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SUMMARY

THE ANALYSIS OF ENUMERATIVE SOURCE CODES AND THEIR
USE IN BURROWS-WHEELER COMPRESSION ALGORITHMS
by
Andre Martin McDonald
Study leader: Professor J. C. Olivier

Master of Engineering (Electronic Engineering)
Department of Electrical, Electronic and Computer Engineering
Faculty of Engineering, Built Environment and Information Technology
University of Pretoria

In the late 20th century the reliable and efficient transmission, reception and storage
of information proved to be central to the most successful economies all over the world.
The Internet, once a classified project accessible to a selected few, is now part of the
everyday lives of a large part of the human population, and as such the efficient storage
of information is an important part of the information economy. The improvement of
the information storage density of optical and electronic media has been remarkable,
but the elimination of redundancy in stored data and the reliable reconstruction of the
original data is still a desired goal.

The field of source coding is concerned with the compression of redundant data and
its reliable decompression. The arithmetic source code, which was independently pro-
posed by J. J. Rissanen and R. Pasco in 1976, revolutionized the field of source coding.
Compression algorithms that use an arithmetic code to encode redundant data are typ-
ically more effective and computationally more efficient than compression algorithms
that use earlier source codes such as extended Huffman codes. The arithmetic source
code is also more flexible than earlier source codes, and is frequently used in adaptive
compression algorithms. The arithmetic code remains the source code of choice, despite
having been introduced more than 30 years ago.

The problem of effectively encoding data from sources with known statistics (i.e.
where the probability distribution of the source data is known) was solved with the
introduction of the arithmetic code. The probability distribution of practical data is
seldomly available to the source encoder, however. The source coding of data from
sources with unknown statistics is a more challenging problem, and remains an active
research topic.

Enumerative source codes were introduced by T. J. Lynch and L. D. Davisson in
the 1960s. These lossless source codes have the remarkable property that they may
be used to effectively encode source sequences from certain sources without requiring
any prior knowledge of the source statistics. One drawback of these source codes is
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the computationally complex nature of their implementations. Several years after the
introduction of enumerative source codes, J. G. Cleary and I. H. Witten proved that
approximate enumerative source codes may be realized by using an arithmetic code.
Approximate enumerative source codes are significantly less complex than the original
enumerative source codes, but are less effective than the original codes. Researchers
have become more interested in arithmetic source codes than enumerative source codes
since the publication of the work by Cleary and Witten.

This thesis concerns the original enumerative source codes and their use in Burrows—
Wheeler compression algorithms. A novel implementation of the original enumerative
source code is proposed. This implementation has a significantly lower computational
complexity than the direct implementation of the original enumerative source code. Sev-
eral novel enumerative source codes are introduced in this thesis. These codes include
optimal fixed—to—fixed length source codes with manageable computational complexity.

A generalization of the original enumerative source code, which includes more com-
plex data sources, is proposed in this thesis. The generalized source code uses the
Burrows-Wheeler transform, which is a low—complexity algorithm for converting the
redundancy of sequences from complex data sources to a more accessible form. The
generalized source code effectively encodes the transformed sequences using the origi-
nal enumerative source code. It is demonstrated and proved mathematically that this
source code is universal (i.e. the code has an asymptotic normalized average redundancy
of zero bits).

i
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SAMEVATTING

DIE ANALISE VAN TEL-BRONKODES EN DIE GEBRUIK DAARVAN
IN BURROWS-WHEELER KOMPRESSIEALGORITMES
deur
Andre Martin McDonald
Studieleier: Professor J. C. Olivier

Meester van Ingenieurswese (Elektroniese Ingenieurswese)
Departement van Elektriese, Elektroniese en Rekenaaringenieurswese
Fakulteit van Ingenieurswese, Bou—omgewing en Inligtingstegnologie

Universiteit van Pretoria

Die betroubare en doeltreffende versending, ontvangs en berging van inligting vorm
teen die einde van die twintigste eeu die kern van die mees suksesvolle ekonomieé in
die wéreld. Die Internet, eens op 'n tyd n geheime projek en toeganklik vir slegs m
klein groep verbruikers, is vandag deel van die alledaagse lewe van 'n groot persentasie
van die mensdom, en derhalwe is die doeltreffende berging van inligting 'n belangrike
deel van die inligtingsekonomie. Die verbetering van die bergingsdigteid van optiese en
elektroniese media is merkwaardig, maar die uitwissing van oortolligheid in gebergde
data, asook die betroubare herwinning van oorspronklike data, bly 'n doel om na te
streef.

Bronkodering is gemoeid met die kompressie van oortollige data, asook die be-
troubare dekompressie van die data. Die rekenkundige bronkode, wat onathanklik
voorgestel is deur J. J. Rissanen en R. Pasco in 1976, het 'n revolusie veroorsaak
in die bronkoderingsveld. Kompressiealgoritmes wat rekenkundige bronkodes gebruik
vir die kodering van oortollige data is tipies meer doeltreffend en rekenkundig meer ef-
fektief as kompressiealgoritmes wat vroeére bronkodes, soos verlengde Huffman kodes,
gebruik. Rekenkundige bronkodes, wat gereeld in aanpasbare kompressiealgoritmes ge-
bruik word, is ook meer buigbaar as vroeére bronkodes. Die rekenkundige bronkode
bly na 30 jaar steeds die bronkode van eerste keuse.

Die probleem om data wat afkomstig is van bronne met bekende statistieke (d.w.s.
waar die waarskynlikheidsverspreiding van die brondata bekend is) doeltreffend te
enkodeer is opgelos deur die instelling van rekenkundige bronkodes. Die bronenkodeer-
der het egter selde toegang tot die waarskynlikheidsverspreiding van praktiese data.
Die bronkodering van data wat afkomstig is van bronne met onbekende statistieke is
'n groter uitdaging, en bly steeds 'n aktiewe navorsingsveld.

T. J. Lynch and L. D. Davisson het tel-bronkodes in die 1960s voorgestel. Tel-
bronkodes het die merkwaardige eienskap dat bronsekwensies van sekere bronne effek-
tief met hierdie foutlose kodes geénkodeer kan word, sonder dat die bronenkodeerder

il
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enige vooraf kennis omtrent die statistieke van die bron hoef te besit. Een nadeel van
tel-bronkodes is die hoé rekenkompleksiteit van hul implementasies. J. G. Cleary en
[. H. Witten het verskeie jare na die instelling van tel-bronkodes bewys dat benaderde
tel-bronkodes gerealiseer kan word deur die gebruik van rekenkundige bronkodes. Be-
naderde tel-bronkodes het 'n laer rekenkompleksiteit as tel-bronkodes, maar benaderde
tel-bronkodes is minder doeltreffend as die oorspronklike tel-bronkodes. Navorsers het
sedert die werk van Cleary en Witten meer belangstelling getoon in rekenkundige
bronkodes as tel-bronkodes.

Hierdie tesis is gemoeid met die oorspronklike tel-bronkodes en die gebruik daarvan
in Burrows-Wheeler kompressiealgoritmes. 'n Nuwe implementasie van die oorspronk-
like tel-bronkode word voorgestel. Die voorgestelde implementasie het 'n beduidende
laer rekenkompleksiteit as die direkte implementasie van die oorspronklike tel-bronkode.
Verskeie nuwe tel-bronkodes, insluitende optimale vaste-tot—vaste lengte tel-bronkodes
met beheerbare rekenkompleksiteit, word voorgestel.

'n Veralgemening van die oorspronklike tel-bronkode, wat meer komplekse data-
bronne insluit as die oorspronklike tel-bronkode, word voorgestel in hierdie tesis. The
veralgemeende tel-bronkode maak gebruik van die Burrows-Wheeler omskakeling. Die
Burrows—Wheeler omskakeling is 'n lae—kompleksiteit algoritme wat die oortolligheid
van bronsekwensies wat afkomstig is van komplekse databronne omskakel na 'n meer
toeganklike vorm. Die veralgemeende bronkode enkodeer die omgeskakelde sekwensies
effektief deur die oorspronklike tel-bronkode te gebruik. Die universele aard van hierdie
bronkode word gedemonstreer en wiskundig bewys (d.w.s. dit word bewys dat die kode
'n asimptotiese genormaliseerde gemiddelde oortolligheid van nul bisse het).

v
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Mathematical notation

Several of the mathematical expressions presented in this thesis contain vectors, random
variables, and matrices. All vectors are printed in bold — an n—element vector is
expressed as

x" = {xy,29,...2,}

1Ty ...Tp (1)

where x1, x9, ... x, denotes the vector elements. All sequences are expressed using vec-
tor notation. In certain cases, the vector x" is denoted by x (i.e. the length of the
vector does not form part of its symbol).

Some of the expressions of this thesis involve one or more subsequences of an original
sequence. A subsequence of the original sequence x is expressed as

Xi = {$i,$i+1,...l‘j} (2)

if 7 >4, and 4
Xg = {mi,xi_l,...xj} (3)
if 7 <.
All random variables are expressed using capital letters. A vector of random vari-
ables is expressed as

X" = {X1,Xo,...X,}
- X\ X,...X, (4)

where X7, Xo,... X, denotes the random variables. Random sequences are expressed
using vector notation, and subsequences of random sequences are expressed in the same
manner as the subsequences of ordinary sequences. The vector X" is also denoted as
X in certain cases.

Matrices appear in a very small fraction of the expressions presented in this thesis,
and are expressed using capital letters that are printed in bold. Matrices are clearly
identified in the text in order to distinguish them from vectors of random variables.

X
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Abbreviations and Acronyms

AEP Asymptotic equipartition property

ASCII American standard code for information interchange

avg. Average

AWFC Advanced weighted frequency count

bit Binary digit

BWT Burrows—Wheeler transform

CACM Communications of the Association for Computing Machinery
CCIR Consultative Committee on International Radio

CCITT International Telegraph and Telephone Consultative Committee
CD Compact disk

CDF Cumulative distribution function

codec Coder—decoder

CT Context tree

DCC Data Compression Conference

DCT Distance coding transform

DNA Deoxyribonucleic acid

DVD Digital video disk

ECG Electrocardiogram

EOF End of file

EOL End of line



EXP
FSM
FSMX
GIF
GNU
GSM
gz1p
ii.d.
IFT
ITU
ITU-T
JPEG
kB
KT
LBIV
LIPT
LSB
LSS
LUP
LZ77
LZ78
LZW
MB
MSB
MSS
p.ii.d.
PPM
pPPM*
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Exponent

Finite state machine

Finite-order FSM

Graphics interchange format

GNU’s not UNIX

Global system for mobile communications
GNU zip

Independent and identically distributed
Inversion frequencies transform
International Telecommunication Union
ITU telecommunication standardization sector
Joint Photographic Experts Group
Kilobyte

Krichevsky-Trofimov

Left—bigger inversion vector

Length index preserving transform

Least significant bit

Least significant symbol

List update problem

Lempel-Ziv 1977

Lempel-Ziv 1978

Lempel-Ziv—Welch

Megabyte

Most significant bit

Most significant symbol

Piecewise independent and identically distributed
Prediction by partial match

PPM with unbounded context length

X1
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prob. Probability

RLE Run-length encoder
RLE-0 Zero run length

RMB RLE mantissa buffer

SBR Sort—by-rank

seq. Sequence

SOR Start of run

src. Source

theo. Theory / Theoretical
TS(0) Deterministic time-stamp algorithm
VLSI Very large scale integration
w.r.t. With respect to

WEFC Weighted frequency count
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LIST OF SYMBOLS

04

Refer to equation 6.8 on page 142.

An arbitrarily small, positive, real-valued constant (pages 5 and 161).
A real-valued constant between 0 and 0.5 (page 115).

A real-valued constant between 0 and 1 (pages 116 and 160).

The Kronecker delta function.

The end—of-file symbol.

The escape symbol.

A parameter of an algorithm for updating symbol frequency counts
(page 87).

A real-valued constant greater than zero (page 177).

The set of all possible values that the source parameter § may assume
(page 27).

The concatenation function for two or more sequences (elsewhere).
The parameter of a Poisson probability distribution.

Constants that are related to Stirling’s approximation of the factorial of
an integer.

A real-valued constant greater than zero.

The average time required by a practical implementation of a source
encoder to encode a source sequence (seconds).

The average time required by a practical implementation of a source
decoder to decode a source sequence (seconds).

A random-valued parameter of an information source.

A constant that is approximately equal to 0.08607.

The standard deviation of the time required by a practical
implementation of a source encoder to encode a source sequence
(seconds).

The standard deviation of the time required by a practical
implementation of a source decoder to decode a source sequence
(seconds).

A random-valued parameter of an information source.

A deterministic parameter of an information source.

The number of primes less than or equal to the integer j.

The m-—bit sequence that consists only of zero—valued bits.

An operator that is evaluated as unity if its operand is true, and zero if
not.
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The symbol alphabet of an information source.

The n—fold Cartesian product of the symbol alphabet A.

A set that consists of all n—bit sequences with a weight of w bits,
where w € {0,1,...[dn]}.

The cardinality of the symbol alphabet A (symbols).

The short notation for a;(m, k) (page 137).

The ith symbol of a symbol alphabet (elsewhere).

The exponent of the prime number p; in the prime—factor-based
decomposition of the binomial coefficient B, .

The set {0, 1}.

The binary word that is assigned to the random g-ary source
symbol X.

Bit ¢ of the binary word that is assigned to the random ¢—ary
source symbol X.

The binomial coefficient ().

Refer to section 6.1.1.3 on page 142.

The forward Burrows—Wheeler transform function.

The reverse Burrows—Wheeler transform function.

The binary word that is assigned to the deterministic ¢g—ary source
symbol x.

Bit ¢ of the binary word that is assigned to the deterministic ¢—ary
source symbol .

Bit j of the binary word that is assigned to the g—ary symbol xj of
the deterministic source sequence x.

The branch value between the integers N,, , and N,41 4; in the
general version of Pascal’s triangle.

A source code.

The total number of i.i.d. symbol segments in a BWT output
sequence.

The set of all uniquely decodable fixed-to—variable length source
codes for sequences of n source symbols.

The codeword that is assigned to the random source sequence X.
The number of source sequences in the set .S, with a prefix equal
to x{.

The total number of bit operations involved in the computation of
the factorial j!

The concatenation function for an n—symbol sequence and an
m~—symbol sequence.

The size of the binomial coefficient lookup table that is used to
encode sequences of up to n symbols (bits).

The size of the factorial lookup table that is used to encode
sequences of up to n symbols (bits).
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A real-valued constant (page 45).

The integer codeword that is assigned to an index sequence (as
used in the example on page 105).

The running total prior to decoding the 7th index of an index
sequence.

The integer codeword that is assigned to the deterministic
source sequence X.

The codeword that is assigned to the deterministic source
sequence X.

Refer to lemma 6.2.4 on page 213.

Refer to equation 6.220 on page 214.

Refer to equation 6.207 on page 212.

Refer to equation 6.213 on page 213.

Refer to equation 6.208 on page 212.

The exponent of the prime number p; in the prime factor
decomposition of the integer j.

Theset {d e N¥:1<d; <n A d; >d;Vi>j}.

The division function for an (n 4+ m)-symbol sequence (the
sequence is divided into an n—symbol and an m-symbol
sequence).

The Kullback-Leibler divergence between the bit distributions
{6,1 =9} and {p,1 — p}, where 0 < §,p < 1.

The Kullback—Leibler divergence between the distributions
p(x") and g(x").

Refer to equation 5.3 on page 130.

Refer to equation 5.2 on page 130.

The degree vector {dy x,dax ... dyx} of the nonzero—valued
bits of the bit sequence x.

The degree of the (n — i + 1)th nonzero—valued bit of the
sequence X.

A set that consists of all the suffixes of all the sequences that
are associated with the leaf nodes of a tree.

The integer in row ¢ and column k of the coding matrix
(refer to equation 4.8 on page 107).

The end—of-file symbol.

The ASCII end-of-line symbol.

A discrete monotone function.

The next—state function that is associated with an FSM source
(page 39).

The function that appears in the definition of the Lee—weight
of a source sequence (page 123).

The function that is defined as f £ f, o f; (refer to equation
6.6 on page 141).
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Refer to section 6.1.1.3 on page 141.

Refer to equation 6.7 on page 142.

Refer to equation 6.48 on page 155.

The integer that is assigned to the source symbol x; by the recency—
rank encoder.

The integer that is assigned to the source symbol x; by the encoder
of the interval code.

A source model’s frequency count of the symbol y, immediately
prior to encoding symbol x;; of the sequence x.

A discrete monotone function.

Refer to equation 6.9 on page 142.
Refer to equation 6.47 on page 155.
Refer to equation 6.106 on page 178.
Refer to equation 6.202 on page 211.

The average ‘amount’ of information that an information source
produces (bits).

A function that maps a sequence to its n—symbol prefix.

The entropy of the source symbol X (bits).

The entropy rate of an information source (bits per symbol).
Refer to equations 6.97 and 6.194 on pages 176 and 209.

The entropy of the source sequence X™ (bits).

The entropy of a symbol that the FSM closure of a context-tree
source produces in state s;, (bits).

The entropy rate associated with the empirical distribution of the
source sequence X (bits per symbol).

Refer to equations 6.98 and 6.195 on pages 176 and 209.

The conditional entropy of the source sequence X" (bits).

The binary entropy function.

The BWT index that is associated with a random source sequence.
A suffix array (page 38).

The BWT index that is associated with a deterministic source
sequence (pages 169 and 204).

The set {j e Ng:0<j <2"—1}.

Element £ of the suffix array 1.

The index of the sequence x™ in the ordered set Sj.

The mutual information of the sequence X" and the parameter ©
(bits).

A real-valued constant between 0 and 1, defined for each integer n
greater than one.

The number of blocks in a block segment (page 119).

The length of each codeword of a fixed—to—fixed length source code,
measured in bits (elsewhere).
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The mean number of source bits that are represented by a codeword
of a variable-to—fixed length source code (refer to equation 4.16 on
page 111).

The length of a level-one block of the segmentation algorithm, under
the assumption that source sequences of n symbols are encoded
(symbols).

The length of a level-two block of the segmentation algorithm, under
the assumption that source sequences of n symbols are encoded
(symbols).

The set of leaf nodes of the tree that is defined by the set T.

The average length of codewords that are assigned to individual
source symbols X (bits).

The average length of codewords that are assigned to source
sequences X" (bits).

The conditional average codeword length that is associated with the
source code € (bits).

The length of a codeword that is produced by the encoder of an
arithmetic code, measured in bits (refer to equation 6.44 on page
151).

A level of the full binary tree that is associated with an extended
Huffman code.

The length of the codeword that is assigned to the sequence x (bits).
The length of the codeword that is assigned to the alphabet symbol
a; (bits).

The length of the codeword that is assigned to the sequence x™ by
the encoder of the source code € (bits).

The length of the ith field of the codeword that is assigned to the
sequence x (bits).

The length of a subsequence (bits).

Refer to equation 6.219 on page 214.

The length of the codeword that is assigned to the ith i.i.d. symbol
segment of the BW'T output sequence, where it is assumed that the
sequence x is encoded (bits).

The length of the ith field of the codeword that is assigned to the jth
i.i.d. symbol segment of the BWT output sequence, where it is
assumed that the sequence x is encoded (bits).

Refer to equation 6.212 on page 213.

The length of the ith field of the codeword that is assigned to the
subsequence S; ;(x) (bits).
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l.ijx(x)  The length of the vth field of the codeword that is assigned to the
subsequence S; x(y%), where y; denotes the ith symbol segment of the
BWT output sequence (which may include symbols from up to m
additional segments), and where it is assumed that the sequence x is
encoded (bits).

lvijk(x) The length of the vth field of the codeword that is assigned to the
subsequence S; x(y;), where y; denotes the ith i.i.d. symbol segment
of the BWT output sequence, and where it is assumed that the
sequence x is encoded (bits).

l,.i;x(x)  The length of vth field of the codeword that is assigned to the
subsequence S;;(¥;), where ¥, denotes the ith expected i.i.d. symbol
segment of the BWT output sequence, and where it is assumed that
the sequence x is encoded (bits).

lyijk(x) The length of the vth field of the codeword that is assigned to the
subsequence S;;(v;), where v; denotes the sequence of symbols that
the context—tree source produces in its ¢th lexicographically-ranked
state, and where it is assumed that the sequence x is encoded (bits).

l(w, k) The number of bits that are required to encode the weights of the k
blocks in a block segment, where w denotes the total weight of the
blocks (refer to equation 4.33 on page 119).

M (r) The metric of the rth level-one block of the segmentation algorithm.
m The length, in bits, of each short block of the combinatorial source
code (refer to section 4.1.7 on page 121).
The length, in symbols, of the longest context of a finite—memory
source or context—tree source (elsewhere).

m’ Refer to equation 6.174 on page 200.

my The number of codewords of an extended Huffman code that occupy
level [), of a full binary tree.

Map The frequency count of the bit pair ab in a source sequence.

m(i, k)  Refer to equation 4.25 on page 113.

N The set of natural numbers, {1,2,3,...}.

Ny The set of natural numbers, including zero, {0,1,2,...}.

N Refer to equations 6.238 and 6.279 on pages 217 and 223.

N” Refer to equation 6.281 on page 223.

N1 The total number of j—symbol g—ary sequences with a Lee—weight of k
(page 124).
The length of the random subsequence S ;(X), measured in bits
(elsewhere).

N;(0) The number of zero—valued bits in the ith level-one block of the
segmentation algorithm.

N;(1) The number of nonzero-valued bits in the ith level-one block of the
segmentation algorithm.
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Refer to equation 4.43 on page 124.

The length of a source sequence (symbols).

Refer to equations 6.240 and 6.282 on pages 217 and 223.
Refer to equation 6.284 on page 223.

The length of the ¢th i.i.d. symbol segment of the BWT
output sequence (symbols).

The expected length of the ¢th i.i.d. symbol segment of the
BWT output sequence (symbols).

An integer element of the set {0,1,...n}.

The short notation for n,,(x}), which denotes the number of
bit pairs yy that are present in the sequence x? (page 128).
The length of the deterministic subsequence S;x(x) (bits).
An integer element of the set {0,1,...n}.

The length of the deterministic subsequence S; x(y;), where y;
denotes the ¢th i.i.d. symbol segment of the BWT output
sequence (bits).

An integer element of the set {0,1,...n/}.

The length of the deterministic subsequence S; x(v;), where v;
denotes the sequence of symbols that the context—tree
source produces in its ith lexicographically-ranked state
(bits).

The total number of symbols that occur within context s of
a source sequence.

The total number of distinct symbols that occur within
context s of a source sequence.

The number of times that the symbol z (or conditioning
class z) appears in the sequence x".

The number of times that the symbol y appears within
conditioning class z of the sequence x".

The number of times that the symbol x; appears within
context s of the sequence x.

The number of sequences in the ordered set S, with the prefix

{.Th o, . . .T]}
Bachmann-Landau (big-O) notation.

The state probability vector of the FSM closure of a context—
tree source.

The pattern set that is associated with a source code (refer to
section 4.1.9 on page 124).

The block—error probability of a source code (refer to equation
6.31 on page 147).
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The probability of a random source symbol X being equal to x.
The probability of a random source sequence X" being equal to x".
The Krichevsky-Trofimov estimate of the probability of

occurrence of the sequence x'.

The probability of the random source symbol X being equal to y.
The probability that a random source bit from a stationary binary
memoryless source has a nonzero value.

Refer to equation 6.73 on page 160.

The running product after the ith step of the computation of a
factorial (refer to equation 5.5 on page 131).

The ith prime number (page 137).

The probability that the FSM closure of a context—tree source is in
state s (elsewhere).

The probability of a state transition to state s}, of the FSM closure
of a context-tree source, conditioned on the FSM closure being

in state s’ (refer to equations 6.90 and 6.167 on pages 173 and 195).
Refer to equation 6.244 on page 218.

Refer to equation 6.247 on page 219.

Refer to equation 6.287 on page 224.

Refer to equation 6.290 on page 225.

The probability of occurrence of the most likely symbol in a symbol
alphabet.

A prefix of the sequence x".

The set that consists of the reversed states of a finite-memory
source.

The set of states that correspond to novel symbol contexts. The
novel symbol contexts are a result of applying the BWT to
sequences from a context—tree source.

The union of the sets Q and O°.

The number of n—bit source sequences with a weight of w that are
found to be numerically smaller than the sequence x™ (only those
source sequence bits with a degree less than or equal to d,, x are
considered during the comparison).

The probability that a random source bit from a stationary binary
memoryless source has a value of zero (page 109).

The number of symbols in the symbol alphabet of a g—ary source
(elsewhere).

The probability that a context—tree source is in its ith
lexicographically—ranked state.

The set {0,1,.. .n}zml_l.

The set {0,1,...n}Sl

The set {0, 1,...7}I5I2™ -1,

XX
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A p..i.d. symbol probability distribution.

The code rate of a fixed—to—fixed length source code, measured in
bits per symbol (refer to equation 6.77 on page 161).

The entropy—normalized redundancy of a source code (refer to
equation 6.78 on page 163).

The normalized strong minimax redundancy of a source code (bits
per symbol).

The normalized weak minimax redundancy of a source code (bits
per symbol).

The sequence reversal function.

The average per—codeword redundancy of a source code, assuming
that n—symbol sequences X" are encoded (bits).

The normalized average per—codeword redundancy of a source code,
assuming that n—symbol sequences X™ are encoded (bits per symbol).
The normalized minimum average redundancy of a source code
(bits per symbol).

The normalized redundancy of the source code ¢, conditioned on
the source parameter 6 (bits per symbol).

Refer to equation 4.15 on page 110.

Refer to equation 4.29 on page 114.

The number of times that the symbol = appears in the first ¢
symbols of a BWT output sequence.

A finite set of states that is associated with a context—tree source.
The state—transition probability matrix of the FSM closure of a
context—tree source.

A finite set of states that is associated with the FSM closure of a
context—tree source.

The number of states that are associated with a context—tree source.
The number of states that are associated with the FSM closure of a
context—tree source.

The compact transition matrix of a context—tree source’s FSM
closure.

An ordered set of sequences.

Refer to equation 6.49 on page 156.

Refer to equation 6.178 on page 202.

The 7th state of the state set that is associated with a context—tree
source.

The tth state of the state set that is associated with the FSM
closure of a context—tree source.

The state in which a source resides at time instance 3.
The start—of-run symbol.

xx1
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A suffix of the sequence x™.
A set that consists of all the suffixes of the sequence that is associated
with leaf node [ of a tree.

A set that consists of tree nodes.

A set of nodes that constitute a refined tree.

The set of source sequences that are correctly encoded and decoded by
the variable weight, fixed—to—fixed length source code.

The set of source sequences that are correctly encoded and decoded by
the alternative to the variable weight, fixed—to—fixed length source
code.

The index of the first symbol in the BW'T output sequence that
occurred within the jth lexicographically—ranked source context.

The expected index of the first symbol in the BWT output sequence
that occurred within the jth lexicographically—ranked source context.
The destination state of the transition that occurs when a source
produces the symbol z in state s;,.

The run—length threshold of a run-length code.

The maximum number of source symbols that are potentially assigned
nonzero—valued weights by the WFC algorithm as it updates the
symbol ranks during a single iteration.

The sequence of symbols, from the random sequence X, that was
produced by a context—tree source in its ¢th lexicographically—ranked
state.

The short notation for V;(X).

The sequence of symbols, from the deterministic sequence x, that was
produced by a context—tree source in its ¢th lexicographically-ranked
state.

The short notation for v;(x).

The length of segment i of the BWT output sequence (which may
include bits from up to m additional segments).

The weight of segment ¢ of the BWT output sequence (which may
include bits from up to m additional segments).

The exponent of the prime number p; in the prime—factor—based
decomposition of the factorial m! (refer to equation 5.18 on page 138).

Refer to equations 6.239 and 6.280 on pages 217 and 223.

The weight of a random source sequence (bits).

The shortened BWT output sequence, assuming that the BWT was
applied to a random source sequence that was reversed and appended
with the end—of-file symbol.
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The weight of the deterministic bit sequence x (bits).

The weight of the random subsequence 5 ;(X) (bits).

The weight that the WFC algorithm assigns to the alphabet symbol a;
immediately prior to transforming the ith BWT output sequence
symbol.

The weight of a deterministic source sequence (bits).

Refer to equation 6.67 on page 159.

Refer to equations 6.241 and 6.283 on pages 217 and 223.

The shortened BWT output sequence, assuming that the BW'T was
applied to a deterministic source sequence that was reversed and
appended with the end—of-file symbol.

The length of the sequence intervals that are encoded independently
from one another, measured in symbols (refer to section 3.3.2.4 on page
83).

The short notation for w, x(x).

An integer element of the set {0,1,...n;}.

The number of g—ary symbols that are equal to d in the sequence xj.
The weight function of the WFC algorithm.

The short notation for w;,(y;), where y; denotes the ith i.i.d. symbol
segment of the BWT output sequence.

An integer element of the set {0,1,...n;,,}.

The short notation for w;,(v;), where v; denotes the sequence of
symbols that a context—tree source produces in its ¢th lexicographically—
ranked state.

The Lee—weight of the source sequence x".

The weight of the deterministic subsequence S (x) (bits).

A random source symbol.

The random source sequence { X7, Xs,... X, }.

The output sequence of a source decoder, when used to decode the
codeword Cy of the random sequence X".

The random sequence {X;, X;41,... X}

The ith symbol of a random source sequence X.

A deterministic source symbol.

The deterministic source sequence {x1, s, ...Z,}.

The ith symbol of the deterministic source sequence x.

The deterministic sequence {x;, Tit1,...2;}.

The BWT output sequence, assuming that the BW'T was applied to a
random n—symbol source sequence that was reversed.

The complement of the bit y.

The ith symbol segment of the BWT output sequence (which may
include symbols from up to m additional segments).
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The 7th i.i.d. symbol segment of the BWT output sequence.

The ith expected i.i.d. symbol segment of the BWT output sequence.
The running total of the zero—valued bits in a source sequence,
immediately prior to processing its ith bit (refer to section 4.1.3 on page
108).

The running total of the nonzero—valued bits in a source sequence,
immediately prior to processing its ith bit (refer to section 4.1.3 on page
108).

The BWT output sequence, assuming that the BWT was applied to a
random source sequence that was reversed and appended with the
end—offile symbol.

The set {z € Ny:0< 2 < (Z)—l}

The BWT output sequence, assuming that the BWT was applied to a
deterministic source sequence that was reversed and appended with the
end—offile symbol.

Refer to equation 6.3 on page 140.
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CHAPTER 1

Introduction

In the late 20th century the reliable and efficient transmission, reception and storage
of information proved to be central to the most successful economies of the world. The
Internet, once a classified project accessible to a select few, is now part of the everyday
lives of a large percentage of the human population, and as such the efficient storage
of information is an important part of the information economy.

The monetary values associated with information and information technology are
staggering — in 2007, for example, a total of 29 922 million US dollars worth of recorded
music was sold worldwide [1]. Cisco systems, which develops and manufactures routers
and switches for the transmission and reception of information, sold 39 500 million
US dollars worth of equipment in 2008 alone [2]. It is estimated that there were 3 399
million GSM cellular telephone subscriptions worldwide in October 2008 [3]. If each
subscription represented a natural person, this total would represent more than half
of the planet’s population. Given these enormous numbers, it is clearly worthwhile to
improve our capacity to store and transmit information.

It appears that the demand for information increases more rapidly than the rate
at which cutting-edge technology can supply information. Researchers are starting to
encounter fundamental physical limits in the design of information technology. Smaller
and denser microprocessors, for example, operate at higher temperatures, and require
special means of cooling. Physical limits are a constraint in the design of optical and
electronic storage media. The improvement of the information storage density of these
storage media has been impressive, but engineers are struggling to maintain their earlier
rate of improvement.

Researchers are currently examining alternative means of storing and transmitting
information in order to satisfy our increasing demand for it. These technologies are
typically very expensive. A different approach to increasing the capacity of information
technology to store and transmit information centers on the information itself. Digital
electronics operate using two voltage levels, and therefore store and manipulate data
in a binary format. The storage and transmission capacity of a digital device depends
on the manner in which it represents information as a sequence of zero—valued bits and
nonzero—valued bits. The art of source coding, or data compression, is concerned with
the effective representation of information, in a manner that requires less capacity to
store, transmit or receive.

Many of the technologies we use on a daily basis would not be possible were it not
for source coding — examples include audio CDs, movie DVDs, cellular telephones,
and even fax machines. To illustrate the impact of source coding, consider a typical
100-minute movie stored on a DVD. To store this movie in an uncompressed digital
format, one can use the CCIR 601 standard [4]. Approximately 20 megabytes of memory



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 1 Introduction

<+
ﬁ UNIVERSITEIT VAN PRETORIA
A~ 4

is required to store one second of the movie in this format. A typical single-layer DVD
would be able to store approximately 4 minutes of the movie if it was uncompressed.
A total of 25 DVDs would be required to store the entire 100-minute movie. The
uncompressed representation of the movie is not only inefficient, but impractical as
well. The actual source code that is used to represent a movie on a DVD reduces the
size of the data by a factor of at least 25, which clearly illustrates the effectiveness (and
necessity) of source coding.

The above example illustrates that data compression is an important enabling tech-
nology, and that research in this field is a worthwhile pursuit. Data compression was
once considered the domain of a relatively small group of scientists and engineers, but
has evolved into a multi-million dollar a year industry.

The arithmetic source code, which was independently proposed by J. J. Rissanen
and R. Pasco in 1976, revolutionized the field of source coding. Compression algorithms
that use an arithmetic code to encode redundant data are typically more effective and
computationally more efficient than compression algorithms that use earlier source
codes such as extended Huffman codes. The arithmetic source code is also more flexible
than earlier source codes, and is frequently used in adaptive compression algorithms.
The arithmetic code remains the source code of choice, despite having been introduced
more than 30 years ago.

The problem of effectively encoding data from sources with known statistics (i.e.
where the probability distribution of the source data is known) was solved with the
introduction of the arithmetic code. The probability distribution of practical data is
seldomly available to the source encoder, however. The source coding of data from
sources with unknown statistics is a more challenging problem, and remains an active
research topic.

Enumerative source codes were introduced by T. J. Lynch and L. D. Davisson in the
1960s [5,6]. These lossless source codes have the remarkable property that they may be
used to effectively encode source sequences from certain sources without requiring any
prior knowledge of the source statistics. The initial enumerative source codes were only
applicable to sources without memory, as well as to first-order Markov sources [7].
One drawback of these source codes is the computationally complex nature of their
implementations.

Several years after the introduction of enumerative source codes, J. G. Cleary and
I. H. Witten [8] proved that approximate enumerative source codes may be realized
by using an arithmetic code. Approximate enumerative source codes are significantly
less complex than the original enumerative source codes, but are less effective than
the original codes. Researchers have become more interested in arithmetic source codes
than enumerative source codes since the publication of the work by Cleary and Witten.

1.1 The topic of this thesis

This thesis reinvestigates the original, exact enumerative source codes, and considers
their use in Burrows-Wheeler compression algorithms. The exact enumerative codes
for memoryless sources are generalized to sources with memory by using the Burrows—
Wheeler transform [9]. This reversible transform typically changes the output of a
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stationary ergodic context-tree source into a data sequence with a biased first—order
distribution [10]. This data sequence may be source coded in a universal fashion using
the exact enumerative source codes for memoryless sources.

Another topic that is addressed by this thesis concerns the development of efficient
enumerative source code implementations. Both the computational complexity and the
memory requirements of an enumerative source code implementation are of importance.
A novel implementation of the original enumerative source code is proposed. This
implementation has a significantly lower computational complexity than the direct
implementation of the original enumerative source code.

A number of novel enumerative source codes are proposed in this thesis. These
codes include optimal fixed-to—fixed length source codes with manageable computa-
tional complexity. Proofs regarding the unique decodability of these source codes are
provided, and the performance of these codes are investigated both mathematically
and empirically.

The motivation behind the use of enumerative source codes is twofold. Firstly, to
the best of the author’s knowledge, the generalization of enumerative source codes to
sources with memory by using the Burrows-Wheeler transform has not been investi-
gated in the literature. The effectiveness of these codes is of theoretical interest, as the
original enumerative codes are universal source codes. Secondly, by developing more
efficient implementations of exact enumerative source codes, these source codes may
become practical.

This thesis is set out as follows. Chapter 2 follows the introduction and provides a
brief history of source coding, and also introduces concepts which are referred to and
used in the later chapters. Chapter 3 contains a summary of the literature that con-
cerns the Burrows—Wheeler transform, as well as a summary of source codes that use
this transform. Chapter 4 contains a summary of existing enumerative source codes.
Chapter 5 covers the efficient computation of large binomial coefficients, which is a
computationally intensive routine performed by enumerative source code implemen-
tations. Chapter 6 contains the mathematical analysis and the proofs regarding the
unique decodability of the existing and novel enumerative source codes. Empirical re-
sults regarding the effectiveness of the proposed source codes are also presented in this
chapter. Chapter 7 presents several conclusions regarding enumerative source codes
and their use in Burrows-Wheeler-based compression algorithms.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 3
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CHAPTER 2

The history of source coding

This survey of source coding starts with the birth of information theory, and continues
with more specific advances in source coding. Much of the information presented in
this chapter was obtained from reference [11].

2.1 Shannon and the birth of information theory

Source coding has its roots in the landmark paper of Claude Shannon [12], which was
published in 1948. Shannon established some of the fundamental laws of source coding
and data transmission in his paper. By modeling information sources as stochastic
processes, Shannon derived a measure of the average amount of information that a
source produces. This measure, which is referred to as the entropy H of an information
source, may be interpreted as the minimum number of bits that may be used, on
average, to uniquely represent each source symbol. If fewer bits are used on average to
represent each source symbol, some source symbols can not be assigned codewords that
are uniquely decodable. Any excess bits that are used to represent the source symbols
(i.e. in excess of the source entropy) are considered redundant.

Shannon [12] derived an expression for the entropy of a memoryless information
source (i.e. a source that produces independent symbols) by posing three axioms that
an information measure should satisfy. This approach to deriving an expression for the
entropy of an information source is known as the axiomatic approach. It was proved
that the expression for the entropy of an information source, as derived by Shannon,
is the only expression that satisfies the three axioms.

A more pragmatic approach to deriving an expression for the information content
of a source involves the derivation of certain source statistics in which the expression
for source entropy appears, and interpreting this expression as an information measure.
The pragmatic approach does not rely on the definition of any axioms, and produces
the same expression for source entropy as the axiomatic approach.

Shannon [12] proved that the asymptotic equipartition property (AEP)! applies to
memoryless information sources. The AEP of memoryless sources is equivalent to the
weak law of large numbers for independent and identically distributed (i.i.d.) random
variables defined over a finite number of positive values. The property states that each
sequence of n symbols from a memoryless source, where n is sufficiently large, may be
placed within one of two sets, namely

Experts in the field of statistical mechanics are familiar with the AEP. McMillan [13] was the first
to use the term AEP in the context of information sources.
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1. an atypical set, with elements having a total probability of occurrence that is
negligible, or

2. a typical set, with approximately 2" distinct elements that are equiprobable,
each with a probability of occurrence approximately equal to 27",

Shannon [12] proved that the AEP holds for memoryless sources, and noticed that
it applies to stationary Markov sources as well. Khinchin [14] proved that the AEP
applies to Markov sources in 1953. McMillan [13] subsequently proved that the AEP
applies to any stationary ergodic source with finite alphabet — this theorem became
known as the Shannon—-McMillan theorem.

A fixed—to—fixed length source code for memoryless sources may be derived using
the AEP as follows. Let each n—symbol sequence that belongs to the typical set be
assigned a distinct codeword of nH + ¢ bits (where § is an arbitrarily small positive
constant), and let all sequences belonging to the atypical set be disregarded. This source
code may be used to correctly encode and decode sequences from a memoryless source
with a probability that approaches unity as the length of the sequences is increased.

The fixed—to—fixed length source code that was derived using the AEP is not opti-
mal in terms of its probability of correctly encoding and decoding finite-length source
sequences. An optimal fixed-to—fixed length source code assigns each of the most prob-
able source sequences a unique codeword, and disregards the remaining sequences.
Shannon [12] proved that the probability of correctly encoding and decoding sequences
from a source using any fixed—to—fixed length source code with a code rate less than
the entropy of the source tends to zero asymptotically. This theorem is known as the
strong converse source coding theorem.

It is impossible to successfully encode and decode each finite-length sequence from a
source using any nontrivial fixed-to—fixed length code, as each source sequence cannot
be assigned a unique codeword. An alternative source code assigns variable-length
codewords to fixed-length source sequences — this source code is referred to as a
fixed—to—variable length source code. Source sequences may be successfully encoded
and decoded with a probability of unity using a proper fixed—to—variable length source
code. The average codeword length (or equivalently, the average code rate) of a fixed—
to—variable length source code is of interest.

Shannon [12] proved the existence of fixed-to—variable length source codes having
codewords with average lengths that exceed the entropy of an information source by
no more than one bit. The minimum average codeword length of noiseless (i.e. without
error) source codes was not established in Shannon’s paper of 1948 [12], however. The
construction of an optimal fixed-to—variable length source code (i.e. a code with a
minimum average codeword length) for an arbitrary symbol probability distribution
also remained an unsolved problem.

Shannon and Fano independently developed the same fixed-to—variable length source
code for symbols with arbitrary probability distributions [15,16]. This source code be-
came known as the Shannon—Fano code. The construction of a Shannon—Fano code
for symbols with an arbitrary distribution proceeds as follows (refer to figure 2.1 on
page 6). The symbols are initially sorted in a nonincreasing fashion according to their
probabilities of occurrence. The ordered list of symbols is split in such a manner that

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 5
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Figure 2.1: The construction of a Shannon—Fano code for the symbol alphabet that
appears at the top of the figure. Unbracketed numbers represent probabilities of occur-
rence, and bracketed numbers represent the bits assigned to symbol codewords. The
Shannon—Fano code appears at the left—hand side of the figure.
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the sums of the symbol probabilities of the two sublists are as equal as possible. The
codewords of all symbols in the first sublist are appended with a zero—valued bit, and
the codewords of all symbols in the second sublist are appended with a nonzero—valued
bit. The two sublists are recursively sorted and divided in an identical, independent
fashion. The recursive sorting and division of the sublists terminate upon obtaining
sublists that each contain only a single symbol. The Shannon—Fano code that is ob-
tained in this manner is a prefix code (i.e. a code with no codeword that is a prefix of
any other codeword), and is uniquely decodable.

The Shannon—Fano code is not guaranteed to be optimal in terms of having the
shortest average codeword length for an arbitrary symbol probability distribution [16].
Its suboptimality is a result of the manner in which the list (and each sublist) is split.
The Shannon—Fano code of the symbol alphabet of figure 2.1 has an average codeword
length of 2.66 bits, compared to the source entropy of 2.63 bits. The optimal unextended
code for this source has codewords with an average length of 2.66 bits, which proves
that the Shannon—Fano code is in some cases optimal.

2.2 Huffman source codes

Huffman [17] introduced a systematic technique for the construction of lossless source
codes for information sources with arbitrary symbol distributions. The average code-
word lengths of these prefix codes are minimal, but only under the assumption that
their codewords must consist of an integer number of bits.

2.2.1 Construction

Huffman [17] derived an algorithm for constructing an optimal fixed—to—variable length
source code by observing that a codebook (i.e. a set of codewords) has to satisfy cer-
tain requirements in order for it to be considered optimal. The algorithm constructs
an optimal codebook in an iterative fashion, and each iterative codebook fulfils the
requirements for optimality. This approach guarantees that the final codebook is opti-
mal.

The construction of a Huffman code for the symbol alphabet of figure 2.1 is il-
lustrated in figure 2.2. The algorithm for constructing a binary Huffman code first
sorts the symbols in a nonincreasing fashion according to their probabilities of occur-
rence [17]. The algorithm subsequently (and repeatedly) merges the two least probable
symbols into a single composite symbol, and assigns a zero—bit label to one of the
merged symbols, and a nonzero—bit label to the other. The composite symbol has a
probability of occurrence equal to the sum of the probabilities of the merged symbols.
The algorithm repeats its initial steps by sorting the new set of symbols, and merging
the two least probable symbols. These steps are repeated until the set contains only a
single composite symbol with a probability of occurrence equal to unity.

The merging of the alphabet symbols may be illustrated using a diagram that
resembles a tree (refer to figure 2.2). The root of the tree corresponds to the final
composite symbol, while the leaves correspond to the original alphabet symbols. This
tree diagram may be used to assign codewords to the original symbols. A codeword is

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 7
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Figure 2.2: The construction of a Huffman code for the symbol alphabet that appears
at the bottom of the figure. Unbracketed numbers denote probabilities of occurrence,
and bracketed numbers denote codeword bits. The Huffman code appears at the top
of the figure.
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assigned to an alphabet symbol by traversing the tree from the corresponding leaf to
the root, and attaching the bit labels that are encountered on the path as prefixes to
the initially empty codeword.

The final codebook has a minimum average length when used to encode symbols
from the distribution for which it was designed [17]. The Huffman code for the symbol
distribution of figure 2.2 has an average codeword length of 2.66 bits, which exceeds
the entropy of the source by only 0.03 bits.

2.2.2 The source encoder and decoder

The source encoder of a Huffman code replaces each source symbol with its codeword
from the codebook [17]. The source encoder does not need to delimit each codeword,
as Huffman codes are prefix codes (and therefore uniquely decodable). The source
encoder does require a complete Huffman codebook in order to encode an arbitrary
source symbol, however.

The source decoder processes the sequence of codewords in a bit—by—bit fashion,
starting at the first bit of the first codeword. It traverses the tree that is associated
with the code, starting at its root and moving towards its leaves. The decoder moves
from one composite symbol to the next as each bit is processed. It selects the correct
path by matching the bit labels of the composite symbols on the path to the bits of
the codeword. Upon reaching a leaf node of the tree, the source decoder produces the
source symbol associated with that leaf as output. The source decoder proceeds by
restarting at the root of the tree, as the coded bits that follow those already processed
correspond to a new codeword.

2.2.3 Performance

It was proved that the average codeword length of a Huffman code is bounded as [16]
H(X)<L(X)< H(X)+1, (2.1)

where L(X) is the average codeword length of the Huffman code, X is a random
source symbol with the distribution for which the code was constructed, and H(X)
is the source entropy. Gallager [18] refined the upper bound on the average codeword
length as

L(X) < H(X) 4 Pmax + 0, (2.2)

where pnax is the largest probability of occurrence associated with any of the source
symbols, and o is a constant that is approximately equal to 0.08607.

2.2.4 Applications and variations

Huffman codes are used in modern standards such as the CCITT? T.x fax recom-
mendations [19] and the JPEG standard [20], despite the fact that these codes were
introduced over 50 years ago. Several variations of the original Huffman codes have
also been proposed since their introduction in 1952. Some of these variations are sum-
marized in what follows.

2The CCITT changed its name to the ITU-T in 1993 [19].
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2.2.4.1 (@Q—ary Huffman codes

The codewords of a )—ary Huffman code consist of symbols from an alphabet of @)
distinct symbols. The average codeword lengths of ()—ary Huffman codes are minimal.
These codes are suitable for implementation on devices that use more than two distinct
voltage levels on their input and output interfaces. The construction of these codes is
summarized in references [4,16].

2.2.4.2 Huffman—prefixed codes

Huffman—prefixed codes are appropriate codes for sources with very large symbol alpha-
bets [16]. These source codes are constructed by first partitioning the source alphabet
into equivalence classes, so that symbols with roughly the same probability of occur-
rence belong to the same class. Each class has a probability that is equal to the sum
of the probabilities of occurrence of its symbols.

An ordinary Huffman code is subsequently constructed for the equivalence classes
[16]. The codeword for a source symbol is obtained by concatenating a Huffman code-
word (the prefix) and an index codeword (the suffix). The Huffman codeword represents
the class to which the source symbols belongs, and the index codeword represents the
index of the symbol in the class.

2.2.4.3 Length—constrained Huffman codes

A length—constrained Huffman code is an ordinary Huffman code, but with codewords
that are limited in length to a certain number of symbols [21-24]. Length—constrained
Huffman codes are appropriate in cases where one or more alphabet symbols have
very small probabilities of occurrence. These symbols are assigned very long codewords
during the construction of an ordinary Huffman code. Excessively long codewords are
impractical, as they are typically only decoded after a significant delay (long delays are
unacceptable in time-constrained telecommunication and multimedia applications).

2.2.4.4 Extended Huffman codes

Extended Huffman codes are effective when used to encode symbols with a severely
biased distribution, symbols from small alphabets, or symbols from sources with mem-
ory [16]. Ordinary Huffman codes are typically ineffective when used to encode symbols
with these properties. To illustrate this point, one may consider a source that produces
binary symbols. The entropy of this source is less than or equal to one bit per symbol.
An ordinary Huffman code for this source has an average codeword length of one bit,
regardless of the symbol distribution?. It follows that the redundancy of the Huffman
codewords equals the redundancy of the source.

Extended Huffman codes overcome the limitations of ordinary Huffman codes by
assigning codewords to groups of n source symbols, instead of assigning codewords to
individual symbols [16]. An extended code associates a unique codeword with each

3This statement is true under the condition that none of the alphabet symbols has a zero probability
of occurrence.
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distinct combination of n source symbols. An extended code has a normalized average
codeword length that is bounded as
H(X™) < L(X") HX") 1

< < + -, (2.3)
n n n n

where X" is a sequence of n random source symbols with the distribution that the
code was constructed for. This bound reveals that extended Huffman codes are able to
exploit source memory. The upper bound on the normalized average codeword length
of an extended Huffman code approaches the entropy rate of the source asymptotically.

It is impractical to derive extended Huffman codes for long sequences of source
symbols, as the number of possible source sequences grows exponentially w.r.t. the
sequence length [16]. Many of the codewords that are assigned during the construction
of an extended Huffman code for longer source sequences are unlikely ever to be used.

2.2.4.5 Adaptive Huffman codes

Adaptive Huffman codes may be used if the source encoder and decoder have no apri-
ori knowledge regarding the distribution of the source symbols [16]. These codes are
appropriate for encoding symbols from nonstationary sources (i.e. the symbol distri-
bution changes over time). The source encoder does not require access to the entire
source sequence in order to encode its initial symbols using an adaptive Huffman code.

Both the source encoder and decoder of an adaptive Huffman code estimate the
symbol distribution according to the source symbols that were previously encoded or
decoded [16]. The source encoder and decoder of some adaptive Huffman code im-
plementations maintain identical codebooks that are updated periodically, or when
significant changes are observed in the estimate of the symbol distribution.

Rudimentary implementations of adaptive Huffman codes reconstruct the entire
Huffman codebook as it is updated [16]. Many of these implementations have an ex-
cessively high computational complexity. Practical implementations that modify only
certain codewords in the Huffman codebook during each update were proposed in the
literature [18,25]. The codebooks of these implementations typically contain only those
symbols that were encountered previously in the source sequence. These implementa-
tions use an escape symbol to add novel symbols to the codebook — the source encoder
encodes the escape symbol if it encounters a novel symbol in the source sequence.

Many papers regarding adaptive Huffman codes were published in the literature,
with the more important papers summarized in reference [16]. A number of distinct
adaptive Huffman code implementations, as well as several modifications to existing
implementations, were proposed. McIntyre et. al. [26] suggested, however, that adap-
tive Huffman codes only be used to source code long symbol sequences (when compared
to the size of the alphabet). This is due to the fact that adaptive source codes only be-
come effective as their empirically—derived estimates of the symbol distribution become
accurate.

2.2.4.6 Efficient implementations

Both memory—efficient codebook construction algorithms [23,27,28], as well as decoding
algorithms with low computational complexity [29-32], were proposed in the literature.
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2.3 The Kraft inequality

Kraft [33] derived an inequality regarding the codewords of any variable-length prefix
code. Consider any binary prefix code with m codewords of lengths I(a;), where a; is
the ith of m alphabet symbols. Kraft proved that the inequality

D o) < (2.4)

is satisfied by the binary prefix code. This inequality became known as Kraft’s inequal-
ity*. A counterpart to Kraft’s theorem regarding the codewords of a prefix code concerns
the construction of a prefix code [16]. This theorem states that it is always possible to
construct a prefix code that has codewords with lengths [(a;) (where i = 1,2,...m),
provided that the codeword lengths satisfy Kraft’s inequality.

Several years after Kraft’s work, McMillan [34] proved that Kraft’s inequality is not
only satisfied by the codewords of all prefix codes, but by the codewords of all uniquely
decodable source codes as well. This theorem implies that one need only consider prefix
codes during the construction of variable-length source codes with minimum average
codeword length, as any uniquely decodable nonprefix code may be converted to a
prefix code with codewords of identical length.

A lower bound on the minimum average codeword length of any uniquely decodable
variable-length source code may be derived using Kraft’s inequality [11]. Any code that
satisfies Kraft’s inequality can not have an average codeword length shorter than the
source entropy when used to encode symbols from a memoryless source. As all uniquely
decodable variable-length source codes satisfy Kraft’s inequality, the lower bound

m

> Pr(X = a)l(a;) > H(X) (2.5)

=1

applies to all uniquely decodable variable-length source codes.

2.4 Arithmetic source codes

One major shortcoming of extended Huffman codes is that the source encoder has to
construct a Huffman codebook with codewords for all source sequences of a certain
length prior to encoding any source sequence [16]. Arithmetic source codes do not have
this shortcoming, and are computationally feasible source codes.

2.4.1 History

Arithmetic coding has its roots in Shannon’s paper of 1948 [12], in which an ‘arithmetic
process’ of source coding was proposed. This precursor to the arithmetic code has

4Some authors refer to equation 2.4 as the Kraft-McMillan inequality.
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become known as the Shannon-Fano-Elias code®. The construction of a Shannon-—
Fano-Elias code involves the evaluation of the cumulative distribution function (CDF)
of the alphabet symbols at each symbol. The codeword of a source symbol is obtained
by expressing the corresponding value of the CDF as a binary number and appropriately
truncating it.

The average codeword length of a Shannon—-Fano—Elias code for a memoryless source
is only slightly longer than the entropy of the source, but it is not necessarily minimal
[11]. The computational complexity of the original Shannon-Fano—Elias code, like that
of the Huffman code, increases rapidly as the code is extended to multiple alphabet
symbols. An original Shannon—Fano—Elias code that is extended to a large number of
alphabet symbols is therefore impractical.

Despite early work on improving a recursive implementation of the Shannon-Fano—
Elias code [35,36], it wasn’t until 1976 that most of the problems associated with this
code, including the issue of finite precision, were resolved [4]. Modern arithmetic codes
were independently proposed by Rissanen [37] and Pasco [38] in 1976. A more general
arithmetic code, as well as a practical implementation of the code, were proposed in
1979 [39]. A subsequent paper made arithmetic codes popular in the source coding
community [40].

2.4.2 The source encoder

Unlike Huffman codes, it is unnecessary to construct a codebook that contains a com-
plete set of codewords in order to encode or decode a source symbol using an arithmetic
code [4]. The encoder of an arithmetic code encodes a source sequence by dividing a
numeric interval repeatedly into subintervals that are proportional in length to the
symbols’ probabilities of occurrence. The arithmetic coding of symbols from a memo-
ryless source is illustrated in figure 2.3 on page 14. An alphabet of three symbols (a, b
and c), as well as the probabilities of occurrence of the symbols, are provided in this
figure.

The source coding of the sequence baca is demonstrated in figure 2.3. The source
encoder sets the initial numeric interval to [0, 1). This interval is divided into subin-
tervals, and each subinterval is associated with one of the alphabet symbols [4]. The
length of each subinterval is directly proportional to the probability of occurrence of
the symbol it is associated with. In figure 2.3, the initial interval is divided into the
subintervals [0, 0.6), [0.6,0.9) and [0.9, 1.0) according to the probabilities of occurrence
of the alphabet symbols a, b and c.

The source encoder proceeds by selecting the numeric subinterval that is associated
with the first source symbol, and dividing this interval into subintervals [4]. Each subin-
terval is associated with one of the alphabet symbols. The length of each subinterval is
again proportional to the probability of occurrence of the symbol it is associated with.
In figure 2.3, the source encoder selects the subinterval [0.6,0.9), as it is associated
with the source symbol b. It divides this interval into three subintervals, as illustrated
in the figure.

®According to Verdu [11], Elias was not involved in developing the original arithmetic process of
source coding. For the purpose of this thesis, his surname is retained in the name of the code in order
to distinguish it from the Shannon—Fano code of section 2.1.
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Figure 2.3: Arithmetic coding of the sequence baca, as produced by a memoryless source
with the symbol alphabet a, b and c. The symbol distribution is provided towards the
right—hand side of the figure. The codeword for the sequence baca is 11000100.

Each numeric interval of figure 2.3 is divided according to a first—order probability
distribution, as the source symbols are independent from one another. If the source
had memory, the intervals may instead have been divided according to the symbol
distribution conditioned on those source symbols already encoded [16]. This approach
would improve the effectiveness of the source code, as it would enable the source encoder
to exploit the source memory.

The process illustrated in figure 2.3 continues with the selection of the numeric
interval that is associated with the next symbol in the source sequence, and its division
[4]. The selection and division of the intervals repeat until the final source symbol
has been considered, and the final interval has been obtained. The source encoder
produces a codeword for the source sequence by appropriately truncating the binary
representation of any number in the final numeric interval.

A sufficient number of bits must be retained in the codeword in order to guarantee
the correct identification of the final interval by the source decoder [4]. If the codeword
is obtained by truncating the binary representation of the midpoint between the upper
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and lower boundaries of the interval, it is sufficient to retain

I(x") = [logQ (ﬁﬂ +1 (2.6)

bits in the codeword to guarantee the flawless recovery of the final interval. The term
Pr(x™) in equation 2.6 denotes the probability of occurrence of the source sequence.

The source encoder obtains the final numeric interval of [0.762,0.7728) during the
source coding of the sequence baca, as illustrated in figure 2.3. The midpoint of this
interval equals 0.7674. Equation 2.6 implies that a codeword of eight bits is sufficient to
guarantee the correct recovery of the final interval and the source sequence. The binary
representation of the midpoint, which equals 0.11000100011..., is therefore truncated
to eight bits in order to obtain the codeword 11000100 (only the fractional part of the
binary number is used).

2.4.3 The source decoder

The decoder of the arithmetic code operates in a similar fashion as the encoder [4].
It first divides the numeric interval [0,1) in half, and selects one of the subintervals
according to the first bit of the codeword. It selects the first subinterval if the first
codeword bit equals 0, and the second subinterval if the first codeword bit equals 1.
The source decoder proceeds by dividing the subinterval that was selected in half, and
selecting the next subinterval according to the second bit of the codeword (in the same
manner as the first subinterval).

The source decoder continues to select and divide subintervals until it has considered
all the bits of the codeword [4]. Let the final subinterval that the source decoder selects
be referred to as the codeword interval. After selecting the codeword interval, the source
decoder finds the longest symbol sequence with a numeric interval that contains the
codeword interval (i.e. the codeword interval lies within the interval associated with
the symbol sequence that was found by the source decoder). This symbol sequence is
the recovered source sequence.

Consider the numeric intervals that the source decoder selects as it decodes the code-
word that was assigned to the source sequence baca in figure 2.3. The sequence of inter-
vals are [0,1), [0.5,1), [0.75,1), [0.75,0.875), [0.75,0.8125), [0.75,0.78125), [0.765625,
0.78125), [0.765625,0.7734375) and [0.765625,0.76953125). The codeword interval lies
within the interval associated with the sequence baca, which equals [0.762,0.7728).
The relationship between the intervals may be expressed as

[0.765625,0.76953125) C [0.762,0.7728). (2.7)

The source decoder therefore selects the sequence baca as the decoded sequence.

It is possible to modify the source decoder to produce the decoded symbols as it
calculates successive numeric intervals, instead of producing all the decoded symbols
after calculating the codeword interval [4]. The source decoder may produce a decoded
symbol once the most recent numeric interval lies within the interval associated with the
symbol. It is therefore unnecessary to process the entire codeword prior to recovering
the initial symbols of the source sequence. The source encoder may be similarly modified
to produce the initial codeword bits prior to considering the entire source sequence.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 15



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2 The history of source coding

<+
ﬁ UNIVERSITEIT VAN PRETORIA
A~ 4

2.4.4 Performance

If an arithmetic code is used to produce a single codeword for each sequence of n source
symbols, its normalized average codeword length is bounded as [4]
H(X)<L(X)<H(X) 2

— 2.8
n - n n +n7 ( )

where X" is a sequence of n random source symbols with the distribution according
to which source sequences are encoded. The upper bound on the normalized average
codeword length of an arithmetic code is approximately equal to the upper bound on
the normalized average codeword length of an extended Huffman code (refer to equation
2.3). The Huffman code becomes impractical if extended to longer source sequences,
however. An arithmetic code does not have this drawback, as its source encoder does
not construct the entire codebook with all source sequences of n symbols.

2.4.5 Applications and implementations

Arithmetic coding is arguably the most effective lossless source coding technique that
is also practical. Arithmetic codes are used in document compression software [41] as
well as command-line compression and archiving software utilities such as bzip [42].
Arithmetic codes are also used in applications that involve the source coding of image
and video data [43], and are part of several standards [4].

Many adaptive source code implementations use arithmetic codes, as an imple-
mentation may perform the source modeling and source coding steps independently
from one another if it uses these codes [4]. Arithmetic codes may be used to encode
source sequences according to arbitrary probability distributions that change over time.
Adaptive arithmetic code implementations need not reconstruct a codebook in order
to adapt to a changing symbol distribution [44]. The prediction by partial match al-
gorithm, which is an adaptive, context—based source coding algorithm, uses arithmetic
codes [45].

Many papers regarding the implementation of efficient arithmetic codes, as well as
solutions to several implementation issues, were published in the literature. Some of
these papers are summarized in what follows.

1. The number of bits that are required to represent a numeric interval using a
digital computer increases as the interval becomes shorter. As the numeric inter-
vals of arithmetic code implementations become shorter w.r.t. the length of the
source sequence that is to be encoded, it follows that the source encoder and de-
coder require arbitrary—precision arithmetic in order to encode and decode source
sequences of any length [4]. This fact complicates the implementation of an arith-
metic encoder and decoder on a digital computer, as digital computers cannot
represent and manipulate numbers with arbitrary precision. The requirement of
arbitrary—precision arithmetic may be eliminated by appropriately rescaling each
numeric interval as soon as it becomes too short. An implementation that uses
only limited—precision arithmetic is provided in reference [4].
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2. In some applications it is necessary to encode a source sequence without the
source decoder having apriori knowledge regarding the length of the sequence
[16]. Some implementations of the source decoder of an arithmetic code rely on
knowledge of the sequence length in order to successfully decode each codeword.
An implementation may define an ‘end of input’ symbol to overcome this problem.
The source encoder encodes this symbol at the end of the source sequence. The
‘end of input’ symbol informs the source decoder that any successive codeword
bits belong to a new codeword.

3. The source coding and decoding of a source sequence using an arithmetic code
are often illustrated using real number intervals (refer to figure 2.3) [4, 16]. It
is possible to implement both the source encoder and decoder of an arithmetic
code in such a manner that they use only integer numbers and integer arithmetic.
An example of an integer—arithmetic implementation of an arithmetic code is
provided in reference [4].

4. Conventional implementations of arithmetic codes multiply several numbers as
sequences are encoded and decoded. The frequent multiplication of numbers in-
creases the computational complexity of the source encoder and decoder. This
drawback was eliminated with the introduction of multiplication—free arithmetic
codes, which are discussed in reference [46].

2.5 The prediction by partial match algorithm

The prediction by partial match (PPM) algorithm is an adaptive, context—based source
code implementation that uses arithmetic codes [4,45]. The algorithm is able to exploit
source memory, thereby improving the effectiveness of the source code. It is one of the
most effective lossless source code implementations for practical data such as English
text [47]. The PPM algorithm was first proposed in reference [45], and has undergone
several modifications in order to improve both its effectiveness and efficiency since its
introduction — several of the more relevant improvements are summarized in reference
[47]. One drawback of PPM implementations with unbounded context order is their
high computational complexity, which increases quadratically w.r.t. the length of the
source sequence (in the worst case) [47].

The PPM algorithm is effective when used to encode sequences from certain Markov
sources. A finite-order Markov source has finite memory, which implies that the prob-
ability distribution of each of its source symbols is a function of only a finite number
of symbols that precede it in the source sequence [47]. The distribution of a particular
letter of English text is strongly influenced by those letters in the same word (and
perhaps a few neighbouring words) — distant letters in other sentences typically have
little impact on its distribution. It follows that Markov sources are, to a certain degree,
suitable for modelling English text. This observation partly explains why the PPM
algorithm is able to effectively encode English text.
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2.5.1 Source modeling

The source encoder of a PPM implementation processes a source sequence sequentially
(i.e. symbol-by—symbol, starting at the first symbol of the sequence) [47]. It constructs
a source model according to the frequency counts of the source symbols it encoded
previously. The encoder iteratively refines the source model as it encodes consecutive
source symbols.

The source model provides an estimate of the probability distribution of the source
symbol that follows the most recently processed source symbol [47]. The encoder of
the arithmetic code encodes successive source symbols according to the source model.
As the source model is constructed according to the frequency counts of the symbols
that were previously encoded, the source decoder may construct a source model that
is identical to that of the encoder. It follows that the source decoder may recover the
source sequence without additional information from the source encoder.

The order-m context of a source symbol z; is defined as the m—symbol sequence
x:~! that precedes the symbol z; in the source sequence [47]. The PPM algorithm
maintains a list of all contexts, up to some maximum order, that were encountered in
the previously encoded source sequence. It records the frequency counts of all symbols
that immediately follow each of these contexts. The algorithm derives a probability
distribution for the symbol that follows each context according to the symbol fre-
quency counts of that context. PPM implementations may differ w.r.t. the manner in
which they derive the symbol distribution associated with each context. Some of the
approaches to deriving a symbol distribution from empirical symbol frequency counts
that are relevant to the PPM algorithm are summarized in section 2.5.3 on page 19.

In order to source code a symbol, the PPM algorithm selects an appropriate context
from its list of contexts, and uses the symbol distribution of that context as it encodes
the symbol [47]. The manner in which the PPM algorithm selects an appropriate con-
text is discussed in what follows.

2.5.2 Context selection and context updates

The following summary was adapted from reference [47]. Suppose that the source en-
coder has to encode the symbol x; = a. Let the actual context of symbol x; equal the
m symbols that precede it, or x:~} . As the PPM algorithm is unaware of the order of
the actual context, it has to select an appropriate context from its list of contexts. The
algorithm selects the longest matching context XZ::}WH that is present in the list, and
considers the frequency counts that it collected for symbols following that context.
There are two possibilities regarding the empirical frequency counts of the sym-
bols that follow the longest matching context. In the first case, the symbol a has a
nonzero frequency count in the longest matching context. The source encoder encodes
the symbol according to the symbol distribution of the longest matching context in this
case, and proceeds by updating the empirical frequency counts. In the second case, the
symbol a has a zero frequency count in the longest matching context. As the source
encoder cannot encode the symbol a using this context (it has a zero probability of
occurring in the longest matching context), it encodes an escape symbol. The escape
symbol informs the source decoder that the source symbol did not occur previously in
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the current context. An escape symbol is defined in the symbol distribution of each
context, and a frequency count is maintained for the escape symbol of each context.

After encoding the escape symbol, the encoder considers the symbol frequency
counts that are associated with the second-longest matching context Xﬁjmm 41+ It pro-
ceeds by encoding the source symbol z; (where x; = a) according to the distribution
associated with the second-longest matching context, provided that the symbol a has
a nonzero frequency count in this context. If the source symbol a has a frequency count
of zero in the second-longest matching context, the source encoder encodes a second
escape symbol. In the case of the source encoder encoding a second escape symbol,
it repeatedly considers shorter contexts until a context is reached in which the source
symbol a has a nonzero frequency count, or the zero—order context is reached.

If the source encoder reaches the zero—order context, and finds that the symbol a
has a zero frequency count in this context (i.e. the symbol a did not occur previously
in the source sequence), it considers the order (-1) context. The order (-1) context has
a predefined symbol distribution that includes all symbols of the source alphabet. All
symbols of the predefined distribution are equiprobable. The definition of an order (-1)
context guarantees that the source encoder of the PPM algorithm will always be able
to encode any source symbol, even if it did not occur previously in the source sequence.

After encoding the source symbol a, the source encoder increments the frequency
counts of this symbol in all the matching contexts [48]. The manner in which the
source encoder updates the frequency counts of the escape symbol depends on the
implementation.

2.5.3 Derivation of the context distribution

The PPM algorithm estimates the probability distribution of the symbol that follows
each context in its list of contexts [47]. Each estimate is derived according to the
frequency counts of the source symbols that were encountered in the context. The
selection of an appropriate probability of occurrence for the escape symbol complicates
the derivation of each symbol distribution, as there is no canonical method for deriving
it [48]. Several methods for deriving the symbol distribution of a context, as well as an
appropriate probability of occurrence for its escape symbol, were proposed and assessed.
Some of these methods are summarized in what follows. The following summary was
adapted from reference [48].

Cleary et. al. [8] proposed a method for estimating the symbol distribution of a
context that is derived from Laplace’s law of succession. This method assigns the
escape symbol € of each context a frequency count of one, regardless of the actual
number of times it was encoded. The probability distribution of the symbol X;, which

occurs in the context s = X:ﬁ:}, is specified as
n(z;,s)
|g) = w2 . 2.9
p(z4]s) ) T 1 x; # €, (2.9)

where n(z;,s) is the frequency count of the alphabet symbol z; in context s, n(s) is
the total frequency count of all symbols in context s, and € denotes the escape symbol.
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The probability of the escape symbol is specified as

p(els) = Pr(X; =¢ls)

1
EETOFSE (2.10)
This method is known as method A in the literature. The distributions that are ob-
tained using method A are (to a certain degree) inaccurate, as it specifies a constant,
nonzero probability of occurrence for the escape symbol. The escape symbol of each
context is assigned a nonzero probability of occurrence even if all alphabet symbols were
previously encountered in the context, in which case the escape symbol is unnecessary.
Cleary et. al. [8] proposed a second method for defining the symbol distribution of
a context. This method is known as method W in the literature. It specifies a more
appropriate probability of occurrence for the escape symbol. Method W specifies the

symbol distribution of the context s = Xi:]l as

~ n(z,s) + 1
p(xils) = m7 T # €,

(2.11)
where |A| denotes the number of symbols that belong to the source alphabet A, and
where n(z;,s) > 0. If the symbol z; did not previously occur in context s (i.e. n(z;,s) =
0), method W assigns a zero probability of occurrence to the symbol. The probability
of occurrence of the escape symbol is specified as

p(els) = Pr(X; =¢ls)
_ A= nals)
on(s)+ 4] (2:12)

where ny(s) denotes the number of distinct symbols that were encountered in context
s. The probability of occurrence of the escape symbol is proportional to the number of
distinct alphabet symbols that have not occurred in context s.

Other noteworthy methods for estimating the symbol distribution of a context
according to symbol frequency counts are briefly discussed in what follows.

e Cleary et. al. [45] proposed method B for estimating the symbol distribution of
a context. PPM implementations that use method B regard an alphabet symbol
novel in a certain context if its frequency count in that context is smaller than
two.

e Witten et. al. [49] proposed methods P and X for estimating the symbol distribu-
tion of a context. These methods use a Poisson process as a model for the symbol
occurrences, and derive a context distribution according to this model.

An important observation regarding the estimation of the symbol distribution of a
context concerns the exclusion of symbols. Consider the first occurrence of the symbol
a in a specific context s of a source sequence. All distinct symbols that previously
occurred in the same context would not match the symbol a. It follows that the PPM
algorithm may exclude all distinct symbols previously encountered in context s when
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deriving a context distribution for the lower—order contexts that are associated with
context s. Some PPM implementations temporarily rescale the symbol distributions of
the lower—order contexts in order to take advantage of this observation.

Moffat [50] investigated the manner in which the PPM algorithm updates symbol
frequency counts and proposed a mechanism for improving the effectiveness of the PPM
algorithm. This mechanism is known as the update-exclusion mechanism. Moffat stated
that updates to the symbol frequency counts should be limited to the contexts that
were actually used to encode source symbols, instead of the lower—order contexts in
which the symbols were merely observed. The update—exclusion mechanism implements
this approach to updating the symbol frequency counts. Symbol distributions that
are derived using the update—exclusion mechanism are typically more accurate than
symbol distributions that are derived using the conventional approach, and improve
the effectiveness of the source code.

2.5.4 Contexts of unbounded order

The sequence of contexts that the PPM algorithm selects from its list as it encodes
consecutive symbols of the source sequence should ideally match the true contexts of
those symbols [47]. The source encoder is typically unaware of the true contexts of the
source symbols. As the source encoder has no knowledge of the true symbol contexts, it
encodes each source symbol according to the symbol distribution of the longest context
(up to some maximum order) that matches the symbols preceding the source symbol.
The maximum context orders® of PPM implementations for source coding English text
typically do not exceed seven.

The maximum context order of a PPM implementation has a direct impact on
its effectiveness [47]. If the maximum context order is too small, the implementation
cannot accurately represent the source memory in the source model, which reduces
the effectiveness of the source code. If the maximum context order is too large, the
source model may be inaccurate when used to encode shorter source sequences. Di-
rect implementations of the PPM algorithm also require significantly more memory to
accommodate a greater number of contexts.

PPM* is an implementation of the PPM algorithm that specifies no maximum
context order [51]. The PPM* implementation records all symbol contexts that were
encountered in the source sequence and maintains a set of symbol frequency counts for
cach of these contexts. Cleary et. al. [51] observed a rapid increase in the order of those
contexts that the PPM* implementation uses as it encodes successive source symbols.
It was found that the performance of the PPM* implementation may be improved by
resolving this problem.

The aforementioned problem of the PPM* implementation was resolved by modi-
fying its context selection mechanism [47]. Let a symbol context in which only a single
symbol appeared be referred to as a deterministic context. A PPM* implementation
that uses the modified context selection mechanism encodes a symbol according to the
distribution of the shortest deterministic context that matches its preceding symbols.

6The name of a PPM implementation often includes its maximum context order (e.g. PPM-5 and
PPM-T7).
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If the source encoder has no matching deterministic context in its list of contexts, it
uses the distribution of the longest matching ordinary context as it encodes the sym-
bol. The modified context selection mechanism improves the effectiveness of the PPM*
implementation in certain cases [48].

2.5.5 Efficient implementations

Two drawbacks of PPM and PPM* implementations are their high computational com-
plexity and excessive memory requirements [47]. A large fraction of the computational
burden of direct PPM implementations involves the search for appropriate contexts, in
the list of all recorded contexts, that match the symbols of the source sequence. The
substantial memory requirements of direct PPM implementations are a consequence of
the rapid increase in the number of possible symbol contexts w.r.t. the maximum con-
text order, as the implementations maintain symbol frequency counts for each context
that was encountered. The worst—case memory requirement of direct PPM implemen-
tations increases quadratically w.r.t. the length of the source sequence.

Memory—efficient PPM* implementations were proposed in references [51-53]. These
implementations store symbol contexts in a context—tree data structure [47,51]. This
data structure represents all the contexts that were encountered in the source sequence
as a tree. The zero—order context is represented by the root of the tree, and the first—
order contexts are represented by the children of the root. The higher—order contexts
are represented by the offspring of the appropriate lower—order nodes.

Each context—tree node with a single descendent may be combined with that de-
scendent in order to reduce the total number of nodes in the tree [47,51]. Context trees
that have their nodes combined in this manner are referred to as path—compressed con-
text trees. As the leaves of a context tree correspond to contexts that were observed
exactly once in the source sequence, many PPM* implementations maintain a pointer
at each leaf of the context tree. Each pointer indicates the position of the corresponding
context in the source sequence. A path—compressed context tree with pointers at its
leaves has a memory requirement that increases linearly w.r.t. the length of the source
sequence.

PPM* implementations that store symbol contexts in a context tree require a com-
putationally efficient algorithm for constructing and expanding it [47]. Bunton [52, 53]
proposed the use of a suffix-tree data structure for storing the symbol contexts of a
source sequence, as computationally efficient construction and expansion algorithms
have been developed for this data structure. A suffix tree is a context tree in which
each of the suffixes of the source sequence is represented by a distinct path from the
root node of the tree to one of its leaf nodes. McCreight [54] proposed a nonsequential
construction algorithm for suffix trees. The computational complexity of this algorithm
increases linearly w.r.t. the length of the source sequence.

The source decoder of a PPM* implementation requires sequential construction and
expansion algorithms for its suffix tree, because it does not have access to the entire
source sequence as it decodes consecutive source symbols [47]. Ukkonen [55] proposed
a sequential suffix—tree construction and expansion algorithm with a computational
complexity that increases linearly w.r.t. the length of the source sequence. Larsson [56]
proposed a PPM* implementation that uses Ukkonen’s sequential suffix—tree construc-
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tion algorithm. Larsson’s PPM* implementation does not have a computational com-
plexity that increases linearly w.r.t. the length of the source sequence, however. This
property of Larsson’s PPM* implementation is due to the super—linear computational
complexity of the PPM* probability estimation routine and context escape mechanism.

Effros [47] proposed a PPM* implementation with a worst—case computational com-
plexity and a worst—case memory requirement that increase linearly w.r.t. the length
of the source sequence. This implementation stores symbol contexts in a prefix—tree
data structure instead of a suffix-tree data structure. Effros proposed a sequential con-
struction algorithm for prefix trees. The derivation of this algorithm is similar to the
derivation of the suffix-tree construction algorithm of McCreight [54]. The computa-
tional complexity of Effros’ prefix-tree construction algorithm increases linearly w.r.t.
the length of the source sequence.

A PPM* implementation that uses a prefix tree instead of a suffix tree may combine
each step in adding a new context to the tree with the search for a shorter context in
which the most recent source symbol is not novel [47]. The number of calculations that
the PPM* implementation of Effros [47] performs is reduced in this manner. Effros’
PPM* implementation also limits the number of times that the source encoder may
move to a shorter deterministic context as it searches for an appropriate context to
use when it encodes a symbol. It was empirically verified that this property of Effros’
PPM* implementation reduces its effectiveness by a marginal degree.

2.6 Universal source codes

Following the introduction of Huffman codes in 1952 [17], several researchers inves-
tigated the source coding of sequences with unknown distributions (i.e. the source
encoder and decoder are unaware of the true distribution of the source sequences).
Kolmogorov [11,57] assigned the term ‘universal’ to any source code of this type —
more precise definitions of universal source codes were to follow in later publications.
Universal source codes are of great practical interest, as prior statistical knowledge of a
source is often not available in practice. Examples of universal source code implemen-
tations include command-line compression and archiving utilities such as gzip [58].

The following sections cover two source models that are relevant to typical universal
source codes, as well as early publications regarding universal source codes. These
sections are followed by a summary of several mathematical definitions and theorems
regarding universal source codes. The final section contains a summary of universal
Lempel-Ziv source codes.

2.6.1 Composite sources

The source encoder and decoder of a universal source code do not have apriori knowl-
edge of one or more of the source parameters, or in some cases the source type [59].
The goal of the source encoder remains the minimization of the average number of bits
that it requires to represent a source sequence without any distortion. A starting point
to deriving an effective universal source code is to construct a source model that in-
corporates the encoder’s lack of knowledge regarding the source. Several source models
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may be constructed, depending on the encoder’s knowledge of the source. Two source
models are considered in what follows.

The source encoder may have knowledge of the source type (or class), but not of
the values of one or more of its parameters [59]. As an example, consider a stationary
binary memoryless source with parameter § = Pr(X; = 1). A source encoder that is
unaware of the value of the parameter may model it as a random variable ©. The
random variable © has a distribution that may be known or unknown. This model of
the source is known as a composite source model, as the value of the source parameter
is ‘randomly selected’ prior to the source generating the source sequence.

Another source model that incorporates the encoder’s uncertainty regarding the
source involves the definition of a set of possible sources [59]. The actual source that
produces the source sequence is randomly drawn from the set of sources. The source
encoder may model the overall source as having a random parameter €2 that represents
the actual source that was selected. As an example, consider a set that contains three
sources:

1. a stationary binary memoryless source with parameter 6 = 0.25,

2. a stationary two-state Markov source with a known transition probability matrix

S, and

3. a stationary block-independent source with a fully specified n—dimensional prob-
ability distribution p(xy, zs,...z,) for the symbols in each block.

In this example, the value of the random variable 2 is drawn from the set {1,2,3}
according to a known or unknown distribution (each of the set elements corresponds
to one of the sources). This model of the source is a composite source model, as the
actual source is randomly selected prior to it generating the source sequence.

2.6.2 Early universal codes

Early publications concerning lossless universal source codes appeared between 1965
and 1973 [59]. These papers proved that universal source codes exist for certain source
models”. Some of these papers are summarized in what follows.

Lynch [5] proposed a universal source code that may be used to encode the indices
(or locations) of nonredundant samples in a source sequence. This code is an example
of an enumerative source code. Enumerative source codes are summarized in chapter 4
on page 100. Lynch’s enumerative source code is summarized in section 4.1.1 on page
101.

Davisson [6] provided a simple analytic basis for the source code proposed by
Lynch [5]. Davisson used Lynch’s code in a source code for sequences that contain
both redundant and nonredundant samples. In order to investigate the performance

"These proofs were of a constructive nature. In a constructive proof, the author constructs a source
code and proves that it is asymptotically optimal in a certain sense when used to encode sequences
from the composite source. The first author that proved general theorems regarding the existence of
universal source codes by using concepts from information theory was Davisson [59].
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of this source code, Davisson defined a source that produces redundant and nonre-
dundant samples. The redundant and nonredundant samples of this source have fixed
probabilities of occurrence, and all samples are statistically independent from one an-
other. Davisson proved that the normalized average codeword length of this source
code approaches the entropy of the source in an asymptotic fashion (i.e. as the length
of the source sequence tends to infinity). The source code requires no prior knowledge
regarding the probabilities of occurrence of the redundant and nonredundant samples.
Davisson’s enumerative source code is summarized in section 4.1.2 on page 107.

Schalkwijk [60] proposed a universal, variable-to—fixed length enumerative source
code. This source code is related to the source codes that were proposed by Lynch and
Davisson [5,6]. Schalkwijk proved that the variable-to—fixed length source code, when
used to encode bits from a stationary binary memoryless source, has an average code
rate that asymptotically approaches the source entropy. The source code requires no
prior knowledge of the source parameter. This source code is summarized in section
4.1.3 on page 108.

Cover [7] proposed a general approach to constructing enumerative source codes.
Cover used this approach to construct a fixed—to—variable length source code for se-
quences from stationary first-order binary Markov sources. The encoder of this source
code first encodes the frequency counts of the consecutive pairs of bits that were en-
countered in the source sequence. It proceeds by encoding the index at which the source
sequence would appear if it were present in an ordered list of all bit sequences with
the same length and the same frequency counts of bit pairs as the source sequence.
Cover proved that this source code is universal by proving that its normalized average
codeword length asymptotically approaches the entropy of a first—order Markov source.
The source code requires no prior knowledge of the source parameters. It is summarized
in section 4.1.4 on page 112.

Shtarkov et. al. [61] proposed a universal source code that is similar to the enumer-
ative code that was proposed by Cover [7]. Shtarkov et. al. proved that this code is
universal if used to encode sequences from any stationary finite—order, finite-alphabet
Markov source. The normalized average redundancy of the codewords of this source
code is proportional to log(n)/n bits per symbol, where n is the length of the source
sequence.

Ziv [62] considered fixed-to-fixed length universal source codes. Ziv used the proba-
bility of incorrectly recovering the original source sequence from a codeword as a perfor-
mance measure for determining whether a fixed-to—fixed length source code is universal.
A universal fixed-to—fixed length source code for discrete-time finite—alphabet sources
was proposed. The error probability of this source code approaches zero asymptotically,
provided that the code rate exceeds the entropy of the source.

2.6.3 Universal coding theorems and performance measures

Davisson [59] laid the foundation for future work concerning universal source codes by
publishing an extensive paper regarding the subject. Davisson proved several theorems
regarding universal source codes by using concepts from information theory. He unified
the constructive techniques of previous authors (as summarized in section 2.6.2) into
a general, theoretical framework. Several of the theorems that Davisson proposed are
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summarized in this section.
The definition of a universal source code is relevant to the theorems that are pre-
sented in this section. Davisson [59] defined a universal source code as a code that

1. does not require access to past or future sequences from the source as its encoder
is used to encode a source sequence, and

2. meets a certain performance specification asymptotically (w.r.t. the length of the
source sequence).

Davisson [59] introduced several performance measures, as well as conditions regard-
ing the existence of universal source codes (where universality is defined according to
the performance measures). In the case of fixed—to—variable length source codes, the
performance measure that Davisson’s definition of universality refers to is ordinarily
selected as the redundancy of the code. If the redundancy of a fixed-to—variable length
source code approaches zero asymptotically, it is considered universal.

The redundancy of a source code has more than one mathematical definition. Davis-
son [59] proposed conditions that source codes have to satisfy in order to be universal
w.r.t. each definition of redundancy. The definitions of redundancy that Davisson con-
sidered, as well as theorems regarding universality w.r.t. these definitions, are provided
in what follows.

2.6.3.1 Minimum average redundancy

Consider a source code % that is used to encode an n—symbol random sequence X"
from a source with an unknown parameter © [59]. Let the conditional average codeword
length of the source code be defined as

Ly(XM0) = > le(x")Pr(x"]0), (2.13)

xneA™

where l¢(x") is the length of the codeword assigned to source sequence x", A is the
symbol alphabet, and Pr(x"|) is the probability of occurrence of the source sequence
x", conditioned on the source parameter 6. The normalized redundancy of the source
code ¥, conditioned on the source parameter 6, is defined as

/ n 1 n n
L(X7,0) = | L (X7]0) — HX'|0) |, (2.14)

where H(X"|#) is the conditional entropy of the source. The normalized minimum
average redundancy of any sequence of source codes that is used to encode symbol
sequences from a composite source with a parameter density function

w(f) =Pr(© =6) (2.15)
is defined as
Rm'm ,ave nh—)HC}o %,12({;‘”//\ %”(X 70)w<8)d07 (216)
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where C™ is the set of all uniquely decodable fixed—to—variable length source codes
(for sequences of n symbols), and A is the set of all possible values that the source
parameter # may assume. If the normalized minimum average redundancy associated
with source coding sequences from a certain source is zero, a sequence of source codes
that attains this limit (i.e. with a zero normalized minimum average redundancy) is
known collectively as a weighted universal source code.

Davisson [59] proved that a necessary and sufficient condition for the existence of
weighted universal source codes is that the normalized average mutual information
between X™ and © tends to zero asymptotically. This condition may be expressed as

n—oo N n—oo N

lim S1(X"0) = lim E[H(X”)—H(X”]@)
= 0. (2.17)

If a weighted universal code for sequences from a certain source exists, it may be
obtained by constructing a Huffman code for sequences with the so—called ‘mixture’
distribution. This distribution is defined as

Pr(x") :/APr(X”\@)w(G)dG. (2.18)

2.6.3.2 Strong minimax redundancy

The normalized strong minimax redundancy associated with source coding sequences
from a composite source (with parameter ©) is defined as [59]

R, = nh_}n(;lo %}gcfn 2161/13 R, (X", 0), (2.19)
where R{, (X", 0) is defined in equation 2.14. If the normalized strong minimax redun-
dancy associated with source coding sequences from a certain source is zero, a sequence
of source codes that attains this limit is collectively referred to as a strong minimax
universal source code.

Davisson [59] derived a necessary and sufficient condition for the existence of strong
minimax universal source codes for a source. This condition is the existence of a se-
quence of probability mass functions {q(x")}2, such that the normalized Kullback—
Leibler divergence between Pr(x™[f) and ¢(x") tends to zero asymptotically and uni-
formly over # € A. This condition may be expressed as

.1 .1 Pr(x”\@)}
lim —sup D(Pr(x"|6 x")) = lim —su Pr(x"|0) log | ———=
Jimy o D) = Jim T 37 el g e
= 0. (2.20)
Uniform convergence implies that for any € > 0, there exists some ng such that, for
any n > ng and any 6,
1
ED(Pr(x”\&)Hq(x")) < €. (2.21)

Uniform convergence therefore implies that the choice of ng is independent from the
parameter 6.
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If g(x™) is selected as the mixture distribution Pr(x™) of equation 2.18, a suffi-
cient condition for the existence of strong minimax universal source codes may be
derived [59]. The sufficient condition is that the normalized average mutual informa-
tion between X" and © tends to zero asymptotically and uniformly over # € A. This
condition may be expressed as

1
lim —sup [(X"™;0) = 0. (2.22)

n—oo M fcA

2.6.3.3 Weak minimax redundancy

The normalized weak minimax redundancy associated with source coding sequences
from a composite source (with parameter ©) is defined as [59]

R, = inf sup lim R (X", 0). (2.23)

CeC gep n—oo

If the normalized weak minimax redundancy associated with source coding sequences
from a certain source is zero, a source code that attains this limit is referred to as a
weak minimax universal source code.

Davisson [59] proved that the necessary and sufficient condition for the existence of
strong minimax universal source codes is also a necessary and sufficient condition for
the existence of weak minimax universal source codes, except that the convergence of
the normalized Kullback—Leibler divergence to zero need not be uniform over € A.
In the case of weak minimax universal source codes, the convergence of the normalized
Kullback—Leibler divergence need only be pointwise. Pointwise convergence implies
that, for any € > 0 and any 6, there exists some ny(6) such that, for any n > ng(0),
equation 2.21 is satisfied. Pointwise convergence therefore implies that the choice of ng
may be dependent on 6.

2.6.4 Universal coding of composite sources with denumer-
able parameter values

Davisson [59] proved that weighted universal source codes exist for composite sources
with a parameter © that may assume only a denumerable number of values. If the
parameter © satisfies this condition and has a finite number of possible values, both
strong and weak minimax universal source codes exist for the source®. This theorem
implies that all types of universal source codes considered up to this point exist for a
composite source that randomly selects the actual source from a finite set of sources.

2.6.5 Lempel-Ziv source codes

Ziv et. al. [63,64] proposed the first and second universal Lempel-Ziv source codes in
1977 and 1978, respectively. Ziv et. al. proved that the encoders of the Lempel-Ziv
source codes, when used to encode sequences from ergodic sources, produce sequences

8These statements assume that the source satisfies other conditions over and above those stated.
The interested reader is referred to reference [59] for details regarding these conditions.
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with an average length that asymptotically approaches the source entropy [16]. These
source codes are therefore universal.

Lempel-Ziv source codes are dictionary—based source codes [16]. A dictionary—based
source code maintains a dictionary (i.e. a list) of sequences that are known as phrases, as
well as a codeword for each phrase. The encoder of a Lempel-Ziv source code encodes
a sequence by progressively dividing it into phrases that correspond to the phrases
of the dictionary. The division of the source sequence into phrases is referred to as
parsing. The source encoder progressively encodes the phrases of the source sequence
by replacing each phrase with its codeword.

The source decoder of a Lempel-Ziv source code requires access to the same dic-
tionary as the encoder in order to correctly decode successive codewords [16]. This
requirement forces the source encoder to consider only those source symbols that it en-
coded previously when it determines how dictionary phrases and codewords should be
updated. The source decoder is able to correctly update its dictionary and successfully
decode the sequence of codewords by remaining in step with the source encoder?.

Dictionary—based source codes vary regarding the manner in which their dictio-
naries are updated and parsing is performed [16]. The Lempel-Ziv source codes parse
source sequences from the start of the sequence to the end of the sequence. The en-
coder of a Lempel-Ziv source code updates its dictionary with new phrases as parsing
proceeds, and considers those symbols encoded previously as it formulates changes to
the dictionary. Dictionaries that are updated in this manner are referred to as dynamic
dictionaries.

One favourable property of Lempel-Ziv source codes is the low computational
complexity of their implementations [16]. The computational complexity of typical
Lempel-Ziv source code implementations increases linearly w.r.t. the length of the
source sequence. This property of Lempel-Ziv source code implementations led to their
widespread use in applications that require the rapid source coding and decoding of
sequences. The Lempel-Ziv source codes are widely used in compression and archiving
software utilities such as winzip [65] and gzip [58].

The universal Lempel-Ziv source codes of 1977 [63] and 1978 [64] are summarized
in what follows.

2.6.5.1 Lempel-Ziv 1977

Ziv [63] proposed their first dictionary—based universal source code in 1977. This source
code is commonly abbreviated as LZ77 in the literature [16]. The first implementations
of the LZ77 algorithm had a computational complexity that increased quadratically
w.r.t. the length of the source sequence. Rodeh et. al. [66] later developed a LZ77
implementation with computational complexity that increases linearly w.r.t. the length
of the source sequence.

The source encoder of the LZ77 code updates its dictionary according to the part of
the source sequence it parsed [16]. The phrases of the dictionary consist of all substrings
of the parsed sequence. The source encoder parses the remainder of a source sequence
by finding its longest prefix that matches a phrase in the dictionary. The source encoder

9The source encoders of some dictionary-based source codes represent the dictionary as part of
the encoded data (i.e. the dictionary is encoded). These source codes are not regarded in this thesis.
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replaces each prefix with a codeword from its dictionary. The codeword contains three
fields, namely

1. the symbol index, in the parsed section of the source sequence, at which the prefix
starts,

2. the length of the prefix, and
3. the first symbol that follows the prefix in the remaining source sequence.

If the dictionary of the source encoder does not contain a phrase that matches a
prefix of the remaining source sequence, the index and length fields of the codeword
are set to zero [16]. This situation occurs if the first symbol of the remaining source
sequence does not appear in the parsed source sequence. The source decoder obtains
the novel symbol from the final field of the codeword in this case. The source encoder
disregards the first symbol of the remaining source sequence as it continues to parse
the sequence.

2.6.5.2 Lempel-Ziv 1978

Ziv et. al. [64] proposed their second dictionary—based universal source code in 1978.
This source code is abbreviated as LZ78 in the literature [16]. The LZ78 source code
has a straightforward implementation with a computational complexity that increases
linearly w.r.t. the length of the source sequence. The normalized redundancy of the
sequence produced by the encoder of the LZ78 source code tends to zero more rapidly
w.r.t. the source sequence length than the normalized redundancy of the LZ77 source
code [67].

The source encoder of the LZ78 source code parses a source sequence in the same
manner as the LZ77 source code (i.e. it finds the longest prefix in the remaining source
sequence that matches a phrase in its dictionary) [16]. The format of the codewords,
as well as the manner in which the source encoder updates its dictionary, differ from
the LZ77 source code. The dictionaries of both the encoder and decoder of the LZ78
source code initially contain all distinct single-symbol phrases. Each dictionary phrase
is assigned an integer as a codeword, and successive phrases that are added to the
dictionary are assigned incrementally larger integers as codewords.

The source encoder encodes the longest matching prefix of the remaining source
sequence by replacing it with its codeword [16]. The encoder proceeds by adding the
phrase that was replaced to the dictionary, but with the symbol that follows it in the
source sequence concatenated at its end. The source encoder leaves the first symbol of
the remaining source sequence uncoded as it continues to parse the sequence.

2.6.5.3 Performance and implementations

The Lempel-Ziv source codes were empirically demonstrated as being less effective than
source code implementations such as PPM when used to encode practical data [47].
The main advantage of the Lempel-Ziv codes is the low computational complexity of
their implementations [16]. Lempel-Ziv source codes are used in both hardware and
software applications that require the rapid source coding and decoding of sequences.
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The older V.42bis modem standard [68], as well as the more recent V.44 modem
standard [69] incorporate variants of the LZ78 source code. Lempel-Ziv source codes
are also widely used in compression and archiving software utilities such as gzip [58]
(which uses a variant of the LZ77 code) and compress [70] (which uses a variant of the
LZ78 code). The specification of the GIF [71] image file format incorporates a variant
of the LZ78 source code for image compression.
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CHAPTER 3

The Burrows—Wheeler transform

This chapter presents an in—depth study of the literature that is relevant to the
Burrows-Wheeler transform and its application to source coding. The chapter con-
tains a summary of the forward and reverse Burrows—Wheeler transforms, as well as
efficient implementations of these algorithms. A discussion of the statistical properties
of the forward Burrows—Wheeler transform output is provided, and these properties
are expressed mathematically.

The chapter includes a summary of the recency-rank code, which is a transform
often used in Burrows—Wheeler—based source code implementations. The chapter con-
cludes with a summary of an elementary Burrows—Wheeler—based source code and its
components. Several of the variations of the elementary source code that were proposed
in the literature are also considered.

3.1 The Burrows—Wheeler transform

One of the more recent advances in the field of source coding is that of the Burrows—
Wheeler transform, or BWT [9]. The purpose of the BWT is to enable the effective
source coding of sequences from complex sources using simple source codes, but without
redesigning the source codes. This objective is achieved by transforming each ‘complex’
source sequence (i.e. a sequence of symbols that are statistically dependent on one
another) into a ‘simpler’ sequence (i.e. a sequence of symbols with an asymptotically
piecewise independent distribution) prior to encoding it [10].

To illustrate the role of the BWT, suppose that a simple source code is only ef-
fective when used to encode i.i.d. symbols with a biased distribution. When the BWT
is applied to source sequences with higher—order redundancy (i.e. symbols that are
strongly dependent on their preceding contexts), sequences of asymptotically piecewise
i.i.d. symbols are frequently produced [10]. The distribution of the symbols in each
piecewise segment is typically biased, and each segment of the transformed sequence
may be effectively encoded using the simple source code.

The BWT is reversible, and slightly increases the length of the source sequence [10].
This increase is proportional to log, (n) bits, where n is the length of the source sequence
that is to be encoded. Implementations of both the forward and reverse transforms
with computational complexity that increases linearly with respect to the length of
the source sequence exist. The forward and reverse transforms are discussed in greater
detail in the following sections.
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Table 3.1: The first table associated with the forward BWT of the sequence bananas
(adapted from reference [10]). The first symbol of the original sequence (b) is printed
in bold.
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3.1.1 The forward transform

This section contains a description of the forward BWT, as well as a summary of several
forward BW'T implementations. The distribution of the BWT output sequence is also
considered.

3.1.1.1 Description

The forward transform is best described by means of an example. Suppose that the
forward transform is to be applied to the source sequence bananas [10]. The first step
of the forward transform involves the construction of a table (refer to table 3.1). The
original sequence is inserted in the first row of the table. The second row of the table
equals the first row of the table that is cyclically shifted to the left. Similarly, the third
row equals a cyclically left—shifted version of the second row. A table with an equal
number of columns and rows is obtained by repeating the shift operation a number of
times equal to the length of the source sequence minus one.

Let the following context of a specific symbol be defined as the suffix that follows
that symbol in the source sequence. Each row of the table starts with a following context
of the original sequence, and the last column contains the symbol that precedes each
following context (with the exception of the first row). A prefix of the source sequence
follows each following context in the second row to the last row of the table.

The second step of the forward transform consists of lexicographically sorting the
rows of the first table relative to one another (refer to table 3.2 on page 34) [10]. During
this step, all following contexts that are lexicographically similar are placed in adjacent
rows of the table. The final column of the sorted table contains the symbols that precede
the sorted contexts — those symbols that precede lexicographically similar following
contexts are located adjacent to one another in this column. This column is the output
sequence of the forward transform. The forward BW'T of the sequence bananas is the
sequence bnnsaaa, as indicated in table 3.2.

An algorithm for reversing the transformed sequence requires additional information
regarding the row—sorted table in order to successfully perform the reversal [10]. An
integer index is sufficient for this purpose, as demonstrated in section 3.1.2.1. This
index equals the number of the row in the sorted table that contains the original source
sequence, and is known as the BWT index. In the example, the fourth row of table
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Table 3.2: The row—sorted table associated with the forward BWT of the sequence
bananas (adapted from reference [10]). The output sequence of the forward BWT is
printed in bold.
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3.2 contains the original sequence bananas. The BWT index of the example therefore
equals four — the sequence bananas is transformed to the double (bnnsaaa,4), or

BWT(bananas) = (bnnsaaa, 4). (3.1)

3.1.1.2 Implementation

Computationally efficient implementations of both the forward and reverse Burrows—
Wheeler transforms are required in order for these transforms to have any practical use.
The computational complexity as well as the memory requirement of each implementa-
tion have to be considered. The reverse transform is straightforward to implement [16].
Its implementation has a low computational complexity and requires little memory.
It is significantly more difficult to develop an efficient implementation of the forward
transform.

A rudimentary implementation of the forward transform might use tables, as demon-
strated in the example of section 3.1.1.1. This implementation is impractical due to its
memory requirement of O(n?), where n is the length of the source sequence. A practi-
cal implementation has to represent the following contexts of the source sequence in a
more efficient manner.

The computationally intensive routine of the forward transform of a sequence is
typically the sorting of the following contexts of the sequence [16]. To motivate this
statement, consider a digitized colour photograph, which typically contains very long
runs of the same pixel in its raw, uncompressed image format. When sorting contexts
that contain long runs of identical symbols, a typical sort algorithm frequently has to
compare many of these identical symbols in order to resolve comparison ties between
the contexts. The large number of symbol comparisons renders the worst—case compu-
tational complexity of the algorithm unacceptable. Several solutions for this problem
were proposed — these solutions, as well as other techniques for reducing the compu-
tational complexity of the forward transform, are discussed in what follows.

Resolution of comparison ties One approach to improving the worst—case compu-
tational complexity of the sort algorithm lies in the resolution of comparison ties that
occur during the comparison of sequences that contain long runs of identical symbols.
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The symbol runs may be replaced with run lengths (i.e. the source sequence is run—
length coded) prior to applying the forward transform [10]. This approach shortens the
time that the sort algorithm requires to compare similar contexts as it may use the
run lengths to resolve the comparison ties. The use of a run—length code reduces the
effectiveness of the BWT, as it removes symbol contexts from the source sequence [16].

Another approach to reducing the worst—case computational complexity of the sort
algorithm involves the declaration of a maximum sort length [10]. A sort algorithm
compares two contexts of the source sequence up to a number of symbols that equals
the maximum sort length in this approach. If two contexts are identical up to the
maximum sort length, the comparison tie is resolved according to the contexts’ position
in the original source sequence.

Both the run—length code and the maximum sort length approach reduce the com-
putational complexity of the forward transform, but at the cost of reducing the effec-
tiveness of the BWT and therefore a BWT-based source code [16]. Other techniques
for reducing the computational complexity of the forward transform, but which involve
no loss in effectiveness, are summarized in what follows.

Efficient sort algorithms A more efficient sort algorithm may be used in the im-
plementation of the forward transform, instead of relying on a mechanism that resolves
comparison ties during the execution of a conventional sort algorithm [16]. Several sort
algorithms that are relevant to the implementation of the forward transform are pre-
sented in what follows. Sadakane [72] wrote an informative summary of these algorithms
— some of the material from this summary is used in the following discussion.

The Quicksort algorithm [73], which is arguably one of the most popular sort al-
gorithms currently in use, is fairly efficient when used during the forward transform
of most source sequences [9]. Implementations of the Quicksort algorithm also require
relatively little memory. The worst—case computational complexity of this algorithm is
excessive, however. Alternative sort algorithms with improved worst—case performance
should be considered for use in implementations of the forward transform.

The Bentley—Sedgewick algorithm [74] is a practical, general-purpose algorithm for
sorting symbol sequences. It may be interpreted as a combination of the Quicksort [73]
and the most significant symbol (MSS) radix—sort algorithms. The algorithm sorts a
set of sequences in a recursive fashion and with a pivot symbol that is selected at the
start of each instance of the algorithm.

The MSSs of the unsorted sequences are compared to the pivot symbol during the
initial steps of the Bentley—Sedgewick algorithm [74]. The sequences are subsequently
divided into three groups. The groups contain sequences with MSSs that are (respec-
tively) smaller than, equal to, or larger than the pivot symbol. The sequences in each of
these groups are sorted recursively according to their MSSs, except for the sequences
of the ‘equal to’ group, which are sorted according to their second-most significant
symbols.

The Bentley-Sedgewick algorithm eliminates unnecessary comparisons between se-
quences with identical prefixes by placing these sequences within the same group [74].
The efficiency of the algorithm depends on the selection of appropriate pivot symbols,
however. The Bentley—Sedgewick algorithm is used in the BWT-based compression
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and archiving utility bzip2 [42].

The Andersson—Nilsson algorithm [75] is an iterative radix—sort algorithm for a
set of symbol sequences. The algorithm changes the order of the sequences in such a
manner that they are sorted w.r.t. their prefixes of 7 symbols after the ith iteration.
The algorithm assigns the sequences to data structures of two types, namely groups
and buckets. At the end of the ith iteration of the algorithm, each group contains only
sequences that are identical up to their ith MSSs (i.e. the sequences have identical
prefixes of ¢ symbols). Each group may therefore be associated with a distinct prefix
of 7 symbols at the end of the ith iteration, and no two groups are associated with the
same prefix of this length.

All unsorted sequences are assigned to a single group at the start of the algorithm’s
first iteration [75]. During the ith iteration of the algorithm, all sequences with ith MSSs
that are identical are placed within the same bucket, so that each bucket contains only
sequences with the same ith MSSs. The buckets are traversed in lexicographical order
w.r.t. the sth MSSs of their sequences. The sequences in a bucket are returned to the
back of their groups as the bucket is traversed, thereby sorting the sequences in each
group according to their ith MSSs. As the i —1 MSSs of the sequences in each group
are identical, these sequences are sorted up to their 1th MSSs at the end of the ith
iteration of the algorithm.

The algorithm splits each group into subgroups at the end of each iteration [75].
Each of the subgroups contains only sequences with the same prefix of i symbols at
the end of the ith iteration. The subgroups are maintained in lexicographic order w.r.t.
the prefixes shared by their sequences. The algorithm continues to iterate until each
group contains a single sequence. At this point, the sorted set of sequences is obtained
by traversing the groups. Sadakane [72] observed that the computational complexity
of this algorithm is low, despite its conceptual simplicity.

Suffix—sort algorithms The forward transform may be modified in order to reduce
its computational complexity [10]. One such modification involves attaching an ‘end
of file’ (EOF) symbol to the end of the source sequence that is to be transformed. The
EQF symbol may not appear elsewhere in the source sequence, and it is considered to
be the last symbol in the lexicographic order of the symbol alphabet.

Attaching an EQF symbol to the source sequence has two benefits [10]. The first
benefit is the elimination of edge effects. Some contexts of a source sequence may
be sorted w.r.t. symbols that transcend the end of the sequence during its forward
transform. This property is not beneficial to the transform as it implies that the symbols
at the end of the source sequence precede the symbols at the beginning of the sequence.
A comparison between any two contexts would terminate at the EOF symbol should
it be reached. Attaching an EOF symbol to the source sequence therefore delimits the
contexts at the end of the sequence.

The second benefit of attaching an EOF symbol to the source sequence is that it
simplifies the forward transform of the sequence [10]. Instead of sorting all the cyclic
shifts of the original source sequence, the forward transform of the source sequence that
is appended with an EOF symbol involves sorting the n distinct suffixes of the original
source sequence of length n. An efficient implementation of this forward transform may
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be developed, as efficient techniques for sorting the suffixes of a symbol sequence are
available.

Baron et. al. [76] proposed three novel suffix-sort algorithms, and used each of
these algorithms in an implementation of the forward transform. Each algorithm has
a different degree of worst—case computational complexity. The worst—case computa-
tional complexity of each algorithm does not increase linearly w.r.t. the length of the
source sequence, but at a greater rate. The empirical performance of each algorithm
was found to be competitive with the performance of other suffix—sort algorithms, how-
ever. The algorithms make use of a memory—efficient suffix-list data structure, and are
antisequential (i.e. each source sequence is processed in reverse order).

The Karp—Miller-Rosenberg algorithm [77] locates repeating patterns in a symbol
sequence, and may be used to sort the suffixes of a source sequence. The algorithm
is similar to the Andersson—Nilsson algorithm (refer to page 36). It exploits a certain
property of a suffix set in order to sort it more efficiently.

The Karp-Miller-Rosenberg algorithm assigns the suffixes of a source sequence to
groups [77]. Tt iteratively divides the groups in such a manner that each group contains
only suffixes with the same prefix. Only those suffixes that share longer prefixes remain
in the same group as the division of the groups proceeds. After dividing a group, its
subgroups are arranged in lexicographical order according to the prefixes shared by
their suffixes. The groups are divided repeatedly until each group contains only a
single suffix. At this point, the sorted suffix set is obtained by traversing the groups in
lexicographical order.

The algorithm assigns each subgroup a unique integer that represents its rank
among the sorted subgroups at the end of each iteration [77]. It is able to divide
the subgroups with greater efficiency by using these integer ranks. Let the suffixes of a
source sequence be referred to as its primary suffixes. Instead of dividing the subgroups
according to the ith MSSs of their primary suffixes during iteration 4, the algorithm
divides the subgroups according to the suffixes of their primary suffixes. As the suffix
of a primary suffix is another primary suffix, the algorithm compares primary suffixes
according to the integer ranks of the subgroups that contain their suffixes during the
division of a subgroup.

In contrast to the Andersson—Nilsson algorithm, the Karp—Miller—-Rosenberg algo-
rithm sorts the suffixes of each group according to more than one symbol during each
iteration [77]|. The Karp—Miller—Rosenberg algorithm possesses the so—called ‘doubling’
property, which states that the suffixes of each group are sorted according to a prefix
with a length that doubles with each consecutive iteration of the algorithm. The suf-
fixes of a source sequence may be sorted in [log,(n)] iterations of the algorithm, where
n is the length of the source sequence.

The Manber—Myers algorithm [78] uses a variant of the Karp—Miller-Rosenberg
algorithm [77] to sort a suffix set. It assigns the suffixes of a source sequence to groups,
and iteratively divides these groups into smaller subgroups in such a manner that
the suffixes of each subgroup share the same prefix. The subgroups are maintained in
lexicographic order according to the prefixes shared by their suffixes. The algorithm
possesses the doubling property — the suffixes of each group are sorted according to a
prefix with a length that doubles with each consecutive iteration of the algorithm.
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The Manber—Myers algorithm uses what is referred to as a suffix array to divide
each group of suffixes efficiently [78]. Each element of this array is a pointer to the
start of a distinct suffix in the source sequence. The elements of the suffix array are
maintained in lexicographic order according to the prefixes of the distinct suffixes.

The algorithm traverses the suffix array I from its first element to its last element
prior to dividing the groups of suffixes during each iteration [78]. The first element of
the suffix array, I(0), points to a suffix that belongs to the group with the smallest
lexicographical rank. The suffix that starts at index 7(0)—[2°~! | of the source sequence
has the smallest prefix of 2/ symbols of all suffixes in its group at the start of the (i+1)th
iteration. This suffix is moved to the front of its group. The suffix starting at index
I(k) — |2"7!] of the source sequence, for each consecutive value of k, has the next
smallest prefix of 2° symbols of all suffixes in its group at the start of the (i + 1)th
iteration. It is inserted behind the last suffix that was moved towards the front of its
group during iteration ¢ + 1.

The suffixes of each group are sorted up to their prefixes of 2° symbols after the
traversal of the suffix array during the (i + 1)th iteration [78]. The algorithm divides
each group according to these prefixes, and arranges the subgroups in lexicographic
order according to the prefixes of their suffixes. It rearranges the elements of the suffix
array in lexicographic order prior to starting the next iteration.

The pointers to the suffixes of a source sequence may be stored in a tree data
structure instead of an array data structure [54]. A suffix tree is a data structure with
a root node, internal nodes and leaf nodes. The nodes of the tree are connected with
edges, and each edge is associated with a subsequence of the source sequence. Each
edge is labelled with the subsequence that is associated with it.

Each leaf node of a suffix tree is associated with a distinct suffix of the source
sequence — the suffix is equal to the concatenation of the edge labels along the path
from the root node of the suffix tree to the leaf node [54]. The internal nodes of the
suffix tree are arranged in such a manner that those suffixes with a common prefix
share the edges associated with the prefix. The suffix tree of the sequence abcabcabc$,
where $ denotes the EOF symbol, is presented in figure 3.1.

The suffixes of a source sequence may be sorted by using the suffix tree of the
sequence [10]. Let all edges that depart from the same internal node of the suffix tree
of a source sequence be ordered lexicographically according to their labels. If the suffix
tree is traversed in a depth-first manner from its root node to its leaf nodes, the ith
leaf node that is encountered during the traversal is associated with the ith smallest
suffix of the sequence.

If all edges that depart from the same internal node of a suffix tree are not ordered
lexicographically, the labels of these edges have to be compared in order for the edges
to be traversed in a lexicographical order. All comparisons between edges that depart
from the same node of the suffix tree are trivial, as each of these edges has a label with
a distinct MSS. All edges that depart from the same internal node of the tree have
labels with distinct MSSs, as edges with the same parent node and with labels that
share the same MSS would have been merged during the construction of the tree.

McCreight [54] proposed an efficient, iterative algorithm for the construction of the
suffix tree of a source sequence. The algorithm inserts a distinct suffix of the source
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abc $
be c
$ $ $
abe abe abe
$ $ $
abc$ abc$ abc$

Figure 3.1: The suffix tree of the sequence abcabcabc$.

sequence into an initially empty tree during each iteration. The suffixes are inserted
into the tree in ascending length order. The algorithm inserts certain suffixes more
efficiently into the suffix tree by exploiting certain properties of suffixes with identical
prefixes, and by incorporating additional information into the tree structure.

The construction and the depth—first traversal of a suffix tree may be performed
with a worst—case computational complexity of O(n) and with O(n) memory, where
n is the length of the source sequence [54]. Suffix trees typically require three to five
times as much memory as suffix arrays [78]. Both suffix trees and suffix arrays require
memory that increases only linearly with respect to the length of the sequence, however.

3.1.1.3 Output distribution

Source codes are designed to effectively encode sequences from a certain probabilistic
information source or a certain class of sources. Sources vary from those that are very
simple to those that have a more complex structure. A simple source may produce
i.i.d. symbols according to some distribution, while some of the more complex sources
produce symbols that are statistically dependent on one another.

The performance of a source code that is used to encode sequences from an abstract
source provides a general indication of its performance should it be used to encode real—
life data. T'wo of the more complex source models are introduced in this section. These
models produce symbols with statistical properties that match those of real-life data
such as English text more closely than many of the simpler sources [10].

Finite state machine sources A finite state machine (FSM) source is characterized
by a finite set of states S, a finite alphabet A, a next—state function f : Sx A — &, and
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the conditional probability mass functions p(z|s), z € A, s € S [10]. The probability
of the source producing the sequence x™ = {x1,xs,...x,}, conditioned on the initial

state sg) , equals

n

Pr(x"[sy’) = [ [ p(z:ls)). (3.2)

i=1

where sz(»t) =f (sﬁt_)l, z;), and SZ@ denotes the state in which the source resides during
the 7th time instant.

Finite-order finite state machine (FSMX) sources constitute a subset of the class of
FSM sources [10]. The m most recent symbols produced by an order—m FSMX source
uniquely determine the current state of the source. The state set S of a FSMX source
is a minimum suffix set of sequences — this implies that, for every symbol x where
p(z|s) # 0 with s € S, the sequence sz has exactly one suffix that is present in S. The

next—state function of the FSMX source may be expressed as

st = (s )
= suf(s(t)lazi), 1<i<n, (3.3)

11—

where suf (sgt_)lazl) is the suffix of the concatenation of the sequence Sgt_)l and the symbol

Z;.

Finite-memory and tree sources The transition to the next state of both FSM
and FSMX sources depends only on the most recent state and the most recent symbol
produced by the source. Certain authors consider this condition to be restrictive and
unnecessary [10]. Source models that are not restricted by this condition were proposed
in the literature [79,80]. Two of these source models are discussed in what follows!.

Effros et. al. [10] made use of what is referred to as finite-memory sources in ana-
lyzing BWT-based source codes. This source class may be regarded as a generalization
of the class of FSMX sources. The next-state function of an order—m finite-memory
source depends on at most the m most recent symbols produced by that source. This
relationship may be expressed as

Sl(t) = Suf(xi_m+113i_m+2 .. Il) (34)
The states S,gt) are the finite-length symbol contexts of the source, and each context
has a certain symbol distribution associated with it.

Finite-memory sources are very similar to tree sources. A tree source is character-
ized by a tree data structure [81]. This data structure has a root node, internal nodes
and leaf nodes. Parent nodes are connected to child nodes with edges, and each edge
is associated with a single symbol of the source alphabet. Any edge symbol is unique
among the symbols of the edge’s siblings. Each node of a g—ary tree source has at most
q child nodes. All the internal nodes of a full g—ary tree source, including the root node,
have exactly ¢ child nodes.

Assume that each tree node is associated with a symbol sequence that equals the
concatenation of the edge symbols that are encountered upon traversing the tree from

1This thesis uses the definitions of these source models that appear in references [10,81].
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Figure 3.2: An example of a full binary tree source and its minimum suffix set [81].

its root to the specific node [81]. The sequences that are associated with the leaf nodes
of a full g—ary tree may be used to construct a minimum suffix set. The suffixes of this
set are equal to the sequences that are associated with the leaf nodes, but in reverse
order. An example of a full binary tree source, with a minimum suffix set that was
derived from it, are presented in figure 3.2 on page 41.

The sequences that are associated with the leaves of the full g—ary tree source are
referred to as the states of the source [81]. Each state of a full g—ary tree source of
depth m has a maximum length of m symbols. Each state of the tree source is assigned
a certain probability mass function p(z|s), where x € A and s € S. A source symbol is
generated according to the probability mass function of the state in which the source
currently resides.

A unique state—transition pattern is associated with each sequence produced by the
source [81]. The next state of the source depends on at most the previous m symbols
produced by the source. This relationship may be expressed as

s = R(suf(Ziomi1, Tiompzs - - - T1)), (3.5)

where R(:) denotes sequence reversal. This equation is equivalent to the expression
for finite-memory sources (refer to equation 3.4) [10,81]. It follows that the minimum
suffix set of the tree source is equal to the source’s set of preceding contexts.

The probability of a tree source producing a certain sequence x™ equals

n

Pr(x"|s)) = [ [ p(ails)). (3.6)

i=1
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This equation is identical to the equation for finite-memory sources [10,81].

The primary difference between a tree source and an FSM source is the fact that a
state transition of an FSM source depends only on the most recent state and the most
recent symbol that the source produced [10,81]. A state transition of a tree source may
depend on up to m of the most recent symbols that the source produced, where m
is the depth of the tree. As an example, consider the tree source of figure 3.2, which
has a depth equal to three. The states of this tree source are 0, 100, 101 and 11. The
preceding contexts that are associated with the states are 0, 001, 101 and 11. Assume
that the tree source is in context 0 at some point in time, and that it produces the
symbol 1 while in that context. The length-three suffix of the symbol sequence equals
x;_201, where x;_5 is the last symbol that was produced prior to entering state 0. The
transition to the next state of the tree source clearly depends on the symbol z;_5 and
not only on the most recent context (0) and symbol (1), as the next context may only
equal 001 or 101.

If a tree source cannot be represented as an FSM source, it may be extended in
order to represent it as an equivalent FSM source [81]. The extension process consists
of adding additional nodes to the tree source. Several definitions that are required in
order to summarize the extension process are provided in what follows.

Assume that the set 7 defines a tree source with tree nodes ¢t € T [81]. A tree
defined by 77 is said to be a refinement of the tree defined by 7 if 7 C T'. Let the
set of leaf nodes of the tree defined by 7 be expressed as L. Furthermore, for each
[ € L, let suf.(l) denote a set that contains all the suffixes of the sequence that is
associated with the leaf node [, and let £ = {J,..sufc(l).

A refined tree 7' that is defined as 7/ = T U & is referred to as the FSM closure of
the tree source defined by 7 [81]. The FSM closure of a tree source 7 is the smallest
possible extension of the tree 7 that may be successfully represented as an equivalent
FSM source. All state transitions of the extended tree source depend on only the most
recent state of the source, as well as the most recent symbol that the source produced.

To illustrate the tree extension process, consider the tree source of figure 3.2 [81].
The union of all the suffixes that are associated with all the leaf node sequences is
given by £ = {0, 1, 11, 100, 101, 00, 01}. The only sequences in this set that are not
associated with nodes in the tree source of figure 3.2 are 00 and 01. The FSM closure
of the tree source is obtained by adding the leaves that are associated with these
sequences to the tree. The FSM closure of the tree source of figure 3.2 is presented in
figure 3.3. The extended tree may be represented as an equivalent FSM source using a
state-transition diagram, as demonstrated in figure 3.4 on page 43.

The forward transform of finite—memory source sequences Researchers in-
vestigated the distribution of the BWT output sequence in order to motivate the per-
formance of BWT-based source codes. Effros [82] and Viswesvariah et. al. [83] inves-
tigated the distribution of the BWT output sequence when the transform is applied
to sequences from various sources. In a comprehensive paper regarding BWT-based
source codes, Effros et. al. [10] statistically characterized the output of the forward
BWT when applied to source sequences produced by finite-memory sources. This sec-
tion summarizes these characteristics.
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Figure 3.3: FSM closure of the binary tree source of figure 3.2 [81].

Figure 3.4: The state-transition diagram of the FSM closure of figure 3.3.
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The theoretical investigation of the BWT, as performed by Effros et. al. [10], as-
sumes that the source sequences are reversed and subsequently appended with the
EOF symbol before being transformed. The reversal of a source sequence causes the
reversed preceding contexts of the sequence to be sorted relative to one another during
the forward transform?. The forward transform is expressed as

(2", 7) = BWT(R(X™)$), (3.7)

where $ represents the EOF symbol, X™ is the source sequence, R(-) denotes sequence
reversal, Z"*! is the transformed source sequence, and Z is the index of the original
source sequence in the sorted transform table (i.e. the BWT index).

As row Z of the sorted table contains the original sequence, the EOF symbol is the
final symbol in this row. The Zth symbol of the transformed sequence therefore equals
the EOF symbol. The n—symbol sequence W", which is defined as

W" = {Z1,Zy,... Z7-1, Z141, .. . Zps1}
= {Z%_lvzgii}v (3'8)

does not contain the EOF symbol. The source sequence X" may be obtained from the
sequence W" by first inserting the EOF symbol at index Z of this sequence, and subse-
quently performing the reverse transform on this sequence. The probability distribution
of the sequence W™ is derived in this section.

In order to derive a probability distribution for the BWT output sequence, it is
necessary to investigate how the addition of the EOF symbol to the reversed source
sequence affects the forward transform [10]. The change in the forward transform is
explained in what follows. Observe that there are m rows in the sorted transform table
with the EOF symbol present among the first m symbols of the row, and n —m+1 rows
that do not share this property (m is the length of the longest context of the source). As
the minimum suffix set associated with the finite-memory source is complete, a prefix
of each of the n —m + 1 rows with no EOF symbol among the initial m symbols equals
a reversed version of one of the suffixes in the minimum suffix set of the source. Next
consider one of the m rows with the EOF symbol present among its initial m symbols.
It is possible that no prefix of this row equals a reversed version of any suffix in the
minimum suffix set of the source. If this is the case, the last symbol of this row will
be associated with a context that is not related to one of the contexts of the original
source during the forward transform of the sequence. Let the set Q¢ be defined as

QC = {(Xi—l7Xi—27 .. 'X27X17 $)
1 S'&Sm A [(Xi_l,Xi_Q,...Xl)#R(S) VSES]},
(3.9)

and let @' = QU Q°, where Q = {R(s) : s € S}. It follows that

Q] < [8] +m. (3.10)

2The conclusions that follow also apply to source sequences that are not reversed prior to the
forward transform [10]. This observation is a consequence of the fact that any reversed finite-memory
source sequence is equivalent to a sequence from a (possibly different) finite-memory source.
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Effros et. al. [10] proved that the distribution of the BWT output sequence, when
applied to a finite—-memory source sequence, equals

CT+ —1

H H (WilR(d})), (3.11)

where C' = [Q'| < |S| +m, q; € Q' and the sequences q;; are sorted in ascending
order w.r.t. the integer j. The distribution p(W;|R(qj})) is the conditional distribution
associated with state R(qj) of the finite-memory source. The integer T be defined as

n j—1

=1+ 303 1pre(X5) = q)), (3.12)

i=1 k=1

where pre(-) denotes the prefix of a sequence, and 1(-) equals unity if its argument is
true (and zero if not). The integer T} equals the index of the first symbol in the BWT
output sequence that precedes context q; in the reversed source sequence.

Equation 3.11 resembles the distribution of a piecewise independent and identically
distributed (p.i.i.d.) symbol sequence [10]. Each piecewise segment consists of only those
symbols that occur within a certain source context, or state. A remarkable aspect of the
BWT is that it is able to produce output sequences with the distribution of equation
3.11, but without the algorithm requiring any apriori knowledge of the finite-memory
source or its parameters.

Effros et. al. [10] observed that the distribution of equation 3.11 differs from that of
a true p.i.i.d. symbol sequence in certain aspects — the interested reader is referred to
reference [10] for details regarding the differences. Viswesvariah et. al. [83] investigated
the normalized Kullback—Leibler divergence between the BWT output distribution and
a p.i.i.d. distribution, and found that it converged to zero as the source sequence length
tended to infinity. It was proved that

D(Pr(Y")||R) < (3.13)

=k

for some constant ¢, where R is a p.i.i.d. symbol distribution, D(-) is the Kullback—
Leibler divergence, and Y™ is the output sequence of the BWT when applied to a
reversed source sequence.

3.1.2 The reverse transform

This section is a summary of the reverse BWT and its implementation.

3.1.2.1 Description

The original source sequence may be recovered from the BW'T output sequence and
the BWT index by using two observations regarding the transformed sequence [16]:

1. The transformed sequence is a permutation of the original sequence.
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Table 3.3: The first (a) and second (b) tables of the reconstruction of the original
sequence bananas (adapted from reference [10]).

b a b
n a n
n a n
S — b S
a n a
a n a
a S a

Table 3.4: The third (a) and fourth (b) tables of the reconstruction of the original
sequence bananas (adapted from reference [10]).

D vl ln | B|B|T
2 = =N ol [ [ eV
2N = e R ol [« [« eV
Tlojlololn | BB
D Iyl | B|IB|T

2. The first symbol of each following context may be obtained by sorting the trans-
formed sequence.

The reverse transform is carried out by iteratively reconstructing the table that contains
the sorted contexts (refer to table 3.2 on page 34). Once the table is reconstructed, the
BWT index is used to obtain the original sequence from the table.

The reverse transform is illustrated by the same example that was used to illustrate
the forward transform [10]. The first step of the reverse transform is to place the
transformed sequence bnnsaaa in the final column of an empty table (refer to table
3.3(a) on page 46). As the first column of the original table contains the sequence in
lexicographical order, and the final column is a permutation of the original sequence,
the first column equals the final column that is sorted lexicographically.

As the rows of the original table of sorted contexts are the cyclic shifts of the
original sequence, the symbols in the final column of the table precede those in the first
column [10]. The second table (table 3.3(b)) therefore contains all pairs of symbols that
appear next to each other in the original sequence. If these symbol pairs are sorted, the
first two columns of the original table are obtained. The columns of the second table
are therefore cyclically shifted to the right (refer to table 3.4(a)), the rows of this table
are sorted, and the transformed sequence is placed in its final column. The result is the
fourth table of the reverse transform (refer to table 3.4(b)).

From this point onwards, the remainder of the original table may be reconstructed
by iteratively [10]

1. shifting all columns of the table one column to the right (in a cyclic fashion),
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Table 3.5: The fifth (a) to twelfth (h) tables of the reconstruction of the original se-
quence bananas (adapted from reference [10]). The recovered sequence is equal to the
fourth row of the final table (bananas), and is printed in bold.

bla|n a|n|a b
n|lal|n a|n|a n
njajs a|s|b n
s|b|a — bla|n S
aln|a nlajln a
aln|a nilajls a
als|b s|bla a
v
bla|n|a a|ln|a|n b
njalnla al|nlals n
n|lal|s|b a|ls|b|a n
s|bla|n — bla|n|a S
a/nlaln nla|nja a
ajnlals njals|b a
als|bla s|bla|n a
v
bla|n|a|n aln|aln|a b
nlaln|als aln|lal|ls|b n
n|jla|s|b|a als|bla|n n
s|blaln|a — bla|n|a|n S
aln|a|n|a nla|njals a
alnlals|b njals|bj|a a
als|bla|n s|bla|n|a a
v
bla|ln|la|n|a aln|laln|lal|ls|b
nja|ln|lal|s|b alnlal|s|blaln
nlfals|bla|n als|blaln|aln
s|blaln|a|n — bla|n|a|n|a]|s
alnlaln|als njajnjal|s|bj|a
a/nljals|b]a njals|bla|n|a
als|blaln]a s|bla|n|a|n|a

2. sorting the rows of the table, and
3. inserting the transformed sequence into the final column of the table.

The reconstruction of the original table that contains the sorted contexts of the se-
quence bananas is completed in tables 3.5(a) to 3.5(h) on page 47 [10]. Upon complete
reconstruction of the original table, the BWT index is used to obtain the original
sequence from the table — in the case of the example, the index equals four. The
recovered sequence is therefore the fourth row of the reconstructed table, or bananas.
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The reverse transform may be expressed as

BWT™!(bnnsaaa, 4) = bananas. (3.14)

3.1.2.2 Implementation

The reverse transform has a straightforward and computationally simple implementa-
tion [16]. The computational complexity of the implementation increases linearly w.r.t.
the length of the source sequence. Instead of iteratively reconstructing the columns
of the sorted table as demonstrated in section 3.1.2.1 and tables 3.3(a) to 3.5(h), the
reverse transform may be carried out by iteratively traversing the symbols of the trans-
formed sequence.

The key to developing an efficient implementation of the reverse transform is an
observation regarding the first and final columns of the sorted table (refer to table 3.2
on page 34) [16]. The ith occurrence of any alphabet symbol a in the final column of
the table has the same index in the source sequence as the ith occurrence of the same
alphabet symbol a in the first column of the table. To prove this statement, observe that
all the a symbols in the first column are lexicographically sorted relative to one another
according to the symbols that follow them. The proof of the statement follows from
the fact the symbols of the last column precede the symbols in the first column, and
that all the a symbols in the final column are sorted relative to one another according
to the symbols that follow them.

The iterative traversal of the transformed symbols is carried out as follows [16].
The transformed sequence is sorted to obtain a sequence equal to the first column of
the sorted table. The BWT index that was produced during the forward transform
is subsequently used. The symbol that occurs at this index of the sorted sequence is
the first symbol of the original sequence. The symbol that matches this first symbol is
located in the transformed sequence. Suppose that this symbol is present at index m
of the transformed sequence. As the symbol at index m of the sorted sequence follows
the first symbol of the original sequence, the second symbol of the original sequence is
recovered. The symbol that matches this second symbol is subsequently located in the
transformed sequence. These steps repeat until the entire sequence has been recovered.

3.2 The recency-rank code

This section contains a summary of the recency-rank code, which was proposed by
Elias [84]*. The recency-rank code forms part of many BWT-based source codes, and
is typically used to encode the BWT output sequence [16]. The recency-rank code is
also known as the move-to—front code or the book—stack code in the literature.

The recency-rank code is not a conventional source code as it does not assign shorter
codewords to certain sequences, and longer codewords to others [84]. It replaces each
symbol of the input sequence with an integer, and is reversible. The recency-rank code

3Elias [84] actually proposed two related codes, namely the recency—rank code and the interval
code. The interval code is of lesser importance than the recency—rank code as it has certain negative
properties. It is only mentioned briefly in this thesis.
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is therefore equivalent to a transform — the terms ‘recency-rank code’ and ‘recency—
rank transform’ are used interchangeably in the remainder of this thesis.

The purpose of the recency-rank code is to produce a sequence of integers with
a distribution that is more stationary than the symbol distribution of its input se-
quence [85]. It converts the local stationarity of certain input sequences to a global
stationarity [86]. The integer sequences may be encoded with reasonable effectiveness
using a nonadaptive source code, as the source code need not constantly adapt to a
changing symbol distribution.

The operation and implementation of the recency-rank encoder and decoder are
summarized in this section. The distribution of the recency-rank encoder output se-
quence, in the case of the code being applied to both i.i.d. and p.i.i.d. sequences, is also
investigated.

3.2.1 The forward transform

The forward recency-rank transform is summarized in this section. The summary in-
cludes a description of the transform and its implementation. The distribution of the
recency-rank encoder output sequence is also considered.

3.2.1.1 Description

The encoders of the interval and recency-rank codes, when applied to the input se-
quence X" = {xy, Za, ... x,}, produce the n—element integer sequences { fin: (1), fint(z2),
o Jimt(zn) } and { frr(21), for(x2), . .. fror(x,)} respectively [10]. The integer fin(z;) of
the interval coded sequence equals the number of symbols that have occurred since
the previous occurrence of symbol z; in the input sequence. The integer f,..(x;) of the
recency-rank coded sequence equals the number of distinct symbols that have occurred
since the previous occurrence of symbol z; in the input sequence. The integers of the
transformed sequences may be mathematically expressed as

fint () = min{k > 1: 2, ), = 2} (3.15)

and
for(x)) = g 00— fia(mi) < k <4} (3.16)

The forward transforms are carried out in a symbol-by—symbol fashion, starting with
the first symbol in the input sequence, and ending with the final symbol in the sequence.

Three relevant observations regarding interval and recency-rank codes are provided
below.

1. Interval coding produces integers that may be as large as the length of the input
sequence [84]. In contrast to interval coding, recency-rank coding produces a
maximum of | A| distinct integers, where |A| equals the number of symbols in the
source alphabet.

2. It was proved that f..(z;) < fiu(z;) for all ¢ [10]. Any source code for integer
sequences that produces codewords with lengths proportional to the magnitude of
the integers will therefore have a shorter or equal average codeword length when
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applied to recency-rank coded sequences, instead of interval coded sequences
(assuming both codes are applied to the same sequences).

3. The definitions of both the interval and recency-rank codes assume that all sym-
bols in the alphabet have been encountered previously at all indices of the input
sequence. This assumption does not hold true at the beginning of the input se-
quence. The issue may be resolved by assuming that all alphabet symbols occur,
in order from the lexicographically largest to the lexicographically smallest, im-
mediately prior to the first symbol of the input sequence.

The remainder of this thesis will follow the example of Effros et. al. [10] and disregard
interval codes, due to their negative properties.

3.2.1.2 Implementation

The forward recency-rank transform has a straightforward yet efficient implementa-
tion [16]. Assume that the source alphabet contains k& symbols. The implementation
first initializes a k—element symbol array with element i equal to the (i 4+ 1)th lexico-
graphically smallest symbol of the alphabet, where 0 < ¢ < k— 1. This array is referred
to as the rank array for the remainder of this thesis. The elements of the rank array
are updated after transforming each input symbol so that the symbol at index i of the
array has a recency rank of 7, where 0 < ¢ < k — 1. The symbol at the front of the rank
array is the most recent alphabet symbol in the input sequence, and the symbol at the
back of the rank array the least recent alphabet symbol in the input sequence.

The implementation processes the symbol sequence iteratively in a symbol-by—
symbol fashion [16]. At the start of the ith iteration, it locates symbol z; in the rank
array. Suppose that symbol z; is located at index j of the rank array. The integer
j, which equals the rank of symbol z;, is the ith output integer produced by the
implementation. The rank array is subsequently updated by moving symbol x; to the
front of the rank array (i.e. it is assigned a rank of zero). All elements of the rank array
with index smaller than j are shifted one step towards the back of the array. Symbol
x; therefore becomes the symbol with the lowest rank, and all symbols that were
initially of lower rank have their ranks incremented by one. The algorithm proceeds
by transforming the remaining symbols of the input sequence, and updating the rank
array after transforming each symbol.

Instead of searching for the location of symbol x; in the rank array during iteration
i, the algorithm may ‘look up’ the location of the symbol using another array [16]. To
illustrate the symbol lookup process, suppose that the algorithm maintains a separate
k—element lookup array. Element i — 1 of this lookup array contains a pointer to the
location, in the rank array, of the ith lexicographically smallest alphabet symbol. This
approach allows for swift access to the symbols in the rank array. It has the drawback
of having to update the lookup array at the end of each iteration, which increases
the computational complexity of the forward transform. It was demonstrated that an
implementation which uses the lookup array approach requires more processing time
to transform typical sequences than the original implementation, provided the symbol
alphabet is not excessively large.
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3.2.1.3 Output distribution

The distribution of the recency-rank encoder output sequence depends largely on the
distribution of the input sequence to which it is applied. The transform of i.i.d. input
symbols, as well as p.i.i.d. input symbols is considered in this thesis.

The forward transform of i.i.d. input symbols Suppose that a certain source
produces a sequence of i.i.d. symbols. Upon applying the recency-rank transform to the
sequence, a dependency is typically introduced between each symbol of the sequence
and one or more of the symbols that precede it in the sequence [10]. The rank that is
assigned to each symbol is therefore a function of the symbols that precede it in the
sequence. This property also applies to the probability distribution that is associated
with the rank of each symbol.

The fact that a symbol depends on its predecessors in the input sequence implies
that the rank probability distribution changes from symbol to symbol [10]. In order to
effectively encode an i.i.d. sequence that was transformed using the recency-rank code,
a source code that is able to resolve the dependency between a source symbol’s rank
and the ranks of its predecessors is required. If a rudimentary source code for i.i.d.
sequences is used to encode the recency-rank encoder output, the code may be less
effective compared to the case where the source code is applied to the untransformed
sequence.

The forward transform of p.i.i.d. input sequences Suppose that the recency—
rank transform is applied to a sequence of p.i.i.d. symbols, and that the symbol dis-
tribution of each piecewise segment is highly biased. The ranks assigned to the sym-
bols of each piecewise segment of this sequence will typically have a nonincreasing
probability distribution over increasing rank, due to the bias of each segment symbol
distribution [16]. As each segment symbol distribution becomes more biased, the rank
distribution associated with the symbols within each segment typically becomes more
biased towards lower ranks.

The transitions between the piecewise segments of a p.i.i.d. symbol sequence are
of interest to the characterization of the recency-rank encoder output sequence [16].
If two neighbouring segments have similar symbol probability distributions, the rank
array will not be significantly reordered as the implementation begins to transform the
second segment. This observation suggests that the rank distribution does not change
significantly between the two segments. If the two neighbouring segments have dissimi-
lar symbol distributions, significant reordering of the rank array typically occurs as the
implementation begins to transform the second segment. This reordering of the rank
array produces a short burst of high—valued ranks at the initial symbols of the second
segment. As the transform of the second segment proceeds, less significant changes
are made to the rank array, and the rank distribution again assumes a nonincreasing
profile.

If the recency-rank transform is applied to a sequence of piecewise i.i.d. symbols,
the distribution of its output ranks is typically nonincreasing [16]. The sequence of
ranks typically contains short bursts of high—valued ranks at the transition points be-
tween some of the piecewise segments. Some authors neglect to mention the bursts of
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high—valued ranks in their characterization of the output sequence, and state that the
recency-rank transform shifts the local stationarity of the input sequence to a global
stationarity [86], or that the rank distribution is more stationary than the distribu-
tion of the input symbols [85]. While these statements are true, it is important to
remain aware of the bursts of high—valued ranks between segments, as these bursts are
problematic for some statistical encoders.

3.2.2 The reverse transform

The reverse recency-rank transform is summarized in this section. The summary in-
cludes a description of the reverse transform and its implementation.

3.2.2.1 Description

The original sequence is recovered symbol-by—symbol from the sequence of ranks, start-
ing with the first rank and ending with the final rank in the sequence [16]. To reverse
transform the rank j at index i of the transformed sequence, the algorithm finds the
(7 + 1)th distinct symbol in the recovered sequence, moving backward from symbol
i—1 to the first symbol of the recovered sequence. The (j+ 1)th distinct symbol equals
the recovered symbol at index i of the recovered sequence, or z;.

The reverse transform assumes that the alphabet symbols appear in order from the
lexicographically largest to smallest immediately prior to the first symbol in the original
input sequence [16]. This assumption guarantees the successful recovery of the input
sequence, provided the forward transform was carried out under the same assumption.

3.2.2.2 Implementation

In order to recover the symbol z; from the rank j at index ¢ of the transformed sequence,
an implementation of the reverse transform may search for the (j+ 1)th unique symbol
in a backward direction starting at index ¢—1 of the recovered sequence. An alternative
to searching for each symbol is to use the rank array [16]. The rank array is initialized at
the start of the reverse transform, and in the same manner as in the forward transform.

The implementation of the reverse transform operates as follows [16]. Each rank is
reverse transformed, starting at the first rank of the transformed sequence and pro-
ceeding to the last rank of the sequence. Upon encountering the rank j at index ¢ of the
transformed sequence, the symbol at index j of the rank array is accessed. The symbol
present at this index of the array is the recovered symbol at index ¢ of the recovered
sequence. The rank array is updated in an identical fashion to the rank array of the
forward transform after recovering each symbol.

3.3 BWT-based source codes

This section concerns source codes that make use of the Burrows—Wheeler transform. A
block diagram of an elementary BWT—based source code is used to illustrate the design
of these codes, and to present the basic properties of these codes. Many alterations and
additions to the elementary BWT—-based source code were proposed in the literature.
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Figure 3.5: A block diagram of an elementary BWT—based source code [16].

The purpose of these modifications is to improve the performance of the elementary
code — the more significant modifications are summarized at the end of this chapter.

3.3.1 The elementary BWT—-based source code

The elementary BW'T-based source code that is discussed in this section is similar to
a source code that was examined by Fenwick [16]. A block diagram of the elementary
source code is presented in figure 3.5 on page 53. Each block of the elementary source
code is discussed in what follows.

3.3.1.1 The data source

This thesis is ultimately concerned with the source coding of sequences from abstract
data sources with memory. Tree sources are considered, as this type of source produces
symbol sequences with statistical properties that are similar to those of real-life data
such as English text [10]. Sequences from those sources that produce independent
symbols do not accurately represent this type of data. The discussion of the elementary
BWT-based source code assumes that an appropriate tree source produces the source
sequence that is to be encoded.

Effros et. al. [10] stated that the symbol contexts present in practical data such as
English text are typically quite long. To illustrate this property, consider reading the
first half of a very long sentence and having to predict the next word of the sentence.
The next word of the sentence is best predicted by examining as many of the words of
the first half of the sentence as possible. If one only reads the final few words of the first
half of the sentence, one typically cannot predict the next word with great accuracy.

Effros et. al. [10] observed that few distinct symbols typically appear in a symbol
context of English text. This property implies that an accurate model of the practical
data would define a biased distribution for the symbols that occur in each context, or
keep many of the alphabet symbols from occurring in each context.

3.3.1.2 The forward BWT

The first step that the elementary source code carries out is the application of the
forward Burrows-Wheeler transform to the source sequence [16]. The symbols of the
BWT output sequence are asymptotically (w.r.t. the length of the sequence) p.i.i.d.,
as the source symbols that are produced in each context of the source are i.i.d. [10].
The forward transform places those source symbols that share a common context in
the same piecewise segment of the transformed sequence.
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The usefulness of the BWT lies in two properties of its output sequences [10]. The
first property is the statistical independence between the symbols in each piecewise seg-
ment of the output sequence. The second property is the stationary nature of the symbol
distribution within each piecewise segment of the output sequence. The effective source
coding of the BWT output sequence is (typically) computationally less complex and
more straightforward than the effective source coding of the original source sequence.
The BWT provides elementary source codes the ability to remove a large fraction of
the redundancy from the source sequences, without having to construct and maintain
a complex model of the source.

The BWT transforms source sequences without any prior knowledge of the source
statistics [10]. In practice the source encoder has no prior knowledge of the symbol
distribution that is associated with the sequence it is to encode. Without knowledge
of the underlying source model, the locations of the transition points between the
piecewise segments of the BWT output sequence are unknown. The source coding
of the BW'T output, when applied to real-life data, is complicated by the fact that
the transition points between its piecewise segments are unknown. Many BWT-based
source codes maintain a simple model of the BW'T output that depends exclusively on
the local statistics of the BWT output sequence [85].

If the BWT is applied to sequences from accurate source models of English text, its
output typically contains runs of identical symbols within one or more of its piecewise
segments [16]. This is a consequence of the fact that only a few distinct alphabet
symbols occur in many of the contexts of a source that accurately models English
text [10]. This property may be exploited to improve the effectiveness of the BWT—
based source code.

The forward transform is ideally carried out over the entire source sequence that is
to be encoded. This approach is not necessarily practical, as the memory required by the
forward BWT implementation is proportional to the source sequence length, and may
become excessive [10]. Practical implementations of BWT-based source codes, such
as the bzip2 compression and archiving software utility, uniformly divide the source
sequence into blocks of a certain length [87]. Each block is transformed independently
from the other blocks, after which the entire sequence is source coded [10].

3.3.1.3 The recency-rank encoder

The second step that the elementary source code carries out is the recency-rank coding
of the BWT output sequence [16]. The recency-rank encoder transforms the locally
stationary output of the BWT into a sequence that is nearly stationary over its entire
length [86]. It transforms runs of identical symbols in the BWT output sequence into
runs of the rank zero [16]. Long segments that contain only a few distinct symbols
are transformed into segments of equal length that contain lower—valued ranks. The
symbol distribution of the recency-rank encoder output sequence is typically biased
towards lower-valued ranks.

The symbol distributions of the piecewise segments in the BWT output sequence
can often be distinguished from one another, whereas the rank distributions of the
piecewise segments are often indistinguishable. Some source encoders for the recency—
rank encoder output sequence encode all ranks according to a source model with a
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single, zero—order context [16]. The rank distribution of the model is updated to reflect
the local distribution of the sequence as its source coding proceeds. The recency-rank
encoder output may, in some cases, be encoded effectively using a source code that
does not adapt to any changes in the rank distribution of the sequence. An example of
this type of source code is an integer code, which was considered by Effros et. al. [10]
for encoding the recency-rank encoder output.

Fenwick [16] observed that the recency—rank encoder output consists of low—entropy
intervals and short, high—entropy intervals located in between the low—entropy intervals.
The high—entropy intervals correspond to the transition points between the piecewise
segments of the BWT output sequence. These intervals contain distinct high-valued
ranks that are produced as the rank array is rearranged to match a new symbol dis-
tribution during recency-rank coding. The rank array is typically rearranged when
the recency-rank encoder moves from one segment in the BWT output sequence to
another. The short bursts of high-valued ranks in the recency-rank encoder output
are problematic to certain adaptive source codes. These issues are discussed in section
3.3.1.4.

While the recency-rank encoder greatly simplifies the coding of the BW'T output
sequence, it does have a drawback. It introduces a dependency between each symbol
in the BWT output sequence and all the symbols that precede it in the sequence [10].
An optimally effective source code would need to resolve the dependency between the
symbols in order to source code the sequence. This requirement implies a less straight-
forward and computationally more complex source code. Effros et. al. [10] suggested
that the recency-rank encoder only be used if it can produce a nonasymptotic gain in
coding effectiveness.

The previous observation regarding the optimal source coding of the recency-rank
encoder output motivated the development of BWT-based source codes that omit the
recency-rank encoder. Effective BWT—-based source codes that do not use the recency—
rank encoder were demonstrated [16,88]. The recency-rank encoder nevertheless forms
part of many BWT-based source codes. Several improvements and alternatives to the
basic recency-rank encoder are presented in section 3.3.2.3 on page 65.

3.3.1.4 The source encoder

Early BWT-based source codes used arithmetic codes with a variety of source models
to encode the recency-rank encoder output sequence (refer to figure 3.5). Fenwick [16]
initially used the CACM arithmetic encoder of Witten et. al. [89], and subsequently
used an improved version of the same encoder (which was developed by Moffat et.
al. [90]). The improved version of the CACM encoder was intended for use in a PPM
implementation, and proved to be significantly less effective when used to encode the
recency-rank encoder output sequence than the original CACM encoder [16].

The poor performance of the improved CACM arithmetic encoder of Moffat et.
al. [90] was eventually attributed to its assumption of a multiple-context source model
[16]. The output of the recency-rank encoder is not accurately modeled as having a
large number of rank contexts. Fenwick [16,91] reported that a source model with a
single zero—order context is more effective when used during the source coding of the
recency-rank encoder output.
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Figure 3.6: The cascaded source model [16, 88].

The approach of using a source model with a single zero—order context to encode
the recency-rank encoder output is reasonable, as the rank distributions of many piece-
wise segments in the BWT output sequence are often indistinguishable. However, the
presence of high—entropy intervals between the low—entropy intervals of the recency—
rank encoder output is problematic to adaptive source codes [16]. Two problems need
to be addressed by an appropriate source code for encoding the recency-rank encoder
output.

1. The source encoder must have the ability to accommodate ranks with both
low and high probabilities of occurrence [16]. Lower—valued ranks appear much
more frequently in the recency-rank encoder output sequence than higher—valued
ranks. This requirement forces the source model of the encoder to maintain a sig-
nificant difference between its rescaling limit for the accumulated symbol counts
and the per—symbol increment.

2. The source encoder must adapt rapidly as it moves from a low—entropy segment to
a high—entropy segment in the recency-rank encoder output sequence [16]. This
requirement forces the source model to maintain a small ratio of the rescaling
limit for the accumulated symbol counts to the per—symbol increment, as the
frequent rescaling of symbol counts is required in order to rapidly adapt to the
new distribution.

These two problems are in conflict regarding the requirements they impose on the
source model.

The conflicting requirements that are imposed on the source model with a single
zero—order context may be resolved by using a different source model. Fenwick [16,88]
proposed a source model that consists of multiple contexts, and referred to this model as
the cascaded model. The contexts of this model are arranged in levels, and each context
contains a number of ranks (refer to figure 3.6). The lower—level contexts contain those
ranks with a relatively high probability of occurrence, while the higher—level contexts
contain ranks with a lower probability of occurrence. Each distinct rank is assigned
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Figure 3.7: The structured source model [16,92].

to a single level only. The contexts of adjacent levels are connected with an escape
symbol mechanism, which is represented by the arrows of figure 3.6. By placing the
likely and unlikely ranks in different contexts, the problem of maintaining a wide range
of accurate probabilities of occurrence for the ranks is resolved.

A source encoder uses the cascaded model as follows [16]. The encoder always
considers the context at the bottom level of the model when it starts to encode a new
rank, regardless of any previous ranks that it encoded. To encode a rank, the encoder
first determines the level of the context in which the rank resides. It then produces a
sequence of escape symbols to signify that it is moving to the appropriate context. If
the rank is located in the bottom-level context, no escape symbols are produced. The
rank is subsequently encoded according to the distribution that is associated with the
context.

The structured model is another multiple—context source model that may be used to
effectively encode the recency-rank encoder output [16,92]. The model may be likened
to a tree trunk with branches (refer to figure 3.7). The trunk is divided into levels, and
each level is associated with only a single branch. Each branch corresponds to a single
context, and each distinct rank is assigned only to a single branch.

An encoder uses the structured model as follows [16]. The encoder first determines
the trunk level of the branch that contains the rank that is to be encoded. It next
produces the level number as output. The rank is subsequently encoded according to
the distribution of the context that is associated with the branch.

The contexts of the structured source model may adapt at different rates to a change
in the distribution of the recency-rank encoder output? [16]. The rates of adaptation
are specified by assigning different values to the rescaling limits and the per—symbol in-
crements of the branch contexts. With an appropriate assignment of ranks to branches,
and the proper selection of context parameters, the requirements of rapid adaptation
and the accommodation of a wide range of rank probabilities may be met.

Fenwick [16] reported a significant gain in source coding performance when using
the cascaded and structured source models. The design of appropriate source models
for encoding the recency-rank encoder output is discussed in greater detail in section
3.3.2.4 on page 77.

Fenwick [93] suggested that a run—length encoder be used to encode the runs of

4This observation also holds for the contexts of the cascaded model.
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zero—valued ranks in the recency-rank encoder output. The run-length code provides
an effective representation of the runs of zero—valued ranks. It is also beneficial to
certain source encoders that follow it in the elementary BWT-based source code. By
removing long runs of zero—valued ranks, it ensures that the source model of an adaptive
code does not overestimate the probability of the zero—valued rank immediately after
each run has been encoded (i.e. the source model may become overly biased towards the
zero—valued rank due to the large number of zero—valued ranks that were encountered).

3.3.2 Improvements and additions to the elementary code

This section presents a summary of several improvements and additions to the elemen-
tary BWT-based source code of figure 3.5. The summary is divided into sections, and
each section deals with one block of the elementary source code. A section regarding
the preprocessing of the BWT input sequence is also included in the summary.

3.3.2.1 Preprocessing the BWT input sequence

The output at each stage of the BWT—-based source code may be altered by process-
ing the source sequence prior to its transformation by the BWT implementation [16].
The intelligent preprocessing of the BW'T input sequence may improve the effective-
ness and/or efficiency of the overall source code. Several preprocessing techniques are
summarized in what follows.

Run-length coding Run-length coding the BWT input sequence, as stated in sec-
tion 3.1.1.2, improves the efficiency of some BWT implementations [16]. The run—length
code is detrimental to the effectiveness of the BWT, as it removes certain contexts from
the source sequence. By run—length coding the input of the BW'T implementation, its
output sequence loses some of its structure, and becomes more difficult to encode ef-
fectively. Run—length coding therefore has a negative impact on the effectiveness of the
overall source code.

Fenwick [88,92] used a run—length code in which a sequence of six identical source
symbols signals a run. The six symbols are followed by a length codeword, which
represents the number of symbols that remain in the run. Fenwick found that run—
length coding reduces the effectiveness of the overall source code by around 0.1%. This
figure was derived from the source coding of real-life data using a BWT-based source
code [16]. Balkenhol et al. [94] suggested that the use of a run-length code should be
avoided unless it shortens the source sequence by more than 30%.

If the forward BWT implementation uses suffix trees or suffix arrays, the prepro-
cessing of the BWT input with a run—length encoder is unnecessary, as it does not
drastically improve the efficiency of these implementations [16].

Partial input alphabets Source sequences frequently contain only a small fraction
of the distinct alphabet symbols that a source may produce [16]. English text, for
example, typically contains the uppercase and lowercase letters of the Latin alphabet,
the digits 0 to 9, and punctuation marks such as the period, comma, etc. English text
documents rarely contain all of the control symbols that are defined in the original
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128-symbol ASCII alphabet. This characteristic of source sequences may be exploited
in order to improve the effectiveness of a source code.

If the source alphabet contains ¢ distinct symbols, and only r of these symbols
appear in a source sequence, a maximum of [log,(r)] bits are required to uniquely
represent each symbol in the sequence, where 1 < r < ¢. To successfully use the
partial alphabet, the source encoder has to inform the source decoder as to which of
the alphabet symbols appear in the sequence and which are absent [16]. One method
of informing the source decoder appends a bit vector to the source—coded data. This
bit vector contains one bit for each distinct alphabet symbol — a bit equals one if the
symbol is present in the sequence, and zero if it is absent.

The use of a partial input alphabet may also improve the performance of the
recency-rank encoder, as well as some source encoders [16]. If a partial input alphabet
is used, only those symbols that appear in the source sequence are present in the rank
array of the recency-rank encoder. Any movement in the rank array would initially
generate ranks with a smaller range of possible values than would be the case with
the full source alphabet. This rank sequence may be encoded more effectively than the
ordinary rank sequence.

Some adaptive source encoders also benefit from the use of a partial input alpha-
bet [16]. The source encoder need not incorporate the unused symbols in its model
of the source. The omission of the unused symbols from the source model may im-
prove the effectiveness of the source code, depending on the source encoder and its
implementation.

Fenwick [16] observed that the overhead of a partial alphabet often exceeds the
gain in performance that it grants. The overhead of the partial input alphabet refers
to the mechanism that the source encoder uses to inform the source decoder as to
which symbols are present in the sequence. Fenwick proposed two bit sequences that
the source encoder may produce in order to inform the source decoder, provided that
ASCII text is being source coded. These sequences are

e a bit vector with one bit for each distinct alphabet symbol (as discussed previ-
ously), and

e a bit that indicates full mode or half mode (i.e. a ‘mode’ bit).

If more than 240 distinct symbols are present in the source sequence, the full symbol
alphabet may be used — this mode of operation is referred to as the full mode. Only
the first seven bits of each ASCII symbol is used in the half mode (i.e. the ASCII
symbols with nonzero most significant bits are omitted from the alphabet). The use of
a mode bit involves significantly less overhead than the use of a bit vector. A source
encoder may choose between a bit vector and a mode bit, depending on which one is
more appropriate for each source sequence.

Balkenhol et. al. [95] investigated the overhead of partial alphabets, as well as the
use of multiple partial alphabets (i.e. different partial alphabets are used in different
intervals of the source sequence, or alternatively the BWT output sequence). The use
of multiple partial alphabets is reasonable, as each piecewise segment of the BWT
output sequence typically contains only a very small fraction of the total number of
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distinct alphabet symbols. These segments may be encoded more effectively if the
source encoder is aware of the partial alphabet of each segment.

Balkenhol et. al. [95] considered the use of a set of sliding windows in defining
the partial alphabet for each piecewise segment of the BWT output sequence. This
approach is necessary as the exact transition points between the piecewise segments
are unknown in practice. The lengths of the sliding windows are proportional to the
average length of the segments, and are therefore proportional to the length of the
source sequence.

Permutation of the symbol alphabet The BWT of a source sequence is depen-
dent on the lexicographical order of the symbols in the symbol alphabet [16]. If the
lexicographical order of the symbols changes, the BWT typically produces a different
output sequence®. The process of changing the lexicographical order of the alphabet
symbols is referred to as the permutation of the symbol alphabet. The permutation
of the symbol alphabet changes the statistical characteristics of the BWT output se-
quence, as the symbol contexts of the source sequence are sorted differently if the
lexicographical order of the symbols changes.

Suppose that contexts with similar symbol distributions are defined as being lexico-
graphically similar to one another. The distributions of these lexicographically similar
contexts would belong to segments that neighbour one another in the BWT output
sequence. The source model of an adaptive source code would remain accurate during
the source coding of these segments, as the empirical distribution of the symbols does
not change significantly from segment to segment. The improved accuracy of the source
model, which is a consequence of the permutation of the symbol alphabet, improves
the effectiveness of the source code.

The permutation of the symbol alphabet was investigated by Chapin et. al. [96], as
well as Kruse et. al. [97]. Chapin et. al. [96] observed a reduction in the effectiveness
of a BWT-based source code that may be as high as 20% when the alphabet symbols
are randomly permuted. This observation motivates a more structured approach to the
permutation of the symbol alphabet.

One straightforward approach to the permutation of the ASCII alphabet is to ar-
range all the vowels next to one another in the lexicographical order of the alphabet
symbols [96]. Multiple permutations of the alphabet symbols exist in which the vowels
are arranged next to one another. One of these permutations starts with the symbols
aeioubcdf g Thelowercase vowels of this permutation are the lexicographi-
cally smallest letters among the lowercase letters of the permutation. As similar letters
often follow the vowels in words, alphabet reordering causes the BWT to position these
letters next to one another in the BWT output sequence.

A second approach to the permutation of the symbol alphabet assumes that the
source sequence contains only first—order contexts (i.e. the context of a symbol is its
preceding symbol) [96]. In this approach, a histogram is constructed for the symbols
that appear in each first—order context of the source sequence. The histograms are used
to determine the degree of dissimilarity between the symbol distributions of contexts.
A cost is associated with each pair of contexts — the cost is proportional in magnitude

5The BWT may produce the same output sequence in certain cases.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 60



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 3 The Burrows—Wheeler transform

<+
ﬁ UNIVERSITEIT VAN PRETORIA
A~ 4

to the dissimilarity between the empirical symbol distributions of the two contexts.
The alphabet symbols are permuted in order to reduce the total cost that is associated
with lexicographically traversing the contexts. The optimal permutation minimizes the
total cost.

The search for the optimal alphabet permutation of the second approach may be
defined in terms of the traveling salesman problem [96]. Suppose that the contexts are
associated with the cities that the salesman visits, and that the costs associated with
all context pairs are calculated. The minimum cost solution to the traveling salesman
problem implies an effective alphabet permutation. Four different definitions of the
cost were considered by Chapin et. al. [48,96]. These definitions include the Kullback—
Leibler divergence between two distributions, as well as the number of symbol swaps
that are necessary to change the frequency-ranked symbol order of one distribution to
another.

Chapin et. al. [96] investigated the performance of BWT-based source codes that
use the two approaches to alphabet permutation. The authors observed that the over-
head associated with the complete reordering of the alphabet typically exceeds any
improvement in the effectiveness of the source code. The first approach to alphabet
permutation improves the effectiveness of the overall source code slightly, and it in-
volves very little overhead [16].

Balkenhol et. al. [95] proposed an alphabet permutation technique that is a modified
version of a technique that was proposed by Chapin et. al. [96]. The performance gain
that is associated with this technique is relatively small, however. The technique may
only be applied to certain types of source sequences, and is therefore inflexible.

The preprocessing of text data If the source encoder is informed that English
text in the form of ASCII symbols is to be source coded, it may apply additional
transforms to the source sequence in order to improve the effectiveness of the source
code® [98]. These transforms are only appropriate when applied to ASCII text data
and have a detrimental effect on performance when applied to data that is not ASCII
text. General-purpose source codes and their implementations typically do not use
these transforms. The text—specific transforms that are summarized in this section are
not implemented in any of the source codes associated with this thesis, due to their
restrictive assumption regarding the source sequence type.

Grabowski [99] proposed several ‘reversible filters’ that may be applied to a text
sequence prior to it being encoded. The first filter is the capital conversion filter. This
filter converts any uppercase letter at the start of a word to lowercase, and sets a flag to
indicate the change. A second filter inserts a space symbol after each ‘end of line’ (EOL)
ASCII symbol in the source sequence. The EOL symbol is typically used to terminate
a paragraph of ASCII text. The motivation behind the insertion of the space symbol
concerns the preceding context of the first letter of the paragraph. The EOL symbol
is artificial, and not an appropriate context for the first letter of the paragraph. The
insertion of the space symbol implies that the first letter of the paragraph is also the
first letter of a word. The space symbol, when used as the preceding context of the first
letter in a paragraph, may be used to predict the letter with greater accuracy.

6The summary presented in this section was adapted from reference [98].
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The third filter proposed by Grabowski [99] concerns phrase substitution. This
filter replaces groups of letters (i.e. phrases) with certain symbols. The symbols indicate
which phrases the filter replaced — each distinct symbol is associated with one distinct
phrase. The filter may associate the alphabet symbols that do not appear in the source
sequence with phrases. The selection of an appropriate set of phrases typically improves
the performance of the source code.

Grabowski [99] proposed several text—specific improvements in addition to those
discussed. Deorowicz [98] claimed that these improvements have only a marginal im-
pact on the performance of the source code. It was empirically demonstrated that the
application of the three reversible filters reduced the size of the source-coded Calgary
corpus text files [100] by up to 3%. However, the three reversible filters significantly
degraded the performance of the source code when applied to binary files.

Awan et. al. [101,102] proposed a text—specific transform known as the length index
preserving transform, or LIPT. The LIPT requires that the source encoder be informed
that the source sequence is text, and that the language of the text is known. If the
source encoder has a precompiled dictionary for the language of the text, the LIPT
may be applied to the source sequence. The precompiled dictionary contains a list of
words, and associates a codeword with each of the words.

The LIPT processes the source sequence word-by—word, starting with the first word
of the sequence [101,102]. If a word of the source sequence is present in the dictionary,
it is substituted with its codeword. Deorowicz [98] stated that the LIPT technique
improves the effectiveness of a source code that is applied to the text files of the
Calgary corpus [100] by approximately 5%. This is a significant improvement.

The preprocessing of binary data Several preprocessing techniques that are ben-
eficial to the source coding of certain binary data files were proposed [98]. These tech-
niques are detrimental to the performance of a source code when applied to a file that
does not contain the correct type of binary data. Due to the wide variety of binary
data files, these techniques are not considered in the remainder of this thesis.

3.3.2.2 The forward BWT

The BWT is a fertile research topic. Researchers proposed several improvements to
the transform [16, 94,96, 103], and also implemented the transform in source codes for
different types of data [104-107]. Some researchers proposed transforms that are related
to the BWT — each of these transforms may be used as an alternative to the ordinary
BWT [108-110].

Improvements to the transform The BWT may sort the cyclic shifts of the source
sequence in a forward direction or a backward direction. If one direction consistently
brings about better source coding performance than the other, the BWT may be im-
proved to take advantage of this trend.

The direction in which the BWT sorts the cyclic shifts of the source sequence was
investigated in the literature [16,94]. The cyclic shifts are ordinarily sorted in the
forward direction by initially comparing the leading symbols of the cyclic shifts (the
MSSs), followed by the second symbols of the cyclic shifts, up to the trailing symbols
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(the LSSs) of the cyclic shifts. The cyclic shifts may also be sorted in the backward
direction by initially comparing the trailing symbols of the cyclic shifts (the LSSs),
followed by the second—to—last symbols of the cyclic shifts, and ending at the leading
symbols (the MSSs) of the cyclic shifts. If the cyclic shifts are sorted in a forward
direction, the source symbols that precede the same context are placed within the
same piecewise segment of the BW'T output sequence. If the sort is performed in the
backward direction, the source symbols that follow the same context are placed within
the same piecewise segment of the BW'T output sequence.

It may seem appropriate to group together those symbols that follow identical
contexts in data such as English text, as many letters of a sentence may be accurately
predicted by examining the letters that precede them. Shannon [111] proved that there
is very little difference between using contexts that precede letters or contexts that
follow letters for the purpose of accurately predicting English text. This fact suggests
that a source code would be more or less equally effective when applied to the output
sequences of the forward—sort BWT and the backward—sort BWT, provided the source
sequences are English text.

The choice of the sort direction may impact the performance of source codes that
are used to encode sequences from finite-memory sources [10]. If a source sequence from
any finite-memory source is reversed, the reversed sequence is equivalent to an ordinary
source sequence from a different finite—-memory source. This finite—-memory source may
be defined over a greater number of states than the original finite-memory source. As
the normalized average redundancies of some universal source codes are proportional to
the number of source states, the choice of the sort direction may impact the performance
of a universal source code when applied to sequences from finite—-memory sources.

Fenwick [16] compared the performance of BWT-based source codes w.r.t. the sort
direction. The sizes of the source—coded files of the Calgary corpus [100] were used as a
measure of performance. Both sort directions and both a basic and an advanced imple-
mentation of a source code were considered. Fenwick observed no significant difference
between the sizes of the source-coded files that correspond to both sort directions. This
observation holds true for the basic source code, as well as the advanced source code.
The source coding of the geo file of the Calgary corpus is significantly more effective if
the backward sort direction is used, however. This file contains floating—point numbers,
and has a particular structure that accounts for the difference in performance. This file
is a special case.

Balkenhol et. al. [94] stated that the backward sort direction should be used if
the source alphabet contains approximately 256 symbols. Fenwick [16] argued that
it is misleading to choose a sort direction based on the size of the alphabet. Fenwick
proposed that each file be source coded using both sort directions in the BWT, and that
the sort direction that brings about the best performance be used. In this approach the
source decoder has to be informed regarding the choice of sort direction to successfully
decode each file.

Chapin et. al. [96] proposed the reflexive-sort BWT, which is an improved version
of the conventional BWT. Instead of sorting the cyclic shifts of the source sequence
lexicographically in either ascending or descending order, the reflexive—sort BWT al-
ternately uses the ascending and descending lexicographical sort orders.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 63



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 3 The Burrows—Wheeler transform

<+
ﬁ UNIVERSITEIT VAN PRETORIA
A~ 4

The reflexive-sort BWT sorts the cyclic shifts of the source sequence as follows [96].
Assume that the BWT uses a radix—sort algorithm to sort the cyclic shifts. The cyclic
shifts are first placed in a group and sorted in ascending lexicographical order according
to the MSS of each cyclic shift. The group is then divided into subgroups according to
the MSSs of the cyclic shifts. Each subgroup is associated with the identical MSSs of
the cyclic shifts it contains. The cyclic shifts in each subgroup are subsequently sorted
according to the second MSS of each cyclic shift, but only the cyclic shifts of every
second subgroup (in the ordered list of subgroups) are sorted in ascending order. The
cyclic shifts of the remaining subgroups are sorted in descending order. These reflexive—
sort BWT proceeds by repeatedly dividing the subgroups and sorting the cyclic shifts
within each subgroup until each subgroup contains only a single cyclic shift. The sorted
cyclic shifts are obtained by traversing the final subgroups.

By alternating the sort order, the cyclic shifts of the source sequence are sorted
in an order that resembles the sequence of codewords of a Gray code [16]. Each suc-
cessive codeword of a Gray code differs from the previous codeword with respect to a
single symbol — the remaining symbols of the codewords are identical. The goal of the
reflexive-—sort BW'T is to place symbols from contexts with more similar symbol dis-
tributions next to one another in the BWT output sequence. This improvement has a
beneficial effect on the performance of the source encoder that encodes the transformed
sequence.

Butterman et. al. [103] proposed an error—resistant version of the BWT that is useful
in the transmission of data over noisy communication channels. Adaptive lossless source
codes typically suffer from error propagation. Error propagation refers to a single bit
error in the source—coded sequence causing several of the remaining bits in the sequence
to be incorrectly decoded. Source code implementations that make use of the BWT
typically discard those source—coded blocks that contain one or more bit errors, as the
reverse BWT scatters bit errors throughout these blocks [42].

The error-resistant version of the BWT, as proposed by Butterman et. al. [103],
encodes additional information as part of the transformed sequence. The additional
information enables the reverse BWT to recover at least certain sections of the source
sequence if bit errors are present in the transformed sequence. The error-resistant
nature of this version of the BWT was demonstrated empirically by source coding files
from the Calgary [100] and Canterbury [112] corpora, introducing bit errors to the
source—coded files, and decoding the corrupted files.

Isal et. al. [106] proposed an implementation of the BWT that is applied to se-
quences of phrases, instead of symbols. The source encoder compiles a dictionary that
contains all the distinct phrases appearing in the source sequence. It then substitutes
each phrase in the source sequence with an integer that equals its index in the dictio-
nary. The BWT is finally applied to the sequence of integers. The output of the BWT
contains piecewise segments of integers that are asymptotically i.i.d. The overall source
code is flexible, as the dictionary entries may be defined as words, symbol digrams, syl-
lables, or any other combination of symbols and letters. The dictionary of the source
encoder is encoded and constitutes part of the source—coded sequence.
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The transformation of different types of data Some researchers successfully
implemented the BWT in source codes for data that is not text. Elsayed et. al. [104]
implemented the BWT in a lossless source code for audio signals. The source encoder
applies the BWT to integer samples that represent the audio signal. A recency-rank
code is applied to the BWT output sequence, after which a Huffman encoder or arith-
metic encoder is used to encode the recency-rank encoder output sequence. The BWT-
based source code outperforms several lossless audio source codes, including a source
code that uses the integer discrete cosine transform, as well as a source code that uses
the integer wavelet transform.

Adjeroh et. al. [105] implemented the BWT in a source code for DNA sequences.
The BWT is applied to the source sequence, and its output sequence is expressed
as a suffix tree. The suffix tree is used to identify patterns that repeat in the DNA
sequence. The source encoder may encode the repeating patterns in a more effective
manner, thereby improving its performance.

Alternative transforms Mantaci et. al. [108] proposed a transform that may be
regarded as an extension of the BWT. The proposed transform is applied to a multiset
of words. All cyclic shifts of the words are sorted lexicographically. If a comparison tie
between two words is not resolved at the end of one of the words, that word is repeated,
and the comparison continues. The final letters of the lexicographically—sorted cyclic
shifts constitute the output sequence of the transform.

Arnavut et. al. [109,110] proposed a series of transforms that may be regarded as
generalizations of the Burrows—Wheeler transform. The first transform [109] is known
as the lexical permutation sorting algorithm. Arnavut et. al. [110,113] generalized the
lexical permutation sorting algorithm to multiset permutations, and introduced the
linear—order transform.

Arnavut et. al. [113] demonstrated that the linear—order transform is computation-
ally less complex than the BWT. The linear—order transform of certain types of data,
such as pseudo—colour images, may be source coded with nearly the same degree of effec-
tiveness as the Burrows—Wheeler transform of the data. Arnavut et. al. [114] proposed
a source code for electrocardiogram (ECG) signals that uses the linear—order trans-
form. This source code is more effective than a similar BWT-based source code [114],
the gzip algorithm [58], as well as the shorten lossless waveform encoder.

3.3.2.3 The recency-rank encoder

This section contains a summary of several topics concerning the recency-rank code.
The recency-rank code has received considerable attention in the literature. Researchers
proposed a large number of improvements and modifications to the recency-rank code.
Some researchers investigated the possibility of omitting the recency rank encoder
from BWT-based source codes. Several alternatives to the recency-rank code were
also proposed.

The aim of the summary is to highlight some of the more significant improvements
and alternatives to the recency-rank code, and not to be exhaustive. To motivate some
of the improvements to the recency-rank code, it is first necessary to introduce the list
update problem.
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The list update problem This summary of the list update problem was adapted
from the summary of reference [98]. The list update problem (LUP) is defined as
follows [115]. A list of items is defined, and a sequence of requests regarding the items
in the list is specified. A request may be an insertion, deletion or access to an item
in the list. Only the requests to access an item in the list need be considered for the
purpose of this thesis.

A cost is associated with servicing each request in the sequence. The cost of servicing
a request to access an item in the list equals the item’s index in the list. After servicing
each request, the requested item may be moved any number of positions closer to the
top of the list, and at no cost. This move is referred to as a free transposition. Any
other list item that was located between the original position of the requested item
and the bottom of the list may also be moved closer to the top of the list, but at unity
cost. This move is known as a paid transposition.

An algorithm for solving the LUP services the requests to access items in the list,
and produces a sequence of transpositions of items in the list. The total cost of a
solution equals the sum of the number of paid transpositions and the total cost of
servicing the requests. An appropriate algorithm for solving the LUP should attempt
to minimize the total cost of its solution.

An online algorithm for solving the LUP does not have access to the entire sequence
of requests before it starts to service them. In contrast, an offline algorithm has access
to the entire sequence of requests before it starts to solve the LUP. An optimal offline
algorithm for solving the LUP produces a solution that has the smallest total cost
among all possible solutions of the LUP. The optimal offline algorithm has a computa-
tional complexity that increases exponentially with respect to the length of the request
sequence.

Online algorithms for solving the LUP may be divided into two classes. A deter-
ministic online algorithm for solving the LUP always produces the same solution in
response to the same sequence of requests. A randomized online algorithm for solving
the LUP may produce different solutions if the same sequence of requests is presented
to it repeatedly.

The theory behind the LUP and its solution was not initially applied in the field
of source coding [48]. It was used to develop procedures for updating identifier lists
and hash tables, thereby enabling efficient access to the data these structures contain.
It was also applied to efficiently update simpler data structures that are employed in
situations where sufficient memory is not available for the use of more sophisticated
data structures. The LUP and the recency-rank encoder were only recently used to
develop more effective source codes [116].

The recency-rank encoder may be interpreted as an algorithm for solving the LUP.
The relationship between the LUP and the recency-rank encoder may be clarified
by interpreting the output sequence of the BW'T as a sequence of requests to access
symbols in an ordered list, which corresponds to the rank array. The recency-rank
encoder produces the sequence of costs (ranks) that is associated with the sequence of
requests, and moves the requested symbol to the front of the list after each request.
As the recency-rank encoder only moves the requested symbol to the front of the rank
array, it does not perform any paid transpositions.
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The goal of the recency-rank encoder is to produce a sequence of integers with
a distribution that is as biased as possible, thereby improving the effectiveness of the
source encoder that is applied to its output [16]. One approach to producing a sequence
of costs with a distribution that is biased towards zero involves the minimization of
the total cost of servicing the requests for items in the list. This approach does not
guarantee a sequence of biased costs, but its application typically does produce this
type of sequence.

The conventional LUP does not specify a distribution for the sequence of requests.
The recency-rank encoder may reasonably assume that the BWT output is p.i.i.d.,
however. Prior knowledge regarding the distribution of the requests may be used to
improve the performance of an algorithm for solving the LUP.

Deorowicz [98] observed that the recency—rank encoder is remarkably effective when
applied in a BWT-based source code, despite its simplicity. The effectiveness of the
recency-rank encoder is a consequence of the distribution of the symbols in the BWT
output sequence — those symbols that were recently requested in the rank array are
likely to be requested again in the near future.

Improvements to the recency-rank code One characteristic of the recency-rank
encoder that was addressed in the literature is that it moves an improbable symbol
to the front of the rank array immediately upon encountering it in the BWT output
sequence [16]. An improbable symbol will likely remain in the front half of the rank
array for a considerable period of time, despite the fact that it is unlikely to appear
again in the remainder of the BWT output sequence. Unlikely symbols may clutter
the front of the rank array, momentarily pushing some of the more probable symbols
towards the back of the array.

The clutter of unlikely symbols at the front of the rank array has a balancing effect
on the distribution of the ranks that the recency-rank encoder produces [16]. This
effect is detrimental to the performance of the source encoder that is applied to the
sequence of ranks. Burrows et. al. [9] suggested that the recency-rank encoder might
be more effective if it refrains from immediately moving all symbols that it encounters
to the front of the rank array.

Several authors proposed algorithms that avoid moving each symbol to the front of
the rank array upon encountering it. These algorithms may be interpreted as variants
of the recency-rank encoder. Some of the more noteworthy algorithms are discussed in
what follows.

The ‘move-one—from—front’ algorithm [16,94] attempts to reduce the clutter of
unlikely symbols at the front of the rank array. A symbol that is not present in the
first two positions of the rank array is moved to the second position of the rank array
as it is encountered in the BW'T output sequence. The symbol in the second position
of the rank array is moved to the front of the rank array upon being encountered in
the BWT output sequence.

The move—one—from—front algorithm delays the movement of symbols to the front of
the rank array, but it does not completely eliminate the clutter at the front of the rank
array [16,94]. The usefulness of the move-one-from-front algorithm is evident when
processing long runs of a certain alphabet symbol that are separated by a few distinct
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symbols. The run symbol remains at the front of the rank array as this sequence is
transformed, and more zero—valued ranks are produced than would be the case had the
conventional recency-rank code been used.

The modified move-one—from—front algorithm [48,95,117] is identical to the move—-
one—from—front algorithm, except regarding the movement of symbols in the second
position of the rank array. If the symbol in the second position of the rank array is
encountered in the BWT output sequence, it is moved to the front of the rank array
provided that the previous rank that the algorithm produced does not equal zero. If
the previous output rank equals zero, the encountered symbol remains in the second
position of the rank array. This modification stops any distinct symbol within a long
run of identical alphabet symbols from moving the run symbol to the second position
of the rank array.

The ‘move-one—from—front—2’ algorithm [16, 48] is a variation of the move-one-
from—front algorithm. All symbols that are encountered are moved to the front of the
rank array, except if

e the encountered symbol is not present in the first two positions of the rank array,
or

e at least one of the previous two ranks produced by the algorithm equals zero.

If at least one of these conditions is satisfied, the encountered symbol is moved to the
second position of the rank array. If the encountered symbol is present in the first
position of the rank array, it remains in this position.

The ‘sticky’ move-to—front algorithm [16] attempts to avoid clutter at the front of
the rank array by moving certain symbols towards the back of the rank array. Upon
encountering a symbol, the algorithm moves it to the front of the rank array. If the
next symbol in the BWT output sequence does not equal the symbol at the front of
the rank array, the symbol at the front of the rank array is moved towards the back
of the rank array by approximately 40% of the number of positions it moved to reach
the front of the rank array. It appears that the value of 40% was selected through trial
and error.

The ‘move-to—front—when—even’ algorithm [118] selectively updates the rank array
in an attempt to delay the movement of symbols to the front of the rank array. The
algorithm records the number of times each alphabet symbol was encountered in the
BWT output sequence as it transforms this sequence. If a certain alphabet symbol is
encountered in the BWT output sequence, and that symbol had been encountered i — 1
times previously in the sequence, the symbol is moved to the front of the rank array
provided that 7 is an even number. If 7 is not an even number, the symbol remains at
its current position in the rank array.

The ‘move—fraction’ algorithm [93,118,119] updates the rank array by moving the
encountered symbol only a fraction of the distance to the front of the rank array.
Suppose that the algorithm encounters the ith symbol of the rank array in the BWT
output sequence. This symbol is moved a total of [i/k] — 1 positions towards the
front of the rank array, where k is an integer parameter of the algorithm (with & > 1).
Bachrach et. al. [119] implemented the move—fraction algorithm with & > 2 in a BWT-
based source code, and found that the code performed poorly. Fenwick [93] observed a
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drop in source coding performance upon replacing the recency-rank encoder with the
move—fraction algorithm in a BWT-based source code with k equal to 8 or 32.

The ‘most recent item’ algorithm [48, 120] updates the rank array according to
those alphabet symbols that occurred at least once since the previous occurrence of
the symbol that is to move in the rank array. Suppose that the algorithm encounters
the symbol a in the BW'T output sequence. It compiles a list of all symbols that were
encountered since the previous occurrence of symbol a in the BWT output sequence,
and finds the symbol in the list with the highest rank. The symbol a is placed im-
mediately behind this symbol in the rank array. If a symbol is encountered twice in
succession, it is moved to the front of the rank array.

The ‘best x of 22 — 17 algorithm [16,121] updates the rank array differently than
other variants of the recency-rank encoder. Suppose that the algorithm has access to a
list of all possible alphabet symbol pairs. This list also contains, for each symbol pair,
the number of times each of the two symbols appeared in the previous 2x—1 occurrences
of either of the two symbols. Upon encountering a certain symbol in the BWT output
sequence, the algorithm examines all symbol pairs in the list that contain the alphabet
symbol that was encountered. All symbol pairs in which the encountered symbol has
a count of x or more are marked. The algorithm subsequently finds the symbol with
the lowest rank among all the symbols in the marked pairs. The encountered symbol
is moved in front of this symbol in the rank array.

The ‘transpose’ algorithm [48,120] is a well known deterministic algorithm for solv-
ing the LUP, and may be used as an alternative to the recency-rank code. It updates
the rank array in an extremely conservative fashion. After encountering a symbol in
the BWT output sequence, the algorithm moves the symbol a single position closer to
the front of the rank array. The more likely symbols slowly move to the front of the
rank array as the transformation of the sequence proceeds, while the less likely symbols
eventually drift to the back of the array.

The ‘time-stamp’ algorithm [98,122] is an algorithm for solving the LUP that may
be used as an alternative to the recency-rank code. The deterministic version of the
time-stamp algorithm, which is referred to as T'S(0) in the literature, is relevant to
source coding. In order to illustrate the time—stamp algorithm, assume that it encoun-
ters the alphabet symbol a in the BWT output sequence. The time-stamp algorithm
first produces the index of the symbol a in the rank array as output, and next up-
dates the rank array. The rank array is updated by first compiling a list of all alphabet
symbols that occurred at most once since the previous occurrence of the symbol a in
the BWT output sequence. The algorithm finds the symbol in the list with the lowest
rank, and moves the symbol a in front of this symbol in the rank array. Upon encoun-
tering a distinct alphabet symbol for the first time in the BWT output sequence, the
time—stamp algorithm does not update the rank array.

Albers et. al. [123] investigated the performance of the TS(0) algorithm analyti-
cally, and stated that it is typically more effective than the recency-rank encoder for
the purpose of source coding. The TS(0) algorithm was implemented in a BWT-based
source code, but this implementation proved to be less effective than a similar imple-
mentation that uses the recency-rank code. The effectiveness of each implementation
was judged according to the total size of the source—coded files that it produces when
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applied to the files of the Calgary corpus [100].

The ‘sort-by-rank’ (SBR) algorithm [118,124] is a deterministic algorithm for solv-
ing the LUP that is relevant to source coding. It defines a rank array of distinct alphabet
symbols that is updated after transforming each symbol of the BWT output sequence.
The algorithm calculates two integers for each symbol of the alphabet prior to updating
the rank array.

After producing the rank of the ith symbol of the BWT output sequence, the sort—
by-rank algorithm calculates the integers wq(y, 7) and ws(y, i) for each alphabet symbol
y [118,124]. The first integer, wi(y, 1), equals the index of the last occurrence of the
alphabet symbol y in the BWT output sequence, considering all symbols up to the ¢th
symbol of the sequence. The second integer, ws(y, ), is similarly defined, except that
the index of the second—to—last occurrence of the symbol y is used, instead of its last
occurrence. If the symbol y is not present in the first ¢ symbols of the BWT output
sequence, the integers wi(y,7) and ws(y, 1) are set to zero.

The SBR algorithm subsequently calculates the number of symbols that have oc-
curred since the last occurrence of each symbol of the alphabet [118,124]. This quan-
tity may be expressed as s1(y,i7) = ¢ — wi(y, 7). The number of symbols that have
occurred since the second—to—last occurrence of each alphabet symbol is defined as
So(y, 1) = 1 — wa(y, 7). This quantity is also calculated for each symbol of the alphabet.

The SBR algorithm recalculates the rank of each symbol of the alphabet, and
updates the rank array accordingly [118,124]. Each alphabet symbol y is assigned a
weight that is calculated according to the equation

Ta(y,1) = (1 — a)si(y, 1) + asa(y,1)?, (3.17)

where « is a parameter between zero and one, and ¢ is the index of the symbol in
the BWT output sequence that was most recently transformed. Upon calculating the
weights 7,(y, t) for all alphabet symbols, the updated symbol ranks (and the updated
rank array) are obtained by sorting the symbols in nondecreasing order according to
their weights.

The SBR algorithm may be interpreted as a generalization of the recency-rank
encoder and the time-stamp algorithm [118]. If the parameter « is set to zero, the
output of the SBR algorithm equals the output of the recency-rank encoder. The
output of the time—stamp algorithm is equal to the output of the SBR algorithm if the
parameter « is set to unity. For values of o that lie between zero and unity, the output
of the SBR algorithm has characteristics of both the recency-rank encoder output and
time—stamp algorithm output.

Dorrigiv et. al. [118] implemented the SBR algorithm in a BWT-based source code.
The effectiveness of the implementation, as a function of the parameter «, was investi-
gated. The implementation encoded the majority of source sequences most effectively
if the parameter o was set equal to either zero or unity, and not a fractional value. Dor-
rigiv et. al. [118] suggested that the source encoder should choose between the values
of zero and unity for the parameter a by first determining which of these two values
brings about the shortest source—coded sequence. The value of o that is associated
with the shortest source—coded sequence is saved as part of this sequence, as the source
decoder requires the correct value of a in order to successfully recover the BWT output
sequence.
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Alternatives to the recency-rank code Some researchers proposed alternatives
to the recency—rank encoder. These alternative transforms have the same purpose as
that of the recency—rank encoder, which is to convert the output of the BWT into a
sequence of integers with a biased, stationary distribution. The alternative transforms
differ significantly from the recency-rank encoder regarding their approaches to the
conversion, however. The more relevant alternatives to the recency-rank encoder are
summarized in this section.

Frequency count transform The frequency count transform [118] is an algo-
rithm for solving the LUP. The algorithm defines an array that contains the distinct
alphabet symbols, and records the number of times each distinct alphabet symbol ap-
pears in the BWT output sequence. The frequency counts are recorded as the transform
of the BWT output sequence proceeds in a symbol-by-symbol manner.

The algorithm replaces each symbol of the BWT output sequence with its index
in the array of alphabet symbols [118]. The algorithm maintains the array of alphabet
symbols in nonincreasing order according to the symbol frequency counts. The array
is updated after the transformation of each consecutive symbol.

The symbols that are more likely to occur in the BWT output sequence occupy the
front of the array. This fact suggests that the frequency count transform would likely
produce a large number of small integers as output. The frequency count transform
is often slow in adapting to a change in the symbol distribution of the BWT output
sequence, however. Its slow rate of adaptation is due to the fact that it only uses the
frequency counts of the symbols during each update of the array, and that it does not
consider the recency of the symbols at all.

Dorrigiv et. al. [125] found that an implementation of a BWT-based source code
that uses the frequency count transform is less effective than identical implementations
that use the time-stamp algorithm (refer to page 69) or the recency-rank encoder.
The effectiveness of each implementation was judged according to the total size of the
source—coded files that it produces when applied to the files of the Calgary corpus [100].
This observation suggests that an effective alternative to the recency-rank encoder
should incorporate a symbol recency metric in its updates of the array.

Weighted frequency count transform Deorowicz [98,126] observed that the
recency-rank encoder does not take the frequency count of any symbol into consider-
ation as it updates the rank array. By disregarding the frequency counts, the recency—
rank encoder may move an unlikely symbol to the front of the rank array upon en-
countering it in the BWT output sequence. The movement of unlikely symbols to the
front of the rank array may be reduced by considering both the frequency counts and
the recency of the symbols during each update of the array.

Deorowicz [98,126] proposed an alternative to the recency-rank encoder that up-
dates the rank array according to the frequency counts and the recency of the symbols.
This novel transform is referred to as the weighted frequency count (WFC) transform.

The WFC transform updates the rank array prior to transforming each consecutive
symbol of the BWT output sequence [98,126]. The rank of each alphabet symbol in
the rank array is recalculated using a mathematical function. If the WFC transform
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recalculates the symbol ranks with an appropriate mathematical function, the distri-
bution of the ranks it produces may have a greater bias than the distribution of the
recency-rank encoder output.

The WFC transform associates a weight with each symbol of the alphabet [98,
126]. Its initial step in updating the rank array is the recalculation of the weight
of each alphabet symbol. The alphabet symbols are subsequently ranked according
to nonincreasing weight. The rank array is finally updated according to the newly—
calculated symbol ranks.

The weight of each alphabet symbol equals the sum of several smaller weights
[98,126]. Each of the smaller weights corresponds to one occurrence of the particular
symbol in the BWT output sequence. The smaller weights are proportional to the
recency of the symbols. Immediately prior to transforming the ¢th symbol of the BWT
output sequence, the WFC transform calculates the weight of the jth distinct alphabet
symbol a; according to the function

—_

Wi(a;) = 3 w(i — k)o(aj, xx), (3.18)

B
Il

where xj is the kth symbol in the BWT output sequence, and

|1 itp=gq,
o(p,q) = { 0 otherwise. (3.19)

The term w(i— k) of equation 3.18 represents the smaller weight that is associated with
the kth symbol of the BWT output sequence. Each of the smaller weights is calculated
according to the equation

w(t) = wy(t), (3.20)

where wy(t) is referred to as the weight function.

Deorowicz [126] considered several weight functions. In order to select a suitable
weight function from among those considered, Deorowicz implemented the WFC trans-
form in identical BWT-based source codes, and specified a different weight function
for each code. The files of the Calgary corpus [100] were encoded using the source
codes, and the effectiveness of each weight function was judged from the sizes of the
source—coded files. One of the most effective weight functions that was considered is
expressed as

(1 ift=1,
= if 1<t <64,
o I it6a < ¢ < 256, 3.91
wy(t) = 4_%1 if 256 < ¢ < 1024, 320
8i 1024 < t <ty
pt
\ O ift>tnlax7

where p is a parameter, and t,,,, specifies the total number of symbols of the BWT
output sequence that are assigned nonzero weights. The parameters p and t,,,, were
assigned values of 4 and 2048 during the source coding of the Calgary corpus files.
The WFC transform is computationally more complex than the recency-rank en-
coder, as it updates the entire rank array after transforming each symbol [86,98].
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Deorowicz [98] proposed that the range of the weight function be quantized to integer
powers of two in order to reduce the computational complexity of the transform. By
quantizing the range of the weight function, several of the smaller weights of the sym-
bols in the BWT output sequence do not change between consecutive updates of the
rank array. These weights need not be recalculated. The quantization of the range of
the weight function does sacrifice some of the precision of the WFC transform, how-
ever. The loss of precision may reduce the effectiveness of the source code that uses
the WFC transform.

Abel [86] proposed a more effective weight function than the function of equation
3.21. The effectiveness of the weight function was judged according to the performance
of a BWT-based source code that uses the WFC transform and the weight function.
The proposed weight function is defined over twelve nonzero levels, instead of the five
nonzero levels of equation 3.21.

Abel [86] proposed a variation of the WFC transform that is known as the advanced
weighted frequency count (AWFC) transform. The AWFC transform introduces a de-
pendency between the calculation of the smaller weights and the symbol distribution
of the input sequence of the WFC transform. The purpose of this dependency is to
improve the source coding of individual source sequences.

Abel [86] proposed an adaptive weight function with three parameters. Two of the
parameters were selected through trial and error according to the empirical performance
of the source code. The third parameter equals the percentage of distinct alphabet
symbols with individual frequency counts that exceed twice the symbol allocation. The
symbol allocation is defined as the fraction n/m, where n equals the length of the
source sequence, and m is the number of distinct symbols in the alphabet.

Inversion frequencies transform Arnavut et. al. [127] proposed the inversion
frequencies transform (IFT) as an alternative to the recency-rank code. This summary
of the IFT was adapted from references [86,98|.

The TFT associates a codeword with each symbol in the BW'T output sequence.
Each codeword depends on the symbol’s index in the BW'T output sequence, as well as
the symbol’s position in the lexicographical order of distinct alphabet symbols. Suppose
that the codeword of symbol z; in the BWT output sequence is to be calculated, and
assume that z; = c. The codeword of this symbol equals the number of symbols that
are lexicographically larger than symbol c, but which occur between symbol z; and the
previous occurrence of the symbol ¢ in the BWT output sequence.

Instead of substituting each symbol of the BWT output sequence with its codeword,
the IF'T first produces a single integer for each distinct symbol of the alphabet. Each
integer equals the number of appearances of its alphabet symbol in the BWT output
sequence — these integers are required by the source decoder to successfully perform
the reverse transform. The IFT finally produces, for each distinct alphabet symbol
in lexicographical order, the codewords that are associated with all occurrences of
the alphabet symbol in the BWT output sequence. In order to correctly reverse the
transform, the codeword of the first occurrence of each distinct alphabet symbol in
the BWT output sequence is set equal to the index of the symbol in the BWT output
sequence. Efficient implementations of both the forward and reverse transforms were
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presented in the literature [128].

Identical symbols that are located in the vicinity of one another in the BWT out-
put sequence are assigned integer codewords with small values by the IFT. The IFT
therefore produces integers that are biased towards zero when applied to typical BWT
output sequences. There is a significant difference between the distribution of the IFT
output and the distribution of the recency-rank encoder output, however.

The difference between the output distributions of the IFT and the recency-rank
encoder is due to the fact that the IFT codewords of lexicographically large symbols
are typically small integers, regardless of their position in the BWT output sequence.
This statement follows from the fact that there are few distinct alphabet symbols that
are lexicographically larger than these symbols. As the codewords of lexicographically
large symbols are located next to one other in the IFT output sequence, the source
encoder may encode these symbols effectively. Deorowicz [126] remarked, however, that
the overhead associated with the representation of the symbol frequency counts may
limit the usefulness of the IFT to longer sequences only.

Abel [86] proposed an improvement to the IFT that involves a change in the lexico-
graphical order of the symbol alphabet. Assume that the lexicographical order of the
symbol alphabet is changed so that the frequently occurring symbols of the BWT out-
put sequence are considered lexicographically smaller than the infrequently occurring
symbols. As the BWT output sequence contains fewer symbols that are lexicographi-
cally large, the less frequent symbols are assigned smaller integer codewords. The BW'T
output sequence also contains a greater fraction of symbols that are lexicographically
small, however — the IFT may possibly produce a greater fraction of integers with
larger values than before. It is not immediately obvious whether to assign lexicograph-
ical ranks to symbols in the ascending or descending order of symbol frequency counts
in order to bias the distribution of the IFT output integers towards zero.

Abel [86] implemented the IFT in a BWT-based source code, and assigned lexi-
cographical ranks to symbols that are arranged in both the increasing and decreasing
order of frequency counts. This implementation was used to determine which method of
assigning lexicographical ranks to symbols typically produces the most effective source
code. The implementation of the source code was used to encode the files of the Calgary
corpus [100]. The majority of the Calgary corpus files were source coded more effectively
when lexicographical ranks were assigned to symbols in the ascending frequency count
order. The only files of the Calgary corpus that were encoded more effectively when
lexicographical ranks were assigned to symbols in the order of descending frequency
counts were the binary files geo and obj1.

Abel [86] proposed a heuristic for selecting an appropriate order in which to assign
lexicographical ranks to symbols. The heuristic states that lexicographical ranks should
be assigned to symbols in the order of decreasing frequency counts if the percentage of
alphabet symbols with individual frequency counts exceeding twice the average symbol
allocation is less than 10%”. If this is not the case, the lexicographical ranks are assigned
to symbols in the order of ascending frequency counts.

"Refer to the discussion regarding the AWFC (page 73) for the definition of the average symbol
allocation.
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Distance coding transform Binder [129] proposed the distance coding trans-
form (DCT) as an alternative to the recency-rank code. The DCT is related to the
interval code that was proposed by Elias [84]. This summary of the DCT was adapted
from reference [98].

The DCT is applied to the BWT output sequence, and produces two concatenated
integer sequences as output. The transform initially finds the first occurrence of each
distinct alphabet symbol in the BWT output sequence. The integer indices of the first
occurrences of all distinct alphabet symbols in the BW'T output sequence constitute
the first integer output sequence of the DCT. The integers of the first output sequence
are typically arranged in lexicographical order w.r.t. the symbols they represent.

The second output sequence of the DCT contains one integer for each symbol of the
BWT output sequence. The DCT processes the BW'T output sequence in a symbol-
by—symbol fashion, starting at the front of the sequence and ending at the back of
the sequence. The transform finds the number of symbols that are located between
each symbol of the BWT output sequence and its next occurrence in the BWT output
sequence. If a total of k£ symbols are located between a certain symbol and the next
occurrence of the same symbol in the BWT output sequence, the transform produces
the integer k£ + 1 as output. Upon encountering the final instance of any symbol in the
BWT output sequence, the transform produces the integer zero.

The DCT produces small integers when applied to identical alphabet symbols that
appear in close proximity to one another. The distribution of the DCT output, assuming
that the DCT is applied to typical BWT output sequences, is biased towards the
smaller integers. This is due to the fact that the BWT output sequence consists of
p.i.i.d. symbols, and that each piecewise segment has a biased symbol distribution (it
is assumed that the BWT is applied to a source sequence from a finite-memory source
or a tree source).

Binder [129] proposed three improvements to the DCT, as summarized by Deorow-
icz [98]. The first improvement concerns the integers of the second output sequence of
the DCT. The DCT may exclude all symbol pairs that it already encountered when
counting the number of symbols that appear between consecutive occurrences of the
same symbol in the BWT output sequence. The BWT output sequence may be suc-
cessfully recovered from the DCT output sequence in this case, as the reverse transform
has knowledge of the locations of the symbol pairs it encountered previously.

The second improvement concerns the final run of zeros at the end of the trans-
formed sequence [98]. These trailing zeros are superfluous, and may be omitted. The
third improvement concerns runs of identical symbols in the BWT output sequence.
The DCT need not produce any integers for these symbols, and may proceed to the
final symbol in the run. This improvement yields a reversible transform, as the reverse
DCT is aware that no other symbols appear within the run. It may therefore insert the
correct number of missing run symbols.

Switching algorithms Chapin [48,121] proposed that different algorithms for
solving the LUP be used to transform different intervals of the BWT output sequence.
This proposal is motivated by the observation that some algorithms for solving the
LUP are more effective when applied to certain intervals of the sequence than other
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algorithms.

Chapin [48,121] recommended that the conventional recency-rank encoder be ap-
plied to shorter intervals. The best two of three algorithm was proposed for the purpose
of transforming longer intervals. In order to transform the BWT output sequence ef-
fectively, the implementation of the source code should switch between the algorithms
in a dynamic fashion. The switching should be carried out in such a manner that the
source decoder is able detect each switch, as this is necessary to successfully recover
the sequence.

Chapin [48, 121] employed a switching algorithm that was proposed by Volf et.
al. [130] to switch between the recency-rank encoder and its alternatives. The switching
algorithm estimates the lengths of the source-coded intervals that would be obtained
if each transform was applied to each interval [48]. A dynamic program is used to
keep track of the estimates. The switching algorithm finally selects the transforms that
brought about the shortest source—coded sequence.

Postprocessing of the recency-rank encoder output Balkenhol et. al. [95] pro-
posed a technique for processing the output of the recency-rank encoder. The postpro-
cessing of the recency—rank encoder output has the purpose of improving the effective-
ness of the source encoder that follows the recency-rank encoder in the BWT-based
source code.

The postprocessing of the recency-rank encoder output produces two rank se-
quences [95,98]. The first sequence is identical to the recency-rank encoder output
sequence, but with all ranks higher than two replaced with the rank two. The first
sequence correctly identifies those symbol ranks that are equal to zero and one, as
well as the positions of the symbol ranks that are higher than one in the recency-rank
encoder output sequence. The second sequence is equal to the recency-rank encoder
output sequence, but with all ranks of zero and one omitted from the sequence. The
second sequence contains the true values of those symbol ranks that were identified as
being higher than one in the first sequence.

The ratio of the frequency counts of the most likely rank and the least likely rank
in the recency-rank encoder output sequence is typically quite large [16]. By replacing
all ranks in the recency-rank encoder output sequence that are higher than two with a
rank of two, the alphabet associated with the first postprocessed sequence is reduced
to three ranks (i.e. zero, one and higher than one). The frequency count associated
with the third rank of the alphabet (i.e. the higher—than—one rank) equals the sum of
the frequency counts of all ranks that are higher than one. The ratio of the frequency
counts of the most likely rank and the least likely rank is significantly smaller in the first
postprocessed sequence than in the ordinary recency-rank encoder output sequence.

The abovementioned property of the first postprocessed sequence is beneficial to
adaptive source encoders [16]. Adaptive source encoders need to maintain a good trade-
off between rapid adaptation to changing source statistics and the accuracy of the rank
probability estimates. An additional advantage of the postprocessing step is that the
source coding of the first and second postprocessed sequences may be performed (and
optimized) separately from each other [95].

One advantage of the postprocessing step concerns the transition points between the
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piecewise segments of the BWT output sequence [95]. Each transition point usually ap-
pears as a short burst of the higher—than—one rank in the first postprocessed sequence.
The locations of the transition points may in some cases be estimated from the first
postprocessed sequence, and used to improve the source coding of the postprocessed
sequence.

The postprocessing step has the disadvantage of lengthening the sequence of ranks
that is to be source coded [95]. The number of additional ranks that need to be encoded
equals the number of ranks in the second postprocessed sequence

3.3.2.4 The source encoder

Researchers applied several source encoders to the recency-rank encoder output se-
quence of BWT-based source code implementations with varying degrees of success.
These encoders include universal integer encoders [16], adaptive Huffman encoders [9],
and adaptive arithmetic encoders such as PPM encoders [45] and Witten’s CACM
encoder [89].

Fenwick [16] observed that source encoders with multiple-context models (such
as the PPM encoder [45]) are typically ineffective when applied to the recency-rank
encoder output. A thorough characterization of the BWT and recency-rank encoder
output sequences is necessary in order to design effective source encoders for BWT-
based source codes, and to understand why certain source encoders perform poorly.
This section is a summary of several source encoders and their implementation in
BWT-based source codes.

Initial source encoders Burrows et. al. [9] proposed that either a Huffman en-
coder or an arithmetic encoder be used to encode the recency-rank encoder output in
the original BWT-based source code. Burrows et. al. implemented a Huffman source
encoder in the original BWT-based source code. The Huffman encoder updates the
Huffman tree for each consecutive 16 kilobyte block of the rank sequence. This source
encoder is able to adapt to changes in the rank distribution, provided the changes do
not occur too rapidly.

Fenwick [16, 93] investigated a BWT-based source code that uses the CACM en-
coder of Witten et. al. [89] to encode the sequence of ranks. The effectiveness of the pro-
posed code is within 1.6% of the effectiveness of the PPMC implementation [50], where
effectiveness refers to the reduction in the size of the Calgary corpus data set [100].

Fenwick [93] investigated the performance of a BWT-based source code that uses
the DCC-95 implementation of an arithmetic encoder [90]. The BWT-based source
code that uses the DCC—-95 arithmetic encoder proved to be significantly less effective
than the BWT-based source code that uses the CACM encoder [89]. The DCC-95
encoder was designed for use in PPM source code implementations — this assumption
regarding its use is the reason for its lack of performance in BWT-based source code
implementations [93].

A PPM source code implementation defines multiple contexts in its model of the
source [16,93]. The DCC-95 encoder infrequently rescales the symbol counts in order
to maintain an accurate multiple—context source model. The CACM implementation
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that Fenwick [93] investigated assumes that a single—context source model is used. This
encoder rescales the symbol counts more frequently.

A BWT-based source code implementation that uses the CACM encoder is more
successful at adapting to statistical changes in the recency-rank encoder output se-
quence than an implementation that uses the DCC-95 encoder, due to its frequent
rescaling of the symbol counts [93]. Recall that recency-rank encoder output sequences
contain several high—entropy bursts, which correspond to transitions between certain
piecewise segments of the BWT output sequence. The CACM encoder is more effec-
tive than the DCC-95 encoder when used to encode these sequences in a BWT-based
source code implementation, as it adapts more successfully to the high—entropy bursts.

The conventional multiple-context source model is not an accurate representation
of the recency-rank encoder and its output [16]. Some BWT-based source code im-
plementations maintain only a single-context source model, and rely on the source
encoder to update the model in an appropriate fashion.

The bzip2 and bred3 implementations This summary of the bzip2 and bred3
source code implementations was adapted from reference [48]. The predecessor of the
bzip2 command-line compression and archiving utility, bzip, encodes the rank se-
quence using an arithmetic code [87]. The subsequent version of the utility, bzip2,
encodes the rank sequence using Huffman codes, due to patent-related restrictions on
the use of arithmetic codes. The bzip2 implementation is closely related to the bred3
implementation [131], which is summarized in this section.

The bred3 implementation is similar to the elementary BWT-based source code of
figure 3.5 on page 53. The recency-rank encoder output sequence of the bred3 imple-
mentation is run—length encoded. The output of the run—length encoder is uniformly
partitioned into blocks of a certain length.

The bred3 implementation maintains a set of several Huffman codes. It is assumed
for the purpose of this discussion that the set contains eight Huffman codes. The bred3
algorithm iterates over the blocks of integers and selects the most appropriate Huffman
code that should be used to encode each block. The decision regarding which Huffman
code to use for source coding a block of integers is based on a goodness—of—fit metric
between the code and the block.

The bred3 algorithm encodes each block of integers using the appropriate Huffman
code, and records the length of each encoded integer block. It adds the overall length
of the source—coded integer blocks to the length of the Huffman code tables, as well
as the lengths of the selectors and delimiters that are associated with each block. This
total may be interpreted as the cost of encoding the sequence of blocks.

After calculating the cost of encoding the blocks, the bred3 algorithm merges some
of the original, uncoded blocks of integers according to the particular Huffman codes
that were assigned to the blocks. The algorithm proceeds by creating a total of eight
new Huffman codes according to the distribution of the integers in the blocks.

After creating the new Huffman codes, the bred3 algorithm repeats its initial steps
of matching the integer blocks to Huffman codes, and calculating the total cost of en-
coding the sequence of blocks with the new codes. If the algorithm observes a significant
reduction in the cost of encoding the sequence of blocks, it again merges some of the
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blocks, and creates a new set of Huffman codes according to the integers of the blocks.
These steps continue to repeat until the reduction in the cost of encoding the sequence
of blocks becomes insignificant. The bred3 algorithm concludes by source coding the
blocks of integers using the final set of Huffman codes.

The Shannon encoder of Fenwick This summary was adapted from reference [98].
Fenwick [93] proposed a BWT-based source code that uses an arithmetic encoder and a
multiple—context source model. The source encoder processes the recency-rank encoder
output sequence before encoding it with the arithmetic encoder. The recency-rank
encoder output sequence is processed by replacing each rank with a certain codeword
of a prefix code. The codewords of the prefix code are provided in table 3.6.

Each codeword of the prefix code has a binary prefix [93]. Some codewords also
have a decimal suffix, which is represented by the bracketed number in certain rows of
table 3.6. The structure of each prefix may be interpreted in terms of a test subject
that predicts a certain rank in the recency-rank encoder output sequence. The prefix is
equivalent to a sequence of answers in response to the predictions of the test subject —
a zero—valued bit indicates a correct prediction, and a nonzero—valued bit an incorrect
prediction.

As the zero—valued rank is most likely, the test subject initially predicts that the
rank equals zero. If this is not the case, the test subject predicts that the rank equals
one, as this is the second-most likely rank. The sequence of predictions continues
in the order of decreasing rank likelihood. The prediction of the rank resembles an
experiment that Shannon [111] performed to determine the entropy of English text.
This resemblance motivated Fenwick’s choice of name for the algorithm.

Upon replacing each rank with its codeword, the binary prefix and the decimal
suffix of each codeword are encoded separately from each other. The bits of the binary
prefixes are encoded using an arithmetic code and a multiple-context source model.
The nth bits of all the prefixes are always encoded in the same context, with the
exception of the first bit of each prefix. The first bit of each prefix is encoded in one
of two contexts — the choice of context depends on whether the previously encoded
rank equals zero or not. The decimal suffixes of the codewords are encoded using an
arithmetic code with a single-context model.

Arithmetic codes and the structured source model The structured source
model was introduced in section 3.3.1.4 on page 57. This section is a summary of
several implementations that use this model.

Fenwick [16] proposed a BWT-based source code implementation that uses arith-
metic codes, as well as the structured source model of figure 3.7 on page 57. The
structured model has nine levels, and each consecutive level contains twice the number
of ranks of the preceding level, with the exception of the first two levels (which contain
one rank each). Fenwick’s implementation of the BWT-based source code encodes both
the level numbers and the ranks in zero—order contexts.

Fenwick [16] assumed that the source uses the 8-bit ASCII alphabet, which contains
256 symbols. This assumption implies that the recency-rank encoder may only produce
a maximum of 256 distinct ranks. Fenwick assigned these ranks to the levels of the
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Table 3.6: The prefix code that is applied to the recency-rank encoder output sequence
by the Shannon encoder [93].

‘ Rank ‘ Codeword ‘

0 |0

10

110
1110
1111(4)
1111(5)

O | W

255 | 1111(255)

Table 3.7: Fenwick’s assignment of ranks to the levels of the structured source model
[16].

Level number ‘ Ranks ‘ Number of ranks ‘

0 0 1
1 1 1
2 2-3 2
3 4-7 4
4 8-15 8
) 16-31 16
6 32-63 32
7 64-127 64
8 128-255 128

structured source model as indicated in table 3.7.

A level count is defined as the total number of ranks that appear in the recency—
rank encoder output, but which also belong to a specific level of the structured source
model. Fenwick [16] assigned ranks to the levels of the structured source model in order
to reduce the difference between the level counts, as well as the difference between
the frequency counts of the ranks within each level [98]. This assignment of ranks
to levels facilitates the accurate estimation of each rank’s probability of occurrence.
Wirth [48] stated that Fenwick’s assignment of ranks to levels is optimal if the ranks
follow Zipf’s law. Zipf’s law [132] implies that a rank’s probability of occurrence is
inversely proportional to the magnitude of the rank.

Fenwick [93] used the implementation of the BWT-based source code and the struc-
tured source model of table 3.7 to source code the files of the Calgary corpus [100].
The implementation was found to be less effective than the implementation that uses
Fenwick’s Shannon encoder. The performance of the proposed implementation was im-
proved by applying a run-length code to the recency-rank encoder output sequence
prior to source coding it.

Balkenhol et. al. [95] used a structured source model in an implementation of a
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BWT-based source code. The implementation postprocesses® the recency-rank encoder
output sequence, and encodes the postprocessed sequence using arithmetic codes.

The postprocessed recency-rank encoder output consists of two sequences [95]. The
implementation proposed by Balkenhol et. al. [95] encodes the two sequences separately.
The source coding of the first postprocessed sequence is discussed in section 3.3.2.4 on
page 89. This section concerns the source coding of the second postprocessed sequence,
as well as the structured source model that is used during the source coding of this
sequence.

The second postprocessed sequence contains all the ranks of the original recency—
rank encoder output sequence that are higher than one [95]. Two approaches may be
followed to encode the source data that these ranks represent. The first approach is to
source code the ranks of the second postprocessed sequence directly, using an arithmetic
code with an appropriate source model for the ranks. The second approach is to source
code the symbols of the BWT output sequence that correspond to the ranks of the
second postprocessed sequence.

Balkenhol et. al. [95] used the second approach to encoding the second postprocessed
sequence in the implementation of a BWT—based source code. The second approach
was found to be effective, as the properties of the second postprocessed sequence may
be used to develop an appropriate structured source model for the relevant symbols of
the BWT output sequence. This approach is summarized in what follows.

Balkenhol et. al. [95] proposed a structured source model with four levels. The
implementation of the source code assigns all distinct alphabet symbols® to each level
of the structured source model. The frequency counts of the symbols in each level
are updated as source coding proceeds. The fourth level is an order (-1) context, as
it maintains an equiprobable distribution over all symbols, and does not update any
frequency counts.

The implementation of the BWT—-based source code halves all the symbol frequency
counts of a level as soon as one of its symbol frequency counts exceeds a certain count
limit [95]. The halving of the frequency counts implicitly defines a sliding window over
the second postprocessed sequence — the symbols corresponding to the ranks that are
inside the window remain part of the frequency counts of the level. The length of the
sliding window is not static, as it depends on the frequency counts of the symbols, and
therefore the symbol sequence.

Balkenhol et. al. [95] specified different count limits for the first three levels of
the structured source model. The rate at which the estimate of a context symbol
distribution adapts to changes in the local distribution of the BW'T output sequence
depends on the count limit that is assigned to the level. Balkenhol et. al. proposed
count limits that are linear functions of the source sequence length.

The four levels of the structured coding model of Balkenhol et. al. [95] are named
according to their rates of adaptation to changes in the BWT output sequence [16].
The first three levels are referred to as the fast adaptation, medium adaptation and
slow adaptation levels. The symbol frequency counts of the fourth level are not updated

8Refer to section 3.3.2.3 on page 76 for a summary of postprocessing.
9The implementation may also use a partial input alphabet, thereby eliminating unused symbols
from the source model.
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— the fourth level is therefore referred to as the no adaptation level.

The implementation initially considers each rank of the recency—rank encoder out-
put sequence in a rank-by-rank fashion, starting at the front of the sequence [95]. If
the rank equals zero, the implementation does not update any frequency count of the
structured source model, and the source symbol that corresponds to the rank is not
encoded. If the rank equals one, it increments the frequency count of the symbol that
is associated with the rank in all levels of the structured source model. It does not
encode the symbol, however, as it is not part of the second postprocessed sequence.
If the implementation encounters a rank that is higher than one, it first encodes the
symbol that corresponds to the rank. The implementation subsequently updates the
frequency count of the symbol in all levels of the structured source model.

The implementation produces two outputs for each symbol of the BW'T output
sequence that it encodes [95]. The first output equals the level number of the context
that was used to encode the symbol. The second output equals the encoded symbol.

The implementation of Balkenhol et. al. [95] first attempts to use the symbol dis-
tribution estimate that is associated with the fast adaptation level when encoding each
successive symbol. If the symbol has a frequency count of zero in this context, it at-
tempts to encode the symbol according to the distribution estimate of the medium
adaptation level. In the event of the symbol having a frequency count of zero in this
context, the implementation attempts to use the symbol distribution estimate of the
slow adaptation level. If the symbol has a zero frequency count in all contexts of the first
three levels, it is encoded according to the uniform distribution of the no adaptation
level.

An arithmetic code is used to encode the level numbers [95]. Frequency counts
are maintained for the level numbers — these frequency counts are used to define a
distribution according to which the level numbers are encoded. A threshold is associated
with the level-number counts. Level-number counts are halved as soon as any level—-
number count exceeds the threshold.

By disregarding all ranks that equal zero during the update of the structured source
model, the implementation avoids an unfavourable situation in which the source model
is excessively biased by a run of the same symbol [95]. Balkenhol et. al. refer to this
situation as the ‘pressure of runs’. The structured source model of Balkenhol et. al.
simultaneously satisfies the conflicting requirements of rapid adaptation to changing
source statistics, and the maintenance of an accurate source model with a wide range
of symbol probabilities.

Arithmetic codes and the cascaded source model The cascaded source model
was introduced in section 3.3.1.4 on page 56. Fenwick [16,88] developed a BWT—based
source code implementation that uses an arithmetic code with a cascaded source model.
The implementation encodes the ranks of the recency-rank encoder output sequence
using the arithmetic code. The cascaded source model has three levels — the first
level contains ranks 0 to 3, the second level contains ranks 4 to 15, and the final level
contains all the remaining ranks. This implementation proved to be as effective as a
similar implementation of Fenwick [16] that uses a structured source model.
Balkenhol et. al. [94,133] used a cascaded source model in an implementation of a
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Table 3.8: The assignment of ranks to the levels of the cascaded source model of Balken-
hol et. al. [94] (adapted from reference [98]).

‘ Level number ‘ Ranks ‘ Number of ranks ‘
0 0,1, >1 3
1 2, >2 2
2 3,4, >4 3
3 5-8, >8 5
4 9-16, >16 9
5 17-32, >32 17
6 3364, >64 33
7 65—128, >128 65
8 129-255 127

BWT-based source code. The implementation encodes the ranks of the recency-rank
encoder output sequence using an arithmetic code. Balkenhol et. al. assigned ranks to
the levels of the cascaded model according to table 3.8. The implementation keeps the
levels of the source model from becoming cluttered with ranks that do not occur by
using a partial input alphabet. Balkenhol et. al. also considered the use of contexts
with order k in some levels of the cascaded source model, where k& > 0 [16,98]. This
modification improved the performance of the implementation.

Arithmetic codes and the Krichevsky-Trofimov estimator Effros et. al. [10]
used an arithmetic code with the Krichevsky—Trofimov (KT) estimator [134] in an im-
plementation of a BWT-based source code. The implementation encodes the symbols of
the BWT output sequence directly. The implementation uses the Krichevsky—Trofimov
estimator to obtain an estimate of the probability distribution of each consecutive sym-
bol in the BWT output sequence.

Let r;(x) denote the number of times that symbol x was encountered in the first
i symbols of the BWT output sequence, and let ro(x) = 0 for all z. Furthermore, let
7i(z) = ri(z) + 1/2. The KT estimate of the probability of a sequence x* is recursively
defined as
T z’—l(xi)

2veali-1(2)’

where P.(x°) £ 1, and n equals the length of the BWT output sequence.

Effros et. al. [10] investigated the performance of the proposed implementation when
used to encode sequences from finite-memory sources. Two cases were considered. In
the first case, the implementation has prior knowledge regarding the locations of all
transition points between the p.i.i.d. segments of the BWT output sequence. In the
second case, the implementation does not have any information regarding the source,
and cannot calculate the locations of any transition points between the p.i.i.d. segments
of the BWT output sequence. The two cases are discussed in what follows.

In the first case, the implementation applies the arithmetic code independently to
each segment of p.i.i.d. symbols in the BWT output sequence [10]. Effros et. al. [10]

P.(x") = P,(x'™) 1<i<n, (3.22)
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proved that this source code is strongly minimax universal for finite-memory sources
with finite state spaces. The normalized redundancy of the code converges to zero
(w.r.t. the source sequence length) at a rate that is equal to a constant multiple of the
optimal convergence rate, which was derived by Rissanen [135]. The magnitude of the
constant depends on the size of the symbol alphabet, and converges to unity as the
size of the alphabet increases.

In the second case, the implementation source codes the BWT output sequence
without any knowledge of the transition points [10]. The implementation encodes the
sequence by dividing it into intervals of equal length, and applying the arithmetic
code independently to each interval. The implementation has to select an appropriate
interval length w(n) in this case, as the performance of the source code depends on it.

The choice of an appropriate interval length depends on the length of the BWT
output sequence, as the number of transition points between the p.i.i.d. segments of the
BWT output sequence is finite and independent of the sequence length n [10]. Effros.
et. al. [10] proposed an equation that may be used to select an appropriate interval
length. If the implementation uses the equation to select the interval length, the overall
source code is a strong minimax universal source code for finite-memory sources with
finite state spaces.

Integer codes An integer code!? associates variable-length binary codewords with
the integers of the infinite alphabet N = {1,2,3,...} [16]. A sequence of integers is
encoded with an integer code by substituting each integer with its codeword. Each
codeword of typical integer codes is self delimiting and uniquely decodable, regardless
of the magnitude of the integer that the codeword represents.

Conventional source codes, such as the Huffman codes, are designed to minimize
the average length of the codewords that are used to represent source sequences [16].
The design of an optimal conventional code requires knowledge of the distribution of
the source symbols. If the symbol distribution is unknown, a universal source code or
an adaptive source code may be used. An adaptive source code assigns codewords to
symbols according to an estimate of the symbol distribution. The codewords may be
changed as the estimate of the distribution changes.

The codewords of an integer code are defined independently from the distribution
of the integers, and cannot be adapted to a changing integer distribution [16]. Each
integer code may be used to optimally!! encode integers from a specific distribution.
This distribution is a function of the lengths of the codewords, and is referred to as
the distribution that the integer code implies.

The similarity between the distribution of the integers that are to be encoded
and the distribution that the integer code implies determines the effectiveness of the
source code [16]. Suppose that a specific integer code is used to encode integers from
a certain distribution. The average redundancy of the codewords that are produced is
proportional to the Kullback—Leibler divergence between the actual integer distribution
and the implied distribution [11]. An integer code would therefore prove effective if used
to encode integers from a distribution that is similar to the implied distribution.

0These codes are also known as universal codes or variable-length codes in the literature [16].
1 Optimality refers to the minimum average codeword length in this case.
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Table 3.9: Certain codewords of the «, § and v codes proposed by Elias [136] (adapted
from reference [16]).

‘ Integer H Elias—a | Elias—f3 ‘ Elias—y ‘

1 1 1 1

2 01 10 010

3 001 11 011

4 0001 100 00100

5 00001 101 00101

6 000001 110 00110

7 0000001 | 111 00111

8 00000001 | 1000 0001000

An appropriate integer code for the recency-rank encoder output sequence would
imply a distribution that decreases with respect to increasing integers, as the ranks
typically follow a decreasing distribution. A variety of different integer codes were
proposed [16,44], but only some integer codes are appropriate for use in BWT-based
source codes. The Elias—y integer code [136] was used to effectively encode the recency—
rank encoder output sequence [118], and is discussed in what follows.

Dorrigiv et. al. [118] used the Elias—y code [136] in an implementation of a BWT-
based source code. Each codeword of the Elias—y code is a concatenation of two code-
words from different codes [16]. The prefix of each codeword of the Elias—y code is a
codeword of the Elias—« integer code, but with its final bit omitted. The suffix of each
codeword of the Elias—y code is a codeword of an Elias-3 integer code. Some of the
codewords of the Elias codes are provided in table 3.9.

The Elias— codeword of an integer equals the conventional binary—coded represen-
tation of the integer [16,136]. The most significant bit of the binary—coded integer is
the leading bit of the codeword. The leading zeros of each codeword are omitted. The
Elias—f codeword represents the value of the integer that is encoded using the Elias—y
code.

The codewords of an Elias—3 code are not self-delimiting [16,136]. This property dis-
tinguishes it from typical integer codes, which have codewords that are self-delimiting.
The suffix of each Elias—y codeword is delimited by an Elias—a codeword. The Elias—«
codeword represents the bit length of the suffix of the Elias—y codeword. The Elias—«
codeword of the integer 7 has i — 1 zero—valued bits and a final nonzero—valued bit. The
final nonzero—valued bit of the Elias—a codeword is omitted when used as part of an
Elias—y codeword, as it is redundant.

The implementation of Dorrigiv et. al. [118] uses the Elias—y code [136] to encode
the output of the recency-rank encoder. The recency—rank encoder output sequence is
encoded in a rank-by-rank fashion. The implementation represents a rank of ¢ with
the Elias—y codeword of the integer ¢ + 1, as the Elias—y code has no codeword for the
integer zero.

Dorrigiv et. al. [118] proposed an improvement to the source encoder that makes
use of the Elias—y code. This improvement is beneficial to the effectiveness of the source
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encoder when applied to sequences containing long runs of the rank zero. The source
encoder encodes all ranks that are higher than zero as before. Upon encountering a run
of j zero—valued ranks in the recency-rank encoder output sequence (where j > 1), the
source encoder first produces the Elias—y codeword of the integer one. It subsequently
produces the codeword of the integer j + 1, thereby encoding the length of the run.
This codeword is produced even if the run contains only a single zero—valued rank. The
source encoder proceeds by encoding the next nonzero—valued rank of the sequence.

Arithmetic codes and frequency increments A significant problem associated
with using an adaptive arithmetic code to encode either the BW'T output sequence
or the recency-rank encoder output sequence is to accurately estimate the probability
distribution of the future symbols or ranks in the sequence [16]. Source models that
are used in implementations of the PPM algorithm typically fail to produce accurate
estimates of the true symbol or rank distribution.

The reason behind the inaccuracy of the PPM source models, when used to model
the BWT output sequence or recency-rank encoder output sequence, lies in the sta-
tistical properties of the symbols and ranks of these sequences [16]. In the case of
the BWT output sequence, the probability distribution of the symbols changes from
segment to segment, and the segment transition points are typically unknown. The
recency-rank encoder output sequence contains short bursts of high-valued ranks be-
tween long segments of low—valued ranks. The PPM source models do not accurately
represent these sequences — another approach is required to obtain accurate estimates
of the distribution of the symbols or ranks in these sequences.

Balkenhol et. al. [95] modified the mechanism for updating the symbol frequency
counts in the source model of an arithmetic code implementation in an attempt to pro-
duce more accurate estimates of the symbol distribution of the BWT output sequence.
The problem of appropriately updating the symbol frequency counts is referred to as
the generalized frequency update problem. Balkenhol et. al. modified the implemen-
tation according to several observations regarding the BWT output sequence. It was
observed that the degree of statistical similarity between two symbols in the BWT
output sequence typically depends on the distance between them (i.e. the number of
symbols that appear between them). Symbols that are located close to each other are
more likely to have similar distributions than symbols that are distant from each other.

The previous observation regarding the statistical similarity between nearby sym-
bols in the BWT output sequence may be used to estimate the symbol distribution at
certain stages of the sequence with greater accuracy [95]. The observation implies that
the estimate of a certain alphabet symbol’s probability of occurrence should decrease
as the distance to its previous occurrence in the sequence increases. The recency-rank
encoder does incorporate this approach, as it assigns lower—valued ranks to identical
symbols that occur in the vicinity of one another. An accurate probability estimate of
an alphabet symbol also reflects the number of times the symbol appears in the BWT
output sequence, however.

Two approaches to updating the symbol frequency counts in the source models
of arithmetic encoders are relevant to this summary [95]. The first approach is to
increment a symbol frequency count by a constant upon encountering the symbol in
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the sequence. The symbol frequency counts are halved as soon as a threshold or a limit is
exceeded by any symbol count. This technique implicitly defines a sliding window over
the sequence, with symbols inside the window remaining part of the symbol frequency
counts. The halving of the symbol frequency counts enables the arithmetic code to
adapt to changes in the distribution of the symbols. The first approach is typically
followed in the implementation of PPM algorithms.

The second approach updates the symbol frequency counts according to a certain
equation [95]. Suppose that the frequency count for a certain alphabet symbol y, af-
ter having encoded the first £ symbols of the BWT output sequence, is expressed as
f(y|x*). The symbol frequency counts may be updated according to the equation

FyIx") =77 ) + 6y, ), (3.23)
where v > 1 and
_J 1 ifp=yg,
op.q) = { 0 otherwise. (3.24)

By using equation 3.23, the frequency counts of all but the most recently encoded
symbol are decreased during each update. Balkenhol et. al. [95] stated that the symbol
frequency counts need not be updated after encoding each symbol in the sequence. The
increment may also be set to zero if the encoder is source coding a run of symbols,
thereby preventing the model from becoming overly biased towards the run symbol.

Run—length codes As the recency-rank encoder output sequence typically contains
many runs of the rank zero, it is reasonable to encode this sequence using a run—length
code [16]. A run-length coded sequence is not only an effective representation of a
sequence with many runs, but it is also beneficial to the source coding of the ranks
that do not occur in runs.

An adaptive arithmetic code increments and rescales the rank frequency counts
of the source model according to the ranks that were recently encountered in the
sequence [16]. The adaptive code’s estimate of the rank distribution is therefore likely
to be biased at the end of a long run of a certain rank. If this is the case, the symbols
that follow the run may be encoded using an inaccurate source model, thereby reducing
the effectiveness of the overall source code [95]. By run—length coding the sequence prior
to source coding it with an adaptive arithmetic code, the arithmetic code is made aware
of the runs, and may avoid biasing the source model [86].

A general run—length enco