in the appropriate number of bits would improve the performance of the weight–
and–index source code.

Two constraints are imposed on a possible source code for the weights of the source
sequences. The first constraint is related to the universal nature of the weight–and–
index source code. In order to preserve the universal nature of the weight–and–index
source code, any source code for the weights of the source sequences must not re-
quire apriori knowledge of the distribution of the sequence weights. The second con-
straint limits the computational complexity of the encoder and decoder for the sequence
weights, as both the weight and index of each 𝑛–bit source sequence need to be encoded
and successfully decoded. Universal integer codes such as the Elias–𝛾 code [136] satisfy
both of these requirements. A universal integer code may be used to encode the weights
of the source sequences, provided that the distribution implied by the code matches
the actual distribution of the source sequence weight. If this condition is not satisfied,
the weight–and–index source code may not be effective.

Davisson [6] observed that a universal source code may be constructed by encod-
ing the sequence weights using the conventional binary–coded representation of the
integers. This observation justifies the decision of using the conventional binary–coded
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representation of the source sequence weights in the codewords of the multi–field enu-
merative source codes considered in this chapter. The source decoder may uniquely
decode the source sequence weight from the first field of any codeword of the weight–
and–index source code, provided it has apriori knowledge of the length 𝑛 of the source
sequence.

The second field of each codeword of the weight–and–index variable–length source
code represents the index of the corresponding 𝑛–bit source sequence x𝑛 in the ordered
set 𝑆𝑏 of all 𝑛–bit sequences having the same weight 𝑤 as the source sequence. Each
index is identical to the index that the constant weight, fixed–to–fixed length source
code8 would produce if it were used to encode the corresponding source sequence. The
encoder of the weight–and–index source code encodes each index using the conven-
tional binary–coded representation of an integer — the second field of each codeword
is therefore identical to the corresponding codeword of the lossless, constant weight,
fixed–to–fixed length source code. The second field of each codeword has a length of

𝑙2(x) =

⌈
log2

(
𝑛

𝑤

)⌉
(6.81)

bits, where 𝑤 is the weight of the source sequence associated with the codeword.
In order to justify the use of the same number of bits to represent the index of each

distinct source sequence, one may consider the probability distribution of a source
sequence, with the distribution conditioned on the sequence weight. As a stationary
binary memoryless source produces i.i.d. bits, the distribution of a source sequence,
conditioned on the sequence weight 𝑤, is a uniform distribution. This observation
suggests that the use of the same number of bits to represent each index is an effective
strategy.

The unique decodability of the weight–and–index variable–length source code de-
pends on whether the source decoder is able to delimit the second field of each code-
word. The source decoder must be able to delimit the second field of each codeword as
it must identify the start of the following codeword in the sequence of codewords. The
second field of any codeword may be delimited by the source decoder after it recovers
the weight of the source sequence from the first field of the codeword — the length of
the second field is calculated using equation 6.81.

Binary context–tree sources The derivation of a universal enumerative source
code for sequences from binary context–tree sources is significantly more challenging
than the derivation of a universal enumerative code for sequences from binary mem-
oryless sources. One approach to deriving a universal enumerative code for sequences
from binary context–tree sources involves the division of all possible source sequences
into type classes, and the development of an algorithm for enumerating the sequences
within each type class [81]. A type class is essentially an ordered set that contains
equiprobable source sequences. Each codeword of a universal source code of this type
would indicate the type class to which the corresponding source sequence belongs, as
well as its index in the type class.

8Refer to section 6.1.1 on page 139 for a summary of this source code.
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A simpler universal enumerative source code for sequences from binary context–
tree sources was derived and implemented as part of this thesis. This source code uses
the Burrows–Wheeler transform [9], which was introduced in chapter 3. The Burrows–
Wheeler transform, or BWT, produces sequences of p.i.i.d. bits9 if applied to source
sequences from binary context–tree sources [10]. Each sequence of p.i.i.d. bits may be
encoded by using the weight–and–index variable–length source code for binary memo-
ryless sources to independently encode each piecewise segment of i.i.d. bits.

The expected positions of the transition points between the segments of i.i.d. bits
in the BWT output sequences depend on the statistics of the source. If the source
encoder is aware of the structure of the context–tree source (i.e. its minimum suffix
set) and a certain number of the initial states of the source, it may calculate the exact
positions of the transition points between the segments of the BWT output sequence.
It independently encodes each segment of the BWT output sequence using the weight–
and–index variable–length source code for binary memoryless sources. This source code
is clearly not universal, as it requires apriori knowledge of the source. It is referred to
as the type–one nonuniversal weight–and–index source code for binary context–tree
sources.

If the source encoder is aware of the bit distribution that is associated with each
state of the source, it may calculate the expected positions of the transition points
between the segments of i.i.d. bits in the BWT output sequence, and independently
encode the sequences between the expected transition points. Each sequence is encoded
using the weight–and–index variable–length source code for binary memoryless sources.
This source code is not universal, as it requires apriori knowledge of the source — it
is referred to as the type–two nonuniversal weight–and–index source code for binary
context–tree sources.

If the source encoder has no apriori knowledge regarding the structure of the binary
context–tree source, or the bit distribution associated with each of the source states,
it may estimate the positions of the transition points between the segments of i.i.d.
bits in the BWT output sequence. A universal source code has to accurately estimate
both the number of transition points and the position of each transition point. The
sequences between the estimated positions of the transition points are independently
encoded using the weight–and–index variable–length source code for binary memoryless
sources. This source code is referred to as the universal weight–and–index source code
for binary context–tree sources. Both the nonuniversal and universal weight–and–index
source codes are discussed in what follows.

The type–one nonuniversal weight–and–index code A block diagram of
the type–one nonuniversal weight–and–index source encoder for sequences from binary
context–tree sources is presented in figure 6.6. The source encoder reverses the source
sequence x𝑛 and appends the EOF symbol to the reversed sequence. It subsequently
applies the BWT to the sequence. The BWT output sequence z𝑛+1 and the BWT
index 𝐼 may be expressed as

(z𝑛+1, 𝐼) = BWT(ℛ(x𝑛)$), (6.82)

9The BWT output is asymptotically p.i.i.d. For the sake of brevity, the output is described as only
being p.i.i.d. in the remainder of this section.
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Figure 6.6: A block diagram of the type–one nonuniversal weight–and–index source
encoder for binary context–tree sources.

where $ denotes the EOF symbol, and ℛ(⋅) denotes sequence reversal. The source en-
coder removes the EOF symbol from the BWT output sequence to obtain the sequence
w𝑛, which is expressed as

w𝑛 = (𝑧1, 𝑧2, . . . 𝑧𝐼−1, 𝑧𝐼+1, . . . 𝑧𝑛+1)

= (z𝐼−1
1 , z𝑛+1

𝐼+1). (6.83)

The reversal of the source sequence causes the BWT to sort the reversed preceding
contexts of the original source sequence relative to one another. Those bits that follow
similar preceding contexts10 in the original source sequence are therefore placed in
neighbouring segments of the BWT output sequence. The preceding contexts of the
source symbols are identical to the reversed states (i.e. the suffixes of the minimum
suffix set) of the context–tree source.

In order to find the exact positions of the transition points between the i.i.d. bit
segments of the BWT output sequence, the source encoder derives the sequence of state
transitions that corresponds to the original source sequence. It derives the sequence of
state transitions by using its apriori knowledge of the source’s minimum suffix set and
one or more of its initial states. It counts the number of bits that the source produced
in each of its states. The encoder proceeds by sorting the source states (i.e. the reversed
preceding contexts) and assigning a bit count to each of the source states. Each bit
count is the total number of bits that the source produced in the corresponding state.
The sequence of sorted states and the bit counts of the states are equivalent to the
sequence of segments in the BWT output sequence and the segment lengths. The exact
positions of the transition points are obtained from the segment lengths.

The discussion up to this point disregarded the fact that up to 𝑚 of the initial bits
of the source sequence may be placed in segments that do not correspond to states of
the context–tree source, where 𝑚 denotes the length of the longest preceding context of
the source. The source encoder is able to derive the positions of these bits in the BWT
output sequence, and insert transition points on either side of each of these bits. This

10The 𝑚–bit preceding context x𝑖−1
𝑖−𝑚 of bit 𝑥𝑖 is said to be similar to the preceding context of bit

𝑦𝑖 if the bits closest to 𝑥𝑖 match the bits closest to 𝑦𝑖.
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approach may significantly increase the average codeword redundancy of the source
code, however.

By inserting transition points on either side of segments that do not correspond to
the states of the context–tree source, and encoding these additional segments indepen-
dently from the remaining segments of the BWT output sequence, the source encoder
could potentially add 𝑚 + 1 additional fields to a codeword. If the source encoder is
not to use more complex integer codes, it must either encode the position of each addi-
tional segment in the BWT output sequence (and add up to 𝑚 fields of ⌈log2(𝑛)⌉ bits
each to the codeword), or encode the lengths of all the segments in the BWT output
sequence (and add up to 𝑚 fields of ⌈log2(𝑛)⌉ bits each to the codeword, as each length
is encoded in ⌈log2(𝑛)⌉ bits). An additional field that represents the number of seg-
ments in the BWT output sequence would have to be added to each codeword, as the
source decoder is unaware of the number of additional segments in each BWT output
sequence.

Instead of encoding the additional segments of the BWT output sequence inde-
pendently from the remaining segments, the source encoder may merge the additional
segments with the segments that correspond to the states of the context–tree source.
The addition of a maximum of 𝑚 bits to the remaining segments, each consisting of
bits with a distinct probability distribution, does increase the average redundancy of
the codewords assigned to these segments. It is assumed, however, that the source
sequence length 𝑛 is much larger than the length of the longest source context, 𝑚.
This assumption implies that the redundancy increase associated with the segment–
merge approach is small when compared to the redundancy increase associated with
independently encoding the additional segments. The encoder of the type–one nonuni-
versal weight–and–index source code therefore merges the additional segments with the
segments that correspond to the states of the context–tree source.

The source encoder independently encodes the sequences between the transition
points in the BWT output sequence using the weight–and–index source code for bi-
nary memoryless sources. It concatenates the codewords to produce the source–coded
sequence. The first field of codeword 𝑖 represents the weight of segment 𝑖 of the BWT
output sequence. This field has a length of

𝑙1,𝑖(x) = ⌈log2(𝑣′𝑖 + 1)⌉ (6.84)

bits, where x denotes the source sequence, and 𝑣′𝑖 denotes the length of segment 𝑖 of
the BWT output sequence (which may include up to 𝑚 merged bits from segments
that do not correspond to the states of the context–tree source). This expression holds
for 𝑖 ∈ {1, 2, . . . ∣𝒮∣}. The second field of codeword 𝑖 represents the index of segment 𝑖
of the BWT output sequence in the ordered set of all sequences with the same length
and weight as the segment. This field has a length of

𝑙2,𝑖(x) =

⌈
log2

(
𝑣′𝑖
𝑣′′𝑖

)⌉
(6.85)

bits, where 𝑣′′𝑖 denotes the weight of segment 𝑖 of the BWT output sequence (which
may include up to 𝑚 merged bits), and 𝑖 ∈ {1, 2, . . . ∣𝒮∣}.

In order to successfully recover the source sequence from the source–coded sequence,
the source decoder requires the BWT index, as well as the lengths of the segments in
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Figure 6.7: A block diagram of the type–two nonuniversal weight–and–index source
encoder for binary context–tree sources.

the BWT output sequence. The source encoder encodes the BWT index using the
conventional binary–coded representation of an integer. It is encoded in a total of

𝑙3(x) = ⌈log2(𝑛+ 1)⌉ (6.86)

bits, as the BWT index may assume 𝑛+1 distinct values with the addition of the EOF
symbol to the reversed source sequence.

The lengths of the segments in the BWT output sequence are encoded as follows.
Each BWT output sequence has exactly ∣𝒮∣ segments, as the additional segments are
merged with the segments that correspond to the states of the context–tree source.
The source encoder therefore encodes a total of ∣𝒮∣ − 1 segment lengths for each BWT
output sequence, as the length of the final segment may be derived from the sequence
length 𝑛. Each segment length is encoded in a total of ⌈log2(𝑛 + 1)⌉ bits using the
conventional binary–coded representation of an integer, as each segment length may
assume a value in the set {0, 1, 2, . . . 𝑛}. The total number of bits that are required to
encode the segment lengths equals

𝑙4(x) = (∣𝒮∣ − 1) ⌈log2(𝑛+ 1)⌉ . (6.87)

The type–two nonuniversal weight–and–index code A block diagram of
the type–two nonuniversal weight–and–index source encoder for sequences from binary
context–tree sources is presented in figure 6.7. The encoder performs the same initial
steps as the encoder of the type–one nonuniversal weight–and–index code for binary
context–tree sources; however, it does not find the exact positions of the transition
points between the segments of each BWT output sequence. It calculates the expected
positions of the transition points.

The expected positions of the transition points between the segments of the BWT
output sequence may be obtained by calculating the expected lengths of the segments.
Each segment of the BWT output sequence that is longer than one bit11 corresponds

11Certain single–bit segments of the BWT output sequence may not correspond to the states of the
context–tree source. These segments appear due to the addition of the EOF symbol to the reversed
source sequence, and are disregarded in the calculation of the expected segment lengths. The single–
bit segments have little impact on the performance of the source code, as a maximum of 𝑚 of these
segments are present in each BWT output sequence (where 𝑚 is the length of the longest source
state).
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to one of the states of the context–tree source. The expected length of each of these
segments equals the product of the corresponding state probability and the source
sequence length.

Consider a binary context–tree source with a state set 𝒮. The expected length 𝑛𝑖 of
the segment in the BWT output sequence that corresponds to the 𝑖th lexicographically–
ranked state may be expressed as

𝑛𝑖 = 𝑛𝑞𝑖, (6.88)

where 𝑞𝑖 is the probability associated with the 𝑖th lexicographically–ranked state of
the context–tree source, and 𝑖 ∈ {1, 2, . . . ∣𝒮∣}. The expected index of the first bit in
segment 𝑖 of the BWT output sequence is expressed as

𝑇 𝑖 =

{
1 if 𝑖 = 1,∑𝑖−1

𝑗=1 𝑛𝑗 + 1 if 1 < 𝑖 ≤ ∣𝒮∣. (6.89)

The probability associated with each state of the binary context–tree source is calcu-
lated using its FSM closure. The construction of the FSM closure of a context–tree
source was summarized in section 3.1.1.3 on page 42 and is not repeated here. Let the
state set of the FSM closure of the context–tree source be denoted by 𝒮 ′, and let the
states of the state set be numbered from one to ∣𝒮 ′∣. The state–transition probability
matrix S of the FSM closure is defined as

S =

⎛
⎜⎜⎜⎝

𝑝1,1 𝑝1,2 . . . 𝑝1,∣𝒮′∣
𝑝2,1 𝑝2,2 . . . 𝑝2,∣𝒮′∣
...

...
. . .

𝑝∣𝒮′∣,1 𝑝∣𝒮′∣,2 𝑝∣𝒮′∣,∣𝒮′∣

⎞
⎟⎟⎟⎠ , (6.90)

where 𝑝𝑥,𝑦 denotes the probability of a transition to state s
′
𝑦, conditioned on the FSM

closure being in state s′𝑥. The state probability vector of the FSM closure is defined as

P = [𝑝1, 𝑝2, . . . 𝑝∣𝒮′∣]𝑇 , (6.91)

where 𝑝𝑖 denotes the probability of the FSM closure being in state s′𝑖, and 𝑇 denotes
the transpose of the vector. If the FSM closure of the binary context–tree source is
stationary, the equation

S𝑇P = P (6.92)

holds. It follows that the state probability vector equals the normalized eigenvector, of
the transposed state–transition probability matrix, that corresponds to the eigenvalue
of unity.

Having calculated the probabilities 𝑝𝑖 that are associated with the states of the FSM
closure, the source encoder calculates the probabilities 𝑞𝑗 that are associated with the
states of the context–tree source. Let all the FSM closure states with a suffix that
equals the same context–tree source state be referred to as the derived states of the
context–tree source state. The probability associated with a context–tree source state
equals the sum of the probabilities associated with its derived states.

After calculating the expected positions of the transition points between the seg-
ments of the BWT output sequence, the encoder uses the weight–and–index source
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code for binary memoryless sources to independently encode the bit sequences between
the expected transition points. The encoder concatenates the codewords of the bit se-
quences to produce the source–coded sequence. The first field of codeword 𝑖 represents
the weight 𝑤𝑖 of segment 𝑖 of the BWT output sequence, where 𝑖 ∈ {1, 2, . . . ∣𝒮∣}. Each
weight is encoded using the binary–coded representation of an integer. The first field
of codeword 𝑖 has a length of

𝑙1,𝑖(x) = ⌈log2(𝑛𝑖 + 1)⌉ (6.93)

bits, as the weight 𝑤𝑖 may assume any value in the set {0, 1, . . . 𝑛𝑖}. The second field
of codeword 𝑖 represents the index of segment 𝑖 in the ordered set of all sequences with
the same length and weight as the segment. This field has a length of

𝑙2,𝑖(x) =

⌈
log2

(
𝑛𝑖
𝑤𝑖

)⌉
(6.94)

bits. The source encoder encodes the BWT index of each 𝑛–bit source sequence as
part of the source–coded sequence. Each BWT index is encoded using the conventional
binary–coded representation of an integer. Each encoded index has a length of

𝑙3(x) = ⌈log2(𝑛+ 1)⌉ (6.95)

bits, as the index may assume 𝑛+1 distinct values with the addition of the EOF symbol
to the reversed source sequence.

It is assumed that the source decoder of the type–two nonuniversal weight–and–
index source code has apriori knowledge regarding the bit distribution associated with
each state of the context–tree source. It is therefore unnecessary to encode the expected
positions of the transition points between the segments of the BWT output sequence,
as the source decoder may calculate the expected positions of the transition points.

The universal weight–and–index code A block diagram of the universal weight–
and–index source encoder for sequences from binary context–tree sources is presented
in figure 6.8 on page 175. The source encoder follows the same initial steps to encode a
source sequence as the encoders of the nonuniversal weight–and–index source codes. To
encode a source sequence, the source encoder first reverses the sequence and appends
the EOF symbol to the reversed sequence. It applies the BWT to the reversed source
sequence that is appended with the EOF symbol. The source encoder next removes the
EOF symbol from the BWT output sequence.

The source encoder of the universal weight–and–index source code for binary context–
tree sources has no apriori knowledge of the source structure (i.e. its minimum suffix
set) or the bit distributions that are associated with the source states. The source
encoder requires apriori knowledge of the source in order to analytically derive the
expected positions of the transition points between the segments in the BWT output
sequence.

One approach to encoding the BWT output sequences in a universal fashion involves
the estimation of the number of transition points between the i.i.d. bit segments of
each BWT output sequence, as well as the positions of the transition points. The
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Figure 6.8: A block diagram of the universal weight–and–index source encoder for
binary context–tree sources.

source encoder of the universal weight–and–index source code for binary context–tree
sources follows this approach. After estimating the number of transition points in a
certain BWT output sequence, as well as their positions in the sequence, the source
encoder independently encodes the bit sequences between the estimated positions of
the transition points. The source encoder uses the weight–and–index source code for
binary memoryless sources to encode these sequences.

The universal weight–and–index source code for binary context–tree sources esti-
mates the positions of the transition points between the segments of each BWT output
sequence using a segmentation algorithm. The segmentation algorithm locates regions
within each BWT output sequence where the empirical distribution of the local bits
undergoes a significant change. It assumes that transition points are located within
these regions. The segmentation algorithm divides each BWT output sequence into
segments according to the estimated positions of the transition points. These segments
should ideally correspond to the actual segments of i.i.d. bits in each BWT output
sequence.

Shamir et. al. [159] proposed a universal source code for piecewise–stationary source
sequences that uses a segmentation algorithm. The purpose of the segmentation algo-
rithm, as used by the source code of Shamir et. al., is to divide each source sequence into
its stationary segments. This segmentation algorithm was incorporated into the univer-
sal weight–and–index source code for binary context–tree sources, and is summarized
in what follows.

The segmentation algorithm proposed by Shamir et. al. [159] estimates the number
and positions of the transition points in a BWT output sequence in two stages. The
BWT output sequence is divided into blocks of length 𝑘1(𝑛) bits during the first stage,
where 𝑛 is the length of the BWT output sequence. It is divided into blocks of length
𝑘2(𝑛) bits during the second stage, where 𝑘2(𝑛) < 𝑘1(𝑛). The blocks of length 𝑘1(𝑛)
bits and 𝑘2(𝑛) bits are referred to as the level–one and level–two blocks, respectively.

The segmentation algorithm processes the level–one blocks during its first stage to
obtain rough estimates of the locations of possible transition points in a BWT output
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sequence [159]. It refines its estimates of the transition point locations during the second
stage by processing the level–two blocks.

The segmentation algorithm calculates a metric for each level–one block as it pro-
cesses these blocks during the first stage, with the exception of the first block and the
last block of the BWT output sequence [159]. The metric of a block is a measure of
the dissimilarity between the empirical distribution of the bits in its preceding block
and the empirical distribution of the bits in its succeeding block.

Let the frequency counts of the zero–valued and nonzero–valued bits in the 𝑖th
level–one block of the BWT output sequence be denoted by 𝑁𝑖(0) and 𝑁𝑖(1), where

12

𝑖 ∈ {1, 2, . . . 𝑛/𝑘1(𝑛)}. The metric of the 𝑟th level–one block,𝑀(𝑟), is expressed as [159]

𝑀(𝑟) = 𝐻̂(𝑟 − 1, 𝑟 + 1)− 1

2
𝐻̂(𝑟 − 1)− 1

2
𝐻̂(𝑟 + 1), (6.96)

where

𝐻̂(𝑖) = −
∑

𝑥∈{0,1}

𝑁𝑖(𝑥)

𝑘1(𝑛)
log2

(
𝑁𝑖(𝑥)

𝑘1(𝑛)

)
(6.97)

and

𝐻̂(𝑖, 𝑗) = −
∑

𝑥∈{0,1}

𝑁𝑖(𝑥) +𝑁𝑗(𝑥)

2𝑘1(𝑛)
log2

(
𝑁𝑖(𝑥) +𝑁𝑗(𝑥)

2𝑘1(𝑛)

)
, (6.98)

with 𝑟 ∈ {2, 3, . . . 𝑛/𝑘1(𝑛)− 1} and 𝑖, 𝑗 ∈ {1, 2, . . . 𝑛/𝑘1(𝑛)}. This metric is an asymp-
totically optimal statistic for the purpose of determining whether or not the bits of
block 𝑟 − 1 and block 𝑟 + 1 share the same probability distribution.

The segmentation algorithm calculates the metrics of all the level–one blocks of
the BWT output sequence, except its first block and its last block [159]. It proceeds
by iteratively retaining certain level–one blocks, and rejecting other level–one blocks.
At the start of each iteration, the segmentation algorithm finds the level–one block
with the largest metric among all the level–one blocks that were neither retained nor
rejected in a previous iteration. This level–one block is retained, and the four blocks
of the BWT output sequence that neighbour this retained block (i.e. two blocks on
either side of the retained block) are rejected. The segmentation algorithm continues
to iterate in this fashion until all the level–one blocks of the BWT output sequence,
with the exception of its first block and its last block, are either retained or rejected.
At this point, the first stage of the segmentation algorithm is complete.

The segmentation algorithm independently processes each of the retained level–one
blocks during its second stage [159]. It places a transition point within each retained
level–one block, or within one of its two neighbouring level–one blocks (i.e. its preced-
ing or succeeding block). The segmentation algorithm divides each retained level–one
block and its two neighbouring level–one blocks into level–two blocks of length 𝑘2(𝑛)
bits in order to determine an appropriate position for a transition point within these
blocks. The algorithm calculates the metric13 (equation 6.96) of each level–two block

12It is assumed that 𝑛/𝑘1(𝑛) is an integer in order to simplify the discussion.
13The block length 𝑘1(𝑛) of equations 6.97 and 6.98 is replaced by 𝑘2(𝑛) when the segmentation

algorithm evaluates these equations during its second stage. The terms 𝑁𝑗(0) and 𝑁𝑗(1) of equations
6.97 and 6.98 denote the frequency counts of the 𝑗th level–two block when the segmentation algorithm
evaluates these equations during its second stage.
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within each retained level–one block and its two neighbouring level–one blocks (with
the exception of the first level–two block of the preceding neighbour, and the last level–
two block of the succeeding neighbour). It finds the level–two block with the largest
metric in each retained level–one block and its two neighbouring level–one blocks, and
places a transition point in the center of the level–two block with the largest metric.

The accuracy of the segmentation algorithm is dependent on the lengths of the
level–one and level–two blocks. Shamir et. al. [159] found that accurate segmentation
may be performed by using level–one and level–two blocks with lengths of

𝑘1(𝑛) = (log2(𝑛))
1+𝜇 (6.99)

and
𝑘2(𝑛) = (log2 log2(𝑛))

1+𝛾 (6.100)

bits, where 𝜇, 𝛾 > 0.
The lengths of the source–coded sequences that the universal weight–and–index

source encoder for binary context–tree sources produces are subsequently derived. The
derivation is carried out under the assumption that the segmentation algorithm is
perfectly accurate (i.e. the estimated number of transition points and their estimated
positions equal the actual number of transition points and their actual positions). This
assumption does not hold in practice — the derived lengths only approximate the
source–coded sequence lengths of a practical implementation of the source code. An
analytical investigation of the effect that imperfect segmentation has on the lengths of
the source–coded sequences is beyond the scope of this thesis.

Let 𝒮 denote the state set of the binary context–tree source, and 𝑚 denote the
length of the longest state. Each BWT output sequence of the universal weight–and–
index source code has a maximum of ∣𝒮∣ +𝑚 i.i.d. bit segments if the code is used to
encode sequences from the binary context–tree source. The encoder of the universal
weight–and–index source code for binary context–tree sources independently applies
the weight–and–index source code for binary memoryless sources to each segment of
each BWT output sequence. A source–coded sequence is produced by concatenating
the codewords that correspond to the segments of a single BWT output sequence.

Consider a BWT output sequence with a total of 𝐶 i.i.d. bit segments, where
𝐶 ≤ ∣𝒮∣+𝑚. The first field of codeword 𝑖 of its source–coded sequence represents the
weight of the 𝑖th segment of the BWT output sequence, where 𝑖 ∈ {1, 2, . . .𝐶}. This
field has a length of

𝑙1,𝑖(x) = ⌈log2(𝑛𝑖 + 1)⌉ (6.101)

bits, where 𝑛𝑖 denotes the length of the 𝑖th segment of the BWT output sequence. The
second field of codeword 𝑖 represents the index of the 𝑖th segment of the BWT output
sequence in the ordered set of all sequences with the same length and weight as the
segment. This field has a length of

𝑙2,𝑖(x) =

⌈
log2

(
𝑛𝑖
𝑤𝑖

)⌉
(6.102)

bits, where 𝑤𝑖 denotes the weight of the 𝑖th segment of the BWT output sequence.
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The source encoder encodes the BWT index that is associated with the BWT output
sequence as part of the source–coded sequence. The BWT index is encoded using the
conventional binary–coded representation of an integer. The codeword of the index has
a length of

𝑙3(x) = ⌈log2(𝑛+ 1)⌉ (6.103)

bits, as the BWT index may assume 𝑛+1 distinct values with the addition of the EOF
symbol to the reversed source sequence.

In order to guarantee the unique decodability of the source–coded sequence, the
source encoder encodes both the number of i.i.d. bit segments in the BWT output
sequence, as well the lengths of the segments. These codewords form part of the source–
coded sequence. The length of each segment in the BWT output sequence is encoded
using the conventional binary–coded representation of an integer. Each segment length
is encoded in a total of ⌈log2(𝑛)⌉ bits, as a segment length may assume a value in the
set {1, 2, . . . 𝑛}. The 𝐶 segment lengths are encoded in a total of

𝑙4(x) = (𝐶 − 1) ⌈log2(𝑛)⌉ (6.104)

bits, as the final segment length may be derived from the known sequence length 𝑛.
The number of segments in the BWT output sequence is encoded in a total of

𝑙5(x) = ⌈log2(𝑛)⌉ (6.105)

bits, as the source decoder has no apriori knowledge regarding the state set of the
binary context–tree source.

6.2.1.2 Definition of the source code

Three functions are introduced prior to the mathematical definition of the weight–and–
index source code for sequences from binary memoryless sources. The first function
𝒞𝑛,𝑚 : 𝔹𝑛 × 𝔹

𝑚 (→ 𝔹
𝑛+𝑚 concatenates an 𝑛–bit sequence and an 𝑚–bit sequence. The

second function 𝒟𝑛,𝑚 : 𝔹
𝑛+𝑚 (→ 𝔹

𝑛×𝔹
𝑚 divides an (𝑛+𝑚)–bit sequence into an 𝑛–bit

sequence (its initial 𝑛 bits) and an 𝑚–bit sequence (its final 𝑚 bits). The third function
ℋ𝑛 : 𝔹

𝑚 (→ 𝔹
𝑛, for all 𝑚 ≥ 𝑛, maps each 𝑚–bit sequence in its domain to the 𝑛–bit

prefix of the sequence.
The weight–and–index variable–length source code for sequences x𝑛 from binary

memoryless sources is defined in what follows. Let the encoder of the source code
correspond to the function 𝑔3 : 𝔹

𝑛 (→ 𝔹
∗. The function 𝑔3 is defined as

cx = 𝑔3(x)

= 𝒞𝑙1,𝑙2
(
𝛽𝑙1
(
𝑤
)
, 𝛽𝑙2
(
𝑓(x)

))
, (6.106)

where cx denotes the codeword of the source sequence x
𝑛, 𝑤 denotes its weight, and

where 𝑙1 ≜ 𝑙1(x) and 𝑙2 ≜ 𝑙2(x) are defined in equations 6.79 and 6.81. The functions
𝑓 and 𝛽𝑞 are defined in equations 6.6 and 6.8.

Mathematical definitions of the universal and nonuniversal weight–and–index source
codes for sequences from binary context–tree sources are not provided, as these source
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codes use the weight–and–index source code for sequences from binary memoryless
sources. The unique decodability of the universal and nonuniversal weight–and–index
source codes for binary context–tree sources depends on the unique decodability of the
weight–and–index source code for binary memoryless sources, which is subsequently
proved.

6.2.1.3 Proof of unique decodability

A proof of the unique decodability of the weight–and–index source code for sequences
from binary memoryless sources is provided in this section.

Theorem 6.2.1. The weight–and–index source code for sequences from binary memo-
ryless sources is uniquely decodable if its source decoder is aware of the source sequence
length 𝑛.

Proof. It is proved that an arbitrary source sequence x𝑛 can be recovered from its
codeword cx. The source decoder does not have apriori knowledge of the length of
each codeword that is to be decoded, as the source encoder produces variable–length
codewords. The proof is therefore carried out without apriori knowledge of the codeword
length.

The proof of the source code’s unique decodability relies on the source decoder being
able to calculate the length 𝑙1(x) of the codeword’s first field, as defined in equation
6.79. The source decoder is able to calculate the length of the codeword’s first field,
as it is aware of the source sequence length 𝑛. The first field of the codeword (i.e. the
binary–coded source sequence weight) is obtained by evaluating the expression

𝛽𝑙1(𝑤) = ℋ𝑙1(cx). (6.107)

The function 𝛽𝑙1 in equation 6.107 may be replaced with the function 𝐵𝑙1 , which was
defined below equation 6.8 on page 142. This replacement is valid, as 0 ≤ 𝑤 ≤ 𝑛 and

2𝑙1 = 2⌈log2(𝑛+1)⌉

≥ 2log2(𝑛+1)

≥ 𝑛 + 1, (6.108)

which proves that 𝑛 ≤ 2𝑙1 − 1 and that 𝑤 ≤ 2𝑙1 − 1. The weight of the source sequence
is recovered by evaluating the expression

𝑤 = 𝐵−1
𝑙1
(ℋ𝑙1(cx)). (6.109)

The length 𝑙2(x) of the codeword’s second field is obtained by evaluating equation 6.81
using the recovered source sequence weight.

The function 𝒞𝑙1,𝑙2 can be inverted, as both 𝑙1(x) and 𝑙2(x) are known. The inverse
of this function is the function 𝒟𝑙1,𝑙2 . It follows that the equation(

𝛽𝑙1
(
𝑤
)
, 𝛽𝑙2
(
𝑓(x)

))
= 𝒟𝑙1,𝑙2(cx) (6.110)
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holds. The function 𝛽𝑙2 in equation 6.110 may be replaced with the function 𝐵𝑙2 , as

𝑙2(x) =

⌈
log2

(
𝑛

𝑤

)⌉

≥ log2

(
𝑛

𝑤

)
(6.111)

and

𝑓(x) ≤
(
𝑛

𝑤

)
− 1

≤ 2𝑙2 − 1. (6.112)

The source sequence x𝑛 is recovered by evaluating the expression

x = 𝑓−1(𝐵−1
𝑙2
(z)), (6.113)

where z = 𝛽𝑙2(𝑓(x)). The inverse of the function 𝑓 was defined in equation 6.29 on
page 146.

6.2.1.4 Theoretical performance

The average per–codeword redundancies of two weight–and–index source codes are de-
rived in this section. The universal source code for sequences from binary memoryless
sources, as well as the universal source code for sequences from binary context–tree
sources are considered. The source coding of finite–length source sequences and se-
quences with lengths that tend to infinity is investigated.

Performance w.r.t. binary memoryless sources A bound on the average per–
codeword redundancy of the universal weight–and–index source code for sequences from
binary memoryless sources is derived in this section. This source code was introduced
in section 6.2.1.1 on page 167.

Consider a finite–length 𝑛–bit sequence x𝑛 from a binary memoryless source, and
assume that 𝑛 > 1. Let 𝑤 denote the weight of the sequence. The length of the codeword
that is assigned to the source sequence equals

𝑙(x) = 𝑙1(x) + 𝑙2(x)

= ⌈log2(𝑛+ 1)⌉+
⌈
log2

(
𝑛

𝑤

)⌉
(6.114)

bits. An upper bound on the length of the codeword is derived as

𝑙(x) < log2(𝑛 + 1) + log2

(
𝑛

𝑤

)
+ 2. (6.115)

A more informative upper bound is derived by first using Stirling’s approximation
of the factorial of an integer to derive an upper bound on the logarithm of a binomial
coefficient. An initial bound on the logarithm of the binomial coefficient

(
𝑛
𝑤

)
, which
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holds for all 𝑤 ∈ {1, 2, . . . 𝑛−1} with 𝑛 > 1, is derived. This initial bound is generalized
to the case where 𝑤 ∈ {0, 1, . . . 𝑛}.

Consider the case where the source sequence weight 𝑤 is an element of the set
{1, 2, . . . 𝑛− 1}, and where 𝑛 > 1. Stirling’s approximation of the factorial 𝑛!,

𝑛! =
√
2𝜋𝑛

(
𝑛

𝑒

)𝑛
𝑒𝜆𝑛 , (6.116)

which holds for a certain number 𝜆𝑛 that satisfies the inequality

1

12𝑛+ 1
< 𝜆𝑛 <

1

12𝑛
, (6.117)

is used to derive an upper bound and a lower bound on the base–two logarithm of the
factorial of an integer. The upper bound on the base–two logarithm of the factorial 𝑛!
is derived as

log2(𝑛!) <
1

2
log2(2𝜋𝑛) + 𝑛 log2

(
𝑛

𝑒

)
+

1

12𝑛
log2(𝑒), (6.118)

and the lower bound is derived as

log2(𝑛!) >
1

2
log2(2𝜋𝑛) + 𝑛 log2

(
𝑛

𝑒

)
+

1

12𝑛+ 1
log2(𝑒). (6.119)

An upper bound on the base–two logarithm of a binomial coefficient is derived by using
the upper and lower bounds on the logarithm of the factorial of an integer. The upper
bound on the base–two logarithm of a binomial coefficient is derived as

log2

(
𝑛

𝑤

)
= log2

(
𝑛!

𝑤!(𝑛− 𝑤)!

)

<
1

2
log2

(
𝑛

2𝜋𝑤(𝑛− 𝑤)

)
+ 𝑛 log2

(
𝑛

𝑒

)
− 𝑤 log2

(
𝑤

𝑒

)

− (𝑛− 𝑤) log2

(
𝑛− 𝑤

𝑒

)
+

(
1

12𝑛
− 1

12𝑤 + 1
− 1

12(𝑛− 𝑤) + 1

)
log2(𝑒)

<
1

2
log2

(
𝑛

2𝜋𝑤(𝑛− 𝑤)

)
+

1

12𝑛
log2(𝑒) + 𝑛ℎ

(
𝑤

𝑛

)

<
1

2
log2

(
1

2𝜋𝑛𝑝(1− 𝑝)

)
+

1

12𝑛
log2(𝑒) + 𝑛ℎ(𝑝), (6.120)

where ℎ(⋅) denotes the binary entropy function, and

𝑝 ≜ 𝑤

𝑛
. (6.121)

The inequality
1

𝑛
≤ 𝑝 ≤ 𝑛− 1

𝑛
, (6.122)

which holds for 𝑤 ∈ {1, 2, . . . 𝑛− 1} with 𝑛 > 1, is used to derive the inequality

log2(𝑝(1− 𝑝)) ≥ log2
(
𝑛− 1
𝑛2

)
. (6.123)

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 181

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

This inequality is substituted into equation 6.120 to derive the upper bound

log2

(
𝑛

𝑤

)
< log2

(
𝑛√

2𝜋𝑛(𝑛− 1)

)
+

1

12𝑛
log2(𝑒) + 𝑛ℎ(𝑝), (6.124)

which holds for 𝑤 ∈ {1, 2, . . . 𝑛− 1} with 𝑛 > 1.
In order to generalize the initial bound of equation 6.124 to the case where 𝑤 ∈

{0, 1, . . . 𝑛}, it is determined that the function

𝑣(𝑛) = log2

(
𝑛√

2𝜋𝑛(𝑛− 1)

)
+

1

12𝑛
log2(𝑒) (6.125)

is a monotonically decreasing function with a minimum value of

lim
𝑛→∞

𝑣(𝑛) = − log2(
√
2𝜋). (6.126)

As the equation

log2

(
𝑛

𝑤

)
= 0 (6.127)

holds for all 𝑛 > 1 if 𝑤 ∈ {0, 𝑛}, and

log2(𝑒) > log2(
√
2𝜋), (6.128)

the upper bound

log2

(
𝑛

𝑤

)
< log2

(
𝑛√

2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 𝑛ℎ(𝑝) (6.129)

holds for 𝑤 ∈ {0, 1, . . . 𝑛} with 𝑛 > 1.
An upper bound on the length of the codeword that is assigned to the source

sequence x𝑛 is derived by substituting equation 6.129 into equation 6.115. This upper
bound is derived as

𝑙(x) < log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 𝑛ℎ(𝑝) + 2, (6.130)

where 𝑛 > 1 and 𝑤 ∈ {0, 1, . . . 𝑛}.
The average length 𝐿(X𝑛) of a codeword assigned to a random source sequence X𝑛

has the upper bound

𝐿(X𝑛) =
∑

x∈{0,1}𝑛
Pr(x)𝑙(x)

<
𝑛∑

𝑤=0

Pr(𝑤)

[
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 𝑛ℎ

(
𝑤

𝑛

)
+ 2

]
,

(6.131)
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where Pr(𝑤) ≜ Pr(𝑊 = 𝑤) denotes the probability that a random source sequence
has a weight of 𝑤 bits. The binary entropy function is a concave function — Jensen’s
inequality is therefore used to derive the inequality

𝑛∑
𝑤=0

Pr(𝑤)ℎ

(
𝑤

𝑛

)
≤ ℎ

( 𝑛∑
𝑤=0

Pr(𝑤)
𝑤

𝑛

)
≤ ℎ(𝑝), (6.132)

where the last step follows from the fact that the expected weight of a source sequence
equals 𝑛𝑝 bits, with 𝑝 ≜ Pr(𝑋𝑖 = 1).

An upper bound on the average codeword length is derived by substituting equation
6.132 into equation 6.131. This upper bound is derived as

𝐿(X𝑛) < log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 𝑛ℎ(𝑝) + 2. (6.133)

The upper bound on the average codeword length is used to derive an upper bound on
average per–codeword redundancy 𝑅(X𝑛). This upper bound is derived as

𝑅(X𝑛) = 𝐿(X𝑛)−𝐻(X𝑛)

= 𝐿(X𝑛)− 𝑛ℎ(𝑝)

< log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 2. (6.134)

The limit of the normalized average per–codeword redundancy, as the source se-
quence length 𝑛 tends to infinity, is derived as follows. The average per–codeword
redundancy satisfies the inequality

0 ≤ 𝑅(X𝑛) < log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 2 (6.135)

for all 𝑛 > 1. The average per–codeword redundancy is therefore expressed as

𝑅(X𝑛) = 𝐾𝑛𝑞(𝑛), (6.136)

where

𝑞(𝑛) = log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+

(
1

12𝑛
+ 1

)
log2(𝑒) + 2 (6.137)

and 0 ≤ 𝐾𝑛 < 1 for all 𝑛 > 1. The limit

lim
𝑛→∞

1

𝑛
𝑞(𝑛) = lim

𝑛→∞
1

𝑛
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)

= lim
𝑛→∞

1

𝑛
log2

(
(𝑛+ 1)2

(𝑛− 1)
)
− lim

𝑛→∞
1

2𝑛
log2(2𝜋)

= lim
𝑛→∞

1

ln(2)

𝑛− 1
𝑛2 + 2𝑛+ 1

(
𝑛2 − 2𝑛− 3
(𝑛− 1)2

)

= lim
𝑛→∞

1

ln(2)

𝑛− 3
𝑛2 − 1

= 0 (6.138)
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is used to prove that

lim
𝑛→∞

1

𝑛
𝑅(X𝑛) = lim

𝑛→∞
1

𝑛
𝐾𝑛𝑞(𝑛)

= 0. (6.139)

The limit of the normalized average per–codeword redundancy, as the source sequence
length tends to infinity, is therefore equal to zero. It is concluded that the weight–and–
index source code for binary memoryless sources is a universal source code.

Performance w.r.t. binary context–tree sources A bound on the average per–
codeword redundancy of the universal weight–and–index source code for sequences from
binary context–tree sources is derived in this section. This source code was introduced
in section 6.2.1.1 on page 174. The derivation of the bound is carried out under the
assumption that the segmentation algorithm of the source code predicts the number of
transition points between the segments of each BWT output sequence, as well as the
positions of the transition points, with perfect accuracy.

Consider a binary context–tree source with a state set 𝒮, and let the length of the
longest source context be denoted by 𝑚. Each BWT output sequence of the source en-
coder has a maximum of ∣𝒮∣+𝑚 i.i.d. bit segments when the encoder is used to encode
sequences from the source. Each of the additional segments of each BWT output se-
quence (i.e. each segment in addition to the ∣𝒮∣ segments per sequence that correspond
to the states of the source) has a length of one bit.

Let 𝐶 denote the true number of i.i.d. bit segments in the BWT output sequence
that is produced when a finite–length source sequence x𝑛 is encoded, where 𝑛 > 1. An
upper bound on the length of the codeword assigned to the sequence x𝑛 is derived as

𝑙(x) =

𝐶∑
𝑖=1

(
𝑙1,𝑖(x) + 𝑙2,𝑖(x)

)
+

5∑
𝑗=3

𝑙𝑗(x)

≤
∣𝒮∣∑
𝑖=1

(
⌈log2(𝑛𝑖 + 1)⌉+

⌈
log2

(
𝑛𝑖
𝑤𝑖

)⌉)
+ ⌈log2(𝑛 + 1)⌉+ 𝐶 ⌈log2(𝑛)⌉

+𝑚, (6.140)

where it is assumed that the additional i.i.d. bit segments are numbered from ∣𝒮∣+1 to
𝐶, and where the field lengths 𝑙1,𝑖(x) to 𝑙5(x) are defined in equations 6.101 to 6.105.
The last step of equation 6.140 follows from the fact that each additional i.i.d. bit
segment is assigned a codeword of one bit (refer to equations 6.101 and 6.102).

A more informative upper bound is derived using the upper bound on the codeword
length of the weight–and–index source code for sequences from binary memoryless
sources (equation 6.130). The length of the codeword produced by the encoder of the
weight–and–index source code for sequences from binary memoryless sources, when the
encoder is used to encode segment 𝑖 of the BWT output sequence, has the upper bound

𝑙1,𝑖(x) + 𝑙2,𝑖(x) < log2

(
𝑛𝑖(𝑛𝑖 + 1)√
2𝜋𝑛𝑖(𝑛𝑖 − 1)

)
+

(
1

12𝑛𝑖
+ 1

)
log2(𝑒) + 𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)
+ 2,

(6.141)
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under the condition that the segment length 𝑛𝑖 exceeds one bit. It is assumed that this
condition is satisfied for all 𝑖 ∈ {1, 2, . . . ∣𝑆∣} in order to derive an initial bound on the
codeword length of the universal weight–and–index source code for binary context–tree
sources. The initial bound is generalized to the case where 𝑛𝑖 ≥ 1 after its derivation.

The initial bound on the codeword length of the weight–and–index source code for
binary context–tree sources is derived using the inequality log2(𝑛) < log2(𝑛 + 1). The
initial bound is derived as

𝑙(x) <

∣𝒮∣∑
𝑖=1

(
log2

(
𝑛𝑖(𝑛𝑖 + 1)√
2𝜋𝑛𝑖(𝑛𝑖 − 1)

)
+

(
1

12𝑛𝑖
+ 1

)
log2(𝑒) + 𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)
+ 2

)
+ (𝐶 + 1) log2(𝑛 + 1) + 𝐶 + 1 +𝑚, (6.142)

where it is assumed that 𝑛𝑖 exceeds one bit for all 𝑖 ∈ {1, 2, . . . ∣𝑆∣}. The function

𝑣(𝑛𝑖) = log2

(
𝑛𝑖(𝑛𝑖 + 1)√
2𝜋𝑛𝑖(𝑛𝑖 − 1)

)
(6.143)

is a monotonically increasing function of the segment length 𝑛𝑖. Due to the monotonic
nature of the function 𝑣, and the fact that 𝑛𝑖 ≤ 𝑛, the inequality

𝑣(𝑛𝑖) ≤ 𝑣(𝑛) (6.144)

holds for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}. This inequality is used to derive the upper bound

𝑙(x) <

∣𝒮∣∑
𝑖=1

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)
+ 2

)
+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚, (6.145)

where it is assumed that 𝑛 and 𝑛𝑖 exceed one bit for all 𝑖 ∈ {1, 2, . . . ∣𝑆∣}.
It is subsequently proved that the bound of equation 6.145 remains valid if one or

more of the segments in the BWT output sequence consist of a single bit. Each segment
that consists of a single bit is assigned a codeword of one bit by the encoder of the
weight–and–index source code for binary memoryless sources (refer to equations 6.101
and 6.102). Therefore, in order to prove that the bound of equation 6.145 remains valid,
it is proved that the function

𝑧(𝑛) = log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)
+ 2 (6.146)

exceeds one bit for all 𝑛 > 1 and all 𝑛𝑖 ≥ 1.
The inequality

𝑣(𝑛) = log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
> 0 (6.147)
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holds for all 𝑛 > 1, as 𝑣(𝑛) is a monotonically increasing function and 𝑣(2) > 0. The
inequality

ℎ

(
𝑤𝑖

𝑛𝑖

)
≥ 0 (6.148)

holds for all 𝑛𝑖 ≥ 1, as the range of the binary entropy function is nonnegative. The
inequalities of equations 6.147 and 6.148, as well as the fact that

13

12
log2(𝑒) > 0, (6.149)

are used to derive the inequality

𝑧(𝑛) = log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)
+ 2

> 1. (6.150)

This inequality proves that the inequality of equation 6.145 holds for all BWT output
sequences with segment lengths 𝑛𝑖, where 𝑛𝑖 ≥ 1 for all 𝑖 ∈ {1, 2, . . . ∣𝑆∣}.

In order to derive an upper bound on the average length of the codewords assigned
to sequences from the binary context–tree source, the inequality

∣𝒮∣∑
𝑖=1

𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)
≤

𝐶∑
𝑖=1

𝑛𝑖ℎ

(
𝑤𝑖

𝑛𝑖

)

≤ 𝑛𝐻̂x(𝒳 ) (6.151)

is derived. The term 𝐻̂x(𝒳 ) of equation 6.151 denotes the entropy rate of the empirical
distribution of the source sequence x𝑛. An upper bound on the average codeword length
𝐿(X𝑛) is derived by substituting the inequality of equation 6.151 into the upper bound
of equation 6.145, and averaging with respect to the source sequence probability. The
upper bound is derived as

𝐿(X𝑛) <
∑

x∈{0,1}𝑛
Pr(x)

[ ∣𝒮∣∑
𝑖=1

(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

+𝑛𝐻̂x(𝒳 ) + (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚

]

<

∣𝒮∣∑
𝑖=1

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ 𝑛𝐻(𝒳 )

+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚, (6.152)

where 𝐻(𝒳 ) denotes the entropy rate of the binary context–tree source. The last step
of equation 6.152 follows from Jensen’s inequality (refer to reference [10]). The average
length of the codewords assigned to sequences from the binary context–tree source is
therefore bounded as

𝐿(X𝑛) < ∣𝒮∣
(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ 𝑛𝐻(𝒳 )

+ (𝐶 + 1) log2(𝑛 + 1) + 𝐶 + 1 +𝑚. (6.153)
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The normalized average per–codeword redundancy of the universal weight–and–
index source code for binary context–tree sources, with respect to the entropy rate of
the source14, is bounded as

𝑅′(X𝑛) =
1

𝑛
𝐿(X𝑛)−𝐻(𝒳 )

<
∣𝒮∣
𝑛

(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

+
(𝐶 + 1) log2(𝑛+ 1)

𝑛
+

𝐶 + 1 +𝑚

𝑛
. (6.154)

An upper bound on the normalized average per–codeword redundancy, as the source
sequence length 𝑛 tends to infinity, is derived as follows. The normalized average per–
codeword redundancy satisfies the inequality

0 ≤ 𝑅′(X𝑛) < 𝑞(𝑛) (6.155)

for all 𝑛 > 1, where

𝑞(𝑛) =
∣𝒮∣
𝑛

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

+
(𝐶 + 1) log2(𝑛 + 1)

𝑛
+

𝐶 + 1 +𝑚

𝑛
. (6.156)

The normalized average per–codeword redundancy is therefore expressed as

𝑅′(X𝑛) = 𝐾𝑛𝑞(𝑛), (6.157)

where 0 ≤ 𝐾𝑛 < 1 for all 𝑛 > 1. Consider the limit

lim
𝑛→∞

𝑞(𝑛) = lim
𝑛→∞

∣𝒮∣
𝑛
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+ lim

𝑛→∞
(𝐶 + 1) log2(𝑛 + 1)

𝑛
.(6.158)

Equation 6.138 is used to prove that

lim
𝑛→∞

∣𝒮∣
𝑛
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
= lim

𝑛→∞
1

𝑛
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
.

= 0. (6.159)

The second term on the right–hand side of equation 6.158 is simplified as

lim
𝑛→∞

(𝐶 + 1) log2(𝑛+ 1)

𝑛
= lim

𝑛→∞
𝐶 + 1

ln(2)(𝑛+ 1)

= 0. (6.160)

It follows that the inequality

lim
𝑛→∞

𝑅′(X𝑛) = lim
𝑛→∞

𝐾𝑛𝑞(𝑛)

= 0 (6.161)

holds. It is concluded that the proposed weight–and–index source code for binary
context–tree sources is universal.

14Effros et. al. [10] defined the redundancy of BWT–based source codes for context–tree sources
with respect to the entropy rate of the source. This definition is used in the performance analysis of
each source code for context–tree sources that is proposed in this thesis.
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6.2.1.5 Practical results

Practical implementations of the weight–and–index source codes for binary memoryless
sources and binary context–tree sources were used to encode sequences from their
respective sources. The source coding results for each source type are presented in this
section.

Binary memoryless sources The weight–and–index source code for binary memo-
ryless sources was used to encode sequences from several sources in two configurations.
This source code is referred to as the proposed source code in what follows. Both
configurations of the proposed source code are discussed in this section.

Configuration 1: Fixed source sequence length The first configuration of
the proposed source code involved the source coding of fixed–length sequences from a
single binary memoryless source. The source parameter 𝑝 (i.e. the probability of the
source producing a nonzero–valued bit) was changed for each set of simulation trials.
The practical implementation of the source code had no apriori knowledge of the source
parameter 𝑝. The parameters and quantities associated with the proposed source code
in the first configuration are presented in table 6.6 on page 189.

The source coding results associated with the proposed source code in the first
configuration are presented in figure 6.9 on page 190. This figure contains a plot of
the average codeword length of the practical implementation of the proposed source
code, as a function of the source parameter 𝑝. It includes a curve that represents the
per–sequence entropy of the source.

Figure 6.9 reveals that the average codeword length of the practical implementation
of the proposed source code approaches the per–sequence entropy of the binary memo-
ryless source over the entire range of the source parameter 𝑝. This observation implies
that the source code may be used to encode 500–bit sequences from any stationary
binary memoryless source with a reasonable degree of effectiveness, and without prior
knowledge of the source parameter 𝑝.

The average per–codeword redundancy of the practical implementation of the pro-
posed source code is plotted in figure 6.10 on page 191 as function of the source parame-
ter 𝑝. The figure includes a curve that represents the analytically–derived upper bound
on the average per–codeword redundancy of the proposed source code (i.e. equation
6.134). The figure reveals that the average redundancy of the practical implementation
does not exceed its upper bound. This observation suggests that the proposed source
code was correctly implemented.

Figure 6.10 reveals that the average per–codeword redundancy of the practical im-
plementation does not vary significantly over the source parameter interval 0.2 ≤ 𝑝 ≤
0.8. The codewords of the practical implementation become marginally less redundant
if the implementation is used to encode sequences from a source with a per–symbol
entropy that approaches one bit. As the per–symbol entropy of the source approaches
zero bits, the codewords of the practical implementation become more redundant. This
observation is motivated by considering the fact that the first codeword field (i.e. the
binary–coded source sequence weight) becomes more redundant when the implemen-
tation is used to encode source sequences that are more redundant. The first codeword
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Table 6.6: Parameters and quantities associated with the first configuration of the
weight–and–index source code for binary memoryless sources.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 500 bits
Prob. nonzero–valued source bit 𝑝 0 – 1 —
Per–sequence source entropy 𝐻(X𝑛) 0 – 500 bits
Trial runs per value of 𝑝 — 50 000 trials

field has a fixed length, and is optimal when used to represent equiprobable sequence
weights — the weight distribution of highly–redundant source sequences is biased,
however.

Figure 6.10 includes curves that represent upper bounds on the redundancy of
certain nonuniversal source codes, assuming the codes were used to encode the same
sequences as the proposed source code. The nonuniversal source codes consist of a
Huffman code that was extended to 500 bits, and an arithmetic code that independently
encodes sequences of 500 bits. It is assumed that both of these source codes had apriori
knowledge of the source parameter 𝑝. The upper bound on the redundancy of the
extended Huffman code was derived using equation 2.2 on page 9, and the upper
bound on the redundancy of the arithmetic code was derived using equation 2.8 on
page 16. Neither of the nonuniversal source codes were implemented.

The figure reveals that both the extended Huffman code and the arithmetic code
produce codewords that are, on average, significantly less redundant than the code-
words of the proposed source code. The extended Huffman code and the arithmetic
code are not universal, in contrast to the proposed source code — both the Huffman
code and the arithmetic code require apriori knowledge of the source parameter 𝑝. The
computational complexity of the extended Huffman code’s construction is exceedingly
high, and renders the source code impractical.

Configuration 2: Variable source sequence length The second configuration
of the proposed source code involved the source coding of variable–length sequences
from three binary memoryless sources. Each binary memoryless source had a distinct
source parameter 𝑝 that remained fixed. The parameters and quantities associated with
the proposed source code in the second configuration are presented in table 6.7 on page
192.

The source coding results associated with the proposed source code in the second
configuration are presented in figure 6.11 on page 193. This figure contains a plot of
the normalized average per–codeword redundancy of the practical implementation of
the proposed source code, as a function of the source sequence length. It also contains
curves that represent the normalized average redundancy of two nonuniversal source
codes, as well as a curve that represents an analytically–derived upper bound on the
normalized average redundancy of the proposed source code. The upper bound on the
normalized average redundancy of the proposed source code was derived by dividing
equation 6.134 on page 183 by the source sequence length 𝑛.

The normalized average redundancy of the practical implementation of the pro-

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 189

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

0
 

 

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Source entropy, theoretical

Proposed code, practical

A
ve
ra
ge
co
d
ew
or
d
le
n
gt
h
𝐿
(X

𝑛
)
(b
it
s)

Occurrence probability of nonzero–valued bit, 𝑝

Figure 6.9: Average codeword length of the weight–and–index source code for binary
memoryless sources in the first configuration, as a function of the source parameter 𝑝.
The figure includes a curve that represents the per–sequence entropy of the source.

posed source code is represented by three distinct curves in figure 6.11 — each curve
corresponds to the source coding of sequences from one of the three binary memoryless
sources. The figure reveals that the normalized average redundancy of the practical
implementation decreases w.r.t. the source sequence length, as expected for a universal
source code. The three curves that represent the proposed code’s normalized average
redundancy start to overlap as the length of the source sequences is increased.

All of the curves of figure 6.11 that represent the redundancy of the practical
implementation of the proposed source code lie below the curve that represents the
analytically–derived upper bound on the redundancy of the proposed source code. The
curves that represent the normalized average redundancy of the practical implementa-
tion of the proposed source code have approximately the same gradient as the curve
that represents the upper bound (as the source sequence length approaches 1000 bits).
These observations suggest that the source code was correctly implemented.

Figure 6.11 includes curves that represent upper bounds on the redundancy of a
nonuniversal extended Huffman code, as well as a nonuniversal arithmetic code. Neither
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Figure 6.10: Normalized average per–codeword redundancy of the weight–and–index
source code for binary memoryless sources in the first configuration, as a function of
the source parameter 𝑝. The figure includes curves that represent upper bounds on the
redundancy of several source codes.

of the nonuniversal source codes were implemented. It is assumed that the nonuniversal
source codes were used to encode the same sequences as the proposed source code, and
that these source codes had apriori knowledge of each source parameter 𝑝. The Huffman
code was extended to the length of the source sequence in each case. It is assumed that
the arithmetic code was used to independently encode sequences of the relevant length.

Figure 6.11 reveals that the proposed source code would be outperformed by both
the nonuniversal extended Huffman code and the nonuniversal arithmetic code if used
to encode source sequences longer than 50 bits. Both the extended Huffman code
and the arithmetic require apriori knowledge of the source parameter 𝑝, however. The
extended Huffman code is also impractical, as the computational complexity of its
construction is exceedingly high.
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Table 6.7: Parameters and quantities associated with the second configuration of the
weight–and–index source code for binary memoryless sources.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 10 – 103 bits
Prob. nonzero–valued src. bit, src. 1 𝑝 0.2 —
Prob. nonzero–valued src. bit, src. 2 𝑝 0.5 —
Prob. nonzero–valued src. bit, src. 3 𝑝 0.7 —
Per–symbol src. entropy, src. 1 𝐻(𝑋) 0.7219 bits
Per–symbol src. entropy, src. 2 𝐻(𝑋) 1 bits
Per–symbol src. entropy, src. 3 𝐻(𝑋) 0.8813 bits

Binary context–tree sources The three weight–and–index source codes for binary
context–tree sources were implemented and used to encode sequences from two sta-
tionary binary context–tree sources. The two binary context–tree sources that were
considered are referred to as the high–entropy source and the medium–entropy source.
These sources are defined in what follows.

Source 1: The high–entropy source The first binary context–tree source that
was considered is referred to as the high–entropy source, as its entropy rate is approxi-
mately equal to one bit per source bit. The tree of the high–entropy source is presented
in figure 6.12 on page 194.
The high–entropy source has a total of five states. Its state set 𝒮 is defined as

𝒮 = {00, 01, 100, 101, 11}. (6.162)

Let 𝑚 denote the length of the longest context that is associated with the high–entropy
source. It follows that

𝑚 = 3, (6.163)

as the source has no context longer than three bits.
Let the states of the high–entropy source be numbered from one to five in the order

s1 = 00

s2 = 100

s3 = 01

s4 = 11

s5 = 101. (6.164)

The distribution of the bits that the high–entropy source produces in each of its states
is presented in table 6.8 on page 195.

The FSM closure of the high–entropy binary context–tree source is subsequently
derived. The state set 𝒮 ′ of the FSM closure is derived as

𝒮 ′ = {00, 10, 001, 101, 11}. (6.165)
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Figure 6.11: Normalized average per–codeword redundancy of the weight–and–index
source code for binary memoryless sources in the second configuration, as a function of
the source sequence length 𝑛. The figure includes curves that represent upper bounds
on the redundancy of several source codes.

Let the states of the FSM closure of the high–entropy binary context–tree source be
numbered from one to five in the order

s′1 = 00

s′2 = 001

s′3 = 10

s′4 = 11

s′5 = 101. (6.166)

The state–transition diagram of the FSM closure of the high–entropy binary context–
tree source is presented in figure 6.13 on page 194.

The state–transition probability matrix S of the FSM closure of the high–entropy
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Figure 6.12: The tree of the high–entropy source. The leaves of the tree represent the
states of the source.
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Figure 6.13: The state–transition diagram of the FSM closure of the high–entropy
binary context–tree source.
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Table 6.8: The bit distributions that are associated with the states of the high–entropy
source.

Pr(𝑋 = 0∣s) Pr(𝑋 = 1∣s)
s = s1 0.6926 0.3074
s = s2 0.4365 0.5635
s = s3 0.4823 0.5177
s = s4 0.7822 0.2178
s = s5 0.3650 0.6350

binary context–tree source is derived as

S =

⎛
⎜⎜⎜⎝

𝑝1,1 𝑝1,2 . . . 𝑝1,∣𝒮′∣
𝑝2,1 𝑝2,2 . . . 𝑝2,∣𝒮′∣
...

...
. . .

𝑝∣𝒮′∣,1 𝑝∣𝒮′∣,2 𝑝∣𝒮′∣,∣𝒮′∣

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
0.6926 0.3074 0 0 0
0 0 0.4365 0.5635 0

0.4823 0 0 0 0.5177
0 0 0.7822 0.2178 0
0 0 0.3650 0.6350 0

⎞
⎟⎟⎟⎟⎠ , (6.167)

where 𝑝𝑦,𝑧 denotes the probability of a transition to state s
′
𝑧 of the FSM closure, con-

ditioned on the source being in state s′𝑦.
Equation 6.92 is used to derive the state probability vector of the FSM closure of

the high–entropy binary context–tree source. The state probability vector P is derived
as

P = [𝑝1, 𝑝2, . . . 𝑝∣𝒮′∣]𝑇

= [0.3618, 0.1112, 0.2306, 0.1770, 0.1194]𝑇, (6.168)

where 𝑝𝑦 denotes the probability of the FSM closure being in state s′𝑦.
The entropy 𝐻𝑦(𝑋) associated with the distribution of the bits that are produced

in state s′𝑦 of the FSM closure is calculated using the equation

𝐻𝑦(𝑋) = −
∣𝒮′∣∑
𝑧=1

𝑝𝑦,𝑧 log2(𝑝𝑦,𝑧). (6.169)

The entropy rate 𝐻(𝒳 ) of the FSM closure of the binary context–tree source is calcu-
lated as

𝐻(𝒳 ) =

∣𝒮′∣∑
𝑦=1

𝑝𝑦𝐻𝑦(𝑋)

= 0.9092 (6.170)

bits per source bit. The entropy rate of the high–entropy binary context–tree source
equals the entropy rate of its FSM closure.
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Table 6.9: The bit distributions that are associated with the states of the medium–
entropy source.

Pr(𝑋 = 0∣s) Pr(𝑋 = 1∣s)
s = s1 0.2502 0.7498
s = s2 0.3880 0.6120
s = s3 0.5920 0.4080
s = s4 0.0524 0.9476
s = s5 0.4874 0.5126

Source 2: The medium–entropy source The second binary context–tree source
that was considered is referred to as the medium–entropy source, as its entropy rate is
approximately equal to 0.5 bits per source bit. It has the same tree as the high–entropy
binary context–tree source (figure 6.12 on page 194), and therefore the same state set
as the high–entropy source (equations 6.162 and 6.164). It is assumed that the states
of the medium–entropy source are numbered in the same manner as the states of the
high–entropy source.

The distribution of the bits that the medium–entropy source produces in each of
its states differs from the corresponding distribution of the high–entropy source. The
distribution of the bits that the medium–entropy source produces in each state is
presented in table 6.9 on page 196.

The FSM closure of the medium–entropy source has the same state set as the FSM
closure of the high–entropy source (equations 6.165 and 6.166), as well as the same
state–transition diagram (figure 6.13 on page 194). Let the states of the FSM closure
of the medium–entropy source be numbered in the same manner as the states of the
FSM closure of the high–entropy source. The state–transition probability matrix15 S
of the FSM closure of the medium–entropy binary context–tree source is derived as

S =

⎛
⎜⎜⎜⎜⎝
0.2502 0.7498 0 0 0
0 0 0.3880 0.6120 0

0.5920 0 0 0 0.4080
0 0 0.0524 0.9476 0
0 0 0.4874 0.5126 0

⎞
⎟⎟⎟⎟⎠ . (6.171)

The state probability vector P of the FSM closure of the medium–entropy binary
context–tree source is derived as

P = [0.0577, 0.0432, 0.0730, 0.7963, 0.0298]𝑇 (6.172)

using equation 6.92. The entropy rate 𝐻(𝒳 ) of the FSM closure of the medium–entropy
binary context–tree source is calculated as

𝐻(𝒳 ) = 0.4256 (6.173)

bits per source bit using equations 6.169 and 6.170. The entropy rate of the medium–
entropy binary context–tree source equals the entropy rate of its FSM closure.

15Refer to equation 6.167 for the definition of the state–transition probability matrix.
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Table 6.10: Parameters and quantities associated with the high–entropy and medium–
entropy binary context–tree sources.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 256 – 8192 bits
Entropy rate, high–entropy src. 𝐻(𝒳 ) 0.9092 bits per source bit

Entropy rate, medium–entropy src. 𝐻(𝒳 ) 0.4256 bits per source bit

Table 6.11: Block lengths and parameters associated with the segmentation algorithm
of the universal weight–and–index source code for binary context–tree sources.

Source sequence Level–one Level–two Parameter Parameter
length 𝑛 (bits) block length block length 𝜇 𝛾

𝑘1(𝑛) (bits) 𝑘2(𝑛) (bits)

256 75 15 1.0763 1.4650
512 100 20 1.0959 1.5966
1024 126 21 1.1004 1.5359
2048 150 25 1.0896 1.5936
4096 180 30 1.0898 1.6640
8192 210 30 1.0847 1.5994

Source coding results The three weight–and–index source codes for binary
context–tree sources were implemented and used to encode sequences from the high–
entropy and medium–entropy sources. These source codes are the type–one and type–
two nonuniversal weight–and–index source codes (introduced in section 6.2.1.1 on pages
169 and 172), as well as the universal weight–and–index source code (introduced in sec-
tion 6.2.1.1 on page 174). The length of the source sequences that were encoded was
changed for each set of simulation trials in order to characterize the source code re-
dundancy as a function of the source sequence length.

The parameters and quantities associated the high–entropy and medium–entropy
binary context–tree sources are presented in table 6.10 on page 197. Table 6.11 on page
197 contains the block lengths and parameters that are associated with the practical
implementation of the segmentation algorithm, which is part of the universal weight–
and–index source code for binary context–tree sources. The parameters 𝜇 and 𝛾, as
defined in equations 6.99 and 6.100, were assigned values by trial and error.

The source coding results are presented in figure 6.14 on page 198. This figure
contains a plot of the normalized average per–codeword redundancy of the practical
implementation of each source code, as a function of the source sequence length. The
figure also contains a curve that represents the analytically–derived upper bound on
the redundancy of the universal weight–and–index source code. This bound was derived
under the assumption that the segmentation algorithm of the source code is perfectly
accurate, and is expressed in equation 6.154 on page 187.

Figure 6.14 reveals that all the curves which represent the redundancy of the source
codes’ practical implementations lie below the curve that represents the upper bound
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Figure 6.14: The normalized average per–codeword redundancy of the nonuniversal and
universal weight–and–index source codes for binary context–tree sources, as a function
of the source sequence length 𝑛. Source one is the high–entropy source, and source two
is the medium–entropy source.

on the redundancy of the universal weight–and–index source code with a perfectly
accurate segmentation algorithm. The curves that represent the redundancy of the
type–one nonuniversal source code decrease at approximately the same rate w.r.t. the
source sequence length as the curve that represents the upper bound. This observation
suggests that the type–one nonuniversal source code was correctly implemented, as the
redundancy of the type–one nonuniversal source code is nearly equal to the redundancy
of the universal source code with a perfectly accurate segmentation algorithm (compare
equations 6.84 to 6.87 with equations 6.101 to 6.105).

The redundancy of the type–two nonuniversal weight–and–index source code, when
the source code is used to encode sequences from both the high–entropy and medium–
entropy sources, does not decrease at the same rate w.r.t. the source sequence length
as the upper bound on the redundancy of the universal source code with a perfectly
accurate segmentation algorithm. It appears that the approach of independently en-
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coding the sequences between the expected positions of the transition points in the
BWT output sequence may cause the redundancy of the source code to decrease at a
lesser rate in certain cases.

The curves that represent the redundancy of the type–one nonuniversal source
code nearly overlap the curves that represent the redundancy of the universal source
code, assuming that source sequences of between 512 bits and 2048 bits were encoded.
This observation is indicative of the effectiveness of the universal source code, as the
redundancy of the type–one nonuniversal source code is approximately equal to the
redundancy of the universal source code with a perfectly accurate segmentation algo-
rithm.

The redundancy of the universal source code decreases at a lesser rate w.r.t. the
source sequence length than the upper bound and the redundancy of the type–one
nonuniversal source code, assuming that source sequences in excess of 2048 bits were
encoded. This observation implies that the segmentation algorithm of the universal
code does not produce perfect estimates of the positions of the transition points in
longer BWT output sequences. The performance of the source code may be improved
by searching for values of the parameters 𝑘1(𝑛) and 𝑘2(𝑛) that yield more accurate
estimates of the positions of the transition points. It was found that the accuracy of the
segmentation algorithm is very sensitive to changes in the values of these parameters.

Figure 6.14 reveals that the universal weight–and–index source code has a smaller
codeword redundancy than the type–one nonuniversal weight–and–index source code
when used to encode sequences of 256 bits. It was found that the segmentation algo-
rithm of the universal source code underestimated the number of segments in shorter
BWT output sequences (on average). This implies that fewer segment lengths have to
be encoded — as this overhead forms a significant part of the codewords of shorter
source sequences, the effectiveness of the code is improved.

6.2.2 The weight–and–index variable–length code for 𝑞–ary
sources

The weight–and–index variable–length source code for 𝑞–ary sources is a generalization
of the weight–and–index variable–length source code for binary sources, which was
introduced in section 6.2.1 on page 166. This source code may be used to encode
symbol sequences from certain 𝑞–ary sources16 in a universal fashion, where 𝑞 ≥ 2. The
weight–and–index source code for 𝑞–ary sources, with 𝑞 equal to two, is identical to the
weight–and–index source code for binary sources, as introduced in section 6.2.1.

The weight–and–index source code for 𝑞–ary sources may be used to separately
encode sequences from 𝑞–ary memoryless sources or 𝑞–ary context–tree sources. The
structure of the source code depends on whether it encodes sequences from a memory-
less source or a context–tree source, and whether it encodes sequences in a universal or a
nonuniversal fashion. The weight–and–index source code for 𝑞–ary memoryless sources
is a universal source code. Three weight–and–index source codes for 𝑞–ary context–tree
sources are defined — two of these source codes are nonuniversal, and the remaining
code is universal.

16A 𝑞–ary source produces symbols from an alphabet of 𝑞 distinct symbols.
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6.2.2.1 Derivation of the source code

The derivation of the weight–and–index variable–length source code for 𝑞–ary sources
is divided into two sections. The first section concerns the derivation of the universal
weight–and–index source code for 𝑞–ary memoryless sources. The second section con-
cerns the derivation of the nonuniversal and universal weight–and–index source codes
for 𝑞–ary context–tree sources.

It is assumed that the integer 𝑞 is a power of two in order to simplify the subsequent
discussion. The integer 𝑚′, which is defined as

𝑚′ = log2(𝑞), (6.174)

is used in the remainder of this section.

𝑄–ary memoryless sources The encoder of the weight–and–index source code for
𝑞–ary memoryless sources numbers the symbols of the alphabet from zero to 𝑞 − 1,
and assigns a unique binary word of log2(𝑞) bits to each distinct alphabet symbol. It
transforms each source sequence of 𝑛 symbols into a sequence of 𝑛 binary words by
replacing each 𝑞–ary symbol of the source sequence with the binary word assigned to
it.

The encoder of the weight–and–index source code for 𝑞–ary memoryless sources
divides each sequence of 𝑛 binary words into shorter subsequences of bits, and uses the
weight–and–index source code for binary memoryless sources to independently encode
each subsequence. The steps that the source encoder follows to divide a sequence of
binary words into shorter subsequences are summarized in what follows.

The source encoder iteratively generates a total of 𝑚′ blocks of bits. Each block
contains 𝑛 bits of the (𝑛𝑚′)–bit sequence of binary words. The 𝑗th 𝑛–bit block is
obtained by concatenating the 𝑗th bits of the binary words in the sequence of binary
words, where 𝑗 ∈ {1, 2, . . .𝑚′}. The bits are concatenated in the same order in which
their binary words appear in the sequence of binary words. Each of the 𝑚′ blocks of 𝑛
bits is divided further by the source encoder.

Consider the 𝑗th 𝑛–bit block that the encoder of the weight–and–index source code
for 𝑞–ary memoryless sources generates, where 𝑗 ∈ {1, 2, . . .𝑚′}. Each bit of this block
may be associated with the (𝑗 − 1)–bit prefix of the 𝑚′–bit binary word from which it
originated17. The source encoder divides the bits of the 𝑗th 𝑛–bit block it generated
into sets, so that all of the bits in the same set are associated with the same distinct
(𝑗 − 1)–bit prefix. It follows that the source encoder produces a maximum of 2𝑗−1

nonempty sets of bits during the division of the 𝑗th 𝑛–bit block it generated.
The source encoder concatenates the bits in each nonempty set that it produced

during the division of the 𝑗th 𝑛–bit block, thereby producing a maximum of 2𝑗−1 binary
subsequences. The bits of each set are concatenated in the same order in which they
appeared in the 𝑗th 𝑛–bit block. Each binary subsequence is encoded independently
from the remaining binary subsequences using the weight–and–index source code for
binary memoryless sources.

17In the case where 𝑗 = 1, all of the bits of the block are associated with the same prefix. This
prefix is the zero–length, null sequence.
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After encoding all the subsequences of the 𝑗th 𝑛–bit block, the encoder of the
weight–and–index source code for 𝑞–ary memoryless sources concatenates the subse-
quences’ codewords in the same order in which the subsequences were generated. The
sequence of concatenated codewords may be interpreted as the codeword assigned to
the 𝑗th 𝑛–bit block generated by the source encoder. After generating a codeword for
each of the 𝑚′ blocks of 𝑛 bits, the source encoder concatenates these codewords in the
same order in which their corresponding 𝑛–bit blocks were generated. The sequence
of concatenated codewords may be interpreted as the codeword of the entire source
sequence.

In order to justify the weight–and–index source code for 𝑞–ary memoryless sources,
the per–symbol entropy 𝐻(𝑋) of a 𝑞–ary memoryless source is expressed in terms of
joint and conditional entropy functions. Let the random binary word assigned to the
random 𝑞–ary source symbol 𝑋 be denoted by B𝑚′

= {𝐵1, 𝐵2, . . . 𝐵𝑚′}, where 𝐵𝑖 ∈ 𝔹

for all 𝑖 ∈ {1, 2, . . .𝑚′}. The per–symbol entropy of the 𝑞–ary memoryless source may
be expressed as [160]

𝐻(𝑋) = 𝐻(𝐵1, 𝐵2, . . . 𝐵𝑚′)

= 𝐻(𝐵1) +
𝑚′∑
𝑗=2

𝐻(𝐵𝑗∣𝐵1, 𝐵2, . . . 𝐵𝑗−1). (6.175)

The expression for the per–symbol entropy of the 𝑞–ary memoryless source is expanded
with respect to its conditional entropy terms as

𝐻(𝑋) = 𝐻(𝐵1) +

𝑚′∑
𝑗=2

𝐻(𝐵𝑗∣B𝑗−1
1 )

= 𝐻(𝐵1) +

𝑚′∑
𝑗=2

∑
b𝑗−1
1 ∈{0,1}𝑗−1

Pr(b𝑗−1
1 )𝐻(𝐵𝑗∣b𝑗−1

1 ), (6.176)

where Pr(b𝑗−1
1 ) ≜ Pr(B𝑗−1

1 = b𝑗−1
1 ).

Suppose that the ideal variable–length source code, which was introduced in section
6.1.1.6 on page 149, is used to encode the subsequences of the 𝑗th 𝑛–bit block generated
by the source encoder. The codeword that is assigned to the subsequence associated
with the prefix b𝑗−1

1 would have a normalized average length of 𝐻(𝐵𝑗 ∣b𝑗−1
1 ) bits per

subsequence bit. As an average of 𝑛Pr(b𝑗−1
1 ) binary words assigned to a random 𝑛–

symbol source sequence have the (𝑗 − 1)–bit prefix b𝑗−1
1 , the encoder of the ideal

variable–length source code assigns a codeword with an average length of

𝑙b𝑗−1 = 𝑛Pr(b𝑗−1
1 )𝐻(𝐵𝑗∣b𝑗−1

1 ) (6.177)

bits to the subsequence associated with the prefix b𝑗−1
1 . The right–hand side of equation

6.176 is a sum of the average codeword lengths of equation 6.177, normalized by 𝑛.
Suppose that the ideal variable–length source code is used to encode all the sub-

sequences of each source sequence. The codeword of each 𝑞–ary source sequence is
obtained by concatenating all the codewords that were assigned to the subsequences of
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the source sequence. Using equation 6.176, the average length of the codeword assigned
to a source sequence is derived as 𝑛𝐻(𝑋) bits, which equals the per–sequence entropy
of the source. It follows that the weight–and–index source code for 𝑞–ary memoryless
sources would be able to optimally encode symbol sequences from a 𝑞–ary memoryless
source (i.e. with the minimum average codeword length) by using the ideal variable–
length source code to encode each subsequence. The proposed weight–and–index source
code for 𝑞–ary memoryless sources uses the weight–and–index source code for binary
memoryless sources to encode each subsequence, as the ideal variable–length source
code cannot be implemented. The observation regarding the effectiveness of the pro-
posed approach to encoding 𝑞–ary symbol sequences from memoryless sources justifies
the proposed source code, however.

Several definitions are required in order to derive an expression for the length of
each codeword produced by the encoder of the weight–and–index source code for 𝑞–ary
memoryless sources. Let 𝒜 denote the symbol alphabet, and let the function 𝑆𝑗,𝑘 :
𝒜𝑛 (→ {0, 1}∗ produce a specific subsequence of the 𝑗th 𝑛–bit block generated by the
source encoder, which is used to encode a source sequence x𝑛 ∈ 𝒜𝑛. The bits of the
subsequence that the function 𝑆𝑗,𝑘 produces are associated with the prefix b

𝑗−1
1 , where

b𝑗−1
1 = 𝛽𝑗−1(𝑘) (the function 𝛽𝑗−1 is defined in equation 6.8 on page 142). The function

𝑆𝑗,𝑘 is defined for the parameters 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.
Let bit 𝑗 of the binary word assigned to symbol 𝑡 of the source sequence x𝑛 be

denoted by 𝑏𝑗,𝑡, where 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑡 ∈ {1, 2, . . . 𝑛}. The function 𝑆𝑗,𝑘 is
formally defined as

𝑆𝑗,𝑘(x) =

{
𝑏𝑗,𝑦 : 𝑦 ∈ {1, 2, . . . 𝑛} if 𝑗 = 1,
𝑏𝑗,𝑦 : 𝑦 ∈ {1, 2, . . . 𝑛} ∧ {𝑏1,𝑦, 𝑏2,𝑦, . . . 𝑏𝑗−1,𝑦} = 𝛽𝑗−1(𝑘) if 𝑗 ∈ {2, 3, . . .𝑚′},

(6.178)
where 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}. It is assumed that the multiset of elements 𝑆𝑗,𝑘(x) is
ordered so that 𝑏𝑖,𝑣 precedes 𝑏𝑗,𝑤 for all 𝑖 < 𝑗, and that 𝑏𝑖,𝑣 precedes 𝑏𝑖,𝑤 for all 𝑣 < 𝑤.

The derivation of the expression for the codeword length requires that the ordered
multiset of elements 𝑆𝑗,𝑘(x) be considered equivalent to a sequence. The sequence that
is equivalent to an ordered multiset of elements is constructed by concatenating the
elements of the multiset in the same order in which they appear in the multiset. The
sequence has a length that is equal to the cardinality of the multiset.

The length of the codeword that is assigned to a source sequence x𝑛 by the weight–
and–index source code for 𝑞–ary memoryless sources is derived as follows. The first
field of the codeword produced by the encoder of the weight–and–index source code
for binary memoryless sources, when the encoder is used to encode the subsequence
𝑆𝑗,𝑘(x), represents the weight of the subsequence. The first field has a length of

𝑙1,𝑗,𝑘(x) = ⌈log2(∣𝑆𝑗,𝑘(x)∣+ 1)⌉ (6.179)

bits, as the subsequence weight may assume any integer value from zero to ∣𝑆𝑗,𝑘(x)∣.
This expression is valid for all 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.

The second field of the same codeword represents the index of the subsequence in
an ordered set of all sequences with the same length and weight as the subsequence.
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The second field has a length of

𝑙2,𝑗,𝑘(x) =

⌈
log2

(∣𝑆𝑗,𝑘(x)∣
𝑤𝑗,𝑘(x)

)⌉
(6.180)

bits, where 𝑤𝑗,𝑘(x) denotes the weight of the subsequence 𝑆𝑗,𝑘(x). This expression is
valid for all 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . .2𝑗−1 − 1}.

The length of the codeword assigned to the source sequence x𝑛 equals the sum
of the lengths of the codewords that were assigned to the subsequences of the source
sequence. The source sequence x𝑛 is therefore assigned a codeword of

𝑙(x) =

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(𝑙1,𝑗,𝑘(x) + 𝑙2,𝑗,𝑘(x)) (6.181)

bits.
The decoder of the weight–and–index source code for 𝑞–ary memoryless sources de-

codes the codeword of each source sequence in an iterative fashion. The source decoder
decodes a codeword that was assigned to a subsequence of the source sequence during
each iteration. These codewords are decoded in the same order in which they were
produced by the encoder of the weight–and–index source code for 𝑞–ary memoryless
sources.

The codeword assigned to any subsequence of the 𝑗th 𝑛–bit block generated by the
source encoder may be uniquely decoded if the length of the subsequence is known18.
The length of each subsequence of the 𝑗th block depends on the (𝑗 − 1)–bit prefixes
of the binary words that were assigned to the 𝑞–ary symbols of the source sequence.
As the source decoder decodes the codewords of the subsequences in the same order
in which the subsequences were encoded, it has access to the (𝑗 − 1)–bit prefixes of
all the source sequence’s binary words as it starts to decode the codewords of the 𝑗th
block’s subsequences. It can therefore calculate the length of each subsequence, and
subsequently decode the codeword of each subsequence.

𝑄–ary context–tree sources Three weight–and–index variable–length source codes
for 𝑞–ary context–tree sources are derived in this section. Two of the source codes are
nonuniversal — these codes are referred to as the type–one and type–two nonuniversal
weight–and–index source codes for 𝑞–ary context–tree sources. One of the source codes
is universal, and is referred to as the universal weight–and–index source code for 𝑞–ary
context–tree sources.

The three weight–and–index source codes for 𝑞–ary context–tree sources are similar
to the three weight–and–index source codes for binary context–tree sources that were
introduced in section 6.2.1.1 on page 168. All of the weight–and–index source codes for
binary and 𝑞–ary context–tree sources make use of the Burrows–Wheeler transform.
The weight–and–index source codes for 𝑞–ary context–tree sources use the weight–and–
index source code for 𝑞–ary memoryless sources to independently encode each segment
of i.i.d. symbols in the BWT output sequence.

18This statement follows from theorem 6.2.1 on page 179, which states that the weight–and–index
source code for binary memoryless sources is uniquely decodable if the source sequence length is
known.
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Figure 6.15: A block diagram of the type–one nonuniversal weight–and–index source
encoder for 𝑞–ary context–tree sources.

It is assumed that sequences from a 𝑞–ary context–tree source with a state set 𝒮 are
source coded in the derivation that follows. The length of the longest source context is
denoted by 𝑚.

The type–one nonuniversal weight–and–index code The derivation of the
type–one nonuniversal weight–and–index code for 𝑞–ary context–tree sources is pre-
sented in this section. It is assumed that the encoder of this source code has exact
apriori knowledge of the source structure (i.e. its minimum suffix set) and a certain
number of the initial states of the source. This source code encodes the actual i.i.d.
symbol segments in the BWT output sequence using the weight–and–index source code
for 𝑞–ary memoryless sources.

A block diagram of the type–one nonuniversal weight–and–index source encoder for
𝑞–ary context–tree sources is presented in figure 6.15 on page 204. The encoder of this
source code reverses the 𝑛–symbol source sequence x𝑛 and appends the EOF symbol to
the reversed sequence prior to applying the BWT to the sequence. The BWT output
sequence z𝑛+1 and the BWT index 𝐼 may be expressed as

(z𝑛+1, 𝐼) = BWT(ℛ(x𝑛)$), (6.182)

where $ denotes the EOF symbol, and ℛ(⋅) denotes sequence reversal. The source en-
coder removes the EOF symbol from the BWT output sequence to obtain the sequence
w𝑛, which is expressed as

w𝑛 = (𝑧1, 𝑧2, . . . 𝑧𝐼−1, 𝑧𝐼+1, . . . 𝑧𝑛+1)

= (z𝐼−1
1 , z𝑛+1

𝐼+1). (6.183)

The reversal of the source sequence causes the BWT to sort the reversed preceding
contexts of the original source sequence relative to one another. Those symbols that
follow similar preceding contexts19 in the original source sequence are therefore placed

19The 𝑚–symbol preceding context x𝑖−1
𝑖−𝑚 of symbol 𝑥𝑖 is said to be similar to the preceding context

of symbol 𝑦𝑖 if the symbols closest to 𝑥𝑖 match the symbols closest to 𝑦𝑖.
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in neighbouring segments of the BWT output sequence. The preceding contexts of the
source symbols are identical to the reversed states (i.e. the suffixes of the minimum
suffix set) of the context–tree source.

In order to find the exact positions of the transition points between the i.i.d. symbol
segments of the BWT output sequence, the source encoder derives the sequence of state
transitions that corresponds to the original source sequence. It derives the sequence of
state transitions by using its apriori knowledge of the source’s minimum suffix set
and one or more of its initial states. It counts the number of symbols that the source
produced in each of its states. The encoder proceeds by sorting the source states (i.e.
the reversed preceding contexts) and assigning a symbol count to each of the source
states. Each symbol count is the total number of symbols that the source produced in
the corresponding state. The sequence of sorted states and the symbol counts of the
states are equivalent to the sequence of segments in the BWT output sequence and
the segment lengths. The exact positions of the transition points are obtained from the
segment lengths.

Up to 𝑚 of the initial symbols of the source sequence may be placed in segments
that do not correspond to states of the context–tree source, where 𝑚 denotes the length
of the longest preceding context of the source. The source encoder is able to derive the
positions of these symbols in the BWT output sequence, and insert transition points
on either side of each of these symbols. This approach may significantly increase the
average codeword redundancy of the source code, however.

By inserting transition points on either side of segments that do not correspond to
the states of the context–tree source, and encoding these additional segments indepen-
dently from the remaining segments of the BWT output sequence, the source encoder
could potentially add 𝑚 + 1 additional fields to a codeword. If the source encoder is
not to use more complex integer codes, it must either encode the position of each addi-
tional segment in the BWT output sequence (and add up to 𝑚 fields of ⌈log2(𝑛)⌉ bits
each to the codeword), or encode the lengths of all the segments in the BWT output
sequence (and add up to 𝑚 fields of ⌈log2(𝑛)⌉ bits each to the codeword, as each length
is encoded in ⌈log2(𝑛)⌉ bits). An additional field that represents the number of seg-
ments in the BWT output sequence would have to be added to each codeword, as the
source decoder is unaware of the number of additional segments in each BWT output
sequence.

Instead of encoding the additional segments of the BWT output sequence inde-
pendently from the remaining segments, the source encoder may merge the additional
segments with the segments that correspond to the states of the context–tree source.
The addition of a maximum of𝑚 symbols to the remaining segments, each consisting of
symbols with a distinct probability distribution, does increase the average redundancy
of the codewords assigned to these segments. It is assumed, however, that the source
sequence length 𝑛 is much larger than the length of the longest source context, 𝑚.
This assumption implies that the redundancy increase associated with the segment–
merge approach is small when compared to the redundancy increase associated with
independently encoding the additional segments. The encoder of the type–one nonuni-
versal weight–and–index source code therefore merges the additional segments with the
segments that correspond to the states of the context–tree source.
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The source encoder independently encodes the segments of symbols using the weight–
and–index source code for 𝑞–ary memoryless sources. The codewords that are assigned
to the segments are concatenated to obtain the source–coded sequence. Let y′

𝑖 denote
segment 𝑖 of the BWT output sequence, which may include up to 𝑚 merged symbols
from segments that do not correspond to the states of the context–tree source. The
symbol y′

𝑖 is defined for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}. The codeword assigned to segment 𝑖 of
the BWT output sequence has a length of

𝑙
(𝑠)
1,𝑖 (x) =

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(𝑙′1,𝑖,𝑗,𝑘(x) + 𝑙′2,𝑖,𝑗,𝑘(x)) (6.184)

bits, where 𝑙′1,𝑖,𝑗,𝑘(x) and 𝑙
′
2,𝑖,𝑗,𝑘(x) denote the lengths of the first and second fields of the

codeword assigned to the subsequence 𝑆𝑗,𝑘(y
′
𝑖). The first field of the codeword assigned

to subsequence 𝑆𝑗,𝑘(y
′
𝑖) represents the weight of the subsequence, and has a length of

𝑙′1,𝑖,𝑗,𝑘(x) = ⌈log2(∣𝑆𝑗,𝑘(y′
𝑖)∣+ 1)⌉ (6.185)

bits. This expression is valid for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈
{0, 1, . . . 2𝑗−1 − 1}.

The second field of the same codeword represents the index of the subsequence in
an ordered set of all sequences with the same length and weight as the subsequence.
This field has a length of

𝑙′2,𝑖,𝑗,𝑘(x) =
⌈
log2

(∣𝑆𝑗,𝑘(y′
𝑖)∣

𝑤𝑗,𝑘(y
′
𝑖)

)⌉
(6.186)

bits, where 𝑤𝑗,𝑘(y
′
𝑖) denotes the weight of the subsequence 𝑆𝑗,𝑘(y

′
𝑖). This expression is

valid for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.
In order to successfully recover the source sequence from the source–coded sequence,

the source decoder requires the BWT index, as well as the lengths of the segments in
the BWT output sequence. The source encoder encodes the BWT index using the
conventional binary–coded representation of an integer. It is encoded in a total of

𝑙2(x) = ⌈log2(𝑛+ 1)⌉ (6.187)

bits, as the BWT index may assume 𝑛+1 distinct values with the addition of the EOF
symbol to the reversed source sequence.

The lengths of the segments in the BWT output sequence are encoded as follows.
Each BWT output sequence has exactly ∣𝒮∣ segments, as the additional segments are
merged with the segments that correspond to the states of the context–tree source.
The source encoder therefore encodes a total of ∣𝒮∣ − 1 segment lengths for each BWT
output sequence, as the length of the final segment may be derived from the sequence
length 𝑛. Each segment length is encoded in a total of ⌈log2(𝑛 + 1)⌉ bits using the
conventional binary–coded representation of an integer, as each segment length may
assume a value in the set {0, 1, 2, . . . 𝑛}. The total number of bits that are required to
encode the segment lengths equals

𝑙3(x) = (∣𝒮∣ − 1) ⌈log2(𝑛+ 1)⌉ . (6.188)

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 206

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

Context–tree
source sequence

Sequence
reversal

Append EOF
symbol

Burrows–Wheeler
transform

Remove EOF
symbol

Segmentation w.r.t.
expected transition points

Weight–and–index code for
𝑞–ary memoryless sources

Source coded
sequence

BWT index
value

Figure 6.16: A block diagram of the type–two nonuniversal weight–and–index source
encoder for 𝑞–ary context–tree sources.

The type–two nonuniversal weight–and–index code The encoder and de-
coder of the type–two nonuniversal weight–and–index source code for 𝑞–ary context–
tree sources are assumed to have apriori knowledge of the symbol distribution that is
associated with each state of the 𝑞–ary context–tree source. The encoder of the source
code calculates the expected positions of the transition points between the segments of
i.i.d. symbols in the BWT output sequence. It independently encodes the segments that
are located between consecutive transition points using the weight–and–index source
code for 𝑞–ary memoryless sources.

A block diagram of the type–two nonuniversal weight–and–index source encoder for
𝑞–ary context–tree sources is presented in figure 6.16 on page 207. The encoder reverses
the 𝑛–symbol source sequence, and appends the EOF symbol to the reversed sequence
prior to applying the BWT to the sequence. The encoder next removes the EOF symbol
from the BWT output sequence, and calculates the expected positions of the transition
points between the segments of i.i.d. symbols in the BWT output sequence.

The encoder calculates the expected positions of the transition points in the same
manner as the encoder of the type–two nonuniversal weight–and–index source code
for binary context–tree sources20. The encoder first derives the FSM closure of the
𝑞–ary context–tree source. It next calculates the state probabilities of the FSM closure
using equations 6.90 to 6.92 on page 173. After calculating the probabilities of the
FSM closure’s states, the source encoder calculates the probabilities of the context–
tree source’s states, and the expected lengths of the segments in the BWT output
sequence. The expected positions of the transition points are calculated using equation
6.89.

The type–two nonuniversal weight–and–index source code for 𝑞–ary context–tree
sources uses the weight–and–index source code for 𝑞–ary memoryless sources to inde-
pendently encode the segments between the expected positions of consecutive transition
points in the BWT output sequence. The codeword that is assigned to the 𝑖th expected

20Certain single–symbol segments of the BWT output sequence may not correspond to the states of
the context–tree source. These segments appear due to the addition of the EOF symbol to the reversed
source sequence, and are disregarded in the calculation of the expected segment lengths. The single–
symbol segments have little impact on the performance of the source code, as a maximum of 𝑚 of
these segments are present in each BWT output sequence.
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segment of the BWT output sequence has a length of

𝑙
(𝑠)
1,𝑖 (x) =

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(𝑙1,𝑖,𝑗,𝑘(x) + 𝑙2,𝑖,𝑗,𝑘(x)) (6.189)

bits. The field lengths 𝑙1,𝑖,𝑗,𝑘(x) and 𝑙2,𝑖,𝑗,𝑘(x) are expressed as

𝑙1,𝑖,𝑗,𝑘(x) = ⌈log2(∣𝑆𝑗,𝑘(y𝑖)∣+ 1)⌉ (6.190)

and

𝑙2,𝑖,𝑗,𝑘(x) =

⌈
log2

(∣𝑆𝑗,𝑘(y𝑖)∣
𝑤𝑗,𝑘(y𝑖)

)⌉
, (6.191)

where y𝑖 denotes the 𝑖th expected segment of the BWT output sequence, and 𝑤𝑗,𝑘(y𝑖)
denotes the weight of the segment. These expressions are valid for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣},
𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.

The encoder of the type–two nonuniversal weight–and–index source code for 𝑞–
ary context–tree sources encodes the BWT index using the conventional binary–coded
representation of an integer. The codeword of the BWT index has a length of

𝑙2(x) = ⌈log2(𝑛+ 1)⌉ (6.192)

bits.
The decoder of the type–two nonuniversal weight–and–index source code for 𝑞–ary

context–tree sources determines the expected positions of the transition points in the
BWT output sequence, as well as the length of each segment that was encoded by the
source encoder. It is therefore able to decode the codeword assigned to each segment.
The source encoder does not encode the expected positions of the transition points
between the segments of the BWT output sequence.

The universal weight–and–index code The derivation of the universal weight–
and–index source code for 𝑞–ary context–tree sources is presented in this section. It is
assumed that both the encoder and decoder of this source code have no apriori knowl-
edge of the source structure (i.e. its minimum suffix set) or the symbol distributions
that are associated with the source states. The source encoder and decoder are assumed
to be aware of the length 𝑛 of the source sequence, as well as the alphabet of the source
symbols.

A block diagram of the universal weight–and–index source encoder for 𝑞–ary context–
tree sources is presented in figure 6.17 on page 209. The encoder of the universal
weight–and–index source code for 𝑞–ary context–tree sources follows the same initial
steps as the encoder of the universal weight–and–index source code for binary context–
tree sources when used to encode a source sequence. It reverses the 𝑛–symbol source
sequence, and appends the EOF symbol to the reversed sequence prior to applying the
BWT to the sequence. The encoder next removes the EOF symbol from the BWT output
sequence.

The encoder of the universal weight–and–index source code for 𝑞–ary context–tree
sources uses the segmentation algorithm that was proposed by Shamir et. al. [159]
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Figure 6.17: A block diagram of the universal weight–and–index source encoder for
𝑞–ary context–tree sources.

to estimate the positions of the transition points in the BWT output sequence. This
algorithm is nearly identical to the segmentation algorithm used by the encoder of
the universal weight–and–index source code for binary context–tree sources (refer to
the summary of the algorithm in section 6.2.1.1 on page 175). The summary is not
repeated in this section — only the expressions for the level–one and level–two blocks’
metrics are provided in this section, as these expressions are redefined if blocks of 𝑞–ary
symbols are considered (where 𝑞 > 2).

Let the alphabet of the source symbols be denoted by 𝒜, and let the lengths of
the level–one and level–two blocks be denoted by 𝑘1(𝑛) and 𝑘2(𝑛). Let the frequency
count of symbol 𝑥 in the 𝑖th level–one block of the BWT output sequence be denoted
by 𝑁𝑖(𝑥), where 𝑖 ∈ {1, 2, . . . 𝑛/𝑘1(𝑛)} and 𝑥 ∈ {1, 2, . . . 𝑞}. It is assumed that 𝑛/𝑘1(𝑛)
is an integer in order to simplify the discussion. The metric of the 𝑟th level–one block,
𝑀(𝑟), is expressed as [159]

𝑀(𝑟) = 𝐻̂(𝑟 − 1, 𝑟 + 1)− 1

2
𝐻̂(𝑟 − 1)− 1

2
𝐻̂(𝑟 + 1), (6.193)

where

𝐻̂(𝑖) = −
∑
𝑥∈𝒜

𝑁𝑖(𝑥)

𝑘1(𝑛)
log2

(
𝑁𝑖(𝑥)

𝑘1(𝑛)

)
(6.194)

and

𝐻̂(𝑖, 𝑗) = −
∑
𝑥∈𝒜

𝑁𝑖(𝑥) +𝑁𝑗(𝑥)

2𝑘1(𝑛)
log2

(
𝑁𝑖(𝑥) +𝑁𝑗(𝑥)

2𝑘1(𝑛)

)
, (6.195)

with 𝑟 ∈ {2, 3, . . . 𝑛/𝑘1(𝑛) − 1} and 𝑖, 𝑗 ∈ {1, 2, . . . 𝑛/𝑘1(𝑛)}. In order to calculate
the metrics of the level–two blocks using equations 6.193 to 6.195, the length 𝑘1(𝑛) is
replaced by the length 𝑘2(𝑛) in equations 6.194 and 6.195. The frequency count 𝑁𝑖(𝑥)
is defined as the frequency count of symbol 𝑥 in the 𝑖th level–two block during the
calculation of the level–two blocks’ metrics.

After estimating the transition points’ positions in the BWT output sequence, the
source encoder uses the universal weight–and–index source code for 𝑞–ary memoryless
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sources to independently encode the symbol sequences between the estimated positions
of consecutive transition points. The codeword assigned to segment 𝑖 of the BWT
output sequence has a length of

𝑙
(𝑠)
1,𝑖 (x) =

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(𝑙1,𝑖,𝑗,𝑘(x) + 𝑙2,𝑖,𝑗,𝑘(x)) (6.196)

bits21, where 𝑖 ∈ {1, 2, . . . 𝐶} (𝐶 denotes the total number of i.i.d. symbol segments
that are present in the BWT output sequence associated with the source sequence x).
The quantities 𝑙1,𝑖,𝑗,𝑘(x) and 𝑙2,𝑖,𝑗,𝑘(x) denote the lengths of the first and second fields
of the codeword assigned to the subsequence 𝑆𝑗,𝑘(y𝑖), where y𝑖 denotes the 𝑖th segment
of the BWT output sequence.

The first field of the codeword assigned to subsequence 𝑆𝑗,𝑘(y𝑖) represents the weight
of the subsequence, and has a length of

𝑙1,𝑖,𝑗,𝑘(x) = ⌈log2(∣𝑆𝑗,𝑘(y𝑖)∣+ 1)⌉ (6.197)

bits. This expression is valid for all 𝑖 ∈ {1, 2, . . . 𝐶}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈
{0, 1, . . . 2𝑗−1 − 1}.

The second field of the same codeword represents the index of the subsequence in
an ordered set of all sequences with the same length and weight as the subsequence.
This field has a length of

𝑙2,𝑖,𝑗,𝑘(x) =

⌈
log2

(∣𝑆𝑗,𝑘(y𝑖)∣
𝑤𝑗,𝑘(y𝑖)

)⌉
(6.198)

bits, where 𝑤𝑗,𝑘(y𝑖) denotes the weight of the subsequence 𝑆𝑗,𝑘(y𝑖). This expression is
valid for all 𝑖 ∈ {1, 2, . . .𝐶}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.

The source encoder encodes the BWT index using the conventional binary–coded
representation of an integer. The codeword assigned to the BWT index has a length of

𝑙2(x) = ⌈log2(𝑛+ 1)⌉ (6.199)

bits.
In order to successfully decode the codeword of each source sequence, the source

decoder of the universal weight–and–index source code for 𝑞–ary context–tree sources
requires both the number of i.i.d. symbol segments in the BWT output sequence and
their lengths. The source encoder encodes each segment length using the conventional
binary–coded representation of an integer. The segment lengths are therefore encoded
in a total of

𝑙3(x) = (𝐶 − 1) ⌈log2(𝑛)⌉ (6.200)

bits, as the final segment length may be derived from the source sequence length 𝑛.
The number of i.i.d. symbol segments in the BWT output sequence is encoded in a
total of

𝑙4(x) = ⌈log2(𝑛)⌉ (6.201)

bits, as the source encoder has no apriori knowledge regarding the state set of the
source.

21The codeword lengths that are presented in this section are derived under the assumption that
the segmentation algorithm produces perfectly accurate estimates of the transition points’ positions
in the BWT output sequence.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 210

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

6.2.2.2 Definition of the source code

A mathematical definition of the universal weight–and–index source code for 𝑞–ary
memoryless sources is provided in what follows. The source code is defined under the
assumption that the number of distinct symbols in the symbol alphabet is a power of
two, where 𝑚′ = log2(𝑞).

Let Λ denote the concatenation of two or more bit sequences, and let the encoder of
the universal weight–and–index source code for 𝑞–ary memoryless sources correspond
to the function 𝑔4 : 𝒜𝑛 (→ {0, 1}∗. The codeword produced by the source encoder, when
used to encode the source sequence x𝑛, is expressed as

cx = 𝑔4(x)

= Λ𝑚
′

𝑗=1Λ
2𝑗−1−1
𝑘=0 𝑔3(𝑆𝑗,𝑘(x)), (6.202)

where the function 𝑔3 corresponds to the encoder of the weight–and–index source code
for binary memoryless sources (refer to equation 6.106 on page 178). The sequence
𝑆𝑗,𝑘(x) is a specific subsequence of the 𝑗th 𝑛–bit block generated by the source encoder
(refer to equation 6.178 on page 202).

Mathematical definitions of the nonuniversal and universal weight–and–index source
codes for 𝑞–ary context–tree sources are not provided, as these source codes use the
weight–and–index source code for 𝑞–ary memoryless sources. The unique decodability
of the nonuniversal and universal weight–and–index source codes for 𝑞–ary context–
tree sources depends on the unique decodability of the weight–and–index source code
for 𝑞–ary memoryless sources, which is subsequently proved.

6.2.2.3 Proof of unique decodability

This section contains a proof of the unique decodability of the universal weight–and–
index source code for 𝑞–ary memoryless sources. Several lemmas that are required to
prove its unique decodability are presented in what follows.

Lemma 6.2.1. The subsequence length ∣𝑆𝑗,𝑘(x)∣, where 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈
{0, 1, . . . 2𝑗−1−1}, may be calculated if the subsequences 𝑆𝑣,𝑤(x), for all 𝑣 ∈ {1, 2, . . . 𝑗−
1} and all 𝑤 ∈ {0, 1, . . . 2𝑣−1 − 1}, are known.

Proof. The subsequence 𝑆𝑗,𝑘(x), where 𝑗 = 1 and 𝑘 = 0, has a length of

∣𝑆1,0(x)∣ = 𝑛 (6.203)

bits (refer to equation 6.178 on page 202). The length of each subsequence 𝑆𝑗,𝑘(x),
where 𝑗 ∈ {2, 3, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}, may be calculated using equation
6.178 if the source bits of the multiset {𝑏𝑣,𝑞 : 1 ≤ 𝑣 < 𝑗 ∧ 1 ≤ 𝑞 ≤ 𝑛} are known. As

𝑗−1∪
𝑣=1

2𝑣−1−1∪
𝑤=0

𝑆𝑣,𝑤(x) = {𝑏𝑣,𝑞 : 1 ≤ 𝑣 < 𝑗 ∧ 1 ≤ 𝑞 ≤ 𝑛}, (6.204)

it follows that the subsequence lengths may be calculated.
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Lemma 6.2.2. The subsequence codeword 𝑔3(𝑆𝑗,𝑘(x)), where 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈
{0, 1, . . . 2𝑗−1−1}, may be delimited if the subsequences 𝑆𝑣,𝑤(x), for all 𝑣 ∈ {1, 2, . . . 𝑗−
1} and all 𝑤 ∈ {0, 1, . . . 2𝑣−1 − 1}, are known.

Proof. Each subsequence codeword may be delimited by calculating its length. The
length of the codeword 𝑔3(𝑆𝑗,𝑘(x)) is calculated using the equation

∣𝑔3(𝑆𝑗,𝑘(x))∣ = ⌈log2(∣𝑆𝑗,𝑘(x)∣+ 1)⌉+
⌈
log2

(∣𝑆𝑗,𝑘(x)∣
𝑤𝑗,𝑘(x)

)⌉
, (6.205)

where 𝑤𝑗,𝑘(x) denotes the number of nonzero–valued bits in the subsequence 𝑆𝑗,𝑘(x).
Knowledge of both the subsequence length ∣𝑆𝑗,𝑘(x)∣ and the subsequence weight 𝑤𝑗,𝑘(x)
is required in order to evaluate equation 6.205.

It is subsequently proved that the length and the weight of the subsequence may
be calculated. Lemma 6.2.1 on page 211 states that the subsequence length ∣𝑆𝑗,𝑘(x)∣
may be calculated if the subsequences 𝑆𝑣,𝑤(x), for all 𝑣 ∈ {1, 2, . . . 𝑗 − 1} and all
𝑤 ∈ {0, 1, . . . 2𝑣−1 − 1}, are known. This condition is satisfied — the remainder of the
proof concerns the calculation of the subsequence weight 𝑤𝑗,𝑘(x).

The length of the first field of the codeword 𝑔3(𝑆𝑗,𝑘(x)) may be calculated using the
equation

𝑙1,𝑗,𝑘(x) = ⌈log2(∣𝑆𝑗,𝑘(x)∣+ 1)⌉ , (6.206)

as the subsequence length ∣𝑆𝑗,𝑘(x)∣ is known. Let the bit sequence c𝑗,𝑘 be defined as
c𝑗,𝑘 ≜ 𝑔3(𝑆𝑗,𝑘(x)), (6.207)

and let the bit sequence c1,𝑗,𝑘 be defined as

c1,𝑗,𝑘 ≜ ℋ𝑙1,𝑗,𝑘(x)(c𝑗,𝑘), (6.208)

where the function ℋ𝑧 is defined in section 6.2.1.2 on page 178. The equation

𝑤𝑗,𝑘(x) = 𝐵−1
𝑙1,𝑗,𝑘(x)

(c1,𝑗,𝑘) (6.209)

holds, where the function 𝐵𝑧 is defined in equation 6.8 on page 142. The weight of
the subsequence may therefore be calculated, and equation 6.205 may be evaluated in
order to delimit the codeword.

Lemma 6.2.3. The weight–and–index source code for sequences from binary memory-
less sources is uniquely decodable when used to encode the subsequences 𝑆𝑗,𝑘(x), where
𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}, provided that the subsequences 𝑆𝑣,𝑤(x),
for all 𝑣 ∈ {1, 2, . . . 𝑗 − 1} and all 𝑤 ∈ {0, 1, . . . 2𝑣−1 − 1}, are known.

Proof. Theorem 6.2.1 on page 179 states that the weight–and–index source code for
sequences from binary memoryless sources is uniquely decodable if the source de-
coder is aware of the length of each sequence. Lemma 6.2.1 states that the length
of the subsequence 𝑆𝑗,𝑘(x) may be determined if the subsequences 𝑆𝑣,𝑤(x), for all
𝑣 ∈ {1, 2, . . . 𝑗 − 1} and all 𝑤 ∈ {0, 1, . . . 2𝑣−1 − 1}, are known. As this condition
is satisfied, it follows that the weight–and–index source code for sequences from bi-
nary memoryless sources is uniquely decodable when used to encode the subsequences
𝑆𝑗,𝑘(x), where 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.
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Lemma 6.2.4. The subsequences 𝑆𝑗,𝑘(x), for a fixed 𝑗 ∈ {1, 2, . . .𝑚′} and all 𝑘 ∈
{0, 1, . . . 2𝑗−1 − 1}, may be uniquely decoded from the sequence c𝑗 ≜ Λ2𝑗−1−1

𝑖=0 𝑔3(𝑆𝑗,𝑖(x)),
provided that the subsequences 𝑆𝑣,𝑤(x), for all 𝑣 ∈ {1, 2, . . . 𝑗− 1} and all 𝑤 ∈ {0, 1, . . .
2𝑣−1 − 1}, are known.

Proof. The lemma is proved using mathematical induction. It is first proved that the
subsequence 𝑆𝑗,0(x) may be uniquely decoded from the sequence c𝑗. The codeword
length ∣𝑔3(𝑆𝑗,0(x))∣ is obtained by calculating the length and the weight of subsequence
𝑆𝑗,0(x), and evaluating equation 6.205. The length of the subsequence may be calculated
using equation 6.178, as the subsequences 𝑆𝑣,𝑤(x), for all 𝑣 ∈ {1, 2, . . . 𝑗 − 1} and all
𝑤 ∈ {0, 1, . . . 2𝑣−1−1}, are known (refer to lemma 6.2.1). The weight of the subsequence
is calculated using equation 6.209, where c1,𝑗,0 is obtained by using the equation

c1,𝑗,0 = ℋ𝑙1,𝑗,0(x)(c𝑗), (6.210)

and where 𝑙1,𝑗,0(x) is calculated using equation 6.206. The codeword c𝑗,0 = 𝑔3(𝑆𝑗,0(x))
is obtained by using the equation

c𝑗,0 = ℋ∣𝑔3(𝑆𝑗,0(x))∣(c𝑗). (6.211)

The codeword c𝑗,0 may be correctly decoded, as the length of the subsequence that is
associated with the codeword is known (refer to lemma 6.2.3). The subsequence 𝑆𝑗,0(x)
is therefore obtained by decoding the codeword c𝑗,0.

It is subsequently assumed that the subsequences 𝑆𝑗,𝑢(x), for all 𝑢 ∈ {0, 1, . . . 𝑘−1}
and for a certain integer 𝑘 ∈ {1, 2, . . . 2𝑗−1 − 1}, may be recovered from the sequence
c𝑗 , and proved that the subsequence 𝑆𝑗,𝑘(x) may be obtained from the sequence c𝑗 . As
it is assumed that the subsequences 𝑆𝑗,𝑢(x) (for all 𝑢 ∈ {0, 1, . . . 𝑘−1}) are known, the
sum

𝑙′𝑗,𝑘(x) =
𝑘−1∑
𝑖=0

∣𝑔3(𝑆𝑗,𝑖(x))∣ (6.212)

may be calculated. Let the functionℋ′
𝑘 : 𝔹

𝑘+𝑟 (→ 𝔹
𝑟 map the (𝑘+𝑟)–bit sequences in its

domain to their 𝑟–bit suffixes, where 𝑘 ≥ 0 and 𝑟 > 0. The sequence c′𝑗,𝑘 ≜ ℋ′
𝑙′𝑗,𝑘(x)(c𝑗)

may be expressed as
c′𝑗,𝑘 = Λ2𝑗−1−1

𝑖=𝑘 𝑔3(𝑆𝑗,𝑖(x)). (6.213)

It is subsequently proved that the subsequence 𝑆𝑗,𝑘(x) may be obtained from the se-
quence c′𝑗,𝑘. The codeword length ∣𝑔3(𝑆𝑗,𝑘(x))∣ is calculated by determining the length
and the weight of the subsequence 𝑆𝑗,𝑘(x), and evaluating equation 6.205. The length of
the subsequence may be calculated using equation 6.178, as the subsequences 𝑆𝑣,𝑤(x),
for all 𝑣 ∈ {1, 2, . . . 𝑗 − 1} and all 𝑤 ∈ {0, 1, . . . 2𝑣−1 − 1}, are known (refer to lemma
6.2.1). The weight of the subsequence is calculated using equation 6.209, where c1,𝑗,𝑘
is obtained by evaluating the equation

c1,𝑗,𝑘 = ℋ𝑙1,𝑗,𝑘(x)(c
′
𝑗,𝑘), (6.214)

and where 𝑙1,𝑗,𝑘(x) is determined by evaluating equation 6.206. The codeword c𝑗,𝑘 =
𝑔3(𝑆𝑗,𝑘(x)) is obtained using the equation

c𝑗,𝑘 = ℋ∣𝑔3(𝑆𝑗,𝑘(x))∣(c
′
𝑗,𝑘). (6.215)
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The codeword c𝑗,𝑘 may be correctly decoded as the length of the subsequence associated
with the codeword is known (refer to lemma 6.2.3). The subsequence 𝑆𝑗,𝑘(x) is therefore
obtained by decoding the codeword c𝑗,𝑘. The proof that the subsequences 𝑆𝑗,𝑘(x) (for a
fixed 𝑗 ∈ {1, 2, . . .𝑚′} and all 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}) may be uniquely recovered from
the sequence c𝑗 is therefore complete.

Theorem 6.2.2. The universal weight–and–index source code for 𝑞–ary memoryless
sources is uniquely decodable.

Proof. It is proved that a source sequence x𝑛 may be recovered from its codeword,
which is expressed as

cx = Λ𝑚
′

𝑗=1Λ
2𝑗−1−1
𝑘=0 𝑔3(𝑆𝑗,𝑘(x))

= Λ𝑚
′

𝑗=1c𝑗. (6.216)

The proof is carried out using mathematical induction. It is first proved that the sub-
sequence 𝑆1,0(x) may be recovered from the codeword cx. The length of the codeword
assigned to the subsequence 𝑆1,0(x) is obtained from the codeword cx by calculating
the length and the weight of the subsequence 𝑆1,0(x), and evaluating equation 6.205.
The subsequence length ∣𝑆1,0(x)∣ equals 𝑛 bits by definition. The subsequence weight
𝑤1,0(x) is calculated using equation 6.209, where c1,1,0 is obtained by evaluating the
expression

c1,1,0 = ℋ𝑙1,1,0(x)(cx), (6.217)

and where 𝑙1,1,0(x) is calculated using equation 6.206. The length of the codeword
𝑔3(𝑆1,0(x)) may therefore be calculated.

After calculating the length of the codeword 𝑔3(𝑆1,0(x)), the codeword c1 is obtained
by evaluating the expression

c1 = ℋ∣𝑔3(𝑆1,0(x))∣(cx). (6.218)

It follows that the subsequence 𝑆1,0(x) may be recovered from the codeword c1 (refer
to lemma 6.2.4).

It is subsequently assumed that the subsequences 𝑆𝑖,𝑢(x) (for all 𝑖 ∈ {1, 2, . . . 𝑗−1}
and all 𝑢 ∈ {0, 1, . . . 2𝑖−1 − 1}) are known, and proved that the subsequences 𝑆𝑗,𝑣(x)
(for all 𝑣 ∈ {0, 1, . . . 2𝑗−1 − 1} and any 𝑗 ∈ {2, 3, . . .𝑚′}) may be recovered from the
codeword cx. The sum

𝑙′𝑗(x) =

𝑗−1∑
𝑖=1

2𝑖−1−1∑
𝑢=0

∣𝑔3(𝑆𝑖,𝑢(x))∣ (6.219)

may be calculated, as the relevant subsequences are known. The sequence c′𝑗, which is
defined as

c′𝑗 ≜ ℋ′
𝑙′𝑗(x)

(cx), (6.220)

may be expressed as
c′𝑗 = Λ𝑚

′
𝑖=𝑗c𝑖. (6.221)

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 214

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

It follows that the subsequences 𝑆𝑗,𝑣(x) (for all 𝑣 ∈ {0, 1, . . . 2𝑗−1 − 1}) may be re-
covered from the codeword c′𝑗, as the subsequences 𝑆𝑖,𝑢(x) (for all 𝑖 ∈ {1, 2, . . . 𝑗 − 1}
and all 𝑢 ∈ {0, 1, . . . 2𝑖−1 − 1}) are known — refer to lemma 6.2.4. It follows from
mathematical induction that the subsequences 𝑆𝑗,𝑘(x), for all 𝑗 ∈ {1, 2, . . .𝑚′} and all
𝑘 ∈ {0, 1, . . . 2𝑗−1−1}, may be recovered from the codeword cx. As all the subsequences
associated with the codeword cx may be recovered, the entire source sequence x

𝑛 may
be recovered. The universal weight–and–index source code for 𝑞–ary memoryless sources
is therefore uniquely decodable.

6.2.2.4 Theoretical performance

The average per–codeword redundancies of two universal weight–and–index source
codes for 𝑞–ary sources are derived in this section. The universal source code for 𝑞–
ary memoryless sources, as well as the universal source code for 𝑞–ary context–tree
sources are considered. The source coding of finite–length source sequences and source
sequences with lengths that tend to infinity are investigated.

Performance w.r.t. 𝑞–ary memoryless sources Suppose that the source encoder
of the universal weight–and–index source code for 𝑞–ary memoryless sources is used to
encode a finite–length sequence x𝑛 of symbols from a 𝑞–ary memoryless source, where
𝑛 > 1 and 𝑚′ = log2(𝑞). The source encoder assigns a codeword of

𝑙(x) =

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(𝑙1,𝑗,𝑘(x) + 𝑙2,𝑗,𝑘(x)) (6.222)

bits to the source sequence, with

𝑙1,𝑗,𝑘(x) = ⌈log2(∣𝑆𝑗,𝑘(x)∣+ 1)⌉ (6.223)

and

𝑙2,𝑗,𝑘(x) =

⌈
log2

(∣𝑆𝑗,𝑘(x)∣
𝑤𝑗,𝑘(x)

)⌉
, (6.224)

and where 𝑤𝑗,𝑘(x) denotes the number of nonzero–valued bits in the subsequence
22

𝑆𝑗,𝑘(x). Let the subsequence length ∣𝑆𝑗,𝑘(x)∣ be denoted by
𝑛𝑗,𝑘 ≜ ∣𝑆𝑗,𝑘(x)∣, (6.225)

and let the subsequence weight be denoted by

𝑤𝑗,𝑘 ≜ 𝑤𝑗,𝑘(x). (6.226)

The bound of equation 6.130 is used to derive the upper bound

𝑙(x) <

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

[
log2

(
𝑛𝑗,𝑘(𝑛𝑗,𝑘 + 1)√
2𝜋𝑛𝑗,𝑘(𝑛𝑗,𝑘 − 1)

)
+

(
1

12𝑛𝑗,𝑘
+1

)
log2(𝑒)+𝑛𝑗,𝑘ℎ

(
𝑤𝑗,𝑘

𝑛𝑗,𝑘

)
+2

]
(6.227)

22Refer to equation 6.178 for the definition of the subsequence 𝑆𝑗,𝑘(x).
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on the length of the codeword that is assigned to the source sequence x𝑛, under the
assumption that 𝑛𝑗,𝑘 > 1 for all 𝑗 ∈ {1, 2, . . .𝑚′} and all 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}. The
case where one or more subsequence lengths 𝑛𝑗,𝑘 equals zero bits or one bit is considered
towards the end of the derivation.

Due to the fact that 1 < 𝑛𝑗,𝑘 ≤ 𝑛, and that the function

𝑣(𝑛𝑗,𝑘) = log2

(
𝑛𝑗,𝑘(𝑛𝑗,𝑘 + 1)√
2𝜋𝑛𝑗,𝑘(𝑛𝑗,𝑘 − 1)

)
(6.228)

is a monotonically increasing function of 𝑛𝑗,𝑘, the inequality

log2

(
𝑛𝑗,𝑘(𝑛𝑗,𝑘 + 1)√
2𝜋𝑛𝑗,𝑘(𝑛𝑗,𝑘 − 1)

)
≤ log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
(6.229)

holds. It follows that

𝑙(x) <
𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

[
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛𝑗,𝑘ℎ

(
𝑤𝑗,𝑘

𝑛𝑗,𝑘

)
+ 2

]
.

(6.230)

It is subsequently proved that the sum between the square brackets of equation
6.230 is a valid upper bound on the length of each codeword that is assigned to a
subsequence of zero bits or one bit. The inequality

log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
> 0 (6.231)

holds for all sequence lengths 𝑛 longer than one bit. As

13

12
log2(𝑒) > 0 (6.232)

and

𝑛𝑗,𝑘ℎ

(
𝑤𝑗,𝑘

𝑛𝑗,𝑘

)
≥ 0 (6.233)

for all relevant values of 𝑛𝑗,𝑘 and 𝑤𝑗,𝑘, it follows that

log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛𝑗,𝑘ℎ

(
𝑤𝑗,𝑘

𝑛𝑗,𝑘

)
+ 2 > 1. (6.234)

The codewords assigned to subsequences of zero bits and one bit have lengths of zero
bits and one bit, respectively. As the sum within the square brackets of equation 6.230
exceeds one bit, it follows that equation 6.230 is a valid upper bound on the length of
the codeword that is assigned to a source sequence, regardless of the length of any of
its subsequences. Equation 6.230 may be simplified as

𝑙(x) <
𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛𝑗,𝑘ℎ

(
𝑤𝑗,𝑘

𝑛𝑗,𝑘

)
+ (2𝑚

′ − 1)
(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
.

(6.235)
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Several definitions that are used in the derivation of an upper bound on the average
codeword length are subsequently presented. A random source sequence X𝑛 has sub-
sequences with random lengths 𝑁𝑗,𝑘 and random weights 𝑊𝑗,𝑘, where 𝑗 ∈ {1, 2, . . .𝑚′}
and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}. Let 𝑛′

𝑗,𝑘 denote an integer from the set {0, 1, . . . 𝑛}, and
let 𝑤′

𝑗,𝑘 denote an integer from the set {0, 1, . . . 𝑛′
𝑗,𝑘}. Let the probability distribution

Pr(𝑛′
𝑗,𝑘) ≜ Pr(𝑁𝑗,𝑘 = 𝑛′

𝑗,𝑘) be defined as

Pr(𝑛′
𝑗,𝑘) =

∑
x

Pr(x) : x ∈ 𝒜𝑛 ∧ ∣𝑆𝑗,𝑘(x)∣ = 𝑛′
𝑗,𝑘, (6.236)

and let the probability distribution Pr(𝑤′
𝑗,𝑘) ≜ Pr(𝑊𝑗,𝑘 = 𝑤′

𝑗,𝑘) be defined as

Pr(𝑤′
𝑗,𝑘) =

∑
x

Pr(x) : x ∈ 𝒜𝑛 ∧ 𝑤𝑗,𝑘(x) = 𝑤′
𝑗,𝑘. (6.237)

The ordered multisets N, W, n′, and w′ are defined as

N ≜ {𝑁𝑗,𝑘 : 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}, (6.238)

W ≜ {𝑊𝑗,𝑘 : 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}, (6.239)

n′ ≜ {𝑛′
𝑗,𝑘 : 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}, (6.240)

and
w′ ≜ {𝑤′

𝑗,𝑘 : 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}. (6.241)

The ordered multisets appear in the expressions for the joint probability distributions
of the lengths and the weights of a random source sequence’s subsequences. The joint
probability distribution of the lengths of a random source sequence’s subsequences is
expressed as Pr(n′) ≜ Pr(N = n′). The joint probability distribution of the weights of
a random source sequence’s subsequences is expressed as Pr(w′) ≜ Pr(W = w′).

The average length of the codewords that are assigned to source sequences from a
𝑞–ary memoryless source is subsequently derived. The fact that the source sequences
x𝑛 and y𝑛 are assigned codewords of equal length if ∣𝑆𝑗,𝑘(x)∣ = ∣𝑆𝑗,𝑘(y)∣ and 𝑤𝑗,𝑘(x) =
𝑤𝑗,𝑘(y) for all 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . .2𝑗−1 − 1} is used in the derivation.
The average codeword length 𝐿(X𝑛) may be expressed as

𝐿(X𝑛) =
∑
x∈𝒜𝑛

Pr(x)𝑙(x)

=
∑
n′∈q

∑
w′∈q

Pr(n′,w′)𝑙(n′,w′), (6.242)

where 𝑙(n′,w′) denotes the length of the codeword that is assigned to a source se-
quence with subsequence lengths n′ and subsequence weights w′, and where q ≜
{0, 1, . . . 𝑛}2𝑚′−1.
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Equation 6.235 is substituted into equation 6.242 to obtain the upper bound

𝐿(X𝑛) <
𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

∑
n′∈q

∑
w′∈q

Pr(n′,w′)𝑛′
𝑗,𝑘ℎ

(
𝑤′
𝑗,𝑘

𝑛′
𝑗,𝑘

)

+ (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

<
𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

𝑛′
𝑗,𝑘∑

𝑤′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘, 𝑤

′
𝑗,𝑘)𝑛

′
𝑗,𝑘ℎ

(
𝑤′
𝑗,𝑘

𝑛′
𝑗,𝑘

)

+ (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

<

[ 𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

𝑛′
𝑗,𝑘∑

𝑤′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)Pr(𝑤

′
𝑗,𝑘∣𝑛′

𝑗,𝑘)𝑛
′
𝑗,𝑘ℎ

(
𝑤′
𝑗,𝑘

𝑛′
𝑗,𝑘

)]

+ (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
. (6.243)

The function Pr(𝑤′
𝑗,𝑘∣𝑛′

𝑗,𝑘) is the probability mass function of a binomial random vari-
able with parameters 𝑛′

𝑗,𝑘 and 𝑝𝑗,𝑘, where

𝑝𝑗,𝑘 ≜ Pr(𝐵𝑗 = 1∣B𝑗−1
1 = 𝛽𝑗−1(𝑘)). (6.244)

It is defined for all 𝑤′
𝑗,𝑘 ∈ {0, 1, . . . 𝑛′

𝑗,𝑘}.
Jensen’s inequality is used to simplify the term within the square brackets of equa-

tion 6.243, as the binary entropy function ℎ(⋅) is a concave function. The term is
simplified as

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

𝑛′
𝑗,𝑘∑

𝑤′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)Pr(𝑤

′
𝑗,𝑘∣𝑛′

𝑗,𝑘)𝑛
′
𝑗,𝑘ℎ

(
𝑤′
𝑗,𝑘

𝑛′
𝑗,𝑘

)

≤
𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)𝑛

′
𝑗,𝑘ℎ

( 𝑛′
𝑗,𝑘∑

𝑤′
𝑗,𝑘=0

Pr(𝑤′
𝑗,𝑘∣𝑛′

𝑗,𝑘)
𝑤′
𝑗,𝑘

𝑛′
𝑗,𝑘

)

≤
𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)𝑛

′
𝑗,𝑘ℎ(𝑝𝑗,𝑘). (6.245)

The final step of equation 6.245 follows from the fact that the expected value of the
binomial random variable equals 𝑛′

𝑗,𝑘𝑝𝑗,𝑘. The term on the right–hand side of equation
6.245 may be rewritten as

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)𝑛

′
𝑗,𝑘ℎ(𝑝𝑗,𝑘)

=

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)𝑛

′
𝑗,𝑘𝐻(𝐵𝑗∣B𝑗−1

1 = 𝛽𝑗−1(𝑘)). (6.246)
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The function Pr(𝑛′
𝑗,𝑘) is the probability mass function of a binomial random variable

with parameters 𝑛 and 𝑝′′𝑗,𝑘, where

𝑝′′𝑗,𝑘 ≜ Pr(B𝑗−1
1 = 𝛽𝑗−1(𝑘)). (6.247)

It is defined for all 𝑛′
𝑗,𝑘 ∈ {0, 1, . . . 𝑛}.

Equation 6.246 is simplified as

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′
𝑗,𝑘=0

Pr(𝑛′
𝑗,𝑘)𝑛

′
𝑗,𝑘𝐻(𝐵𝑗∣B𝑗−1

1 = 𝛽𝑗−1(𝑘))

= 𝑛

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑝′′𝑗,𝑘𝐻(𝐵𝑗∣B𝑗−1
1 = 𝛽𝑗−1(𝑘))

= 𝑛

[
𝐻(𝐵1) +

𝑚′∑
𝑗=2

𝐻(𝐵𝑗∣𝐵1, 𝐵2, . . . 𝐵𝑗−1)

]

= 𝑛𝐻(𝐵1, 𝐵2, . . . 𝐵𝑚′)

= 𝑛𝐻(𝑋). (6.248)

The first step of equation 6.248 follows from the fact that the expected value of the
binomial random variable equals 𝑛𝑝′′𝑗,𝑘.

A bound on the average length 𝐿(X𝑛) of a codeword assigned to an 𝑛–symbol
source sequence by the encoder of the universal weight–and–index source code for 𝑞–
ary memoryless sources is derived using equations 6.243 to 6.248 as

𝐿(X𝑛) < (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ 𝑛𝐻(𝑋). (6.249)

An upper bound on the average per–codeword redundancy of the universal weight–
and–index source code for 𝑞–ary memoryless sources is derived as

𝑅(X𝑛) = 𝐿(X𝑛)−𝐻(X𝑛)

= 𝐿(X𝑛)− 𝑛𝐻(𝑋)

< (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
. (6.250)

The limit of the normalized average per–codeword redundancy, as the source se-
quence length 𝑛 tends to infinity, is derived as follows. The average per–codeword
redundancy satisfies the inequality

0 ≤ 𝑅(X𝑛) < (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
(6.251)

for all 𝑛 > 1. The average per–codeword redundancy is therefore expressed as

𝑅(X𝑛) = 𝐾𝑛𝑞(𝑛), (6.252)
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where

𝑞(𝑛) = (2𝑚
′ − 1)

(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
(6.253)

and 0 ≤ 𝐾𝑛 < 1 for all 𝑛 > 1. The limit23

lim
𝑛→∞

1

𝑛
𝑞(𝑛) = lim

𝑛→∞
(2𝑚

′ − 1)
𝑛

log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)

= lim
𝑛→∞

1

𝑛
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
= 0 (6.254)

is used to prove that

lim
𝑛→∞

1

𝑛
𝑅(X𝑛) = lim

𝑛→∞
1

𝑛
𝐾𝑛𝑞(𝑛)

= 0. (6.255)

The limit of the normalized average per–codeword redundancy of the universal weight–
and–index source code for 𝑞–ary memoryless sources, as the source sequence length
tends to infinity, equals zero. It is concluded that the source code is universal.

Performance w.r.t. 𝑞–ary context–tree sources Suppose that the source encoder
of the universal weight–and–index source code for 𝑞–ary context–tree sources is used
to encode a finite–length symbol sequence x𝑛 from a 𝑞–ary context–tree source, where
𝑛 > 1 and 𝑚′ = log2(𝑞). Let ∣𝒮∣ denote the number of states of the context–tree source,
𝑚 the length of the longest source context, and 𝐶 the actual number of i.i.d. symbol
segments in the BWT output sequence. Also, let 𝑛𝑖,𝑗,𝑘 and 𝑤𝑖,𝑗,𝑘 denote the length and
weight of the subsequence 𝑆𝑗,𝑘(y𝑖), where y𝑖 denotes segment 𝑖 of the BWT output
sequence, and where 𝑖 ∈ {1, 2, . . . 𝐶}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . .2𝑗−1 − 1}.

The source sequence x𝑛 is assigned a codeword of

𝑙(x) =

𝐶∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(
𝑙1,𝑖,𝑗,𝑘(x) + 𝑙2,𝑖,𝑗,𝑘(x)

)
+

4∑
𝑣=2

𝑙𝑣(x) (6.256)

bits. The field lengths of equation 6.256 were defined in section 6.2.2.1 on page 210 as

𝑙1,𝑖,𝑗,𝑘(x) = ⌈log2(𝑛𝑖,𝑗,𝑘 + 1)⌉ , (6.257)

𝑙2,𝑖,𝑗,𝑘(x) =

⌈
log2

(
𝑛𝑖,𝑗,𝑘
𝑤𝑖,𝑗,𝑘

)⌉
, (6.258)

𝑙2(x) = ⌈log2(𝑛 + 1)⌉ , (6.259)

𝑙3(x) = (𝐶 − 1) ⌈log2(𝑛)⌉ (6.260)

23The second step of equation 6.254 follows from equation 6.138.
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and

𝑙4(x) = ⌈log2(𝑛)⌉ . (6.261)

An upper bound on the codeword length of equation 6.256 is derived as

𝑙(x) =

𝐶∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(
𝑙1,𝑖,𝑗,𝑘(x) + 𝑙2,𝑖,𝑗,𝑘(x)

)
+

4∑
𝑣=2

𝑙𝑣(x)

≤
∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(
𝑙1,𝑖,𝑗,𝑘(x) + 𝑙2,𝑖,𝑗,𝑘(x)

)
+

4∑
𝑣=2

𝑙𝑣(x) +𝑚𝑚′, (6.262)

where it is assumed that the BWT output sequence segments y1, y2, . . . y∣𝒮∣ correspond
to the ∣𝒮∣ states of the context–tree source. The derivation of the upper bound makes
use of the fact that subsequences of one bit are assigned codewords of one bit, and that
each segment of the BWT output sequence that does not correspond to a state of the
context–tree source consists of one symbol. The derivation also uses the upper bound
𝐶 ≤ ∣𝒮∣+𝑚.

Let 𝑛̂𝑖,𝑗,𝑘 and 𝑤̂𝑖,𝑗,𝑘 denote the length and weight of the subsequence 𝑆𝑗,𝑘(v𝑖), where
v𝑖 denotes the sequence of symbols produced by the source while in state 𝑖, with 𝑖 ∈
{1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}. It follows that 𝑛𝑖,𝑗,𝑘 ≥ 𝑛̂𝑖,𝑗,𝑘
and 𝑤𝑖,𝑗,𝑘 ≥ 𝑤̂𝑖,𝑗,𝑘 for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1− 1}.
The fact that 𝑙𝑜𝑔2(𝑣) is an increasing function of 𝑣 and that(

𝑛𝑖,𝑗,𝑘
𝑤𝑖,𝑗,𝑘

)
≤
(
𝑛𝑖,𝑗,𝑘 + 1

𝑤𝑖,𝑗,𝑘 + 𝛼

)
(6.263)

for 𝛼 = 0 and 𝛼 = 1 is used to simplify equation 6.262 as

𝑙(x) ≤
∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(
𝑙̂1,𝑖,𝑗,𝑘(x) + 𝑙̂2,𝑖,𝑗,𝑘(x)

)
+

4∑
𝑣=2

𝑙𝑣(x) +𝑚𝑚′, (6.264)

where
𝑙̂1,𝑖,𝑗,𝑘(x) = ⌈log2(𝑛̂𝑖,𝑗,𝑘 + 1)⌉ (6.265)

and

𝑙2,𝑖,𝑗,𝑘(x) =

⌈
log2

(
𝑛̂𝑖,𝑗,𝑘
𝑤̂𝑖,𝑗,𝑘

)⌉
. (6.266)

Equations 6.259 to 6.261, 6.265 and 6.266 are substituted into equation 6.264 to obtain
the upper bound

𝑙(x) <

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

(
⌈log2(𝑛̂𝑖,𝑗,𝑘 + 1)⌉+

⌈
log2

(
𝑛̂𝑖,𝑗,𝑘
𝑤̂𝑖,𝑗,𝑘

)⌉)

+ (𝐶 + 1) log2(𝑛 + 1) + 𝐶 + 1 +𝑚𝑚′. (6.267)
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The upper bound of equation 6.130 is used to simplify equation 6.267 as

𝑙(x) <

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

[
log2

(
𝑛̂𝑖,𝑗,𝑘(𝑛̂𝑖,𝑗,𝑘 + 1)√
2𝜋𝑛̂𝑖,𝑗,𝑘(𝑛̂𝑖,𝑗,𝑘 − 1)

)
+

(
1

12𝑛̂𝑖,𝑗,𝑘
+ 1

)
log2(𝑒)

+ 𝑛̂𝑖,𝑗,𝑘ℎ

(
𝑤̂𝑖,𝑗,𝑘

𝑛̂𝑖,𝑗,𝑘

)
+ 2

]
+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚𝑚′, (6.268)

where it is assumed that 𝑛̂𝑖,𝑗,𝑘 exceeds one bit for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′}
and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}. The simplified bound of equation 6.268 is generalized to
the case where 𝑛̂𝑖,𝑗,𝑘 ≥ 0 towards the end of the derivation.

The function

𝑣(𝑛̂𝑖,𝑗,𝑘) ≜ log2

(
𝑛̂𝑖,𝑗,𝑘(𝑛̂𝑖,𝑗,𝑘 + 1)√
2𝜋𝑛̂𝑖,𝑗,𝑘(𝑛̂𝑖,𝑗,𝑘 − 1)

)
(6.269)

is a monotonically increasing function of 𝑛̂𝑖,𝑗,𝑘. This property of the function 𝑣(𝑛̂𝑖,𝑗,𝑘),
as well as the fact that 𝑛̂𝑖,𝑗,𝑘 ≤ 𝑛, are used to derive the upper bound

log2

(
𝑛̂𝑖,𝑗,𝑘(𝑛̂𝑖,𝑗,𝑘 + 1)√
2𝜋𝑛̂𝑖,𝑗,𝑘(𝑛̂𝑖,𝑗,𝑘 − 1)

)
≤ log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
, (6.270)

where 𝑛 > 1. It follows that

𝑙(x) <

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

[
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛̂𝑖,𝑗,𝑘ℎ

(
𝑤̂𝑖,𝑗,𝑘

𝑛̂𝑖,𝑗,𝑘

)
+ 2

]

+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚𝑚′, (6.271)

where it is assumed that 𝑛̂𝑖,𝑗,𝑘 > 1 for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and
𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.

It is subsequently proved that the sum within the square brackets of equation 6.271
is a valid upper bound on the lengths of the codewords assigned to subsequences with
lengths of zero bits and one bit. The term on the right–hand side of equation 6.270
exceeds zero for all values of 𝑛 larger than one. As

13

12
log2(𝑒) > 0 (6.272)

and

𝑛̂𝑖,𝑗,𝑘ℎ

(
𝑤̂𝑖,𝑗,𝑘

𝑛̂𝑖,𝑗,𝑘

)
≥ 0 (6.273)

for all24 𝑛̂𝑖,𝑗,𝑘 ∈ {0, 1, . . . 𝑛} and 𝑤̂𝑖,𝑗,𝑘 ∈ {0, 1, . . . 𝑛̂𝑖,𝑗,𝑘}, it follows that

log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 𝑛̂𝑖,𝑗,𝑘ℎ

(
𝑤̂𝑖,𝑗,𝑘

𝑛̂𝑖,𝑗,𝑘

)
+ 2 > 2. (6.274)

The codewords assigned to subsequences with lengths of zero bits and one bit have
lengths of zero bits and one bit, respectively. The sum within the square brackets of

24The term 𝑛̂𝑖,𝑗,𝑘ℎ(𝑤̂𝑖,𝑗,𝑘/𝑛̂𝑖,𝑗,𝑘) is evaluated as zero if 𝑛̂𝑖,𝑗,𝑘 equals zero.
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equation 6.271 exceeds two bits — it follows that equation 6.271 is a valid upper bound
on the length of the codeword that is assigned to a source sequence with subsequences
𝑛̂𝑖,𝑗,𝑘 ∈ {0, 1, . . . 𝑛}, where 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 −
1}. Equation 6.271 is simplified as

𝑙(x) < ∣𝒮∣(2𝑚′ − 1)
[
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

]
+ (𝐶 + 1) log2(𝑛 + 1)

+ 𝐶 + 1 +𝑚𝑚′ +
∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛̂𝑖,𝑗,𝑘ℎ

(
𝑤̂𝑖,𝑗,𝑘

𝑛̂𝑖,𝑗,𝑘

)
. (6.275)

Several definitions that are used in the derivation of an upper bound on the average
codeword length are subsequently presented. A random 𝑛–symbol source sequence X𝑛

has a random total of𝑁 ′′
𝑖 symbols that were produced by the source while it was in state

𝑖, where 𝑖 ∈ {1, 2, . . . ∣𝒮∣}. Let V𝑖(X) denote the sequence that consists of the symbols
produced by the source while it was in state 𝑖 (as the source sequence X was produced).
The symbol sequence V𝑖(X) has subsequences with random lengths 𝑁𝑖,𝑗,𝑘 and random
weights 𝑊𝑖,𝑗,𝑘, where 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.

Let 𝑛′′
𝑖 denote an integer from the set {0, 1, . . . 𝑛}, 𝑛′

𝑖,𝑗,𝑘 denote an integer from
the set {0, 1, . . . 𝑛′′

𝑖 } and 𝑤′
𝑖,𝑗,𝑘 denote an integer from the set {0, 1, . . . 𝑛′

𝑖,𝑗,𝑘}. Let the
probability distribution Pr(𝑛′′

𝑖 ) ≜ Pr(𝑁 ′′
𝑖 = 𝑛′′

𝑖 ) be defined as

Pr(𝑛′′
𝑖 ) =

∑
x

Pr(x) : x ∈ 𝒜𝑛 ∧ ∣v𝑖(x)∣ = 𝑛′′
𝑖 , (6.276)

the probability distribution Pr(𝑛′
𝑖,𝑗,𝑘) ≜ Pr(𝑁𝑖,𝑗,𝑘 = 𝑛′

𝑖,𝑗,𝑘) be defined as

Pr(𝑛′
𝑖,𝑗,𝑘) =

∑
x

Pr(x) : x ∈ 𝒜𝑛 ∧ ∣𝑆𝑗,𝑘(v𝑖(x))∣ = 𝑛′
𝑖,𝑗,𝑘 (6.277)

and the probability distribution Pr(𝑤′
𝑖,𝑗,𝑘) ≜ Pr(𝑊𝑖,𝑗,𝑘 = 𝑤′

𝑖,𝑗,𝑘) be defined as

Pr(𝑤′
𝑖,𝑗,𝑘) =

∑
x

Pr(x) : x ∈ 𝒜𝑛 ∧ 𝑤𝑗,𝑘(v𝑖(x)) = 𝑤′
𝑖,𝑗,𝑘. (6.278)

The ordered multisets N,W,N′′,n′,w′ and n′′ are defined as

N ≜ {𝑁𝑖,𝑗,𝑘 : 1 ≤ 𝑖 ≤ ∣𝒮∣ ∧ 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}, (6.279)

W ≜ {𝑊𝑖,𝑗,𝑘 : 1 ≤ 𝑖 ≤ ∣𝒮∣ ∧ 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}, (6.280)

N′′ ≜ {𝑁 ′′
𝑖 : 1 ≤ 𝑖 ≤ ∣𝒮∣}, (6.281)

n′ ≜ {𝑛′
𝑖,𝑗,𝑘 : 1 ≤ 𝑖 ≤ ∣𝒮∣ ∧ 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1}, (6.282)

w′ ≜ {𝑤′
𝑖,𝑗,𝑘 : 1 ≤ 𝑖 ≤ ∣𝒮∣ ∧ 1 ≤ 𝑗 ≤ 𝑚′ ∧ 0 ≤ 𝑘 ≤ 2𝑗−1 − 1} (6.283)

and

n′′ = {𝑛′′
𝑖 : 1 ≤ 𝑖 ≤ ∣𝒮∣}. (6.284)
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The ordered multisets appear in the expressions for the joint probability distributions
that involve the subsequences of a random source sequence. The joint probability dis-
tribution of the sequence lengths ∣V𝑖(X)∣ is expressed as Pr(n′′) ≜ Pr(N′′ = n′′). The
joint probability distribution of the lengths of a random source sequence’s subsequences
is expressed as Pr(n′) ≜ Pr(N = n′). The joint probability distribution of the weights
of a random source sequence’s subsequences is expressed as Pr(w′) ≜ Pr(W = w′).

The average length of the codewords that are assigned to source sequences from a
𝑞–ary context–tree source is subsequently derived. The average codeword length 𝐿(X𝑛)
may be expressed as

𝐿(X𝑛) =
∑
x∈𝒜𝑛

Pr(x)𝑙(x)

≤
∑

n′′∈q1

∑
n′∈q2

∑
w′∈q2

Pr(n′′,n′,w′)𝑙(n′′,n′,w′)

≤
∑

n′′∈q1

∑
n′∈q2

∑
w′∈q2

Pr(n′′,n′)Pr(w′∣n′′,n′)𝑙(n′′,n′,w′), (6.285)

where q1 ≜ {0, 1, . . . 𝑛}∣𝒮∣ and q2 ≜ {0, 1, . . . 𝑛}∣𝒮∣(2𝑚′−1). The function 𝑙(n′′,n′,w′) of
equation 6.285 denotes an upper bound on the length of each codeword that is assigned
to a source sequence x𝑛 that satisfies v𝑖(x) = 𝑛′′

𝑖 for all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, and with
subsequences 𝑆𝑗,𝑘(v𝑖(x)) having lengths equal to 𝑛′

𝑖,𝑗,𝑘 and weights equal to 𝑤′
𝑖,𝑗,𝑘 for

all 𝑖 ∈ {1, 2, . . . ∣𝒮∣}, 𝑗 ∈ {1, 2, . . .𝑚′} and 𝑘 ∈ {0, 1, . . . 2𝑗−1 − 1}.
The upper bound of equation 6.275 is substituted into equation 6.285 to obtain the

upper bound

𝐿(X𝑛) <

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

∑
n′′∈q1

∑
n′∈q2

∑
w′∈q2

Pr(n′′,n′)Pr(w′∣n′′,n′)𝑛′
𝑖,𝑗,𝑘ℎ

(
𝑤′
𝑖,𝑗,𝑘

𝑛′
𝑖,𝑗,𝑘

)

+ ∣𝒮∣(2𝑚′ − 1)
(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚𝑚′

<

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =1

𝑛′′
𝑖∑

𝑛′
𝑖,𝑗,𝑘=0

Pr(𝑛′′
𝑖 , 𝑛

′
𝑖,𝑗,𝑘)𝑛

′
𝑖,𝑗,𝑘

[ 𝑛′
𝑖,𝑗,𝑘∑

𝑤′
𝑖,𝑗,𝑘=0

Pr(𝑤′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 , 𝑛
′
𝑖,𝑗,𝑘)ℎ

(
𝑤′
𝑖,𝑗,𝑘

𝑛′
𝑖,𝑗,𝑘

)]

+ ∣𝒮∣(2𝑚′ − 1)
(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚𝑚′. (6.286)

The function Pr(𝑤′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 , 𝑛
′
𝑖,𝑗,𝑘) is the probability mass function of a binomial random

variable with parameters 𝑛′
𝑖,𝑗,𝑘 and 𝑝𝑖,𝑗,𝑘. The parameter 𝑝𝑖,𝑗,𝑘 is defined as

𝑝𝑖,𝑗,𝑘 ≜ Pr(𝐵
(𝑖)
𝑗 = 1∣B𝑗−1,(𝑖)

1 = 𝛽𝑗−1(𝑘)), (6.287)

where 𝐵
(𝑖)
𝑗 denotes bit 𝑗 of the binary word that is assigned to a random symbol that

the source produces in state 𝑖, and where B
𝑗,(𝑖)
1 denotes bits 1 to 𝑗 of the same binary

word. The probability mass function is defined for all 𝑤′
𝑖,𝑗,𝑘 ∈ {0, 1, . . . 𝑛′

𝑖,𝑗,𝑘}.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 224

 
 
 



CHAPTER 6 Mathematical analysis and practical performance

Jensen’s inequality is used to simplify the term within the square brackets of equa-
tion 6.286, as the binary entropy function ℎ(⋅) is a concave function. The term is
simplified as

𝑛′
𝑖,𝑗,𝑘∑

𝑤′
𝑖,𝑗,𝑘=0

Pr(𝑤′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 , 𝑛
′
𝑖,𝑗,𝑘)ℎ

(
𝑤′
𝑖,𝑗,𝑘

𝑛′
𝑖,𝑗,𝑘

)
≤ ℎ

( 𝑛′
𝑖,𝑗,𝑘∑

𝑤′
𝑖,𝑗,𝑘=0

Pr(𝑤′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 , 𝑛
′
𝑖,𝑗,𝑘)

𝑤′
𝑖,𝑗,𝑘

𝑛′
𝑖,𝑗,𝑘

)

≤ ℎ(𝑝𝑖,𝑗,𝑘). (6.288)

The final step of equation 6.288 follows from the fact that the expected value of the
binomial random variable equals 𝑛′

𝑖,𝑗,𝑘𝑝𝑖,𝑗,𝑘.
The first term on the right–hand side of equation 6.286 is simplified as

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =0

𝑛′′
𝑖∑

𝑛′
𝑖,𝑗,𝑘=0

Pr(𝑛′′
𝑖 , 𝑛

′
𝑖,𝑗,𝑘)𝑛

′
𝑖,𝑗,𝑘

[ 𝑛′
𝑖,𝑗,𝑘∑

𝑤′
𝑖,𝑗,𝑘=0

Pr(𝑤′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 , 𝑛
′
𝑖,𝑗,𝑘)ℎ

(
𝑤′
𝑖,𝑗,𝑘

𝑛′
𝑖,𝑗,𝑘

)]

≤
∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =0

𝑛′′
𝑖∑

𝑛′
𝑖,𝑗,𝑘=0

Pr(𝑛′′
𝑖 , 𝑛

′
𝑖,𝑗,𝑘)𝑛

′
𝑖,𝑗,𝑘ℎ(𝑝𝑖,𝑗,𝑘)

≤
∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )

𝑛′′
𝑖∑

𝑛′
𝑖,𝑗,𝑘=0

Pr(𝑛′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 )𝑛
′
𝑖,𝑗,𝑘ℎ(𝑝𝑖,𝑗,𝑘). (6.289)

The function Pr(𝑛′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 ) is the probability mass function of a binomial random variable
with parameters 𝑛′′

𝑖 and 𝑝′′𝑖,𝑗,𝑘, where

𝑝′′𝑖,𝑗,𝑘 ≜ Pr(B
𝑗−1,(𝑖)
1 = 𝛽𝑗−1(𝑘)). (6.290)

It is defined for all 𝑛′
𝑖,𝑗,𝑘 ∈ {0, 1, . . . 𝑛′′

𝑖 }.
Equation 6.289 is simplified as

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )

𝑛′′
𝑖∑

𝑛′
𝑖,𝑗,𝑘=0

Pr(𝑛′
𝑖,𝑗,𝑘∣𝑛′′

𝑖 )𝑛
′
𝑖,𝑗,𝑘ℎ(𝑝𝑖,𝑗,𝑘)

=

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖 𝑝

′′
𝑖,𝑗,𝑘ℎ(𝑝𝑖,𝑗,𝑘). (6.291)

The first step of equation 6.291 follows from the fact that the expected value of the
binomial random variable equals 𝑛′′

𝑖 𝑝
′′
𝑖,𝑗,𝑘.

The term on the right–hand side of equation 6.288 may be rewritten as

ℎ(𝑝𝑖,𝑗,𝑘) = 𝐻(𝐵
(𝑖)
𝑗 ∣B𝑗−1,(𝑖)

1 = 𝛽𝑗−1(𝑘)) (6.292)
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and substituted into equation 6.291 to obtain the expression

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

2𝑗−1−1∑
𝑘=0

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖 𝑝

′′
𝑖,𝑗,𝑘ℎ(𝑝𝑖,𝑗,𝑘)

=

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖

2𝑗−1−1∑
𝑘=0

Pr(B
𝑗−1,(𝑖)
1 = 𝛽𝑗−1(𝑘))𝐻(𝐵

(𝑖)
𝑗 ∣B𝑗−1,(𝑖)

1 = 𝛽𝑗−1(𝑘))

=

∣𝒮∣∑
𝑖=1

𝑚′∑
𝑗=1

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖𝐻(𝐵

(𝑖)
𝑗 ∣B𝑗−1,(𝑖)

1 )

=

∣𝒮∣∑
𝑖=1

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖

𝑚′∑
𝑗=1

𝐻(𝐵
(𝑖)
𝑗 ∣B𝑗−1,(𝑖)

1 )

=

∣𝒮∣∑
𝑖=1

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖𝐻(B

𝑚′,(𝑖)
1 )

=

∣𝒮∣∑
𝑖=1

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖𝐻(𝑋

(𝑖)), (6.293)

where 𝐻(𝑋(𝑖)) denotes the entropy associated with each symbol that the context–tree
source produces in state 𝑖.

The function Pr(𝑛′′
𝑖 ) is the probability mass function of a binomial random variable

with parameters 𝑛 and 𝑞𝑖, where 𝑞𝑖 denotes the probability of the context–tree source
being in state 𝑖. It is defined for all 𝑛′′

𝑖 ∈ {0, 1, . . . 𝑛}.
Equation 6.293 is simplified as

∣𝒮∣∑
𝑖=1

𝑛∑
𝑛′′
𝑖 =0

Pr(𝑛′′
𝑖 )𝑛

′′
𝑖𝐻(𝑋

(𝑖))

= 𝑛

∣𝒮∣∑
𝑖=1

𝑞𝑖𝐻(𝑋
(𝑖))

= 𝑛𝐻(𝒳 ), (6.294)

where 𝐻(𝒳 ) denotes the entropy rate of the context–tree source. The final step of
equation 6.294 follows from the fact that the expected value of the binomial random
variable equals 𝑛𝑞𝑖.

A bound on the average length 𝐿(X𝑛) of a codeword assigned to an 𝑛–symbol
source sequence by the encoder of the universal weight–and–index source code for 𝑞–
ary context–tree sources is derived using equations 6.285 to 6.294 as

𝐿(X𝑛) < 𝑛𝐻(𝒳 ) + ∣𝒮∣(2𝑚′ − 1)
(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ (𝐶 + 1) log2(𝑛+ 1) + 𝐶 + 1 +𝑚𝑚′. (6.295)
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The normalized average per–codeword redundancy of the universal weight–and–index
source code for 𝑞–ary context–tree sources, with respect to the entropy rate of the
source25, is bounded as

𝑅′(X𝑛) =
1

𝑛
𝐿(X𝑛)−𝐻(𝒳 )

<
∣𝒮∣(2𝑚′ − 1)

𝑛

(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

+
(𝐶 + 1) log2(𝑛+ 1)

𝑛
+

𝐶 + 1 +𝑚𝑚′

𝑛
. (6.296)

The limit of the normalized average per–codeword redundancy, as the source sequence
length 𝑛 tends to infinity, is derived as follows. The normalized average per–codeword
redundancy satisfies the inequality

0 ≤ 𝑅′(X𝑛) <
∣𝒮∣(2𝑚′ − 1)

𝑛

(
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)

+
(𝐶 + 1) log2(𝑛+ 1)

𝑛
+

𝐶 + 1 +𝑚𝑚′

𝑛
. (6.297)

for all 𝑛 > 1. The normalized average per–codeword redundancy is therefore expressed
as

𝑅′(X𝑛) =
1

𝑛
𝐾𝑛𝑞(𝑛), (6.298)

where

𝑞(𝑛) = ∣𝒮∣(2𝑚′ − 1)
(
log2

(
𝑛(𝑛+ 1)√
2𝜋𝑛(𝑛− 1)

)
+
13

12
log2(𝑒) + 2

)
+ (𝐶 + 1) log2(𝑛 + 1) + 𝐶 + 1 +𝑚𝑚′ (6.299)

and 0 ≤ 𝐾𝑛 < 1 for all 𝑛 > 1. The limit26

lim
𝑛→∞

1

𝑛
𝑞(𝑛) = lim

𝑛→∞
∣𝒮∣(2𝑚′ − 1)

𝑛
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)

= lim
𝑛→∞

1

𝑛
log2

(
𝑛(𝑛 + 1)√
2𝜋𝑛(𝑛− 1)

)
= 0 (6.300)

is used to prove that

lim
𝑛→∞

𝑅′(X𝑛) = lim
𝑛→∞

1

𝑛
𝐾𝑛𝑞(𝑛)

= 0. (6.301)

The limit of the normalized average per–codeword redundancy of the universal weight–
and–index source code for 𝑞–ary context–tree sources, as the source sequence length
tends to infinity, equals zero. It is concluded that the source code is universal.

25The approach of deriving the redundancy with respect to the entropy rate of the source was used
by Effros et. al. [10].

26The second step of equation 6.300 follows from equation 6.138.
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6.2.2.5 Practical results

Practical implementations of the weight–and–index source codes for 𝑞–ary memoryless
sources and 𝑞–ary context–tree sources were used to encode sequences from their re-
spective sources. The source coding results for each source type are presented in this
section.

𝑄–ary memoryless sources The universal weight–and–index source code for 𝑞–ary
memoryless sources, which is referred to as the proposed source code for the remainder
of this section, was used to encode sequences from octonary memoryless sources. The
symbol alphabet of these sources contains eight symbols, and the symbols are numbered
from one to eight. A maximum of

𝑚′ = log2(𝑞)

= 3 (6.302)

bits are required to represent each alphabet symbol.
Source sequences from two octonary memoryless sources with stationary symbol

distributions were encoded in order to investigate the normalized average per–codeword
redundancy of the proposed source code. The two octonary memoryless sources are
referred to as source one and source two. The length of the source sequences were
varied between sets of simulation trials in order to determine the rate at which the
normalized redundancy of the code decreases w.r.t. the source sequence length. The
practical implementation of the proposed source code had no apriori knowledge of
each source’s symbol distribution. The parameters and quantities associated with the
simulation that involves the proposed source code are presented in table 6.12 on page
229.

The source coding results associated with the proposed source code are presented
in figure 6.18 on page 230. This figure contains a plot of the normalized average per–
codeword redundancy of the proposed source code, as a function of the source sequence
length 𝑛. A curve that represents an upper bound on the normalized average per–
codeword redundancy of the proposed source code is included in the figure. The upper
bound was derived by normalizing equation 6.250 on page 219 with the source sequence
length 𝑛.

Figure 6.18 reveals that the upper bound on the redundancy of the proposed source
code is not exceeded by the redundancy that is associated with the practical implemen-
tation of the proposed source code. Both of the curves that represent the redundancy
of the practical implementation decrease w.r.t. the source sequence length, as expected.
The redundancy of the practical implementation appears to decrease at the same rate
w.r.t. the source sequence length as the upper bound on the redundancy of the source
code. These observations imply that the source code was correctly implemented.

The curves that are associated with the source coding of sequences from source one
and source two nearly overlap. As source one has a symbol distribution that is signif-
icantly less uniform than source two, this observation suggests that the effectiveness
of the proposed source code is not overly sensitive to the symbol distribution of the
source.
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Table 6.12: Parameters and quantities of the simulation that involves the weight–and–
index source code for 𝑞–ary memoryless sources.

Parameter / Quantity Symbol Value, src. 1 Value, src. 2 Unit

Src. sequence length 𝑛 256 to 8192 256 to 8192 symbols
Prob. alphabet symbol 1 Pr(𝑋 = 𝑎1) 0.0060 0.1984 —
Prob. alphabet symbol 2 Pr(𝑋 = 𝑎2) 0.1080 0.1081 —
Prob. alphabet symbol 3 Pr(𝑋 = 𝑎3) 0.0480 0.1247 —
Prob. alphabet symbol 4 Pr(𝑋 = 𝑎4) 0.3240 0.0482 —
Prob. alphabet symbol 5 Pr(𝑋 = 𝑎5) 0.0140 0.1542 —
Prob. alphabet symbol 6 Pr(𝑋 = 𝑎6) 0.4320 0.1293 —
Prob. alphabet symbol 7 Pr(𝑋 = 𝑎7) 0.0320 0.1238 —
Prob. alphabet symbol 8 Pr(𝑋 = 𝑎8) 0.0360 0.1132 —
Per–symbol src. entropy 𝐻(𝑋) 2.0690 2.9219 bits

𝑄–ary context–tree sources The three weight–and–index source codes for 𝑞–ary
context–tree sources were implemented and used to encode sequences from quaternary
context–tree sources. The symbol alphabet 𝒜 of these sources contains four symbols,
and is defined as

𝒜 = {0, 1, 2, 3}. (6.303)

A maximum of

𝑚′ = log2(𝑞)

= 2 (6.304)

bits are required to represent each symbol of the alphabet.
Sequences from two quaternary context–tree sources were encoded using the weight–

and–index source codes for context–tree sources. The two sources are referred to as
source one and source two. Each of the two quaternary context–tree sources is defined
in what follows.

Source 1 The tree of the first quaternary context–tree source is presented in
figure 6.19 on page 231. The first context–tree source has a total of 13 states; its state
set 𝒮 is defined as

𝒮 = {00, 01, 02, 03, 1, 200, 201, 202, 203, 21, 22, 23, 3}. (6.305)

The states of the first context–tree source are numbered from one to thirteen as indi-
cated in table 6.13 on page 232. Table 6.13 includes the distribution of the symbols
that the first context–tree source produces in each of its states.

Let 𝑚 denote the length of the longest context that is associated with the first
context–tree source. It follows that

𝑚 = 3, (6.306)

as the source has no context longer than three symbols.
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Figure 6.18: Normalized average per–codeword redundancy of the weight–and–index
source code for 𝑞–ary memoryless sources, as a function of the source sequence length
𝑛. The figure includes a curve that represents an upper bound on the redundancy of
the source code.

The FSM closure of the first quaternary context–tree source is subsequently de-
rived. Each state of the first context–tree source’s FSM closure is the reverse of the
corresponding state of the context–tree source. The states of the FSM closure of the
first context–tree source are provided in table 6.13 on page 232.

The state–transition diagram of the first context–tree source’s FSM closure is not
provided, due to the excessive number of transitions between its states. A more compact
representation of the source states and the state transitions is provided instead. The
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Figure 6.19: The tree of the first quaternary context–tree source.

compact transition matrix of the first context–tree source’s FSM closure is obtained as

Str,c ≜

⎛
⎜⎜⎜⎝

𝑡1,1 𝑡1,2 . . . 𝑡1,∣𝒮′∣
𝑡2,1 𝑡2,2 . . . 𝑡2,∣𝒮′∣
...

...
. . .

...
𝑡𝑞,1 𝑡𝑞,2 . . . 𝑡𝑞,∣𝒮′∣

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝

1 1 1 1 2 3 3 3 3 3 3 3 4
5 5 5 5 5 5 5 5 5 5 5 5 5
6 7 8 9 10 11 11 11 11 11 11 11 12
13 13 13 13 13 13 13 13 13 13 13 13 13

⎞
⎟⎟⎠ , (6.307)

where 𝑡𝑥,𝑦 denotes the destination state of the transition that occurs when the symbol
𝑥 is produced in the state s′𝑦.

The probability of the first context–tree source’s FSM closure residing in each of
its states is calculated using the equation

S𝑇P = P, (6.308)

where S denotes the state–transition probability matrix of the FSM closure (refer to
equation 6.90 on page 173), and P denotes the state probability vector of the FSM
closure (refer to equation 6.91 on page 173). The elements of the state probability
vector are obtained as

Pr(s′1) = 0.0660 Pr(s′2) = 0.0659 Pr(s′3) = 0.0668
Pr(s′4) = 0.0495 Pr(s′5) = 0.2544 Pr(s′6) = 0.0133
Pr(s′7) = 0.0267 Pr(s′8) = 0.0095 Pr(s′9) = 0.0101
Pr(s′10) = 0.0988 Pr(s′11) = 0.0731 Pr(s′12) = 0.0561
Pr(s′13) = 0.2097.

(6.309)
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Table 6.13: The symbol distributions that are associated with the states of the first
context–tree source. The table includes the states of the FSM closure of the context–
tree source.

CT state FSM state Pr(𝑋 = 0∣s𝑖) Pr(𝑋 = 1∣s𝑖) Pr(𝑋 = 2∣s𝑖) Pr(𝑋 = 3∣s𝑖)
s1 = 00 s′1 = 00 0.2884 0.3092 0.2012 0.2012
s2 = 01 s′2 = 10 0.3916 0.0160 0.4056 0.1868
s3 = 02 s′3 = 20 0.0336 0.6901 0.1432 0.1331
s4 = 03 s′4 = 30 0.3820 0.1604 0.2043 0.2533
s5 = 1 s′5 = 1 0.2590 0.2461 0.3886 0.1064
s6 = 200 s′6 = 002 0.1367 0.0688 0.2350 0.5595
s7 = 201 s′7 = 102 0.0940 0.2972 0.2781 0.3308
s8 = 202 s′8 = 202 0.4238 0.1502 0.1583 0.2677
s9 = 203 s′9 = 302 0.1289 0.3295 0.3210 0.2206
s10 = 21 s′10 = 12 0.1610 0.4166 0.1430 0.2794
s11 = 22 s′11 = 22 0.1440 0.2017 0.3714 0.2828
s12 = 23 s′12 = 32 0.5461 0.1308 0.2944 0.0287
s13 = 3 s′13 = 3 0.2362 0.1879 0.2675 0.3084

The entropy 𝐻𝑦(𝑋) that is associated with the distribution of the symbols produced
in state s′𝑦 of the first context–tree source’s FSM closure is calculated using the equation

𝐻𝑦(𝑋) = −
∣𝒮′∣∑
𝑧=1

𝑝𝑦,𝑧 log2(𝑝𝑦,𝑧), (6.310)

where 𝑝𝑦,𝑧 denotes the probability of a transition from state s′𝑦 to state s
′
𝑧 of the FSM

closure, conditioned on the FSM closure being in state 𝑠′𝑦. The entropy rate 𝐻(𝒳 ) of
the FSM closure of the first quaternary context–tree source is subsequently calculated
as

𝐻(𝒳 ) =

∣𝒮′∣∑
𝑦=1

𝑝𝑦𝐻𝑦(𝑋)

= 1.8305 (6.311)

bits per source symbol, where 𝑝𝑦 ≜ Pr(s′𝑦). The entropy rate of the first quaternary
context–tree source equals the entropy rate of its FSM closure.

Source 2 The second quaternary context–tree source has the same tree as the
first quaternary context–tree source (figure 6.19 on page 231), and therefore the same
state set as the first quaternary context–tree source (equation 6.305). The states of the
second quaternary context–tree source are numbered in the same manner as the states
of the first quaternary context–tree source (refer to table 6.14 on page 233).

The distribution of the symbols that the second context–tree source produces in
each of its states differs from the corresponding distribution of the first context–tree
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Table 6.14: The symbol distributions that are associated with the states of the second
context–tree source. The table includes the states of the FSM closure of the context–
tree source.

CT state FSM state Pr(𝑋 = 0∣s𝑖) Pr(𝑋 = 1∣s𝑖) Pr(𝑋 = 2∣s𝑖) Pr(𝑋 = 3∣s𝑖)
s1 = 00 s′1 = 00 0.0151 0.6013 0.2052 0.1783
s2 = 01 s′2 = 10 0.2985 0.4455 0.1238 0.1322
s3 = 02 s′3 = 20 0.3436 0.2088 0.1071 0.3405
s4 = 03 s′4 = 30 0.4979 0.1056 0.0010 0.3955
s5 = 1 s′5 = 1 0.5346 0.0729 0.0240 0.3685
s6 = 200 s′6 = 002 0.3326 0.2842 0.0041 0.3791
s7 = 201 s′7 = 102 0.4136 0.3819 0.0495 0.1550
s8 = 202 s′8 = 202 0.1410 0.3266 0.3571 0.1753
s9 = 203 s′9 = 302 0.2928 0.2919 0.2865 0.1288
s10 = 21 s′10 = 12 0.0283 0.3694 0.5176 0.0847
s11 = 22 s′11 = 22 0.0481 0.3868 0.2041 0.3609
s12 = 23 s′12 = 32 0.6239 0.1439 0.1904 0.0417
s13 = 3 s′13 = 3 0.3163 0.4038 0.2655 0.0144

source. The distribution of the symbols that the second context–tree source produces
in each state is presented in table 6.14 on page 233.

The FSM closure of the second quaternary context–tree source has the same state
set as the FSM closure of the first quaternary context–tree source, as well as the same
compact transition matrix as the FSM closure of the first quaternary context–tree
source (equation 6.307). The states of the FSM closure of the second context–tree
source are numbered in the same manner as the states of the FSM closure of the first
context–tree source (refer to table 6.14 on page 233).

The elements of the state probability vector P of the second context–tree source’s
FSM closure are obtained as

Pr(s′1) = 0.0985 Pr(s′2) = 0.1530 Pr(s′3) = 0.0519
Pr(s′4) = 0.0674 Pr(s′5) = 0.2861 Pr(s′6) = 0.0202
Pr(s′7) = 0.0189 Pr(s′8) = 0.0056 Pr(s′9) = 0.0001
Pr(s′10) = 0.0069 Pr(s′11) = 0.0218 Pr(s′12) = 0.0566
Pr(s′13) = 0.2130

(6.312)

using equation 6.308. The entropy rate 𝐻(𝒳 ) of the FSM closure of the second context–
tree source is subsequently calculated as

𝐻(𝒳 ) = 1.5720 (6.313)

bits per source symbol using equations 6.310 and 6.311. The entropy rate of the second
quaternary context–tree source equals the entropy rate of its FSM closure.

Source coding results The three weight–and–index source codes for 𝑞–ary context–
tree sources were implemented and used to encode sequences from the first and second
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Table 6.15: Parameters and quantities associated with the first and second quaternary
context–tree sources.

Parameter / Quantity Symbol Value Unit

Source sequence length 𝑛 256 – 8192 symbols
Entropy rate, src. 1 𝐻(𝒳 ) 1.8305 bits per source symbol
Entropy rate, src. 2 𝐻(𝒳 ) 1.5720 bits per source symbol

Table 6.16: Block lengths and parameters associated with the segmentation algorithm
of the universal weight–and–index source code for 𝑞–ary context–tree sources.

Source sequence Level–one Level–two Parameter Parameter
length 𝑛 block length block length 𝜇 𝛾
(symbols) 𝑘1(𝑛) (symbols) 𝑘2(𝑛) (symbols)

256 75 15 1.0763 1.4650
512 100 20 1.0959 1.5966
1024 126 21 1.1004 1.5359
2048 150 25 1.0896 1.5936
4096 180 30 1.0898 1.6640
8192 210 30 1.0847 1.5994

quaternary context–tree sources. These source codes are the type–one and type–two
nonuniversal weight–and–index source codes for 𝑞–ary context–tree sources (introduced
in section 6.2.2.1 on pages 204 and 207), as well as the universal weight–and–index
source code for 𝑞–ary context–tree sources (introduced in section 6.2.2.1 on page 208).
The length of the source sequences that were encoded was varied between sets of simula-
tion trials in order to investigate the rate at which the normalized average per–codeword
redundancy of each source code decreases w.r.t. the source sequence length.

The parameters and quantities associated with the first and second quaternary
context–tree sources are presented in table 6.15 on page 234. Table 6.16 on page 234
presents the block lengths and parameters that are associated with the practical imple-
mentation of the segmentation algorithm, which is part of the universal weight–and–
index source code for 𝑞–ary context–tree sources. The parameters 𝜇 and 𝛾, as defined
in equations 6.99 and 6.100, were assigned values by trial and error.

The source coding results are presented in figure 6.20 on page 235. This figure
contains a plot of the normalized average per–codeword redundancy of each source
code’s practical implementation, as a function of the source sequence length 𝑛. The
figure includes a curve that represents the analytically–derived upper bound on the
redundancy of the universal weight–and–index source code. This bound was derived
under the assumption that the segmentation algorithm of the universal source code is
perfectly accurate, and is expressed in equation 6.296 on page 227.

Figure 6.20 reveals that the normalized redundancy of each practical source code
implementation does not exceed the upper bound on the normalized redundancy of
the universal source code (with perfect segmentation). The normalized redundancy of
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Figure 6.20: The normalized average per–codeword redundancy of the nonuniversal and
universal weight–and–index source codes for 𝑞–ary context–tree sources, as a function
of the source sequence length 𝑛. The figure includes a curve that represents a bound on
the redundancy of the universal source code (where it is assumed that the segmentation
algorithm is perfectly accurate).

the type–one nonuniversal weight–and–index source code decreases at approximately
the same rate w.r.t. the source sequence length as the upper bound. The encoder of
the type–one nonuniversal weight–and–index source code produces codewords that are
of approximately27 the same length as the codewords that would be produced by the
encoder of the universal weight–and–index source code (assuming perfectly accurate
segmentation). It is therefore concluded that the type–one nonuniversal weight–and–
index source code was correctly implemented.

The curves associated with the redundancy of the type–one nonuniversal source
code, when used to encode sequences from the first context–tree source and the second

27The difference between the lengths of the codewords arises from the fact that the nonuniversal
source code encodes ∣𝒮∣ symbol segments that correspond to the states of the context–tree source,
while the universal source code encodes up to 𝐶 symbol segments that correspond to the i.i.d. symbol
segments of the BWT output sequence.
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context–tree source, overlap. It can not be concluded that the redundancy of the source
code is independent of the entropy of the source, as there is insufficient evidence to
motivate the conclusion.

A comparison between the curves of the type–one nonuniversal weight–and–index
source code and the universal weight–and–index source code reveals that the universal
source code is significantly less redundant when both source codes are used to encode
shorter source sequences. This observation is motivated by considering the overhead
involved in encoding the subsequences of short i.i.d. symbol segments.

The source coding of an i.i.d. symbol segment involves the source coding of sev-
eral subsequences that correspond to the segment. The weight of each subsequence is
encoded in a total of ⌈log2(𝑙𝑠𝑠 + 1)⌉ bits using the conventional binary–coded repre-
sentation of an integer, where 𝑙𝑠𝑠 denotes the length of the subsequence. The average
redundancy of the codewords that are assigned to the subsequence weights is signif-
icant, as the probability distribution of the subsequence weights are not taken into
account as they are assigned codewords.

A source code that divides short BWT output sequences into fewer segments may
have a smaller normalized average per–codeword redundancy than a source code which
divides the BWT output sequences into the actual i.i.d. symbol segments (i.e. a greater
number of segments). For short source sequences, the redundancy of the codewords
assigned to an additional set of subsequence weights may exceed the additional redun-
dancy of the codewords that are assigned to segments which contain symbols from more
than one probability distribution. As the length of the source sequences increases, more
symbols from distinct distributions appear in each segment. The additional redundancy
of the codewords that are assigned to these segments may in this case exceed the redun-
dancy of the codewords that are assigned to an additional set of subsequence weights.
The improved performance of the universal source code, when used to encode shorter
source sequences, is therefore due to the segmentation algorithm — it was found that
the segmentation algorithm divides certain BWT output sequences into fewer segments
than the actual number of i.i.d. symbol segments.

Both curves associated with the universal weight–and–index source code do not (in
general) decrease at the same rate w.r.t. the source sequence length as the upper bound
on the redundancy of the code. It was found that the accuracy of the segmentation
algorithm is extremely sensitive to changes in the block lengths 𝑘1(𝑛) and 𝑘2(𝑛). It is
likely that a search for more suitable block lengths would result in a source code with a
normalized redundancy that decreases more rapidly w.r.t. the sequence length. It is not
clear whether the selection of a single set of block lengths would result in a source code
with suitable performance when used to encode sequences from sources with different
parameters, however. It appears that this is not the case, as the redundancy of the
universal source code changes significantly when used to encode sequences from the
second context–tree source, instead of the first context–tree source.

The final observation regarding figure 6.20 concerns the type–two nonuniversal
weight–and–index source code for 𝑞–ary context–tree sources. The codewords of this
source code are less redundant on average than the codewords of the type–one nonuni-
versal source code if both source codes are used to encode shorter sequences. The
normalized redundancy of the type–two nonuniversal source code does not decrease at
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as great a rate w.r.t. the source sequence length as the normalized redundancy of the
type–one nonuniversal source code, however. This observation implies that the strategy
of encoding the segments between the expected positions of the transition points in
the BWT output sequence is not optimal in terms of maximizing the rate at which
the normalized redundancy of the source code decreases (w.r.t. the source sequence
length).
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Conclusions

This chapter presents several conclusions regarding enumerative source codes and their
use in BWT–based source code implementations. The first two sections of this chapter
address the practicality and effectiveness of the enumerative source codes that were
investigated in this thesis. The final conclusions regarding enumerative source codes
are presented in the third section of this chapter.

7.1 Practicality

The practicality of the enumerative source codes that were investigated in chapter 6
depends on the computational complexity and the memory requirements of their im-
plementations. Both the computational complexity and the memory requirements that
are associated with the computation of large binomial coefficients were investigated in
chapter 5, as this is the most computationally–intensive task that typical enumerative
source code implementations perform. A novel approach to computing the large bino-
mial coefficients that are required by enumerative source code implementations was
proposed in section 5.3. This approach involves the decomposition of large numbers
into their prime factors.

Several observations regarding the memory requirements of the novel approach to
computing large binomial coefficients appear in section 5.3 on page 138. It is concluded
from these observations that the memory requirements of enumerative source code
implementations for source sequences of up to 104 symbols are not excessive, considering
the amount of memory that is available on modern personal computers. All enumerative
source codes that were investigated in chapter 6 are therefore considered practical in
terms of their memory requirements. This conclusion does not imply that the proposed
enumerative source code implementations require less memory than other source code
implementations, or that enumerative source codes should be favoured above other
source codes.

The mean and the standard deviation of the computation time that is required to
encode and decode a single source sequence of 104 bits using the variable weight, fixed–
to–fixed length source code were presented in section 6.1.2.6 on page 165. The encoder
and decoder required an average computation time on the order of one or more seconds
to encode a random source sequence and decode it from its codeword. The standard
deviation of the computation time was negligible. It is concluded that the proposed
implementation of the enumerative source code does not compare favourably against
implementations of the Lempel–Ziv source code or the bzip2 implementation (in terms
of computation time) — these implementations typically require an equivalent amount
of computation time to encode files of several megabytes, instead of 104 bits. The
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computation time of the enumerative source code implementation is manageable for
the purposes of research and simulation, however.

The enumerative source codes that were investigated in this thesis are interesting
and useful from a research point of view, even though their implementations are not
competitive with those of conventional source codes in terms of their computational
complexity. This conclusion may be justified by considering a statement of Caire et.
al. [161] regarding optimal fixed–to–fixed length source codes for binary memoryless
sources. Caire et. al. stated that optimal fixed–to–fixed length source codes for long
source sequences (i.e. 500 bits or longer) from binary memoryless sources are ‘non-
constructable’ if the source codes are to have a reasonable degree of computational
complexity. The word ‘optimal’ refers to the minimum block–error probability within
the context of this statement.

It was proved in this thesis that the statement of Caire et. al. [161] is incorrect —
the variable weight, fixed–to–fixed length enumerative source code of section 6.1.2 on
page 153 was proved as being optimal in theorem 6.1.4 on page 158, and was empirically
demonstrated as being optimal (refer to figure 6.5 on page 165). The implementation
of this source code may be used to encode and decode source sequences of up to 104

bits in seconds, and requires less than 150 kilobytes of memory — this implementation
clearly has a reasonable degree of computational complexity.

It is likely that the computational complexity of the enumerative source code im-
plementations that were proposed in this thesis may be reduced. The computational
complexity of enumerative source codes was not the topic addressed by this thesis.
The original enumerative source codes’ high degree of computational complexity was
considered an obstacle that needed to be overcome in order to study their effectiveness.
This obstacle led to the development of the prime factor decomposition approach to
computing large binomial coefficients, which reduces the computational complexity of
the original enumerative source codes significantly. A small fraction of the overall time
and effort that was spent on this thesis went to reducing the computational complexity
of enumerative source code implementations. It is very likely that the efficiency of the
proposed enumerative source code implementations may be improved, which implies
that future implementations of enumerative source codes may be more competitive
with conventional source codes in this regard.

7.2 Effectiveness

The conclusions regarding the effectiveness of the enumerative source codes that were
investigated in this thesis are presented in this section.

7.2.1 Single–field enumerative source codes

The conclusions regarding the effectiveness of the single–field enumerative source codes
are presented in what follows.
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7.2.1.1 The constant weight, fixed–to–fixed length code

The constant weight, fixed–to–fixed length source code was introduced in section 6.1.1
on page 139. It was demonstrated that the block–error probability of this source code
did not exceed the block–error probability of several variable–length source codes that
were implemented as fixed–to–fixed length source codes, where the source codes were
used to encode sequences from the fixed–weight binary source. It is therefore concluded
that the constant weight, fixed–to–fixed length source code is more effective in terms
of its block–error probability than fixed–to–fixed length implementations of conven-
tional variable–length source codes, if sequences from a fixed–weight binary source are
encoded.

A fixed–to–variable length implementation of the constant weight, fixed–to–fixed
length source code was proposed in section 6.1.1.5 on page 147. It was demonstrated
that a conventional variable–length Huffman code outperforms the fixed–to–variable
length implementation of the constant weight, fixed–to–fixed length source code, when
compared in terms of their average codeword redundancy (the source codes were used
to encode sequences from the fixed–weight binary source). The Huffman code that
was compared to the constant weight, fixed–to–fixed length source code was extended
to sequences of 500 bits, however — the efficient construction of this extended Huff-
man code is not transparent (its construction may involve an unmanageable degree
of computational complexity). It is concluded that the fixed–to–variable length imple-
mentation of the constant weight, fixed–to–fixed length source code is suboptimal in
terms of its effectiveness, but that its computational complexity is manageable (unlike
the extended Huffman code).

7.2.1.2 The variable weight, fixed–to–fixed length code

The variable weight, fixed–to–fixed length source code was introduced in section 6.1.2
on page 153. It was both proved and demonstrated that the variable weight, fixed–to–
fixed length source code is optimal in terms of its block–error probability when used
to encode sequences from binary memoryless sources. It was also demonstrated that
conventional variable–length source codes, when implemented as fixed–to–fixed length
source codes and used to encode source sequences from binary memoryless sources,
are suboptimal in terms of their block–error probability. It is therefore concluded that
the variable weight, fixed–to–fixed length source code is more effective than fixed–to–
fixed length implementations of conventional variable–length source codes, when used
to encode sequences from binary memoryless sources.

7.2.2 Multi–field enumerative source codes

The conclusions regarding the effectiveness of multi–field enumerative source codes are
presented in what follows.

7.2.2.1 The weight–and–index variable–length code for binary sources

The universal weight–and–index variable–length source code for binary memoryless
sources was introduced in section 6.2.1.1 on page 167. It was demonstrated that this
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source code is less effective than extended Huffman codes, as well as arithmetic codes,
when used to encode sequences from a binary memoryless source with an arbitrary
source parameter 𝑝. It was also demonstrated that the normalized redundancy of the
universal weight–and–index source code for binary memoryless sources decreases at
a slower rate w.r.t. the source sequence length than the normalized redundancy of
extended Huffman codes and arithmetic codes.

Two important observations regarding the comparison between the universal weight–
and–index variable–length source code for binary memoryless sources and the conven-
tional variable–length source codes (i.e. the extended Huffman and arithmetic source
codes) were made in section 6.2.1.5 on page 189. The first observation concerns the
fact that the weight–and–index source code for binary memoryless sources is a univer-
sal1 source code — its encoder requires no apriori knowledge of the source parameter
𝑝 in order to encode source sequences and produce codewords with a normalized re-
dundancy that tends to zero asymptotically. The encoders of the extended Huffman
codes and the arithmetic codes that were considered in section 6.2.1.5 require apriori
knowledge of the source parameter 𝑝 in order to effectively encode source sequences.

The second observation concerns the computational complexity that is associated
with the extended Huffman code. The construction of the extended Huffman code for
sequences of 500 bits, as considered in section 6.2.1.5, is computationally infeasible. The
computational complexity of the weight–and–index source code is manageable when
it is used to encode longer source sequences from binary memoryless sources — this
source code is computationally feasible.

Three weight–and–index variable–length source codes for binary context–tree sources
were introduced in section 6.2.1.1 on page 168. Two of the three source codes are
nonuniversal, while the remaining source code is universal. Each of the proposed
weight–and–index source codes for binary context–tree sources transforms source se-
quences using the BWT, and encodes the transformed sequences using an enumerative
source code.

It was demonstrated that the normalized redundancy of the codewords produced
by the two nonuniversal weight–and–index source codes decreases w.r.t. the source
sequence length if the source codes are used to encode sequences from a context–tree
source with known statistics. It was proved analytically that the remaining weight–
and–index source code is universal. The proof was carried out under the assumption
that the segmentation algorithm of the source code is perfectly accurate, which does
not hold true in practice. The segmentation algorithm’s degree of accuracy strongly
influences the performance of the universal source code. A highly accurate segmentation
algorithm relies on the selection of appropriate lengths for its level–one and level–two
blocks.

It is concluded that the universal weight–and–index variable–length source code
for binary context–tree sources may be used to effectively encode source sequences
from binary context–tree sources without apriori knowledge of the source statistics.
The practical results presented in section 6.2.1.5 on page 197 support this conclusion.
The dependency of the source code’s effectiveness on the lengths of the segmentation

1It was proved analytically that the weight–and–index source code for binary memoryless sources
is universal.
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algorithm’s blocks detracts from the universality of the code, however.

7.2.2.2 The weight–and–index variable–length code for 𝑞–ary sources

The universal weight–and–index variable–length source code for 𝑞–ary memoryless
sources was introduced in section 6.2.2.1 on page 200. This source code uses the weight–
and–index variable–length source code for binary memoryless sources to effectively
encode source symbols from 𝑞–ary memoryless sources, where 𝑞 ≥ 2.

The weight–and–index source code for 𝑞–ary memoryless sources was proved ana-
lytically as being universal. It was demonstrated in section 6.2.2.5 on page 228 that
this source code may be used to encode sequences from 𝑞–ary memoryless sources with
a normalized redundancy that decreases w.r.t. the source sequence length, and with-
out apriori knowledge of the symbol distribution of the source. It is concluded that
the weight–and–index variable–length source code for 𝑞–ary memoryless sources is a
conceptually simple, universal source code for sequences of 𝑞–ary symbols from memo-
ryless sources. The computational complexity of this source code is manageable when
used to encode sequences of up to 104 symbols.

Three weight–and–index variable–length source codes for 𝑞–ary context–tree sources
were introduced in section 6.2.2.1 on page 203. Two of the three source codes are
nonuniversal, while the remaining source code is universal. Each of the proposed
weight–and–index source codes for 𝑞–ary context–tree sources transforms source se-
quences using the BWT, and encodes the transformed sequences using the universal
weight–and–index source code for binary memoryless sources.

It was demonstrated that the normalized redundancy of the codewords produced
by the two nonuniversal weight–and–index source codes decreases w.r.t. the source se-
quence length if the source codes are used to encode sequences from two quaternary
context–tree sources with known statistics. It was proved analytically that the remain-
ing weight–and–index source code is universal. The proof was carried out under the
assumption that the segmentation algorithm of the source code is perfectly accurate,
which does not hold true in practice. The segmentation algorithm’s degree of accuracy
strongly influences the performance of the universal weight–and–index source code for
𝑞–ary context–tree sources, as was the case with the universal weight–and–index source
code for binary context–tree sources. A highly accurate segmentation algorithm relies
on the selection of appropriate lengths for its level–one and level–two blocks.

It is concluded that the universal weight–and–index variable–length source code
for 𝑞–ary context–tree sources may be used to effectively encode source sequences
from 𝑞–ary context–tree sources without apriori knowledge of the source statistics.
The practical results presented in section 6.2.2.5 on page 229 support this conclusion.
The dependency of the source code’s effectiveness on the lengths of the segmentation
algorithm’s blocks detracts from the universality of the code, however.

7.3 Final conclusions

Enumerative source code implementations with manageable computational complexity
may be realized. These implementations are not, at present, competitive with con-
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ventional source code implementations in terms of their efficiency. The computational
complexity of the enumerative source code implementations presented in this thesis is
manageable for the purposes of research and simulation, however. It likely that further
research would lead to additional reductions in the computational complexity of these
implementations.

The fixed–to–fixed length enumerative source code proposed in this thesis was
proved as being optimal in terms of its block–error probability when used to encode
sequences of up to 104 bits from binary memoryless sources. Fixed–to–fixed length im-
plementations of conventional variable–length source codes were demonstrated as being
suboptimal when used to encode the same sequences as the proposed source code. It is
concluded that enumerative source codes may be used to realize optimal fixed–to–fixed
length source code implementations with manageable computational complexity.

Enumerative source codes may be used to universally encode sequences from 𝑞–ary
memoryless sources and 𝑞–ary context–tree sources, where 𝑞 ≥ 2. The universal source
coding of sequences from context–tree sources is achieved by combining enumerative
source codes, the Burrows–Wheeler transform, and a segmentation algorithm. The per-
formance of the universal source code for context–tree sources depends on the lengths
that are selected for the level–one and level–two blocks of the segmentation algorithm.
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ADDENDUM A

The first enumerative source code

Lynch [5] proposed the first enumerative source code, but did not derive any bounds
on its effectiveness. Davisson [6] subsequently proposed a source code implementation
for removing redundant data samples from a sample sequence. This implementation
is similar to the first enumerative source code. Davisson investigated the performance
of the source code implementation, and provided an analytical definition of its source
encoder and decoder.

Addendum A is divided into two sections. The first section is a description of
the enumerative source code implementation that was proposed by Davisson [6]. The
second section contains an expression for the asymptotic code rate of the source code
implementation, as well as its derivation.

A.1 Description

Davisson [6] proposed a blockwise enumerative source code implementation. The im-
plementation encodes each sequence of 𝑛 source samples independently from other
sequences, thereby producing a variable–length codeword for each source sequence.
The structure of the variable–length codeword that is assigned to a sequence of 𝑛 sam-
ples is presented in figure A.1 on page 256. The variable–length codeword consists of
three fields.

The source encoder encodes each sequence of 𝑛 source samples by first determining
which of its samples are to be removed (the redundant samples) and which are to be
retained (the nonredundant samples). The number of nonredundant source samples
may differ from source sequence to source sequence — in order to successfully decode
each codeword, the source decoder requires knowledge of the exact number of nonre-
dundant source samples within each source sequence. The first field of each codeword
represents the number of nonredundant samples within the source sequence associated
with the codeword.

Consider a source sequence x𝑛 with 𝑚 nonredundant samples and 𝑛−𝑚 redundant
samples. The first field of the codeword assigned to the source sequence is the conven-
tional binary–coded representation of the integer 𝑚. As the integer 𝑚 may assume one
of 𝑛 + 1 distinct values (any integer from zero to 𝑛), the first field consists of

𝑙1(x) = ⌈log2(𝑛+ 1)⌉ (A.1)

bits.
The indices of the 𝑚 nonredundant samples within the source sequence may be

expressed as a monotonically increasing integer sequence. The source encoder encodes

255

 
 
 



ADDENDUM A The first enumerative source code

Number of nonredundant
source samples (𝑚)

Index of integer sequence

⌈log2(𝑛 + 1)⌉ bits
⌈
log2

(
𝑛
𝑚

)⌉
bits

Nonredundant source samples

𝑚𝑙ave bits

Figure A.1: The codeword assigned to a source sequence of 𝑛 samples, 𝑚 of which are
nonredundant. A description of each codeword field, as well as the length of each field,
are provided in the figure.

this sequence using the first enumerative source code (i.e. the source code proposed by
Lynch [5] — refer to section 4.1.1 on page 101). The codeword of the first enumerative
source code represents the index of the monotonically increasing integer sequence in the
ordered set of all monotonically increasing integer sequences of the same length (and
with integers limited to the set {1, 2, . . . 𝑛}). The codeword of the first enumerative
source code is the second field of the codeword assigned to the sequence x𝑛 (refer to
figure A.1). The second field has a length of

𝑙2(x) =

⌈
log2

(
𝑛

𝑚

)⌉
(A.2)

bits, as a total of
(
𝑛
𝑚

)
distinct, monotonically increasing integer sequences of length 𝑚

exist (each integer assumes a distinct value from the set {1, 2, . . . 𝑛}).
The final field of the codeword represents the𝑚 nonredundant samples of the source

sequence associated with the codeword. The implementation of Davisson [6] accommo-
dates the case where the number of bits required to represent each nonredundant sample
varies from sample to sample. In order to derive an expression for the asymptotic code
rate of the source code implementation, it is sufficient to consider only the average
number of bits that are required to represent a nonredundant sample. Let 𝑙ave denote
the average number of bits that are required to represent a nonredundant sample. The
final field of the codeword has a length of

𝑙3(x) = 𝑚𝑙ave (A.3)

bits.
The source decoder is aware of the source sequence length 𝑛. It is able to calculate

the length of the first field of each codeword, and decode the field to obtain the value of
𝑚 (i.e. the number of nonredundant samples in the source sequence associated with the
codeword). It subsequently calculates the length of the second field of the codeword, and
decodes the second field using the first enumerative source code. It finally reconstructs
the source sequence using the recovered integer sequence and the nonredundant samples
of the third codeword field.
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A.2 Performance

An expression for the average number of codeword bits that the source code imple-
mentation of Davisson [6] assigns to each sample from a particular source is derived
in this section. A source that produces statistically independent samples is considered.
The expression holds for source sequences with lengths that tend to infinity.

Consider a source that produces nonredundant samples with a constant probability
of 𝑝, and redundant samples with a probability of 1 − 𝑝, where 0 < 𝑝 < 1. The three
fields of the codeword assigned to a source sequence x𝑛 with 𝑚 nonredundant samples
require a total of

𝑙(x) = ⌈log2(𝑛 + 1)⌉+
⌈
log2

(
𝑛

𝑚

)⌉
+𝑚𝑙ave (A.4)

bits to represent (refer to figure A.1). The binomial coefficient
(
𝑛
𝑚

)
may be approximated

as (
𝑛

𝑚

)
≈
√

𝑛

(𝑛−𝑚)𝑚2𝜋

(
𝑛

𝑛−𝑚

)𝑛(
𝑛−𝑚

𝑚

)𝑚
(A.5)

for large values of 𝑛. The average number of codeword bits assigned to each source
sample, as the source sequence length 𝑛 tends to infinity, is approximated as

𝑙𝑎(x) = lim
𝑛→∞

𝑙(x)

𝑛

= lim
𝑛→∞

log2(𝑛 + 1)

𝑛
+ lim

𝑛→∞
𝑚𝑙ave
𝑛

lim
𝑛→∞

1

𝑛

[
log2

(√
𝑛

(𝑛−𝑚)𝑚2𝜋

)
+ 𝑛 log2

(
𝑛

𝑛−𝑚

)
+𝑚 log2

(
𝑛−𝑚

𝑚

)]
.

(A.6)

The weak law of large numbers is used to simplify the expression for the average number
of codeword bits assigned to each source sample. According to the weak law of large
numbers, a positive integer 𝑛0 and positive real numbers 𝛿 and 𝜖 (where 0 < 𝛿, 𝜖 < 1)
exist such that

Pr[∣(𝑚/𝑛− 𝑝)∣ < 𝜖] > 1− 𝛿 (A.7)

for any 𝑛 > 𝑛0. It follows that the expression

lim
𝑛→∞

𝑚

𝑛
= 𝑝 (A.8)

holds.
Equation A.6 is simplified in what follows. The first term within the square brackets

on the right–hand side of equation A.6 is simplified as

lim
𝑛→∞

1

𝑛
log2

(√
𝑛

(𝑛−𝑚)𝑚2𝜋

)

= lim
𝑛→∞

1

2𝑛
log2

(
1

𝑛(1− 𝑝)𝑝2𝜋

)

= lim
𝑛→∞

1

2𝑛
log2

(
1

𝑛

)
+ lim

𝑛→∞
1

2𝑛
log2

(
1

(1− 𝑝)𝑝2𝜋

)
. (A.9)
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The second term on the right–hand side of equation A.9 equals zero. The first term on
the right–hand side of equation A.9 is simplified using l’Hopital’s rule as

lim
𝑛→∞

1

2𝑛
log2

(
1

𝑛

)
= −1

2
lim
𝑛→∞

log2(𝑛)

𝑛

= −1
2
lim
𝑛→∞

1

𝑛 ln(2)

= 0. (A.10)

Equation A.6 may therefore be simplified as

𝑙𝑎(x) = lim
𝑛→∞

𝑚𝑙ave
𝑛

+ lim
𝑛→∞

1

𝑛

[
𝑛 log2

(
𝑛

𝑛−𝑚

)
+𝑚 log2

(
𝑛−𝑚

𝑚

)]

= 𝑝𝑙ave − log2(1− 𝑝) + 𝑝 log2

(
1− 𝑝

𝑝

)
= 𝑝𝑙ave − 𝑝 log2(𝑝)− (1− 𝑝) log2(1− 𝑝)

= 𝑝𝑙ave + ℎ(𝑝). (A.11)

The minimum number of codeword bits that have to be assigned (on average) to
each source sample in order to guarantee a uniquely decodable code is subsequently
derived. Each source sequence may be interpreted as a sequence of 𝑛 statistically in-
dependent and identically distributed bits. Each bit of this sequence equals zero if the
corresponding sample is redundant, and one if the sample is nonredundant. To uniquely
represent each source bit, a minimum of

ℎ(𝑝) = −𝑝 log2(𝑝)− (1− 𝑝) log2(1− 𝑝) (A.12)

codeword bits have to be assigned to each source bit on average.
The nonredundant samples of each source sequence are encoded in addition to its bit

sequence. An average of 𝑙ave bits are required to represent each nonredundant sample;
the 𝑚 nonredundant samples of a source sequence are therefore encoded in an average
of 𝑚𝑙ave bits. An average of 𝑚𝑙ave/𝑛 bits per source sample are required to represent
the nonredundant source samples of the source sequence. The optimal asymptotic code
rate is therefore derived as

𝑙𝑎,opt(x) = 𝑝𝑙ave + ℎ(𝑝) (A.13)

bits per source sample. This expression is identical to the expression for the asymptotic
code rate of the source code implementation proposed by Davisson (refer to equation
A.11). The source code implementation is therefore optimal in terms of its asymptotic
code rate.
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ADDENDUM B

The enumerative source code
proposed by Cover

This addendum is a summary of the enumerative source code for bit sequences from
stationary first–order Markov sources, as proposed by Cover [7]. The first part of the
summary is a description of the source code, and the second part contains the derivation
of a bound on the performance of the source code.

B.1 Description

Cover [7] considered the source coding of bit sequences from stationary first–order
Markov sources. The state–transition diagram of a first–order binary Markov source is
presented in figure B.1 on page 260.

Consider an 𝑛–bit source sequence x𝑛 that was produced by the Markov source of
figure B.1. Let the number of occurrences of the two–bit pair 𝑎𝑏 (where 𝑎, 𝑏 ∈ {0, 1})
in the sequence x𝑛 be denoted by 𝑚𝑎𝑏, and let the vector m, where

m ≜ [𝑚01, 𝑚10, 𝑚00, 𝑚11], (B.1)

be referred to as the count profile of the sequence. All 𝑛–bit source sequences with
the same initial bit as the sequence x𝑛 and with the same count profile have the same
probability of occurrence as the source sequence x𝑛. Cover [7] defined an ordered subset
𝑆𝑏 that consists of all sequences with the same count profile. The value that the initial
bit of a source sequence requires in order to belong to the subset 𝑆𝑏 was not specified
(i.e. both sequences with zero–valued and nonzero–valued initial bits belong to the
same subset 𝑆𝑏, provided that they share the same count profile m).

The source encoder of the enumerative source code that was proposed by Cover [7]
encodes each 𝑛–bit source sequence as follows (refer to figure B.2 on page 260 for the
structure of the codeword). It first encodes the count profile of the source sequence.
Each element 𝑚𝑎𝑏 of the count profile m is encoded in a total of ⌈log2(𝑛)⌉ bits using
the conventional binary–coded representation of an integer. It is sufficient to assign
⌈log2(𝑛)⌉ bits to the codeword of each element of the count profile, as each element
may assume an integer value from zero to 𝑛− 1. It follows that the count profile of the
source sequence is encoded in a total of 4⌈log2(𝑛)⌉ bits.

After encoding the count profile m of the source sequence x𝑛, the source encoder
encodes the index of the source sequence in the ordered subset 𝑆𝑏 that consists of all
sequences with the count profile m. To calculate the index of the sequence x𝑛 in the
ordered subset 𝑆𝑏, it is necessary to calculate the number of 𝑛–bit source sequences that
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0

0 0 1

1

1

Figure B.1: The state–transition diagram of a first–order binary Markov source.

4⌈log2(𝑛)⌉ bits

⌈log2(∣𝑆𝑏∣)⌉ bits

Count profile

elements

Source sequence index

Figure B.2: The codeword assigned to a source sequence of 𝑛 bits. A description of
each codeword field, as well as the length of each field, are provided in the figure.

share the count profile m and start with a zero–valued bit. Let this total be denoted
by 𝑔(m). An expression for 𝑔(m) is subsequently derived.

Cover [7] proved that the count profile m of any source sequence that starts with a
zero–valued bit satisfies either 𝑚01 = 𝑚10 or𝑚01 = 𝑚10+1. The proof of this statement
is based on the fact that a sequence’s runs of zero–valued bits and nonzero–valued bits
alternate. A source sequence with a count profilem has𝑚10+1 runs of zero–valued bits
and 𝑚01 runs of nonzero–valued bits. The same sequence has 𝑚10+𝑚00+1 zero–valued
bits, and 𝑚01 +𝑚11 nonzero–valued bits.

An expression for 𝑔(m) may be found by deriving an expression for the number
of distinct ways of choosing valid lengths for the zero–valued bit runs in a source
sequence. The latter expression is derived by finding the number of distinct ways that
positive integer values can be assigned to the variables 𝑟1, 𝑟2, . . . 𝑟𝑘 in order to satisfy
the equation

𝑟1 + 𝑟2 + . . .+ 𝑟𝑘 = 𝑟, (B.2)

where 𝑟𝑖 denotes the number of bits in the 𝑖th zero–valued bit run, 𝑘 denotes the number
of zero–valued bit runs, and 𝑟 denotes the number of zero–valued bits in the source
sequence. Cover [7] stated that there are a total of

(
𝑟−1
𝑘−1

)
positive integer solutions of
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equation B.2; this statement implies that there are

𝑞0 =

(
𝑚10 +𝑚00

𝑚10

)
(B.3)

different ways of choosing valid lengths for the zero–valued bit runs. The same state-
ment implies that there are a total of

𝑞1 =

(
𝑚01 +𝑚11 − 1

𝑚01 − 1
)

(B.4)

different ways of choosing valid lengths for the nonzero–valued bit runs. The lengths of
the zero–valued bit runs may be chosen independently from the lengths of the nonzero–
valued bit runs — it follows that the number of source sequences that share the count
profile m and start with a zero–valued bit equals

𝑔(m) =

{ (𝑚10+𝑚00

𝑚10

)(
𝑚01+𝑚11−1

𝑚01−1

)
if 𝑚01 = 𝑚10 or𝑚01 = 𝑚10 + 1,

0 otherwise.

Cover [7] derived an expression for the index of a source sequence x𝑛 with a count
profile m in the ordered subset 𝑆𝑏 of all sequences that share the count profile m. This
expression was derived using equation 4.24 as

𝑖𝑆𝑏
(x) =

𝑛∑
𝑘=1

𝑥𝑘𝑔(m−m(𝑥1, 𝑥2, 𝑥3 . . . 𝑥𝑘−1, 1− 𝑥𝑘)), (B.5)

where m(𝑥1, 𝑥2, . . . 𝑥𝑗) denotes the count profile of the sequence {𝑥1, 𝑥2, . . . 𝑥𝑗}.
Cover [7] derived an expression for the total number of source sequences that share

the count profile m as

∣𝑆𝑏∣ = 𝑔(𝑚01, 𝑚10, 𝑚00, 𝑚11) + 𝑔(𝑚10, 𝑚01, 𝑚11, 𝑚00). (B.6)

This expression was derived by using the fact that the number of sequences that share
the count profilem and start with a nonzero–valued bit equals the number of sequences
that share the count profile m = (𝑚10, 𝑚01, 𝑚11, 𝑚00) and start with a zero–valued bit.

B.2 Performance

An expression for the asymptotic code rate of the enumerative source code that was
proposed by Cover [7] is derived in what follows. The expression is derived under the
assumption that source sequences with lengths that tend to infinity are encoded.

The first step of the derivation is to simplify the expression for the length of the
codeword that is assigned to the source sequence x𝑛. The first field of the codeword
has a length of

𝑙1(x) = 4 ⌈log2(𝑛)⌉ (B.7)

bits, and the second field of the codeword has a length of

𝑙2(x) = ⌈log2(∣𝑆𝑏∣)⌉ (B.8)
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bits. It follows that a total of

𝑙(x) = 4 ⌈log2(𝑛)⌉+ ⌈log2(∣𝑆𝑏∣)⌉ (B.9)

bits are required to encode an 𝑛–bit source sequence x𝑛 with a count profile m.
The length of the second field of the codeword may be simplified by first substituting

the equation

∣𝑆𝑏∣ = 𝑔(𝑚01, 𝑚10, 𝑚00, 𝑚11) + 𝑔(𝑚10, 𝑚01, 𝑚11, 𝑚00)

=

(
𝑚10 +𝑚00

𝑚10

)(
𝑚01 +𝑚11 − 1

𝑚01 − 1
)
+

(
𝑚01 +𝑚11

𝑚01

)(
𝑚10 +𝑚00 − 1

𝑚10 − 1
)

=

(
𝑚10 +𝑚00

𝑚10

)(
𝑚01 +𝑚11

𝑚01

)(
𝑚01

𝑚01 +𝑚11

)

+

(
𝑚01 +𝑚11

𝑚01

)(
𝑚10 +𝑚00

𝑚10

)(
𝑚10

𝑚10 +𝑚00

)

=

(
𝑚10 +𝑚00

𝑚10

)(
𝑚01 +𝑚11

𝑚01

)[
𝑚01

𝑚01 +𝑚11
+

𝑚10

𝑚10 +𝑚00

]
. (B.10)

into equation B.8 to obtain the approximation

𝑙2(x) = ⌈log2(∣𝑆𝑏∣)⌉

≈ log2

[√
𝑚10 +𝑚00

𝑚00𝑚102𝜋

(
𝑚10 +𝑚00

𝑚00

)𝑚10+𝑚00
(
𝑚00

𝑚10

)𝑚10
]

(B.11)

+ log2

[√
𝑚01 +𝑚11

𝑚11𝑚012𝜋

(
𝑚01 +𝑚11

𝑚11

)𝑚01+𝑚11
(
𝑚11

𝑚01

)𝑚01
]

(B.12)

+ log2

[
𝑚01

𝑚01 +𝑚11

+
𝑚10

𝑚10 +𝑚00

]
. (B.13)

The approximation of equations B.11 to B.13 becomes more accurate as 𝑛 is increased.
Cover [7] derived the expressions

𝐸[𝑚01] =
𝑝01𝑝10

𝑝01 + 𝑝10
(𝑛− 1) = 𝑘01(𝑛− 1), (B.14)

𝐸[𝑚10] =
𝑝10𝑝01

𝑝01 + 𝑝10
(𝑛− 1) = 𝑘10(𝑛− 1), (B.15)

𝐸[𝑚00] =
𝑝00𝑝10

𝑝01 + 𝑝10
(𝑛− 1) = 𝑘00(𝑛− 1), (B.16)

and

𝐸[𝑚11] =
𝑝11𝑝01

𝑝01 + 𝑝10
(𝑛− 1) = 𝑘11(𝑛− 1), (B.17)

where 𝑝𝑎𝑏 denotes the probability of a state transition from state 𝑎 to state 𝑏. Cover [7]
also stated that[

𝑚01, 𝑚10, 𝑚00, 𝑚11

]→ [𝐸[𝑚01], 𝐸[𝑚10], 𝐸[𝑚00], 𝐸[𝑚11]
]

(B.18)
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for ergodic Markov sources (i.e. sources with state transition probabilities that satisfy
𝑝00 ∕= 1 and 𝑝11 ∕= 1) as 𝑛 tends to infinity. This statement, together with equations
B.11 to B.17, are used to obtain an expression for the normalized asymptotic length
𝑙′2(x) of the second codeword field, where

𝑙′2(x) = lim
𝑛→∞

1

𝑛
𝑙2(x). (B.19)

Equation B.11 is simplified as

𝑙′2,1(x) = lim
𝑛→∞

1

𝑛
log2

[√
𝑚10 +𝑚00

𝑚00𝑚102𝜋

(
𝑚10 +𝑚00

𝑚00

)𝑚10+𝑚00
(
𝑚00

𝑚10

)𝑚10
]

(B.20)

= lim
𝑛→∞

1

2𝑛
log2

[
𝑘10 + 𝑘00

𝑘00𝑘102𝜋(𝑛− 1)
]

+ lim
𝑛→∞

(𝑛− 1)(𝑘10 + 𝑘00)

𝑛
log2

(
𝑘10 + 𝑘00

𝑘00

)

+ lim
𝑛→∞

(𝑛− 1)𝑘10
𝑛

log2

(
𝑘00
𝑘10

)

= lim
𝑛→∞

1

2𝑛
log2

[
𝑘10 + 𝑘00
𝑘00𝑘102𝜋

]
+ lim

𝑛→∞
1

2𝑛
log2

[
1

𝑛− 1
]

+ (𝑘10 + 𝑘00) log2

(
𝑘10 + 𝑘00

𝑘00

)
+ 𝑘10 log2

(
𝑘00
𝑘10

)

= − lim
𝑛→∞

1

2(𝑛− 1) ln(2) + (𝑘10 + 𝑘00) log2

(
𝑘10 + 𝑘00

𝑘00

)
+ 𝑘10 log2

(
𝑘00
𝑘10

)

= (𝑘10 + 𝑘00) log2

(
𝑘10 + 𝑘00

𝑘00

)
+ 𝑘10 log2

(
𝑘00
𝑘10

)
. (B.21)

Equation B.12 is simplified as

𝑙′2,2(x) = lim
𝑛→∞

1

𝑛
log2

[√
𝑚01 +𝑚11

𝑚11𝑚012𝜋

(
𝑚01 +𝑚11

𝑚11

)𝑚01+𝑚11
(
𝑚11

𝑚01

)𝑚01
]
(B.22)

= (𝑘01 + 𝑘11) log2

(
𝑘01 + 𝑘11

𝑘11

)
+ 𝑘01 log2

(
𝑘11
𝑘01

)
. (B.23)

Equation B.13 is simplified as

𝑙′2,3(x) = lim
𝑛→∞

1

𝑛
log2

[
𝑚01

𝑚01 +𝑚11
+

𝑚10

𝑚10 +𝑚00

]

= lim
𝑛→∞

1

𝑛
log2

[
(𝑛− 1)2
(𝑛− 1)2

[
𝑘01(𝑘10 + 𝑘00) + 𝑘10(𝑘01 + 𝑘11)

𝑘01(𝑘10 + 𝑘00) + 𝑘11(𝑘10 + 𝑘00)

]]
= 0. (B.24)
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It follows that

𝑙′(x) = lim
𝑛→∞

1

𝑛
𝑙1(x) + 𝑙′2(x)

= lim
𝑛→∞

1

𝑛
𝑙1(x) + 𝑙′2,1(x) + 𝑙′2,2(x) + 𝑙′2,3(x)

= lim
𝑛→∞

4 log2(𝑛)

𝑛
+ (𝑘10 + 𝑘00) log2

(
𝑘10 + 𝑘00

𝑘00

)
+ 𝑘10 log2

(
𝑘00
𝑘10

)

+ (𝑘01 + 𝑘11) log2

(
𝑘01 + 𝑘11

𝑘11

)
+ 𝑘01 log2

(
𝑘11
𝑘01

)

= lim
𝑛→∞

4

𝑛 ln(2)
+ (𝑘10 + 𝑘00) log2

(
𝑘10 + 𝑘00

𝑘00

)
+ 𝑘10 log2

(
𝑘00
𝑘10

)

+ (𝑘01 + 𝑘11) log2

(
𝑘01 + 𝑘11

𝑘11

)
+ 𝑘01 log2

(
𝑘11
𝑘01

)

= (𝑘10 + 𝑘00) log2

(
𝑘10 + 𝑘00

𝑘00

)
+ 𝑘10 log2

(
𝑘00
𝑘10

)

+ (𝑘01 + 𝑘11) log2

(
𝑘01 + 𝑘11

𝑘11

)
+ 𝑘01 log2

(
𝑘11
𝑘01

)
. (B.25)

Equations B.14 to B.17 are used to simplify equation B.25, thereby obtaining the
expression

𝑙′(x) = 𝑝0 log2

(
1

𝑝00

)
+ 𝑝1 log2

(
1

𝑝11

)
− 𝑝0𝑝01 log2

(
𝑝01
𝑝00

)

− 𝑝1𝑝10 log2

(
𝑝10
𝑝11

)

= 𝑝0

[
𝑝00 log

(
1

𝑝00

)
+ 𝑝01 log

(
1

𝑝01

)]

+ 𝑝1

[
𝑝11 log

(
1

𝑝11

)
+ 𝑝10 log

(
1

𝑝10

)]
= 𝑝0ℎ(𝑝00) + 𝑝1ℎ(𝑝11) (B.26)

for the asymptotic code rate of the source code, where

𝑝0 =
𝑝10

𝑝01 + 𝑝10
(B.27)

and
𝑝1 =

𝑝01
𝑝01 + 𝑝10

(B.28)

denote the probability of the source being in state zero and state one, respectively.
The asymptotic code rate of the source code may be compared to the entropy rate

of the Markov source (figure B.1) to determine its degree of effectiveness. The entropy
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rate of the stationary Markov source is derived as

𝐻(𝒳 ) = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, 𝑋3, . . .𝑋𝑛)

= lim
𝑛→∞

1

𝑛

[
𝐻(𝑋1) +

𝑛∑
𝑖=2

𝐻(𝑋𝑖∣𝑋1, 𝑋2, . . .𝑋𝑖−1)

]

= lim
𝑛→∞

1

𝑛

[
𝐻(𝑋1) +

𝑛∑
𝑖=2

𝐻(𝑋𝑖∣𝑋𝑖−1)

]

= lim
𝑛→∞

(𝑛− 1)𝐻(𝑋2∣𝑋1)

𝑛
= 𝐻(𝑋2∣𝑋1), (B.29)

𝐻(𝑋2∣𝑋1) =
1∑
𝑖=0

1∑
𝑗=0

Pr(𝑋1 = 𝑖, 𝑋2 = 𝑗) log2

[
1

Pr(𝑋2 = 𝑗∣𝑋1 = 𝑖)

]
. (B.30)

The expression for the entropy rate of the Markov source (equation B.29) may be
simplified as

𝐻(𝒳 ) = 𝑝0𝑝00 log2

(
1

𝑝00

)
+ 𝑝0𝑝01 log2

(
1

𝑝01

)

= 𝑝1𝑝10 log2

(
1

𝑝10

)
+ 𝑝1𝑝11 log2

(
1

𝑝11

)
= 𝑝0ℎ(𝑝00) + 𝑝1ℎ(𝑝11), (B.31)

where 1 − 𝑝00 = 𝑝01 and 1 − 𝑝11 = 𝑝10. Equation B.31 is identical to the expression
for the asymptotic code rate of the source code (equation B.26). The source code is
therefore optimal in terms of its asymptotic code rate.
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