UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIBESITHI VA PRETORIA

CHAPTER 6

REFERENCES

- 1. Nicholls D. R., The pebble bed nuclear reactor, Elekron, Nov/Dec 1996,25 26.
- Nicholls D. R.. The pebble bed modular reactor, South African Journal of Science, 2000, 96, 31 - 35.
- 3. Morgan, D.L., Personal communication.
- 4. Morgan, D.L., Nuclear Graphite from Refcoal, CSIR Report 86DC/Ht002, 2000
- Kirk-Othmer's Encyclopaedia of Chemical technology 4th Ed., Executive editor Kroschwitz, J., Vol.17, pp369 - 594
- Kirk-Othmer's Encyclopaedia of Chemical Technology 4th Ed., Executive editor Kroschwitz,
 J., Vol. 6, pp423 594
- Ullman's Encyclopaedia of Industrial Chemistry 5th Ed, Vol. A5 98 120 Executive editor W.
 Gerhartz
- Kelly, B.T., *Physics of Graphite*, Applied Science Publishers, 1981, London and New Jersey, pp477.
- Kelly, B.T., Nuclear Reactor Materials, in Material Science and Technology, Vol. 10 A, Edited by Cahn, R.W., Haasen, P. and Kramer, E.J.
- Marsden, Irradiation damage in graphite due to fast neutrons in fission and fusion systems, International atomic energy agency, Report IAEA-TECDOC-1154,2000.
- Kirk-Othmer's Encyclopaedia of Chemical technology 4th Ed., Executive editor Kroschwitz, J.,
 Vol. 4, pp 949 1015
- Stach, E., Mackowsky, H-Th., Teicmuller M., Talor, G. H., Chandra, D., Teichmuller, R., Stach's Textbook of coal petrology, 1982 Gebruder Borntraeger, Berlin, Edward Arnold

Stuttgart.

- 13. Marsh, H., Introduction to Carbon Science, UK, (1989)
- 14. Valkovic', V., Trace elements in coal, Vol. I, CRC press, Inc. Boca Raten, Florida 1983.
- 15. Hayatsu, R., Winans, R.E., Scott, R.G., Moore, L.P. and Studier, M.H., *Trapped organic compounds and aromatic units in coals*, Fuel, 1978, **57**, 541 548.
- Lyons, P. C., Palmer, C. A., Bostick, N. H., Fletcher, J. D., Dulong, F. T., Brown, F. W., Brown,
 Z. A., Krasnow, M. R. and Romankiw, L. A., Chemistry and origin of minor and trace elements in vitrinite concentrates from a rank series from the eastern United States, England, and Australia, Int. J. Coal Geol., 1989, 13, 481 – 527
- 17. Spears, D. A., Manzanares-Papayanopoulos, L. I. and Booth, C. A., *The distribution and origin of trace elements in UK coals: the importance of pyrite*, Fuel, 1999, **78**, 1671 1677.
- Ren, D. Y., Zhao, F. H., Wang, Y. Q. and Yang, S. J., Distribution of minor and trace elements in Chinese coals, Int. J. Coal Geol., 1999, 40, 109 - 118.
- Senior, C. L., Zeng, T., Che, J., Ames, M. R., Sarofim, A. F., Olmez, I., Huggins, F. E., Shah, N., Huffman, G. P., Kolker, A., Mroczkowski, S., Palmer, C. and Finkelman, R., *Distribution* of trace elements in selected pulverized coals as a function of particle size and density, Fuel Processing Technology, 2000, 63, 215 - 241.
- Huggins, F. E. and Huffman, G. P., Modes of occurrence of trace elements in coal from XAFS spectroscopy, Int. J. Coal Geol., 1996, 32, 31 - 53.
- Finkelman, R. B., Modes of occurrence of potentially hazardous elements in coal: levels of confidence, Fuel Processing Technology, 1994, 39, 21 - 34.
- Kolker, A., Huggins, F. E., Palmer, C. A., Shah, N., Crowley, S. S., Huffman, G. P. and Finkelman, R. B., *Mode of occurrence of arsenic in four US coals*, Fuel Processing Technology, 2000, 63, 167 - 178.
- Muhkopadhyay, P. K., Goodarzi, F., Crandlemire, A. L., Gills, K. S., MacNeil, D. J. and Smith,
 W. D., Comparison of coal composition and elemental distribution in selected seams of the

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

Sydney and Stellarton Basins, Nova Scotia, Eastern Canada, Int. J. Coal Geol., 1998, 37, 113 - 141.

- Huggins, F. E., Shah, N., Huffman, G. P., Kolker, A., Crowley, S., Palmer, C. A. and Finkelman, R. B., Mode of occurrence of chromium in four US coals, Fuel Processing Technology, 2000, 63, 79 - 92.
- Palmer, C. A. and Lyons, P. C., Selected elements in major minerals from bituminous coal as detremined by INAA: implications for removing environmentally sensitive elements from coal, Int. J. Coal Geol., 1996, 32, 151 - 166.
- Hart, R. J. and Leahy, R., The geochemical characterisation of the seam from the Witbank basin, Spec. Publ. Geol. Soc. S. Afr., 1983, 7, 169 – 174.
- 27. Laban, K. L. and Atkin, B. P., The determination of minor and trace element associations in coal using a sequential microwave digestion procedure, Int. J. Coal Geol., 1999, 41, 351 369.
- Kortenski, J. and Bakardjiev, S., Rare earth and radioactive elements in some coals from the Sofia, Svoge and Pernik Basis, Bulgaria, Int. J. Coal Geol., 1993, 22,237 -246.
- Spears, D. A. and Zheng, Y., Geochemistry and origin of elements in some UK coals, Int. J. Coal Geol., 1999, 38, 161 - 179.
- 30. Coleman, W. M., Perfetti, P., Dorn, H. C. and Taylor, L. T., *Trace element distribution in various solvent refined coal fractions as a function of the feed coal*, Fuel, 1978, **57**, 612 616.
- Pearson, C. D. and Green, J. B., Comparison of processing characteristics of Mayan and Wilmington heavy residues: 2. Characterization of vanadium and nickel complexes in acidbase-neutral fractions, Fuel, 1989, 88, 465 - 474.
- 32. Zeng, Y. and Uden, P. C., Size exclusion chromatography sample pretreatment for GC-AED analysis of metalloporphyrins in crude oils, J. High Resoln. Chromatogr. 1994, **17**, 217 222.
- Zeng, Y. and Uden, P. C., High temperature gas chromatography Atomic emission detection of metalloporhyrins in crude oils, J. High Resoln. Chromatogr. 1994, 17, 223 - 229.
- 34. Bonnet, R., Porphyrins in coal, Int. J. Coal Geol., 1996, 32 137 149.

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

- 35. Bonnet, R., Burke, P. J. and Reszka, A., Metalloporphyrins in coal, Fuel, 1987 66, 515-520.
- Fourie, C. J. E. and Engelbrecht, P. C., *Trace Elements in South African Coal and Coal Ashes*,
 CSIR Report, ENER-C, 1990
- Howard, A. G. and Statham, P. J., *Inorganic trace analysis: Philosophy and practice*, John Wiley & sons, Chinchester. New York. Brisbane. Toronto. Singapore, 1995, pp182.
- Vandecasteele, C. and Block, C. B., Modern methods for trace element determination, John Wiley & sons, Chinchester. New York. Brisbane. Toronto. Singapore, 1993, pp330.
- 39. Skoog, D. A. and Leary, J. J., Principles of Instrumental Analysis 4th Ed., Saunders College Publishing, Harcourt Brace College Publishers, Fort Worth, Philadelphia, San Diego, New York, Orlando, Austin, San Antonio, Toronto, Montreal, London, Sydney, Tokyo, 1992, pp700.
- 40. Smith, F. E. and Arsenault, E. A., *Microwave-assisted sample preparation in analytical chemistry*, Talanta, 1996, **43**, 1207 1268.
- 41. Valkovic, V., Trace elements in coal, Vol II, 1983 CRC press, Inc., Boca Raton, Florida, pp281.
- Mills, J. C. and Belcher, C. B., Analysis of coal, coke, ash and mineral matter by atomic spectroscopy, Prog. Analyt. Atom. Spectrosc., 1981, 4, 49 – 80.
- 43. Silva, M. M., Goreti, M., Vale, R. and Caramão, B., Slurry sampling graphite furnace atomic absorption spectrometry: determination of trace metals in mineral coal, Talanta, 1999, 50, 1035 1043.
- Kubrakova, I. Microwave-assisted sample preparation and preconcentration for ETAAS, Spectrochim. Acta part B, 1997, 52, 1469 – 1481.
- Ikävalko, E., Laitinen, T., and Revitzer H., Optimised method of coal digestion for trace metal determination by atomic absorption spectroscopy, Fresenius J. Anal. Chem, 1999, 363, 314 – 316.
- Bettinelli, M., Fusion procedure for the trace metal analysis of coal by atomic absorption, At. Spectrosc., 1983, 4, 5 – 9.
- 47. Coleman, W. M., Szabo, P., Wooton, D. L., Dorn, H. C. and Taylor, L. T., Minor and trace

metal analysis of a solvent-refined coal by flameless atomic absorption, Fuel, 1977, **56**, 195–198.

- 48. Riley, K. W., Schafer, H. N. S. and Orban, H., *Rapid acid extraction of bituminous coal for the determination of phosphorus*, Analyst, 1990, **115**, 1405 1406.
- 49. Alvarado, J., Alvarez, M., Cristiano, A. R. and Marcó, L. M., *Extraction of vanadium from petroleum coke samples by means of microwave wet acid digestion*, Fuel, 1990, **69**, 128 130.
- 50. Alvarado, J., León, L. E., López, F. and Lima, C., Comparison of conventional and microwave wet acid digestion procedures for the determination of iron, nickel and vanadium in coal by electrothermal atomisation atomic absorption spectrometry, J. Anal. At. Spectrom., 1988, **3**, 135 – 138.
- Polkowska-Motrenko, H., Danko, B., Dybczyñski, R., Koster-Ammerlaan, A. and Bode, P., *Effect of acid digestion method on cobalt determination in plant materials*, Anal. Chim. Acta, 2000, 408, 89 – 95.
- 52. Que Hee, S. S. and Boyle J. R., Simultaneous multielemental analysis of some environmental and biological samples by inductively coupled plasma atomic emission spectrometry, Anal. Chem., 1988, 60, 1033 1042.
- 53. Nadkari, R. A., Multitechnique multielement analysis of coal and fly ash, Anal. Chem., 1980,
 52, 925 935.
- 54. Nadkari, R. A., Application of microwave oven sample dissolution in analysis, Anal. Chem., 1984, 56, 2233 - 2237.
- 55. Lamothe, P. J., Fries, T. L. and Consul, J. J., *Evaluation of a microwave oven system for the dissolution of geological samples*, Anal. Chem., 1986, **58**, 1881 1886.
- 56. Paudyn, A. M. and Smith, R. G., *Microwave decomposition of dust, ashes, and sediments for the determination of elements* by ICP-AES, Can. J. Appl. Spectros., 1992, **37**, 94 99.
- 57. Munro, S. and Ebdon, L., Application of inductively coupled plasma mass spectrometry(ICP-MS) for trace metal determination in foods, , J. Anal. At. Spectrom., 1986, 1, 211 – 219.

- 58. Roduskin, I., Axelsson, M. D. and Burman, E., *Multielement analysis of coal by ICP techniques using solution nebulization and laser ablation*, Talanta, 2000, **51**, 743 759.
- 59. Ebdon, L., Foulkes, M. E. and Parry, H. G. M., Direct atomic spectrometric analysis by slurry atomisation. Part 7: Analysis of coal using inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1988, 3, 753 – 761.
- 60. Fonseca, R. W. and Miller-Ihli, N. J., Anlyte transport studies of aqueous solutions and slurry samples using electrothermal vaporisation ICP-MS, Appl. Spectrosc., 1995, 49, 1403
- Gregoire, D.N., Miller-Ihli, N. J. and Sturgeon, R. E., Direct analysis of solids by ultrasonic slurry electrothermal vaporisation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1994, 9, 605
- Ricaud, R., Lachas, H., Lazaro, M. -J., Clarke, L. J., Jarvis, K. E., Herod, A. A., Gibb, T. C. and Kandiyoti, R., Trace elements in coal derived liquids: analysis by ICP-MS and Mössbauer spectroscopy, Fuel, 2000, 79, 57 - 67.
- 63. Feng, S., Wu, S., Wharmby, A. and Wittmeier, A., *Microwave digestion of plant and grain* standard reference materials in nitric and hydrofluoric acids for multi-element determination by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1999, **14**, 939 - 946.
- Booth, C. A., Spears, D. A., Krause, P. and Cox, A. G., The determination of low level trace elements in coals by laser ablation-inductively coupled plasma-mass spectrometry, Fuel, 1999, 78, 1665 1670.
- 65. Jenkins, R., X-ray fluorescence analysis, Anal. Chem., 1994, 56, 1099A 1106A
- 66. Malmqvist, J., Semi-low-dilution fusion technique for analysis of geological, environmental and production plant samples in ferrous and non-ferrous industries, X-ray spectrom., 1998, 27, 183 197.
- 67. Pearce, B. C., Hill, J. W. F. and Kerry, I., Use of X-ray fluorescence spectrometry for the direct multi-element analysis of coal powders, Analyst, 1990, 115, 1397 11403.
- 68. White, R. N., Smith, J. V., Spears, D. A., Rivers, M. L. and Sutton, S. R., Analysis of iron

sulphides from UK coal by synchrotron X-ray fluorescence, Fuel, 1989, 68, 1480 - 1486.

- Suarez-Fernandez, G. P., Vega, J. M. G., Fuertes, A. B., Gracia, A. B. and Martinez-Tarazoma, M. R., Analysis of major, minor and trace elements in coal by radioisotope X-ray fluorescence spectrometry, Fuel, 2001, 80, 255 - 261.
- 70. Garbauskas, M. F. and Wong, J., XRF analysis of trace titanium in coal using fundamental parameters, X-ray Spectrom., 1983, 12, 118 120.
- 71. Rowe, J. J. and Steinnes, E., Determination of 30 elements in coal and fly ash by thermal and epithermal neutron activation analysis, Talanta, 1977, **24**, 433 439.
- Erasmus, C. S., Fesq, H. W., Kable, E. J. D., Rasmussen, S. E. and Sellschop, J. P. F., *The Nimroc samples as reference materials for neutron activation*, J. Radioanal. Chem., 1977, 39, 323 329.
- Nadkarni, R. A. and Morrison, G. H., Multielement instrumental neutron activation analysis of biological materials, Anal. Chem., 1973, 45, 1957 – 1960.
- 74. Chattopadhay and Jervis, R. E., Multielement determination in Market-Garden soils by instrumental photon activation analysis, Anal. Chem. 1974, 46, 1630 1639.
- 75. Block, C. and Dams, R., Determination of trace elements in coal by instrumental neutron activation analysis, Anal. Chim. Acta, 1973, 68, 11 24.
- Damarupurshad, A., Hart, R. J., Sellschop, J. P. F. and Meyer, H. O., *The application of INAA* to the geochemical analysis of single diamonds, , J. Radioanal. Nucl. Chem., 1997, 219, 33 – 39.
- 77. Somer, G., Çakir, O. and Solak, A. O., *Differential-pulse polarographic determination of trace heavy elements in coal samples*, Analyst, 1984, **109**, 135 - 137.
- Husain, S., Prasad, P. R. and Hasan, S. J., Quantitative determination of trace elements in Indian coals by differential pulse polarography, Fuel, 1990, 69, 130 – 131.
- Ondov, J. M., Zoller, W. H., Olmez, I., Aras, N. K., Gordon, G. E., Rancitelli, L. A., Abel, K.
 H., Filby, R. H., Shah, K. R. and Ragaini, R. C., *Elemental concentrations in the National*

Bureau of Standards' environmental coal and fly ash standard reference materials, Anal. Chem., 1975, 47, 1102 - 1109.

- Von Lehmden, D. J., Jungers, R. H. and Lee, R. E., Jr., Determination of trace elements in coal, fly ash, fuel oil and gasoline – A preliminary comparison of selected analytical techniques, Anal. Chem., 1974, 46, 239 – 245.
- Dulka, J. J. and Risby, T. H., Ultratace metals in some environmental and biological systems, Anal. Chem., 1976, 48, 640 A – 653 A.
- 82. Stambaugh, E. P., Treating carbonaceous material, U.S. Pat. No. 4.121,910, 1978.
- 83. Waugh, A. B. and Bowling, K. McG., Demineralization of coal, U.S. Pat. No. 4,936,045, 1990.
- Waugh, A. B. and Bowling, K. McG., Removal of mineral matter from bituminous coals by aqueous chemical leaching, Fuel Processing Technology, 1984, 9, 217 – 233.
- Reggel, L., Raymond, R. and Blaustein, B. D., Removal of mineral matter including pyrite from coal, U.S. Pat. No. 3,993,455, 1976.
- 86. Yang, R. T, Process for producing high-purity coal, U.S. Pat. No. 4,134,737, 1979.
- Yang, R. T, Das, S. L. and Tsai, M. C., Coal demineralization using sodium hydroxide and acid solutions, Fuel, 1985, 64, 735 – 742.
- Mukherjee, S. and Borthakur, K. C., Chemical demineralisation/desulphurisation of high sulphur coal using sodium hydroxide and acid solutions, Fuel, 2001, 80, 2037 - 2040.
- Wang, Z. Y., Ohtsuka, Y. and Tomita, A, Removal of mineral matter from coal by alkali treatment, Fuel Processing Technology, 1986, 13, 279 – 289.
- Qulfaz, M., Ahmed, M. and Gürkan, S., Removal of mineral matter and sulfur from lignites by alkali treatment, Fuel Processing Technology, 1996, 47, 99 – 109.
- Bolat, E., Saglam, S. and Piskin, S., Chemical demineralization of a Turkish high ash bituminous coal, Fuel Processing Technology, 1998, 57, 93 – 99.
- 92. Sharma, D. K. and Gihar, S., Chemical cleaning of low grade coals through alkali- acid leaching employing mild conditions under ambient pressure, Fuel, 1991, 70, 663 665.

- 93. Wang, J. and Tomita, A, Removal of mineral matter from some Australian coals by Ca(OH)₂/HCl leaching, Fuel, 1998, 77, 1747 – 1753.
- Steel, K. M. and Patrick, J. W. The production of ultra clean coal by chemical demineralisation, Fuel, 2001, 80, 2019 - 2023.
- 95. Steel, K. M., Besida, J., O'Donnell, T. A. and Wood, D. G., Production of ultra clean coal: Part I-Dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids, Fuel Processing Technology, 2001, 70, 171 – 192.
- 96. Steel, K. M., Besida, J., O'Donnell, T. A. and Wood, D. G., Production of ultra clean coal: Part II-Ionic equilibrium in solution when mineral matter from black coal is treated with aqueous hydrofluoric acid, Fuel Processing Technology, 2001, 70, 193 – 219.
- 97. Steel, K. M., Besida, J., O'Donnell, T. A. and Wood, D. G., Production of ultra clean coal: Part III. Effect of coal's carbonaceous matrix on the dissolution of mineral matter using hydrofluoric acid, Fuel Processing Technology, 2002, 76, 51 – 59.
- Lloyd, R. and Turner, M. J., Method for the continuous chemical reduction and removal of mineral matter contained in carbon structures, U.S. Pat. No. 4,780,112, 1988.
- 99. Kindig, J. K. and Reynolds, J. E., Integrated coal cleaning process with mixed acid regeneration, U.S. Pat. No. 4,695,290, 1987.
- Dwivedi, S. R., Dasgupta, P. K., Chatterjee, P. K., Bose, A. N., Mukherjee, S. N., Chatterjee,
 S. S. and Brahmachari, B. B., Solvent refined coal studies on the behavior of an iron catalyst,
 Fuel Processing Technology, 1995, 42, 19–23.
- Choudhury, S. B, Brahmachari, B. B Dwivedi, S. R., Roy, A. K., Dasgupta, P. K., Chakraborty,
 M. and Haque, R., Solvent refined coal from high-ash non-coking coals and washery middlings
 for use in metallurgical coke making: Part I. Production, testing and characterization, Fuel
 Processing Technology, 1996, 47, 203 –213.
- 102. Choudhury, S. B, Sakar, S., Chatterjee, P. K., Chatterjee, S. S., Prasad, R. R., Mukherjee, S. N., Ghosh, S. K., Rao, S. R. K., Bose, A. N., Brahmachari, B. B. and Haque, R., Solvent refined

coal from high-ash non/weakly coking coals for use in metallurgical coke making: Part II. Production, testing and characterization, Fuel Processing Technology, 1997, **51**, 165–176.

- Chakraborty, M. and Sakkar, S., Production of solvent refined coal, J. Mines, Metals & Fuels, 1977, 139 - 144.
- Filby, R. H., Shah, K. R. and Sautter, C. A., A study of trace element distribution in the solvent refined coal (SRC) process using neutron activation analysis, J. Radioanal. Chem., 1977, 37, 693 704.
- 105. Hombach, H. P., General aspects of coal solubility, Fuel, 1980, 59, 465 470.
- Roy, J., Banerjee, P. and Singh, P. N., Action of dipolar aprotic solvents on coal, Ind. J. Technol., 1976, 14.298 –303.
- Stiller, A. H., Sears, J. T. and Hammack, R. W., Coal extraction process, U.S. Pat. No. 4.272,356, 1981.
- Renganatharan, K., Zondlo, J.W., Mintz, E.A., Kneisel, P. and Stiller, A.H., Preparation of an ultra-low ash coal extract under mild conditions, Fuel Processing Technology, 1988, 18, 273 -278.
- Zondlo, J. W. Stansberry, P. G. and Stiller, A. H., Production of coal derivation products utilizing NMP-type solvent extraction, U.S. Pat. No. 5,955,375, 1999.
- 110. Chaudhuri, P. D. and Zondlo, J. W., A procedure for the production of ultra-pure precursors from coal for the manufacture of value-added carbon products – preparation of an extract, Fuel Science & Technol. Int. 1996, 14, 1433 – 1446.
- Chaudhuri, P. D. and Zondlo, J. W., Procedure for the production of ultra-pure precursors from coal for the manufacture of value-added carbon products treatment of the residue, Fuel Science & Technology International, 1996, 14, 1381 – 1389.
- 112. Morgan, D.L., Coal solubilisation, U.S. Pat. No. 5120430.
- Ouchi, K., Ozawa, H., Makabe, M. and Itoh, H., Dissolution of coal with NaOH-alcohol: effect of alcohol species, Fuel, 1981, 60, 474 – 476.

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

- Sharma, D. K. and Singh, S. K., Extraction of coal through dilute alkaline treatment at low temperature and atmospheric pressure, Fuel Processing Technology, 1988, 19, 73 - 94.
- 115. Giray, E. S. V., Chen, C., Takanohashi, T. and Iino, M., Increase of the extraction yield with of by the addition of arromatic amines, Fuel, 2000, 72, 1533 1538.
- Iino, M. and Matsuda, M., Carbon disulphide-pyridine mixture, a new efficient extraction solvent for coal, Fuel, 1983, 62, 744 - 746.
- Takahashi, K., Norinaga, K., Masui, Y. and Iino, M., Effect of addition of various salts on coal extraction with carbon disulphide/N-meyhl-2-pyrrolidinone mixed solvent, Energy and Fuels, 2001, 15, 141 - 146.
- 118. Iino, M., Takanohashi, T., Ohsuga, H. and Toda, K., Extraction of coals with CS₂-N-methyl-2pyrrolidinone mixed solvent at room temperature: Effect of coal rank and synergism of mixed solvent, Fuel, 1988, 67, 1639 - 1647.
- Ishizuki, T., Takanohashi, T., Ito, O. and Iino, M., Effects of additives and oxygen on extraction yield with CS₂-NMP mixed solvent for Argone premium coal samples, Fuel, 1993, 72, 579 - 580.
- 120. Morgan, D.L., Coal solubilisation product, CSIR and Energy Affairs, South Africa (1996)
- 121. Risenga, S. and Morgan D.L., Personal communication.
- 122. CRC Handbook of Chemistry and Physics (1913 1995) 75th Ed.
- Lederer, C. M. Hollander, J. M. and Perlman, I., *Table of Isotopes* 6th Ed., John Wiley & Sons, Inc. New York. London. Sydney, 1967, pp594.
- 124. Stiller, A. H., Zondlo, J. W. and Stansberry, P. G., *Method for producing high quality, high purity, isotropic graphite from coal*, U.S. Pat. No. 5,955,375, 1998.
- 125. Kgobane, B.L., Mthembi P. M.and Morgan D.L. The preparation of purified graphite from alkali-enhanced coal extracts. Presented at the International Conference on Carbon 15 - 19 September 2002 Beijin, China.
- Walton, H. F. and Rocklin, R. D., *Ion exchange in analytical chemistry*, CRC Press, Boca Raton. Ann Arbor. Boston, 1990, pp229.

- Strelow, F. W. E., van Zyl, C. R. and Bothma, C. J. C., Distribution coefficients and cation exchange behavior of elements in hydrochloric acid-ethanol mixtures, Anal. Chim. Acta, 1969, 45, 81 92.
- Strelow, F. W. E., An ion exchange selectivity scale of cations based on equilibrium distribution coefficients, Anal. Chem., 1960, 32, 1185 – 1188.
- Strelow, F. W. E., Distribution coefficients and ion exchange behavior of 46 elements with a macroreticular cation exchange resin in hydrochloric acid, Anal. Chem., 1984, 56, 1053 – 1056.
- Strelow, F. W. E., Distribution coefficients and cation exchange behavior of 45 elements with a macroporous resin in hydrochloric acid/methanol mixtures, Anal. Chim. Acta, 1984, 160, 31 - 45.
- Strelow, F. W. E., Victor, A. H., van Zyl, C. R. and Ellof, C., Distribution coefficients and cation exchange behavior of elements in hydrochloric acid-acetone, Anal. Chem., 1971, 43, 870-876.
- Strelow, F. W. E., Distribution coefficients and ion exchange selectivities for 46 elements with macroporous cation-exchange resin in hydrochloric acid-acetone medium, Talanta, 1988, 35, 385 – 395.
- -Siegfried, C. H., Weinert, W. and Strelow, F. W. E., Cation-exchange in thiourea-hydrochloric acid solutions, Talanta, 1983, 30, 413 – 418.
- Strelow, F. W. E., Hanekom, M. D., Victor, A. H. and Ellof, C., Distribution coefficients and cation exchange behavior of elements in hydrobromic acid-acetone media, Anal. Chim. Acta, 1975, 76, 377 – 391.
- 135. Strelow, F. W. E. and Sondorp, H., *Distribution coefficients and cation exchange selectivities* of elements with AG50W-X8 resins in perchloric acid, Talanta, 1972, **19**, 1113 – 1120.
- 136. Strelow, F. W. E., Rathemeyer, R. and Bothma, C. J. C., *Ion exchange selectivity scale for cations in nitric acid and sulfuric acid media with sulfonated polystyrene resin,* Anal. Chem.

1965, 37, 106 - 111.

- Strelow, F. W. E. and van der Walt, T. N., Cation exchange in tartaric acid-nitric acid and in tartaric acid ammonium tartrate solution, Anal. Chem., 1967, 54, 457 – 462.
- Strelow, F. W. E., Distribution coefficients and anion exchange behavior of some elements in hydrobromic-nitric acid mixtures, Anal. Chem., 1978, 50, 1359 – 1361.
- Strelow, F. W. E., in *Ion exchange and solvent extraction*, Marinsky, J. A. and Marcus, Y., Eds., Marcel Dekker, New York, 1973, chap 2.
- Strelow, F. W. E. and Bothma, C. J. C., Anion exchange selectivity scale for elements in sulfuric acid media with strongly basic resin, Anal. Chem., 1967, 39, 595 – 599.
- Boyd, G. E. and Soldano, B. A., Self-diffusion of cations in and through sulfonated polystyrene cation-exchange polymers, J. Am. Chem. Soc., 1954, 75, 6091 – 6099.
- Boyd, G. E. and Soldano, B. A., Self-diffusion of cations in hetero-ionic cation-exchangers, J.
 Am. Chem. Soc., 1954, 75, 6107 6110.
- Boyd, G. E. and Soldano, B. A., Self-diffusion of water molecules and mobile anions in cationexchangers, J. Am. Chem. Soc., 1954, 75, 6105 – 6107.
- Boyd, G. E. and Soldano, B. A., Self-diffusion of anions in strong-base anion-exchangers, J.
 Am. Chem. Soc., 1954, 75, 6099 6104.
- 145. Samuelson, O., Ion exchange separations in analytical chemistry, Almqvist & Wiksell, Stockholm. Göteborg. Uppsala, John Wiley & Sons, New York. London, 1963, pp474.
- Bayer AG, Product information, Organic Chemicals Business Group, Research/Applications-Lewatit, D-51368.
- Nicholls, D., Complexes and first-row transition elements, Macmillan Education Ltd., 1974, pp215.
- Battersby, A. R., Jonnes, K. and Snow, R. J., Novel methods for the demetalating tetrapyrrolic Metallo-Macrocycles, Angew. Chem. Int. Ed. Engl., 1983, 22, pp 734 – 735.
- 149. Lewis, N. J., Pfaltz, A. and Eschenmoser, A., Acid-catalysed demetalation of nickel-

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIBESITHI VA PRETORIA

hydrocorphin and cobalt-corrin complexes with 1,3-propanedithiol, Angew. Chem. Int. Ed. Engl., 1983, 22, pp 735 - 736.

- 150. Lewis, N. J., Nussberger, R., Kräuler, B. and Eschenmoser, A., 5,15-Bisnorcobester: an unexpected mode of formation, Angew. Chem. Int. Ed. Engl., 1983, 22, pp 736 737.
- 151. Müller, P. M., Farooq, S., Hardegger, B., Salmond, W. S. and Eschenmoser, A., *Metal-free derivatives of the corphin ligand system*, Angew. Chem. Int. Ed. Engl., 1973, **12**, pp 914 - 916.
- Kolthoff, I. M. and Elving, P. J., Treatise on analytical chemistry, Part I: Theory and practice, Volume 2, Interscience publishers, New York-London, 1961, pp1053 – 1093.
- 153. Claassen, A. and Daamen, A., The photometric determination of cobalt by extraction with bnitroso-a-naphthol, Anal Chim. Acta, 1955, **12**, 547 - 553.

APPENDICES

APPENDIX 1

Mineral group	Mineral constituents	Chemical formulae	
Silicates	Kaolinite (S)	Al ₂ Si ₂ O ₅ (OH) ₄	
(clay minerals)	Illite (S, E)	(OH) ₈ K(Mg,Al,Si).(Si ₃ Al ₃)O ₁₀	
	Chlorite (S, E)	(Mg, Fe, Al) ₆ (AlSi ₃) ₄ O ₁₀ (OH) ₈	
	Feldspar	(K,Na)2O.Al2O3.6SiO2	
	Zircon	ZrSiO ₄	
	Kyanite	Al ₂ O ₃ .SiO ₂	
	Staurolite	(2FeO.5Al ₂ O ₃ .4SiO ₂ .2H ₂ O	
	Topaz	(AlF) ₂ O.SiO ₄	
	Tourmaline	H ₉ Al ₃ (BOH) ₂ .Si ₄ O ₁₉	
	Muscovite (S)	KAl ₂ (AlSi ₃)O ₁₀ (OH) ₂	
	Pyrophillite	Al ₂ Si ₄ O ₁₀ .(OH) ₂	
	Garnet	3CaO.Al ₂ O ₃ .3SiO ₂	
	Hornblende	CaO.3FeO.4SiO ₂	
	Epidote	4CaO.3Al ₂ O ₃ .6SiO ₂ .2H ₂ O	
	Biotite	K ₂ O.MgO.Al ₂ O ₃ .3SiO ₂ .2 H ₂ O	
	Pernnite	5MgO.Al ₂ O ₃ .3SiO ₂ .2H ₂ O	
	Augite	CaO.MgO.2SiO ₂	
	Montmorillonite (S)	(AlMg)8.(Si4O10)3(OH)2	
	Mixed-layer illite-montmorillonite (S)		
	Paegioclase (S)	(Na, Ca)Al(SiAl)Si ₂ O ₈	

Table A1.1: Minerals in coal [12,98]

Note: S = Syngenetic; E = Epigenetic

Mineral group	Mineral constituents	Chemical formulae
Carbonates	Calcite S, E)	CaCO ₃
	Dolomite (S, E)	CaMg(CO ₃) ₂
	Aragonite (S, E)	CaCO ₃
	Ankerite (S, E)	CaCO ₃ . (Mg, Fe, Mn)CO ₃
	Siderite (S)	FeCO ₃
	Mixed-layer Siderite-Ankerite	
Chlorides	Sylvite	KC1
	Halite	NaCl
Oxides	Quartz (S, E)	SiO ₂
	Diaspore	Al ₂ O ₃ .3H ₂ O
	Lepidocrocite	Fe ₂ O ₃ .3H ₂ O
	Hematite (S)	Fe ₃ O ₄
	Magnetite	Fe ₂ O ₃
	Rutile (S)	TiO ₂
Sulphates	Gypsum (E)	$CaSO_4$, $2H_2O$
	Jarosite (E)	KF ₃ (OH) ₆ (SO ₄) ₂
	Barite	BaSO ₄
	Themadite (E)	Na ₂ SO ₄
Sulphides	Pyrite (S, E)	FeS ₂
	Marcasite (S, E)	FeS ₂
	Sphalerite (S, E)	ZnS
	Galena (E)	PbS
Phosphates	Apatite (S)	$9Ca.3P_2O_5CaX_2$ (X = OH, F, Cl)

Table A1.1(continue): Minerals in coal [12,98]

Note: S = Syngenetic; E = Epigenetic

Element	Abundance (ppm)	Modes of occurrence	Level of confidence
Antimony	< 0.1 - 40	Sulfides, pyrite	4
Arsenic	< 1 - 250	As for S in pyrite	8
Beryllium	<1-30	Clays?, organic association?	4
Boron	< - 500	Clays, organic association	
Cadmium	< 0.1 - 10	ZnS, clays?, carbonates?	8
Chlorine	100 - 8000	Maceral moisture, NaCl?	
Chromium	1 - 100	Clays?, FeCr ₂ O ₄ ?, CrOOH	2
Cobalt	< 1 - 50	Sulfides?, clays?	4
Copper	< 1 - 200	Sulfides?, organic association?	
Fluorine	< 20 - 1000	Fluorapatite, clays	
Lead	< 1 - 100	PbS, pyrite, PbSe	8
Manganese	5 - 1000	Org. association, carbonates, other	8
Mercury	0.01 - 10	Sulfides?, Hg?, org. association?	6
Molybdenum	0.5 - 50	Pyrite, MoS ₂ ?, org. association?	
Nickel	< 1 - 100	Sulfides, organic association?	2
Selenium	0.1 - 20	Organic Se, sulfides, etc.	8
Tin	0.1 - 20	Oxides, sulfides, org. association	1
Thallium	0.1 - 3	Sulfides	
Thorium	< 0.1 ~50	Monazite, zircon	
Uranium	0.1 - 50	Org. association, various minerals	
Vanadium	< 1 - 300	Clays, organic association?	
Zinc	1 - 300	ZnS, organic association?	-

Table A1.2 Abundance and elemental mode of occurrence in coal [20,21]

		Quartz						Kaolinite	Illite		Pyrite
Coal bed/ Region	Upper B	anner Coal			Fire clay	coal		West- phalian Region	Ruhr	Pittsburg no. 8	Upper Freeport
As	< 0.5	< 0.3	< 0.3	< 0.2	< 0,5	< 0.7	< 3	0.52	2.35	227	1210
Ba	950	550	< 50	630	<130	< 120	<400	159	840	< 300	< 200
Br	1.4	< 0.3	< 0.3	0.61	2.03	0.8	6.9	14,5	4.61	ND	ND
Ce	< 2	<]	< 2	< 0,6	5.8	18	42	73	143	3,2	< 2
Cr	< 5	< 2	< 5	< 1	<7	< 7	< 27	8.8	167	39	4.2
Co	< 0.6	< 0.3	< 0.5	< 0,2	<1	< 1	< 4	0.943	12.4	13.8	23,1
Cs	0.52	0.2	< 0.4	0.078	0.44	< 0.5	1.8	1.99	27.4	< 0.6	0.19
Fe (%)	<0.03	<0.021	<0.03	<0.01	<0.01	<0.06	0.22	0.287	1.46	46.6	46.6
Eu	0.33	0.15	< 0.2	0.178	< 0.4	< 0.4	<]	0.157	1.6	0.058	0.092
Hſ	0.56	0.16	0.65	0.157	0.73	0.5	2.7	8.88	5.21	0.24	< 0.3
К (%)	0.7	0.56	0.058	0.52	< 0.1	< 0.1	< 0.4	0.146	5.64	0.02	0.02
La	0.41	0.5	0.26	0.271	2.26	10.2	17.7	36.4	88.7	1.64	1.31
Ĺu	<0.04	<0.02	<0.02	<0.01	0.063	<0.06	< 0.2	0.81	0.558	0.19	< 0.09
Na (%)	0.155	0.118	0.014	0.112	0.011	0.012	0.037	0.425	0.665	0.0249	0.027
Nd	< 8	< 5	< 7	< 3	<11	< 10	< 30	28.4	42	< 40	< 30
Ni	< 60	< 22	< 40	< 13	< 80	< 80	< 290	< 26	36	ND	ND
Rb	25	11.5	< 19	10.5	< 30	< 30	< 100	7.5	273	< 50	12
Sb	< 0.2	< 0.2	0.076	<0.08	< 0.2	< 0.2	< 0.6	0.28	0.82	2.49	2.49
Sc	0.05	0.026	0.027	0.022	0.106	0.076	0.86	11.2	24.5	0.55	0.546
Se	< 6	< 2	< 5	< 1	< 5	< 9	< 13	< 3	< 7	45	32.2
Sm	< 0.6	0.041	0.029	0.018	0.438	0.96	2.51	11.03	10.21	0.16	0.194
Sr	< 230	74	< 220	54	< 500	< 400	<1200	<110	189	< 300	< 100
Ta	< 0.5	< 0.3	< 0.4	< 0.1	< 0.8	< 0.9	< 3	9.9	2.06	< 0.4	< 0.3
ть	< 0.2	< 0.08	< 0.1	<0.04	< 0.2	< 0.3	< 0.2	2.05	0.82	< 0.6	< 0.4
Th	0.77	1.2	0.6	0.22	0.1	3	6.9	59.6	20.7	0.46	0.46
υ	< 0.4	< 0.2	< 0.3	< 0.1	< 0.4	< 0.5	<1	25,3	4.25	2	ND
W	< 0.6	< 0.3	< 0.3	< 0.2	< 0.6	< 0.8	< 2	8.8	5.25	ND	ND
Yb	< 0.3	< 0.1	< 0,1	< 0,1	<0.3	< 0.4	<1	7.3	4.7	<2	< 0.5
Zn	< 12	< 5	< 0.9	< 3	< 20	< 18	< 80	23	36	18	37

Table A1.3. Trace element content in major minerals, ppm[25].

Note: ND = not determined

Element	U.S. average	Worldwide average	Element	U.S. average	Worldwide average
		Conc	entration (%)		
Aluminium, A	AI 1.4	1.0	Potassium, K	0.18	0.01
Calcium, Ca	0.54	1.0	Silicon, Si	2.6	2.8
Iron, Fe	1.6	1.0	Sodium, Na	0.06	0.02
Magnesium, M	Mg0.12	0.02	Sulfur, S	2.0	2.0
Manganese, N	An0.01	0.005	Titanium, Ti	0.08	0.05
Phosphorus, I	· -	0.05			
		Conc	entration (ppm)		
Antimony, Sb	0 1.1	3.0	Lithium, Li	20	65
Arsenic, As	15	5.0	Lutetium, Lu	0.08	0.07
Barium, Ba	150	500	Mercury. Hg	0.18	0.012
Beryllium, Be	2.0	3	Molybdenum, N	Mo3	5
Bismuth, Bi	0.7	5.5	Neodymium, N	d37	4.7
Boron ,B	50	75	Nickel, Ni	15	15
Bromine, Br	2.6	÷2	Niobium, Nb	4.5	-
Cadmium, Cd	1.3	-	Praseodymium,	Pr2.7	2.2
Cerium, Ce	7.7	11.5	Rubidium, Rb	2.9	100
Cesium, Cs	0.4		Samarium, Sm	0.42	1.6
Chlorine, Cl	207	1000	Scandium, Sc	3	5
Chromium, C	r 15	10	Selenium, Se	4.1	3
Cobalt, Co	7	5	Sliver, Ag	0.20	0.50
Copper, Cu	19	15	Strontium, Sr	100	500
Dysprosium,	Dy2.2	-	Tellurium, Te	0.1	-
Erbium, Er	0.34	0.6	Terbium, Tb	0.1	0.3
Europium, Eu	0.45	0.7	Thorium, Th	0.1	-
Fluorine, F	74	-	Thulium, Tm	1.9	-
Gadolinium, (Gd0.17	1.6	Tin, Sn	1.6	- P
Galium, Ga	7	7	Tungsten, W	2.5	
Germanium, (Ge0.71	5	Uranium, U	1.6	1.0
Hafnium, Hf	0.60	-	Vanadium, V	20	25
Holmium, Ho	0.11	0.3	Ytterbium, Yb	1	0.5
Iodine, I	1.10	÷	Yttrium, Y	10	10
Lanthanum, I	a 6.1	10	Zinc, Zn	39	10
Lead, Pb	16	25	Zirconium, Zr	30	÷

Table A1.4. Average concentrations of elements in coal [14]

Element	Witbank- Heidelberg	Ermelo- Belfast- Piet Retief	South Rand	Ellisras	Orange Free State	Natal
Arsenic, As	8.1	7.8	12	5.5	13.3	7.3
Barium, Ba	243.1	220.6	512	83.5	371.2	280.9
Beryllium, Be	1.8	2.6	3	2.5	2.2	3.6
Cadmium, Cd	0.12	0.12	0.1	0,15	0.15	0.27
Chlorine, Cl	41.8	42.7	30	70	45	102.7
Chromium, Cr	27.7	28.9	97	24	45.3	26.7
Cobalt, Co	97	14.1	31	24	14.3	17.3
Copper, Cu	11.2	11	20	9,5	14.7	12.9
Fluorine, F	169.9	112.5	155	97.5	116.5	117.3
Gallium, Ga	7	7	14	4	11.5	6.2
Germanium, Ge	7.2	8,1	23	7.5	14	7
Lead, Pb	11.1	13.3	24	13	22.7	8
Lithium, Li	47,9	18.5	96	6	56.8	22.6
Manganese, Mn	58.8	49,1	58	82	80	42,6
Nickel, Ni	20.1	28.3	33	17.5	18.7	23,4
Strontium, Sr	440.7	452.8	822	69.5	491.2	399.7
Vanadium, V	26.6	29	42	50.5	33.3	32.4
Zinc, Zn	12.5	20.3	17	43.5	17.2	16.8

Table A1.5. Average concentrations of elements in South African coals, ppm [36]

Element	Original coal	Refcoal	Washed with HOAc	Washed with HCl	Washed with HF + HCl
Antimony, Sb	0.7	0.1	0.5	0. L	0.1
Arsenic, As	1.4	0.1	0.1	0.1	0.1
Boron, B	17	2	3	2	ND
Cadmium, Cd	0.0	0.7	0.2	0.3	0.1
Calcium, Ca	4582	112	103	46	114
Cesium, Ce	0.6	0.0	0.0	0.0	0.0
Chromium, Cr	15.9	6.1	7.6	6.3	5.6
Cobalt, Co	4.8	2.8	3.8	2.3	2.4
Copper, Cu	9.1	6.3	6.9	6,1	7.6
Europium, Eu	0.4	0.1	0. t	0.1	0.1
Galium, Ga	6.2	1.4	1.7	1.4	1.3
Hafnium, Hf	3.8	2.5	2.8	2.4	2.0
Iron, Fe	6662	162	239	110	107
Lanthanum, La	11.0	1.4	2.1	1.5	2.0
Lithium, Li	8.8	0.5	0.7	0.7	0.2
Magnesium, Mg	817	22	22	17	14
Manganese, Mn	68.1	1.3	1.1	0.3	0.2
Mercury, Hg	0.1	0.2	0.4	0.4	0.6
Molybdenum, Mo	-4.2	0.7	1.1	1.0	0.9
Nickel, Ni	14	8	10	9	8
Phosphorus, P	2152	143	171	108	30
Rubidium, Rb	4.4	0.2	0.2	0.2	0.0
Scandium, Sc	4.4	1.6	1.9	1.3	1.8
Silicon, Si	28419	1344	1727	1530	1565
Sulfur, S	10433	2678	4162	3240	2780
Strontium, Sr.	140	23	26	19	18
Tantalum, Ta	0.6	0.5	0.7	0.6	0.7
Tin, Sn	2.4	1.1	1.3	.1.1	i i
Titanium, Ti	1029	475	626	528	418
Vanadium, V	12.9	4.9	5.7	4.9	5.1
Ytterbium, Yb	1.7	0.5	0.7	0.6	0.7
Yttrium, Y	10.8	4.9	5.9	4.3	6.2
Zirconium, Zr	129	100	127	107	75

Table A1.6. Average concentration (ppm) of trace elements in Tshikondeni coal and Refcoal.

ND

=

Not determined due to contamination

Table A1.7. Sensitivities of different methods for coal analysis

	NAA*	SSMS	CIMS	ICPAES	NFAAS	XRFS	ASV	ICPMS ^b	LAICPMS	^b
	(8)	(ng)		(H8/m)	0.001 -/ 1	(HB)	0.75	HE'S	H8/8	
Ag	10-10 - 10-5	0.2		0.004	0.001ng/m/	1.2	0.25ppb	0.0019	0.001	
11	$10^{-10} - 10^{-9}$	0.02	-	0.002	1x10 ⁻² g	5.0	·	0.66	1.80	
As	10-10 - 10-9	0.06	211	-		0.11	4	0.022	0.008	
Au	10-12 - 10-11	0.2	-	0.04	1x10 ⁻¹² g	0.001 /cm	1.0mb	0.0005	0.001	
R		9.4	1.1		Luce B		1. oppe	0.15	8	
	10-10 10-2	0.3		0.01	6-10-12 -	0.12		0.017	0 020	
Da	10 - 10	0.2		0.01	oxio g	0.12		0.017	0.028	
Be	The second	0.008		0.005	3x10 ⁻¹⁴ g	- 19 al - 1	Cast of a loss	0.0015	0.024	
Bi	10-8 - 10-7	0.2	-	0.05	4x10 ⁻⁾² g	0.61	0.01ng/ml	0.0001	0.001	
Br	1000	(a)	-	201		2 m	L	8.4	17	
20	10-8 - 10-7	0.03		0.00007	4x10-13 a	0.1	2	30	9.00	
C.A.	10% 10%	0.3		0.007	0.03ng/m/	0.40	0.005nalml	0.0007	0.011	
u u	10 - 10	0.5	-	0.002	0.05118/11/	0.40	0.005118/114	0.0007	0.007	
e	10 - 10-	0.1		0.007	Sugar	0.17	T	0.004	0.003	
Co	$10^{-10} - 10^{-9}$	0.05	Ix10-11	0.003	2x10 ⁻¹² g	0.05	-	0.012	0.022	
Cr	10-3 - 10-7	0.05	1x10-11	0.001	1.2x10 ⁻¹² g	0.00006	÷	0.017	0.001	
25	10.9 - 10.8	0.1	÷			0.15		0.0001	0.0004	
	10-10 - 10-9	0.08	1×10-11	0.001	6-10-13 6	0.00002	0.005ng/ml	0.041	0 140	
Du	10-12 10-12	0.00	Sutoll	0.001	2 2-10-10 -	0,00004	0.000 igrint	0.0000	0.002	
Dy	10 - 10 -	0.5	SXIU	0.004	2.2x10 g	-	-	0.0002	0.003	
Er	10.00 - 10.00	0.5	5x10-0	0.001	3.7x10" g	5.0	2	0.0007	0.002	
Eu	10-13 - 10-12	0.2	5x10-11	0.001	3x10 ⁻¹¹ g	0.66	121	0.0001	0.003	
Fe	10-1 - 10-5	0.05	1x10-11	0.005	2x10-13 g	0.0085		0.36	0.50	
Ga	10.10 - 10.2	0.09	10 (C C 7)	0.014	1x10-12 g	0.01	0.4ng/m/	0.003	0.008	
04	10.9 10.8	0.5	5-10-11	0.007	B.	4.41	a sun Brun	0.0003	0.014	
DU	10 - 10	0.5	JXIU	0.007		<	7	0.0002	0.014	
HI	10 10			0.01	5		5	0.0062	0.003	
Hg	10-10 - 10-9	0.6	A	0.2	8x10 ⁻¹¹ g	0.24	4x10 ⁻⁹ M	0.008	0.060	
Ho	10-11 - 10-10	0.1	5x10-11	0.01	3.3x10 ⁻¹⁰ g	1 S	2.14	0.00002	0.0005	
		0.1		10 A A A	A CONTRACT OF A		~	0.41	0.37	
ln.	10-92 10-91	0.1	S	0.03	4×10-13 a	1.1	0 Ing/ml	with the	and a	
111	10 - 10	0.1		0.05	AXIO B	1.1	o. mg/m	0.00001	-	
11.	10 10	0.3	-	÷	0	7	5	0.00004	5	
ĸ	4.0 103	0.03	100	8	 Tool 1 	0.52	$1 \times 10^{-5} M$	4.6	60	
La	10-11 - 10-10	0.1	5x10-11	0.003	0.1ng/m/	0.12	S	0.001	0.006	
Li	-	0.0006	Sector Sector	200	2	-	2	0.028	12	
Lu	10-10 10-9	0.0000	5-10-11	0.009		12		0.00006	0.002	
Lu	10 - 10	0.1	5X10	0.008	4 10-14		5	0.00000	0.002	
Mg	10" - 10"	0.03	Sec. Sec.	0.0007	4x10 g	Sec	~	2.7	17	
Mn	10-12 - 10-11	0.05	1x10-11	0.0007	2x10 ⁻¹³ g	0.00015	~	0.03	1.20	
Mo	10-9 - 10-8	0.3	4	0.005	3x10 ⁻¹² g	0.072	e	0.024	0.018	
Na	10-10 - 10-9	0.02		0.0002	1x10 ⁻¹² g		2	6.9	11.0	
Nh		0.08	- 1	0.01	12 011 a/m/		5 N N		0.0012	0.004
NL	8	0.00	Su10-11	0.05	12.0HBIII	0.20	PL 22	0.002	0.0012	0.004
NO		0.4	5x10.	0.05		0.50		0.002	0.005	
Ni	$10^{-4} - 10^{-7}$	÷	1x10 ⁻¹¹	0.006	4x10 ⁻¹² g	0.06	0.1g/m/	0.074	0.620	
Os	10-9 - 10-8	0.4		*		e	~	1.0	- I.I.	
P	i e	1411	-	6	G	0.01	2	0.37	1.500	
Ph	10-7-10-6	03		800.0	0.002ng/ml	0.0003	0.01ng/m/	0.009	0.002	
Dd	10.10 10-9	0.7	Leto-II	0.007	Av 10-12 m	0.0002	and mBrune	0.0022	0.002	
nu -	10 = 10	0.5	TATO	0.007	4X10 B			0.0033	0.003	
Pr	10.0 - 10.9	0.1	5x10.0	0.07	5. July 1		Same and	0.0002	0.002	
Pt.	10-9 - 10-8	0.5	1x10.11	0.08	1x10" g	80.00	1x10 ⁻⁹ m	0.0004	0.002	
Rb	1.00	-	-	2	A	0.0075	·	0.007	0.010	
Re	10.11 - 10.10	0.2	1.0	-		1000	-	0,00002	0.001	
Rh	10-11 - 10-10	0.00	1×10-11	0.003	8×10-12 g	103110/m	0 lng/ml	0.00000		
D.	102 103	0.09	Laton	0.003	GATO B	105µg/m	o. mg/m	0.00009	0.004	
KU	10 10	0.03	1x10.0	- C	2 · · · · · · · · · · · · · · · · · · ·		7	0.0003	0.004	
S	1.20	1	-	-	14	-	-	25	26	
Sb	10-10 - 10-9	÷	-	8.7.1	2	-	÷	0.0013	0.007	
Sc	$10^{-10} - 10^{-2}$	0.04	4	0.003	4	0.38	-	0.0005	0.003	
Se		0.00	1	3.00	1.1		2	010	0.111	
		1.		6.11	21		G	5.4	14000	
31	-	2.5		6 to		Terrer 1	•	5.4	14000	
Sm	10-11 - 10-10	0.5	5x10-0	0.02	1. Sec. 1. Sec	4.1µg/m/	÷	0.0003	0.003	
Sn	1 M	0.3		0.3	2x10-12 g	3.9ppm	2.0ng/l	0.034	0.019	
Sr	10-9-10-8	0.09		0.00002	1x10 ⁻¹² g	0.00007		0.013	0.045	
Ta	10-2 - 10-8	0.2		0.07	7 011 g/m/		G-10	0.0008	0.003	
Th.	102 108	0.1	Sidial -	0.07	1.0heBrint	150-1-1-1		0.0008	0.005	
10	10~-10*	0.1	SXIU" g	0.2	-	129µg/m/		0 0001	0.001	
le	10-9-10-7			2000		0.12	*	0.0047	0.018	
Th	10.9 - 10.8	0.2		0.003	N	6.5µg/m/	-E.	0.0017	0.001	
	10.9 10.7	0.05		0.003	1×10-12 g	100.0		0.47	0.05	

NOTE: Continued on next page

Table A1.7.(continued). Sensitivities of different methods for coal analysis

	NAA* (ng)	SSMS (g)	CIMS	ICPAES (µg/ml)	NFAAS	XRFS (µg)	ASV	ICPMS ⁶ µg/g	LAICPM µg/g	1S ⁶
TI	10-8 - 10-7	0.2	÷	0.2	1x10 ⁻¹² g		0.1ng/ml	0.0006	0.004	
Tm	10 ⁻⁹ - 10 ⁻⁸	0.1	5x10-12 g	0.007	2		21 P	0.00003	0.000	
U	10*10 - 10-9	-		0.03		0.00002		0.0005	0.000	
V	10 ^{-H} - 10 ^{-yp}	0.04	1x10" g	0.006	5x10 ⁻¹¹ g	÷		0.016	0.005	
W	10-10 - 10-9	0.5	1.00	0.002	1.0µg/m/	1.8	2	0.0054	0.001	
Y		÷		0.002	10µg/m/	0.22	-	0.0012	0.006	
Yb	10-10-9	0.5	5x10-11 g	0.00009		6.8µg/m/	8	0.0001	0.006	
Zn	10-8 - 10-7	0.1	1x10" g	0.002	2x10-14 g	0.00004	0.04µg/m/		0.15	0.146
Zr	10-8 - 10-7	0.1	1	0.005	5.0µg/m/	0.00002	2	0.018	0.016	

NOTE: ". From Dulka and Risby [81] b: From Roduskin et al [58]

NAA = neutron activation analysis; SSMS = spark source mass spectrometry; CIMS = chemical ionization mass spectrometry; ICPAES = inductively coupled plasma atomic emission spectrometry; NFAAS = none-flame atomic absorption spectrometry; XRFS = X-ray fluorescence spectrometry; ASV = anodic stripping voltametry; ICPMS = inductively coupled plasma mass spectrometry; LAICPMS = laser ablation inductively coupled plasma mass spectrometry

Elemenet	Pittsburg No.8 feed coal	Amax feed coal	Monterey feed	Illinois feed coal	Western Kentucky feed coal
Al	147	171	77.8	32	107
Ča	105	23.7	93.5	5486	1297
Cd	<0.07	2.8	0.5	0.3	0.3
Co	<2	19.2	12	5	4.8
Cr	5.9	5.7	11.2	11.9	3.7
Cu	12.4	3.2	3.6	0.8	1.4
Fe	423	11797	714	738	3300
К	113	22.3	27.2	40.9	33.5
Mg	24.3	58.9	29	8.3	8
Mn	21.6	4.4	39.6	8.7	3.6
Ni	12	16.4	13.8	7,7	3.3
Pb	<0.5	12.8	23.7	4.9	2.1

Table A1.8. Concentration (µg/g) of trace elements in SRC as determined by AA [30].

Table A1.9 Concentration (µg/g) of trace elements in SRC as determined by INAA [103].

Element	Coal	SRC
AS	13.6	1.39
Ва	62.6	2.48
Br	3.51	3.95
Ce	17	0.553
Co	3.7	0.31
Cr	14	2.68
Cs	0.89	0.023
Eu	0.292	0.013
Fe, %	1.73	0.068
Hg	0.436	0.025
К	1500	315
Lu	0.125	0.004
Na	148	9.55
Ni	20	2.7
Rb	22.4	0,57
Sb	0.5	0.074
Sc	2.8	0.13
Se	1.53	0.148
Sm	1.37	0.04
Sr	152	4.4
Tb	0.437	0.014
Th	1.66	0.055

	Water precipitated	Vacuum-evaporation
Ash%	0.06	0.08
Al	11	24
Ca	7.8	46
Cr	6.7	7.4
Cu	5.9	17
Fe	170	225
K	1.8	3.3
Mg	2.4	13
Mn	0.2	1.2
Na	3.3	34
Ni	7.6	11
Р	7,7	8,8
Si	31	68
Ti	52	82
V	2.7	3.9
Zn	5.9	22
As Oxides %	0.06	0.09

TableA1.9. Trace elements in NMP coal extract. Concentration in ppm

Table A1.10. Analysis and extent of extraction in NMP of various coals

	Proximate an	alysis		Ultim	ate analy		A	
Coal	%Moisture	%	%C	%C	%Н	%N	%S	%C
Hlobane Gus	1.2	10.9	77	87	4.9	2.2	0.6	41.3
Hlobane Dundus	1.1	13.4	74	87	5.2	2.2	0.7	54.9
Vryheid Coronation, Vrede	2	14.4	71	85	5.2	2,1	0.7	36.5
Vryheid Coronation, Leeuwnek	1.2	14.5	74	87	5,1	2.3	0.9	67
Moatize	0.9	19	71	88	5	2.1	0.9	80,3
Tshikondeni Floatation Product	0.9	7.8	81	89	5.2	2.1	0.8	90.3
Upper Freeport	1,13	13.03	73	86	4.7	1.6	10.000	85.8
Wyodak	28.09	6.31	49	75	5.4	1.1		6
Illnois # 6	7.97	14.25	60	78	5	1.4		14.4
Pittsburgh # 8	1.65	9.1	74	83	5.3	1.6		25.3
Pocahantas # 3	0.65	4.74	86	91	4.4	1.3	10 million 1	76.9
Blind Canyons	4.63	4.49	73	81	5.8	1.6	1.1.2.1	16.2
Stockton	2.42	19.36	65	83	5.3	1.6		17.5
Beulah Zap	32.24	6.59	45	73	4.8	1.2		6.4
Polish coal	1.6	0.65	80	87	5.4	1.8	0.7	41.2

Property	Anisotropic graphite	Isotropic graphite
Density, g/cm ³	1.71	1.86
Resistance, $\mu\Omega$. Cm	735	1000
Tensile strength, kPa	9930	46172
Coefficient of thermal expansion (CTE), 10 ^{-6/o} C with grain against grain	2.2 3.8	5.3 5.3
Anisotropy ratio (CTE ratio)	1.73	1
Total ash, ppm	740	400
Boron content, ppm	0.4	0.3

Table A1.11. Properties of Nuclear Grade Graphite [5]

APPENDIX 2

Time, min		0	5	10	15	30	45	60	90	120	180	240	300
RUN I	Mass, g	0.109	0.108	0.109	0.102	0.111	0.105	0.103	0.102	0.101	0.103	0.109	0.101
	Absorbance	0.000	0.000	0.000	0.006	0.112	0.230	0.357	0.608	0.813	0.945	1.046	1.008
	Corrected Absorbance	0.000	0.000	0.000	0.006	0.101	0.218	0.348	0.597	0.802	0.917	0.961	0.998
RUN 2	Mass, g	0.106	0.104	0.103	0.101	0.100	0.104	0.104	0.112	0.110	0.101	0.103	0.106
	Absorbance	0.000	0.000	0.005	0.021	0.202	0.355	0.527	0.793	0.940	0.933	0.991	1.044
	Corrected Absorbance	0.000	0.000	0,005	0.021	0.201	0.341	0.509	0.709	0.856	0.927	0.965	0.984
RUN 3	Mass, g	0.104	0.140	0.120	0.122	0.107	0.117	0.117	0.112	0.101	0.101	0,108	0.124
	Absorbance	0.000	0.000	0.000	0.013	0.100	0.252	0.387	0.670	0.765	0.863	0.987	1.188
-	Corrected Absorbance	0.000	0.000	0.000	0.011	0.093	0.215	0.330	0.600	0.757	0.854	0.912	0.955
RUN 4	Mass, g	0.115	0.108	0.103	0.114	0.102	0.117	0.102	0.143	0.113	0.111	0.113	0.116
	Absorbance	0.000	0.002	0.006	0.047	0.170	0.308	0.415	0.874	0.897	0.986	1.043	1.069
	Corrected Absorbance	0.000	0.002	0.006	0.041	0.167	0.264	0.408	0.611	0.796	0.892	0.921	0.925
RUN 5	Mass, g	0.100	0.127	0.111	0.111	0.110	0.106	0.107	0.120	0.100	0.108	0.106	0.119
	Absorbance	0.000	0.005	0.008	0.024	0.166	0.288	0.482	0.836	0.822	1.005	1.042	1.172
	Corrected Absorbance	0.000	0.004	0.007	0.022	0.150	0.272	0.451	0.695	0.826	0.934	0.985	0.987
Average C	orrected Absorbance	0.000	0.003	0.006	0.020	0.142	0.262	0.409	0.642	0.807	0.905	0.949	0.970

Table A2.1. The progress of extraction with NaOH only

Table A2.2.	The progress	of extraction	with Na2S only
-------------	--------------	---------------	----------------

Time, min		0	5	10	15	30	45	60	90	120	180	240	300
6.34g Na ₂ S	Mass, g	0.114	0.116	0.106	0.108	0.106	0.106	0.118	0.119	0.120	0.105	0.118	0.103
	Absorbance	0.016	0.044	0.058	0.097	0.148	0.174	0.181	0.192	0.176	0.164	0.194	0.172
	Corrected Absorbance	0.014	0.038	0.055	0.090	0.140	0.150	0.154	0.162	0.171	0.156	0.164	0.167
12.61g Na ₂ S	Mass, g	0.107	0.103	0.121	0.111	0.111	0,108	0.104	0.113	0.104	0.103	0.110	0.111
	Absorbance	0.014	0.017	0.040	0.054	0.169	0.220	0.265	0.312	0.305	0.293	0.306	0.295
	Corrected Absorbance	0.013	0.016	0.033	0.048	0.153	0.204	0.254	0.275	0.294	0.283	0.278	0.266
25.17g Na ₂ S	Mass, g	0.101	0.114	0.103	0.104	0.107	0.108	0.102	0.109	0.113	0.107	0.120	0.102
	Absorbance	0.009	0.057	0.175	0.227	0.432	0.526	0.478	0.460	0.387	0.250	0.253	0.215
	Corrected Absorbance	0.009	0.050	0.170	0.219	0.402	0.488	0.470	0.424	0.341	0.234	0.211	0.211
25.17g Na2S	Mass, g	0.110	0.104	0.107	0.116	0.106	0.104	0.104	0.105	0.108	0.108	0.104	0.106
23.176.11420	Absorbance	0.012	0.021	0.067	0.179	0.346	0.415	0.455	0.415	0.371	0.290	0.244	0.245
	Corrected Absorbance	0.011	0.020	0.065	0.154	0.328	0.398	0.436	0.396	0.344	0.269	0.234	0.231
Average Corrected Absorbance		0.010	0.035	0.118	0.187	0.365	0.443	0.453	0,410	0.343	0.252	0.223	0.221

Table A2.3. The progress of extraction with NaOH and Na₂S

Time,min		0	5	10	15	30	45	60	90	120	180	240	300
10:1 NaOH :Na ₃ S	Mass, g	0.106	0.104	0.105	0.103	0.109	0.112	0.105	0,101	0.107	0.105	0.105	0.127
mole ratio	Absorbance	0.023	0.053	0.086	0.239	0.339	0.385	0.506	0,506	0.618	0.618	0.723	0.769
	Corrected Absorbance	0.011	0.022	0.051	0.084	0.022	0.303	0.367	0.503	0.579	0.690	0.732	0.729
8:1 NaOH :Na ₂ S	Mass, g	0.106	0.107	0.110	0.118	0.121	0,102	0.111	0,113	0.110	0,104	0.117	0.116
nole ratio	Absorbance	0.006	0.046	0.108	0.158	0.325	0.510	0.534	0.820	0.928	0.894	1.035	1.027
	Corrected Absorbance	0.006	0.043	0.095	0.143	0.276	0.423	0.525	0.742	0.824	0.861	0.882	0.884
4:1 NaOH :Na ₂ S	Mass, g	0.104	0.106	0.104	0.101	0.113	0.100	0.109	0,104	0.106	0,111	0.108	0.108
mole ratio	Absorbance	0.013	0.015	0.047	0.075	0.205	0.226	0.343	0.458	0.566	0.754	0.765	0.793
	Corrected Absorbance	0.012	0.014	0.045	0.074	0.182	0.225	0.314	0.440	0.536	0.679	0.699	0.736
2:1 NaOH Na ₂ S	Mass, g	0.110	0.100	0.109	0.106	0.107	0.101	0.104	0.102	0.104	0.112	0.145	0.107
mole ratio	Absorbance	0.126	0.180	0.251	0.291	0.401	0.406	0.464	0.502	0.558	0.623	0.900	0.727
	Corrected Absorbance	0.114	0.180	0.231	0.274	0.373	0.400	0.446	0.494	0.536	0.594	0.675	0.681
1;1 NaOH :Na ₂ S	Mass, g	0.108	0.110	0.105	0.101	0.112	0.108	0.111	0.105	0.111	0.112	0.103	0.103
nole ratio	Absorbance	0.048	0.265	0.306	0.350	0.475	0.515	0.584	0.575	0.556	0.387	0.249	0.234
Run 1	Corrected Absorbance	0.044	0.242	0.282	0.347	0.423	0.475	0.525	0.547	0.499	0.347	0.241	0.227
1:1 NaOH :Na ₂ S	Mass, g	0.113	0.108	0.106	0.101	0.116	0.119	0.121	0.124	0.112	0.110	0.108	0.111
nole ratio	Absorbance	0.124	0.265	0.289	0.386	0.546	0.642	0.677	0.657	0.474	0.331	0.277	0.261
Run 2	Corrected Absorbance	0.110	0.245	0.272	0.384	0.472	0:540	0.560	0.531	0.423	0.301	0.257	0.235
1 NaOH :Na ₂ S	Mass, g	0.116	0.116	0.116	0.095	0.108	0.099	0.112	0.112	0.102	0.125	0.121	0.115
nole ratio Run	Absorbance	0.005	0.283	0.430	0.381	0.504	0.505	0.581	0.558	0.455	0.408	0.304	0.272
3	Corrected Absorbance	0.005	0.244	0.371	0.401	0.467	0.511	0.520	0.496	0.445	0.327	0.251	0.236
Average Corrected A	bsorbance	0.053	0.244	0.308	0.377	0.454	0.509	0.535	0.525	0.456	0.325	0.250	0.233

APPENDIX 3

UNIVERSITEIT VAN PRETORIA UNIVERSITE OF PRETORIA VUNISESITHI VA PRETORIA

Table A3.1. Concentrations of trace elements in Coal and Refcoa	precipitated from water (ppm).
---	--------------------------------

		Sample	La	Br	Sm	U	Hf	Tb	Th	Sc	Cs	Eu	Co	Cr	Ta	Fe
Coal		C1	11.6	7.20	2.70	2.52	3.04	0.56	4.87	3.32	0.90		5.45	8.45	0.55	3400
	1.01	C2	20.6	0.98	2.7	1.44	2.26		3.21	5.31	0.99	0.46	8.29	5.88	0.72	
		C3					3.01		5.81	7.38	1.22	0.6	10.57	14.59	0.68	
		C4		1	1		2.84	1	5.81	6.92	1.24	0.61	10.41	14.87	0.62	
		Average	15.8	4.1	2.7	2	2.8	0.6	4.9	5.7	1.1	0.6	8.7	11	0.6	3400
Refcoal	No	RCW16	2.16	nd	0.83	1.30	2.40	0.08	3.20	3.15	0.13	0.18	7.58		0.68	200
		RCW18	1.80	0.20	0.76	0.96	1.21	0.38	5.44	1.37	0.80		7.04	4.28	0.68	800
	Na ₂ S	RCW19	2.17	0.45	1.10	0.72	2.18	0.24	2.73	4.46	nd		6.51	9.61	0.23	300
		RCW22	1.79	0.65	0.26	1.18	0.44		0.87	0.85	0.13	0.06	4.19	6.64	0.14	
	1.1	RCW24	nd	2.42	nd	nd	2.09	1.00	0.78	3.82	0.22	nd	9.37	8.18	0.47	12-1-1
		Average	1.6	0.7	0.6	0.8	1.7	0.2	2.6	2.7	0.3	0.08	6.9	7.2	0.4	433
	With	RCW17a	44.8	nd	4.75	1,46	3.45	nd	15.3	1.73	0.2		4.08	6.00	0.44	7800
	1.00	RCW17b	1	1.000	1		nd	1	1.88	2.06	0.11	0.13	5.5	7.27	0.43	
	Na ₂ S	RCW20a	5.82	0.32	1.38	0.79	1.86	1,32	2.55	3.94	nd	1000	6.47	9.05	0.45	400
		RCW21	3.84	2.30	0.85	1.53	0.40		0.80	0.78	0.14	0.06	3.80	6.13	0.13	
	1	Average	4.8	0.9	2.3	1.3	1.9	0.7	1.7	2.2	0.1	0.1	4.8	7.1	0.3	4100

Acid		Sample	La	Br	Sm	U	Hf	Tb	Th	Sc	Cs	Eu	Co	Cr	Ta	Fe
HCl	No Na ₂ S	RCA44	2.2	0.73	0.43	0.89	nd	nd	2.59	0.18	nd		6.89	7.29	0.53	200
1.1		RCA48	nd	4.48	0.06	4.35	0.4	nd	0,08	0.19	nd	nd	2.58	3.54	0.39	100
		RCA44b	nd	4.82	nd	0.87	1.85	0.00	1.43	0.87	0.1	nd	7.43	6.11	0.64	A start
		RCA73	nd	0.37	0.04	nd	0.91		0.98	0.36	nd	nd	4.98	3	0.63	
	A CONTRACTOR	Average	0.6	2.6	0.1	1.5	0.8	nd	1.3	0.4	0.03	nd	5.5	5	0.5	150
	With	RCA46	0.18	1.81	0.06	nd	0.40	nd	nd	0.6	nd		2.79	3.07	0.42	100
		RCA60	0.32	2.67	0.06	0.37	0.72	1	0.17	0.30	0.06	0.01	4.71	4.98	0.59	SIL 1
	Na ₂ S	Average	0.7	2.2	0.06	0.2	0.6	nd	0.09	0.5	0.3	0.01	2.4	4	0.5	100
HF	No Na ₂ S	RCA41	1.60	0.53	0.33	1.54	2.31	nd	2.21	0.10	nd	in the second	6.89	5.16	0.41	nd
1.1	100 000	RCA45b	nd	4.67	0.07	0.54	0.33		3.61	0.13	nd	nd	7.75	9.32	0.66	1
		RCA49	0.30	4.25	0.11	2.1	0.2	nd	0.15	0.11	nd		2.97	4.41	0.50	40
		Average	0.6	3.2	0.1	1.4	0.9	nd	2	0.1	nd	nd	5.9	6.3	0.51	40
	With	RCA43	1.30	0.92	0.30	1.25	1.64	1.75	nd	0.54	nd	1.11.	4.12	5.34	0.50	nd
	1.	RCA47	0.23	1.29	0.07	nd	0.10	nd	0.08	0.07	nd		2.61	2.68	0.48	nd
	Na ₂ S	RCA62	0.30	2.77	0.05	1.11	3.09		0.88	1.13	0.20	0.07	7.81	8.89	0.80	
	S	RCA74	nd	3.22	nd	nd	0.21		0.69	0.06	0.08	nd	5.91	4.63	0.69	1
		Average	0.5	2.1	0.1	0.6	1.3	0.9	0.4	0.5	0.08	0.05	5.1	5.4	0.6	nd

Table A3.2. Concentrations of trace elements in Refcoal derived from Refcoal gel treated with acid (ppm).

NOTE: nd = Not Detected

141

1.0	Resin	Sample	La	Br	Sm	U	Hf	Tb	Th	Sc	Cs	Eu	Co	Cr	Ta	Fe
No	TP260	RCR17a	3.50	11.30	0.92	1.73	1.99	0.22	3.07	2.93	0.18	0.18	6.36		0.65	200
1.00		RCR31	1.30	1.27	0.64	1.05	0.99	nd	1.51	1.81	nd	1.000	3.38	6.07	0.08	200
Na ₂ S		Average	2.4	6.3	0.8	1.4	1.5	0.1	2.3	2.4	0.09	0.2	4.9	6.1	0.4	200
1.5.	TP208	RCR19a	0.01	0.02	0.01	0.02	0.83	0.10	1.46	1.36	0.11	0.08	3.18	1.77	0.32	100
· · · · ·		RCR19b	2.30	0.72	0.86	1.71	3.23	nd	3.22	1.22	nd		3.80	4.01	0.21	nd
		RCR29	2.20	0.58	0.74	1.48	2.58	0.37	2.65	2.56	nd		9.87	9.57	nd	200
		RCR51	5.02	3.77	0.31	1.12	1.82	ND	6.75	3.29	0.15	0.04	7.71	5.89	0.57	
	11	Average	0.7	0.4	0.5	1.1	2.2	0.2	2.4	1.7	0.07	0.04	5.6	6.8	0.2	100
	TP214	RCR16	3.26	11.53	1.64	0.99	1.90	0.22	2.93	2.76	0.23	0.17	6.12	1.00	0.64	200
	1000	RCR32	0.04	2.34	0.88	1.34	1.19	nd	1.82	2.58	nd	11.	4.23	9.04	0.36	100
		Average	1.7	6.9	1.3	1.2	1.5	0.1	2.4	2.7	0.1	0.2	5.2	9.0	0.5	200
With	TP260	RCR6	2.40	10.87	0.71	1.11	1.08	0.23	2.93	2.95	0.09	0.15	7.25		0.60	100
	1	RCR23	2.60	0.30	0.73	1.35	2.27	nd	2.55	1.96	nd	1200	7.57	8.54	0.40	200
Na ₂ S	al la conte	Average	2.5	5.6	0.7	1.2	1.7	0.1	2.7	2.5	0.04	0.2	7.4	8.5	0.50	200
1.0	TP208	RCR18	1.00	4.86	0.31	nd	nd	0.27	1.88	1.68	nd	I ALCON	4.02	8.21	0.34	300
-	10000	RCR24	2.20	1.49	0.76	1.45	2.95	nd	2.59	2.32	nd	1	8.75	9.45	0.48	300
		RCR8	3.07	10.34	0.77	1.38	1.74	0.18	2.64	2.40	0.12	0.15	5.47	10.2	0.58	100
		Average	1.6	3.2	0.5	0.7	1.5	0.1	2.2	2.0	0.040	0.2	6.2	8.8	0.4	300
1.1	TP214	RCR14	3.51	12.53	0.83	1.09	2.01	0.18	2.62	2.68	0.15	1.	6.40	1.2	0.51	200
	1.000	RCR25	1.80	2.27	0.27	2.00	6.25	0.09	2.50	0.02	0.10	lint =	6.07	6.35	0.38	nd
		RCR9	3.35	10.62	0.81	1.59	1.67	0.17	2.54	2.34	0.18	0.16	5.35	11,2,	0.51	200
1		Average	2.7	7.4	0.6	1.5	4.1	0.1	2.6	1.4	0.1	0.2	6.2	6.4	0.5	100

Table A3.3. Concentrations of trace elements in Refcoal derived from Refcoal solution treated with chelating resins (ppm).

	Resin	Sample	La	Br	Sm	U	Hf	Tb	Th	Sc	Cs	Eu	Co	Cr	Та	Fe
No	TP260	RCR22	0.02	1.08	0.02	nd	0.04	nd	0.03	0.10	nd	nd	5.51		0.56	40
Na ₂ S		RCR35	1.28	1.96	0.18	nd	0.21	nd	0.15	0.10	nd		3.41	3.24	0.12	nd
-		RCR43	nd	0.05	nd	nd	0.06		2.13	0.12	0.07	nd	4.73	5.19	0.57	nd
4.14		RCR58	nd	0.74	nd	nđ	0.20		0.21	0.05	nd	nd	5.50	5.53	0.70	
		Average	0,3	1.0	0.05	nd	0.1	nd	0.6	0.09	0.02	nd	4.8	4.7	0.5	10
	TP208	RCR21	0.23	1.25	0.03	nd	0.06	nd	0.08	0.10	nd	nd	5.52	1	0.57	40
100		RCR36	0.50	1.60	0.11	nd	0.11	nd	2.02	0.10	nd	nd	3.99	4.90	0.53	100
		RCR42	1.73	0.60	0.85	1.520	0.08	nd	0.30	0.11	0.06		3.00	4.16	0.45	nd
		RCR48	0.36	3.89	0.05	nd	0.03		0.01	0.03	0.04	nd	3.84	3.37	0.67	
		RCR52		3.42	0.78	nd	0.29		1.11	0.04	0.09	nd	5.20	4.22	0.58	
		Average	0.7	2.2	0.4	0.3	0.1	nd	0.7	0.08	0.04	nd	4.3	4.2	0.6	50
	TP214	RCR20	0.75	1.69	0.03	nd	0.04	nd	0.03	0.10	0.03	nd	5.52		0.61	40
		RCR34	1.61	2.06	0.31	nd	0.08	nd	1,84	0.10	0.10	nd	4.16	4.15	0.51	nd
		RCR44	0.04	0,24	0.09	0.11	0.16	nd	nd	0.07	nd	175	2.27	3.79	nd	100
		RCR50	3.01	1.85	0.76	0.64	0.04		0.88	0.03	0.09	nd	4.72	2.43	nd	

Table A3.4.Concentrations of trace elements in Refcoal derived from Refcoal gel treated with chelating resins (ppm).

Resin	Sample	La	Br	Sm	U	Hf	Tb	Th	Sc	Cs	Eu	Co	Cr	Та	Fe
	RCR54	3.670	0.760	0.540	0.430	0.070		3.440	0.050	nd	0.03	5.760	4.340	0.640	
	Average	1.8	1.3	0.3	0.2	0.08	nd	1.240	0.08	0.04	0.008	4.490	3.680	0.30	50
1.5	RCR39	0.04	3.570	0.04	nd	0.09	nd	nd	0.07	nd	nd	2.800	3.850	0.470	200
	RCR46	0.02	5.100	0.01	0.210	0.03		0.14	0.03	0.05	0.01	4.050	3.120	0.500	1 .
	Average	0.03	4.30	0.03	0.110	0.12	nd	0.07	0.05	0.03	0.005	3.420	3.480	0.480	200
	RCR40	0.09	1.85	0.03	nd	0.08	nd	0.10	0.400	nd	nd	0.400	4.000	0.490	nd
	RCR45	0.19	3.88	0.03	1.250	0.32	nd	0.03	0.03	0.060	nd	4.300	4.780	0.630	
	Average	0.7	2.9	0.03	0.650	0.200	nd	0.07	0.210	0.03	nd	2.4	4.4	0.6	nd
	RCR38	nd	3.180	0,04	nd	nd	nd	0.100	0.07	nd	nd	3.290	3.720	nd	100
	RCR47	0.07	4.040	0.05	0.800	0.09	1	0.18	0.03	0.05	nd	4.540	4.300	0.630	
	Average	0.04	3.610	0.04	0.400	0.04	nd	0.140	0.05	0.03	nd	3.910	4.0	0.310	100

Table A3.4(Continued). Concentrations of trace elements in Refcoal derived from Refcoal gel treated with chelating resins (ppm).

APPENDIX 4

Figure A4.1.TEM spectrum of reactor wall sample

Figure A4.3.TEM spectrum of reactor pre-lid

Figure A4.7.TEM spectrum of stirrer accessory

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

APPENDIX 5

Symbols used in the last column of the table are:

- β Negative β -particle (negatron) emission
- β^+ Positive β -particle (positron) emission
- EC Orbital electron capture
- α Alpha-particle emission
- IT Isomeric transition (decay from an excited metastable state to a lower state)

Table A5.1.Isotopes and their neutron activated reactions

Isotope	Natural Abundance, %	Thermal Neutron Cross-section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
6 Li	7.5	71	(n,α) ¹ ₁ H	12.26 yrs	1455.09	β
7 Li	92.5	1				
2 Be	100	8 mb	(n,α) ⁶ / ₂ He	0.797 s	0.13	
⁹ Be			(n,p) ⁹ ₃ Li	0.176 s		
9 Be			(n,γ) ¹⁰ / ₄ Be	2.5 x 10 ⁶ yrs		
	19.9	7.6 x 10 ²	(n,α) ⁷ ₃ Li		10000	ā
n 5 B	80.1	1	(n,p) ¹¹ ₄ Be	13.6 s		β-
12 6 C	98.89	3.6 mb		6 all 12	0.04	
13 C	1.11					
14 N	99.624	1.9	(n,p) "C	5730 yrs	19.3	β
15 7 N	0.366		$(n,\gamma) \stackrel{i\delta}{_{7}} N$	7.22 s		β
23 Na	100	0.525	(n,p) ¹¹ / ₁₀ Ne	40.2 s	3.25	β
23 Na			$(n,\gamma) \stackrel{\mu}{_{\mu}} Na$	15.1 hrs		β
Mg	78.99	63 mb			0.37	
²⁵ Mg	10	1	(n,p) ²⁵ ₁₁ Na	60 s		β
26 Mg	11:01		(n,p) 10 Na	1.04 s		β
Mg			(n, y) 17 Mg	9.46 min.		β-

lsotope	Natural Abundance,	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
27 (3 Al	100	0.23	(n,γ) ²⁸ ₁₃ Al	2.31 min.	1.21	β
n Si	92.33	0.166			0.84	
29 14 Si	4.67	·				
¹⁰ Si	.3.1		(n,p) ³⁶ ₁₃ Al	3 s		β
³⁶ ₁₄ Si	1		(n,γ) ³¹ _μ Si	2.62 hrs		β-
¹¹ 0 Р	100	0.16	(n,γ) ¹² / ₁₅ P	14.3 d	0.73	β-
³² 15 S	95.02	0.54	(n,p) ¹² / ₁₅ P	14.28 d	2.4	β
¹⁰ S	0.75		(n,p) ¹³ / ₁₅ P	24.8 d		β
14 16 S	4.21		(n,p) ³ ₁₅ P	12.7 s		β
³⁴ 16 S			(n,γ) ³ / _n S	87.9 d		β·
36 16 S	0.02	-	(n,γ) ³⁷ / ₁₆ S	5.04 min		β-
19 K	93,2851	2.1			7.64	
10 K	0.0117			1.2 x 10 ⁹ yrs		β [.] (89%)
" K	6.7302		(n,γ) ⁴ ₁₉ K	12.4 hrs		β
a Ca	96.941	0.43	(n,γ) [#] ₂ Ca	4 x 10 ⁴ yrs	1.53	EC
a Ca	0.647					
40 30 Ca	0.135					
- Ca	2.086		(n,γ) 🐉 Ca	165 d	-	β-
44 20 Ca			(n,p) ⁴ ₁₇ K	22.0 min		β
46 20 Ca	0.004		(n,γ) ⁴⁷ ₂₀ Ca	4.53 đ		β.
48 20 Ca	0.187	1.	(n,γ) ⁴⁹ ₂₀ Ca	8.8 min.		β-
^a ₂ Sc	100	27.2	$(n,\gamma) \stackrel{\text{\tiny{ω}}}{_{\mathcal{D}}} Sc$	84.2 d	86.07	β.
# Ti	8.25	6.1			18.12	
^g ₂ Ti	7.44					
48. Ti	73.72					
27 Ti	5.41					
^{s0} Ti	5.18		(n,p) ¹⁰ / ₁₁ Sc	1.7 min		β

Isotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
⁵⁰ Ti			(n,γ) ^M ₂ Ti	5.8 min.		β-
9 5 V	0.25	5			13.96	
$\frac{s}{2}\mathbf{V}$	99.75		(n,γ) ⁹ / ₂₁ V	3,75 min.		β
⁹⁹ 9 Cr	4,345	3	(π,γ) ³ / ₂₁ Cr	27.8 d	8.21	β-
⁹² _№ Cr	83.79					
⁶ ₂₁ Cr	9.5		(n,p) ³³ / ₂₃ V	2.0 min	10	β.
^я µ Сг	2,365	1	(n,p) ³⁴ / ₅ V	55 s		β-
³⁴ Cr			(n,γ) ³⁰ ₂₄ Cr	3.52 min		β-
35 Mn	100	13.3	(n,γ) 🖞 Mn	2.58 hrs	34.44	β-
⁵⁴ Fe	5.85	2.6	(n,γ) ³³ / ₂₆ Fe	2.6 yrs	6.62	EC [.]
36 Fe	91,75					
57 Fe	2,12		(n,p) ³⁷ B Mn	1.7 min.		β-
34 Fe	0.28		(n,p) 😵 Mn	1,1 min.		β-
98 Fe	1		(n,γ) 💃 Fe	45.6 d		β-
⁵⁹ Co	100	37.19	(n,γ) ¹⁰ / ₂₇ Co	2.56 yrs	89.77	β
³⁸ Ni	68.077	4,5	(n,γ) 🖞 Ni	8 x 10 ⁴ yrs	10.91	EC
a Ni	26.223	(1				
⁶¹ Ni	1.14	1	(n,p) 🖞 Co	99.0 min.	4 1	β-
¹² Ni	3.634		(n,p) 🖞 Cò	13.9 min		β
™ Ni	0.926		(n,γ) [₩] _№ Ni	2.56 hrs		β-
25 Ni			$(n,\alpha) \frac{61}{26}$ Fe	6.0 min.		β-
³ _n Cu	69.17	3.8	(n,γ) ^θ ₂ Cu	12.8 hrs	8.51	EC(43%),β-
[№] Cu	30.83		(n,γ) 🐇 Cu	5.10 min.		β-
64 30 Zn	48.6	I,I	(n,γ) ⁶⁵ ₃₀ Zn	245 d	2.39	EC(98.3%),β ⁻ (1 7%)
⁶⁶ 30 Zn	27.9					
67 30 Zn	4.1		(n,p) ⁶⁷ ₂₉ Cu	58.5 hrs.		β

Isotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
₩ Zn	18.8		(n,p) 🔮 Cu	30 s		β
^a _{ya} Zn	10 - I		(n,γ) [#] _χ Zn	57 min.		β-
Zn	0.6		$(n,\alpha) \stackrel{\partial}{}_{\alpha} Ni$	50 s		β
™ Zn			$(\mathbf{n},\mathbf{\gamma}) \stackrel{n}{}_{\mathcal{H}} \mathbf{Z}\mathbf{n}$	2.4 min.		β-
u ji Ga	60.108	2.9	(n,γ) ⁿ ₃₁ Ga	20 min	5.92	β
n Ga	39.892	1000	(n,γ) ^η ₃ Ga	14.3 hrs		β·
^ħ Ga		· · · · · · · · · · · · · · · · · · ·	(n,α) 🙀 Cu	58.5 hrs	_	β-
i Ge	21.23	2.9	$(n,\gamma) \stackrel{n}{_{D}} Ge$	11.4 d	5,68	EC
¹² Ge	27.66					
78 32 Ge	7.73		(n,p) ¹⁰ ₃₁ Ga	5.0 hrs		β
12 Ge	35,94		(n,p) ³⁴ ₃₁ Ga	8.0 min.		β.
n Ge	22		$(n,\gamma) \stackrel{\mathfrak{H}}{\scriptscriptstyle \mathcal{R}} Ge$	82 min.		β
in Ge	7,44		(n,p) 🖞 Ga	32 s		β-
[%] Ge			$(n,\gamma) \frac{\eta}{2} Ge$	11.3 hrs		β-
35 As	100	4	(n, p) $\frac{3}{12}$ Ge	79 min	7.59	β.
⁸ / ₅₅ As			(n,γ) ³⁶ ₃₁ As	26.2 hrs		β.
^и Se	0.89	12	$(n,\gamma) \stackrel{\mathfrak{H}}{\mathfrak{U}} Se$	127 d	21.62	EC
[™] Se	9.36		$(n,\gamma) \stackrel{p_{\gamma}}{_{\mathcal{Y}}} Se$	17.5 s		IT
⁷⁷ Se	7.63					
ⁿ Se	23.78		(n,p) ³⁸ / ₃₃ As	91 min	_	β
^й Se			(n,γ) ⁱ , Se	3.91 min		IT
^{si⊥} Se	49.61	. · · · · · · · · · · · ·	(n,γ) ⁴ ₃ Se	18.6 min		β
% Se	8.73		$(n,\alpha) \stackrel{_{3y}}{_{31}} As$	9.0 min		β-
ⁿ ₃ Se	1		$(n,\gamma) \stackrel{u}{_{\mu}} Se$	26 min		β
ng Rb	72.17	0.39	(n,α) ³³ / ₃₅ Br	31.7 min	0.65	β
an Rb	1		(n,γ) [%] _y Rb	18.66 d		β
n Rb	27.83		(n,γ) ³⁰ / ₃₇ Rb	18 min		β-(β)

Table 5.1	(continued).Isotop	es and their	r neutron	activated	reactions

Isotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
^{si} Sr	0.56		$(n,\gamma) \stackrel{w}{_{0}} Sr$	63.9 d	1.95	EC
²⁰ ₂₀ Sr	9.86		(n,γ) ¹⁷ ₃ Sr	2.88 hrs		IT(99.4%),
n Sr	7					
n ∄ Sr	82.58		(n,γ) [#] ₃₈ Sr	50.5 d		β-
92 Mo	14.84	2.5	(n,γ) ³³ / ₄₂ Mo	6.95 hrs	3.71	EC
^{GI} Mo	9,25					
% Mo	15.92					
a Mo	16.68	1.2.4.1.1				
42 Mo	9.55					
a Mo	24.13		(n,γ) [#] ₀ Mo	66.7 hrs		β-
n Mo			(n,p) 🖑 Nb	51 min.		β.
a Mo	9.63		$(n,\gamma) \stackrel{iff}{_{6}} Mo$	14.6 min	- 11	β
e Mo			(n,p) 🖞 Nb	11 min.		β.
₩ 9 Ag	51.839	62	(n,γ) , Ag	2.42 min.	81.76	β.
a Ag	48.161		(n,γ) [₩] ₀ Ag	24.4 s		β.
" Cd	1.25	2.5 x 10 ³	(n,γ) 🖞 Cd	6.49 hrs	3188.92	EC
^{at} ^d Cd	0.89		(n,γ) [™] _k Cd	453 d		EC
116 Cd	12.49		(n,γ) ^{III} ₈ Cd	48.6 min.		IT
"" Cd	12.8					
[™] cd	24.13		(n,γ) [#] Cd	13.6 yrs	1.0.1	β-
a Cd	12.22					
u₄ Cd	28.73		(n,γ) ³⁸ ₈ Cd	53.5 hrs	1	β-
^m _a Cd	7.49		(n,γ) [#] _e Cd	2.4 hrs		β.
¹⁰ / ₉ Sn	0.97	0.61	(n,γ) 🕷 Sn	118 d	0.73	EC
₩ Sn	0.65					
¹¹⁵ Sn	0.34					
" Sn	14.53		(n,γ) ¹⁰ / ₂ Sn	140 d.		IT

Isotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
ⁱⁿ Sn	7.68					
^{III} Sn	24.23		(n,γ) ^m _# Sn	≈ 250 d		ſŢ
u Sn		-	(n,p) 🚆 In	5.0 s		β-
^m _y Sn	8.59					
^{til} ∦ Sn	32.59		(n,γ) ^G ₂ Sn	27.5 hrs		β
≝ Sn			(n,p) 🚆 In	3.2 s		β-
⁰² / _% Sn	4.63		(n,γ) [™] _N Sn	125 d	4	β-
" Sn		1	(n,p) ^w _a ln	8 s.		β-
" Sn	5.79		(n,p) 🖞 In	≈ 3.6 s		β
". Sb	57.21	5,3	(n,γ) ^ψ ₉ Sb	2.80 d	6.19	β ⁻ (97%), EC
⁽²⁾ ₃ Sb		1	(n,α) ^(b) _H In	3 s		β-
n Sb	42.79		(n,γ) ^{μι} / ₉ Sb	60.4 d		β-
n Sb			(n,p) ³⁶ ₈ Sb	21 min		IT
^{itt} Cs	100	30.4	$(n,\alpha) \int_{\Omega}^{\Omega} f$	12.3 hrs	32.54	β-
ⁱⁱⁱ ⁱⁱⁱ Cs			(n,γ) ¹⁹ / ₁₁ Cs	2.046 yrs		β
₩ Ba	0.106	1.3	(n,γ) ¹³ _κ Ba	12.0 d	1.35	EC
⊮ ∦ Ba	0,101		(n,γ) ¹⁰ ₉ Ba	7.2 yrs		EC
¹⁸ Ba	2.417		1			
⁰⁸ _g Ba	6.592		(n,p) ³⁵ / ₅ Cs	53 min.		Т
a Ba	7.854					
[™] Ba	11.23					
a Ba	71.7		$(n,\gamma) \stackrel{_{10}}{_{\chi}} Ba$	82.9 min.		β.
Ba			(n,p) ¹⁵ / ₆ Cs	32.1		β
u Ba			(n,α) ⁱⁿ _μ Xe	9.2 hrs		β
^ы La	0.0902	9.2		1.12 x 10 ¹¹ yrs	9.42	β
139 37 La	99.9098		(n,γ) ¹⁴⁰ 57 La	40.22 hrs		β-
¹³⁶ 58 Ce	0-19	0.64	$(n,\gamma) \frac{137}{38}$ Ce	9.0 hrs	0.65	EC

lsotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
¹⁸ _R Ce	0.25		(n,γ) 🖗 Ce	140 d		EC
™ Ce	88.43	1.1.5	(n,γ) "Ce	33.1 d	1	β-
^{i¢} Ce	11.13	1	(n,p) ^{ie} ₉ La	77 min		β.
^{ie} Ce		11.2.2.	(n,γ) ^μ ₈ Ce	33 hrs	. 1	β
⁽⁴⁾ Pr	100	11.5	(n,γ) ^μ _W Pr	19.2 hrs	11.61	β
₩ 99 Pr		1.00	(n,p) 🙀 Ce	33.1 d		β.
₩ Nd	27.13	51		1.1	50.3	
^µ 1 Nd	12.18			12-11-		
₩ Nd	23.8				1	
[₩] Nd	8.3	1.0.00				
Nd	17,19		(n,p) [#] / ₁₇ Pr	24 0 min		β-
₩ Nd	1		(n,γ) [#] ₂ Nd	11.1 d	1.24	β-
"Nd	5.76	11	(n,p) ^w _n Pr	2.0 min		β
# Nd		100.001	(n,γ) 🙀 Nd	2.0 hrs	6122	β-
₩ Nd	5.64		$(n,\gamma) \stackrel{_{[3]}}{_{\otimes}} Nd$	12 min		β-
[⊯] ₂Sm	3.1	5.6 x 10 ³	(n,γ) [⊯] Sm	340 d	5297.95	EC
¹⁰ g Sm	15		(n,2n) 🖞 Sm	7 x 10 ⁴ yrs		α
^{µį} Sm	11.3			1.5		
^W _g Sm	13.8	11.00		1		
^M _R Sm	7.4		(n,γ) ⁶¹ / ₁₂ Sm	120 yrs	1	β-
[№] g Sm	26.7		(n,γ) ^{βi} _β Sm	46.8 hrs		β-
e Sm	1.1.1.1.1	1, 5, 7, 7, 7, 7,	(n,p) ⁽¹⁾ , Pm	6.5 min.		β-
^µ _n Sm	22.7	http://www.ite	(n,γ) 🖞 Sm	21.9 min.		β
e Eu	47.8	4570	(n,γ) ^{β)} _g Eu	12.7 yrs	4277.84	β ⁻ (28%),EC(72
n B Eu	52.2	1.	(n,γ) ⁶⁴ Eu	16 yrs		ß
$^{\scriptscriptstyle (0)}_{\ \ \ \ \ \ } Gd$	0.2	48.8 x 10 ³	(n,γ) ¹⁰ ₄ Gd	242 d	44144.99	EC
" Gd	2.18		1	1.		

lsotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
" Gd	14.8					
₩ Gd	20.17			1		
¹⁰ Gd	15.65			1.5		
u Gd	24.84		$(n,\gamma) {}^{159}_{64}$ Gd	18.0 hrs		β-
" Gd	21.86		(n,α) ¹⁵⁷ ₆₂ Sm	0.5 min.		β-
₩ Gd	1		(n,p) ¹⁶⁰ ₆₃ Eu	≈ 2.5 min.		β-
159 65 Tb	100	23.2	(n,Y) 🚆 Tb	6.9 d	20.77	β
156 66 Dy	0.06	9.5 x 10 ²		·	831.62	
^a Dy	0.1		(n,γ) 🖁 Dy	144 d	1.1	EC
≝ Dy	2.34					1
161 Dy	18.9					
[™] Dy	25.5		(n,p) 🖞 Tb	7.48 min.		β-
₩ Dy	24.9		(n,p) 📲 Tb	6.5 hrs		β
‰ Dy	28.2	7	(n,γ) 🙀 Dy	139.2 min.		β.
[₩] ₉ Er	0.14	169			143.73	
🔓 Er	1.61		$(n,\gamma) \stackrel{\scriptscriptstyle M}{\scriptscriptstyle g \!\!\!\!g} \mathrm{Er}$	10.4 hrs		EC
👑 Êr	33.6		$(n,\gamma) \stackrel{w_s}{_4} Er$	2.3 s		IT
e Er	22.95					
a Er	26.8		(n,γ) 🚆 Er	9.4 d		β.
🦉 Er	14.9		(n,α) 🕷 Dy	4.4 min		β.
a Er			(n,p) 🔮 Er	45 s		β-
a Er			(n,γ) ^m ₆ Er	7.52 hrs		β-
¹¹⁴ Hf	0.162	106	$(n,\gamma) \stackrel{th}{n} Hf$	23.6 hrs	84.48	EC
78 Hf	5.206					
^{III} Hf	18.606				-	
^m _n Hf	27.297		$(n,\gamma) \stackrel{>}{\to} Hf$	18.6 s		IT
" Hf	13.629					

Isotope	Natural Abundance, %	Thermal Neutron Cross- section, barns	Neutron activated reaction type and product	Half-life	Equivalent Boron, x 10 ³ ppm	Radioactive Decay
" Hf	35.1		(n,γ) ¹⁰ / _η Hf	42.5 d		β.
¹⁰⁰ W	0.12	18	$(n,\gamma) \stackrel{\omega}{_{B}} W$	140 d	13.93	EC
^{12;} W	26.5		(π,γ) [™] ₄ W	5.5 s		IT
a W	14.31					
₩ 11 W	30.43		(n,p) ^µ / ₁₁ Ta	8.7 hrs		β.
^m _N W			(n,γ) ¹⁶ ₂ W	75 d		β-
$_{\mu}^{128}$ W	28.43		(n,γ) ¹⁰ _A W	23.9 hrs	1.1	β.
^{ist} W	1.00		$(n,\alpha) \frac{\alpha}{n}$ Hf	65 min		β.
^{al} W			(n,p) 🏨 Ta	10.5 min		β
≝ Hg	0.15	3.7 x 10 ²			262.39	
^m Hg	9.97			1		
" Hg	16.87		1	1		
ⁱⁿ Hg	23.1					
Hg	13.18					
≝ Hg	29.86		(n,γ) ^M / ₅ Hg	46.9 d		β-
Hg	6.87		$(n,\alpha) \stackrel{as}{=} Pt$	2.3 min		β
™ Hg			(n,γ) ³⁴ ₉ Hg.	5.5 min		β.
e Pb	1.4	0.172	(n,γ) ³ / _g Pb	3.0 x 10 ⁵ yrs	0.12	EC
🦉 Pb	24.1	1.		1-1-1		
u Pb	22.1					
g Pb	52.4		(n,γ) ²⁸ / ₄₂ Pb	3.30 hrs		β
∍ g Bi	100	0.034	(n,γ) ^{//i} _R Bi	5.0 d	0.02	β
³⁸ Bi	1		(n,γ) [™] Bi	2.6 x 10 ⁶ yrs	1	β ⁻ (0.4%), α
Th	100	7.4	(n,γ) ^m / ₂ Th	22.5 min	4,54	β.