Appendix A

Recursive Formulas and Algorithms
for the Transformation Based Planar
Array Synthesis Technique

The notationally complex derivations and algorithmic details of the transformation based
synthesis technique, discussed in Chapter 3, are given in this Appendix. As in Chapter 3,
the two planar array categories will be treated separately. The odd case (an odd number
of elements along each principal plane) will be discussed in Section A.1 and even case
(an even number of elements along each principal plane) in Section A.2. The derivation
of the formulas, as well as, “ready to implement” algorithms for by, Cmn and c& for
both cases are supplied. Although it may be possible to write these in what may be
considered a more mathematically elegant fashion, such recursion relations are ideally
suited to computation.

A.1 Formulas and Algorithms : The Odd Case

A.1.1 Computation of b,

The prototype linear array factor, a summation of cosines weighted by the relative exci-
tations a4, can be expressed in a polynomial form, with b, the coefficients and cos ¢, the
variable of the polynomial.

The prototype linear array is a 2Q+1 element, uniformly spaced linear array with
symmetrical excitation and with inter-element spacing d. The prototype linear array
factor can be in the usual form (3.4) or in a polynomial form (3.6)

qu aq cos(qtp) Zb cos? ¢, (A.1)

q=0 g=0
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The recurrence relations (3.5) can be written in one equation

cos™ z = 51; ; 2(,( L (n— )) cos(iz) (A.2)

where 32 indicates a step size of two (i.e. i=i+2). Using the recurrence relation (A.2)
the prototype linear array factor in a polynomial form (A.1) can be expressed as

D=2, ) sty (49

q=0 i=0

but for any function of two indices f(m,n),

M m M M
S S fmn) =Y S f(m,n) (A.4)

m=0 n=0 n=0 m=n
hence, the summations on the right side of (A.3) can be changed,
Q

9 g e O
Fp(¥p) = Z {Z::z C‘;?l (%(i—q)) } cos(q¥p) (A.5)

q=0

The equation is matched with the prototype linear array factor (A.1) to obtain b,. The

b, values are computed from the prototype linear array excitations, a,, with the recursive
formula

o= { - f}ﬁ—((_q))] el

in the order ¢=Q,@-1,...,0.

A.1.2 Computation of ¢,, for Quadrantal Symmetric Contours

Derivation of the Formulas

This section deals with the formulas necessary for the computation of ¢y, of Section 3.2.1.
Although these formulas appeared in[95, 94] they are included here for completeness. The
only information needed to compute these coefficients are the b, values forthcoming from
the prototype linear array excitations, and the transformation parameters, ;.

In order to structure the computation let h;; denominate the coefficient of the general
term cos kucoslv , hj, the of [H(u,v)]?. [H(u,v)]? can then be written as

[H(u,v)]? = [H(u,v)]"" x H(u,v) (A.7)
(g-1)I (¢—1)J I o :
= Z Z hi;* cos(ku) cos(lv) x ZZt,—j cos(iu) cos(jv)
k=0 1=0 i=0 j=0
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The use of the recurrence relations (3.5) enable [H (u, v)]? to be written in the subsequent
form
Ig Jg
[H(u,v)]? = Zth, cos(ku) cos(lv) (A.8)
k=0 1=0
Algorithm for the computation of ¢,
e Step #1: Initiate
=0,1,2.... QI
Cmn:O for m 0: S 1Q
=0, AR, A ST
k=0,1,2,...,0I
hiy=0 for & I=0,1,2,....,Q7
g=10,1,2,...,Q
coo = bo
o Step #2: ¢g=1
5= 0,12, 55,1
hfj =t:’j for : O, 2 :
S0 2 . . T
=0,1,2,...,qf
mn:cmn+bqhg1n for m 3.4 q
n=0,1,2,...,qJ
e Step #3: gq=q+1
:
i==I,=(I-1),...,-1,0,1,...,I
j=—I,~(I-1),...,-1,0,1,... ,J
k=10,1.2 ... —
hq = hq t|1||J|h’Ic£ for ¢ Ok % ,(q 1)I
C|§ 1=0,1,2,...,(g—1)J
= |k + i
| n= [l + 7]
=0,1,2,...,qf
Crn = Cmn + bgh%, for { g
n=0,1,2,0 . ;0T
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Repeat Step #3 up to, and including, the case ¢=Q. As only the information of the
previous iteration is needed to compute the values of the current iteration, only two
matrices for hy; are needed. The first matrix contains the values of the previous iteration
and the second matrix the updated values of the current iteration.

A.1.3 Computation of ¢'* for Arbitrary Contours
Derivation of the Formulas

The algorithms and formulas necessary to compute c%,, cs5., ¢, and ¢, of Section
3.2.2 are provided in this section. The only data used in these formulas are are the b,
values (forthcoming from the prototype linear array excitations) and the transformation

parameters, ¢7%, ti7, 77 and ¢F.

To structure the computation of these coefficients let gf, denominate the coefficient
of the general term coskucoslv, h{, the coefficient of the the general term sin kusin lv,
T the coefficient of the the general term coskusinlv and s¥, the coefficient of the the
general term sin ku coslv in [H (u,v)]?. [H(u,v)]? is then formulated as

(H(u,v)]* = [H(u,)]*! x H(u,0) (A.9)
(g—1)I (g—-1)J

Z Z [0 cos(ku) cos(lv) + A%, ! sin(ku) sin(lv)+
rir " cos(ku) sin(lv) + s§; " sin(ku) cos(lv)]

I
XZ Z [te¢ cos(iu) cos(jv) + ti sin(iu) sin(jv)+

e t5; cos(iu) sin(jv) + ¢ sin(iu) cos(jv)|

<

With the use of the following relations

cos Acos B = 1 [cos(A—B) + cos(A+B)]

sin A cos B = £ [sin(4— B) + sin(4+B)] (A.10)
A ]
2

sin Asin B = 3 [sin(A—B) +sin(A+B)

[H (u,v)]? can then be written in the subsequent form

Ig Jg

H(u,v)]" = Z Z 98, cos(ku) cos(lv) + Y, sin(ku) sin(lv)+ (A.11)
e riy cos(ku) sin(lv) + sf; sin(ku) cos(lv)]
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Algorithm for the computation of ¢},

e Step #1: Initiate

e =0 )
s — () =0,1,2,... I
Cmn > for & @
e = n—=0.1 32 ... 0OF
cSC —
g )
igl 0 k:0$1:21"':QI
gl_ ¢ for' € 1=0,1,2.....QF
T =0 =0,1,2
q q_ H] 3 ?"'5Q
SH:O y.
coo = bo

e Step #2: ¢=1
g =15
hi =t B z.=0,1,2,...,I
T =15 F=0, 1200 5
sy = Ui

cf‘:n — C:'Lcﬂ + bqggm
c:::n':c:r‘:n'%‘bqhgnn m=0,1,2,...,qI
i for

— . jACS q
Cmn = Cmn + bqrmn

3C o ASC
Cmn. = Cmﬂ. + bqs:?nn

e Step #3: ¢g=¢q+1

=1 _§ =3 =
Imn = Jinn + C|i|1C|j[ [ tﬁhil ggl + 175 tSflL‘f[ hzi =71 tfﬁ{jl rz‘ =T tfilel Sz[ ]

_ TiyiTisj g-1 B g—1 ) g-1 ) g-1
hn = i + =2t [t58 BET + X5 60 ofr + Tty s + Tatfy vl |

s Tiyj g=1 _ ~n Am g-1 , g—1 _ ~~ ise pg-l
T =Tha + ot [ iyl — Tt st + iRy 96 — Loty Bl |

- Trqi g—1 _ ~ g—1 _ ~~. g—1 . g-1
St =St + gt [t sl — Tt il -t P + et 98]
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e T TSR T ., ] :
foip .;::_;1:;( o ),1)’1_ g Mydyen sy with n=|l+j|
STy Sy :"'1(q Tt=81gﬂ(1)

=10, 1,2 pla=)J.

Crin = Cmn bqgfnn
Ci:n:csn‘:n+bqh%n for m=0,1,2,... ,QI
Cn n=0,1,2,...,qJ

—i s q
mn Cmn + bqrmn

SC .__L5SC q
cmn == cmn o bqsmn

Repeat Step #3 up to, and including, ¢ = Q. Note that only two matrices for each of
hii, gii Tkl and sy, are needed. The first matrix of each holds the values of the previous
iteration and the second matrix holds the revised values of the current iteration. Although
this algorithm seems formidable, it is easy to program and execution is extremely rapid.

A.2 Formulas and Algorithms : The Even Case

A.2.1 Computation of b,

In this case, the prototype linear array is a 2@Q) element, uniformly spaced, symmetrical
excited linear array. The prototype linear array factor can be expressed in two forms,
the usual form (3.17) or the polynomial form (3.18)

Q Q
Fo(p) =2 > ag cos [2(2g—1)¢,] = b, cos™* (1yy) (A.12)

g=1 g=1

Using the same procedure (only latter of the recurrence relations (3.5b) is needed) the
recursive formula for computing the b, values from the prototype linear array excitations

15,
Q :
= bi 2i—1
bq = 229 1 l:aq —_ E 22::__1 ( ):| (A].B)

i_
i=q+1 q

in the order ¢=Q,Q-1,...,0.

A.2.2 Computation of ¢,, for Quadrantal Symmetric Contours

Derivation of the Formulas

The formulas required for the computation of ¢, coefficients of Section 3.2.1 are pre-
sented this section. The information forthcoming from the solution of the two sub-
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problems, are all that are needed to calculate these coefficients.

To structure the computation, let hy; denominate the coefficient of the general term
cos(3(2k — 1)u] cos[3 (2l — 1)v] of [H(u,v)]*%. [H(u,v)]¢~! is then expressed as

[H(u,v)*" = [H(u,v)]** x [H(u,v)]? (A.14)
(2¢-3)1 (2g—3)J

Z Z higd = cos [1(2k—1)u] cos [L(21—1)v]

k=1 =1

{ZZLJ cos [3(2i—1)u] cos [%(Qj—l)v]}

i=1 g=1

Using the recurrence relations (3.5b) enable [H(u,v)]??~! to be written in the subse-
quent form

(21-1)q (2J-1)q

[H(u,0) = Y Z hiad " cos [§(2k—1)u] cos [3(21-1)v] (A.15)

k=1 =1
It will be easier, and computationally faster, to compute [H (u, v)]? and use its coeff-
cients, t;;, where t;; is the coefficient of the general term cos(iu) cos(jv), in the algorithm.

2[-12J-1

- Z Zt"j cos(iu) cos(jv) (A.16)

i=0 ;=0

Algorithm for the computation of c,,,
e Step #1: Initiate

m=1,213s"' ’QI

Gy =0 10t
i {n:l,Z,B,...,QJ

k=1,2,3 ., 01
hi;=0 for § 1=1,2,3,...,QJ
q=112:31"' !Q

tij =
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e Step #2: g=1

e Step #3: g=qg+1

k=1,2,3,...,(g=1)I
1=1,2,3,...,(q=1)J
m = |k + i
| n=|l+j

1
Moo = Bin + Jtishly ! for <

=1,2,3,...,ql
Crn = Cn + bgh%, for { Foke
n=1,23,...,¢J

Repeat Step #3 until ¢ = Q. Only two matrices for i are needed, one with present
values and the other with the previous iteration’s values.

A.2.3 Computation of ¢ZZ for Arbitrary Contours

No details of the derivation of the formulas will be presented as they are analogous to
that of Section A.1.3. The algorithm for the computation of G, 155

e Step #1: Initiate

e
el = or m=1,2,3,...,0I
s =0 n=1,2,3,...,QJ
¢, =

q 20 '

i’;‘_o k=1,2,3,...,0I
¢ iy Sonl =152, B,
Th =

=1:213s"-3

s =0 q Q
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coo = bo

e Step #2: ¢=1

q __ 4C
9i; 5
he =3 i=0,1.2,... 1
for
rl =12 j=0,1,2,...,J
st = t5f
Cﬁn = cmn + bqgrrm
c.::n_css +bqh$nn fOI' m = 112:3 ,QI
¢ =ieg o Hhonl 7=1,2:35000 500
cf':n. — cmn + b Smn
e Step#3: g=q+1
-1
0% = 9% + 7o | i ok + 05 8 Wi — La ¢ ri = Tati sk
_ Tr+i Xl q—1 2 i
P = hion + g [t} it P+ T G ght + Tyt s+ Tathiy ]
Pl =T+ gl [ Wi — L5 6 s LT e g = Tt bl
— k41 -1
Sl =8t + ot [ sl — TeT 8y =0t Bl + Tt of ]
L S T U BN _
. = |k +1]
J':_Is'_(I_l)a' 1_1115'--:'] F ‘
for with ¢ n=|l+ |
k=123 ... (g—1)I o
T; = sign(z)
I=1.98.. .. fg=1F
C:ncn = c?ncn + bqgg’lﬂ
Cf?‘iﬂ = Cf,;n + bqh?nn fOI' m = 1: 21 3: e, qI
an':cgn—‘-bqrgnn n_ 15213 . 1qJ

88 - LBE q
Cmn = Cmn ~+ bqsmn.

Repeat Step #3 up to, and including, the case ¢=@Q. Again, just two

matrices for each

of hi, gr Tkl and sy are needed. The algorithm is easy to program, though it may looks

imposing.
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