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Summary 

In this dissertation some of the real world deviations from the assumptions 
made in the Black-Scholes option pricing framework is investigated. Special 
attention is paid to volatility, the standard deviation of stock price returns. 
Unlike the assumption of constant volatility of increments in Brownian mo­
tion, volatility ill the market is stochastic. Market models allowing for sto­
chastic volatility are no longer complete as in the Black-Scholes framework. 
Options in incomplete markets are harder to price since investors demand 
higher returns for taking additional risk. 

Duan (1995) proposed an option pricing measure for incomplete mar­
kets, due to stochastic volatility, called the Local Risk-Neutral Valuation 
Relationship (LRNVR) . Under the LRNVR, the local risk neutral measure 
(Q) is equivalent to the real world measure (P), the conditional expected 
return under the Q measure equals the risk-free rate and the conditional 
one period ahead V"ariances under both measures are equal, P almost surely. 
The LRNVR holds for consumers with familiar utility functions. 

Stock returns are assumed to follow a Generalized Autoregressive Con­
ditional Heteroscedastic (GARCH) process. This process is a discrete time 
statistical time serie.~ that is calibrated over stock returns. In this disserta­
tion the LRl\'VR and related option pricing methodology is comprehensively 
investigated. 

Warrants traded on the JSE Securities Exchange violates the Black­
Scholes assumptions in two additional ways, short selling is restricted and 
the market is somewhat illiquid. One of the results of these violations is 
that the standard deviation and the implied volatility, volatility implied by 
the market price of the option, are out of sync. The inlplied volatility tends 
to be higher than the volatility of stock market returns. 

In this dissertation the GARCH option pricing process is applied to the 
implied volatility of the warrant instead of the stock price process, as done 
by Duan. This method compares well with the use of implied volatility to 
price warrants. 
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Chapter 1 

Introduction 

Three categories of fillal1cial models prevail in the market l . They are the 
following: 

1. 	Structural models. Simplifying assumptions about the underlying 
market processes and market equilibrium are made to infer equilibrium 
prices and thus the relationships between underlying instruments and 
their contingent claims (Le. options). The Black-Scholes2 formula is 
the most famous structural model. The Black-Scholes formula is the 
result of a method called risk-neutral (or arbitrage) pricing. A result 
of the risk-neutral pricing is that we can infer a unique, correct price of 
a contingent claim given its underlying stock price. Any other option 
price would lead to an arbitrage opportunity. 

2. 	Statistical models. These models rely on empirical data and their 
co-dependencies. Fewer assumptions, if any, are made concerning 
the structure of the market. Examples of statistical models in finan­
cial mathematics are the capital asset pricing model and time series 
processes. Financial time series are used to describe data, to ob­
tain insight into their dynamic patterns and to forecast out-of-sample 
returns. The Generalized Autoregressive Conditional Heteroscedastic 
(GARCH) process is a famous time series used to model the condi­
tional variance of a process. 

3. 	 Combination of structural and statistical models. This cate­
gory of models combines the above categories of models. The GARCH 
option pricing model under the local risk-neutral 1Jaluation relation­
ship (LRNVR), discussed in this dissertation, is the combination of 
GARCH literature and risk-neutral valuation. 

I See 'Risk Management' by Crouhy, Galai and Mark 19]. 
2The Black-Scholes model was developed by Black and Scholes (1973) and Merton 

(1973). 
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CHAPTER 1. INTRODUCTION 	 2 

Under risk-neutral pricing, the price of a contingent claim is independent 
of the risk preference and utility functions of buyers and sellers, hence there 
exists a unique and correct option price. The cost of this model is the 
simplifying assumptions. Some of the crude assumptions made in the Black­
Scholes model are: 

1. 	Stock prices are lognormally distributed, thus the continuously com­
pounded stock returns are normally distributed. 

2. 	 The mean and volatility under this distribution are constant. 

3. 	The risk-free interest rate is constant or a known function of time. 

4. 	 Delta hedging is done continuously (short selling is allowed and secu­
rities are perfectly devisable). 

5. No transaction costs on the underlying. 

6. No arbitrage opportunities. 

Empirical evidence shows that none of these assumptions are valid. In 
this dissertation the assumption of constant volatility is abandoned, for (con­
ditional) stochastic volatility. 

Volatility has many definitiolL.<i. It L<i generally seen as the standard 
deviation of a random process (i.e. the stock returns process). In the Black­
Scholes framework, implied volatility can be inferred from the market price 
of the option and the underlying. Conditional volatility can be seen as a 
measure of risk. This is because levels of trade tend to increase in uncertainty 
in the stock, sector or market in general and hence the standard deviation 
or price fluctuations increase.3 . 

In this dissertation, volatility is seen as the standard deviation of a sto­
chastic process. Implied volatility comes into play in later chapters where 
the GARCH option pricing model is applied to JSE Exchange traded war­
rants. 

1.1 The Problem of Stochastic Volatility 

The Black-Scholes model is a complete market model. A market model is 
complete if and only if all contingent claims are replicable. Equivalently, 
under no arbitrage conditions, a market model is complete if and only if 
there exists a unique risk-free probability measure. 

If stocha.'~tic volatility is introduced into a market model, it is no longer 
complete". This is because there are too much variability in the stock price 

3For a thorough discussion on market volatility, see Poon & Granger [29J. 
4See Fouque et al [17]. 

 
 
 



CHAPTER 1. INTRODUCTION 3 

which cannot be hedged away completely, since there are no instruments in 
the market which is perfectly correlated with the individual stock's volatility. 
EquiV'dlently there doesn't exist a unique risk-neutral probability measure. 

A consequence of stochastic volatility is that the price of the contingent 
claim depends on the risk preference and utility of investors. This compli­
cates computation of the price of the contingent claim. 

1.2 A Proposed Solution 

The aim of this dissertation is to discuss a solution too the problem of option 
pricing in incomplete markets, due to stochastic volatility. The LRNVR was 
introduced by Jin-Chuan Duan [10] in 1995. Duan proved that the measure 

dQ = e-(r-p)T U' (Ct ) dP 

U' (Ct-I) 


satisfies the LRNVR. In this measure, r is the risk-free interest rate, p is 
an impatience factor and U' is the first derivative of the utility function of 
consumption Ct at time t. The measure Q is called the local risk-neutral 
measure. 

The volatility process in this dissertation is the GARCH process intro­
duced by Engle (1982) and Bollerslev (1986) [6]. The GARCH process is a 
discrete time process of the changing variance of the returns of an underly­
ing instrument. This process captures phenomena of returns series coined 
"stylized facts". These phenomena are heavy-taiIs5 of distributions, volatil­
ity clustering> and mean reversion 7 • GARCH processes have been extended 
to capture another stylized fact called the leverage effect8 • Such GARCH 
processes are called asymmetric G ARCH processes. . 

The GARCH parameters are derived from actual market prices. The 
stock price, at expiry of a European option, is forecasted with the GARCH 
process under the local risk-neutral measure. This forecast is done with 
Monte Carlo simulations. 

In this dissertation the GARCH option pricing method is applied to 
South African put warrants, 

5 Excess kurtosis above that of the normal distribution. 
6VoiatiIity levels tend to cluster together at the same levels for a certain duration, after 

which it clusters together at another level. 
7Volatility levels tens to revert back to a certain long-term level after a shock. The 

reversion to this level is not neccesarily immediate. 
sThe market tends to react more drastcally to bad news than good news. 

 
 
 



CHAPTER 1. INTRODUCTION 	 4 

1.3 	 Description of South African Derivative In­
struments and Experiment 

There are two markets where financial derivatives are traded in South Africa. 
The one market is the warrants market of the .JSE Securities Exchange (JSE) 
and the other is the South African Futures Exchange (SAFEX). The SAFEX 
exchange was bought by the JSE on the 1st of July 2001. 

Equity options on SAFEX are traded on a limited number of stocks and 
on some index futures. The SAFEX market tends to be illiquid. In illiquid 
markets the spread between bid and offer prices tends to be wider than that 
of a more liquid markets. 

On the JSE, warrants9 are traded. A warrant is an option issued, like a 
stock, by financial institutions on equities, certain interest rate instruments 
and some indices. This means that a market player must own a warrant to 
sell it, thus no short selling is allowed. The warrants market is more liquid 
than the SAFEX options market, but because no short selling is allowed, 
there are no way to gain from overpriced warrants. In this market, only 
market equilibrium (supply and demand) controls price levels. The result 
is that the implied volatility levels of warrants tend to be higher than the 
volatility of stock prices. See figure 1.1. 

In this dissertation the GARCH option pricing method is applied to 
equity European put warrants on the JSE. Approximately 30% of traded 
warrants are European put warrants. The warrants market was selected 
because it's more liquid than the SAFEX option market. In more liquid 
markets, option prices reacts more rapidly to changes in the price of the 
underlying, thus the testing of the GARCH option pricing method is easier 
to do. 

In Duan's 1995 paper the GARCH process is calibrated to the returns se­
ries of the underlying equity or index with the maximum likelihood method. 
Since the implied volatility of warrants are higher than the historical stan­
dard deviation of the underlying equity, the GARCH process in this disser­
tation is fitted to the implied volatility of the warrant. 

1.4 	 Outline of the Dissertation 

In the following chapter, essential background to probability theory is dis­
cussed. 	This discussion includes some measure theoretical background, sto­
chastic mathematics and discussions on the normal distribution. 

In chapter 3, basic concepts of time series are introduced. Autoregressive 
Moving Averages time series are the main topic of discussion. Univariate 
volatility processes literature is reviewed and investigated in section 4 which 

9Warrants on the JSE must not be confused for an option issued by a company on its 
own stock which is available in some countries. 
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1.2 
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Figure 1.1: The moving 30-day standard deviation against the implied 
volatility of the warrant: 3SAPIB on Sappi. The breaks in the implied 
volatility graph is due to market illiquidity. The intrinsic value of the repli­
cating portfolio is more than the value of the option. 

builds on the ARMA discussion. The most important univariate volatility 
process is the (vanilla) GARCH process. Other important GARCH processes 
are also investigated. 

Risk-neutral valuation is the basis of modern option pricing. Risk­
neutral valuation and continuous time finance is discussed in chapter 5. 
This discussion leads to the pricing of options in incomplete markets and 
the LRNVR investigated in chapter 6. 

Chapter 7 is about the application of the LRNVR to option pricing. 
Delta hedging Inlder LRNVR is also investigated. 

Monte Carlo simulations and optimization forms part of chapter 8 where 
the implementation of GARCH option pricing is discussed. 

Results are given in chapter 9 and the conclusion follows in chapter 10. 
Related literature is discussed in section 11. 
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Chapter 2 

Som.e Probability Essentials 

2.1 Introduction1 

In this chapter some of the essential background to probability theory is 
given. Although the background is basic, very few mathematicians, sta­
tisticians or probability theorists would be familiar with all the concepts 
presented. 

In section 2.2 the basic concepts concerning a probability space is briefly 
stated. Moments are discussed in section 2.3. 

Cumulative distribution functions and partial deIlsity functions are dig.. 
cussed in section 2.4. Some of the main theorems of this section is stated and 
proved. In section 2.5 the moments and other issues regarding the normal 
distribution is specified. 

A short detour is taken in section 2.6 where returns series are discussed. 
The section ends with section 2.7 where some important hypothesis tests 
are discussed. 

2.2 Probability Space 

2.2.1 Probability Space 

The triple (n, F, P) is called a probability space. The set n is a non-empty 
set, F {FthEN,t;?:O is filtration of a-algebras Ft defined on nand P is a 
probability measure on F. 

A function Zt : n ---+ R , on the probability space, is called a stochastic 
process. 

2.2.2 O'-algebra 


A family of subsets F of a set n is called a a-algebra if the following holds: 


1 For further discussions on probability theory and measure theoretical aspects see [31], 
[7J, [3J and [27]. [4], P3], [17], [26jand [32] are also useful. 

7 

 
 
 



8 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

1.0E:F 

2. If X E :F then n\X E :F 

00 
3. If (Xn) is a sequence of sets in n then U Xn E :F. 

. n=1 

2.2.3 Borel Sets in lR. 

The Borel sets (one thing) is the smallest O"-algebra generated by all the 
open sets in lIt 

2.2.4 Filtration 

:F = {.1'thEN,t?;o is a filtration of O"-algebras with the following properties 

1. .1'0 contains all null sets 

Property 2 is called right continuous. A filtration with these properties 
is said to satisfy the "usual conditions" . 

2.2.5 Measurability and Adaptedness 

Definition 2.2.1 A stochastic process, Zt : n --t lR, is said to be measurable 
with respect to a 0" -algebra:F if 

{Zt E B} E .1' 

for every Borel set B E B(lR). 

Definition 2.2.2 A stochastic process, Zt, is said to be adapted to a filtra­
tion .1' if Zt is .1't measurable for all t E lR. 

Remark 2.2.3 Throughout this dissertation only real-valued stochastic pro­
cesses defined on (n, .1', P) -will be considered, that -is X : n --t lR. 

Remark 2.2.4 A stochastic process at a specific time is often referred to as 
a random variable. 

Remark 2.2.5 Take note that a stochastic processjmndom ·variable ·is de­
fined in terms of a probability space. 
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2.2.6 Almost everywhere 

Definition 2.2.6 Two functions, f and 9 are equal almost eveT'lJwhere 
(somet'imes called almost surely) if 

f{x)=g{x) 

for all ;1: ~ N E F where P (N) = O. Almost ever!!Whe1"e is abbreviated by 
a.e. 

Definition 2.2.7 A sequence of functions Un) converges to f almost every­
where if there exists a set N E F with P (N) = 0 such that f (x) = lim fn (x) 
for all x ~ N. 

2.3 Moments and Stationarity 

2.3.1 Expected Value 

Definition 2.3.1 A random variable X E n --+ JR is said to be integrable if 

in \X\dP < 00 

The family of integrable random variables are denoted by L1 (n, F, P) or in 
this dissertation L1 for short. 

Definition 2.3.2 For any X E L1 (n,F,p), 

E[X]:= kXdP 

is called the eJ,pected value of X. 

Remark 2.3.3 The expected value of a random variable from a symmetric 
distribution is often called the mean or average. 

Remark 2.3.4 For a probability space with density function f and inte­
grable Bo'rel function II. : JR --+ JR, 

00 

E[h{X)] = { hdPx = h{x)f{x)dx
JIR. 

1
-00 

Proof. See Brzezniak et al. [7]. • 
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2.3.2 Conditional Expectation 

We can call the filtration F t C F, the u-algebra that contains all the 
information available to an investor at time t. A u-algebra can also be a 
condition in a conditional expectation. 

Definition 2.3.5 (0., F, P) . The conditional expectat-ion given a u-algeb-ra 
is; for an integrable random variable X and u - algebra <1> ~ F 

E [X I <1>] 

where E [X I <l>J : 0. -+ lR is unique P a.s. sat-isfying 

1. E [X I <1>J is <1> measurable 

2. IH E [X I <1>J dP fH XdP, for all H E <1>. 

Theorem 2.3.6 For X, Y E £1, a, b E lR and u algebra <It C F the 
conditional expectation has the follo-wing bas'tc properties (all equalities a.s.): 

1. E[aX +bY I <1>] aE[X I <1>] +bE[Y I <1>] 

2. E [E [X !<1>11 w] = [X I W] where <I> C W is also a u - algeb1'a 

3. E [X !<ItJ = X if X is <1> measurable 

4. 	 E [X I <1>] = E [Xl if X ,is independent of <I> 


Proof. See Appendix B in Oksendal [27].• 


2.3.3 	 Variance, Conditional Variance and Standard Devia­
tion 

Definition 2.3.7 (0., F, P). A random variable X E 0. -+ lR -is said to be 
square integrable if 

in X 2dP<oo 

The family of square integrable random variables are denoted by £2 (0., F, P) 
or £2 for short. 

Definition 2.3.8 (0., F, P). The variance of a square integrable -random 
variable X is defined as 

Var[XJ E [(X E [X])2] 

E [X2] (E [X])2 

LX 2dP+ (L XdP)2 > 0 

 
 
 



11 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

Definition 2.3.9 (Q,:F, P). The standard deviation of a square integrable 
random variable X is defined as 

Std[X] = v'Var[X] 

The conditional variance and its properties follows directly from that of 
the conditional expected value: 

Definition 2.3.10 (Q,:F, P) . Fo?' any square integrable random variable X, 
the conditional expected 'value of X given a (J' - algebra H ~ :F, is 

VariX IH] - E [(X E[X IHJ)21 H] 
- E [X2 2XE[X IH] + {E[X IH])2 IH] a.s. P 

- E [X21 H] - {E(X IH])2 a.s. P 

Theorem 2.3.11 (Q,:F, P) . For a square integrable random 'variable Z and 
a, c E R, the conditional variance oj K = aX+c, gi'uen a (J' -algeb-ra H ~ :F, 
is 

Var{K IH) =a2Var(X IH) a.s. P 

Proof. Equalities almost surely 

Var(K IH] 

_ E [{K)21 H] - (E[K IH])2 

- E[a2X2 + 2acX +c2 
1 H] (E(aX I H] + c)2 

- a2E[X21 H] + 2acE [X IH] + c? - a2 (E[X IH])2 
2-2ac(E[X IH]) - c


_ a2 E[X2 IH]- a2(E(X IH])2 


- a2Var(X IH) . 


• 
Theorem 2.3.12 (Q,:F, P) .For t'wo square integrable random variable X 
and Y and a, b, c E R, the conditional variance of Z aX + bY + c 

Var(Z IH) = a2Var{X IH)+b2Var(Y IH)+2abCov{X, Y IH) a.s. P 

Proof. From theorem f.3.11. Equalities almost surely P 

 
 
 



12 CHAPTER 2. 	 SOME PROBABILITY ESSENTIALS 

Va'r [aX + bY + c IH] 


- Var[aX +bY IH] 


E [{aX +by)21 H] - {E[aX +bY IH])2 

a2E [X21 H] +2abE[XY IH] +b2E [y21 H] 

- {aE[X IH] + bE[Y IH])2 

a2E [X21 H] + 2abE[XY IH] + b2E [y21 H] - a2(E[X IHl)2 

-2abE[X IH]E[Y IH]-b2 (E[Y IH])2 

a2Var(X IH) +b2Var{Y IH) 

+2ab(E[XY IH]- E[X IH]E[Y IH]) 

In the next section covariances will be properly defined, for now assume 

CO'v{X, Y IH) 	= E[XY IH]- E[X IH] E[Y I H]. 

Thus 

Var [aX + bY + c I H] 

a2Var(X IH) +b2Var{Y IH) + 2abCov(X, Y IH) 

• 
2.3.4 Covariance and Autocovariance 

Definition 2.3.13 (O, F, P). For two square integmble mndom 'variables 
X and Y in our probabil'ity space, the covariance between X and Y is 

cov [X, Y] 	 - E [(X - E [Xl) (Y - E [V])] 

= E[XY]- E[X]E[Y] 


Definition 2.3.14 (O, F, P). Fo'r a sqUa1'e integmble stochastic process 
(Xt)tEN' adapted to F, the covariance between X t and X t- k for any t, kEN 
is 

cov tXt, Xt-k] 	 = E [(Xt - E tXt]) {Xt-k - E [Xt-kDl 


= E [XtXt- k] - E [Xt! E [Xt- k ] 


The covariance between elements of the same stochastic process is called the 
autocovariance. 

The conditional covariance and autocovariance can be defined in a sim­
ilar fashion as the conditional variance, bearing in mind that conditional 
covariances are random variables. 
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2.3.5 Correlation and Autocorrelation 

Definition 2.3.15 (n,:F, P). For two squam integrable random variables 
X 	 and Y the cormlation between X and Y is 

cov[X, Y]
cor [X, Y] 

vvar [Xl var [Y] 

Definition 2.3.16 (O,:F, P) . For a square integrable stochastic process 
(Xt)tEN' adapted to:F, the cormlation between X t and Xt-k for any t, kEN 
1.8 

The correlation between elements of the same stochastic process is called 
the autocorrelation. 

2.3.6 Lag 

Definition 2.3.17 Consider a stochastic process, say (Xt)tEN' At any time 
step t a lag of size k is an integer that represents the process at time t k, 
Xt-k. 

2.3.7 Higher Moments 

Definition 2.3.18 (O,:F, P). The rth moment of a random tlariable X 
(about its mean) is 

E[(X -E[X]n 

The first moment of a random variable is defined as its mean. The 
second moment of a random variable is its variance. The second moments 
of a stochastic process also include the autocovariances. The third moment 
of a random variable is skewness and the fourth is kurtotsis. For a stochastic 
process (Xt)tEN the set of rth moments can be defined as 

2.3.8 Stationarity 

Definition 2.3.19 A stochastic process is called stationary if all of its mo­
ments are constants. 

Definition 2.3.20 A stochastic process is called weakly stationary if its first 
and second moments are constant. This means that its mean is constant and 
for every lag k and time t the CO'v [Xt, Xt-k] is a constant. 
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2.4 	 Cumulative Distribution Function and Proba­
bility Density Function 

Definition 2.4.1 The (cumulat'i've) distribut'ion funct'ion (cdf) of a random 
variable X : n --7 lR is defined as 

F(x) = 	P{X ~ x} 

Theorem 2.4.2 The cdf F of a random variable X : n --7 R has the fol­
lo'wing properties 

1. 	 0 ~ F ~ 1 

2. lim F(x)=Oand UmF(x)=1
x--+-oo X-+OO 

3. 	 F is right-cont'inuous, F (x) = lllnxn _ x F (:r.n ) for a decreasing se­
quence Xn 

4. 	 F is 'increasing. 

Proof. See Brzezniak et al. [7j. • 

Theorem 2.4.3 If 9 : R --7 R is integrable then 

E [g (x)] = i: 9 (x) dF (x) 

Proof. A result of exercise 1.7 in B1'zezniak et al. [7j. • 

Theorem 2.4.4 A measurable function f (x) ~ 0 on R such that for any 
Borel measurable set B 

P {X E B} = is f (y) dy 

is called the (probability) density funct'ion (pdf) of X. The pdf can in par­
ticular also be written in terms of the cdf of X, F 

F(x)= i~f(Y)dY 

Proof. See Brzezn'iak et al. [7j. • 

Theorem 2.4.5 If X has a continuous pdf f then 

d 
dxF(x)=f(x) 


Proof. A result from the fundamental theorem of calculus.• 
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2.4.1 Joint Continuous Distributions 

The joint distribution of a k-dimensional random variable, 

is a measure Px on ~n such that for any Borel set, B E ~n 

Px (B) = P {X E B} 

If the random variables of X are independently distributed then 

k 

Px (B) = IIP {Xi E Bi } 

i=l 

where 

Definition 2.4.6 The joint probabilUy density Junct'ion (joint pdJ) oJ a k­
dimensional random variable, 

is a Borel Junction 

J (Xl, X2, •• " Xk) : ~n --i- ~ 

such that 

Px (B) =1J (tt, t2, .." tk) dtl ... dtk (2.1) 

Definition 2.4.7 The joint cumulative distribut'ion function (joint cdJ) oJ 
a k-dimensional random variable, 

'is 

F (Xl, ... , XI.) = P [Xl ~ Xl, ... , XI. ~ XI.] 

If the random variables of X are independently distributed then 

and 

which follows directly from the case of independence of Px . 

 
 
 



CHAPTER 2. SOME PROBABILITY ESSENTIALS 	 16 

Theorem 2.4.8 The joint cdf of a k-dimensional random 'variable X can 
be written in term.s of the joint pdf of as follows 

(2.2) 

Proof. From definition 2.4.7 and the fact that (-00, Xi} is a Borel set 
for every applicable -i it is clear that the joint cdf of X is a special case of 
the joint probability of X. Equation 2.2 follows directly from 2.1. • 

Theorem 2.4.9 If X, Y E IR are independent random 'variables and 9 (x) 
and h (y) are functions then 

E [g (X) h (Y)] = E [g (X)] E [h (Y)] 

and 

cov [g (X) , h (Y)] = 0 

Proof. 	With a joint pdf f (x, y) 

E[g(X)h(Y)] f:f:g(X)h(Y)f(X,Y) dxdy 

- !:!:g (x) h(-y) fdx) h (y) dxdy 

due to independence. The cdfs of X and Y are It and h respectively, then 

E[g(X)h(Y)] - f: h(Y)h(Y) !:g(X) It (x) dxdy

1:g(x) it (x) dx1:h (y) h (y) dy 

E [g (X)] E [h (Y)] 

The covariance can be expressed as 

cov [g (X), h(Y)] 
E [g (X) h (Y)] - E [g (X)] E [h (Y)] 


- 0 


• 
2.5 	 The Normal Distribution and its Moment Gen­

erating Function 

2.5.1 The Normal Distribution 

The normal distribution, the most frequently used statistical distribution, 
was first published by Abraham de Moivre (1733). 

 
 
 



17 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

A normal random variable X E R, with mean J.L E R and variance 
a2 E R+ is denoted by 

The probability density function (pdf) of the normal distribution is 

f (x; Jl, u') = ;';u exp [-Hx ~ " )'] 

Another way to define the pdf in terms of the probability space (Q,:F, P) is 
as follows 

The cumulative distribution function (cdf) of the normal distribution is 
given by 

P{X ~ z} 

hX91 ;';u exp H(x ~ p)'] dx 
L ;';U exp [-Hx ~prj dx 

The standard nonnal distribution, frequently used in this dissertation 
is defined as the normal distribution with zero mean and a variance of 
one, N (0, 1). The standard normal distribution's pdf is 

f(x;0,1) = vk exp (_ x:) 

and cdf is 

j z 1 (x2)
F(x;0,1) = --exp -~ dx. 
-00 v'21r 2 

2.5.2 Moments of the Normal Distribution 

Consider a normally distributed random variable X rv N (J.L, ( 2 ) with prob­
ability density function 

then the random variable 

y = X - J.L rv N (0,1) 
a 
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Definition 2.5.1 The moment generating function of X is defined as 

Theorem 2.5.2 The moment generating function of X rv N (It, 0-2 ) is 

Mx It) = exp (I't + (~)2) 

Proof. 

• 
Theorem 2.5.3 Moments about the mean of X rv N (It, 0-2 ). If r is even 
then 

(2r)!0-2r
E[(X - Itt] 

r!2T ' 

if r is odd then 

E[(X - Itn 0 
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Proof. 	The 

Mx-p 	 = exp (~}2) 
(~)n 

- L 
00 

n! 
n""O 

00 (12nt2n 

- L: 	2'ln! 
n=O 

00 a2n t2n (2n!) 


- ~ 2nn! (2n!) 


00 (12n (2n!) t2n 


~ 2nn! (2n!) 


The second line is due to the Maclaurin series expansion for e. Note that 
only positive integers are contained in the last line Theorem 2.5.1 in [2] 
states that 

Mv (t) 

for a random variable V. Thus 

E [(X J-L)"] = 0 

if r is odd and 

E [(X - J-Lt] 
zr/2 (r/2)! 

if r is even. _ 
The following characteristics of random variable X '" N (J-L, (12) follows 

from theorem 2.5.3: 

1. 	The skewness of X is 


E [(X J-L)3 ] 0 


2. 	 The kurtosis of X is 


(144! 

E[(X 	 J-L)4] 22 (2)! 


3/74 


and thus if (12 1 


E [(X - J-L)4] 3 
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2.5.3 	 Chi-square Distribution 

Definition 2.5.4 If random variable Y is chi-square distrib'uted with v de­
grees of freedom then 

'where the chi-sq'uare di.strib~tted 'is a special case of the gamma distrib~ttion 

Theorem 2.5.5 A random variable Y '" X2 (v) has the following charac­
teristics 

1. Probability density function 

where r 	is the gamma function 

100 

r (/'b) = tk-1e-tdt 

for all r;, > O. 

2. 	 Moment generating function 


My (t) = (1 - 2t)-v/2 


3. Moments about the mean 

4. 	 E:l:pected value 


E[Y] =v 


5. Variance 

Va'r[YJ = 2v 

Proof. Results follow from the gamma distribution. See Bain [2/ • 
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Theorem 2.5.6 If 

then 

Proof. The moment genemUng fund-ion of Z2 

E [etZ2
AIZ 2 - ]

1:~ exp (tz
2)exp ( _~z2) dz 

00 _1_ exp (tz2- !z2) dz 
-00 ..;21r 2 

00 

1
= 1 1 y"['=-2t exp (z2 (1 - 2t)) dz 

V1 - 2t ..j2ii 2-00 

1 

which is the moment genemting function of the chi-square distribution. • 

Definition 2.5.7 If Z2 rv X2(1) then 

is noncentml chi-square distributed with 1 degree of freedom and non-cen­
tmlity pammeter 'x. 

Theorem 2.5.8 The expected value of a noncentml chi-square distributed 
random variable is 

E [(Z - ,X)2] = 1 +,X2 

where Z2 rv X2 (1). 

Proof. 

E [(Z - ,X)2] 	 _ E [Z2 - 2,XZ + ,x2] 


- E[z2]-2'xE[Zl+,X2 

1 +,X2 

since E [Zl = 0 because Z rv N (0,1).• 

\ \ lo 54 2. 50 2. 

b' &9 C?u 3 W \ 
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Theorem 2.5.9 The expected value of a noncentral chi-square distributed 
random. 11ariable is 

E [(Z - A)4] = 3 + 6A2 + A4 

'where z2 tV X2 (1). 

Proof. 

E[(Z-A)4] _ E[(Z2_2AZ+A2)2] 

_ E [Z4 - 4Z3A+6Z2A2 _ 4A3Z + A4] 

_ E [Z4] - 4AE rZ3] +6A2E [Z2] - 4A3E [Z} + A4 

3+6A2+A4 

This is done by remembering that 

Z tV N(O, 1) 

thus the expected value of Z is 

E[Z] 	 0 

the skewness is 

and the kurtosis is 

• 
2.6 	 The Return Series and Lognormal Distribu­

tion 

2.6.1 Returns Series 

The financial value of a company or fund is represented by its (stock) price. 
The stock price has a clear, time dependent trend. It is hard to model se­
ries with trends, at least in an objective, scientific sense. To remove this 
trend, the financial time series is transformed into a series with "manage­
able" mean, a retums series. This is done with difference equations. 

It will be proved that the returns series still has the same variance as the 
original series. The returns series is of great importance in risk management 
and derivatives pricing. 
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Figure 2.1: The stock price of Sanlam from 1999/ 01 / 05 to 2002/04/19. 
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Figure 2.2: The returns series of Sanlam from 1999/ 01/ 05 to 2002/ 04/19. 
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2.6.2 The Arithmetic Returns Series 

Definition 2.6.1 The a'rithmetic returns series, faT process (St) is defined 
as 

St - St-l
Tt = 

St-l 

2.6.3 The Geometric Returns Series 

The geometric returns series, for process (St) is defined as 

Tt lnSt - lnSt-l 

- In(~)
St-l 

The relationship between the geometric and arithmetic series, by the Taylor 
series expansion, are as follows: 

- In (~-1+1)
St-l 

In (St - St-l + 1)
St-l 

St ­ St-l 
~ 

St-l 

if I8t-8t -1 I< 1. 
8t-1 

The geometric returns series will be considered in this dissertation. 

Theorem 2.6.2 If we assume that a returns se'ries is normally distributed 
then the log of the stock process is also normal, and trice veTsa. 

Proof. 

In (~~) + In (~~) + In (~~) + ..,+ In (S~~l) - In (~~) 
lnSt -lnSo 

The sum of normally distributed random variables are also normal and we 
assume that So is known. • 

2.6.4 Lognormal Distribution 

(n, F, P). A random variable X E R, with mean J.L and variance (12 is said 
to be lognormally distributed if In(X) is normally distributed. 

It's often observed that stock prices are lognormally distributed. In 
chapter 5.4.1 we deduce, given the assumed process 5.10, that a stock price 
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St can be defined in terms of an initial stock price So and Brownian motion 
vVt , 

St = So exp ( (IL - ~(12) t + (1Wt ) (2.3) 

Taking the logarithm on both sides of equation 2.3 yields 

InSt rv N (In So + (1-£- ~(12) t,(12t ) 

The return on stock St is defined as In (l~l) which clearly has the distri­

bution 

In ~ rv N (IL - .!.(12, (12)
St-l 2 

It is possible to test with the ,Jarque-Bera test for normality whether the 
return is in reality normally distributed. 

2.7 Hypothesis Testing2 

Hypothesis tests are done to verify whether the properties of an observed se­

ries, say {et}tEN' are consistent with assumed properties under a model The 
properties that need to be tested include tests for normality, autocorrelation 
and heteroscedasticity. 

The formal procedure for conducting a hypothesis test involves a state­
ment of the null hypothesis and an alternative hypothesis. The sample 
estimate OIl which the decision to reject or not reject the null hypothesis 
comes from the sample space. The Neyman-Pearsoll methodology [20] in­
volves partitioning the sample space into two regions. If the sample estimate 
falls in the critical region, the null hypothesis is rejeeted. If it falls in the 
acceptance region, it's not. 

2.7.1 .Jarque-Bera Test for Normality 

The Jarque-Bera tests whether observations are not likely to have come from 
the normal distribution. 

Define for n observations the following 

(2.4) 


(2.5) 


2Suggested reading; [1], [2], [18] and [24J. 
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1~:!4 
- L-Ct (2.6) 
n t=1 

In equations 2.4 to 2.6 are the second, third and fourth moments of €t 
respectively. 

The skewness is defined as 

itaskewne.'Js = 8 = -:::"'2 
(J' 

and the kurtosis as 

. . ft4 
kurto.'J'ts = k = ~ 2 

(J' 

The Jarque-Bera statistic is defined as 

JB = 

The null hypothesis is 

Ho : s 0 and k = 3 

against the alternative 

HI ; -reject Ho 

Remark 2.7.1 Many text books and computer packages calculates the ad­
justed kurtosis .• that is the k 3. 

2.7.2 Autocorrelation 

Durbin-Watson 

The most famous test for autocorrelation i"3 the Durbin-Watson test 

No exact distribution for this test i"3 available. 
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Ljung-Box 

For a series with m observations the Ljung-Box statistic over K lags is 

K -2 

m (m + 2) L 11:~ k '" Xl (K) 
k=l 

where p~ is the observed autocorrelation at lag k given by 

"t (~2 -2) (~2 -2) _ L."r=k+l Ct - (J' Et-k - (J' 

Pk = "t (202 _ -2)2
L."r=1 "t (J' 

where Et is the observed return at time t and 0-2 is the sample variance. 

2.7.3 Volatility Clustering 

Many financial time series and also the Black-Scholes option pricing model 
make the assumption of constant volatility. Empirical evidence indicates 
that volatility of financial instruments tends to be dynamic. Volatility lev­
els tend to alternate between periods of higher volatility and more tranquil 
periods. This clustering together of volatility levels for a period of time is 
called volatility clustering. Volatility clustering is due to the strong autocor­
relation of squared returns or absolute returns. The Box-Pierce Lagrange 
multiplier test for the significance of first-order autocorrelation in squared 

t ~2 . re urns, Ct, IS 

"T ~2~2 
L."t=2 C t C t-l 


"T ~4 

L."t=2 Ct 

The Lagrange mUltiplier tests are chi-squared distributed with T degrees of 
freedom. 

2.7.4 The Leverage Effect 

Volatility tends to be higher in a falling market, than in a rising market. 
Similarly volatility tends to be higher after a large negative return than 
after a large positive return, for an individual stock. The reason for this is 
that when a stock price falls, the leverage or debt/equity ratio increases. In 
laymen's terms, the part of. the company's assets "owned" by the creditors 
increases, leaving less for the shareholders. This causes more uncertainty in 
the stock price. 

An asymmetric version of the Lagrange multiplier test is used to inve&­
tigate the influence of the leverage effect, and asymmetric returns levels in 
general 

"T ~2~ 
L."t=2 Ct ct-l 
"T ~2~2 
L."t=2 Ct Ct-l 
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where et is the observed return at time t. 

 
 
 



Chapter 3 

An Introduction to Time 
Series Models 

3.1 Objectives1 

The purpose of this introductioll to Autoregressive Moving Averages (ARMA) 
time series is to provide enough background to the reader to understand and 
appreciate the more advanced models in later chapters. For a more complete 
discussion on ARMA time series see Ferreira [16J. 

3.2 Preliminaries 

3.2.1 White Noise 

A white noise series is often part of a time series in the form of all "error", 
an unpredictable randomness. 

Definition 3.2.1 A white noise series (et) has the follo'wing chamcteristics 
for every t, s E 'Ii 

1. E[ed = 0 

2. E [e;] = 0-
2 

3. E [etesJ = 0 for 8 =1= t 

The white noise process is thus stationary. 

lSuggested reading: [1) and [18J 

29 
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3.2.2 Linear Time Series 

Definition 3.2.2 (n, F, P). A linear time series at time t consists of a 
Ft-l pred'ictable part plus a random part, that is for a time series 

where the expected value of the white noise process, Vt where 

3.2.3 Lag Operators and Difference Operators 

Definition 3.2.3 A lag operator L is defined by 

LkZt = Zt-k 

for all k E IR+ . 

Definition 3.2.4 A difference operator ~ i.5 defined by 

~kZt = Zt ~ Zt-k 

fo?' all k E IR+. 

Example 3.2.5 The power of a difference operator ~k is different from a 
higher order difference operator ~k' 

~2Zt 	 ~ (Zt Zt-l) 


.6.zt AZt- 1 


Zt 2Zt- 1 + Zt-2 


Definition 3.2.6 In'oertibility of a time series: A time series (Zt) is in­

'vertible if it is possible to write it in terms of an infinite combination of 

lags. 


3.3 Autoregressive Process (AR) 


Definition 3.3.1 For a stochastic process (Zt) and white noise pmcess {et}, 

the AR (P) process is defined by 


<Pp (L) Zt = et 

with 

(3.1) 

L is a lag operator and p the order of the autoregression polynomial 3.1. 

The AR (P) process (Zt) can thus be written as 

Zt =cPIZt-l + <P2Zt-2 ••• + cPpZt-p +et 

 
 
 



CHAPTER 3. AN INTRODUC'I'ION TO TIME SERlES MODELS 31 

3.4 Moving Averages Process (MA) 

Definition 3.4.1 For a stochastic process (Zt) and white noise process (et), 
the lY[A (q) process is defined by 

with 

(3.2) 

where L is a lag operntor and q the order of the moving averages polynomial 
3.2. 

The M A (q) process (Zt) can thus be written as the sum of past errors 

(3.3) 

The lag operator thus acts on the white noise process not on Zt. 

3.5 Autoregressive Moving Averages (ARMA) 

Definition 3.S.1 For a stochastic process (Zt) and white noise process (et), 
the ARMA (p, q) process is defined by 

urith 

9 q(L) - 1+ (hL + (hL2 + ... + OqLq 


(J)p (L) - 1 - 4>IL - 4>2L2 4>,):1 


where L is a lag operntor, p the order of the autoregression polynomial and 
q the order of the moving averages polynomial 

The AR.MA(p,q) process (Zt) is 

Zt - 4>IZt-l + 4>2Zt-2 + ... + 4>pZt-p +et + 91et-l + ... + 9qet-q 
p q 

- 2: 4>i Zt-i + 2: 9i et-'i 

i=1 i=1 

where 00 = 1. It is clear that the ARMA (p, q) process, is a combination of 
an AR(P) and an MA(q) process. 
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3.6 Stationarity of ARMA Processes 

The results in this section was proved in Ferreira [16]. 
An M A (00) process 

is stable if and only if its 'Weights are square summable 

The AR (p) process 

(3.4) 


can be rewritten in terms of the Vector Autoregressive process denoted 
by VAR(I) 

Zt 

Zt-l 


Zt-2 


Zt-(p-l) 

-


<Pl <P2 <Pp-l <Pp 
1 0 0 0 
0 1 0 0 

0 0 1 0 

Zt-l 

Zt-2 

Et 

0 
Zt-3 + 0 

Zt-p 0 

or 

et = Fet-l + Vt 

From this equation we can obtain 

et = Fteo +F 
t

-
1 

€1 + ... + F€t-l +Vt 

Theorem 3.6.1 If all eigenvalues of the matrix F lie within the unit circle, 
IAI < 1, then 

L00 

Fj (I - F)-l (3.5) 
j=O 

where 1 is the applicable identity matrix and the right-hand side of equation 
3.5 is the in'lIerse of I - F. 

Proof. Ferreira [16]. • 
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Theorem 3.6.2 If all the eigenvalues of the p X P matrix F lie within the 
unit circle, then 

(Ip F)-1 

exists and its element (1,1) is 

1 

1 - 4>1 4>2 - ... - 4>p 

Proof. Ferreira [161. • 

Corollary 3.6.3 If all the eigenvalues of F are less than 1 in magnitude 
then Fi decays to zero as j increases to ·infinite. A time series with such a 
property is said to be stable. 

Process 3.4 can be rewritten as 

<1> (L) Zt et 

where 

(3.6) 


Definition 3.6.4 The characteristic function of the process 3.6 is defined 
by 

(3.7) 


We can then combine the ideas of the root of polynomial 3.7 and the 
eigenvalues of F. 

Theorem 3.6.5 Factoring the characteristic function is equivalent to find­
ing the eigenvalues of the matrix F 

1- <pIL - (hL2 ... - 4>pLP = (1- AIL)(I- A2L) ... (1 ApL) 

Proof. ferreira [161. • 

Corollary 3.6.6 The process 3.4 is stable if all the eigen'llaiues ofF all lie 
inside of the unit circle. 

Theorem 3.6.7 The characteristic function () (L) of an AR (P) process can 
be written in terms of a characteristic function of a MA (00) process, say 
1r (L) 

<1>(L) =1r(L)-l 

Remark 3.6.8 Note that only <1> (L), the characteristic function of the au­
toregressive terms influence stabiUty. 

The results of this section is summarized as follows: 

Summary 3.6.9 An AR (p) process is stationary if and only if the eigen­
values of the characteristic function of that process lie inside the unit circle. 
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3. 'T Estimation of ARMA Parameters 

This section focusses on the maximum likelihood estimation (MLE) of the 
ARMA regression model. If we assume that the error process 

Et = Zt - (<PlZt-l + ... + <PpZt-p +01Et-l +.. -+ OqEt-q) 

is normally distributed. Then the likelihood function of the ARMA process 
is 

f* (B) - IT --=l=exp (- [ci/lTE ]2 /2) 
i=p+l 

where lT~ is the unconditional (stationary) variance of the error process (Et). 
The product is from the (p + l)th observation to the nth since there are p 
parameters. Define n' =n - p. 

Define the parameters matrix by 

B = (<PI' <P2' ... , <Pp, Ot,. --, Oq)' 

The loglikelihood function (the In of f* (B)) is 

1 n 


I (B) = - 2(12 . L e~. 

E l=p+l 

The MLE parameters are those that maximizes f* (B) or I (B) over a 
number of Observ'dtions of (Et). Sillce only the error process is variate in 
tenus of the parameters B, maximizing I (B) is equivalent to minimizing 

n 
E c~. 

i=p+l 

To comment on the significance of the MLE parameter fit, define the 
information matrix 

1=- lim E [~fPI(B)] 
n-+oo n' oBoe' 

The asymptotic distribution of MLE estimators is 

B '"" N (Bo, ~,rl) 
with I positive definite in the region of the optimal Bo­

For the second derivative of I (B) define 

s 021(B) 

oBoe' ­
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thus we can approximate the covariance matrix of 8, 

Va1'(8) 

 
 
 



Chapter 4 

Univariate Volatility 
Processes 

4.1 Objectives1 

A univariate model assumes only one source of randomness, in the 
case of volatility models the source of randomness is the conditional 

returns. Define, under measure P t the conditional returns as 

Ct ln~ 
8t-l 

In this chapter two of the main univariate volatility processes are dis­
cussed. The Exponentially Weighted Moving Averages (EWMA) process is 
discussed in section 4.2 and the various GARCH processes is discussed in 
section 4.3 and further. This chapter includes a discussion on Asymmetric 
GARCH in section 4.7. 

4.2 Exponentially Weighted Moving Averages 

Weighing the M A (q) process in equation 3.3, by the sum of its parameters 
yields 

z - Ct + >'ct-l +>.2ct_2 + .. +>.qct-q 
(4.1) 

t ­ 1 + >. + >.2 + .. + >.q 

where OJ = >.i and>. E (0,1). 
Taking the limit of 4.1 to infinite 

_ lim Ct +>'ct-l + >.2ct_2 + .. + >.qct-q
lim Zt 

q-oo q--oo 1 + >. + >.2 + .. + >.q 

(1 >.) L
00 

>.iCt_i (4.2) 
i-I 

1 Suggested reading: [IJ, [18) and [23J. 
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since A E (0,1). 
Equation 4.2 is the basis of the EWMA conditional variance process, 

00 
~2 ut - (1- A) LAi-lC:~_i 

i=l 
00 

- (1- A) LAi-1c:Li + (1- A) er-l 
i=2 

00 

- A(1 - A) LAi
-

2e:Zt_ 1)_i + (1- A) eLl 
i=l 

- AU~_l + (1- A) eLl 	 (4.3) 

with A E (0,1). 
Alexander [1] interprets the smoothing constant A in the following two 

ways: 

1. 	The term, (1 A) e~_l determines the intensity of reaction of volatility 
to market events. A low value of A will give a process highly reactive 
to shocks. The effect of these shocks will quickly die away. Lower 
values of A is mostly used for short term forecasts. 

2. 	Term Aut I determines the persistence in volatility. A high Awill give 
a process that persists at a certain level of volatility, despite recent 
shocks. 

Parameters of the EWMA process can be estimated by minimizing the 
root mean square error or similar method. The accuracy of forecasts are 
however difficult to assess. 

4.2.1 RiskMetrics 

The EWMA model is also the basis of volatility forecasts in the RiskMet­
rics system by J.P. Morgan. The RiskMetrics model has the following to 
distinctive features: 

1. 	The parameter A is fixed, A = 0.94. 

2. 	 The definition of volatility is different than the standard definition of 
volatility. Under the assumption of normality, the RiskMetrics volatil­
ity is the 95th percentile or 1.65 times the standard deviation. 
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4.3 	 Generalized Conditional Autoregressive Con­
ditional Heteroscedasticity 

The Autoregressive Conditional Heteroscedastic (ARCH) process was intro­
duced by Engle (1982) ~14]. This process allows for the change of conditional 
volatility over time as a function of past errors. 

The Generalized Autoregressive Conditional Heteroscedastic (GARCH) 
process by Bollerslev (1986) [6] is the most popular and widely used sto­
chastic volatility measure and forecasting method. 

The GARGH(p,q) process is discussed in section 4.4 below. It will be 
shown that this discussion encompasses the ARCH process in a simple way. 
The GARCH process is also the basis for many subsequent models. 

4.4 	 GARCH(p,q) 

The GARCH(p, q) process under conditionally normal, discrete time errors, 
is defined by 

Et :Ft - 1 ,...., N (0, un 
q p 

'" 2 '" 2ao + L.." aiEt_i + L.." l1iu t-i (4.4) 
i=1 i=l 

where p, q are nonnegative integers, a;, fJj are nonnegative real numbers for 
every applicable i, j and 00 is a positive real. 

For p, q = 0, the GARCH process is sinlple white noise. For p = 0, q =f=. 0 
the process is an ARCH process. Thus, the GARCH process is to volatility 
what the ARMA process is to the AR process, for means. 

Any GARCH(p,q) process can be defined as a GARCH(l,l) process. 
Define 

Uf = 00 + A (L) Et + B (L) uf 

where for lag operator L, 
q 

A(L) 	 - LOiLi 
i=l 

P 

B(L) 	 = LfJiLi 
i=::l 

4.4.1 	 Stationarity 

Theorem 4.4.1 A GARGH (p, q) process is stationary, with (long-term) 
'tlariance 
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for any t if and only if A (1) + B (1) < l. 

Proof. For any t 

E [un = E [var [et l.rt-l]] 
= E [E [e; l.rt-l]] 

since we assume that E [et I.rt-l] = O. It follows that 

E [£1;] = E [e;J 
by the tower property of conditional expectation. Since e t is white noise, we 
have that 

var [et] = E [Ct2] = £12 

for all t, where £12 is the long-term variance of ct- It follows directly then 
that 

and 

E [£1;] = E [ULI] 

The expected value of the CARCH (p, q) process 


q p 


£1; = ao +2: aicLi +2:,oiuLi 
i=l i=l 

is 

q p 

- ao +2:a i E [eLi] + 2:,oiE [U;_i] 
i=l i=l 

q P 

- ao +L aw2+ L,oiU2 
i=l i=l 

It follows that 

or 
2 ao


£1 = (~q ~P)
1 - 6i=1 ai - 6i=1 ,oi 
For £12 to be finite it's required that 

q p 

Lai+ L,oi < 1 

• 
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4.4.2 Stylized Facts 

In the financial literature four properties of returns series have been coined, 
stylized facts. These stylized facts are volatility clustering, mean reversion, 
excess kurtosis and the leverage effect. The leverage effect is discussed in 
section 4.7. 

A stationary GARCH process captures these stylized facts in the follow­
ing ways: 

1. 	Volatility clustering is described in section 2.7.3 as strong autocorrela­
tion of squared returns. Thus if O'LI is high (low), then at will prob­
ably also be high (low). The long-term variance of a GARCH (p, q) 
process was provided in theorem 4.4.1. The long-term variance of a 
GARCH (1,1) process is 

(4.5) 

thus 

no == V(1-a-11) 

and 

equivalently, 

Taking expected value yields 

E [0'; - V l.1"t-2] E [a (eLl V) + 13 (aLl - V) l.1"t-2] 
- aE [ELI V 1 .1"t-2] + 13 (aLl - V) 

- (a + 13) (aLl - V) (4.6) 

since E [ct-l l.1"t-2] = 0 and Var [Et-l l.1"t-2] 0';-1' This equation 
can be rewritten as 

thus if aLl is large (small) then it's expected for at also to be large 
(small). 

2. 	 Mean reversion is the gradual return of variance levels, after a shock, 
to a long-term variance level. Equation 4.6 can be rewritten as 
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By repeating this relationship yields 

or 

(4.7) 


Since the GARCH process is stationary, a + f3 < 1. This means that 
the second term of equation 4.7 tends to zero, as k tends to infinity. 
Thus the expected value of the conditional variance tends to the long­
term variance level, V. 

3. Excess kurtosis in returns series can be described as kurtosis, see sec­
tion 2.5.2, larger than that of the normal distribution. In theorem 
4.4.1 above, we proved that for the CARCH (1, 1) process 

E ret] - E [ur] 
ao 

-
1 a-{3 

Bollerslev, see (6], proved that if 3a2 + 2a{3 + f32 < 1 the stationary 
fourth moment of e exi'3ts, 

E ret] = (1 

The stationary kurtosis is 

E [e1] 3(1- (a + {3}2) 
K= 2= 2 >3 

E [et] 1 - f3 - 2a{3 - 3a2 

thus the GARCH process is heavy-tailed (leptokurtic). 

4.4.3 Estimation of GARCH Regression Model 

This section focusses on the maximum likelihood estimation (MLE) of the 
GARCH regression model. The GARCH model in equation 4.4 may be 
written in terms of the following nonlinear regression model 

which is the means process of the error et, which is conditionally normal 
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where 

z'wt 

is the GARCH(p, q) process. The vector 

and parameter vector 

Define e as a compact subspace of a Euclidean space, with 9 = (b/,w') E e. 
Denote the true parameter values of by 0o, where 00 E irtl e. 

The likelihood function of et is the pdf of the error process et, written in 
terms of its parameters 

T 

r (O,O'n = n 1 2 e-[ct /ut}2/2 (4.8) 
t=1 y'21rO't 

since the conditional mean is zero and the process follows GARCH variance. 
There are T observations. 

It's computationally easier to take the In of equation 4.8. The loglikeli­
hood function is 

T 	 2
2) '"' 1 2 1 etf (O,O't = ,L..--2 ln O't --2 2 +constants (4.9) 

t=1 O't 

The constants will have no effect on later results, thus redefine 

T 	 2 
f (0, iff) = 	 I:-! lnu; _ ! e~ (4.10) 

t=1 2 2ut 

T 

- I: ld9) 
t=1 

where it (9) is the likelihood function of observation t. 
Differentiating h (9) with respect to the variance parameters yields 

8It 1 	 _20U; 1 2 ( 2)-2 8u~ 
- -20't ow + 2'E't Ut owow 
_ _I_out (ef _1)

2u; ow ut 
the second derivative 

O ) _1_ OUt 0 2 2 2 
ow8w' ( ut Ow 2ut Ow 2 (un 2 Ow ow' ut 

It = !!i2_ 1 OUt2[2] _ 1 ut OUt !!i 
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where 

aUf ~ /3 aht-i- = Zt +.L..J .- ­
8w i=l l aw 

Differentiating It (8) with respect to the mean parameters yields 

8lt = EtXt + 1 aut (E~ -1)
ab u1 2 (u;)2 ab Ul 

the second derivative 

8lt 

aMII 

where 

....2 q q 8u2 .a 
Vt '" "'/3 t-]8b = -2 .L..J CtjXt-jEt-j +.L..J j-m;­

j=l j=1 


4.5 Integrated GARCH 

The Integrated GARCH or I-GARCH process is defined as the standard 
GARCH (p, q) process defined in equation 4.4 where etl + /31 = 1, thus if we 
put /31 = A then 

u~ eto +(1- A)et-l + Autl 

where Et I:Ft-l rv N (0, un and clearly A E [0,1]. 
From the stationary variance of the GARCH (1, 1) process defined in 

equation 4.5, it's clear that the stationary variance of the I-GARCH process 
doesn't exists. I-GARCH processes are often encountered in foreign ex­
change and commodity markets. 

When the constant term eto °then the I-GARCH process is an EWMA 
process. 

The I-GARCH process can however by strictly stationary, this result 
follows from Nelson (see [18]). For the GARCH (1, 1) process 

u~ - 0'0 +act! + /3uF-l 


'" 2 /32
= 0'0 +aCt-lut-l Ut-l 
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where c:; IFt-l N (0, 1). Further f'V 

O'~ 0:0 + (o:e7.-1 + 13) O'tl 
0:0 + (ae;_l + 13) (0:0 + (aC:t_2 + 13) O'r-2) 

0'0 (1 + (O'C:;_1 + 13)) + (o:e;_1 + 13) (O'C:;_2 + 13) O't2 


where 0'6 is the first conditional variance. Nelson proved that the process is 
strictly stationary if 

for every applicable i. 

4.6 GARCH-in-Mean 

The ARCH-in-Mean (GARCH-M) process was introduced by Engle, Lilien 
& Robins in 1987. In thLq process the connection between returns and risk, 
represented by AR and GARCH processes respectively, is set. Risk averse 
investors are expected to demand higher returns 011 risky assets than on less 
risky ones. The GARCH process in this model is therefore fixed to a risk 
premium. This risk premium can be seen as the positive correlation between 
current return and conditional covariance. 

An example of an GARCH-M process is 

'Yt = cf>o + tPIYt-1 + ... + tPpYt-p + 9 (O'tl A) +et (4.11) 

where the q>-parameters are AR parameters and 9 is a flmction of a GARCH 
process, O't and the risk premia, A. The function is mostly taken as the 
identity or square root function of O't multiplied with A. 

The GARCH-M process by Duan, discussed in chapter 6, is 

St = St-l exp (rAt - ~O'; + AO't +c:t ) (4.12) 

or 

St 1 2
in -S = rAt - -20't + AO't +et 

t-l 

where, for an annual risk-free rate r and daily volatility measurements t, 
6.t = 1/252, since we aSBmne 252 trading days in a year. 


GARCH-M process can be extended by any other GARCH process. 
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4.7 Asymmetric GARCH and the Leverage Effect 

The leverage effect was reviewed in section 2.7.4. The jest of the leverage 
effect is: markets tend to react more volatile to negative information than to 
positive information. Symmetric GARCH processes react equally to positive 
and negative news. 

Asymmetric GARCH processes have an extra parameter, denoted by , 
in this dissertation, that skew returns information to market reaction. Here 
follow a few Asymmetric GARCH processes: . 

4.7.1 Exponential GARCH 

The Exponential GARCH (EGARCH) was introduced by Nelson (1991). 
The EGARCH process is given by 

lna~ ao+,8}lnatl +,82(lct-II-,ct-t} 

where ,82" > O. 
The upside of EGARCH is that it generally fits empirical financial data 

well, but the downside is that EGARCH has no analytic form for its term 
structure. 

4.7.2 Asymmetric GARCH 

The Asymmetric GARCH (AGARCH) process is by Engle and Ng (1993). 
The AGARCH process is as follows 

a~ ao + a (ct-l - ,)2 + ,8atl 

where ao > 0 and a,,8,, ~ O. 
The parameters of the AGARCH process is easier to estimate than that 

of the EGARCH process, and it possesses an analytical term structure. 

4.7.3 Glosten, Jagannathan and Runkle GARCH 

The Glosten, Jagannathan and Runkle GARCH (GJR) process (1993), is 
named after its founders. The process is 

2 _ f.l 2 2 (0)2at -aO+/Jat_l + aCt_1 +,max -Ct, 

where "y > O. 

4.8 Limitations of the GARCH Process 

The GARCH processes have the following limitations: 
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1. 	The GAROH processes perform best under stable market conditions. 
This process often fails to capture highly unexpected shocks, like mar­
ket crashes. Except for the direct effect of a sudden shock, it may also 
cause structural changes in the market. 

2. 	 It's often hard to decide which GAROH process fits empirical data the 
best. There is no single GARCH process that can adequately model 
all conditional volatility processes. The conditional volatility structure 
of underlying assets also occasionally changes, which necessitates the 
using a different process. 

3. 	The GAROH processes presented here depends on normal innovations. 
These proce.sse.'J often fail to fully capture the heavy tails observed in 
return series. Student's t-distribution and distributions like the Nor­
mal Inverse Gaussian distribution are often used as sources of innova­
tion. 

4. 	 Investment decisions mustn't be solely based on the results of the 
GAROH processes. Other sources of information and models must 
also be used to make such decisions. 
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Chapter 5 

Risk-Neutral Valuation 

5.1 Objectives! 

The aim of this chapter is to provide essential background to continuous­
time finance concepts and the standard risk-neutral valuation framework, 
which is the cornerstone of the Black-Scholes option pricing framework. The 
Black-Scholes framework is the benchmark pricing method for options. In 
this framework we assume constant volatility of stock returns which leads 
to the helpful property of a complete market model. 

Empirical evidence shows that the constant volatility assumption is gen­
erally incorrect. The GARCH option pricing model discussed in chapters 
6 and 7 is an attempt to include stochastic volatility into the option pric­
ing framework, the price is that the market model is no longer complete. 
Although volatility is generally stochastic, it is important to know the risk­
neutral valuation framework, since it is so widely used and because many of 
the concepts are used in incomplete market models. 

In this chapter only the bare skeleton of the risk-neutral valuation frame­
work is given. For more complete discussions see [25], [4], [32] or any of the 
many other similar books. 

An introduction to continuous time stochastic calculus is given in sec­
tion 5.2. The essential definitions of Brownian motion, martingales and Ito 
processes are given. The proofs of the Ito formula, absolute continuous mea­
sures and equivalent measures, the Radon-Nikodym theorem and Girsanov's 
theorem are excluded. 

Continuous-time finance concepts are briefly discussed in section 5.3. 
Section 5.4 is the core section of this chapter. The risk-neutral valuation 

framework is discussed under the assumption of constant volatility. Only the 
proofs vital for a better understanding of the model investigated in chapters 
6 and 7 are proved. Special attention is paid to the concept of the market 
price of risk. 

1 Suggested reading: [4], [13]. [17), [26] and [32J. 
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5.2 	 Essentials of Continuous-time Stochastic Cal­
culus 

5.2.1 	 Brownian Motion 

DeHnition 5.2.1 Brownian motion, W t , is a real-valued stochastic process 
satisfY'ing the following conditions: 

1. 	 Continuous sample paths: t ---+ l-Vt P a.s .. 

2. 	 Stationary increments: Wt+s - Wt has the same probability law for 
any t E R+ 'llarying and 5 E R+ ji.7:ed. 

3. 	 Independent increments: Wt+s Wt is independent of 


Ft = o-(Wu, 'u, :5 t) 


4. 	 Wo =0 P a.s. 

The probability law mentioned in point 2, will throughout this disserta­
tion be the Normal distribution with mean zero and variance 5. 

5.2.2 	 Martingales 

DeHnition 5.2.2 In discrete time: An adapted process, (Mt)tEI, where I is 
a countable index and E IlVltl < 00, ,is called: 

1. 	 A martingale if 

E(Mt IFs) = Ms Pa.s. 


for all s, tEl, s :::; t. 


2. 	 A super-martingale if 


E(Mt IFs) :::; Ms P a.s. 


for all s, tEl, s :::; t. 


DeHnition 5.2.3 In contin'uous time: An adapted process, (Mt)tER+, 'where 
R+ is the posit'i'ue real numbers and, E IlVItl < 00 is called: 

1. 	 A martingale if 

E (Mt IFs] = lVIs P a.s. 


for all s, tEl, 5 :::; t. 


2. 	 A super-martingale if 

E (Mt IFs] :5 Ms P a.s. 


for all 5, tEl, s :::; t. 
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5.2.8 Ito Process 

Definition 5.2.4 A stochastic process, X t , is called an Ito process if it has 
a.s. continuous paths and 

X t Xo + loT A{t,w)dt + loT B{t,w)dWt (5.1) 

where A{t,w) and B(t,w) are F t measumble, 

Tr IA(t,w)1 dt < 00 P a.s . 
./0 

and 

X t is also called the stock price process. In short hand notation 

dXt = A{t,w)dt + B(t,w)dWt 

Definition 5.2.5 A stochastic process, Bt, follows a geometric Brownian 
motion if 

dBt = BtJt(t,w)dt + Btu(t,w)dWt 

5.2.4 Ito Formula (in I-Dimension) 

Definition 5.2.6 Let X t be an Ito process as defined in equation {5.1}. For 
the function 

f(t,x) E d'([0,00) x JR) 

the Ito formula is given by 

af af 1a2 f 2 
df (5.2)&t dt + ax dXt + 28x2 (dXt) 

8f af 1 2 a2J 8J 
- (at + A ax + "2 B ax2 )dt +B axdWt (5.3) 

In integml notation this is: 

t aJ 8J 1 2&J lot afJt = fo + (- + A- + - B -)dt + B-dWt (5.4)loo &t ax 2 ax2 0 ax 
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5.2.5 Absolute Continuous 

Definition 5.2.7 In ou'r probability space (0, F, P), probability measure PI 
is said to be absolutely continuous with respect to P if 

P(A) = 0 => Pl(A) = 0 

for all A E F. This i.s sometimes denoted by 

PI «P 

Theorem 5.2.8 Probability measure Pt is absolutely continuous with re­
spect to P if and only if there exists an adapted random 'variable K such 
that 

PI (A) = i K(w)dP (5.5) 

Proof. See Lamberton and Lapeul'£! [26}. • 

Definition 5.2.9 The state price density is defined as 

dPI 
dP 

thus from integral ( 5.5 ) 

dPI =K 

dP 


Definition 5.2.10 In the probability space (0, F) t'wo probability measures 
PI and P2 are equivalent if 

Pl(A) = 0 # P2(A) = 0 

for all A E F.( See Lamberton and Lapeyre [26j) 

5.2.6 Radon-Nikodym 

Theorem 5.2.11 Let measure Q be absolutely continuous with respect to 
measure P. There then exists a random variable A ;::: 0, such that 

and 

(5.6) 


for all A E F. A is P - a.s. unique. Conversely, if there exists a random 
'IJariable, A with the mentioned properties and Q is defined by equation 5.6, 
then Q 'is a probability measure and Q is absolutely continuous with respect 
to P. 

Proof. See [25] .• 
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5.2.7 Risk-neutral Probability Measure 

Definition 5.2.12 A probability measure, Q, is called a risk-neutral proba­
bility measure 'iJ 

1. 	Q is equivalent to the "real world" measure P. 

2. 	 i = ~ (~:!: 1Ft) Jor all t, r E JR+. 

In this definition, Bt is the deterministic price process of a risk-free asset, 
where 

Bt Boexp (1t 

r(S)dS) 

The variable 1'(t) is the short rate. 

5.2.8 Girsanov's Theorem in One Dimension 

Girsanov's theorem is used to transform stochastic processes in terms of 
their drift parameters. In option pricing, Girsanov's theorem is used to find 
a probability measure under which the risk-free rate adjusted stock price 
process is a martingale. 

Definition 5.2.13 A Junct'ion J(s, t) E v(s, t) 'iJ 

J(t,w): [0,00) x n ---? R 

and the Jollowing holds: 

1. 	 (t, w) ---? f (t, w) is B x F -measurable, where B is the Borel set.o; on 
[0,00) 

2. 	 f (t, w) is adapted 

3. E [JI f(t,w)2 dt] < 00 

Theorem 5.2.14 Girsanov's theorem. Let X t E :R be an Ito process, oj the 
Jorm 

dXt = {3 (t, w) +O(t,w)dWt 

with t :::; T < 00. Suppose that there exist a v(t,w)-process 'u(t,w) E JR and 
a(t,w) E lR such that 

O(t,w)u(t,w) = (3(t,w) - a(t,w) 
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Since we are only looking at the one dimens'ional case 

(f3(t,w) - a(t,w»
u(t,w) 

O(t,w) 

We further assume that 

(5.7) 

Let 

(5.8) 

and 

dQ MrdP 	 (5.9) 

We 	then ha'ue that 

Wt= Wt +1t 'It (s,w) ds 

is a Bro'l1JTl,ian motion with respect to Q. X t in terms of Wt is 

dXt a(t,w) +O(t,w)dWt 

Mt 	,l.S a martingale. 
Proof. See Oirsano'U theo'rem II, Oksendal {27}. • 

Remark 5.2.15 Result 5.9 is equivalent to 

for all Borel measurable sets B on C [0, T]. 

5.3 Continuous-time Finance Essentials 

This section contains a short summary of vital continuous-time finance con­
cepts. For complete discussions on continuous-time finance see Bjork [4], 
Lamberton and Lapeyre [26] and Steele [32]. 
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5.3.1 Self-financing 

Definition 5.3.1 A tmding stmtegy is called self-financing if the value of 
the portfolio is due to the initial investment and gains and losses realized on 
the subsequent investments. This means that no funds are added or with­

dmttm from the portfolio. 


Theorem 5.3.2 Let </J = (HP, Ht)O<t<T be an adapted process of portfolio 

we'ights satisfying - ­

loT IHPldt+ loT H~dt < 00 Pa.s. 

Then the discounted value ofportfolio Vi (</J) = HPf3t+HtSt namely, lit (</J) = 
Vi (</J) /f3 can be expressed for all t E [0, T] as 

lit (</J) = Vo (</J) + lot HudSu Q a.s. 

if and only if </J is a self-financing stmtegy. 

Proof. The product of Vi (</J) and with the bond process f3 yields 

Vo (</J) + lot ~tdVi (</J) + lot Va (</J) d~t + (Vi (</J), ~t) 
- Va (</J) + lot ~t dVi (</J) + lot VB (</J) d~t 

since the process Jt doesn't have a stochastic tenn. Since we can express 

Vi (</J) as 

Vi (</J) = HPf3t +HtSt 

a change in Vi (</J) can be expressed by 

dVi (</J) = H?df3t + HtdSt 

thus 

• 
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5.3.2 Admissible Trading Strategy 

Definition 5.3.3 A trading strategy is admissible if it is self-financing and 
if the corresponding discounted portfolio, Vi -is nonnegative and SUPtE[O,T] Vi 
is square integrable under the risk-neutral probability measure Q. 

5.3.3 Attainable Claim 

Definition 5.3.4 A claim is attainable if there exists an admissible trading 
strategy replicating that claim. 

5.3.4 Arbitrage Opportunity 

Definition 5.3.5 An arbitrage opportunity is an admissible trading strat­
egy, such that the value of the portfolio at initial-ization, V (0) = 0 and 
E[V(T)] > O. 

5.3.5 Complete Market 

The completeness of a market can be defined in terms of the risk-neutral 
probability measure or in terms of the attainability of a contingent claim. 

Definition 5.3.6 Under no arbitrage conditions, the market model is com­
plete if and only if every cont-ingent claim is atta-inable. 

Theorem 5.3.7 The market model is complete if and only if there exists a 
unique risk-neutral probability measure. 

Proof. 	See Pliska [28].• 

5.4 	 Risk-Neutral Valuation under Constant Vola­
tility 

The aim of this section is to introduce the notion of risk-neutral valuation. 
The process of risk-neutral valuation is as follows: 

1. 	In section 5.4.1 a simple stock price process is evaluated. A solution 
to this process is found and its distribution is discussed. The solution 
is obtained by applying the Ito process. 

2. 	 The next step, in section 5.4.2, is to evaluate the discounted stock price 
process. We get the discounted stock price process by discounting the 
solution to the original process in step 1 and then utilizing the Ito 
formula in reverse order. 
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3. 	This new process still has a trend. The so-called risk-neutral measure 
and related Brownian process is derived with Girsanov's theorem in 
section 5.4.3. 

4. 	A wide-class of options are priced under risk-neutral valuation in sec­
tion 5.4.4. 

5.4.1 The Stock Price Process 

It is generally assumed that stock prices follow geometric Brownian motion, 
under the real world measure P, 

(5.10) 

where f.t E R and So, u E R+, Wt is Brownian motion and the process is 
defined on [0, T]. 

A solution, St, to this equation can be found with the help of Ito's 
formula. Let f(t, x) = In(x). It follows from section 5.2.4 that f(t, x) E 
0 2([0,00) X R). Fortunately, if we assume that St E R+, we can define 
f(t, x) E 0 2([0,00) X R+). From (5.4) we have2 

dln(Sd 1 dS ~2-dSt2 
St t 2Sl 
1 

- St (Stf.tdt +StudWt) 

112-'2 Sf (Stf-tdt +StudWt) 

1 2 
- f.tdt +udWt - 2u dt 

- (f.t - ~u2) dt +udWt 

which in integral notation is 

In(St) - In(So) + lot (f.t - ~u2) du + lot adWu 

- In(So) + (f.t ~a2) t + aWt 	 (5.11) 

The solution, St, is 

(5.12) 

21n this chapter the drift 1-', the variance IT and the risk-free interest rate r are all 
defined in terms of the same time period for instance 1 year. 

 
 
 



57 CHAPTER 5. RISK-NEUTRAL VALUATION 

Thus by assuming that the stock price follows the geometric Brownian 
motion described in equation 5.10, we are also assuming that the stock price 
process is lognormally distributed. There are ample empirical evidence to 
support this assumption. This means that from equation 5.11 

5.4.2 The Discounted Stock Price Process 

The next aim is to find a probability measure under which St StlBt is 
a martingale, called the risk-neutral probability measure. The discounted 
process 

(5.13) 

where Bt = ef't and r is the constant risk-free rate of interest. 
To get the stochastic process driving St = StC-rt, we again use Ito's 

formula 

df (t, St) - dSt 
- d (Ste-rt) 

-rSte-rtdt + e-rtdSt 

- -1'Stc-rtdt + e-rt (Stf..tdt + StO'dWt ) 

- (f..t - 1') Ste-rtdt + e-rtStO'dWt 

(f..t - r) Stdt + StO'dWt 

thus 

(5.14) 

In integral form this is 

5.4.3 Girsanov's Theorem Applied 

It's clear that the process St has a trend, (f..t - r) St. This trend causes St 
not to be a P-martingale (a martingale under probability measure P). 

The risk-neutral probability measure is fowld by employing Girsanov's 
theorem. By using the notation of the Girsanov theorem in section 5.2.8, 
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we can define, for the process Bt , 

(p. - r) St
u(t,w) = 

Note that a(t,w) == 0 (in the sense of theorem 5.2.14 ) and 'u(t,w) '1I. 

is a finite scalar sinc.e we assumed that q is strictly positive. The result of 
this is that condition 5.7 is met and u E v (t,w). 

lvIt was defined in equation 5.8, as follows 

M t exp ( -It,u(s,w)dWt-lt u2 (s,W)dS) 

In this case, for u(t,w) = 'lL 

The new mea.CJure, the risk-neutral probability measure can be defined as 

We can define a new process 

which is a Q- Brownian motion. The original process, Bt , in terms of Wt is 

(5.15) 

Remark 5.4.1 The scalar u(t, s) = (p~r) is also A;no'urn as the market price 
of risk. If p. = r then the investor is called risk-neutral and dP dQ. Under 
the measure Q we price instruments as if they are risk-neutral. 

5.4.4 Pricing Options under Constant Volatility 

Theorem 5.4.2 The option price at time t defined by a nonnegative, F t ­

measurable random 'llariable h such that 

is replicable and its 'llalue at time t is gi'uen by 

(5.16) 
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Proof. Lets assume there exists an admissible trading strategy fjJ = 
(HP,Ht)tE[o,T] replicating the option. The value of the replicating portfolio 
at time tis 

The discounted value of the process at time t is 

Yt 	 - e-l'tVt 


= Ht 
o+HtSt ­

Since no new funds are added or removed from the replicating portfolio, the 
portfolio is self-financing, by theorem 5.3.2 we can write the portfolio as 

by equation 5.15 we can write 

By the assumption of an admis..,ible trading strategy we have by theorem 
5.3.3 proved that SUPtE[O,T] Vi!? is square integrable. It can then be proven 
(see Lamberton and Lapeyre [26]) that if 

FP 	[SUPtE[O,T] V?] < 00 

then 

(5.17) 

Further, there exists a unique continuous mapping from the class of adapted 
processes with property 5.17 to the space of continuous :Ft martingales on 
[0, T]. We thus have that 

Yt = EQ [VT IFt ] 

and hence 

(5.18) 

which is a square-integrable martingale. 
We have assumed that there exists a portfolio replicating the option, an 

admissible trading strategy can easily be found by the use of the martingale 

 
 
 



60 CHAPTER 5. RISK-NEUTRAL VALUATION 

representation theorem (see Lamberton and Lapeyre [26]). By the mar­
tingale representation theorem there exists a square integrable martingale 
under Q with respect to :Ft such that for every 0 ~ t ~ T, 

and that any such martiugale is a stochastic integral with respect to W, 
such that 

where'11t is adapted to :Ft and 

By letting Ho M t - HtSt and Ht = 1Jd (aSt) we have foruld a self­
financing tradiug strategy. _ 

5.4.5 The Black-Scholes Formula and Implied Volatility 

The Black-Scholes formula for a European put option is a solution to equa­
tion 5.16 when 

Black and Scholes (1973) and Merton (1973) proved that this as a solutiou 
t.o t.he Black-Scholp~'1 pm-tial diJferent.i~ equat.ion (pde). A mart.ingale proof 
was later discovered. For the derivation of the pde proof for this fomlUla see 
Black and Scholes [5], for a martingale proofs see Lamberton and Lapeyre 
[26] and Steele [32]. The Black-Scholes formula for a European put optiQU 
at time t is 

where 

d _ In (So/X) + (r + !(2) T 

1 - u..jT 


and 

III this formula K is the strike price of the option and N (.) is the cmnulative 
normal di..,ttibut.ion. The risk-free int.ereRt rate l' and t.he variance (f2 are 
both annualized. 
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Volatility is the only parameter of the Black-Scholes formula that isn't 
directly observable. Implied 'llolatility, (j, is the solution to the following 
prohlem 

where pBS ((j) is the estimate of the put option as a function of implied 
volatility and P is the market value of the put option at time t. 
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Chapter 6 

Local Risk-Neutral Valuation 

6.1 Introduction 

One of the properties of Brownian motion is that equally spaced increments 
are stationary, that is, it can be assumed that they are independently and 
identically distributed. The vast majority of empirical studies show that 
this is generally not the case. 

Stochastic volatility in stock prices complicates the pricing of derivative 
instruments. The assumption of a complete market model and therefore the 
risk-neutral probability measure derived in chapter 5 no longer holds. This 
is because we cannot completely hedge away the risk posed by stochastic 
volatility. 

Jin-Chuan Duan (1995) [10] defined a new measure, the local risk-neutral 
probability mea,9ure. Hf! showed that an economic agent maximizf'4"1 itR ex­
pected utility by using this measure. In this incomplete market, extra as­
sumptions are made about the consumer (its utility function) and the risk 
premium demanded by the market for taking additional risk. Duan named 
the properties of the measure, the local risk-neutral valuation relationship 
(LRNVR). 

In this chapter the GARCH, EGARCH and G.JR-GARCH processes are 
considered in the GARCH-M framework. The GARCH processes are in 
discrete time, thus unlike the risk-neutral pricing framework which forms 
the basis for Black-Scholes framework, the LRNVR is in discrete time. 

In section 6.2, the continuous-time option pricing model discussed in 
chapter 5 is converted into a discrete time model. The goal of this section is 
to translate and compare some of the well-known continuous time finance 
concepts into discrete time statistical concepts. For example the continuous 
time concept of Brownian motion is converted in discrete time to that of 
expected returns. 

The GARCH-in-Mean model for the volatility of a discrete time stock 
price process used by Duan for option pricing, is introduced ill section 6.3. 

63 


 
 
 



CHAPTER 6. LOCAL RISK-NEUTRAL VALUATION 64 

Utility functions and the risk aversion of economic agents are discussed 
in section 6.4. A general consumption-investment strategy is maximized in 
section 6.5. 

The LRNVR is defined in section 6.6 after which the local risk-neutral 
measure is derived in section 6.7. The stock pri<:e process under the new 
measure is discussed in section 6.B. 

6.2 The Stock Price Process in Discrete Time 

Recall the stock price process of se..ctioll 5.13 with solution 

In discrete time, with equally spaced observations, 

which gives 

At time t, the value of 

8t = 80exp [(IL - ~lT2) t + lTWt] 

- 8t - 1exp [- (IL - ~lT2) (t -1) - lTWt-1] 

X ex}) [(IL - ~lT2) t + lTWt] 

Since 

Wt - Wt- 1'" Wt-t+1 '" N (0, 1) 

let 

where et is Ft-1 measurable. 

The one period alIe.ad stock price is defined by 


- - (1 2 )8 t = 8t-1exp IL - '2lT + lTCt (6.1) 
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where 

p
etlFt - 1 "" N (0,1) 

If we let 

).=~0' 
where r 	is the risk-free rate of interest, equation 6.1 would become 

(1 	2- - r - '20" +).0" + O"Ct )St = St-l exp 

In the discrete case where the information on time t 1 is known, we 
could just as well have considered a volatility process which is constant 
between time t - 1 and t. 

6.3 	 The Stock Price Model under certain GARCH 
Volatility 

Jin-Chuan Duan proposed the following conditional, lognonnally distributed 
stock price process, with stochastic volatility, under the P measure 

(6.2) 

where 

p 
etlFt-l "" N (0, 1) 

is the conditional error process, 0'1 is the conditional variance (GARCH 
process) and ).1 the unit risk premium. :Ft-l is the u-algebra of information 
up to time t. The yearly risk-free rate of return is 1.'*. Henceforth define r 
over period b.t, the same time period over which the conditional variance is 
taken. From this point on the period is daily. 

1 A possible interpretation of the unit risk premium follows from section 6.2 which deals 
with the market price of l'isk, Define the risk premium as 

>.*=p.-r 
(7 

where (7 is the long term or unconditional standard deviation of the series {Xt}.We can 
simplify the term with the risk premium from equation 6.3 to get 

• ( ) (7t
). (7t = p. r-. 


(7 


(p. - r) can be seen as a fixed (positive) premium. ).*(7t increases as the predicted condi­
tional volatility O't increases over the long term volatility 0'. The economic interpretation 
is that the market agent demands a higher premium as the expected volatility increases. 
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The conditional expected rate of return is defined as 

1 2ln~ r - '2O't + >"O't +O'tet (6.3)
St-l 

I'J N (r - ~O'~ + >"O't,O'~) 
This is derived by transfonning equation 6.2. 

The GARCH option pricing model prices options under conditional het­
eroscedasticity. This means that conditional variance is allowed to change 
over time while keeping unconditional variance constant. In this disserta­
tion, options whose variance follows (vanilla) GARCH, GJR-GARCH and 
EGARCH process will be investigated. The main focus will be on the 
GARCH(p, q) process and specifically GARCH(l, 1) process. 

The GARCH(p, q) conditional variance process is 

q p 


0'2 

t aD +I:Qieti +I: j3iO'ti 

i=l i=l 

where aD > 0 and ai, j3i ~ 0 for all applicable numbers i. Notice that O'f 
is predictable at time t - 1. 

The GJR-GARCH variance process is 

O'~ = ao + j3O'tl +aetl + 'i'max (-et, 0)2 

where 'i' > O. 
The EGARCH variance process is 

6.4 Consumer Utility Essentials 

6.4.1 Utility Functions 

The satisfaction (utility) an economic agent gets from consumption can often 
not be described on a monetary scale. A utility function represents an 
economic agent's welfare from consumption. 

In this di.."!Sertation we assume that utility is measurable and possible to 
represent in a function. This function is called a (cardinal) utility function. 
Define the utility function by 
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that is 

'lJ. (monetary cost of consumption) = "welfare" from that consumption 

It is generally assumed that a utility function has the following three prop­
erties: 

1. 'lJ. (x) is twice differentiable 

2. 'U (x) is an increasing function of x, 'U' (x) > 0 

3. 'U(x) is a concave fUllction of x, 'II!' (x) < O. 

Property 2 is due to the fact that an economic agent prefers to con­
sume more than less. Property 3 can be interpreted in terms of additional 
consumption. The utility that an economic agent gains from additional 
consumption g, in excess of an existing consumption x, 

'U(x+g) -'u,(x) < u(g) 

Each economic agent has its own unique preferences and thus utility func­
tion. 

6.4.2 Risk Aversion 

Absolute Risk Aversion 

For a given utility function n(x), in continuous time, we can associate an 
absolute risk aversion function defined by 

-'U" (x) d
R(x) =, = --lnu' (x) (6.4a)

u. (x) d.rc 

Properties 2 and 3 of section 6.4.1 insures that R (x) > 0 for all x. The bigger 
R (x) is, the less risk the economic agent is willing to take for additional 
consumption. The discrete time version of equation 6.4a 

In u! (Xt) In u! (Xt-l)
R(x) = 

Xt - Xt-l 

In u' XI) 
U/(Xt_l 

Xt - Xt-l 

Relative Risk Aversion 

The relative risk aversion for a utility function u (x) is defined by 

'U" (x)
r (x) = xR(x) = ---x 

u'(x) 


fx In u' (x) 

..!llux
dx 
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The discrete time risk aversion function is 

Inu' (Xt) Ind (xt-d ...!.... hlXt -InXt-l
r(x) = 

Xt - Xt-l Xt - Xt-l 

In-IL' (Xt) -lnu' (Xt-l) 

Inxt -lnXt_l 
In 1.4'(3;t) 

'U.'(3;t-l) 

In2.L
3;t-l 

6.5 A General Consumption-Investment Strategy 

Consider an investor with the following discrete time consumption-invest­
ment plan: The investor maximizes its differentiable utility function, u(x) : 
R+ -- R+, at any point in time t 1 by either consuming, Ot-l E 1R+ or 
by investing, H t - 1 E R, in a portfolio with random payoff St E R+ at time 
t. At time t the investor again has the same choice between consumption 
and investment from the payoff from time t - 1. Like most investors, this 
investor gets more satisfaction out of consuming immediately than waiting 
for the next period, hence define the impatience factor pER. At time t 1 
this plan can be written as 

(6.5) 

subject to 

'v - Ct- 1+ Ht-1St-l (6.6) 

Ht-1St - Ot + HtSt (6.7) 

v is the payoff of the investment made at time t - 2. Take note that at time 
t - 1 the only choices this investor make is to consume now or invest for one 
period ahead, thus the expected utility of consumption of periods after time 
t isn't of concern. Siuce Ot-l is predictable at time t - 1 problem (6.5) can 
be rewritten as 

(6.8) 

The amI here is to maximize utility in terms of consumption and invest­
ment. From equations (6.6) and (6.7) consumption in subject (6.8) can be 
rewritten in terms of investment as 
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If we then maximize problem (6.9) in terms of Ht-l we get 

8 o = 1t(V - Ht-lSt - l )
8Ht-l 

+8H
8 

exp (-p) EP [u (Ht- I St - HtSt) IFt-1]
t-1 


- -St-17l (v - Ht-ISt-I) 


+exp(-p)EP [StU' (Ht-ISt HtSt) 1Ft-I] 


which by further simplification and equations (6.6) and (6.7) yield 

P [ vi (Ct) ]8t-l = E exp( -p) '(C) 8t IFt-l 	 (6.10) 
'It t-1 

Thus the price of the portfolio at time t -1 is written in terms of the ex­
pected value of the economic agent's utility, its impatience and the expected 
future portfolio value. 

6.6 	 The Local Risk-Neutral Valuation Relation­
ship 

The conventional risk-neutral valuation doesn't accommodate heteroscedas­
ticity of stock returns. The Local Risk-neutral Valuation Relationship 
(LRNVR) is a way to generalize risk-neutral valuation to accommodate het­
eroscedasticity. 

Definition 6.6.1 (n, F, P). A probability measure Q is flaid to be a local 
1'isk-neutral probability measure il 

1. Q is equi1.1alent to measure P 

:? F)Q [In (S;:'l) 1Ft-I] = 'r 1m' all t EjR+ 

3. Vm,Q [In (l:.J IFt-1] =Va".P [hl (S;~l) IFt-1] P a.s. 

Remark 6.6.2 Condition 1 is the same as in 5.2.7. Condition:? io8 also 
similar but only defined over one period. The expected return doesn't locally 
depend on pnderences. The one period conditional 'Variance 01 the returns 
are invariant almost surely under the equivalent measures. 

The rest of this chapter focuses on the possible characteristics of an 
economic agent and the distribution of returns for which the LRNVR will 
hold. 
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6.7 The Local Risk-Neutral Probability Measure 

Theorem 6.7.1 Let a process yt be such that yt I :Ft- 1 !?- i.'.l normally 
distributed with constant mean and variance under the P -measure. Define 
Qas 

dQ ~ exp ((r - p)T + t,y.) dP 

then Q is a measure and is equivalent to P. 
Proof. Measure. Q ·is a measure by Corollary 4.9 of Bartle [3], since 

is a nonnegative :Ft-l measurable function from fi to R. 
Equivalence. Let A E:F be a set such that 

peA) =0 

Then 

peA) - 0

{::} L in lAd? = 0dP = 

where lA is a characteristic function for A, lA is a measurable and nonneg­
ative function. 

in lAdP = 0 {::} lA = 0 P - a.s. 

This means that 

lew) = 0 

fO'r all wE A == fi\M where P(M) = O. This holds if and Qnly if 

l(w)f(w)=O 

for all w E A == fi\M 'where P (M) = O. f (w) is a measurable positive 
continuous function from n to R+. The product of real measurable function.'.l 
f AlA is also measurable. This is the same as 

fIA=O P-a.s. 

It is also equivalent to [3} 

in fAlAdP = LfdP 
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It is clear that 

i(w) =exp ((r-p)T+ ~Y,(w)) 

is a nonnegative, measumble continuous function from n to lR+ (Ys : n -+ lR 
for e1Jery s). 

j(w) = 0 

'if and only ifYs (w) = -00 for any s. Fortunately P {'Va = -oo} = 0 since 
'Va is normal. 

Thus 

P(A) 0 


¢:} In IAdP = 0 


¢:} In(exp ((1' - p) T + t'Va (W») lAdP = 0 
8=1 


¢:} Q(A) = 0 


Th'us the measure Q is equivalent to measure P. • 

The measure Q isn't, in general, a probability measure. In the next 
theorem conditions under which Q is a probability measure will be defined 
and a desirable property of Q will be derived. 

Theorem 6.7.2 If 

St-l = E P [St exp (-p + yt) 1Ft - I ] (6.11) 

then 

1. Q is a probability measure 

2. If Wt is :Ft measumble then 

Proof. From the definition of Q 
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In integml notation 

1, dQ 	 ~ 1,exp ((r - p)T+ ~y.) dP 


= EP[exp((r-p)T+tY.)] 


- EP [exp ((r-p)T+ tY.) 11'0] 


- EP [exp ((r - p)(T -1) +~Y.) exp(r- p+ YT ) 11'0] 

1 

_ EP [e«r-p)(T-IHL:;':1 Y')e r EP [eP+YT IFT-l] IFo] 

This last step is due to the tower property of conditional expectation. As­
!Jumption 6.11 states that 

E P (exp (-p + yt) St 1Ft-I] = St-l 

th'US 

(6.12) 

fOT' a risk-free asset. The result is that 


EP
JdQ 	 ~ [exp ((r p)(T -1) +~Y.) exp (r) exp( -r) 11'0] 

= E" [exp((,. p)(T 1)+ ~y.) 11'0] 

The tower pmperty can again be vn:L1oked and an argument similar to 6.12 
can be derived. 

(dQ 	 = E P [e(r-P)(T-2)+L:;':?Ya)erE P [e(P+YT-l) IFT-2] IFO]In 
P 

- E [exp ((r - p)(T - 2) +%;V,) 11'0] 

This can be repeated until we ha've, at filtmtion Fo, 

l dQ = E P [exp((r - p) + yt} IFo] = 1 

Th'US 

Q(O) = 	1 
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·with this property, the measure Q is a probability measure. We also have 
that 

Q (0) = E P [exp «r - p) + Yl)] = 1 

-it is clear that 

and we proved in theorem 6.1.1 that Q is equivalent to P. The Radon­
Nikodym theorem can be invoked thus 

is P - a.s. unique and for any Ft measurable set Wt , 

• 
Theorem 6.7.3 If 

St-l = EP [exp (-p +yt) St l.1't-l] 

then 

1. In (l'~1) I .1't-l £ normal 

r2 . .eQ [l~l IFt-l] = e for all t E R+ 

3. Var
Q [In (l'~1) 1Ft-I] =VarP [In (l~l) IFt-l] P a.s. 


Proof. Lemma 2. 

From theorem 6.1.2 we have 


EQ [~ 1Ft-I]

St-l 

P 
- E [:~1 exp «r - p) + yt) IFt-l] 

r 


- Se EP [St exp (-p + yt) 1Ft- I ]

t-l 

_ er 


Proof of lemmas 1 and 9. 
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In the01'em 6. 7.2 'we proved that 

Cfor all F t measurable sets Wt. If Wt is Ft-measuroble, so is W t for all 
c E R Prom theorem 6.7.2 we have that 

then 

Q[ Sf I ] = E P [;/ e«r-p)+Yt) 1Ft- I ]E sc- Ft-l 
t-l t-l 

Q cln....E.L. ]E 
[ 
e IFt-l E P [eclnB:~le«r-p)+Yt) 1Ft- I ]Bt_l _ 

EQ [ecXt 1Ft-I] - E P [eCXte«r-p}+Yt) 1Ft-I] 
if we define 

St
Xt=ln-.


St-l 


T111'Oughout this chapter there's been assumed that X t I Ft-I is normally 
distributed under P, say 

In theorem 6. 7.1 we assumed that yt is also conditionally normal. yt can 
thus be written in terms of X t • a constant a and another random 'l1ariable 
with zero mean Ut, which is independent of Xt. Then 

yt = a + j3Xt + Ut 

with j3 E R Thus 

EQ [eCXt 1Ft-I] 
- E P [eCXte«r-p)+Yt} 1Ft- I ] 

E P [eCXt+.BXt+O!+Ut+(r-p) IFt-l] 

_ eCt+r-PEP [e(c+.B)Xt+Ut 1 Ft- I ] (6.13) 

The joint tla'nance of (c + j3) X t and Ut under P is 
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since Ut is of zero mean. By the moment generating function 

EP [e(c+.B)Xt+Ut IFt-l] 

_ e#'t(c+.B)+H (c+.B)2vhEP [ul]) 

#t (c+.B)+j (c2+2c.B+.B2)v~+iEP lull 


_ e i.B2v;+#'t.B+ 4EP lull+ ~c2'fJl+c(#'t+.Bvn 


Then equation 6.13 becomes 

EQ [ecXt 1Ft-I] = 	 e[(r-p)+~EP[U?IFt-l]+#'t.B+.B2vrJ x 


e[!c2v;+c(Pt+.BvnJ 


This equation holds for all c E JR. If we let c = 0 then 

1 	 - FfJ [1 1Ft -I] 
_ e(r-p)+!EP[U;IFt -l]+ptfH .B2v; 

so we are left with 

eQ [ecXt 1 Ft-I] =e! c2vr+c(Pt+{3vn 

If we let c = 1, then by the form of the answer of a moment generating 
function, 

Which proves 1. The conditional variance under P of X t i.5 also (T2 thus 
lemma 3 ,is also proved. • 

Theorem 6.7.4 An economic agent who's an expected utility maximizer 
and whose utility function is sepamble and additive is a LRNVR investor 
under the following conditions: 

1. 	 The utility function is ofconstant relative risk aversion and the changes 
in the logarithm of the agg1'egate consumption are conditionally nor­
mally distributed with constant mean and variance under the P mea­
sure 

2. 	 The utility function is ofconstant absolute ri.'lk aversion and the changes 
in the logm'ithm of the aggregate consumption are conditionally nor­
mally distributed wUh constant mean and variance under the P mea­
sure 

3. 	 The utility function is linear. 
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The local risk-neutral measure is 

dQ =e-(r-p)T U' (Gt ) dP 

U' (Gt-d 


The implied interest mte is assumed constant. 
Proof· 

1. 	 Prom the disc'ltSsion on the utility function and risk aversion it i.e; pos­
sible to define conditions 1 to 3: 

(a) 	Condition 1: A util-ity funct-ion of constant relat'i-ue risk a'uersion 
is defined by 

dlnU' (G) . dInG 
dG -;- dG 

InU' (Gt ) InU' (Gt-l) 
InGt -InGt - 1 

InU' (Gt ) -InU' (Gt-1) (-Ad (In Gt -In Gt-t) 

In ( U' (Gt ) ) (-AI) In (G~~l) (6.14)U' (Gt-I) 

Since -we assume that In (Gt/Gt-l) is normally distributed wUh 
constant mean and -variance unde1' P, In (U' (Gt ) / U' (Gt - d) is 
also normal with constant mean and 'llariance. 

(b) 	Condition 2: A utility function of constant absolute risk aver­
sion is defined by 

dlnU' (G) 
dG 

InU' (Gt ) -InU' (Ct-d 
Gt - Ct- 1 

thus 

(-A2}{Gt - Ct-I) 

(-A2) (Ct - Gt - 1 ) 

By the assumption that Ct - Ct - I is normally distributed with 
constant mean and 'tIariance under P 1 In (U' (Ct ) / U' (Ct - 1 )) is 
also normal-with constant mean and variance. 

(c) 	Condition 8: A l'inea'!' utility function is defined by 

th'us 

u' (Cd a 
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St-l = 

and 


U'(Ct ) =1 

U' (Ct-I) 


The ratio of marginal utilities 


U'{Ct) ) P 

In ( U' (Ct-d = 0 rv N(O,O) 

From all three conditions it is clear that In (:'~b~~b) is normal 
w'ith constant mean and variance. 

2. 	 In section 6.5 we saw that under the P-measure 

(6.15) 

where rt = In ( 'IJ,~(b~~b ). rt, as mentioned, is normally distributed 
under conditions 1 to 3. If we define Q as 

dQ = e(r-p)T+L~=l YedP 

then from theorem 6.7.1, Q is a measure which is equivalent to P. 
Prom theorem 6.7.2 we see that Q is a probability measure and 

liP [Wt 1Ft-I]. = E P [l¥te(r-P)T+t'j, IFt-l] 

for any Wt which is Ft measurable. Another result from equation 6.15 
stated in theorem 6.7.3 is that 

(a) in (l~l) IFt-l £ normal 

r(b) EQ [ l~l 1Ft-I] = e for all t E R+ 

(c) VarQ [In (i::-;) 1Ft-I] = VarP [In (i:-i) 1Ft-I] P a.s. 

3. 	 Thus for an economic agent who's an expected utility maximizer, whose 
utility function is separable, additive and fulfills one of the three stated 
conditions, the Local risk~neutral Valuation Relat'ionship also holds . 

• 
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6.8 The Stock Price Process under LRNVR 

In this section the stock price process under the LRNVR is derived. 

Theorem 6.S.1 	Under the Q - measure, imp/:i.ed by the LRNVR, 

St 1 2
1n- = l' - -20't 	+ ~tO'tSt-l 

where 

~tl.rt-l '"
Q 

N (0,1) 

and 
q 	 P 

0'; = ao +Lai (~t-i - AO't_i)2 + L,BiO';-i 	 (6.16) 
i:ol 	 i=l 

Note that the parameters T and t in this context are in terms of time i.e. 
fractions with the days of the year as the denominator, not as the discrete 
index. That i8, for 69 days in a 252 day year t = 0.25. 

Proof. As proved in theorem 6.7.9, In .JiL.1.rt-l is normally distributed 8 t -l 

under measure Q. It can thus be written in terms of a deterministic and 
random variable 

St
111- = Vt +~t 	 (6.17)

8t-l 

under Q. The random variable is ob'l}iously normal with mean zero and vari­
ance the same of that oflnl~l under Q. It will be proved that 

1. Vt = l' - ~O'~ 

2. O'~ = ao + El=:l aj (~t-i - AO't-i) 
2 + 'L:f=1 ,BiO'Li 

Proof of 1: 
From equation 6.17 

St 

St-l 


E'J [S~~ll.rt-l] 	 ­

_ eVteCJ [eUt';tl.rt _ l ] 


then by the moment generating function for an normally distributed random 
variable we have 

EQ [S~~ll.rt-l] = 	eVt+iVarQ[ln s~~ll.'Ft-l]EQ [ll.rt-l] 
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Since 

P 
Var

Q [In (S:I) 1Ft- I] - Var [In (s:~J 1Ft- I ] 

(1";' P - a.s. 

from theorem 6.7.3 we can write 

EQ [ St IT.rt-l] _ Vt+ 12 q2-- - e t 
St-l 

It was also pro'ued in theorem 6.7.3 that 

rEQ [(JSt 1 Ft-I] = e
Dt-l 

thus 

1 2 
Vt = r - -(1"t

2 
Proof of 2. 

Recall the original stock price process with GARCH volatility under' the 
P measure: equation 6.2, 

St 1 2
In -8 = r + ).(1"t - -2(1"t +€t 


t-l 


and the process implied by proof 1 above under measure Q 

St 1 2
II1- = r - -2(1"t +~t 

S t-l 

Again using the result 

from theorem 6.7.3 we can write 

1 2 1 2 
2(1"t +C't = r - '2(1"t +~t 

thus 

Substituting this 1"eSUlt into 

St
In -- = r + ).(1"t 

St-l 
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yields 

St
In-- =r 

St-l 

and into the GAReB process, yields 

q p 
2u; = ao + 2..: ai (et-i - AUt-i) + 2..: /3iUF-i (6.18) 

~l ~l 

under the Q measure. _ 

The equivalent GJR-GARCH process under the Q measure is 

u; = ao + /3utl + a (et-l - AUt_l)2 +"( max (-et-l + AUt-I! 0)2 

where,,( > O. 
The EGARCH V'iLriance process under the Q measure is 

where /32' "( > O. 
Theorem 6.8.1 can easily be proved for the above two GARCH processes 

by substituting equation 6.18 with the respective process and replacing the 
P variable Ct with the Q variable et -l - AUt-I. 

Corollary 6.8.2 Theorem 6.8.1 implies that under the Q measure 

1 T T)
ST=Stexp ( (T-t)xr-2' L us + L es (6.19) 

s=t+l s=t+l 

Proof. From theorem 6.8.1 we have that 

St1n-- =r 
St-l 

for every t E lR under Q. Thus 

t1n~ 
Ss-1s=t+l 

T 

L'r 
s=t+l 

(6.20) 
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which means that 

IT T)
ST = Stexp (T-t)r- '2 L O's+ L ~s( 

s=t+l s=t+l 

by taking exponents on both sides of equation 6.20. _ 

Corollary 6.8.3 The d'iscounted proces.s e-rtSt is a martingale under the 
Q measure. 

Proof. Corollary 6.8.2 is equi'llalent to 

St = St-l exp (r - ~O'; + ~t) 

thus the condU'ional expected value of e-rtSt is 

EQ [exp (-rt) St 1Ft- I ] 

- ~ [St-lexp(-rt)exp(r-~O';+~t) 1Ft-I] 

- St-1 exp(-r (t 1)) ~ [exp ( -~O'; + ~t) 1Ft-I] 

- St-l exp (-dt - 1)) 

because ~tIFt-l £ N (0, 0';) and by the momentgenemting function 

which completes the proof. _ 

 
 
 



Chapter 7 

GARCH Option Pricing and 
Hedging 

7.1 Introduction 

This chapter builds on the results of chapter 6. European option on stocks 
with GARCH volatility is priced under the LRNVR. The delta hedge for 
such options is also derived. 

Delta hedging is defined in Hull [23J as a hedging scheme that is designed 
to make the price of a portfolio of derivatives insensitive to small changes in 
the price of the underlying. 

In the last section some of the properties of the most widely used GARCH 
process, the GARCH(1, 1) process is discussed. 

7.2 Option Pricing under the LRNVR 

The stock price process under LRNVR was discussed in the previous chapter. 
The machinery to model stocks with GARCH volatility can also be adapted 
to price European options. 

Theorem 7.2.1 GAROH option price. The price of a E'U1vpean call option 
on a non-dividend paying stock, St, expiring at T nnder LRNVR at time t 
is 

where max (x)+ is the maximum between x and O. Note that the pa­
rameters T and t in this context is in tenns of time i.e. fractions of with 
the days of the year as the denominator, not as the discrete position of a 
variable or element of a process. 

Proof. See theorem 5.4.2, since e-'l'tSt is a martingale under the Q 
measure.• 

82 
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Theorem 7.2.2 Delta hedge under LRNVR. The delta hedge for a stock 
with a European call option i.s 

where l[sT~K] is an indicator function and K the exercise price of the option. 
Proof. From corollary 6.8.2 

Sr = S,exp (T t) r ~ ,~,!T' + .~, €.) 
define 

then 

The GARCH option price for a European option proved in theorem 7.2.1 
now is 

cf (St) = e-(T-t)rEQ [max (SteYt,T K)+ 1 Ft- I ] 

The delta hedge is the first partial derivative of the option price with respect 
to the underlying asset price. The strategy is to approxi.mate this derivative 
with the funct'ion Of. For an arbitrary h > 0 

cf (St + h) - cf (St) 

e-(T-t)r E'l [max (St + h) eYt,T K)+ 

-max (SteYt,T K)+ 1 Ft- I ] 

- e-(T-t)r L:max «St + h)eY - K)+ (7.1) 

max (SteY -K)+dF(y 1Ft ) 

where F(y IF t ) ,is the cdf ofYt,T under Q. With an indicator function we 
can express the max function 

Yt max (St + h)e .T - K)+ = (St + h) eYt.T - K) I[(St+h)eYt.T-K>Oj 

Consider that h > 0 then 

(St + h) eYt•T 
- K > 0 
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can be rewritten as 

K
eYt,T > 

(St + h) 

1 Y.T I K¥i,T - net, > n (St + fl.) 

simila-,.zy 

SteYt,T - K > 0 

can be 1'ewritten as 

y K¥iT = Ine t,T > In-. , St 

Equation 7.1 then becomes 

e-(T-t)r roo (St + h) eY - K dF (y 1F ) 

Jln (8/.~.h) 
t 

_e-(T-t)r roo Ste'Y - K dF (y !:Ft ) 
Jln K 

8t 

ln 
e-(T-t)r r ~ SteY - K dF (y I:Ft ) 

JIn (St~h) 
+e-(T-t)r roo K he'll dF (y ! :Ft ) • 

JIn (8t +h) 

Since 

In K 

lime-(T-t)r r 8t Ste'll - K dP (y !:Ft) = 0 
h-O KJIn 

(St+h) 

the 

1
. cf (St + h) - of (St)
1m --=-~..:..--........:.-......::...~.:..:.. 


h->O h 
00 

e-(T-t)r1 e'IJ dP (y !:Ft ) 
In 

- e-(T-t)rEQ [e'IJlrST>Kj] 

This aryument could similarly have been prO'llen from the left for h < O. 
Thus 

fl t 

- e-(T-t)rEQ [eYl[sT>Kl]' 

This completes the proof. • 
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The delta hedge of a stock and a European put option can be derived 
similarly. The delta hedge is 

ilf = e-(T-t)r~ [i 1(K;?;STI !Ft-l] 

7.3 	 Some Properties of the GARCH(l,l) Process 
under LRNVR 

Theorem 7.3.1 Under meas'ure Q innovations of the GARCH process is 
X2 (1) d'istributed with non-central'ity pammeter A. 

Proof. From the01-em 6.8.1 we have 

'where 

thus 

€t !Ft-l t"V N (0,1)
Ut 

The inno'lJations of the GARCH process under LRNVR is 

ui 	 ao + a (€t-l - AUt_l)2 + ,8uLl 
2 

= ao +auLl ( €t-l - A) + ,8u;_1 
Ut-l 

then 

where 

€ t-l IFt-2 t"V N (0,1)
Ut-l 

which completes the proof _ 

Theorem 7.3.2 Stat'iona1'Jj (unconditional) 'lJariance of a GARCH process. 
If 

under probability measure Q then 
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1. The stationary variance of {t> 

f. {t is leptokurtic 

3. The 

Proof. Proof of part 1. 
Under the Q probability measun~ 

0'; ao +a ({t-1 ).O't_1)2 + fJO'F-l 

2 ({t-1 )2 fJ 2= 	 ao + aO't-l - - ). + O't-lO't-1 
let 

then 

0'; = ao + aO'F-I Z;_1 + fJO'F-l 
= ao + 0';-1 (aZf_l + fJ) 

Using this relationship 

thus 

0'; 	 - ao + (ao + O'F-2 (azl-2 + fJ)) (azf_l + fJ) 
- ao + ao (azl-l + fJ) +O'F-2 (aZr_2 + fJ) (azl-l + fJ) 

and further 

0'; - ao + ao (aZr_l + fJ) 
(ao+O'F-3 (az;_3 +fJ)) (azL2+fJ) (az;_l +fJ) 

- ao + ao (azl-l + fJ) + ao (azl-2 + fJ) (azLl + fJ) 
+O'L3 (azl-3 + fJ) (azf_2 + fJ) (aZr_l + fJ) 

-	 ao [1+ ~P. (azL + ti)1+071-3 g(a~_. + ti) 
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Then by substituting previous equations for the 'variance from time t - 1 
to time 0 we obtain 

(7.2)"0 [1+ ~g (az;_; +P)] +<T~ft (azL; + P) 

t-l 

- ao L Gk + 0"5Gt (7.3) 
k=O 

'Where 

k 

Gk - II (azti + f3) (7.4) 
i=l 

- Gk- 1(aztk + f3) 
Go - 1 

H'Om theorem 7.3.1 and the discussion on the chi-square distribution in sec­
tion 2.5.3 

z; = (~: _ A) 2 

is chi-square distributed with one degree of freedom and non-centrality para­
meter A, since 

Q ( 2)Zt IFt-l rv N O,O"t 

Thus from the tower property of conditional expectation and theorem 2.5.8 

~ [~ [z; 1Ft-I] 1Fo] = EQ [z~ l.ro] 
_ 1+A2 

Now from equation 7.4 for t > k 

k 


Gk =II (azt_i + f3) 

i=l 

and the conditional expected lIalue of Gk 

Since z.,. and Zs are independently distributed for all applicable r, s. z; and 
z; are also independent (see theorem 2.4.9). This allows us to write 

2 2)COll (aZt_i + f3, aZt_j + f3 = 0 
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'which follows from theorem 2.4.9 such that 

II
k 

EJ [(azl_i + f3) IFo] 
i=l 

k 

IIa(1+,\2)+f3 
i=l 

Using this result we can 'urrite the conditional expectation of equation 7.2 

EQ (a; 1.1"0] 

- EP ["0 [1+ ~!1 (azL +11)] + <1~g(azL, 11) 1:F0] 
t-l 

- aOL[a(1 +,\2) +f3]k+O'fi [a(1+,\2)+f3]t 
k=O 


Using the condition that 


the term 

The stationary variance is the limit oft to infinite of E (a?]. By again using 
the tower property of conditional expectation 

ao L
00 

[a (1 +,\2) + f3t 
k=O 

Proof of part 2. 

We need to prove that EQ [~i] > 3 (eQ [~~])2 since 


~t IFo £ N (O,O'F) 


In theorem 2.5.9 it wa.'J proved that 


EQ [zt IFo] = 3 + 6,\2 + ,\4 


 
 
 



89 CHAPTER 7. GARCII OPTION PRICING AND IIEDGING 

thus for t > k 

EQ [G~ l.:FoJ 

- & [ (fl aZ;_i +~)' IFO] 


- I!fI [fl (azL + ~)21 FO] 


Since 

is noncentral chi-square distributed with 1 degree of freedom and non-centrali­
ty parameter ).. Again as in part 1, it follows from theorem 2.4.9 that 

cov ((az;_i + (3)2, (azi_ j + (3)2) = 0 

for all i,j E {O, 1, .'" k} and·i::f=. j. Then 

& [fl (aq_, + ~)21 FO] 

II
Ii: 

eQ [(azf-i + (3)2 l.:Fo] 

i=l 


Ii: 


- IT EQ [a2zt._i + 20:{3Zr-i + f32 l.:Fo] 

i=l 


II
Ii: 

[0:2 (3 + 6).2 + ).4) + 2a{3 (1 + ).2) + f32] 
i=l 

For notational purposes define 

u := 0:2 (3 + 6).2 + ).4) + 2af3 (1 + ).2) + f32 

v = 0: (1 + ).2) + {3 

then 

(7.5) 

and 

u>v 
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since all terms of equation 7.5 are positive. 
F01' k > j 

Efl [GkGi I .1'01 

- liP [}j (azL + (3) D(azL + (3) ITo] 

i k ] 
- EQ D(azLi + ,8)2 inl (azLi. +,8) 1.1'0 

[ 

By theorem 2.4.9 

COl' [(azLi + ,8)2, (azt_i +,8)] = 0 

fo·r all 'i,j E {a, 1, H', k}, k > j. Thus 

i k ]
Efl !! (azt-i + ,8)2 iLL (aZF_i +,8) 1.1'0

[ 


i k


IIEQ [(azLi + (3) 2 I .1'0] II EQ [(azLi + (3) I .1'0] 
i=l i=i+l 

_ uivk- i 

Then the conditional expected l1al'ue ofO't, the square of the GARCH process 
under LRNVR at time t follo'ws from equation 7.3 

Efl [O't I .1'0] 

- liP [(ao~G, +"~G')' ITO] 


- liP [(aO~G')' +2"~G+0~G,) + (<TiG,) 2 
I TO] 


- ';'EQ [(~G.)' ITO] + 2"""~~EQ [G,G, 1.1'01 


+0'6EQ [df I .1'] 

- 0'6'ut + 2aoO'~ ~ 'ukvt k + a~ [~uk + 2 ~f ,ui,vk- (7.6)- i ] 
k=O k=O k=Oj=O 

where the thi1'd term 'is a common mathematical expansion. The propert'ies 
of geometric series (see Haggarty [21J) are 'used to simpl'ify equation 7.6: 
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1. Geometric series 

2. Geometric series 'where vt i.8 independent of the .summation 

t-l

L:: ukvt-
k=O 

k - tl~(;t
k=O 

t (1- (~)t) 
- 'V 1-:!! 

v 

ut - vt 

- V 
u-v 

3. Geometric series using point 2, where 'a~v is independent of the sum­
mation 

t-l k k 
'""" u v 
~v v-u 
k=O 

t-l t-l 

_ _v_ '""" uk '""" vk 
u-v~ ~ 

k=O k=O 

_ _v_ (1 - 'ut _ 1-"i) 
u-v 1 u 1 v 

Equation 7.6 is simplified such that 

Now, to derive the value of the unconditional kurtosis of ~t' we take the limit 
of EQ [O"t IFo]. If·we remember that u > v and assume that u 2:: 1 then 

(7.7) 


and ifu < 1 

• Q r 4 ] _ 2 (1 - v)
lim E LO"t IFo - o!o ( )( )

t-+oo 1 - u 1 - v 
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since 

lima2 [~+ 2_v_ (1- ttt 11 vvt)]
t_oo O 1-11, 11, vI 1t 

' 2 2 [ V (1 - ttt 1 - vt)] 05 
- llID aO -- ----- +-­

t-oo 11, v 1-11, 1 v 1-11, 

_ 2a5[_v (_1 __1)1+~ 
1J,-'V 1-'u I-v 1-1£ 


_ a 2 [~ (1 - v) - (1 - 11,) + _1_] 

o 'lJ,-V (1-11,)(1 'il) 1 'it 

2 [ 2v 1£ VI] 

- 00 tt - v (1 -u)(1 - v) + 1 - 1L 


2 [ 2v + 1 - v] 05 (1 + v) 

- ao (1 11,)(1 - v) = (1 11,)(1 - v) 


- EfJ [(1t] (7.8) 

Since (1; is n-l measurable under Q and 

the 

EfJ [{t] - EfJ [EQ [d 1Ft - I ]] 

- E< [atEQ [(;:)' IF.-I]] 
3~ [(Tt] , 

where 

is the kurtosi.''J under Q. 
Finally, from equat'ion 7.7 it is clea:r that (t is leptokurtic if 11, 2: 1. If 

1£ < 1 then 

3 °5(1+v)EfJ [et] = (1- 11,)(1- v) 

3 ~ ~': (EfJ [{rD 2 

from the definition of v. Since u> v> 0 
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Proof of part 9. 
From theorem 6.8.1 equation 6.16 we have 

and 

Thus 

and 

EQ [(t ao + a (t ((t - Aat)2 + /3(t a~IFt-l]
at at at 

- ECJ [a;: ((t Aat)2IFt_l] 

since 

Then 

ECJ [a ~ ((t - >..at)2 IFt-l ] 

aEQ [;: ((~ - 2A(tat + (>..at)2) 1Ft-I] 

a~ [~ - 2A(~ + >..2(tatIFt-l] 


!!"ECJ [(tiFt-I} - 2a>..ECJ [(~IFt-I] + a>..2atEQ [(tiFt-I]

at 

since at is Ft-l measumble, the 

ECJ [a;: ((t - >..at)2 IFt_l ] 

-2a>..EQ [(~IFt-l] 
- -2aAa~. 
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Finally, 

oov +1] 
Q [!:'ar


Ffl [!: aF+1] Ffl [!:] Ffl [ar+1] 


- +1] EQ [!:ar

Ffl [EQ [!:at+1IFt- 1]] 


the tower property of conditional expectation. The 

oovQ [!:' a;+l] 
- Ffl [EQ [a!: (~t-Aat)2IFt_l]] 

Ffl [-2aAat] 

-2aAEQ [at] 


-2Aa oa 

1 a-f3 

by the proof of 2.• 
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Chapter 8 

Implementation of GARCH 
Option Pricing 

8.1 	 Introduction 

In this chapter, methods to implement the GARCH option pricing model 
is discussed. Two separate numerical procedures are required in the imple­
mentation of this model, the first is the calibration of the parameters to the 
stock or option data and the second is the forecast of the option price. 

8.2 	 Calibrating the GARCH Process to Empirical 
Data 

8.2.1 	 Historical Data 

In the GARCH option pricing procedure proposed by Jin-Chuan Duan, the 
GARCH process is "fitted" to the process of the underlying stock or index. 
This means that the parameters of the GARCH-M process under the P 
measure is fitted to the returns series of the underlying by maximizing its 
loglikelihood function. 

For the (vanilla) GARCH(I, 1) - M process WIder the P measure 

8t = 8t-1 exp (Tilt - ~U; + AUt + ct ) 

where et is the returns at time t, the rest of the parameters and variables 
are as in section 4.6. The vanilla GARCH(I, 1) process isl . 

I Estimates are written with hats. 
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From section 4.4.3, equation 4.9 the likelihood function for the variance 
up to time t is 

f (0,&;) 

The optimization problem for the variance is as follows 

where the likelihood function f (0, &;) is maximized in terms of the para­
meters &0, & and /3. Since the value of &5 isn't known, it forms part of the 
optimization problem. 

The value of parameter .\ is then estimated by minimizing the sum of 
squares between the actual and estimated stock prices up to time t 

Eh is an estimate of the of the stock price at time i and Si is the actual stock 
price. 

Both of the optimization problems are due to overdetermined systems. 
This means that there are more equations than variables. Tim Bollerslev 
(1986) suggests the use of the Berndt, Hall, Hall and Hausman algorithm for 
the estimation of the variance optimization problem. A similar algorithm 
can also be used for the mean optimization problem. 

Many new statistical computer packages have built-in GARCH algo­
rithms. Often, the problem with these built-in algorithms are that they 
are designed to solve only certain types of GARGlI parameter estimation 
problems. 

The GARCH toolbox available with Matlab R 12 is only limited to solv­
ing vanilla GARCH problems. Fortunately the optimization toolbox of Mat­
lab is excellent. The procedure fmincon can be used to fit a tailor-made 
GARCH and means process. 

8.2.2 Implied Volatility 

As mentioned in section 1.3 of the introduction, the levels of implied volatil­
ity of warrants are substantially higher than that of the historical volatility 
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of the llilderlying. This means that there is little use in pricing an option 
with a model based on the history of the underlying. 

In this dissertation we investigate the calibration of a GARCH process 
to the implied volatility of warrant.. 

The approach is as follows: 

1. 	 In section 5.4.5, the discussion of the Black-Scholes formula and im­
plied volatility, it was mentioned that implied volatility is annualized. 
Implied volatility at time t, say Ut must thus by multiplied by the 
square root of the relevant time fraction, for instance if the available 
returns series is daily then the new adjusted series must be Uty'1/252. 

2. 	 The GARCH process is a variance process, not a standard deviations 
process, thus the square of the new series in point 1 must be taken, 
which gives ut /252 == It. 

3. Implied volatility is used 	to price options, thus it is already lmder 
the Q measure. This means that the unit risk premium ). is already 
"absorbed" into the GARCH process. 

4. 	The parameter estimation for the Asymmetric GARCH(p, q) process 
is as follows, 

t 

- _~n 2: 
OIQ,OI,{:J,>' i=l 

(It -"0 +t,"j (e'_j - Au'_j)2 +t ilj07-j ) 2 (8.1) 

Unlike the parameter estimation in section 8.2.1 above, the value of 
u~ here isn't part of the minimization problem. That is because if we 
let u~ equal 1o, the value at time i = 0 in equation 8.1 is zero. 

5. 	Optimization here is again done with the fmincon procedure of Mat­
lab. 

8.3 Monte Carlo Simulations 

Monte Carlo simulations is a method to solve stochastic integrals numeri­
cally. This is done by simulating N sample paths of a stochastic processes, 
say f by the generation of random variables from the underlying probability 
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distribution. All the versions of I are then added together and divided by 
the amount of simulations. By the law of large numbers we can write 

1 N 1 lim N" I (Xn) = I (x) q (x}dx 
N-+oo ~ R 

n=l 

where (Xn) are independently drawn from the distribution with pdf q. 

(8.2) 

In this dissertation q is the pdf of the normal distribution discussed in 
section 2.5. 

8.3.1 European Option with Constant Volatility 

The pricing theorem for a European option in the Black-Scholes sense, the­
orem 5.4.2, yields 

Vi. - e-r(T-t) EQ [VT I Ftl 

e-r(T-t) FfJ [IT I Ftl 

e-r(T-t) In IT {x} q {x} dx 

where q is a pdf. For a put option, IT = (X - ST)+, where X and ST are 
the strike price and the stock price at time T respectively. ST and thus IT 
is a function of Brownian motion. By equation 5.12, 

In discrete time, this can be estimated by 

where 

8.3.2 European Options with GARCH Volatility 

The aim is again to estimate the value of IT at time T. This time it must be 
remembered the the GARCH-M process used in this dissertation is defined 
in discrete time, we are thus not solving an integral. The stock price process, 
under the LRNVR with GARCH conditional volatility, as defined in theorem 
6.8.1 is 

Sr ~ St exp (T -t) r - t. (~<?; +tiUi) ) 
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Figure 8.1: A sample path of a Monte Carlo simulation compared with the 
actual ABSA stock price process. 

where 

and 

q 	 p 

u; 0:0 + LO:j (';i-j - AUi_j)2 + L{3jut-j 
j=l 	 i=l 

8.3.3 Notes 

1. 	Th simulate possible sample paths of the stock price, a random number 
';t is generated for each interval tENn [1, T]. The intervals are equally 
spaced, say of size b..t. If we use an annual risk-free interest rate and 
daily time intervals, b..t would be 1/252, since we usually assume 252 
trading days in a year. 

2. 	A large number of future paths are simulated. The number depends 
on the accuracy required. This can vary between a 1000 and 50000 or 
even more simulations. 
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8.3.4 	 Generating Other Distributions from the Uniform Dis­
tribution 

Many computer packages can only generate uniform random variables be­
tween 0 and 1. Most other packages, like Matlab and Excel, generate only 
random variables from certain famous distributions. The following famous 
technique is a way to generate random variables from uniform random vari­
ables: 

To generate random variables from this cdf, use the following famous 
result: Say we are able to generate a uniform random variable, U, between 

o and 1. Define the inverse of Fz--(z) as 

%J-1 
=inf{z IFz(;) ~y} 

where 0 ~ y ~ 1, thus 

---1 
Fz (U) = Z. 

It then simply follows that 

--Fz (z) - P (Z ~ z) 

p (F;(iJ)-1 ~ z) 
p(U ~ Fz(;)) 

--1 
Thus by generating a value u from U, calculate Fz ('iL) which is set equal 

to z. This yields a Fz (z) distributed random variable. 

8.4 Variance Reduction Techniques 

Monte Carlo simulations are computationally expensive. It is practical to 
employ variance reduction procedures to decrease the number of simulations 
needed. Hull [23] gives a broad summary of variance reduction procedures. 

The variance reduction procedures used in this dissertation are the anti­
thet'ic variable and moment matching techniques. The control variate tech­
nique2 can possibly also be used. To be certain of the soundness of the use 
of the control variate technique for the particular simulations done in this 
dissertation, further investigation is needed. This is beyond the scope of the 
dissertation. 

2For the simulations in this dissertation, for the option price resultant from a forecasted 
GARCH-M process, we can do the Controle Variate Technique as follows: 

Two simulations, the standard Black-Scholes option pricing integral and the Duan 
GARCH integral are done in parallel using the same random variables. 

The Black-Scholes simulation is then subtracted from the GARCH one and the equiva­
lent analytical Black-Scholes value is added. 
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8.4.1 The Antithetic Variable Technique 

With this technique two values for the derivative is calculated. The first 
value, /1 is calculated the normal way with random sample vector [~tlTx 1 

taken from the applicable distribution. For the second value p, -1 X [~tlTx 1 

is used. The final answer is the average of the two values 

The advantage of this technique is that a value above the true value can 
be "canceled out" by one below and vice versa. 

8.4.2 Moment Matching 

In this dissertation the standard nonnal distribution is used. In the moment 
matching technique all of the sampled random variables for each sample 
path, say the vector [~tlTxl is standardized. This is done by subtracting the 
mean of the sample m from each element of the sample and then dividing 
that by the standard deviation s of the sample, 

~t-m 
Yt = s 

yielding a standard normal random variable. 

 
 
 



Chapter 9 

Study and Results 

9.1 Aim 

It is generally assumed. that the current implied. volatility level is the best 
proxy for the future level of implied. volatility and hence the future price of 
an option. In this chapter, the GARCH option pricing method is applied 
to the implied. volatility history of a warrant. The method is as described 
in section 8.2.2, where I propose calibrating the GARCH process over the 
"historical" implied volatility of the underlying financial instrument, in this 
case stock. 

In this study, the current implied volatility level is compared to the 
GARCH level or equivalently, the predicted future price of the option com­
pared to the predicted price of under the GARCH option pricing method 

The predicted. future price of a European option, to avoid arbitrage, is 
its current value adjusted for the relevant risk-free interest rate. 

9.2 Methodology and Data 

JSE warrants are generally short dated, that is of maturity less than one 
year. An option pricing model must thus be able to price a warrant, with 
as little calibration to historical data as possible. Here, a 30-day period of 
calibration to implied. volatility was decided on in each case. 

Although the warrants market is more liquid than the options market 
of SAFEX, there are still days where no new trade takes place in a specific 
warrant. The result, is that after a sharp drop in the price in the Uliderlying 
equity, the intrinsic value of the replicating portfolio may be greater than 
the market price of the an untraded put warrant. The implied. volatility of 
that warrant L<; thus undefined. at such a date. 

In this study, the chosen warrants where priced. in a rolling window of 
one day (with a thirty day history each), from approximately thirty days 
after they where first traded, up to a date where either the implied volatility 
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is undefined or zero, the warrant reaches maturity or 2002/11/271. 

The 11 to 20 day ahead V'a.lues of both the forecasts due to the actual 
warrant prices and the GARCH option prices are compared to the actual 
warrant prices of 11 to 20 days ahead. The measurement over a 10 day period 
gives a better indication of the forecasting power of the two methods. 

The following put warrants were selected: 

Result 
no: 

Warrant Underlying iSsuer Date 
From To 

1 3ASAIB ABSA Investee Bank 2002105115 2002111106 
2 3ASAUB ABSA UBS 2002101/02 2002111/06 
3 5ASAIB ABSA Investee Bank 2002101108 2002111106 
4 2AGLUB Anglo American UBS 2001/06/08 2002/04/04 
5 3AGLIB Anglo American Investee Bank 2001109125 2002102127 
6 7AGLIB Anglo American Investee Bank 2002102122 2002107/25 
7 BAGLIB Anglo American Investec Bank 2002107129 2002109117 
8 3NEDUB Nedcor UBS 2002101102 2002108/19 
9 6NEDIB Nedcor Investee Bank 2002107108 2002110/03 
10 6NEDSG Nedcor Societe General 2002108/23 2002109120 
11 30MLUB Old Mutual UBS 2002101102 2002106124 
12 40MLSG Old Mutual Societe General 2002/08/16 2002109116 
13 50MLlB Old Mutual Investee Bank 2002105115 2002106113 
14 3SAPIB Sappi Investee Bank 2002/04116 2002/10/07 
15 3SAPUB Sappi UBS 2002101102 2002111/06 

Each warrant can be categorized in terms of time to maturity and mon­
eyness: 

• 	 Time to maturity of a warrant is the amount of days left in the life 
of the warrant. A warrant's implied volatility tends to increase dra­
matically 70 to 60 days and closer, to maturity. It seems sensible to 
categorize results in terms of the time to maturity of the warrant. The 
two categories are maturity of less than 70 days and maturity of 70 
days and more. 

• 	 Moneyness is defined as the stock price divided by the exercise price 
of a warrant. A put warrant is defined to be "out of the money" when 
the moneyness ratio is more that 1.1, "at the money" if the ratio is 
between 0.9 and 1.1 and "in the money" if the ration is less than 0.9. 

9.3 Measures of Results 

The accuracy of the implied volatility method and the GARCH option pric­
ing method is measured in the following way: 

IThe last date on which data was captured. 
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1. 	The current market implied volatility, I (t) and the GARCH option 
price, (12 (t) at time t are adjusted to the (annual) risk-free rate T for 
each day of the 10 day period starting in 11 days, 

I (t, 'i) _ eTX (10+i)/252I (t) 

(12 (t, i) - eTX (10+i)/252(12 (t) 

for i = 1, ... , 10. 

2. 	 The absolute percentage deviations between the two forecasts, 

I (t, i) and (12 (t, 'i) 

and the actual observed implied volatility in the market, 

I (t + .j. + 10,0) 

is taken for each day of the 10 day period and weighed as follow 

II (t,i) - I (t +i + 10,0)1
A~ct'Uc!.l I(t+i+1O,O) 

1(12 (t, i) - (12 (t +i + 10,0) 1 
AbARCH I(t +-i + 10,0) 

3. 	The following risk-measures are determined 

10 
Abelow

Actual L A~ctuallI(t,i)<I(HH10,O) 
i=l 
10 

A above 
~Act'ual L A~ct'UallI(t,i»I(HH10,O) 

i=l 
10 

A below 
~GARC}f - L AbARCHlu2(t,i)<I(t+H1O,0) 

i=1 

10 
Aabooe 
~GARCfI - L A hARCH1u 2(t,i»I(HHI0,0) 

i=1 

where and 1 is an indicator function. 

The measure A~elow (A~bove) is the sum of the absolute percentage de­
viations below (above) the actual implied volatilities. These measures don't 
only measure the absolute deviation, but also measures if the forecasts are 
above or below the actual implied volatilities. The sum of the measure 
A!:'ow and the measure A~QVe give the absolute deviation. 
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9.4 Results 

The results are given for the 15 mentioned warrants 

• 	 The columns denoted by time to maturity and moneyness are as ex­
plained in section 9.2. 

• 	 The column named "Observations" indicates the amount of separate 
tests done in each category of the specific warrant. 

• 	 The columns marked less and more are as explained in section 9.3. 

• 	 The following abbreviations are used: 

-	 ITM: In the money 

- ATM: At the money 


OTM: Out of the money 


CTM: Close to maturity 


-	 FFM: Far from maturity 

9.4.1 The Results: 

 
 
 



Warrant Name: 3ASAIB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
36 In 
0 At 
0 Out 

2.47 0.05 0.19 0.20 
- - - -
- - - - . 

70 and Above 
83 In 
0 At 
0 Out 

0.59 1.00 0.86 0.85 
- - - -
- - - - I 

Description: The GARCH model predicts ITM, CTM warrants worse than the Actual model 
does. 
The GARCH models underpredicts ITM, CTM and overpredicts ITM FFM 
warrants. 
The GARCH model predicts ITM, FFM warrants slightly better than the Actual 
model does. 

 
 
 



Warrant Name: 3ASAUB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
49 In 
0 At 
0 Out 

0.17 1.86 0 1.61 
- - - -
- - - -

70 and Above 
160 In 
0 At 
0 Out 

0.89 0.98 0.92 0.93 

- - - -
- - - -

Description: The GARCH model predicts JTM, CTM warrants worse than the Actual model 
does. 
Both the GARCH and Actual models overpredicts ATM and OTM CTM 
warrants. 
The GARCH model predicts ITM, FFM warrants slightly worse than the Actual 
model does. 

 
 
 



Warrant Name: 5ASAIB 

Time to maturity (days) Observations Moneyness 

Less than 70 
37 
0 
0 

In 
At 

Out 

70 and Above 
45 
0 
0 

In 
At 

Out 

GARCH 
Below Above Below 

Actual 
Above 

0.03 5.53 0.01 5.54 
.. .. .. .. 
.. .. .. .. , 

0.63 0.70 0.79 0.62 
.. .. .. .. 
.. .. .. -

Description: 	 The GARCH model predicts ITM, CTM warrants slightly worse than the Actual 
model does. 
The GARCH model predicts tTM, FFM warrants slightly better than the Actual 
model does. 

~-.-	 --- -_._........... _-_._ .......... _-- ---.-...........~-.- ........... ---.......... ...........--­~--.-

 
 
 



Warrant Name: 2AGLUB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
0 In 
0 At 
0 Out 

- - - -
- - - -
- - - -

70 and Above 
8 In 
90 At 
5 Out 

1.31 1.05 0 2.52 
1.26 8.71 0.01 10.36 
1.49 7.03 0 6.92 

Description: The GARCH model predicts ITM, FFM warrants worse than the Actual model 
does. 
The GARCH model predicts ATM, FFM warrants better than the Actual model 
does. 
Both models overpredicts ATM and OTM FFM warrants. 
The GARCH model predicts OTM, FFM warrants better than the Actual model 
does. 

 
 
 



Warrant Name: 3AGLIB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
0 In 
0 At 

50 Out 

- - - -
- - - -

2.61 2.90 0.03 6.13 

70 and Above 
0 In 
10 At 
43 Out 

- - - -
0 5.28 0 5.68 

0.02 14.63 0 14.51 
Description: The GARCH model predicts OTM, CTM warrants better than the Actual model 

does. 
The GARCH model predicts ATM, FFM warrants sightly better than the Actual 
model does. 
Both models overpredicts ATM and OTM FFM warrants. 
The GARCH model predicts OTM, FFM warrants slightly worse than the 
Actual model does. 

 
 
 



Warrant Name: 7 AGLIB 

Time to maturity (days) Observations Moneyness GARCH Actual 


Below Above Below Above 

7 In 3.72 0 3.44 0 


Less than 70 24 At 2.76 0.03 3.04 0.01 

o Out - - - ­
o In - - - ­

70 and Above 68 At 0.31 1.32 0.49 0.98 
6 Out 0.53 0.19 0.65 0.15 

Description: The GARCH model predicts ITM, CTM warrants better than the Actual model 
~~. 

The GARCH model predicts A TM, CTM warrants slightly better than the Actuall 

model does. 

Both the GARCH and Actual models underpredicts ATM and OTM CTM 

warrants. 

The GARCH model predicts A TM, FFM warrants slightly worse than the Actual 

model does. 

The GARCH model predicts OTM, FFM warrants slightly better than the Actual 

model does. 


I 

 
 
 



Warrant Name: BAGLSG 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
7 In 

24 At 
0 Out 

3.72 0 3.44 0 
2.76 0.03 3.04 0.01 
- - - -

70 and Above 
0 In 

68 At 
6 Out 

- - - -
0.31 1.32 0.49 0.98 
0.53 0.19 0.65 0.15 

Description: The GARCH model predicts ITM, CTM warrants worse than the Actual model! 
does. 
The GARCH model predicts ATM, CTM warrants better than the Actual model 
does. 
Both the GARCH and Actual models underpredicts. ATM and OTM CTM 
warrants. 
The GARCH model predicts A TM, FFM warrants worse than the Actual model 
does. 
The GARCH model predicts OTM, FFM warrants slightly better than the Actual 
model does. 

 
 
 



Warrant Name: 3NEDUB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
0 In 
0 At 
0 Out 

- - - -
- - - -
- - - -

70 and Above 
157 In 
0 At 
0 Out 

0.84 0.88 0.65 0.68 
- - - -
- - - -

Description: The GARCH model predicts ITM, FFM warrants worse than the Actual model 
does. 

 
 
 



Warrant Name: 6NEDIB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
17 In 
0 At 
0 Out 

0.35 0.33 0 0.83 
- - - -
- - - -

70 and Above 
45 In 
0 At 
0 Out 

1.50 0.09 1.45 0.13 
- - - -
- - - - , 

Description: The GARCH model predicts ITM, CTM warrants better than the Actual model] 
does. i 

The GARCH models underpredicts overpredicts ITM, FFM warrants. ~ual: 
The GARCH model predicts ITM, FFM warrants slightly worse than the Actual 
model does. 

~--.-................ ---.-.­............... ---.­

 
 
 



Warrant Name: 6NEDSG 
Time to maturity (days) Observations Moneyness GARCH Actual 1 

Below Above Below Above 

Less than 70 
7 In 
0 At 
0 Out 

0.73 0.11 0.76 0.13 

- - - -
- - - -

70 and Above 
14 In 
0 At 
0 Out 

0.47 0.46 0.66 0.31 
- - - -
- - - -

Description: The GARCH model predicts fTM, CTM warrants worse than the Actual model 
does. 
The GARCH model predicts ITM, FFM warrants slightly better than the Actual 
model does. 

 
 
 



Warrant Name: 30MLUB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
0 In 
0 At 
0 Out 

- - - -
- - - -
- - - -

I 

70 and Above 
118 In 
0 At 
0 Out 

0.18 1.99 0.42 1.28 

- - - -
- - - -

Description: The GARCH model predicts ITM, FFM warrants worse than the Actual model 
does. 
Both the GARCH and Actual models overpredicts ITM, FFM warrants. 

 
 
 



Warrant Name: 40MLSG 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
3 In 
0 At 
0 Out 

0.73 0.07 1.09 0 

- - - -
- - - - i 

70 and Above 
19 In 
0 At 
0 Out 

2.56 0 2.43 0 I 
i- - - -

- - - -
I 

Description: The GARCH model predicts ITM, CTM warrants better than the Actual model 
does. 
The GARCH model predicts ITM, FFM warrants worse than the Actual model 
does. 
Both the GARCH and Actual models overpredicts ITM, FFM and CTM 
warrants. 

 
 
 



Warrant Name: 50MLIB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
0 In 
0 At 
0 Out 

- - - -
- - - -
- - - -

70 and Above 
41 In 
0 At 
0 Out 

2.13 0.00 2.43 0 
- - - -
- - - -

Description: The GARCH model predicts ITM, FFM warrants better than the Actual model 
does. 
Both the GARCH and Actual models overpredicts ITM, FFM warrants. 

 
 
 



Warrant Name: 3SAPIS 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
18 In 
0 At 
0 Out 

0.23 0.15 0 0.03 
- - - -
- - - -

70 and Above 
103 In 
0 At 
0 Out 

1.31 0.21 0.72 0.35 
- - - -
- - - - 1 

Description: The GARCH model predicts fTM, CTM warrants worse than the Actual model 
does. 
The GARCH model predicts ITM, FFM warrants worse than the Actual model 
does. 
Both the GARCH and Actual models overpredicts ITM, FFM warrants. 

 
 
 



Warrant Name: 3SAPUB 
Time to maturity (days) Observations Moneyness GARCH Actual 

Below Above Below Above 

Less than 70 
47 In 
0 At 
0 Out 

2.46 3.26 0 6.21 
- - - -
- - - -

70 and Above 
162 In 
0 At 
0 Out 

3.12 1.87 1.09 2.73 

- - - -
- - - -

Description: 

----­

The GARCH model predicts ITM, CTM warrants better than the Actual model 
does. 
The GARCH model predicts ITM, FFM warrants worse than the Actual model 
does. 
Both the GARCH and Actual models predicts ITM warrants poorly. 

~---
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9.4.2 Conclusion to Results 

In this study, the results due to implied volatility or actual observed market 
prices performed marginally better than the GARCH prices in the forecast­
ing of market prices of 11 to 20 days in the future. 

The forecast due to the actual observed market prices performed mar­
ginally better in both time to maturity classes for "in the money" warrants. 

The GARCH option pricing forecasts where marginally better for "at 
the money" warrants with less than 70 days to maturity and "out of the 
money" warrants with more than 70 days to maturity. 

9.4.3 Comments on Study and Results 

No specific GARCH or ARMA process can ever be used to fully explain mar­
ket dynamics. A GARCH process can for instance be useful only in forecast­
ing options on certain assets, in certain market conditions, with a certain 
range of maturities. Thus plainly put, if an (implied) volatility process 
follows an approximate GARCH process, then use the GARCH process or 
option pricing methodology to forecast option prices, if not don't. 

A general study, as done here defeats the purpose of GARCH processes 
to a certain extent, since a GARCH process must be tailor made to· the 
specific market instrument and conditions. 

This study does however show that GARCH series can be fitted to im­
plied volatility with some success. 

 
 
 



Chapter 10 

Conclusion 

This dissertation highlights some of the real world deviations from the Black­
Scholes option pricing framework. 

Unlike the assumption of constant volatility of increments in Brown­
ian motion, volatility in the market is stochastic. Markets with stochastic 
volatility are no longer complete, as it is in the Black-Scholes structure. 
Options in incomplete markets are harder to price since investors demand 
higher returns for taking additional risk. 

Duan [10] proposed a new measure under which to price options in in­
complete markets, called the Local Risk-Neutral Valuation Relationship 
(LRNVR). The LRNVR and related option pricing methodology is discussed 
in detail in this dissertation. The neccesary measure theoretical and stochas­
tic calcullL~ background is given for a clear understanding of this relationship. 

The stochastic volatility in this dissertation is assunled to be a statis­
tical time-series process, the Generalized Autoregressive Conditional Het­
eroscedastic (GAROH) process. Time-series processes are discussed in this 
dissertation, to give readers who aren't familiar with these statistical meth­
ods a reasonable foothold therein. 

Warrants are option-like instruments traded on the JSE Exchange. War­
rants can't be sold short. This restriction adds to incompleteness in the 
market. In this dis..<Jertation the GAROH option pricing process is applied 
to the implied volatility of the warrant instead of the stock price process as 
done by Duan. This is because the standard deviation of the stock price and 
the implied volatility levels differ significantly because of the short selling 
restrictions and the illiquidity of the market. 

Results of the application of the GAROH option pricing process to im­
plied volatility, shows that it compares well to the use of implied volatility 
of current warrant prices in forecasting future warrant prices. 
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Chapter 11 

Related Literature 

The following advances to the GARCH literature have been published since 
Duan's 1995 paper: 

• Heston and Nandi [22] published a closed-form solution to a GARCH 
option pricing problem similar to that of Duan's 1995 paper. This 
method makes use of the conditional moment generating function of 
the stock price at expiry. 

• Duan and Simonato [11] proposed a numerical method for valuing 
American options with GARCH -like volatility in 2001. This method 
is based on approximating the underlying asset price process by a 
finite-state, time-homogeneous Markov chain. 

• Ritchkell aud Trevor [30] in 1999 proposed a lattice approximation 
scheme for the pricing of GARCH and bivariate stochastic volatility 
frameworks. 

• Duan, Gauthier, Sasseville and Simonato [12] proposed an efficient 
approach to pricing in the GARCH framework by combining lattice 
methods and moments approximation in 2002. 

Other stochastic volatility option pricing models (see Chriss [8]): 

• Implied volatility trees. A model by Derman and Kani and similar 
models by others. This is a lattice system that use the implied volatil­
ity surface of a stock price as input to price an option. This model 
can also be adapted to price American options. 

• Implied binomial trees. A lattice system that uses the implied volatil­
ity of European options of all strikes at a fixed expiration date to price 
nonstandard and exotic options. 
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