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Chapter 8 

Implementation of GARCH 
Option Pricing 

8.1 	 Introduction 

In this chapter, methods to implement the GARCH option pricing model 
is discussed. Two separate numerical procedures are required in the imple­
mentation of this model, the first is the calibration of the parameters to the 
stock or option data and the second is the forecast of the option price. 

8.2 	 Calibrating the GARCH Process to Empirical 
Data 

8.2.1 	 Historical Data 

In the GARCH option pricing procedure proposed by Jin-Chuan Duan, the 
GARCH process is "fitted" to the process of the underlying stock or index. 
This means that the parameters of the GARCH-M process under the P 
measure is fitted to the returns series of the underlying by maximizing its 
loglikelihood function. 

For the (vanilla) GARCH(I, 1) - M process WIder the P measure 

8t = 8t-1 exp (Tilt - ~U; + AUt + ct ) 

where et is the returns at time t, the rest of the parameters and variables 
are as in section 4.6. The vanilla GARCH(I, 1) process isl . 

I Estimates are written with hats. 
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From section 4.4.3, equation 4.9 the likelihood function for the variance 
up to time t is 

f (0,&;) 

The optimization problem for the variance is as follows 

where the likelihood function f (0, &;) is maximized in terms of the para­
meters &0, & and /3. Since the value of &5 isn't known, it forms part of the 
optimization problem. 

The value of parameter .\ is then estimated by minimizing the sum of 
squares between the actual and estimated stock prices up to time t 

Eh is an estimate of the of the stock price at time i and Si is the actual stock 
price. 

Both of the optimization problems are due to overdetermined systems. 
This means that there are more equations than variables. Tim Bollerslev 
(1986) suggests the use of the Berndt, Hall, Hall and Hausman algorithm for 
the estimation of the variance optimization problem. A similar algorithm 
can also be used for the mean optimization problem. 

Many new statistical computer packages have built-in GARCH algo­
rithms. Often, the problem with these built-in algorithms are that they 
are designed to solve only certain types of GARGlI parameter estimation 
problems. 

The GARCH toolbox available with Matlab R 12 is only limited to solv­
ing vanilla GARCH problems. Fortunately the optimization toolbox of Mat­
lab is excellent. The procedure fmincon can be used to fit a tailor-made 
GARCH and means process. 

8.2.2 Implied Volatility 

As mentioned in section 1.3 of the introduction, the levels of implied volatil­
ity of warrants are substantially higher than that of the historical volatility 
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of the llilderlying. This means that there is little use in pricing an option 
with a model based on the history of the underlying. 

In this dissertation we investigate the calibration of a GARCH process 
to the implied volatility of warrant.. 

The approach is as follows: 

1. 	 In section 5.4.5, the discussion of the Black-Scholes formula and im­
plied volatility, it was mentioned that implied volatility is annualized. 
Implied volatility at time t, say Ut must thus by multiplied by the 
square root of the relevant time fraction, for instance if the available 
returns series is daily then the new adjusted series must be Uty'1/252. 

2. 	 The GARCH process is a variance process, not a standard deviations 
process, thus the square of the new series in point 1 must be taken, 
which gives ut /252 == It. 

3. Implied volatility is used 	to price options, thus it is already lmder 
the Q measure. This means that the unit risk premium ). is already 
"absorbed" into the GARCH process. 

4. 	The parameter estimation for the Asymmetric GARCH(p, q) process 
is as follows, 

t 

- _~n 2: 
OIQ,OI,{:J,>' i=l 

(It -"0 +t,"j (e'_j - Au'_j)2 +t ilj07-j ) 2 (8.1) 

Unlike the parameter estimation in section 8.2.1 above, the value of 
u~ here isn't part of the minimization problem. That is because if we 
let u~ equal 1o, the value at time i = 0 in equation 8.1 is zero. 

5. 	Optimization here is again done with the fmincon procedure of Mat­
lab. 

8.3 Monte Carlo Simulations 

Monte Carlo simulations is a method to solve stochastic integrals numeri­
cally. This is done by simulating N sample paths of a stochastic processes, 
say f by the generation of random variables from the underlying probability 
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distribution. All the versions of I are then added together and divided by 
the amount of simulations. By the law of large numbers we can write 

1 N 1 lim N" I (Xn) = I (x) q (x}dx 
N-+oo ~ R 

n=l 

where (Xn) are independently drawn from the distribution with pdf q. 

(8.2) 

In this dissertation q is the pdf of the normal distribution discussed in 
section 2.5. 

8.3.1 European Option with Constant Volatility 

The pricing theorem for a European option in the Black-Scholes sense, the­
orem 5.4.2, yields 

Vi. - e-r(T-t) EQ [VT I Ftl 

e-r(T-t) FfJ [IT I Ftl 

e-r(T-t) In IT {x} q {x} dx 

where q is a pdf. For a put option, IT = (X - ST)+, where X and ST are 
the strike price and the stock price at time T respectively. ST and thus IT 
is a function of Brownian motion. By equation 5.12, 

In discrete time, this can be estimated by 

where 

8.3.2 European Options with GARCH Volatility 

The aim is again to estimate the value of IT at time T. This time it must be 
remembered the the GARCH-M process used in this dissertation is defined 
in discrete time, we are thus not solving an integral. The stock price process, 
under the LRNVR with GARCH conditional volatility, as defined in theorem 
6.8.1 is 

Sr ~ St exp (T -t) r - t. (~<?; +tiUi) ) 
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Figure 8.1: A sample path of a Monte Carlo simulation compared with the 
actual ABSA stock price process. 

where 

and 

q 	 p 

u; 0:0 + LO:j (';i-j - AUi_j)2 + L{3jut-j 
j=l 	 i=l 

8.3.3 Notes 

1. 	Th simulate possible sample paths of the stock price, a random number 
';t is generated for each interval tENn [1, T]. The intervals are equally 
spaced, say of size b..t. If we use an annual risk-free interest rate and 
daily time intervals, b..t would be 1/252, since we usually assume 252 
trading days in a year. 

2. 	A large number of future paths are simulated. The number depends 
on the accuracy required. This can vary between a 1000 and 50000 or 
even more simulations. 
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8.3.4 	 Generating Other Distributions from the Uniform Dis­
tribution 

Many computer packages can only generate uniform random variables be­
tween 0 and 1. Most other packages, like Matlab and Excel, generate only 
random variables from certain famous distributions. The following famous 
technique is a way to generate random variables from uniform random vari­
ables: 

To generate random variables from this cdf, use the following famous 
result: Say we are able to generate a uniform random variable, U, between 

o and 1. Define the inverse of Fz--(z) as 

%J-1 
=inf{z IFz(;) ~y} 

where 0 ~ y ~ 1, thus 

---1 
Fz (U) = Z. 

It then simply follows that 

--Fz (z) - P (Z ~ z) 

p (F;(iJ)-1 ~ z) 
p(U ~ Fz(;)) 

--1 
Thus by generating a value u from U, calculate Fz ('iL) which is set equal 

to z. This yields a Fz (z) distributed random variable. 

8.4 Variance Reduction Techniques 

Monte Carlo simulations are computationally expensive. It is practical to 
employ variance reduction procedures to decrease the number of simulations 
needed. Hull [23] gives a broad summary of variance reduction procedures. 

The variance reduction procedures used in this dissertation are the anti­
thet'ic variable and moment matching techniques. The control variate tech­
nique2 can possibly also be used. To be certain of the soundness of the use 
of the control variate technique for the particular simulations done in this 
dissertation, further investigation is needed. This is beyond the scope of the 
dissertation. 

2For the simulations in this dissertation, for the option price resultant from a forecasted 
GARCH-M process, we can do the Controle Variate Technique as follows: 

Two simulations, the standard Black-Scholes option pricing integral and the Duan 
GARCH integral are done in parallel using the same random variables. 

The Black-Scholes simulation is then subtracted from the GARCH one and the equiva­
lent analytical Black-Scholes value is added. 
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8.4.1 The Antithetic Variable Technique 

With this technique two values for the derivative is calculated. The first 
value, /1 is calculated the normal way with random sample vector [~tlTx 1 

taken from the applicable distribution. For the second value p, -1 X [~tlTx 1 

is used. The final answer is the average of the two values 

The advantage of this technique is that a value above the true value can 
be "canceled out" by one below and vice versa. 

8.4.2 Moment Matching 

In this dissertation the standard nonnal distribution is used. In the moment 
matching technique all of the sampled random variables for each sample 
path, say the vector [~tlTxl is standardized. This is done by subtracting the 
mean of the sample m from each element of the sample and then dividing 
that by the standard deviation s of the sample, 

~t-m 
Yt = s 

yielding a standard normal random variable. 

 
 
 


