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Summary

In this dissertation some of the real world deviations from the assumptions
made in the Black-Scholes option pricing framework is investigated. Special
attention is paid to volatility, the standard deviation of stock price returns.
Unlike the assumption of constant, volatility of increments in Brownian mo-
tion, volatility in the market is stochastic. Market models allowing for sto-
chastic volatility are no longer complete as in the Black-Scholes framework.
Options in incomplete markets are harder to price since investors demand
higher returns for taking additional risk.

Duan (1995) proposed an option pricing measure for incomplete mar-
kets, due to stochastic volatility, called the Local Risk-Neutral Valuation
Relationship (LRNVR). Under the LRNVR, the local risk neutral measure
(Q) is equivalent to the real world measure (P), the conditional expected
return under the () measure equals the risk-free rate and the conditional
one period ahead variances under both measures are equal, P almost surely.
The LRNVR holds for consumers with familiar utility functions.

Stock returns are assumed to follow a Generalized Autoregressive Con-
ditional Heteroscedastic (GARCH) process. This process is a discrete time
statistical time series that is calibrated over stock returns. In this disserta-
tion the LRNVR and related option pricing methodology is comprehensively
investigated.

Warrants traded on the JSE Securities Exchange violates the Black-
Scholes assumptions in two additional ways, short selling is restricted and
the market is somewhat illiquid. One of the results of these violations is
that the standard deviation and the implied volatility, volatility implied by
the market price of the option, are out of sync. The implied volatility tends
to be higher than the volatility of stock market returns.

In this dissertation the GARCH option pricing process is applied to the
implied volatility of the warrant instead of the stock price process, as done

by Duan. This method compares well with the use of implied volatility to
price warrants.
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Glossary of notation

Glossary of frequently used notation:

(Q,F,P),7T

a.e., 9

A(L),38

B(L),38

cdf, 14 (Cumulative distribution function)
cor[X,Y],13

cov [X,Y],12

E (e*),17

E[X],9

E[X | 9],10

F(z),14 (Cumulative distribution function)
f(z), 14 (Probability density function)
X2 (v),20

LY, F,P),9

My (t),17

N (p,0?),16

pdf, 14 (Probability density function)
Std[X],10

a?,38 (GARCH process)

u(z), 66

Var|[X],10

Var[X | H],10
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Chapter 1

Introduction

Three categories of financial models prevail in the market!. They are the
following:

1. Structural models. Simplifying assumptions about the underlying
market processes and market equilibrium are made to infer equilibrium
prices and thus the relationships between underlying instruments and
their contingent claims (i.e. options). The Black-Scholes? formula is
the most famous structural model. The Black-Scholes formula is the
result of a method called risk-neutral (or arbitrage) pricing. A result
of the risk-neutral pricing is that we can infer a unique, correct price of
a contingent claim given its underlying stock price. Any other option
price would lead to an arbitrage opportunity.

2. Statistical models. These models rely on empirical data and their
co-dependencies. Fewer assumptions, if any, are made concerning
the structure of the market. FExamples of statistical models in finan-
cial mathematics are the capital asset pricing model and time series
processes. Financial time series are used to describe data, to ob-
tain insight into their dynamic patterns and to forecast out-of-sample
returns. The Generalized Autoregressive Conditional Heteroscedastic
(GARCH) process is a famous time series used to model the condi-
tional variance of a process.

3. Comnbination of structural and statistical models. This cate-
gory of models combines the above categories of models. The GARCH
option pricing model under the local risk-neutral valuation relation-
ship (LRNVRY), discussed in this dissertation, is the combination of
GARCH literature and risk-neutral valuation.

'See ‘Risk Management’ by Crouhy, Galai and Mark [9].

*The Black-Scholes model was developed by Black and Scholes (1973) and Merton
(1973).
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CHAPTER 1. INTRODUCTION 2

Under risk-neutral pricing, the price of a contingent claim is independent
of the risk preference and utility functions of buyers and sellers, hence there
exists a unique and correct option price. The cost of this model is the
simplifying assumptions. Some of the crude assumptions made in the Black-
Scholes model are:

1. Stock prices are lognormally distributed, thus the continuously com-
pounded stock returns are normally distributed.

2. The mean and volatility under this distribution are constant.
3. The risk-free interest rate is constant or a known function of time.

4. Delta hedging is done continuously (short selling is allowed and secu-
rities are perfectly devisable).

5. No transaction costs ou the underlying.

6. No arbitrage opportunities.

Emmpirical evidence shows that none of these assumptions are valid. In
this dissertation the assumption of constant volatility is abandoned, for (con-
ditional) stochastic volatility.

Volatility has many definitions. It is generally seen as the standard
deviation of a random process (i.e. the stock returns process). In the Black-
Scholes framework, implied volatility can be inferred from the market price
of the option and the underlying. Conditional volatility can be seen as a
measure of risk. This is because levels of trade tend to increase in uncertainty
in the stock, sector or market in general and hence the standard deviation
or price fluctuations increase.3.

In this dissertation, volatility is seen as the standard deviation of a sto-
chastic process. Implied volatility comes into play in later chapters where
the GARCH option pricing model is applied to JSE Exchange traded war-
rants.

1.1 The Problem of Stochastic Volatility

The Black-Scholes model is a complete market model. A market model is
complete if and only if all contingent claims are repliceble. Equivalently,
under no arbitrage conditions, a market model is complete if and only if
there exists a unique risk-free probability measure.

If stochastic volatility is introduced into a market model, it is no longer
complete!. This is because there are too much variability in the stock price

3For a thorough discussion on market volatility, see Poon & Granger [29].
4See Fouque et al [17).
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CHAPTER 1. INTRODUCTION 3

which cannot be hedged away completely, since there are no instruments in
the market which is perfectly correlated with the individual stock’s volatility.
Equivalently there doesn’t exist a unique risk-neutral probability measure.

A consequence of stochastic volatility is that the price of the contingent
claim depends on the risk preference and utility of investors. This compli-
cates computation of the price of the contingent claim.

1.2 A Proposed Solution

The aim of this dissertation is to discuss a solution too the problem of option
pricing in incomplete markets, due to stochastic volatility. The LRNVR was
introduced by Jin-Chuan Duan [10] in 1995. Duan proved that the measure

—tr—pyr U (Ct)
dO = e~ (r—o)T _Z_\Z4
Q=¢ T ( Cc-l)dP

satisfies the LRNVR. In this measure, r is the risk-free interest rate, p is
an impatience factor and UV is the first derivative of the utility function of
consumption C; at time {. The measure ¢ is called the local risk-neutral
measure.

The volatility process in this dissertation is the GARCH process intro-
duced by Engle (1982) and Bollerslev (1986) [6]. The GARCH process is a
discrete time process of the changing variance of the returns of an underly-
ing instrument. This process captures phenomena of returns series coined
“stylized facts”. These phenomena are heavy-tails® of distributions, volatil-
ity clustering® and mean reversion’. GARCH processes have been extended
to capture another stylized fact called the leverage effect®. Such GARCH
processes are called asymmetric GARCH processes. '

The GARCH parameters are derived from actual market prices. The
stock price, at expiry of a European option, is forecasted with the GARCH
process under the local risk-neutral measure. This forecast is done with
Monte Carlo simulations.

In this dissertation the GARCH option pricing method is applied to
South African put warrants.

®Excess kurtosis above that of the normal distribution.

8Volatility levels tend to cluster together at the same levels for a certain duration, after
which it clusters together at another level.

"Volatility levels tens to revert back to a certain long-term level sfter a shock. The
reversion to this level is not neccesarily immediate.

3The market tends to resct more drastcally to bad news than good news,
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1.3 Description of South African Derivative In-
struments and Experiment

There are two markets where financial derivatives are traded in South Africa.
The one market is the warrants market of the JSE Securities Exchange (JSE)
and the other is the South African Futures Exchange (SAFEX). The SAFEX
exchange was bought by the JSE on the 1% of July 2001.

Equity options on SAFEX are traded on a limited number of stocks and
on some index futures. The SAFEX market tends to be illiquid. In illiquid
markets the spread between bid and offer prices tends to be wider than that
of a more liquid markets.

On the JSE, warrants® are traded. A warrant is an option issued, like a
stock, by financial institutions on equities, certain interest rate instruments
and some indices. This means that a market player must own a warrant to
sell it, thus no short selling is allowed. The warrants market is more liquid
than the SAFEX options market, but because no short selling is allowed,
there are no way to gain from overpriced warrants. In this market, only
market equilibrium (supply and demand) controls price levels. The result
is that the implied volatility levels of warrants tend to be higher than the
volatility of stock prices. See figure 1.1.

In this dissertation the GARCH option pricing method is applied to
equity European put warrants on the JSE. Approximately 30% of traded
warrants are European put warrants. The warrants market was selected
because it's more liquid than the SAFEX option market. In more liquid
markets, option prices reacts more rapidly to changes in the price of the
underlying, thus the testing of the GARCH option pricing method is easier
to do.

In Duan’s 1995 paper the GARCH process is calibrated to the returns se-
ries of the underlying equity or index with the maximum likelihood method.
Since the implied volatility of warrants are higher than the historical stan-
dard deviation of the underlying equity, the GARCH process in this disser-
tation is fitted to the implied volatility of the warrant.

1.4 Outline of the Dissertation

In the following chapter, essential background o probability theory is dis-
cussed. This discussion includes some measure theoretical background, sto-
chastic mathematics and discussions on the normal distribution.

In chapter 3, basic concepts of time series are introduced. Autoregressive
Moving Averages time series are the main topic of discussion. Univariate
volatility processes literature is reviewed and investigated in section 4 which

*Warrants on the JSE must not be confused for an option issued by a company ou its
own stock which is available in some countries.
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Figure 1.1: The moving 30-day standard deviation against the implied
volatility of the warrant: 3SAPIB on Sappi. The breaks in the implied
volatility graph is due to market illiquidity. The intrinsic value of the repli-
cating portfolio is more than the value of the option.

builds on the ARMA discussion. The most important univariate volatility
process is the (vanilla) GARCH process. Other important GARCH processes
are also investigated.

Risk-neutral valuation is the basis of modern option pricing. Risk-
neutral valuation and continuous time finance is discussed in chapter 5.
This discussion leads to the pricing of options in incomplete markets and
the LRNVR investigated in chapter 6.

Chapter 7 is about the application of the LRNVR to option pricing.
Delta hedging under LRNVR is also investigated.

Monte Carlo simulations and optimization forms part of chapter 8 where
the implementation of GARCH option pricing is discussed.

Results are given in chapter 9 and the conclusion follows in chapter 10.
Related literature is discussed in section 11.
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Chapter 2

Some Probability Essentials

2.1 Introduction!

In this chapter some of the essential background to probability theory is
given. Although the background is basic, very few mathematicians, sta-
tisticians or probability theorists would be familiar with all the concepts
presented.

In section 2.2 the basic concepts concerning a probability space is briefly
stated. Moments are discussed in section 2.3.

Cumulative distribution functions and partial density functions are dis-
cussed in section 2.4. Some of the main theorems of this section is stated and
proved. I section 2.5 the moments and other issues regarding the normal
distribution is specified.

A short detour is taken in section 2.6 where returns series are discussed.
The section ends with section 2.7 where some important hypothesis tests
are discussed.

2.2 Probability Space

2.2.1 Probability Space

The triple ({2, F, P) is called a probability space. The set {2 is 2 non-empty
set, F = {Fi}ten,>0 is filtration of o —algebras F; defined on  and P is a
probability measure on F.

A function Z; : Q — R, on the probability space, is called a stochastic
process.

2.2.2 o—algebra
A family of subsets F of a set {2 is called a o—algebra if the following holds:

!For further discussions on probability theory and measure theoretical aspects see [31],
[7], 13] and [27]. [4], {13], [17], {26] and [32] are also useful.

7
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1.0eF
2. X eFthenM\XeF

3. If (X,) is a sequence of sets in () then ‘EJOIX,, e F.
R e

2.2.3 Borel Sets in R

The Borel sets (one thing) is the smallest o—algebra generated by all the
open sets in R.

2.2.4 Filtration

F = {Fi}iene>o0 is a filtration of c—algebras with the following properties
1. Fo contains all null sets
2. f‘t = ﬂs;s)tfg fOl' t 2 0

Property 2 is called right continuous. A filtration with these properties
is said to satisfy the “usual conditions”.

2.2.5 Measurability and Adaptedness

Definition 2.2.1 A stochastic process, Z; : ! — R, is said to be measurable
with respect to a o-algebra F if

{Zg & B} eF
for every Borel set B € B(R).

Definition 2.2.2 A stochastic process, Z;, is said to be adapted to a filtra-
tion F if Z; i3 F; measurable for all t € R.

Remark 2.2.3 Throughout this dissertation only real-valued stochastic pro-
cesses defined on (Q, F, P) will be considered, that is X : Q@ — R.

Remark 2.2.4 A stochastic process at a specific time is often referred to as
a random variable.

Remark 2.2.5 Take note that a stochastic process/random variable is de-
fined in terms of a probability space.
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2.2.6 Almost everywhere

Definition 2.2.6 Two functions, f and g are equal almost everywhere
(sometimes called almost surely) if

f(z) =g(z)

for all x ¢ N € F where P(N) = 0. Almost everywhere is abbreviated by
a.e.

Definition 2.2.7 A sequence of functions (fn) converges to f almost every-

where if there exists a set N € F with P (N) = 0 such that f (z) = lim f, (z)
forallz ¢ N.

2.3 Moments and Stationarity

2.3.1 Expected Value
Definition 2.3.1 A random variable X € Q) — R is said to be integrable if

/|X|dP< oo
Q

The family of integrable random variables are denoted by L' (Q, F, P) or in
this dissertation L for short.

Definition 2.3.2 For any X € L' (9, F, P),

E[X]:= / XdP
Q
is called the expected value of X.

Remark 2.3.3 The expected value of a random variable from a symmetric
distribution is often called the mean or average.

Remark 2.8.4 For a probability space with density function f and inte-
grable Borel function h : R — R,

o0

E[h(X)]:/thPX:[mh(z)f(z)dm

Proof. See Brzezniak et al. [7]. =
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2.3.2 Conditional Expectation

We can call the filtration F; C F, the o—algebra that contains all the
information available to an investor at time f£. A o-algebra can also be a
condition in a conditional expectation.

Definition 2.3.5 (Q, F, P). The conditional expectation given a c—algebra
is: for an integrable random variable X and o-algebra ® C F

E[X | 9]
where E[X | ®] : @ — R is unique P a.s. satisfying
1. E[X | ®] is & measurable
2. [, E[X | ®|dP = [, XdP, for all H € ®.

Theorem 2.3.6 For X, Y € L', a,b € R and 0 — algebra ® C F the
conditional expectation has the following basic properties (all equalities a.s.):

1. E[aX +bY |®]|=aE[X | ®]+bE[Y | €]
2. E[F[X | 9] | ¥ =E[X| Y] where ® C ¥ is also a 0 — algebra
3. ElX |®] =X if X is ® measurable
4. E[X | 9] = E[X] if X is independent of &
Proof. See Appendix B in Oksendal [27]. =
2.3.3 Variance, Conditional Variance and Standard Devia-
tion

Definition 2.3.7 (2, F, P). A random variable X € Q@ — R is said to be
square integrable if

/XQdP<oo
Y

The family of square integrable random variables are denoted by L? (2, F, P)
or L? for short.

Definition 2.3.8 (Q, F, P). The variance of a square integrable random
variable X is defined as

Var[X] = E[(X—E[X]f}
= E[X? - (E[X])?

2
= /deP—{—(f XdP) >0
H H
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Definition 2.3.9 (Q,F, P). The standard deviation of a square integrable
random variable X is defined as

Std[X] = /Var[X]

The conditional variance and its properties follows directly from that of
the conditional expected value:

Definition 2.3.10 (2, F, P). For any square integrable random variable X,
the conditional expected value of X given a o — algebra H C F, is

Var[X | H] = E[(X~E[X|H})2|H]
= E[X2~2XE[X]H]+(E[X|H])2[H] as. P
= E[X?|H|-(E[X|H])?as P

Theorem 2.3.11 (2, F, P). For a square integrable random variable Z and
a,c € R, the conditional variance of K = aX +¢, given a0 —algebra H C F,
18

Var (K | H) =d*Var (X | H) a.s. P
Proof. Equalities almost surely

Var [K | H]

= B[(&)|H| - (BIK |H])?
E[a®?X? + 2acX + ¢ | H| - (E[aX | H]+¢)®
a?E[X?% | H| 4+ 2acE [X | H| + & - &® (E[X | H])?
—2ac(E|X | H]) - ¢

= d?E[X? | H]-d*(E[X | H])?

= a*Var(X | H).

n

Theorem 2.3.12 (Q, F, P).For two square integrable random variable X
andY and a,b,c €R, the conditional variance of Z =aX +bY + ¢

Var(Z | H) = a®*Var (X | H)4+b*Var (Y | H)+2abCov(X,Y | H) a.s. P

Proof. From theorem 2.3.11. Equalities almost surely P
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VarlaX +bY +c | H]
= Var[aX +bY | H|
- E [(aX +bY)? | H] —(ElaX +bY | H])?
= o’E [X? | H| +2abE[XY | H| +b’E [Y? | H|
—(aE[X | H]+bE[Y | H])®
= a’E[X?|H| +2abE[XY | H|+E[Y? | H] - o*(E[X | H])?
—2bE[X |H|E[Y | H - ¥ (E[Y | H])?
= a?Var(X | H) +b*Var (Y | H)
+20b(E[XY |H| - E|X | H E[Y | H])

In the next section covariances will be properly defined, for now assume
Cov(X,Y |H)=FE[XY |H|-E[X | HE[Y | H].
Thus

Var[aX +bY +c| H]
= a®Var(X |H)+b*Var (Y | H) 4 2abCov (X,Y | H)

2.3.4 Covariance and Autocovariance

Definition 2.3.13 (€, F, P). For two square integrable random variables
X andY in our probability space, the covariance between X andY is

cov[X,Y] = E[(X-E[X])(Y - E[Y])]

= FE[XY]-E[X]|E[Y]

Definition 2.3.14 (2, F, P). For a square integrable stochastic process
(Xt);en, adapted to F, the covariance between X; and X,y for anyt,k € N
18

cov [Xe, Xp k] = E(X:—- E[X]) (Xi—i — E[Xy—r])]

= B[XiXii| - E[Xi] E[Xi—]

The covariance between elements of the same stochastic process is called the
autocovariance.

The conditional covariance and autocovariance can be defined in a sim-
ilar fashion as the conditional variance, bearing in mind that conditional
covariances are random variables.
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2.3.5 Correlation and Autocorrelation

Definition 2.3.15 (2, F, P). For two square integrable random variables
X and Y the correlation between X andY is
cov[X,Y]

o [X,¥] = var [ X]var [Y]

Definition 2.3.16 (2, F, P). For a square integrable stochastic process
(Xt)icn> adapted to F, the correlation between X; and Xy_y, for anyt,k € N
5

cov [ Xy, X¢—k)

cor [X¢, Xp—k] = Vvar [Xy]var [ X ]

The correlation between elements of the same stochastic process is called
the autocorrelation.

2.3.6 Lag

Definition 2.3.17 Consider a stochastic process, say (Xy),cpn. At any time
step t a lag of size k is an integer that represents the process at time t — k,
X k-

2.3.7 Higher Moments

Definition 2.3.18 (2, F,P). The r* moment of a random variable X
(about its mean) is

E{(Xx - E[X])]

The first moment of a random variable is defined as its mean. The
second moment of a random variable is its variance. The second moments
of a stochastic process also include the autocovariances. The third moment
of a random variable is skewness and the fourth is kurtotsis. For a stachastic
process (X;),cy the set of r*» moments can be defined as

{E Ll;il (Xi, — E[X;;i])] | for all k; € N}

2.3.8 Stationarity

Definition 2.3.19 A stochastic process is called stationary if all of its mo-
ments are constants.

Definition 2.3.20 A stochastic process is called weakly stationary if its first
and second moments are constant. This means that its mean is constant and
for every lag k and time t the cov [X;, Xi-k] is a constant.
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2.4 Cumulative Distribution Function and Proba-
bility Density Function

Definition 2.4.1 The (cumulative) distribution function (cdf) of a random
variable X : Q@ — R is defined as

F(z)=P{X <z}

Theorem 2.4.2 The cdf F of a random wvariable X : Q — R has the fol-
lowing properties

L O0<F<1
2. Uim F(z)=0and limF(z)=1
T——00 r—00

3. F is right-continuous, F (z) = ling, 4 F (xy) for a decreasing se-
quence T,

4. F is increasing.
Proof. See Brzezniak et ol. [7]. ®

Theorem 2.4.3 If g : R — R is integrable then

(o 0]

Emwn=/ g () dF (z)

—00

Proof. A result of exercise 1.7 in Brzezniak et al. [7]. ®

Theorem 2.4.4 A measurable function f(x) > 0 on R such that for any
Borel measurable set B

P{XEB}=/Bf(y)dy

is called the (probability) density function (pdf) of X. The pdf can in par-
ticular also be written in terms of the cdf of X, F

Y
Fa= [ rwa
Proof. See Brzezniak et al. [7]. m

Theorem 2.4.5 If X has a continuous pdf f then

d
P (@)= ()

Proof. A resull from the fundamental theorem of calculus. W
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2.4.1 Joint Continuous Distributions

The joint distribution of a k-dimensional random variable,
X =(X1,X2, .., Xi),

is a measure Px on R” such that for any Borel set, B € R®
Px(B)=P{X € B}

If the random variables of X are independently distributed then

k
Px (B) =[] P{X: e Bi}

i=1
where
By
B=
By,
Definition 2.4.6 The joint probability density function (joint pdf) of a k-
dimensional random variable,
X =(X1, X2y, X&)
1s a Borel function
f(z1,22, .. 2) : R > R
such that

Px (B) = /B £t tay o ti) dr...d (2.1)

Definition 2.4.7 The joint cumulative distribution function (joint cdf) of
a k-dimensional random variable,

X = (X1, X2, - X)
8
F(zy,enz) = P[X) <21y 00y Xi < 2]
If the random variables of X are independently distributed then
flzy,zy) = f(z1) - f (2)

and
F(.’Z‘l, ...,il?k) = F(.}Il) . ($k)

which follows directly from the case of independence of Px.
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Theorem 2.4.8 The joint cdf of a k-dimensional random variable X can
be written in terms of the joint pdf of as follows

Ti 31
F(z1, 22,y k) = f / J(Laytay .y tg) diy..dly (2.2)
—00  J—oo

Proof. From definition 2.4.7 and the fact that (—oo,z;] is a Borel set
for every applicable ¢ it is clear that the joint cdf of X is a special case of
the joint probability of X. Equation 2.2 follows directly from 2.1. =

Theorem 2.4.9 If X, Y € R are independent random variables and g (x)
and h(y) are functions then

Elg(X)h(Y)] = E[g(X)] E[h(Y)]
and
covfg(X),h(Y)] =0
Proof. With a joint pdf f(z,¥)

Elg(X)h(Y)] = /_:f_zg(ﬂr)h(y)f(x,v)dxdv
- [_°° f’g(x)h(y)fl (2) f2 (y) dasdy

due to independence. The cdfs of X and Y are f; and f; respectively, then

E0sml = [ h) ) [_Zg(x)fl(m) dady

~00

- /_:g(m)fl (z) dzf_:h(y)fz(y) dy
= Elg(X)]Eh(Y)]
The covariance can be expressed as
cov[g (X), h(Y)]
= Elg(X)h(Y)]-Elg(X)]E[RY)
=

2.5 The Normal Distribution and its Moment Gen-
erating Function

2.5.1 The Normal Distribution

The normal distribution, the most frequently used statistical distribution,
was first published by Abraham de Moivre (1733).
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A pormal random variable X € R, with mean g € R and variance
o2 € R* is denoted by
X ~ N (p,0%)

The probability density function (pdf) of the normal distribution is

)= e [5(552)]

Another way to define the pdf in terms of the probability space (22, F, P) is
as follows

P(A)=[4dP=[4f(x;p,02)dm

The cumulative distribution function (cdf) of the normal distribution is
given by

F(z;p,a2) = P{X <z}

1 l1(z—p 2
= Xp | —= d
/[‘st} V2ro xp [ 2 ( o ) ] ¥

21 l1({z—p 2
= —€ —— dx
[—oo V27r0' P [ 2 ( o ) ]
The standard normal distribution, frequently used in this dissertation

is defined as the normal distribution with zero mean and a variance of
one, N (0,1). The standard normal distribution’s pdf is

2
f(z;0,1) = —\/12-—_7;exp (—%)

and cdf is

F(zx;0 1)—/2 —l—ex (—-Ti)dz
s Uy - ~°o\/2'—7r- P 9 .

2.5.2 Moments of the Normal Distribution

Consider a normally distributed random variable X ~ N (p, 02) with prob-
ability density function

rene)= g [5(552)]

then the random variable

x ——#
}’ = —— v
—£ ~N(0,1)
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Definition 2.5.1 The moment generating function of X is defined as
Mx (t) = E (e'X)

Theorem 2.5.2 The moment generating function of X ~ N (;,s, 02) is

2
My (t) = exp (;,et + (a;) )

Proof.
Mx (t) = E(¥)

© 1w -i(z=e)?
= e VT ) dx
[—-oo Vviro

o0 _ 2
/ ;exp tx — 1 (T ,u) di
—c0 V210 2 g

00 2*2 2t 2
:/ 1 e)(p(m (p+o )m+,u)dw

i

—o0 V210 —202
00 . 2t 2 - Qt — 2t 2
_ /’ 1 xp (¢ — p+o?t) 22;1,0 (o) i
—o0 V210 ~20
2
(ot)? / Sl | (z — p+ o)
= t+ —— St |
exp (p. + 2 o Tone exp )
2
= exXp (y,t+ (02) )

Theorem 2.5.3 Moments about the mean of X ~ N (,u, 02), If v is even
then

_ (2r)la?

E[(X - #)f] plor ?

if r is odd then

E[(X - p)]=0
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Proof., The

2
Mx_ , = exp ((1;2—)

_ io‘znt% (2n!)
oy 270! (2nl)
S\ 02 (nl) 2
22nt  (2n!)

The second line is due to the Maclaurin series expansion for e. Note that
only positive integers are contained in the last line Theorem 2.5.1 in [2]

states that
tn
nl

Mv(t)=1+§j5[m]

m==x]

for a random variable V. Thus

E[(X-wT=0
if r is odd and
= o
BIX == o

ifriseven. m

The following characteristics of random variable X ~ N (p,0?) follows
from theorem 2.5.3:

1. The skewness of X is
B[x -] =0

2. The kurtosis of X is

ﬂw”ﬂzzmﬁ

and thus if 02 = 1
EUX-Mﬂ=3
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2.5.3 Chi-square Distribution

Definition 2.5.4 If random variable Y is chi-square distributed with v de-
grees of freedom then

Y ~ X% (v)
where the chi-square distributed is a special case of the gamma distribution
¥ (v) ~ GAM (2, g)

Theorem 2.5.5 A random variable Y ~ x%(v) has the following charac-
teristics

1. Probability density function

1 v/2~1

- —a /e
f (y) = 9u/2p (‘U/ZZ)y 23

e
where I’ is the gamma function
w -
(k)= / thle~tdt
0

for all x> 0.

2. Moment generating function
My (1) = (1 -2/
3. Moments aboul the mean
By =2 /24 T) gj’(/f /“;)’)
4. Frpected value
ElY]=v
5. Variance

Var[Y]=2v

Proof. Results follow from the gamma distribution. See Bain [2] m
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Theorem 2.5.6 If
X ~ N (p,0%)

then

72 = (X—#)ZNxz(l)

o
Proof. The moment generating function of Z?

My = E [et”]
/_ : ‘/.12_; exp (t2%) exp (—%2) dz
/ : \/l__exp (tz2 - %z2> dz
- «1—— 7 [ e (F) o

—\/1‘:'2‘

which is the moment generating function of the chi-square distribution. ®

Definition 2.5.7 If Z2 ~ x2 (1) then
(Z-»?

is noncentral chi-square distributed with 1 degree of freedom and non-cen-
trality parameter .

Theorem 2.5.8 The expected value of a noncentral chi-square distributed
random variable is

E [(Z—)\)z] =1+ M2
where Z? ~ % (1).
Proof.
B(Z- = B[22-222+)]

= E[Z% -2)\E[Z] + X
1+ A2

since E'[Z] =0 because Z ~ N (0,1). m

1 165L2502
brsasuzul
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Theorem 2.5.9 The expected value of a noncentral chi-square distributed
random variable is

E [(z_- ,\)4] =3+ 622 + A4
where Z% ~ X2 (1).
Proof.
Blz-N = B[(Z -2+
= E[Z'—4Z°X+62°)% — 42°Z + A"

= E[Zz%] - ME[Z%] +6X2E [2%] — AN E[Z] + A
= 3+6N%+X

This is done by remembering that
Z~N(0,1)
thus the expected value of Z is
E[Z]=0
the skewness is
E[Z*] =0
and the kurtosis is
E[z']=3

2.6 The Return Series and Lognormal Distribu-
tion

2.6.1 Returns Series

The financial value of a company or fund is represented by its (stock) price.
The stock price has a clear, time dependent trend. It is hard to model se-
ries with trends, at least in an objective, scientific sense. To remove this
trend, the financial time series is transformed into a series with “manage-
able” mean, a returns series. This is done with difference equations.

It will be proved that the returns series still has the same variance as the
original series. The returns series is of great importance in risk management
and derivatives pricing.
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Figure 2.1: The stock price of Sanlam from 1999/01/05 to 2002/04/19.
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——Sanlam Returns Series

Figure 2.2: The returns series of Sanlam from 1999/01/05 to 2002/04/19.
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2.6.2 The Arithmetic Returns Series

Definition 2.6.1 The arithmetic returns series, for process (St) is defined
as

_— St — Si—1
¢ Si—1

2.6.3 The Geometric Returns Series

The geometric returns series, for process (S;) is defined as

ry = InSy—InSi_1

l‘n( 5 )
811

The relationship between the geometric and arithmetic series, by the Taylor
series expansion, are as follows:

Si _ S
In (St—l) = In (L_S't——_l— 1+ 1)

St — St-1 )
Y et S |
n( St-1

St — Sp1
Si—1

Q

o | 8t—=5t_1
if l—st—-l | < 1.

The geometric returns series will be considered in this dissertation.

Theorem 2.6.2 If we assume that a returns series is normally distributed
then the log of the stock process is also normal, and vice versa.

Proof.

5 S S S\ _ . (S
In ("STO') +In (S_l) +In (S]) +m+ln(st—l) = In (SO)

= InS; —InSy

The sum of normally distributed random variables are also normal and we
assume that Sp is known. =

2.6.4 Lognormal Distribution

(Q,F,P). A random variable X € R, with mean p and variance o2 is said
to be lognormally distributed if In{X) is normally distributed.

It’s often observed that stock prices are lognormally distributed. In
chapter 5.4.1 we deduce, given the assumed process 5.10, that a stock price
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S; can be defined in terms of an initial stock price Sy and Brownian motion
I“]Vt )

S = Sgexp ((,u, - -302) t+ GW’g) (2.3)

Taking the logarithm on both sides of equation 2.3 yields
InS;~ N (ln So + (/L - -12-02> t,aQt)

The return on stock S; is defined as In (%) which clearly has the distri-
bution

St 1 2 9
In—— ~N{p-=
nSz-l (g; 20’,0’

It is possible to test with the Jarque-Bera test for normality whether the
return is in reality normally distributed.

2.7 Hypothesis Testing?

Hypothesis tests are done to verify whether the properties of an observed se-
ries, say {&;},c , are consistent with assumed properties under a model The
properties that need to be tested include tests for normality, autocorrelation
and heteroscedasticity.

The formal procedure for conducting a hypothesis test involves a state-
ment of the null hypothesis and an alternative hypothesis. The sample
estimate on which the decision to reject or not reject the null hypothesis
comes from the sample space. The Neyman-Pearson methodology [20] in-
volves partitioning the sample space into two regions. If the sample estimate
falls in the critical region, the null hypothesis is rejected. If it falls in the
acceptance region, it’s not.

2.7.1 Jarque-Bera Test for Normality

The Jarque-Bera tests whether observations are not likely to have come from
the normal distribution.
Define for n observations the following

1 n
&2 S g.%’ (24)
t=1 ,
o 1 = ~3 ¢
iy =~ ;at, (2.5)

?Suggested reading: [1], [2], [18] and [24].
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1 n
fy==> & (26)
nt:l

In equations 2.4 to 2.6 are the second, third and fourth moments of &,
respectively.
The skewness is defined as

skewness = s = ;—f%
&
and the kurtosis as
kurtosis = k = l—f%
s

The Jarque-Bera statistic is defined as
~2 ~ ~4\2
2, (g —36%)
JB = o e
" (6&6 T )
(32 +2(k - 3)2)

n

6

JB ~x*(2)
The nuull hypothesis is
Hy:83=0and k=3
against the alternative
Hy :reject Hy

Remark 2.7.1 Many text books and computer packages calculates the ad-
justed kurtosis, that is the k — 3.

2.7.2 Autocorrelation

Durbin-Watson

The most famous test for autocorrelation is the Durbin-Watson test

Yora (Er —8r1)?

t 22
rasl O

No exact distribution for this test is available.
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Ljung-Box

For a series with m observations the Ljung-Box statistic over K lags is
K 52
2)Y —F—~ A (K
m (m + )kz_;m_k (K)

where 7)% is the observed autocorrelation at lag k given by

By = Zr k+1 (Et ~‘72) (w% k “‘72)
i, (& -a%)°

where &; is the observed return at time ¢ and 62 is the sample variance.

2.7.3 Volatility Clustering

Many financial time series and also the Black-Scholes option pricing model
make the assumption of constant volatility. Empirical evidence indicates
that volatility of financial instruments tends to be dynamic. Volatility lev-
els tend to alternate between periods of higher volatility and more tranquil
periods. This clustering together of volatility levels for a period of time is
called volatility clustering. Volatility clustering is due to the strong autocor-
relation of squared returns or absolute returns. The Box-Pierce Lagrange
multiplier test for the significance of first-order autocorrelation in squared
returns, éf, is

Z_tﬂ_l

TA4
t=2 &t

The Lagrange multiplier tests are chi-squared distributed with T' degrees of
freedom.

2.7.4 The Leverage Effect

Volatility tends to be higher in a falling market, than in a rising market.
Similarly volatility tends to be higher after a large negative return than
after a large positive return, for an individual stock. The reason for this is
that when a stock price falls, the leverage or debt/equity ratio increases. In
laymen’s terms, the part of the company’s assets “owned” by the creditors
increases, leaving less for the shareholders. This causes more uncertainty in
the stock price.

An asymmetric version of the Lagrange multiplier test is used to inves-
tigate the influence of the leverage effect, and asymmetric returns levels in
general

Zf 2at=2%t5t~1 égét—

Zt—z 5'?5%—
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where &; is the observed return at time ¢.

28
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Chapter 3

An Introduction to Time
Series Models

3.1 Objectives!

The purpose of this introduction to Autoregressive Moving Averages (ARMA)
time series is to provide enough background to the reader to understand and
appreciate the more advanced models in later chapters. For a more complete
discussion on ARMA time series see Ferreira [16].

3.2 Preliminaries

3.2.1 White Noise

A white noise series is often part of a time series in the form of an “error”,
an unpredictable randomness.

Definition 3.2.1 A white noise series (e;) has the following characteristics
for everyt,s €R

1. E[&'t] =0
2. E[&f] = g2
3. Eleies] =0 fors#1

The white noise process is thus stationary.

! Suggested reading: [1] and [18]

29
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3.2.2 Linear Time Series

Definition 3.2.2 (2, F, P). A linear time series at time t consists of a
Fi-1 predictable part plus a random part, that is for a time series

Zg =L [Zg l ft-l] + Vi
where the expected value of the white noise process, vy where

E[Vt | ft—l] = )

3.2.3 Lag Operators and Difference Operators
Definition 3.2.3 A lag operator L is defined by
LFz, =2, &
for all k € RY.
Definition 3.2.4 A difference operator A is defined by
ApZy =2y — Zyy,
for allk € R

Example 3.2.5 The power of a difference operator A is different from a
higher order difference operator Ag.

A%Z = A(Zy—Ziy)
= AZ ~AZ,
= Zy =221+ 22

Definition 3.2.6 Invertibility of a time series: A time series (Z;) is in-
vertible if it is possible to write it in terms of an infinite combination of
lags.

3.3 Autoregressive Process (AR)

Definition 3.3.1 For a stochastic process (Z;) and white noise process (&¢),
the AR (p) process is defined by

Oy (L) Zs =&
with
Dp(L)=1—¢L— ¢L* ~...— ¢, IF (3.1)
L s a lag operator and p the order of the autoregression polynomial 3.1.
The AR (p) process (Z;) can thus be written as
Ly =121+ Qo+t dpZsptey
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3.4 Moving Averages Process (MA)

Definition 3.4.1 For a stochastic process (Z;) and white noise process (e;),
the M A(q) process is defined by

Ly = eq (L) £t
with
Oq (L) =1+01L+02L% + ...+ 0,L9 (3.2)

where L is a lag operator and q the order of the moving averages polynomial
3.2,

The M A (q) process (Z;) can thus be written as the sum of past errors
Zy =gt + 01601 +0aer 2+ ..+ 0ger—yg (3.3)

The lag operator thus acts on the white noise process not on Z;.

3.5 Autoregressive Moving Averages (ARMA)

Definition 3.5.1 For a stochastic process (Z;) and white noise process (e4),
the ARM A (p, q) process is defined by

(bp(L)theq(L)Er,

with
Og(L) = L1+01L+02L+...+0,L9
Dp(L) = 1—$L—gpl?—...— ¢, 17

where L is a lag operator, p the order of the autoregression polynomial and
g the order of the moving averages polynomial

The ARMA (p, q) process (Zy) is

Zy = Q1 Zi 1t G a+...+ ¢ng~p ‘et + e+, + ﬂqet_ﬁq
)4 q
= Z ¢iZp—; + Z Oier i
i=1 i=1

where 0y = 1. It is clear that the ARM A (p, q) process, is a combination of
an AR (p) and an M A (q) process.
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3.6 Stationarity of ARMA Processes

The results in this section was proved in Ferreira [16].
An M A {oo) process

Zy=er+ 01+ e+
is stable if and only if its weights are square summable

o0
Z()?<oo

=0

The AR (p) process
Zy=41Zp 1+ GpZea+... .+ ¢pZip+e (3.4)

can be rewritten in terms of the Vector Autoregressive process denoted
by VAR(1)

Z S b2 b by || D €t
Zp-1 1 0 -« 0 0 Zt-2 0
YA =10 1 .-« 0 0 Zt-3 |4+ | 0
| Zep-1) | 0 0 10 J]Z,] LO]
or
£ =F¢ 1+

From this equation we can obtain
£, =Flgy+F g1 +...+Fe 1+ v

Theorem 3.6.1 If all eigenvalues of the matriz F le within the unit circle,
|Al < 1, then

o0

SN F=1-F)" (3.5)

=0

where 1 is the applicable identity matriz and the right-hand side of equation
3.5 is the inverse of I - F.

Proof. Ferreira [16]. m
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Theorem 3.6.2 If all the eigenvalues of the p X p matriz F lie within the
unit circle, then

(I, - F)~
ezists and its element (1,1) is
1
l—¢1—dg—...— ¢,
Proof, Ferreira [16]. =

Corollary 3.6.3 If all the eigenvalues of F are less than [ in magnitude
then FJ decays to zero as j increases to infinite. A time series with such a
property is said to be stable,

Process 3.4 can be rewritten as

i (L) Zz = £¢
where
(L) =1-¢L—¢pL? —...— ¢, L7 (3.6)

Definition 3.6.4 The characteristic function of the process 3.6 is defined
by

®(L)=1~¢;L— L —...— ¢ I7 (3.7)

We can then combine the ideas of the root of polynomial 3.7 and the
cigenvalues of F.

Theorem 3.6.5 Factoring the characteristic function is eguivalent to find-
ing the eigenvalues of the matric F

1= L—gol? — ... =[P = (1= ML) (1= XL)...(1 = \L)
Proof. Ferreira [16]. =

Corollary 3.6.6 The process 3.4 is stable if all the eigenvalues of F all lie
inside of the unit circle. '

Theorem 3.6.7 The characteristic function ® (L) of an AR (p) process can

be written in terms of a characteristic function of a MA{00) process, say
w (L)

O(L) =7 (L)

Remark 3.6.8 Note that only ® (L), the characteristic function of the au-
toregressive terms influence stability.

The results of this section is summarized as follows:

Summary 3.6.9 An AR(p) process is stationary if and only if the eigen-
values of the characteristic function of that process lie inside the unit circle.
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3.7 Estimation of ARMA Parameters

This section focusses on the maximum likelihood estimation (MLE) of the
ARMA regression model. If we assume that the error process

et =21 —($1Zt-1+ -+ OpZi_p+ 01601+ ... + 0451 g)

is normally distributed. Then the likelihood function of the ARMA process
is

It

fr(6)

exp (= [ei/oe]” /2)

1-p+l

_ 1 1
= ( 2,.__....7“02) exp (w‘ZO’g th)

where 02 is the unconditional (statlonary) variance of the error process (g;).
The product is from the (p + l) observation to the nt® since there are p
parameters. Define n' =n —p.

Define the parameters matrix by

0= (‘;513‘3523 .- *a¢p$913° . waq)’
The loglikelihood function (the In of f*(6)) is

= 2(722:2

€ f=pt1

The MLE parameters are those that maximizes f*(8) or f(8) over a
number of observations of (g¢). Since only the error process is variate in
terms of the parameters 8, maximizing f(€) is equivalent to minimizing

ki
x
i=pt1

To comment on the significance of the MLE parameter fit, define the
information matrix

18%£(6)
I=-lim F|=—=-+
o [n’ 9006

The asymptotic distribution of MLE estimators is

o~N (e{,, 1,1-1)
7

with I positive definite in the region of the optimal 8.
For the second derivative of f (6) define

n—o00

_0%*f @ __1 2
S= 5068 20’2 0080’ Z

i=p-i-1
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thus we can approximate the covariance matrix of 6,

var(8) = -?%I_l

~ 2078

35
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Chapter 4

Univariate Volatility
Processes

4.1 Objectives!

A univariate model assumes only one source of randomness, in the
case of volatility models the source of randomness is the conditional
returns. Define, under measure P, the conditional returns as

St
Sp1
In this chapter two of the main univariate volatility processes are dis-
cussed. The Exponentially Weighted Moving Averages (EWMA) process is

discussed in section 4.2 and the various GARCH processes is discussed in

section 4.3 and further. This chapter includes a discussion on Asymmetric
GARCH in section 4.7.

€5=l’n

4.2 Exponentially Weighted Moving Averages

Weighing the M A(q) process in equation 3.3, by the sum of its parameters
yields

_ &t + Aep1 + .X28t_2 + .. 4 )\q&‘g_q

Z 4.1
‘ 1+ A+ A2 .. + M (41)
where 6; = A' and A € (0, 1).
Taking the limit of 4.1 to infinite
e 2 q
lim Zt = lim &+ A»t..] + A 6‘;-.2 + oA Et—q
g—00 g—oco T+A4+X+..+ M
(o]
= (1-2)) " Nepy (4.2)
=1

'Suggested reading: [1], [18] and [23].

36
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since X € (0, 1).
Equation 4.2 is the basis of the EWMA conditional variance process,

o0
6 = (1= N,
=1

o0
= (1-A) Z/\imlﬁ'g—i +(1-Net,

§=2
,z o0 )
= ML= Nl L+ (- Nl
i=1
= /\0'?,__1 + (1 - )ﬂ) 5?_1 (4‘3)

with A € (0,1).
Alexander [1] interprets the smoothing constant A in the following two
ways:

1. The term, (1 — A)€?_; determines the intensity of reaction of volatility
to market events. A low value of A will give a process highly reactive
to shocks. The effect of these shocks will quickly die away. Lower
values of ) is mostly used for short term forecasts.

2. Term Ao?_, determines the persistence in volatility. A high A will give
a process that persists at a certain level of volatility, despite recent
shocks.

Parameters of the EWMA process can be estimated by minimizing the

root mean square error or similar method. The accuracy of forecasts are
however difficult to assess.

4.2.1 RiskMetrics

The EWMA model is also the hasis of volatility forecasts in the RiskMet-
rics system by J.P. Morgan. The RiskMetrics model has the following to
distinctive features:

1. The parameter ) is fixed, A = 0.94.

2. The definition of volatility is different than the standard definition of
volatility. Under the assumption of normality, the RiskMetrics volatil-
ity is the 95 percentile or 1.65 times the standard deviation.
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4.3 Generalized Conditional Autoregressive Con-
ditional Heteroscedasticity

The Autoregressive Conditional Heteroscedastic (ARCH) process was intro-
duced by Engle (1982) [14]. This process allows for the change of conditional
volatility over time as a function of past errors.

The Generalized Autoregressive Conditional Heteroscedastic (GARCH)
process by Bollerslev (1986) [6] is the most popular and widely used sto-
chastic volatility measure and forecasting method.

The GARCH (p,q) process is discussed in section 4.4 below. It will be
shown that this discussion encompasses the ARCH process in a simple way.
The GARCH process is also the basis for many subsequent models.

4.4 GARCH(p,q)

The GARCH(p, q) process under conditionally normal, discrete time errors,
is defined by

&g ] .7:},_1 ~N (0, G‘f)
q P
o = ao+ Zai5f~i + Zﬁigg—i (4.4)
g1 =1

where p, ¢ are nonnegative integers, a;, J; are nonnegative real numbers for
every applicable i, 7 and g is a positive real.

For p,q =0, the GARCH process is simple white noise. For p =0, # 0
the process is an ARCH process. Thus, the GARCH process is to volatility
what the ARMA process is to the AR process, for means.

Any GARCH(p,q) process can be defined as a GARCH(1,1) process.
Define

0 =ag+ A(L)e? + B(L)o?
where for lag operator L,

A(L) = ia,—ﬂi
'&:1 |

B(L) = Y Gl
=1

4.4.1 Stationarity

Theorem 4.4.1 A GARCH (p,q) process is stationary, with (long-term)
variance

Elof] = =3 — 5
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foranyt ifand only if A1)+ B(1) < 1.
Proof. For any ¢
Elo}] = Elvarle | Feill
= E[E[& | Fii]]
since we assume that E [e; | Fi—1] = 0. It follows that
E[of] = E [¢]]

by the tower property of conditional expectation. Since z; is white noise, we

have that
var [eq] = E [e2] = 0?

for all ¢, where o2 is the long-term variance of &;. It follows directly then
that

Ee}] = E [e1-4]
and
E [crg‘] =E[o?_)]
The expected value of the GARCH (p,q) process

q P
2 2 2
o =ap+ E aiep_; + E :ﬁz’at—i
i—1 i=1

o? = E[a;‘;']

q P
= g+ ZaiE [5%-:'] + zﬁiE [Ug—i]
i=1 i=1

q P
= ag+ Zaiaz + Zﬂ,ﬂQ
i=1

=1
1t follows that

q P
a? (1 - Zai - Zﬂ,) =ag
=]

i=1
or
2 @q

- A=Yt a~3%,6)

For 02 to be finite it’s required that

q b
SRS S
FE=y] F==1

a
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4.4.2 Stylized Facts

In the financial literature four properties of returns series have been coined,
stylized facts. These stylized facts are volatility clustering, mean reversion,
excess kurtosis and the leverage effect. The leverage effect is discussed in
section 4.7.

A stationary GARCH process captures these stylized facts in the follow-
ing ways:

1. Volatility clustering is described in section 2.7.3 as strong autocorrela-
tion of squared returns. Thus if #?_, is high (low), then o7 will prob-
ably also be high (low). The long-term variance of a GARCH (p,q)
process was provided in theorem 4.4.1. The long-term variance of a
GARCH (1,1) process is

E[o?] = I"—-_C:EQTE = (4.5)

and
af =V{(1-a-p) +ae§_1 +ﬁa%,_1
equivalently,
or—V=a(l,-V)+p(ci-V)
Taking expected value yields
Elo}-V|Fia] = Ela(edy-V)+B (0}, ~V)|Fia

aF [6?_1 -V J'Et—z] + 4 (‘72—1 -V)
(@+P) (oi1 - V) (4.6)

il

since E [ey-1 | Fi—2] = 0 and Var[e;—1 | Fi2] = of_l. This equation
can be rewritten as

E o} | Fig]l =V +(a+p) (071 -V)

thus if 02 , is large (small) then it’s expected for o2 also to be large
(small).

2. Mean reversion is the gradual return of variance levels, after a shock,
to a long-term variance level. Equation 4.6 can be rewritten as

Elotx—VIR]=(a+P) E ol -V | F)
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By repeating this relationship yields
Elo? i~ V| F] = (a+p)f (o7 - V)
or
E[o}y | F) =V +(a+p) (o] - V) (4.7)

Since the GARCH process is stationary, a + 8 < 1. This means that
the second term of equation 4.7 tends to zero, as k tends to infinity.
Thus the expected value of the conditional variance tends to the long-
term variance level, V.

3. Excess kurtosis in returns series can be described as kurtosis, see sec-
tion 2.5.2, larger than that of the normal distribution. In theorem
4.4.1 above, we proved that for the GARCH (1, 1) process

Elf] = Elof]
ap
1—a-—-g

Bollerslev, see [6], proved that if 3a® + 2a3 + 8% < 1 the stationary
fourth moment of ¢ exists,

_ 3ad (1+a+p)
B[] = (1-a-—,£3)0(1—,82-—2a;3—3a2)

The stationary kurtosis is

_ Bl 3(-ror)
CE[2])? -5 -2a8-3a2

>3

thus the GARCH process is heavy-tailed (leptokurtic).

4.4.3 Estimation of GARCH Regression Model

This section focusses on the maximum likelihood estimation (MLE) of the
GARCH regression model. The GARCH model in equation 4.4 may be
written in terms of the following nonlinear regression model

e =yt — xtb
which is the means process of the error ¢;, which is conditionally normal

e | Fi-1~ N (0,07)
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where

0l = Zw

is the GARCH(p, g) process. The vector
7, = (Lel ,,... ,ef_q, o ... ,af_.p)

and parameter vector

1
w = (ag,al,...,aq,ﬁl,...,ﬁp)

Define © as a compact subspace of a Euclidean space, with @ = (b',w’) € ©.
Denote the true parameter values of by 0y, where 0y € int ©.

The likelihood function of ¢; is the pdf of the error process g, written in
terms of its parameters

T
0,03 =1] L /o2 (48)

1V 2no?

since the conditional mean is zero and the process follows GARCH variance.
There are T observations.

It’s computationally easier to take the In of equation 4.8. The loglikeli-
hood function is

T 2
(o, ag) = Z -% no? — %% -+ constants (4.9)
t=1 It

The constants will have no effect on later results, thus redefine

£l 1 2 16?
f@00) = Y ~smof-55 (4.10)
t=1

207
T
= ) k(8)
=1

where [; (8) is the likelihood function of observation ¢.
Differentiating {; (8) with respect to the variance parameters yields

6& _ 1 __280'? 1 9 9
% = 3% B 3o (o)

1 8of (&F 1
207 8w \ o}

the second derivative

ol (f:_?__ )Batz[ 1 80?] 1 o} 0o} e}

b~ \ ot B |27 8w | 2(g?)? Bw B oF

Ow
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where
30 Ohy_g
%% +Zﬁ, :

Differentiating I, (8) with respect to the mean parameters yields

%_5;mt+ 1 aat(—_t_“l)

ob  o? 2(0%)2 ob \ o?

the second derivative

ol —}—zx’—l 1 8080t i
obdy — oF Tt 2(p2)% Bb 9 \oF
1 oo (€} a1 a0
_2————(0.?)2&355-55* + (;?‘ -1 T -2'?‘-? Fb
where
80t q q 802

4.5 Integrated GARCH

The Integrated GARCH or I-GARCH process is defined as the standard
GARCH (p, q) process defined in equation 4.4 where a; + 3, = 1, thus if we
put 3, = A then

o} =+ (1 - A&l i+ Mop,

where &; | F;—1 ~ N (0,07) and clearly A € [0, 1].

From the stationary variance of the GARCH (1,1) process defined in
equation 4.5, it’s clear that the stationary variance of the I-GARCH process
doesn’t exists. I-GARCH processes are often encountered in foreign ex-
change and commodity markets.

When the constant term ap = 0 then the -GARCH process isan EWMA
process.

The I-GARCH process can however by strictly stationary, this result
follows from Nelson (see [18]). For the GARCH (1,1) process

2
0} = ap+oasi |+ B0k,
2
= ao+asi_j02_; +Pol,
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where ¢} | Fi—1 ~ N (0,1). Further

o} = ag+(ael_+P)ot

= ao+ (aei_; + ) (o + (aei_y + ) 07_5)
= o1+ (cef_1+8)) + (aei_; +B) (aeto + B) i,

t—1 4

= ao+ [1+)_[[(ast_; +8) | + ][ (ecti + B) o}
j=1

i=1 j=1

where 03 is the first conditional variance. Nelson proved that the process is
strictly stationary if

B [n(aef; +8)] <1

for every applicable i.

4.6 GARCH-in-Mean

The ARCH-in-Mean (GARCH-M) process was introduced by Engle, Lilien
& Robins in 1987. In this process the connection between returns and risk,
represented by AR and GARCH processes respectively, is set. Risk averse
investors are expected to demand higher returns on risky assets than on less
risky ones. The GARCH process in this model is therefore fixed to a risk
premium. This risk premium can be seen as the positive correlation between
current, return and conditional covariance.
An example of an GARCH-M process is

Y=o+ h1t-1+ ...+ Su_p+ g0, ) + &4 (4.11)

where the ¢-parameters are AR parameters and g is a function of a GARCH
process, o; and the risk premia, A. The function is mostly taken as the
identity or square root function of ¢; multiplied with A.

The GARCH-M process by Duan, discussed in chapter 6, is

1
Sg = Sgwl exXp (‘»“At - -2-0‘% -+ )\0‘5 -+ Eg) (412)

or

St 1
111'5%—_1'=T'At—~ é(l’%‘l‘)\ﬂ't-f-&?g

where, for an annual risk-free rate r and daily volatility measurements ¢,
At = 1/252, since we assume 252 trading days in a year.
GARCH-M process can be extended by any other GARCH process.
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4.7 Asymmetric GARCH and the Leverage Effect

The leverage effect was reviewed in section 2.7.4. The jest of the leverage
effect is: markets tend to react more volatile to negative information than to
positive information. Symmetric GARCH processes react equally to positive
and negative news.

Asymmetric GARCH processes have an extra parameter, denoted by ~
in this dissertation, that skew returns information to market reaction. Here
follow a few Asymmetric GARCH processes: ‘

4.7.1 Exponential GARCH

The Exponential GARCH (EGARCH) was introduced by Nelson (1991).
The EGARCH process is given by

1“0% =ap + By 1110'%-1 + B (lee-1| — v&e-1)

where 3,,v > 0.

The upside of EGARCH is that it generally fits empirical financial data
well, but the downside is that EGARCH has no analytic form for its term
structure.

4.7.2 Asymmetric GARCH

The Asymmetric GARCH (AGARCH) process is by Engle and Ng (1993).
The AGARCH process is as follows

0’% =g + (g1 ~ ’)’)2 -+ ﬁgtgwl

where ap > 0 and o, 3,7 > 0.

The parameters of the AGARCH process is easier to estimate than that
of the EGARCH process, and it possesses an analytical term structure.
4.7.3 Glosten, Jagannathan and Runkle GARCH

The Glosten, Jagannathan and Runkle GARCH (GJR) process (1993), is
named after its founders. The process is

0} = ag+ fo?_; + ac?_; + ymax (—¢;, 0)?

where v > 0.

4.8 Limitations of the GARCH Process

The GARCH processes have the following limitations:
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1. The GARCH processes perform best under stable market conditions.
This process often fails to capture highly unexpected shocks, like mar-
ket crashes. Except for the direct effect of a sudden shock, it may also
cause structural changes in the market.

2. It's often hard to decide which GARCH process fits empirical data the
best. There is no single GARCH process that can adequately model
all conditional volatility processes. The conditional volatility structure
of underlying assets also occasionally changes, which necessitates the
using a different process.

3. The GARCH processes presented here depends on normal innovations.
These processes often fail to fully capture the heavy tails observed in
return series. Student’s t-distribution and distributions like the Nor-
mal Inverse Gaussian distribution are often used as sources of innova-
tion.

4. Investment decisions mustn’t be solely based on the results of the
GARCH processes. Other sources of information and models must
also be used to make such decisions.
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Chapter 5

Risk-Neutral Valuation

5.1 Objectives!

The aim of this chapter is to provide essential background to continuous-
time finance concepts and the standard risk-neutral valuation framework,
which is the cornerstone of the Black-Scholes option pricing framework. The
Black-Scholes framework is the benchmark pricing method for options. In
this framework we assume constant volatility of stock returns which leads
to the helpful property of a complete market model.

Empirical evidence shows that the constant volatility assumption is gen-
erally incorrect. The GARCH option pricing model discussed in chapters
6 and 7 is an attempt to include stochastic volatility into the option pric-
ing framework, the price is that the market model is no longer complete.
Although volatility is generally stochastic, it is important to know the risk-
neutral valuation framework, since it is so widely used and because many of
the concepts are used in incomplete market models.

In this chapter only the bare skeleton of the risk-neutral valuation frame-
work is given. For more complete discussions see [25], [4], [32] or any of the
many other similar books.

An introduction to continuous time stochastic calculus is given in sec-
tion 5.2. The essential definitions of Brownian motion, martingales and Ito
processes are given. The proofs of the Tto formula, absolute continuous mea-
sures and equivalent measures, the Radon-Nikodym theorem and Girsanov’s
theorem are excluded.

Continuous-time finance concepts are briefly discussed in section 5.3.

Section 5.4 is the core section of this chapter. The risk-neutral valuation
framework is discussed under the assumption of constant volatility. Only the
proofs vital for a better understanding of the model investigated in chapters
6 and 7 are proved. Special attention is paid to the concept of the market
price of risk.

!Suggested reading: [4], [13], [17], [26] and [32].
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5.2 Essentials of Continuous-time Stochastic Cal-
culus

5.2.1 Brownian Motion

Definition 5.2.1 Brownian motion, Wy, is a real-valued stochastic process
satisfying the following conditions:

1. Continuous sample paths: t — W; P as.

2. Stationary increments: Wy, s — Wy has the same probability law for
any t € R varying and s € RY fized.

3. Independent increments: Wi s — Wy is independent of
Fi=0(Wy,u < t)
4. Wo =0 P a.s.
The probability law mentioned in point 2, will throughout this disserta-
tion be the Normal distribution with mean zero and variance s.

5.2.2 Martingales

Definition 5.2.2 In discrete time: An adapted process, (M;)icy, where I is
a countable index and E |M;| < oo, is called:

1. A martingale if
E(M, | Fs) = M, Pa.s.
foralls,t eI, s <{t.
2. A super-martingale if
E(M|Fs) <M, Pas.
foralls,tel, s<t.

Definition 5.2.3 In continuous time: An adapted process, (My)ier+, where
R* is the positive real numbers and, F |M;| < oo is called:

1. A martingale if
E[M;|Fs) =M, P a.s.
foralistel, s<t.
2. A super-martingale if
E[M|Fs] <My, Pas.
foralstel, s<t.
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5.2.3 Ito Process

Definition 5.2.4 A stochastic process, X;, is called an Ito process if it has
a.s. continuous paths and

T T
X, = Xo + / Alt,w)dt + / B(t,w)dW, (5.1)
0 0
where A(t,w) and B(t,w) are F; measurable,

T
/ A(t,w)|dt < 00 P as,
JO

and

T
E [ f B(t,w)%tt] <oo Pas.
[4]

X 18 also called the stock price process. In short hand notation
dX; = A(t,w)dt + B(t,w)dW;

Definition 5.2.5 A stochastic process, S, follows a geometric Brownian
motion if

ds; = Stu(t, w)dt + Sf,(!(t, w)de

5.2.4 Tto Formula (in 1-Dimension)

Definition 5.2.6 Let X; be an Ito process as defined in equation (5.1). For
the function

f(t,z) € C*([0,00) x R)

the Ito formula s given by

df = &f-dw af deLla f (dX.)? (5.2)
af  of 282 of
m+Aa + = B 2)dt+Ba —dW, (5.3)

In integral notation this is:

fi= fo+f( +Aaf+ Bﬁazf)dpr/ %d&’[/’t (5.4)
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5.2.5 Absolute Continuous

Definition 5.2.7 In our probability space (0, F, P), probability measure P
is said to be absolutely continuous with respect to P if

P(A)=0 = Pi(A)=0
for all A € F. This is sometimes denoted by
P << P

Theorem 5.2.8 Probability measure Py is absolutely continuous with re-

spect to P if and only if there exists an adapted random variable K such
that

PL(A) = / K (0)dP (5.5)
A
Proof. See Lamberton and Lapeyre [26]. m
Definition 5.2.9 The state price density is defined as

ar,
dP

thus from integral { 5.5 )
dP
P

Definition 5.2.10 In the probability space (2, F) two probability measures
Py and Py are equivalent if

Pi(A) =0 & Py(A) =0
for all A € F.( See Lamberion and Lapeyre [26])

5.2.6 Radon-Nikodym

Theorem 5.2.11 Let measure @@ be absolutely continuous with respect to
measure P. There then exists a random variable A > 0, such that

EPAl =1

and

Q(A) = /A dQ = fA AdP (5.6)

Jorall A€ F. A is P — a.s. unique. Conversely, if there exists a random
variable, A with the mentioned properties and @ is defined by equation 5.6,

then ) is a probability measure and () is absolutely continuous with respect
to P.

Proof. See [25]. =
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5.2.7 Risk-neutral Probability Measure

Definition 5.2.12 A probability measure, Q, is called a risk-neutral proba-
bility measure if

1. Q is equivalent to the “real world” measure P.

2. %’; = E¢ (gﬁt:].ﬂ) forallt,T € R™.

-
T

In this definition, B; is the deterministic price process of a risk-free asset,
where

B, = Boexp ( fo tr(s)ds)

The variable r(t) is the short rate.

5.2.8 Girsanov’s Theorem in One Dimension

Girsanov’s theorem is used to tramsform stochastic processes in terms of
their drift parameters. In option pricing, Girsanov’s theorem is used to find
a probability measure under which the risk-free rate adjusted stock price
process is a martingale.

Definition 5.2.13 A function f(s,t) € v(s,t) if
Ft,w):[0,00) x 2 =R
and the following holds:

1. (t,w) — f(t,w) is B x F-measurable, where B is the Borel sets on
[0, 00)

2. f(t,w) is adapted

3. E[fgf(t,w)zdt] < 00

Theorem 5.2.14 Girsanov’s theorem. Let X; € R be an Ito process, of the
form

X, = B (t,w) -+ O(t,w)dW;

with t <T < oo. Suppose that there exist a v(t,w)-process u(t,w) € R and
aft,w) € R such that

a(ta w)u(t’ “") = )3(}‘,, w) - O"(ta w)



s .
<

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA
CHAPTER 5. RISK-NEUTRAL VALUATION 53

Since we are only looking at the one dimensional case

(ﬂ(t: w) - a(t, w))
0, w)

u(t,w) =

We further assume that

EF [exp (é ,[0 ‘ u? (s,w) ds)} < 0o (5.7
Let

M; = exp (— ‘/Ot u (s, w)dW; — fot u? (s,w) ds) (5.8)
and

dQ = MpdP (5.9)

We then have that
t
W, =W, +f u(s,w)ds
0

is a Broumian motion with respect to Q. Xy in terms of W, is
dX; = a(t,w) + 6(t,w)dW,

M, is a martingale.
Proof. See Girsanov theorem II, Oksendal [27]. m

Remark 5.2.15 Result 5.9 is equivalent to
E [B] = EF [BMy)

for all Borel measurable sets B on C[0,T].

5.3 Continuous-time Finance Essentials

This section contains a short summary of vital continuous-time finance con-
cepts. For complete discussions on continuous-time finance see Bjork [4],
Lamberton and Lapeyre [26] and Steele [32].
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5.3.1 Self-financing

Definition 5.3.1 A trading strategy is called self-financing if the value of
the portfolio is due to the initial investment and gains and losses realized on
the subsequent investments. This means that no funds are added or with-
draum from the portfolio.

Theorem 5.3.2 Let ¢ = (H{, Ht) .,y be an adapted process of portfolio
weights satisfying T

T T
/ |H?|dt+/ Hldt < oo Pas.
0 0

Then the discounted value of portfolio V; (¢) = H?B,+H,S; namely, V; (¢) =
Vi (@) /B can be expressed for allt € [0,T] as

e t ~
U(6) =Vo(d) + [ Hudbu Qas
0
if and only if ¢ is a self-financing strategy.

Proof. The product of V; (¢) and with the bond process 3 yields

) = ¢)+/—dw ¢)+/0vs(¢)d—t+<m¢),ﬂ—t>

= W)+ [ @)+ [ Vi@ds
since the process E doesn’t have a stochastic term. Since we can express
Vi(¢) as
Vi (¢) = HYB, + H:S:
a change in V; (¢) can be expressed by
dV; (¢) = HYdp, + HydS,

thus

1

5, (@)

= Vo(é)+ / 7 (HPdp, + HydS:) + f (HB, + H.S;) dﬂit

i
= W (¢) + Hto (/ I—B—dﬂt +ﬂtdﬁt) + H; (-/0 ﬂlthdSt +HtStd,31t)

— 0 :Bt Ot
- ((»b) + Ht ,Bt + th,Bt

= Vo(d)+ thﬁ
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5.3.2 Admissible Trading Strategy

Definition 5.3.3 A irading strategy is admissible if it is self-financing and
if the corresponding discounted portfolio, V; is nonnegative and supycio ) Vi
is square integrable under the risk-neutral probability measure Q).

5.3.3 Attainable Claim
Definition 5.8.4 A claim is attainable if there exists an admissible trading
strategy replicating that claim.

5.3.4 Arbitrage Opportunity

Definition 5.3.5 An arbilrage opportunity is an admissible trading strat-
egy, such that the value of the portfolio at initialization, V (0) = 0 and
E[V(T)] >0.

5.3.5 Complete Market

The completeness of a market can be defined in terms of the risk-neutral
probability measure or in terms of the attainability of a contingent claim.

Definition 5.3.6 Under no arbitrage conditions, the market model is com-
plete if and only if every contingent claim is attainable.

Theorem 5.8.7 The market model is complete if and only if there exists a
unique risk-neutral probability measure.

Proof. See Pliska [28]. =

5.4 Risk-Neutral Valuation under Constant Vola-
tility

The aim of this section is to introduce the notion of risk-neutral valuation.
The process of risk-neutral valuation is as follows:

1. In section 5.4.1 a simple stock price process is evaluated. A solution
to this process is found and its distribution is discussed. The solution
is obtained by applying the Ito process.

2. The next step, in section 5.4.2, is to evaluate the discounted stock price
process. We get the discounted stock price process by discounting the
solution to the original process in step 1 and then utilizing the Ito
formula in reverse order.



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
el

CHAPTER 5. RISK-NEUTRAL VALUATION 56

3. This new process still has a trend. The so-called risk-neutral measure
and related Brownian process is derived with Girsanov’s theorem in
section 5.4.3.

4. A wide-class of options are priced under risk-neutral valuation in sec-
tion 5.4.4.

5.4.1 The Stock Price Process

It is generally assumed that stock prices follow geometric Brownian motion,
under the real world measure P,

ng - Sg[ldt + SgO’iin (5.10)

where 1 € R and Sp,0 € R*, W; is Brownian motion and the process is
defined on [0, 7.

A solution, S, to this equation can be found with the help of Ito’s
formula. Let f(t,z) = In(z). It follows from section 5.2.4 that f(t,r) €
C?%([0,00) x R). Fortunately, if we assume that S; € R*, we can define
f(t, 1) € C*(0,00) x R). From (5.4) we have®

din(S,) = Sitdst - %—1——0153
t
== 'SlT (Stpdt -+ StO‘de)
[4
11

—5 57 (Sepdt + Syod;)?
t

= updt+odW; — %azdt

= (;},—- %02) dt + adW,

which in integral notation is

In(S) = In(So)+ /; t (y-— %02) du + fﬂ W,
= In(So) + (ﬂ - %02) t+oW,; (5.11)

The solution, Sy, is

S; = Spexp ((,u - %02) t+ OM) (5.12)

*In this chapter the drift p, the variance ¢ and the risk-free interest rate r are all
defined in terms of the same time period for instance 1 year.
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Thus by assuming that the stock price follows the geometric Brownian
motion described in equation 5.10, we are also assuming that the stock price
process is lognormally distributed. There are ample empirical evidence to
support this assumption. This means that from equation 5.11

In(S;) ~ N (m(so) + (n - %(;2) t,o«%)

5.4.2 The Discounted Stock Price Process

The next aim is to find a probability measure under which S; = St/ B is
a martingale, called the risk-neutral probability measure. The discounted
process

S = So exp ((g -7 - %0'2) t+ a‘Wt) (5.13)

where By = €™ and r is the constant risk—frge rate of interest.
To get the stochastic process driving S; = Sie™™, we again use Ito’s
formula

df (t,8;) = dS;

d(Se™™)

—rSie” "t dt + e dS;

—pSiedt + e (Spudt + SiodWy)
(1 — 1) See™dt + e "' SpadW,

= (p—r) gtdt + S’sadi%

Il

It

thus
dS; = (u— 1) Sidt + 0 SdW;, (5.14)

In integral form this is

- 1 1 1
S;:Soﬁ-/ ﬁ"T——JQ)d‘u+f0qu
0 2 0

5.4.3 Girsanov’s Theorem Applied

It’s clear that the process S; has a trend, (i —7) S;. This trend causes S;

not to be a P-martingale (a martingale under probability measure P).
The risk-neutral probability measure is found by employing Girsanov’s

theorem. By using the notation of the Girsanov theorem in section 5.2.8,



o

8y

0 UNIVERSITY OF PRET
e YU

IVERSITEIT VAN PRETORIA
ORIA
NIBESITHI YA PRETORIA
CHAPTER 5. RISK-NEUTRAL VALUATION 58

we can define, for the process Sj,

(=75
oS
(p—r)

g

w(t,w) =

Note that «(f,w) = 0 (in the sense of theorem 5.2.14 ) and u ({,w) = u
is a finite scalar since we assumed that ¢ is strictly positive. The result of
this is that condition 5.7 is met and u € v (¢,w).

M, was defined in equation 5.8, as follows

M, = exp (-/;u(s,w)m -f:u? (s,w)ds)

In this case, for u(t,w) =u
M,; = exp (-uW}, - u2t)
The new measure, the risk-neutral probability measure can be defined as
d() = MrydP
‘We can define a new process
Wi = ut + W,
which is a (J- Brownian motion. The original process, S,, in terms of W, is
dS; = o5 dW; (5.15)

Remark 5.4.1 The scalar u(t,s) = Q_{;—_r) is also known as the market price

of risk. If p = r then the investor is called risk-neutral and dP = dQ. Under
the measure (} we price instruments as if they are risk-neutral.

5.4.4 Pricing Options under Constant Volatility

Theorem 5.4.2 The opiion price at time t defined by a nonnegative, F;-
measurable random variable h such that

E® [h,z] < 00
18 replicable and its value at time t is given by

Vi=e"T0EQ R | F (5.16)
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Proof. Lets assume there exists an admissible trading strategy ¢ =
(HY?, Hi)sejo,r) replicating the option. The value of the replicating portfolio
at time £ is

V, = HYB, + HS,

The discounted value of the process at time ¢ is

Vi = eV
= H?“{"‘Hf,gt

Since no new funds are added or removed from the replicating portfolio, the
portfolio is self-financing, by theorem 5.3.2 we can write the portfolio as

~ t ~
V(9) = Vo (9) + ]0 Hyd3,

by equation 5.15 we can write

o~ t ~ ~
¥ (9) = Vo (¢) + [ Hyo8udW,
0

By the assumption of an admissible trading strategy we have by theorem
5.3.3 proved that sup;e(p V2 is square integrable. It can then be proven
(see Lamberton and Lapeyre [26]) that if

E® [SUPLE[O,T} f’f] < 00

then

ER [ /O t (Huogu)2d1c] <oo (5.17)

Further, there exists a unique continuous mapping from the class of adapted
processes with property 5.17 to the space of continuous F; martingales on
[0,7]. We thus have that

V, = E% [VT | ft]
and hence
V= @ [T | :a} (5.18)

which is a square-integrable martingale.
We have assumed that there exists a portfolio replicating the option, an
admissible trading strategy can easily be found by the use of the martingale
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representation theorem (see Lamberton and Lapeyre [26]). By the mar-
tingale representation theorem there exists a square integrable martingale
under Q with respect to F; such that for every 0 < ¢t < T,

M, = E? [e”"Th | ft]

and that any such martingale is a stochastic integral with respect to ﬁf',
such that

t Bad
E° [e'“’Th. ] .ZF}] = My + [ T AWy
[i]

where 7, is adapted to F; and .
T
ER [/ (ns)2ds] < oo,
0

By letting Hy = M; — H,S; and H; = 1/ (652) we have found a self-
financing trading strategy. m

5.4.5 The Black-Scholes Formula and Implied Volatility

The Black-Scholes formula for a European put option is a solution to equa-
tion 5.16 when

h=(X - Sr),

Black and Scholes (1973) and Merton (1973) proved that this as a solution
to the Black-Scholes partial differential equation (pde). A martingale proof
was later discovered. For the derivation of the pde proof for this formula see
Black and Scholes [5], for a martingale proofs see Lamberton and Lapeyre
[26] and Steecle [32]. The Black-Scholes formula for a European put option
at time ¢ is

PBS = e " T-O KN (—dp) — SiN (—dy)
where

_In(So/X)+ (r+30%)T

d
' ovVT

and
dy =d; — VT

In this formula K is the strike price of the option and N (-) is the cumulative

normal distribution. The risk-free interest rate r and the variance o2 are
. both annualized.
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Volatility is the only parameter of the Black-Scholes formula that isn’t
directly observable. Implied volatility, o, is the solution to the following
problem

. | pBS
min |PP® (o) - P|

where PB5 (o) is the estimate of the put option as a function of implied
volatility and P is the market value of the put option at time ¢.



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

Part 111

Option pricing under the
Local Risk-Neutral Valuation
Relationship

62



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
W UNIVERSITEIT VAN PRETORIA
el

Chapter 6

Local Risk-Neutral Valuation

6.1 Introduction

One of the properties of Brownian motion is that equally spaced increments
are stationary, that is, it can be assumed that they are independently and
identically distributed. The vast majority of empirical studies show that
this is generally not the case.

Stochastic volatility in stock prices complicates the pricing of derivative
instruments. The assumption of a complete market model and therefore the
risk-neutral probability measure derived in chapter 5 no longer holds. This
is because we cannot completely hedge away the risk posed by stochastic
volatility.

Jin-Chuan Duan (1995) [10] defined a new measure, the local risk-neutral
probability measure. He showed that an economic agent maximizes its ex-
pected utility by using this measure. In this incomplete market, extra as-
sumptions are made about the consumer (its utility function) and the risk
premium demanded by the market for taking additional risk. Duan named
the properties of the measure, the local risk-neutral valuation relationship
(LRNVR).

In this chapter the GARCH, EGARCH and GJR-GARCH processes are
considered in the GARCH-M framework. The GARCH processes are in
discrete time, thus unlike the risk-neutral pricing framework which forms
the basis for Black-Scholes framework, the LRNVR is in discrete time.

In section 6.2, the continuous-time option pricing model discussed in
chapter 5 is converted into a discrete time model. The goal of this section is
to translate and compare some of the well-known continuous time finance
concepts into discrete time statistical concepts. For example the continuous
time concept of Brownian motion is converted in discrete time to that of
expected returns.

The GARCH-in-Mean model for the volatility of a discrete time stock
price process used by Duan for option pricing, is introduced in section 6.3.

63



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
)

CHAPTER 6. LOCAL RISK-NEUTRAL VALUATION 64

Utility functions and the risk aversion of economic agents are discussed
in section 6.4. A general consumption-investment strategy is maximized in
section 6.5.

The LRNVR is defined in section 6.6 after which the local risk-neutral
measure is derived in section 6.7. The stock price process under the new
measure is discussed in section 6.8.

6.2 The Stock Price Process in Discrete Time

Recall the stock price process of section 5.13 with solution

S, = So exp [(p — éo‘z) ¢ +0Wt]

In discrete time, with equally spaced observations,

~ i 1
§i1 = Soexp (p - §02) < (t-1) +awz_1]

which gives

2

Sg = 5}..1 exp | — (u - -1-0'2) % (t o 1) . O'Wg._l]

At time £, the value of

~

S5 = Soexp[(p—-%az)t-}»aif%]

= Si_iexp [—- (# - %0“2) (t—-1)- 0W3~1]

X exp [(y — %02) t+ aWt]

Wy =W~ Witpi~ N (0, 1)

Since

let
et Fir X N (0,1)

where £; is F;_.; measurable.
The one period ahead stock price is defined by

. - 1
S; = ;1 exp (p - 502 + oet) (6.1)
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where
P
et} Fi-1 ~ N (0,1)

If we let

where 7 is the risk-free rate of interest, equation 6.1 would become
- 1,
Sy = Si—1exp r———2-0' + Ao 4 o5y

In the discrete case where the information on time ¢ — 1 is known, we
could just as well have considered a volatility process which is constant
between time t — 1 and £.

6.3 The Stock Price Model under certain GARCH
Volatility

Jin-Chuan Duan proposed the following conditional, lognormally distributed
stock price process, with stochastic volatility, under the P measure

St = S¢-1 exp (’I'*At - %0’? -+ Aot -+ 0’385) (62)
where
P
et|Fi-1 ~ N (0,1)

is the conditional error process, o7 is the conditional variance (GARCH
process) and A! the unit risk premium. ;. is the o-algebra of information
up to time ¢t. The yearly risk-free rate of return is r*. Henceforth define r
over period At, the same time period over which the conditional variance is
taken. From this point on the period is daily.

! A possible interpretation of the unit risk premium follows from section 6.2 which deals
with the market price of risk. Define the risk premium as

Ao BT
a

where o is the long term or unconditional standard deviation of the series {X;}.We can
simplify the term with the risk premium from equation 6.3 to get

- Ot
Nog={p—~1r)—.
e={p-r)—
{zz — v} can be seen as a fixed (positive} premium. 2“0 incresses as the predicted condi-
tional volatility oy increases over the long term volatility . The economic interpretation
is that the market agent demands a higher premium as the expected volatility increases.
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The conditional expected rate of return is defined as

S 1
In—— = r-— Z0% 4 Aoy + 04ey (6.3)
St—1 2
~ N (’r - %a? + )\ag,af)

This is derived by transforming equation 6.2.

The GARCH option pricing model prices options under conditional het-
eroscedasticity. This means that conditional variance is allowed to change
over time while keeping unconditional variance constant. In this disserta-
tion, options whose variance follows (vanilla) GARCH, GJR-GARCH and
EGARCH process will be investigated. The main focus will be on the
GARCH(p, q) process and specifically GARCH(1, 1) process.

The GARCH(p, q) conditional variance process is

g P
2 2 2
0y = 0o+ E :aigt-i'i' E Bioi;
i=1 i=1

where ap > 0 and o, §; > 0 for all applicable numbers i. Notice that 07

is predictable at time ¢ — 1.
The GJR-GARCH variance process is

0? = ap+ Bo?_; +ae?_| +ymax (-—f-:t,())2

where v > 0.
The EGARCH variance process is

Ino? = ap+ By Inor ) + By (lee—1] — ver—1)

where y,v > 0.

6.4 Consumer Utility Essentials
6.4.1 Utility Functions

The satisfaction (utility) an economic agent gets from consumption can often
not be described on a monetary scale., A utility function represents an
economic agent’s welfare from consumption.

In this dissertation we assume that utility is measurable and possible to
represent in a function. This function is called a (cardinal) utility function.

Define the utility function by
u(z) : Rt - R*
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that is
« (monetary cost of consumption) = “welfare” from that consumption
It is generally assumed that a utility function has the following three prop-
erties:
1. u(x) is twice differentiable
2. u(x) is an increasing function of z, v’ (z) > 0
3. u(z) is a concave fuuction of z, v’ (z) < 0.

Property 2 is due to the fact that an economic agent prefers to con-
sume more than less. Property 3 can be interpreted in terms of additional
consumption. The utility that an economic agent gains from additional
consumption g, in excess of an existing consumption =,

u(z+g) —ulz) <ulg)

Each economic agent has its own unique preferences and thus utility func-
tion.

6.4.2 Risk Aversion
Absolute Risk Aversion

For a given utility function u(z), in continuous time, we can associate an
absolute risk aversion function defined by

R(z) ==& _ »%111 o () (6.4a)
Properties 2 and 3 of section 6.4.1 insures that R (z) > 0 for all . The bigger
R(z) is, the less risk the econoniic agent is willing to take for additional
consumption. The discrete time version of equation 6.4a

_Inu’ (z¢) —Inv/ (1)
— L1

'B’ :L‘g)
In e

R(z) =

Ty — Ty—1
Relative Risk Aversion

The relative risk aversion for a utility function u (z) is defined by

r(z) = a:~:z:=-”(a')
@ = 2R(@) =~

df; Inv (z)
P 4y
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The discrete time risk aversion function is

Flz) = _Inv (z¢) — Ino (21-4) N Inz, — Inzeq
Tt — Lg—1 T — T
Inv (x;) — Inv (2;_4)
Inz; —Inzeq
w (z4)
_,_ln u' (1)

T
In o

6.5 A General Consumption-Investment Strategy

Consider an investor with the following discrete time consumption-invest-
ment plan: The investor maximizes its differentiable utility function, u(z) :
R* — R*, at any point in time ¢ — 1 by either consuming, C;.; € R* or
by investing, H;_, € R, in a portfolio with random payoff §; € R* at time
t. At time £ the investor again has the same choice between consumption
and investment from the payoff from time t — 1. Like most investors, this
investor gets more satisfaction out of consuming immediately than waiting
for the next period, hence define the impatience factor p € R. At timef—1
this plan can be written as

max B [u(Ci—1) + exp (—p) u (Ct) | Fi] (6.5)
subject to

v = Cp1+ Hp-15t-1 (6.6)

Hi 15 = Ci+ HS (6.7)

v is the payoff of the investment made at time ¢ — 2. Take note that at time
t — 1 the only choices this investor make is to consume now or invest for one
period ahead, thus the expected utility of consumption of periods after time
t isn’t of concern. Since Cy_.; is predictable at time ¢ — 1 problem (6.5) can
be rewritten as

max t (Ce-1) + exp (—p) B [u(C) | Fe-1] (6.8)

The aim here is to maximize utility in terms of consumption and invest-
ment. From equations (6.6) and (6.7) consumption in subject (6.8) can be
rewritten in terms of investment as

max u (v e Ht_.lst._l) + exp (-—p) EP [u (Hg...lSt - Hgst) ‘ .7:5._1] (69)



vl

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 6. LOCAL RISK-NEUTRAI VALUATION 69

If we then maximize problem (6.9) in terms of H;_; we get

a
0 = 8Ht__ ’lt(?)*H{,_ng._l)
a
8H_ = exp (—p) BY [u(H1-1S; — HiSy) | Fi-)

= =S (v—H;15)
+exp (—p) EF [Spu! (Hy—1S — HySe) | Fer]

which by further simplification and equations (6.6) and (6.7) yield

u (Cy)

Si1 = B [exp 2 (o)

5y | Fto1 ] (6.10)
Thus the price of the portfolio at time ¢ —~ 1 is written in terms of the ex-

pected value of the economic agent’s utility, its impatience and the expected
future portfolio value.

6.6 The Local Risk-Neutral Valuation Relation-
ship

The conveutional risk-neutral valuation doesn’t accommodate heteroscedas-
ticity of stock returns. The Local Risk-neutral Valuation Relationship
(LRNVR) is a way to generalize risk-neutral valuation to accommodate het-
eroscedasticity.

Definition 6.6.1 (Q,F, P). A probability measure ) is said to be a local
risk-neutral probability measure if

1. @ 1is equivalent to measure P

2, EQ[ln( )m 1]__;« for all t € R*

3. Va?Q[ln( )1 Fie] = Var® [ (8 )m-lj P as.

Remark 6.6.2 Condition 1 is the same as in 5.2.7. Condition 2 is also
similar but only defined over one period. The expected return doesn’t locally
depend on preferences. The one period conditional variance of the returns
are invariant almost surely under the equivalent measures.

The rest of this chapter focuses on the possible characteristics of an

economic agent and the distribution of returns for which the LRNVR will
hold.
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6.7 The Local Risk-Neutral Probability Measure

Theorem 6.7.1 Let a process Y; be such that Yy | Fi— E is normally
distributed with constant mean and variance under the P-measure. Define

Q@ as

g=1

T
dQ = exp ((r—p)T+ }:n) dP

then () is a measure and is equivalent to P.
Proof. Measure. () is a measure by Corollary 4.9 of Bartle [3], since

T
exp ((r“-,o)TJr ZK,)

g=1

is a nonnegative Fy_1 measurable function from  to R.
Equivalence. Let A € F be a set such that

P{4)=0
Then
P(A) = 0

o /dP::/IAsz()
A Q

where 14 is a characteristic function for A, I4 is a measurable and nonneg-
ative function.

LIAszOﬁIA=G P —a.s.

This means that
I{w)=0

for allw € A= O\M where P(M) =0. This holds if and only if
1) f (@) =0

Jor allw € A = Q\M where P(M) = 0. f(w) is a measurable positive
continuous function from Q to R*. The product of real measurable functions
faly is also measurable. This is the same as

fIa=0 P—a.s.
It is also equivalent to [3]

/Q faladP = /A fdpP
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It is clear that
) T
J(w) =exp (('r ~ p)T+ZYs(w))
3=1

is a nonnegative, measurable continuous function from Qo R (Y, : Q@ - R
for every s).

flwy=0

if and only if Yy (w) = —oo for any s. Fortunately P {Y; = —oco} = 0 since
Y, is normal.

Thus
P(A) =0
& /IAdPZO
! T
& /exp ((7'-p)T+Z}’;(w)) IqdP =0
@ 3=1
< Q(A)=0

Thus the measure () is equivalent to measure P. W
The measure ¢} isn’t, in general, a probability measure. In the next
theorem conditions under which Q is a probability measure will be defined
and a desirable property of @ will be derived.
Theorem 6.7.2 If
Si-1 = EP [Siexp(—p+ V) | Fir (6.11)
then.
1. Q is a probability measure
2. If W is F; measurable then
E? Wy | Fooa] = EF Wiexp ((r — p) + Y2) | Fii]
Proof. From the definition of Q)
T
d@Q = exp (('r—-p)T+ZYQ) dpP

s=1
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In integral notation

LdQ = ~/Qe:ecp((7'-—p)TJrXT:YS,)dP

g=1
i T
= EP Lexp ((‘r -0)T+ ZK,)]
- a;—;l
= E" |exp ((r -p)T+ZYs) lfo]
L s=1

g==1

r T-1
= EF Lexp ((T~p) (T ~1) +zYs) exp(r—p+Yr) | fO}

= P [ellr=a)T-DIEI5 V) o P [op4¥r | ] | fo]

This last step is due to the tower property of conditional expectation. As-
sumption 6.11 states that

EP [exp(—p+ Y1) St | Fie1] = St—1
thus

EP lexp(—p + Yr) | Fr-1] = exp (—r) (6.12)
for a risk-free asset. The result is that

-1
fdQ = EF [exp (('r —-p)(T—-1)+ Z Ys) exp (r)exp(—r) | .770]

a=1

T-1
= EF [exp (('r'—p) (T-1)+ ZYs) I fo}
§=1

The tower property can again be invoked and an argument similar to 6.12
can be derived.

[ = wP[le-Pr DIt e [doen | 77 | 7
JQ
T-2

= EP {exp ((«p——p)(T—‘Z)‘{-ZYs) [.7:0]

8g=x1

This can be repeated until we have, at filtration Fyg,

/QdQ=E'°[exx>((r~p)+iﬁ){f01=1
Thus
Q) =1
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with this property, the measure @ is a probability measure. We also have
that

Q) =EF[exp((r—p)+ Y1) =1
it s clear that

T
exp ((r-—p)Tﬂ-Zl’;) >0

g=1

and we proved in theorem 6.7.1 that Q) 4s equivelent to P. The Radon-
Nikodym theorem can be invoked thus

T
exp ((r~p>T+Zn)

a=1

is P — a.s. unique and for any F; measurable set Wy,
EQ W, | Four) = EP Wy exp ((r - p) + Y3) | i1
|
Theorem 6.7.3 If
Si-1=EP [exp(—p+ ¥2) 5; | Fi1l
then

1. In (%) | Fi—1 2 normal

2. E? [S.:S{—l- Ift-—l] =e" forallt € R

3. Var® [ln (g%) Ifg_l] = Varf [ln (fffi—) i}}_l] P a.s.

Proof. Lemma 2.
From theorem 6.7.2 we have

S,
E@ {"S—i; l fsa]

= EF [—'%t—l- exp((r—p)+Y:) | ft-1]

= B [Siexp(=p+Y) | Fiui]
t-1

:er

Proof of lemmas 1 and 3.
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In theorem 6.7.2 we proved that
B2 Wy | Fio1] = B Wrexp ((r — p) + Y2) | Fii]

for all F; measurable sets Wy. If Wy is Fy—measurable, so is W for all
¢ € R. From theorem 6.7.2 we have that

ER[Sf| Fii]l = EF [ng((’-p)ﬂ'}) | Fi- 1]

then
S [ S¢ AT
i) = g
EQ [ﬁcln;s:si-l- ‘f.t——l] = EP -ecln —g;s-_'_“l-e((r—p)%»l’t) l ﬁw{‘
EQ [CCX': l}?ﬁ—l] = E’P ~€CX‘6((T“P)+Y;) i }'t-ul]
if we define
5
Xi=In 5

Throughout this chapter there’s been assumed that X; | Fi—1 is normally
distributed under P, say

Xt | Feer ~ N (g, 07)

In theorem 6.7.1 we assumed that Y; is also conditionally normal. Y; can
thus be written in terms of X, a constant o and another random variable
with zero mean Uy, which is independent of Xy. Then

Yi=a+8X:+U;
with B € R. Thus
E@ [eCX' | Fo-1]
= EP [ecxte((r—p)m) l y_-t__l]
= EP [ecXt+§Xg+&+Uz+(‘r-—p} | fz_l]
= TP [Nl 7] (6.13)
The joint variance of (c+ B) X; and U under P is

var ((c+ ) X; + Up) = (c+ B)* v} + EP [UF]
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since U is of zero mean. By the moment generating function

EP [e(cw)xtwi | Foe 1]

(e tBY+H((c+8)o3+BF [UF])
he(cHBI+ 5 (2421 )2+ L EP U7
e3Pt S P [UF] 4 §eof+e(t507)

I

Then equation 6.13 becomes
EQ [ecx‘ I ft-—l] = e[(”“{?)‘{“’%EP[U?Ifg,1]+p¢§+ﬂzv?} 'Y

e %c2v§+c(p¢+6v?)]
This equation holds for all c € R, If we let ¢ = O then
1 = E9Q|Fid]

= =P+ BP[UR|Fi ] +u, B48%02
so we are left with
B9 [eCX‘ lf"t——l] — 3P +e(p+B0F)

If we let ¢ = 1, then by the form of the answer of a moment generating
function,

S
X;=In (:g-tj—l) | Fe—1 2 N (ﬂg +ﬂ”¢2avt2)

Which proves 1. The conditional variance under P of X is also o2 thus
lemma 3 is also proved. ®

Theorem 6.7.4 An economic agent who’s an expected utility mazimizer
and whose utility funclion is separable and additive is a LRNVR investor
under the following conditions:

1. The utility function is of constant relative risk aversion and the changes
in the logarithm of the aggregate consumption are conditionally nor-
mally distributed with constant mean and variance under the P mea-
sure

2. The utility function is of constant absolute risk aversion and the changes
in the logarithm of the aggregate consumption are conditionally nor-
mally distributed with constant mean and variance under the P mea-
sure

3. The utility function is linear.
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The local risk-neutral measure is

—treayr U (C)
= o= r=p)T __\ME)
dQ) = e T C¢—1)dP

The implied interest rate is assumed constant.
Proof.

1. From the discussion on the utility function and risk aversion it is pos-
sible to define conditions 1 to 3: ‘

(a) Condition 1: A utility function of constant relative risk aversion

is defined by
A = _dan' ) L dlnC
1= dC dC
InU' (Cy) — U’ (Cy—1)
B lnCt —IHCL_I

hlU’(Cg)-—lllU’(Cg_;[) = (—Al)(lnC?;——lnC?t-Q
UG\ _ (yymf
m(—-——U, (CH)) — (=) ( ct..l) (6.14)

Since we assume that In(Cy/Ci—1) is normally distributed with
constant mean and variance under P, In (U’ (Cy) /U’ (Ci-1)) is
also normal with constant mean and variance.

(b) Condition 2: A ulility function of constant absolute risk aver-
sion is defined by

A - _diU(C)
2= dC
_ __ln U (Ce) - InU (Cy—y)
Ci—Ciy

thus
In Ui (C&) - In U’ (Ct—l) = (——/\2) (Cg - thl)
In (ﬁ%) = (=2)(Ce—Cin)

By the assumption that Cy — Cy—y is normally distributed with
constant mean and wvariance under P, In (U’ (C}) /U (Ci-1)) is
also normal with constant mean and variance.

(¢) Condition 3: A linear utility function is defined by
U(C)=aCi+¢
thus
U(C)=a
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and
U (Cy) —1
U (Ci-1) -

The ratie of marginal utilities

U(C)\ _ P
m(U,(Ct"l))_o N (0,0)

From dll three conditions it is clear that In (%%) is normal
with constant mean and variance.
2. In section 6.5 we saw that under the P—measure
Si-1 = EP[ " '(g?))sz | Ft-1 ]
= EP [e"’“”(ﬁé%) S |~7:t-—1]
= EP[e P8, | Fiuil (6.15)

where Y¥; = In ( " ’G?tl))' Y:, as mentioned, is normally distributed

under conditions I to 3. If we define Q@ as

dQ = r—AT+EL Yo gp

then from theorem 6.7.1, Q is a measure which is equivalent to P.
From theorem 6.7.2 we see that Q is a probabilily measure and

FR (W, | Fitl = BV [Wier 2T+ | 7y

for any Wy which is Fy measurable. Another resull from equation 6.15
stated in theorem 6.7.3 is that

(a) In (g%) | Fes 2 normal
(b) ER [ S [st | Fiy ] " forallt € R*
(c) Var? [ln (g;sf;) l.ﬂ_l] =Var? [ln (g?f_-l-) lfg..l] P a.s.

3. Thus for an economic agent who’s an expected utility mazimizer, whose
utslity function is separable, additive and fulfills one of the three stated
conditions, the Local risk-neutral Valuation Relationship also holds.
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6.8 The Stock Price Process under LRNVR

In this section the stock price process under the LRNVR is derived.

Theorem 6.8.1 Under the Q — measure, implied by the LRNVR,

St
St-1

In =7 - %0? +&,04

where ‘
Q
&y Fi—1 ~ N (0,1)

and

q r
0';“’ = g + Zai (&t—-z‘ — )\0’;..;‘)2 + Zﬁ,—o’%_i (616)
=1

g:=1 7

Note that the parameters T and t in this context are in terms of time i.e.
fractions with the days of the year as the denominator, not as the discrete
index. That is, for 63 days in a 252 day year t = 0.25.

Proof, As proved in theorem 6.7.8, In E’Sf—‘-[ft_.l is normally distributed
under measure (. It can thus be written in terms of a deterministic and
random. variable

Sy

In =uv+& (6.17)
Si—1

under Q. The random variable is obviously normal with mean zero and vari-
ance the same of that of In Ts%j under Q. It will be proved that

1
1. w=r—io0?

2. "% = og + Zg=1 oy (gt-i - A"1’t—i)2 + Z?xx 5&03—5

Proof of 1:
From equation 6.17

St o e’Ut‘H’tfg
St—1

o] - sl
= eME9 [ec‘f‘ 'Ft—l]

then by the moment generating function for an normally distributed random
variable we have

lygr S,
E9 [SStl 1Ft~1] — etV Q[]ngﬁlﬁ-l]EQ [1F-1]
b
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Since
S, S
Q 2t - P 2t
Var []n (St-—l) lft_.1] Var [ln (St-l) I]‘}_{l
= o} P-as.

from theorem 6.7.3 we can write

St
| St—1

E® {ft—q:‘ = "+l

It was also proved in theorem 6.7.3 that

S
| Si-1

EQ

!]:t—l] =e"
thus
1,
v¢+-2-0£ =7

V=T — %af
Proof of 2.
Recall the original stock price process with GARCH volatility under the
P measure, equation 6.2,

o 1
ln—S—t—_—l-=r+Aag-§af+st

and the process implied by proof 1 above under measure — @

S; 1
hl“é;: =‘l‘-—-2-0'%+§t

Again using the result

Var® [ln (*:S}E-) lft—l] = Var® [hl ( % ) lfi-ﬁ] P-as
Sg...l St-—l

from theorem 6.7.3 we can write

1 1.
r—l—z\crg—éog—!—et:r—:z—orf—{—{t

thus
Substituting this result into

St 1 2
In -t — -
ns,i-1 r+ Aoy 50t + &t
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yields
St - 1 2
h’lg:l- =7 - _2'0-t ‘!"ft

and into the GARCH process, yields
. q , &
or=an+ Yo (§i — ATims) + Y Biot; (6.18)
i=1 i=1

under the () measure. W
The equivalent GJR-GARCH process under the ¢} measure is
2 2
o7 =+ Pos_y +a (€ — Aop1)” +ymax (—€,_1 + Aoy—1,0)

where v > 0.
The EGARCH variance process under the ¢ measure is

ln 0’? =g+ 3 lnaf_l + Gy (Ic‘;}ﬁl - )«n_ll - ({;“t_l - /\Ut—l))

where 35,y > 0.

Theorem 6.8.1 can easily be proved for the above two GARCH processes
by substituting equation 6.18 with the respective process and replacing the
P variable &, with the Q) variable £,_; — Aoy—;.

Corollary 6.8.2 Theorem 6.8.1 vmplies that under the QQ measure

T T
1
ST::Stexp((T-—t)xr—-é Yoot > 5,,) (6.19)
s=t+1 s=t+1
Proof. From theorem 6.8.1 we have that
Sy 1
lIl—S-t-: =7 — 50? +£t

for every t € R under Q. Thus

St L S,
In— = In
St s:zh:‘-l Ss—l
T
1
= Z Uil 563 +€s
s=f4+1
1 I T
. 2
= r(T~1)-3 S A+ > & (6.20)

§=t+1 g=i-+1
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which means that

T T
1
5r :Sgexp((T—t)r-— LS ot Y gs)
s=t+1 8=t-+1

by taking exponents on both sides of equation 6.20. =
Corollary 6.8.3 The discounted process ¢~ ™S, is a martingale under the

@ measure.
Proof. Corollary 6.8.2 is equivalent to

1
St = Sp—1exp (r — -2—02 + 5,«,)
thus the conditional expected value of €™ ™5; is
E® [exp (—rt) S¢ | Fy-1
1 B
= FE9 [&;4 exp (—rt) exp (r — §a§ + 55) | .?},_1}
1
= Spjexp(—r(t—1))E? [exp (m§a§ + ft) | .?:t...1]
= Spyexp(—r(t—1))
because &,|F¢—1 2N (O, og) and by the moment generating function
1
E? [exp (&) | Fo-1] = exp 507

which completes the proof. m
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Chapter 7

GARCH Option Pricing and
Hedging

7.1 Introduction

This chapter builds on the results of chapter 6. European option on stocks
with GARCH volatility is priced under the LRNVR. The delta hedge for
such options is also derived.

Delta hedging is defined in Hull [23] as a hedging scheme that is designed
to make the price of a portfolio of derivatives insensitive to small changes in
the price of the underlying.

In the last section some of the properties of the most widely used GARCH
process, the GARCH(1, 1) process is discussed.

7.2 Option Pricing under the LRNVR

The stock price process under LRNVR was discussed in the previous chapter.
The machinery to model stocks with GARCH volatility can also be adapted
to price European options.

Theorem 7.2.1 GARCH option price. The price of a Furopean call option
on a non-diidend paying stock, S, expiring at T under LRNVR at time ¢
s

CF = T EQ [max(Sy — K), | Fii]

where max (r), is the maximum between z and 0. Note that the pa-
rameters T' and ¢ in this context is in terms of time i.e. fractions of with
the days of the year as the denominator, not as the discrete position of a
variable or element of a process.

Proof. See theorem 5.4.2, since e~™8; is a martingale under the Q
measure. W
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Theorem 7.2.2 Delta hedge under LRNVR. The delta hedge for a stock
with a European call option is

Af = e~ (T-trgQ [—"1 (Sp> K] lﬁ——l}

where 11g,.> k| s an indicator function and K the ezercise price of the option.
Proof. From corollary 6.8.2

T
ST—Stexp((T 15)7'—l Z 0s+ Z Es)

s:t+1 s=t+1
define

Yir=(T-t)r—3 S ot Y6,

3—t+1 #=t+1

then
E?[S7] = E? [Syexp (Yir)]

The GARCH option price for a Furopean option proved in theorem 7.2.1
now is

Czc (St) = g-(T-‘t)TEQ [max (Steyt»ff' i K)+ l ]:t-l]

The delta hedge is the first partial derivative of the option price with respect
to the underlying asset price. The strategy ts to approximale this derivative
with the function CC. For an arbitrary h > 0

CF (S¢+h) — OF (S0)
= ~T-OrpQ [max ((5: + h) &eT — K)+
- max (Stey"'r - K)+ ] fg_.l]

oD
- e-(T—t)r/ max (S, + h) e — K), (7.1)
—00
—max (Ste¥ ~ K)  dF (y | )

where F (y | Ft) is the cdf of Vi under Q. With an indicator function we
can express the mazx function

max ((S; + h) €T — K) , = ((S; + k) e T - K) L (g e )T — K0y

Consider that h > 0 then

(St +h)e''T —K >0
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can be rewrilten as

K

Yt,'I‘ T —

¢ (S: + h)

K
= IneT >n——v

Yor = lne®®>Inremms
stmilarly

ST — K >0

can be rewritien as
, K
Yir=1In T >In—.
S;

Equation 7.1 then becomes

00
e-—(T—t)r/ (Se+h)e! — KdF (y| Ft)

In 55w
¢
OO
—e~ Tt Sie? — KdF (y | Ft)
In '5—{
in £
= ¢ T-0r / t SV — KdF (y | F)
In 5755
OQ
e~ (T—tr / heYdF (y | Ft).
In '(-.‘S—I-{l-—hf
|3 4
Since
n £
lime— (Tt / St~ KdF(y|F) =0
h—Q 1o edS.
[GED)]
the
i O (8e+ 1) = CE (S)
h—0 h
o0
- [7 a5
In é%

= e TE? [Vs,5 k]

84

This argument could similarly have been proven from the left for h < 0.

Thus
dCy

a5 - o

= e_(T_t)rEQ [3”1[8T>K1]'

This completes the proof. ®
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The delta hedge of a stock and a European put option can be derived
similarly. The delta hedge is

A —6*(Tﬁz)rEQ [—1 K>8r] lft.. ]

7.3 Some Properties of the GARCH(1,1) Process
under LRNVR

Theorem 7.3.1 Under measure ) innovations of the GARCH process is
x% (1) distributed with non-centrality parameter \.
Proof. From theorem 6.8.1 we have

or=ag+a(f - )\Gt-l)z +Bo;_y
where

€lFe1 ~ N (0,07)
thus

—g-t'lft_l ~ N(0,1)
gy

The innovations of the GARCH process under LRNVR is

2
af = og+a(by— o) +Baiy
&- 2
= og+acr_, (-—t;- - /\) + Bo?_,
01

then

lagmao_gz .g_t“_l__,\ ?

o af_,l o O¢.1
where

g, N

which completes the proof. =

Theorem 7.3.2 Stationary (unconditional) variance of a GARCH process.
If

W< (luz_ﬂ)

under probability measure Q then
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1. The stationary variance of &,

g
var = >
€)=1z (1+A)a-3
2. &, is leptokurtic
3. The
—2A
cov? (§.§_’03+1> — 02005
oy 1-(14X3)a-p

Proof. Proof of part 1.
Under the @ probability measure

2
o} = ata (€1~ /\f’t—-I) +foi_
2
= ay+aoy (étl' - )*) +fot,
Tt-1
let
7 = é‘é - A
14
then
o} = ao+aol 7+ Pl

= a0+t (azf_| +B)

Using this relationship

or ) =ao+07 o (a2, + B)

thus
07 = ap+ (aw+ol,(al, +8)) (azt_, +B)
ag + ap (O-‘zf—l +8) + o7 5 (azzg—2 +B) (O‘zf?—l + B)
and further
o7 = ag+og(azt ; +p)

+ (a0 + 073 (azf 3+ B)) (azt_y + B) (azf_, +8)
= og-+ ap (012752_1 + ,6) + ag ((XZE_Q + ;B) (C‘tz?__l + ﬂ)
+07_3 (azt_3+ B) (azi_y + B) (azt., + B)

2 &k 3
= a0 |1+ Y T] (st i+ B)| + 025 ][] (edfi+A)
k=1

k=11i=1

86
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Then by substituting previous equations for the variance from time t — 1
to time 0 we obtain

-1 k
of = ao |1+ [[(edi+8)|+0} II (azi_i+ B) (7.2)
k=1 3==1
t—1
= ao ) Gr+0iG: (7.3)
k=0
where
k
Gy, = H (az?_i + ,3) (7.4)
=1
Gr—-1 (azt_y + B)
Go = 1

From theorem 7.3.1 and the discussion on the chi-square distribution in sec-
tion 2.5.3

2
zfz(—f;—i~—/\)

18 chi-square distributed with one degree of freedom and non-centrality para-
meter A, since

2t | Fi—1 R N (0,0‘%)

Thus from the tower property of conditional expectation and theorem 2.5.8
ER[ER [} | Fii] | Fo] = E° [} | Fo)
1+ a2
Now from equation 7.4 fort >k

k

Gk = H (CYZ?_,i + ﬁ)

i=1

and the conditional expected value of Gy,

E2[Gy | Fo] = [H (ez_i +B) m}

Since z and z, are independently distributed for all applicable r,s. 22 and

22 are also independent (see theorem 2.4.9 ). This allows us to write

cov (azt; + Bazi_;j+B) =0
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which follows from theorem 2.4.9 such that

A
EQ[Gy | Fo] = J]E? [(azti+B) | Fo]

i=1

k
= JJe(t+2)+8
i=1

= [a(t+2) +4]"

Using this result we can write the conditional expectation of equation 7.2

E° [cr';" | Fol
-1 k ‘ ¢ ,
_ [ao [1 ST s +m} +3]] (ot ) | 5o
k=11i=1 k=1

I

aogf[a(l+,\2)+ﬂ]k+ag [ (1+2%) + 8]

Using the condition that

kl)\1<1/(i:_';2£l

the term

a(1+,\2)+ﬂ<a(l+g—:—z:-@)+ﬁ=l

The stationary variance is the imit of t to infinite of E [0%] . By again using
the tower property of conditional expectation

E° [EQ [0% | .70]] = E@ [o*f]

oG
. k
B P = o) [e(1+ ) 4
g

a(1+A%) +8

Proof of part 2.

We need to prove that E9 [521] >3 (EQ [f?])g since
& | Fo Q'N(ngf)

In theorem 2.5.9 it was proved that
ER [} | Fo] =3+ 6)% + \*
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thus fort > k
@ [Gﬁ | Fol

_ ( ot 4] ufo}
- |1

azt—~z + &8 ]

Li=1

Since

2
(59

1is noncentral chi-square distributed with 1 degree of freedom and non-centrali-
ty parameter A. Again as in part 1, it follows from theorem 2.4.9 that

cov ((az?_i + ﬂ)z, (aszj + ,8)2) =0
foralli,j € {0,1,..,k} andi# j. Then

L0717

i=1

=T[5 [(osti+ 8 1)

i::l
= HEQ o2t 4+ 2022+ 5% Fol
k

= T [e? (3+65+X%) + 208 (1+2) + 7]

3=l
= [0 (3+6X% +2%) + 208 (1 + %) +47°
For notational purpoeses define

u = o (34602 +2%) 4208 (1 +4?) +4°

then
u=1?+20° (1+2)%) a? (7.5)
and

u > v
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since all terms of equation 7.5 are positive.
Fork>j

E?[G4C; | Fol
Mk J
= E9 H (azf_,- + B) H (az?_z— +0) | fojl

i=1 i=1

J

= EQ O!Zg_, + ﬂ H (azt—t + )8
_i—~1 t=j+1

By theorem 2.4.9

con [(cs B (04 =

foralli,j €{0,1,..,k}, k>j. Thus

J k
B2 (T (e +8)" T] (ezts+8) | Fo
i=1 i=f+1

= HEQ [ @zl ; +[3 2 fo] H E? [(azi_; +B) | Fo]
i=j-+1
= u:"vk—’ ]

Then the conditional expected value of o}, the square of the GARCH process
under LRNVR at time t follows from equation 7.3

E° [ag | }-0]
[ t—1 2
= E9 (ao > Gy +ch¢) 1 fo}
| k=0
i t—1 2 -1
= EQ (ng Z Gk) - 20’%(1" ((X() ZGk) -+ (Uth)Z l f()]
k=0 k=0

t—1 2 -1
- () ]t
k=0

k=0
+oE? [GF | F)

t-1 t—1 k-1
= ofu +2aoogzuk vk o {Zu +QZZLLJ k= 3} (7.6)
—0 k=0 j=0

where the third term is a common mathematical expansion. The properties
of geometric series (see Haggarty [21]) are used to simplify equation 7.6:
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1. Geometric series

t-1
k 1“"ut
D v =7
— 1
k=0 ¢

2. Geometric series where v' is independent of the summation

t—1 2
S = Sty
v
k=0 == ()
u\t
t (1 — (") )
= =
v
ut — ot
= v
u—v

3. Geometric series using point 2, where J% is independent of the sum-
mation

t—1 k-1 t—1 .
TS ik = YV
k=05=0 k= YU
o . t—1 .
- W~
[ k=0

v 1—ut 1o
T u—v\l-u 1—w
Equation 7.6 is simplified such that
ER [a} | Fol

t_ oyt

u
= agut + 2&0030 py—

ol l-u‘+2 v fl-ut 1-2
o [ u—v\l-u 1-—v
Now, to derive the value of the unconditional kurtosis of €;, we take the limit
of E9 [0} | Fo. If we remember that u > v and assume that u > 1 then

E? [0‘?] = tlir{.]oEQ [O‘g ]fo] = 00 (7.7)
and ifu <1

N (1 - ’v)
Jm 59 (o} | Fo] = o=
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since

1—ut v fl—ut 1-—0
:'Egoao[l-u+2u——v(l-u”1—1})]
N U S Tk ek od
- tl—lolgazao[u-v(l—u 1~ )| 1.

= 29 [u—v (l-—u 1~—v)]+ 1—u

_ 20 (1-v)—(1—w) 1

= af [u—'u (1-u)(1—wv) *1 —u]
2v uU—v 1

= agl:‘zz—v(l~'zs)(1—v)+1—tz]

_ 2[ Ww+1l—v ]__ ad(1+v)
T -w(l-v)] -w(d-v)
= E9[o}] (7.8)

Since o‘f 18 Fi_1 measurable under @ and

S 72N
T

) EC ] = BR[EC[ | 7]
- ool
= 3E%[of],

where

(e

18 the kurlosis under ().
Finally, from equation 7.7 it is clear that £, is leptokurtic if u > 1. If
u < 1 then

_ a%(l—}—v)
B = 3a iy

21\ 2
&)
from the definition of v. Sinceu>v >0

E9 [¢f] > 3(E? [¢])°
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Proof of part 3.

From theorem 6.8.1 equation 6.16 we have

2
of =ag+a(f_— A1) + Poi,

and
&\ Fe1 ~ N (0,0%)
Thus
§-t-cr2 = -—-—ao +a—— (& — Ao )2+ﬂ
ot o -
and
EX Fi"%ﬂlft—l] =
ef
since
E g Fia] =
Then
EQ [Gﬂ d A(,Fg

€a

E9 Lta +a— (&, — Ao )2—}—5 02| Fii ]

or [af} (& — Aoy)? l:r]

17|

— aE® L € — 2,00+ (Aoy) )lfzwl]

= [ 2/\53 + ,\ ftO't[Jﬂ:a— ]
gy

- %EQ [ﬁt lft-l]

— 2aME® [£%|fz-1] + aX?o B9 [¢,|Fi1]

since oy 18 Fi—1 measurable, the

E? [aé' (& — Aoy
ot

= —2a)ME® [f?[ft..l]
= —2alo?.

)? 13[}—1]
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Finally,
Q& 2
cov [at N U£+1]

_ B ‘éogl] e [it] B2 [o,]

| Ot (4

= EQ §_t. 2
_Ot”wl

= E9 _EQ [gtof.;-zlﬁ—l”

Tt

the tower property of conditional expectation. The

COUQ [%a g§+1]
= E¢ [EQ [aé—‘- (& — May)? Ift—l]]
t

= E9[-2a)0}]
= —2a)\E9 [o}]

—~2Aqpe
1-(1+ 3-8
by the proof of 2. ®
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Implementation and
Numerical Results
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Chapter 8

Implementation of GARCH
Option Pricing

8.1 Introduction

In this chapter, methods to implement the GARCH option pricing model
is discussed. T'wo separate numerical procedures are required in the imple-
mentation of this model, the first is the calibration of the parameters to the
stock or option data and the second is the forecast of the option price.

8.2 Calibrating the GARCH Process to Empirical
Data

8.2.1 Historical Data

In the GARCH option pricing procedure proposed by Jin-Chuan Duan, the
GARCH process is “fitted” to the process of the underlying stock or index.
This means that the parameters of the GARCH-M process under the P
measure is fitted to the returns series of the underlying by maximizing its
loglikelihood function.

For the (vanilla) GARCH(1, 1) — M process under the P measure

1
S = 8;_1exp (rAt - -2-03 4+ Aoy + Eg)

where ¢; is the returns at time ¢, the rest of the parameters and variables
are as in section 4.6. The vanilla GARCH(1, 1) process is

7 = ao + aef + Pary.

!Fstimates are written with hats.

96
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From section 4.4.3, equation 4.9 the likelihood function for the variance
up to time ¢ is

t

b 1 N 152
10,69 = Y -5mél-55
2

i=1
t
= Zzz (aﬂv a, ﬁ? Og)
i=1
The optimization problem for the variance is as follows

0 A2
&o},lt;?a}fégf( ,o-t)

where the likelihood function f (0, 53) is maximized in terms of the para-
meters é, & and §. Since the value of &3 isn’t known, it forms part of the
optimization problem.

The value of parameter X is then estimated by minimizing the sum of
squares between the actual and estimated stock prices up to time ¢

t
m;\in ; (S,- - S,-)z
¢

2
= min (Si — S'i—l exp (rzi&t — -;—5‘3 + 5\5’@ -+ éfi))
.

S’i is an estimate of the of the stock price at time ¢ and S; is the actual stock
price.

Both of the optimization problems are due to overdetermined systems.
This means that there are more equations than variables. Tim Bollerslev
(1986) suggests the use of the Berndt, Hall, Hall and Hausman algorithm for
the estimation of the variance optimization problem. A similar algorithm
can also be used for the mean optimization problem.

Many new statistical computer packages have built-in GARCH algo-
rithms., Often, the problem with these built-in algorithms are that they
are designed to solve only certain types of GARCH parameter estimation
problems.

The GARCH toolbox available with Matlab R 12 is only limited to solv-
ing vanilla GARCH problems. Fortunately the optimization toolbox of Mat-
lab is excellent. The procedure fmincon can be used to fit a tailor-made
GARCH and means process.

8.2.2 Implied Volatility

As mentioned in section 1.3 of the introduction, the levels of implied volatil-
ity of warrants are substantially higher than that of the historical volatility



IVERSITEIT VAN PRETOR
ERSITY OF PRETORI
BESITHI YA PRETORI

b
W UN |
<

A
I A
| A

CHAPTER 8. IMPLEMENTATION OF GARCH OPTION PRICING 98

of the underlying. This means that there is little use in pricing an option
with a model based on the history of the underlying.

In this dissertation we investigate the calibration of a GARCH process
to the implied volatility of warrant..

The approach is as follows:

1. In section 5.4.5, the discussion of the Black-Scholes formula and im-
plied volatility, it was mentioned that implied volatility is annualized.
Implied volatility at time ¢, say o; must thus by multiplied by the
square root of the relevant time fraction, for instance if the available
returns series is daily then the new adjusted series must be 0¢+/1/252.

2. The GARCH process is a variance process, not a standard deviations
process, thus the square of the new series in point 1 must be taken,
which gives 02/252 = .

3. Implied volatility is used to price options, thus it is already under
the () measure. This means that the unit risk premium A is already
“absorbed” into the GARCH process.

4. The parameter estimation for the Asymmetric GARCH(p, q) process
is as follows,

min Z (L - O‘t

ao,,8 i=1

o~

= min
&0,&,8,2 121
2

9 P
Iy —ap+ Zaj (€i-j — /\Gi—j)2 + Zﬂjo‘?—j (8.1)

Unlike the parameter estimation in section 8.2.1 above, the value of
0‘(2, here isn’t part of the minimization problem. That is because if we
let o% equal Ip, the value at time ¢ = 0 in equation 8.1 is zero.

5. Optimization here is again done with the fmincon procedure of Mat-
lah.

8.3 Monte Carlo Simulations

Monte Carlo simulations is a method to solve stochastic integrals numeri-
cally. This is done by simulating N sample paths of a stochastic processes,
say f by the generation of random variables from the underlying probability



T

ol

IVERSITEIT VAN PRET 1A
RSITY OF PRET

E
BESITHI YA PRET

(=N =100
EE-

CHAPTER 8. IMPLEMENTATION OF GARCH OPTION PRICING 99

distribution. All the versions of f are then added together and divided by
the amount of simulations. By the law of large numbers we can write

1 N
dm 3y 321 () = [ 1@a@ad (8.2)

where (X,,) are independently drawn from the distribution with pdf g¢.
In this dissertation g is the pdf of the normal distribution discussed in
section 2.5.

8.3.1 European Option with Constant Volatility

The pricing theorem for a European option in the Black-Scholes sense, the-
orem 5.4.2, yields '

V. = e_r(T_t)EQ [VT | ft]
e " TOER [fr | Fi]

= T [ fr(@)a(e)de

where q is a pdf. For a put option, fr = (X — ST),, where X and St are
the strike price and the stock price at time T respectively. St and thus fr
is a function of Brownian motion. By equation 5.12,

1
St = Spexp ((p - 502) T+ aWt)
In discrete time, this can be estimated by
-~ o~ 1
Sr = Soexp ((}L - 50'2) T -I-O'Etv At)

where

£l Fir 2 N (0,1)

8.3.2 European Options with GARCH Volatility

The aim is again to estimate the value of fr at time T'. This time it must be
remembered the the GARCH-M process used in this dissertation is defined
in discrete time, we are thus not solving an integral. The stock price process,
under the LRNVR with GARCH conditional volatility, as defined in theorem
6.8.1is

T
ST = S;exp ((T —t)r— Z (%aiz +£iai))

i=t
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..... Simulation ——— Actual ABSA stock price |

Figure 8.1: A sample path of a Monte Carlo simulation compared with the
actual ABSA stock price process.

where
Q
&i|Fi—1 ~ N (0,1)

and

. p
ot = a0t Yoy (€~ Noig) +3_Bol,
=1

=1

8.3.3 Notes

1. To simulate possible sample paths of the stock price, a random number
&, is generated for each interval t € NN[1,7T]. The intervals are equally
spaced, say of size At. If we use an annual risk-free interest rate and
daily time intervals, At would be 1/252, since we usually assume 252
trading days in a year.

2. A large number of future paths are simulated. The number depends
on the accuracy required. This can vary between a 1000 and 50000 or
even more simulations.
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8.3.4 Generating Other Distributions from the Uniform Dis-
tribution

Many computer packages can only generate uniform randomn variables be-
tween 0 and 1. Most other packages, like Matlab and Excel, generate only
random variables from certain famous distributions. The following famous
technique is a way to generate randomn variables from uniforin random vari-
ables:

To generate random variables from this cdf, use the following famous
result: Say we are able to generate a uniform random variable, U, between

—

0 and 1. Define the inverse of F; (2) as
m—l=inf{2|m Sy}
where 0 < y <1, thus
0 =2
It then simply follows that
Fz(2) = P(Z<2)
=P (F/(?)—1 < z)
- P (U < ﬁz'(\z))

e —1
Thus by generating a value u from U, calculate Fz (u)  which is set equal
to z. This yields a Fz (2) distributed random variable.

8.4 Variance Reduction Techniques

Monte Carlo simulations are computationally expensive. It is practical to
employ variance reduction procedures to decrease the number of simulations
needed. Hull [23] gives a broad summary of variance reduction procedures.

The variance reduction procedures used in this dissertation are the anti-
thetic variable and moment matching techniques. The control variate tech-
nique? can possibly also be used. To be certain of the soundness of the use
of the control variate technique for the particular simulations done in this
dissertation, further investigation is needed. This is beyond the scope of the
dissertation.

?For the simulations in this dissertation, for the option price resultant from a forecasted
GARCH-M process, we can do the Controle Variate Technique as follows:

Two simulations, the standard Black-Scholes option pricing integral and the Duan
GARCH integral are done in parallel using the same random variables.

The Black-Scholes simulation is then subtracted from the GARCH one and the equiva-
lent analytical Black-Scholes value is added.
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8.4.1 The Antithetic Variable Technique

With this technique two values for the derivative is calculated. The first
value, f! is calculated the normal way with random sample vector [Eelrxi
taken from the applicable distribution. For the second value f2, —1X [£,]p,;
is used. The final answer is the average of the two values

S+
2

The advantage of this technique is that a value above the true value can
be “canceled out” by one below and vice versa.

8.4.2 Moment Matching

In this dissertation the standard normal distribution is used. In the moment
matching technique all of the sampled random variables for each sample
path, say the vector [¢;]r. ; is standardized. This is done by subtracting the
mean of the sample m from each element of the sample and then dividing
that by the standard deviation s of the sample,

& —m
8

Yt =

yielding a standard normal random variable.
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Chapter 9

Study and Results

9,1 Aim

It is generally assumed that the current implied volatility level is the best
proxy for the future level of implied volatility and hence the future price of
an option. In this chapter, the GARCH option pricing method is applied
to the implied volatility history of a warrant. The method is as described
in section 8.2.2, where I propose calibrating the GARCH process over the
“historical” implied volatility of the underlying financial instrument, in this
case stock.

In this study, the current implied volatility level is compared to the
GARCH level or equivalently, the predicted future price of the option com-
pared to the predicted price of under the GARCH option pricing method

The predicted future price of a European option, to avoid arbitrage, is
its current value adjusted for the relevant risk-free interest rate.

9.2 Methodology and Data

JSE warrants are generally short dated, that is of maturity less than one
year. An option pricing model must thus be able to price a warrant, with
ag little calibration to historical data as possible. Here, a 30-day period of
calibration to implied volatility was decided on in each case.

Although the warrants market is more liquid than the options market
of SAFEX, there are still days where no new trade takes place in a specific
warrant. The result, is that after a sharp drop in the price in the underlying
equity, the intrinsic value of the replicating portfolio may be greater than
the market price of the an untraded put warrant. The implied volatility of
that warrant is thus undefined at such a date. '

In this study, the chosen warrants where priced in a rolling window of
one day (with a thirty day history each), from approximately thirty days
after they where first traded, up to a date where either the implied volatility
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is undefined or zero, the warrant reaches maturity or 2002/11/27".

The 11 to 20 day ahead values of both the forecasts due to the actual
warrant prices and the GARCH option prices are compared to the actual
warrant prices of 11 to 20 days ahead. The measurement over a 10 day period
gives a better indication of the forecasting power of the two methods.

The following put warrants were selected:

Result Warrant  Underlying issuer Date

no: From To

1 3ASAIB  ABSA Investec Bank | 2002/05/15 2002/11/06
2 |3ASAUB ABSA UBS 2002/01/02 2002/11/06
3 |5ASAIB ABSA Investec Bank | 2002/01/08 2002/11/06
4 |2AGLUB Anglo American UBS 2001/06/08 2002/04/04
5 |3AGLIB Anglo American Investec Bank |2001/09/25 2002/02/27
6 |7TAGLIB Anglo American Investec Bank | 2002/02/22 2002/07/25
7 |BAGLIB Anglo American Investec Bank |2002/07/29 2002/09/17
8 ISNEDUB Nedcor uBs 2002/01/02 2002/08/19
9 I6NEDIB Nedcor Investec Bank {2002/07/08 2002/10/03
10 |6NEDSG Nedcor Societe General | 2002/08/23 2002/09/20
11 |30MLUB Old Mutual uBSs 2002/01/02 2002/06/24
12 |40OMLSG Old Mutual Societe General | 2002/08/16 2002/09/16
13 |50MLIB  Old Mutual Investec Bank | 2002/05/15 2002/06/13
14 |3SAPIB  Sappi Investec Bank | 2002/04/16 2002/10/07
15 |3SAPUB  Sappi UBS 2002/01/02 2002/11/06

Each warrant can be categorized in terms of time to maturity and mon-
eyness:

e Time to maturity of a warrant is the amount of days left in the life
of the warrant. A warrant’s implied volatility tends to increase dra-
matically 70 to 60 days and closer, to maturity. It seems sensible to
categorize results in terms of the time to maturity of the warrant. The
two categories are maturity of less than 70 days and maturity of 70
days and more.

e Moneyness is defined as the stock price divided by the exercise price
of a warrant. A put warrant is defined to be “out of the money” when
the moneyness ratio is more that 1.1, “at the money” if the ratio is
between 0.9 and 1.1 and “in the money” if the ration is less than 0.9.

9.3 Measures of Results

The accuracy of the implied volatility method and the GARCH option pric-
ing method is measured in the following way:

!The last date on which data was captured.
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1. The current market implied volatility, I (t) and the GARCH option
price, ¢? (t) at time ¢ are adjusted to the (annual) risk-free rate r for
each day of the 10 day period starting in 11 days,

I (t, I‘,) = erx(10+z')/2521- (t)
o2 (t, ’5) = erx(10+i}/2520.2 (t)

fori=1,...,10.
2. The absolute percentage deviations between the two forecasts,
I(t,i) and o2 (t,1)
and the actual observed implied volatility in the market,
I(t+i+10,0)

is taken for each day of the 10 day period and weighed as follow

: I {t,d) = I(t+1i+10,0)]
Actual — I(t+’i+10,0)
; e () — o (£ +i 4 10,0)]
AcarcH = I(t+1i+10,0)

3. The following risk-measures are determined

10
below — 3
Alfies = Y Ahearligi)<ieri+100)
i=1
10
above  __ i
AfZer = 3 Aarlig>1+i+100)
=1
10
below i
Agen = Y Dbarcrleti<i(trir100)
=1
10
above o 3
AGlrcn = ZAGARCH]-&?(ﬁ,ibI(t+£+10,0)
i=1

where and 1 is an indicator function.

The measure Abeo® (A%b9ve) jg the sum of the absolute percentage de-
viations below (above) the actual implied volatilities. These measures don’t
only measure the absolute deviation, but also measures if the forecasts are
above or below the actual implied volatilities. The sum of the measure
A¥% and the measure A2¥ give the absolute deviation.
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9.4 Results
The results are given for the 15 mentioned warrants

» The columns denoted by time to maturity and moneyness are as ex-
plained in section 9.2.

e The column named “Observations” indicates the amount of separate
tests done in each category of the specific warrant.

o The columns marked less and more are as explained in section 9.3.

e The following abbreviations are used:

— ITM: In the money

— ATM: At the money

— OTM: Out of the money
— CTM: Close to maturity
— FFM: Far from maturity

9.4.1 The Results:
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Warrant Name: 3ASAIB

Time to maturity (days) Obhservations Moneyness GARCH Actual
Below Above Below Above
36 In 2.47 0.05 0.19 0.20
Less than 70 0 At - - - -
0 Out - - - -
83 In 0.59 1.00 0.86 0.85
70 and Above 0 At - - - -
0 Out - - - -
Description: The GARCH model predicts ITM, CTM warrants worse than the Actual model
does.
The GARCH models underpredicts ITM, CTM and overpredicts ITM FFM
warrants.

The GARCH model predicts ITM, FFM warrants slightly better than the Actual
model does.
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Warrant Name: 3ASAUB ‘
Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above
, 49 In 0.17 1.86 0 1.61
Less than 70 0 At - - - -
0 Out - - - -
160 in 0.89 0.98 0.92 0.93
70 and Above 0 At - - - -
0 Out - - - -
Description: The GARCH model predicts ITM, CTM warrants worse than the Actual model

does.
Both the GARCH and Actual models overpredicts ATM and OTM CTM

warrants.
The GARCH model predicts ITM, FFM warrants slightly worse than the Actual

model does.
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Warrant Name: 5ASAI‘B

Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above
37 In 0.03 5.53 0.01 5.54
Less than 70 0 At - - - -
0 Out - - - -
45 In 0.63 0.70 0.79 0.62
70 and Above 0 At - - - -
0 Out - - - -

Description:

The GARCH model predicts ITM, CTM warrants slightly worse than the Actual

model does.
The GARCH model predicts ITM, FFM warrants slightly better than the Actual

model does.
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Warrant Name: 2AGLUB

Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above
0 In - - - -
Less than 70 0 At - - - -
0 Out - - - -

8 In 1.31 1.05 0 2.52

70 and Above 90 At 1.26 8.71 0.01 10.36

5 Out 1.49 7.03 0 6.92

Description: The GARCH model predicts ITM, FFM warrants worse than the Actual model

does.

The GARCH model predicts ATM, FFM warrants better than the Actual model

does.

Both models overpredicts ATM and OTM FFM warrants.

The GARCH model predicts OTM, FFM warrants better than the Actual model

does.




Warrant Name: 3AGLIB

Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above
0 In - - - -
Less than 70 0 At - - - -

50 Out 2.61 2.90 0.03 6.13
0 in - - - -

70 and Above 10 At 0 5.28 0 5.68

43 Out 0.02 14,63 0 14.51

Description: The GARCH model predicts OTM, CTM warrants better than the Actual model

does.
The GARCH model predicts ATM, FFM warrants sightly better than the Actual

model does.
Both models overpredicts ATM and OTM FFM warrants.
The GARCH model predicts OTM, FFM warrants slightly worse than the

Actual model does.
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Warrant Name: 7AGLIB

Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above
7 In 3.72 0 3.44 0
Less than 70 24 At 2.76 0.03 3.04 0.01
0 Out - - - -
0 In - - - -
70 and Above 68 At 0.31 1.32 0.49 0.98
' 6 Out 0.53 0.19 0.65 0.15
Description: The GARCH model predicts ITM, CTM warrants better than the Actual model

does.
The GARCH model predicts ATM, CTM warrants slightly better than the Actual

model does.
Both the GARCH and Actual models underpredicts ATM and OTM CTM

warrants.
The GARCH model predicts ATM, FFM warrants slightly worse than the Actual

model does.
The GARCH model predicts OTM, FFM warrants shghtly better than the Actual

model does.
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Warrant Name: BAGLSG

Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above
7 In 3.72 0 3.44 0

Less than 70 24 At 2.76 0.03 3.04 0.01
0 Out - - - -
0 In - - - -

70 and Above 68 At 0.31 1.32 0.49 0.98

6 Qut 0.53 0.19 0.65 0.15

Description: The GARCH model predicts ITM, CTM warrants worse than the Actual model

does.
The GARCH model predicts ATM, CTM warrants better than the Actual model

does.
Both the GARCH and Actual models underpredicts ATM and OTM CTM

warrants.
The GARCH model predicts ATM, FFM warrants worse than the Actual model

does. V
The GARCH model predicts OTM, FFM warrants slightly better than the Actual

model does.
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Warrant Name: 3NEDUB

Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above

In - - - -
At - - - -
Out

Less than 70

7 In 0.84 0.88 0.65 0.68
At - - - -
Out - - - -

70 and Above

OO 0o OO

Description: The GARCH model predicts ITM, FFM warrants worse than the Actual model
does.
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Warrant Name: 6NEDIB

Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above

17 In 0.35 0.33 0 0.83
Less than 70 0 At - - - -
0 Out - - - -

45 In 1.50 0.09 1.45 0.13
70 and Above 0 At - - - -
0 Out - - - -

Description: The GARCH model predicts ITM, CTM warrants better than the Actual model

does.

The GARCH models underpredicts overpredicts ITM, FFM warrants.

The GARCH model predicts ITM, FFM warrants slightly worse than the Actual

model does.
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Warrant Name: 6NEDSG

Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above

7 in 0.73 0.11 0.76 0.13
Less than 70 0 At - - - -
0 Out - - - -

14 In 0.47 0.46 0.66 0.31
70 and Above 0 At - - - -
0 Qut - - - -

Description: The GARCH modet predicts ITM, CTM warrants worse than the Actual model

does.
The GARCH model predicts ITM, FFM warrants slightly better than the Actual

mode! does.
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Warrant Name: 3S0OMLUB

Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above

0 In - - - -

Less than 70 0 At - - - -

0 Out - - - -

118 In 0.18 1.99 0.42 1.28
70 and Above 0 At - - - -
0 Out - - - -
Description: The GARCH model predicts ITM, FFM warrants worse than the Actual model

does.

Both the GARCH and Actual models overpredicts ITM, FFM warrants.
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Warrant Name: 4OMLSG
Time to maturity (days) Observations Moneyness GARCH Actual

Below Above Below Above

3 In 0.73 0.07 1.09 0

Less than 70 0 At - - - -

0 Out - - - -

19 In 2.56 0 243 0

70 and Above 0 At - - - -

0 Out - - - -

Description: The GARCH model predicts ITM, CTM warrants better than the Actual model

does.
The GARCH model predicts ITM, FFM warrants worse than the Actual model

does.
Both the GARCH and Actual models overpredicts ITM, FFM and CTM

warrants.
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Warrant Name: 50MLIB

Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above
In - - - -
At - - - -
Out - - -
In 2.13 0.00 2.43 0
At - - - -
Out - - - -
Description: The GARCH model predicts ITM, FFM warrants better than the Actual model

does.

Both the GARCH and Actual models overpredicts ITM, FFM warrants.

Less than 70

70 and Above

oo Rloo o
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Warrant Name: 3SAPIB

Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above
18 In 0.23 0.15 0 0.03
Less than 70 0 At - - - -
0 Out - - - -
103 In 1.31 0.21 0.72 0.35
70 and Above 0 At - - - -
0 Out - - - -
Description: The GARCH model predicts ITM, CTM warrants worse than the Actual model
does.
The GARCH model predicts ITM, FFM warrants worse than the Actual model
does.

Both the GARCH and Actual models overpredicts ITM, FFM warrants.




v, UNIVERSITEIT VAN PRETORIA

UUUUUU

OOOOOOOOOOOOOO

Warrant Name: 3SAPUB

Time to maturity (days) Observations Moneyness GARCH Actual
Below Above Below Above
47 In 2.46 3.26 0 6.21
Less than 70 0 At - - - -
0 Out - - - -
162 In 3.12 1.87 1.09 273
70 and Above 0 At - - - -
0 Out - - - -

Description:
does.

The GARCH model predicts ITM, FFM warrants worse than the Actual model

does.

The GARCH model predicts ITM, CTM warrants better than the Actual model

Both the GARCH and Actual models predicts ITM warrants poorly.
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9.4.2 Conclusion to Results

In this study, the results due to implied volatility or actual observed market
prices performed marginally better than the GARCH prices in the forecast-
ing of market prices of 11 to 20 days in the future.

The forecast due to the actual observed market prices performed mar-
ginally better in both time to maturity classes for “in the money” warrants.

The GARCH option pricing forecasts where marginally better for “at
the money” warrants with less than 70 days to maturity and “out of the
money” warrants with more than 70 days to maturity.

9.4.3 Comments on Study and Results

No specific GARCH or ARMA process can ever be used to fully explain mar-
ket dynamics. A GARCH process can for instance be useful only in forecast-
ing options on certain assets, in certain market conditions, with a certain
range of maturities. Thus plainly put, if an (implied) volatility process
follows an approximate GARCH process, then use the GARCH process or
option pricing methodology to forecast option prices, if not don’t.

A general study, as done here defeats the purpose of GARCH processes
to a certain extent, since a GARCH process must be tailor made to the
specific market instrument and conditions.

This study does however show that GARCH series can be fitted to im-
plied volatility with some success.
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Chapter 10

Conclusion

This dissertation highlights some of the real world deviations from the Black-
Scholes option pricing framework.

Unlike the assumption of constant volatility of increments in Brown-
ian motion, volatility in the market is stochastic. Markets with stochastic
volatility are no longer complete, as it is in the Black-Scholes structure.
Options in incomplete markets are harder to price since investors demand
higher returns for taking additional risk.

Duan [10] proposed a new measure under which to price options in in-
complete markets, called the Local Risk-Neutral Valuation Relationship
(LRNVR). The LRNVR and related option pricing methodology is discussed
in detail in this dissertation. The neccesary measure theoretical and stochas-
tic calculus background is given for a clear understanding of this relationship.

The stochastic volatility in this dissertation is assumed to be a statis-
tical time-series process, the Generalized Autoregressive Conditional Het-
eroscedastic (GARCH) process. Time-series processes are discussed in this
dissertation, to give readers who aren’t familiar with these statistical meth-
ods a reasonable foothold therein.

Warrants are option-like instruments traded on the JSE Exchange. War-
rants can’t be sold short. This restriction adds to incompleteness in the
market. In this dissertation the GARCH option pricing process is applied
to the implied volatility of the warrant instead of the stock price process as
done by Duan. This is because the standard deviation of the stock price and
the implied volatility levels differ significantly because of the short selling
restrictions and the illiquidity of the market.

Results of the application of the GARCH option pricing process to im-
plied volatility, shows that it compares well to the use of implied volatility
of current warrant prices in forecasting future warrant prices.

123
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Chapter 11

Related Literature

The following advances to the GARCH literature have been published since
Duan’s 1995 paper:

e Heston and Nandi [22] published a closed-form solution to a GARCH
option pricing problem similar to that of Duan’s 1995 paper. This
method makes use of the conditional moment generating function of
the stock price at expiry.

e Duan and Simonato [11] proposed a numerical method for valuing
American options with GARCH -like volatility in 2001. This method
is based on approximating the underlying asset price process by a
finite-state, time-homogeneous Markov chain.

¢ Ritchken and Trevor [30] in 1999 proposed a lattice approximation
scheme for the pricing of GARCH and bivariate stochastic volatility
frameworks.

¢ Duan, Gauthier, Sasseville and Simonato [12] proposed an efficient
approach to pricing in the GARCH framework by combining lattice
methods and moments approximation in 2002.

Other stochastic volatility option pricing models (see Chriss [8]):

e Implied volatility trees. A model by Derman and Kani and similar
models by others. This is a lattice system that use the implied volatil-
ity surface of a stock price as input to price an option. This model
can also be adapted to price American options.

¢ Implied binomial trees. A lattice system that uses the implied volatil-
ity of European options of all strikes at a fixed expiration date to price
nonstandard and exotic options.
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