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Chapter 6

Local Risk-Neutral Valuation

6.1 Introduction

One of the properties of Brownian motion is that equally spaced increments
are stationary, that is, it can be assumed that they are independently and
identically distributed. The vast majority of empirical studies show that
this is generally not the case.

Stochastic volatility in stock prices complicates the pricing of derivative
instruments. The assumption of a complete market model and therefore the
risk-neutral probability measure derived in chapter 5 no longer holds. This
is because we cannot completely hedge away the risk posed by stochastic
volatility.

Jin-Chuan Duan (1995) [10] defined a new measure, the local risk-neutral
probability measure. He showed that an economic agent maximizes its ex-
pected utility by using this measure. In this incomplete market, extra as-
sumptions are made about the consumer (its utility function) and the risk
premium demanded by the market for taking additional risk. Duan named
the properties of the measure, the local risk-neutral valuation relationship
(LRNVR).

In this chapter the GARCH, EGARCH and GJR-GARCH processes are
considered in the GARCH-M framework. The GARCH processes are in
discrete time, thus unlike the risk-neutral pricing framework which forms
the basis for Black-Scholes framework, the LRNVR is in discrete time.

In section 6.2, the continuous-time option pricing model discussed in
chapter 5 is converted into a discrete time model. The goal of this section is
to translate and compare some of the well-known continuous time finance
concepts into discrete time statistical concepts. For example the continuous
time concept of Brownian motion is converted in discrete time to that of
expected returns.

The GARCH-in-Mean model for the volatility of a discrete time stock
price process used by Duan for option pricing, is introduced in section 6.3.
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Utility functions and the risk aversion of economic agents are discussed
in section 6.4. A general consumption-investment strategy is maximized in
section 6.5.

The LRNVR is defined in section 6.6 after which the local risk-neutral
measure is derived in section 6.7. The stock price process under the new
measure is discussed in section 6.8.

6.2 The Stock Price Process in Discrete Time

Recall the stock price process of section 5.13 with solution

S, = So exp [(p — éo‘z) ¢ +0Wt]

In discrete time, with equally spaced observations,

~ i 1
§i1 = Soexp (p - §02) < (t-1) +awz_1]

which gives

2

Sg = 5}..1 exp | — (u - -1-0'2) % (t o 1) . O'Wg._l]

At time £, the value of

~

S5 = Soexp[(p—-%az)t-}»aif%]

= Si_iexp [—- (# - %0“2) (t—-1)- 0W3~1]

X exp [(y — %02) t+ aWt]

Wy =W~ Witpi~ N (0, 1)

Since

let
et Fir X N (0,1)

where £; is F;_.; measurable.
The one period ahead stock price is defined by

. - 1
S; = ;1 exp (p - 502 + oet) (6.1)
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where
P
et} Fi-1 ~ N (0,1)

If we let

where 7 is the risk-free rate of interest, equation 6.1 would become
- 1,
Sy = Si—1exp r———2-0' + Ao 4 o5y

In the discrete case where the information on time ¢ — 1 is known, we
could just as well have considered a volatility process which is constant
between time t — 1 and £.

6.3 The Stock Price Model under certain GARCH
Volatility

Jin-Chuan Duan proposed the following conditional, lognormally distributed
stock price process, with stochastic volatility, under the P measure

St = S¢-1 exp (’I'*At - %0’? -+ Aot -+ 0’385) (62)
where
P
et|Fi-1 ~ N (0,1)

is the conditional error process, o7 is the conditional variance (GARCH
process) and A! the unit risk premium. ;. is the o-algebra of information
up to time ¢t. The yearly risk-free rate of return is r*. Henceforth define r
over period At, the same time period over which the conditional variance is
taken. From this point on the period is daily.

! A possible interpretation of the unit risk premium follows from section 6.2 which deals
with the market price of risk. Define the risk premium as

Ao BT
a

where o is the long term or unconditional standard deviation of the series {X;}.We can
simplify the term with the risk premium from equation 6.3 to get

- Ot
Nog={p—~1r)—.
e={p-r)—
{zz — v} can be seen as a fixed (positive} premium. 2“0 incresses as the predicted condi-
tional volatility oy increases over the long term volatility . The economic interpretation
is that the market agent demands a higher premium as the expected volatility increases.
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The conditional expected rate of return is defined as

S 1
In—— = r-— Z0% 4 Aoy + 04ey (6.3)
St—1 2
~ N (’r - %a? + )\ag,af)

This is derived by transforming equation 6.2.

The GARCH option pricing model prices options under conditional het-
eroscedasticity. This means that conditional variance is allowed to change
over time while keeping unconditional variance constant. In this disserta-
tion, options whose variance follows (vanilla) GARCH, GJR-GARCH and
EGARCH process will be investigated. The main focus will be on the
GARCH(p, q) process and specifically GARCH(1, 1) process.

The GARCH(p, q) conditional variance process is

g P
2 2 2
0y = 0o+ E :aigt-i'i' E Bioi;
i=1 i=1

where ap > 0 and o, §; > 0 for all applicable numbers i. Notice that 07

is predictable at time ¢ — 1.
The GJR-GARCH variance process is

0? = ap+ Bo?_; +ae?_| +ymax (-—f-:t,())2

where v > 0.
The EGARCH variance process is

Ino? = ap+ By Inor ) + By (lee—1] — ver—1)

where y,v > 0.

6.4 Consumer Utility Essentials
6.4.1 Utility Functions

The satisfaction (utility) an economic agent gets from consumption can often
not be described on a monetary scale., A utility function represents an
economic agent’s welfare from consumption.

In this dissertation we assume that utility is measurable and possible to
represent in a function. This function is called a (cardinal) utility function.

Define the utility function by
u(z) : Rt - R*
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that is
« (monetary cost of consumption) = “welfare” from that consumption
It is generally assumed that a utility function has the following three prop-
erties:
1. u(x) is twice differentiable
2. u(x) is an increasing function of z, v’ (z) > 0
3. u(z) is a concave fuuction of z, v’ (z) < 0.

Property 2 is due to the fact that an economic agent prefers to con-
sume more than less. Property 3 can be interpreted in terms of additional
consumption. The utility that an economic agent gains from additional
consumption g, in excess of an existing consumption =,

u(z+g) —ulz) <ulg)

Each economic agent has its own unique preferences and thus utility func-
tion.

6.4.2 Risk Aversion
Absolute Risk Aversion

For a given utility function u(z), in continuous time, we can associate an
absolute risk aversion function defined by

R(z) ==& _ »%111 o () (6.4a)
Properties 2 and 3 of section 6.4.1 insures that R (z) > 0 for all . The bigger
R(z) is, the less risk the econoniic agent is willing to take for additional
consumption. The discrete time version of equation 6.4a

_Inu’ (z¢) —Inv/ (1)
— L1

'B’ :L‘g)
In e

R(z) =

Ty — Ty—1
Relative Risk Aversion

The relative risk aversion for a utility function u (z) is defined by

r(z) = a:~:z:=-”(a')
@ = 2R(@) =~

df; Inv (z)
P 4y
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The discrete time risk aversion function is

Flz) = _Inv (z¢) — Ino (21-4) N Inz, — Inzeq
Tt — Lg—1 T — T
Inv (x;) — Inv (2;_4)
Inz; —Inzeq
w (z4)
_,_ln u' (1)

T
In o

6.5 A General Consumption-Investment Strategy

Consider an investor with the following discrete time consumption-invest-
ment plan: The investor maximizes its differentiable utility function, u(z) :
R* — R*, at any point in time ¢ — 1 by either consuming, C;.; € R* or
by investing, H;_, € R, in a portfolio with random payoff §; € R* at time
t. At time £ the investor again has the same choice between consumption
and investment from the payoff from time t — 1. Like most investors, this
investor gets more satisfaction out of consuming immediately than waiting
for the next period, hence define the impatience factor p € R. At timef—1
this plan can be written as

max B [u(Ci—1) + exp (—p) u (Ct) | Fi] (6.5)
subject to

v = Cp1+ Hp-15t-1 (6.6)

Hi 15 = Ci+ HS (6.7)

v is the payoff of the investment made at time ¢ — 2. Take note that at time
t — 1 the only choices this investor make is to consume now or invest for one
period ahead, thus the expected utility of consumption of periods after time
t isn’t of concern. Since Cy_.; is predictable at time ¢ — 1 problem (6.5) can
be rewritten as

max t (Ce-1) + exp (—p) B [u(C) | Fe-1] (6.8)

The aim here is to maximize utility in terms of consumption and invest-
ment. From equations (6.6) and (6.7) consumption in subject (6.8) can be
rewritten in terms of investment as

max u (v e Ht_.lst._l) + exp (-—p) EP [u (Hg...lSt - Hgst) ‘ .7:5._1] (69)
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If we then maximize problem (6.9) in terms of H;_; we get

a
0 = 8Ht__ ’lt(?)*H{,_ng._l)
a
8H_ = exp (—p) BY [u(H1-1S; — HiSy) | Fi-)

= =S (v—H;15)
+exp (—p) EF [Spu! (Hy—1S — HySe) | Fer]

which by further simplification and equations (6.6) and (6.7) yield

u (Cy)

Si1 = B [exp 2 (o)

5y | Fto1 ] (6.10)
Thus the price of the portfolio at time ¢ —~ 1 is written in terms of the ex-

pected value of the economic agent’s utility, its impatience and the expected
future portfolio value.

6.6 The Local Risk-Neutral Valuation Relation-
ship

The conveutional risk-neutral valuation doesn’t accommodate heteroscedas-
ticity of stock returns. The Local Risk-neutral Valuation Relationship
(LRNVR) is a way to generalize risk-neutral valuation to accommodate het-
eroscedasticity.

Definition 6.6.1 (Q,F, P). A probability measure ) is said to be a local
risk-neutral probability measure if

1. @ 1is equivalent to measure P

2, EQ[ln( )m 1]__;« for all t € R*

3. Va?Q[ln( )1 Fie] = Var® [ (8 )m-lj P as.

Remark 6.6.2 Condition 1 is the same as in 5.2.7. Condition 2 is also
similar but only defined over one period. The expected return doesn’t locally
depend on preferences. The one period conditional variance of the returns
are invariant almost surely under the equivalent measures.

The rest of this chapter focuses on the possible characteristics of an

economic agent and the distribution of returns for which the LRNVR will
hold.
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6.7 The Local Risk-Neutral Probability Measure

Theorem 6.7.1 Let a process Y; be such that Yy | Fi— E is normally
distributed with constant mean and variance under the P-measure. Define

Q@ as

g=1

T
dQ = exp ((r—p)T+ }:n) dP

then () is a measure and is equivalent to P.
Proof. Measure. () is a measure by Corollary 4.9 of Bartle [3], since

T
exp ((r“-,o)TJr ZK,)

g=1

is a nonnegative Fy_1 measurable function from  to R.
Equivalence. Let A € F be a set such that

P{4)=0
Then
P(A) = 0

o /dP::/IAsz()
A Q

where 14 is a characteristic function for A, I4 is a measurable and nonneg-
ative function.

LIAszOﬁIA=G P —a.s.

This means that
I{w)=0

for allw € A= O\M where P(M) =0. This holds if and only if
1) f (@) =0

Jor allw € A = Q\M where P(M) = 0. f(w) is a measurable positive
continuous function from Q to R*. The product of real measurable functions
faly is also measurable. This is the same as

fIa=0 P—a.s.
It is also equivalent to [3]

/Q faladP = /A fdpP
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It is clear that
) T
J(w) =exp (('r ~ p)T+ZYs(w))
3=1

is a nonnegative, measurable continuous function from Qo R (Y, : Q@ - R
for every s).

flwy=0

if and only if Yy (w) = —oo for any s. Fortunately P {Y; = —oco} = 0 since
Y, is normal.

Thus
P(A) =0
& /IAdPZO
! T
& /exp ((7'-p)T+Z}’;(w)) IqdP =0
@ 3=1
< Q(A)=0

Thus the measure () is equivalent to measure P. W
The measure ¢} isn’t, in general, a probability measure. In the next
theorem conditions under which Q is a probability measure will be defined
and a desirable property of @ will be derived.
Theorem 6.7.2 If
Si-1 = EP [Siexp(—p+ V) | Fir (6.11)
then.
1. Q is a probability measure
2. If W is F; measurable then
E? Wy | Fooa] = EF Wiexp ((r — p) + Y2) | Fii]
Proof. From the definition of Q)
T
d@Q = exp (('r—-p)T+ZYQ) dpP

s=1
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In integral notation

LdQ = ~/Qe:ecp((7'-—p)TJrXT:YS,)dP

g=1
i T
= EP Lexp ((‘r -0)T+ ZK,)]
- a;—;l
= E" |exp ((r -p)T+ZYs) lfo]
L s=1

g==1

r T-1
= EF Lexp ((T~p) (T ~1) +zYs) exp(r—p+Yr) | fO}

= P [ellr=a)T-DIEI5 V) o P [op4¥r | ] | fo]

This last step is due to the tower property of conditional expectation. As-
sumption 6.11 states that

EP [exp(—p+ Y1) St | Fie1] = St—1
thus

EP lexp(—p + Yr) | Fr-1] = exp (—r) (6.12)
for a risk-free asset. The result is that

-1
fdQ = EF [exp (('r —-p)(T—-1)+ Z Ys) exp (r)exp(—r) | .770]

a=1

T-1
= EF [exp (('r'—p) (T-1)+ ZYs) I fo}
§=1

The tower property can again be invoked and an argument similar to 6.12
can be derived.

[ = wP[le-Pr DIt e [doen | 77 | 7
JQ
T-2

= EP {exp ((«p——p)(T—‘Z)‘{-ZYs) [.7:0]

8g=x1

This can be repeated until we have, at filtration Fyg,

/QdQ=E'°[exx>((r~p)+iﬁ){f01=1
Thus
Q) =1
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with this property, the measure @ is a probability measure. We also have
that

Q) =EF[exp((r—p)+ Y1) =1
it s clear that

T
exp ((r-—p)Tﬂ-Zl’;) >0

g=1

and we proved in theorem 6.7.1 that Q) 4s equivelent to P. The Radon-
Nikodym theorem can be invoked thus

T
exp ((r~p>T+Zn)

a=1

is P — a.s. unique and for any F; measurable set Wy,
EQ W, | Four) = EP Wy exp ((r - p) + Y3) | i1
|
Theorem 6.7.3 If
Si-1=EP [exp(—p+ ¥2) 5; | Fi1l
then

1. In (%) | Fi—1 2 normal

2. E? [S.:S{—l- Ift-—l] =e" forallt € R

3. Var® [ln (g%) Ifg_l] = Varf [ln (fffi—) i}}_l] P a.s.

Proof. Lemma 2.
From theorem 6.7.2 we have

S,
E@ {"S—i; l fsa]

= EF [—'%t—l- exp((r—p)+Y:) | ft-1]

= B [Siexp(=p+Y) | Fiui]
t-1

:er

Proof of lemmas 1 and 3.
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In theorem 6.7.2 we proved that
B2 Wy | Fio1] = B Wrexp ((r — p) + Y2) | Fii]

for all F; measurable sets Wy. If Wy is Fy—measurable, so is W for all
¢ € R. From theorem 6.7.2 we have that

ER[Sf| Fii]l = EF [ng((’-p)ﬂ'}) | Fi- 1]

then
S [ S¢ AT
i) = g
EQ [ﬁcln;s:si-l- ‘f.t——l] = EP -ecln —g;s-_'_“l-e((r—p)%»l’t) l ﬁw{‘
EQ [CCX': l}?ﬁ—l] = E’P ~€CX‘6((T“P)+Y;) i }'t-ul]
if we define
5
Xi=In 5

Throughout this chapter there’s been assumed that X; | Fi—1 is normally
distributed under P, say

Xt | Feer ~ N (g, 07)

In theorem 6.7.1 we assumed that Y; is also conditionally normal. Y; can
thus be written in terms of X, a constant o and another random variable
with zero mean Uy, which is independent of Xy. Then

Yi=a+8X:+U;
with B € R. Thus
E@ [eCX' | Fo-1]
= EP [ecxte((r—p)m) l y_-t__l]
= EP [ecXt+§Xg+&+Uz+(‘r-—p} | fz_l]
= TP [Nl 7] (6.13)
The joint variance of (c+ B) X; and U under P is

var ((c+ ) X; + Up) = (c+ B)* v} + EP [UF]
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since U is of zero mean. By the moment generating function

EP [e(cw)xtwi | Foe 1]

(e tBY+H((c+8)o3+BF [UF])
he(cHBI+ 5 (2421 )2+ L EP U7
e3Pt S P [UF] 4 §eof+e(t507)

I

Then equation 6.13 becomes
EQ [ecx‘ I ft-—l] = e[(”“{?)‘{“’%EP[U?Ifg,1]+p¢§+ﬂzv?} 'Y

e %c2v§+c(p¢+6v?)]
This equation holds for all c € R, If we let ¢ = O then
1 = E9Q|Fid]

= =P+ BP[UR|Fi ] +u, B48%02
so we are left with
B9 [eCX‘ lf"t——l] — 3P +e(p+B0F)

If we let ¢ = 1, then by the form of the answer of a moment generating
function,

S
X;=In (:g-tj—l) | Fe—1 2 N (ﬂg +ﬂ”¢2avt2)

Which proves 1. The conditional variance under P of X is also o2 thus
lemma 3 is also proved. ®

Theorem 6.7.4 An economic agent who’s an expected utility mazimizer
and whose utility funclion is separable and additive is a LRNVR investor
under the following conditions:

1. The utility function is of constant relative risk aversion and the changes
in the logarithm of the aggregate consumption are conditionally nor-
mally distributed with constant mean and variance under the P mea-
sure

2. The utility function is of constant absolute risk aversion and the changes
in the logarithm of the aggregate consumption are conditionally nor-
mally distributed with constant mean and variance under the P mea-
sure

3. The utility function is linear.
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The local risk-neutral measure is

—treayr U (C)
= o= r=p)T __\ME)
dQ) = e T C¢—1)dP

The implied interest rate is assumed constant.
Proof.

1. From the discussion on the utility function and risk aversion it is pos-
sible to define conditions 1 to 3: ‘

(a) Condition 1: A utility function of constant relative risk aversion

is defined by
A = _dan' ) L dlnC
1= dC dC
InU' (Cy) — U’ (Cy—1)
B lnCt —IHCL_I

hlU’(Cg)-—lllU’(Cg_;[) = (—Al)(lnC?;——lnC?t-Q
UG\ _ (yymf
m(—-——U, (CH)) — (=) ( ct..l) (6.14)

Since we assume that In(Cy/Ci—1) is normally distributed with
constant mean and variance under P, In (U’ (Cy) /U’ (Ci-1)) is
also normal with constant mean and variance.

(b) Condition 2: A ulility function of constant absolute risk aver-
sion is defined by

A - _diU(C)
2= dC
_ __ln U (Ce) - InU (Cy—y)
Ci—Ciy

thus
In Ui (C&) - In U’ (Ct—l) = (——/\2) (Cg - thl)
In (ﬁ%) = (=2)(Ce—Cin)

By the assumption that Cy — Cy—y is normally distributed with
constant mean and wvariance under P, In (U’ (C}) /U (Ci-1)) is
also normal with constant mean and variance.

(¢) Condition 3: A linear utility function is defined by
U(C)=aCi+¢
thus
U(C)=a
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and
U (Cy) —1
U (Ci-1) -

The ratie of marginal utilities

U(C)\ _ P
m(U,(Ct"l))_o N (0,0)

From dll three conditions it is clear that In (%%) is normal
with constant mean and variance.
2. In section 6.5 we saw that under the P—measure
Si-1 = EP[ " '(g?))sz | Ft-1 ]
= EP [e"’“”(ﬁé%) S |~7:t-—1]
= EP[e P8, | Fiuil (6.15)

where Y¥; = In ( " ’G?tl))' Y:, as mentioned, is normally distributed

under conditions I to 3. If we define Q@ as

dQ = r—AT+EL Yo gp

then from theorem 6.7.1, Q is a measure which is equivalent to P.
From theorem 6.7.2 we see that Q is a probabilily measure and

FR (W, | Fitl = BV [Wier 2T+ | 7y

for any Wy which is Fy measurable. Another resull from equation 6.15
stated in theorem 6.7.3 is that

(a) In (g%) | Fes 2 normal
(b) ER [ S [st | Fiy ] " forallt € R*
(c) Var? [ln (g;sf;) l.ﬂ_l] =Var? [ln (g?f_-l-) lfg..l] P a.s.

3. Thus for an economic agent who’s an expected utility mazimizer, whose
utslity function is separable, additive and fulfills one of the three stated
conditions, the Local risk-neutral Valuation Relationship also holds.
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6.8 The Stock Price Process under LRNVR

In this section the stock price process under the LRNVR is derived.

Theorem 6.8.1 Under the Q — measure, implied by the LRNVR,

St
St-1

In =7 - %0? +&,04

where ‘
Q
&y Fi—1 ~ N (0,1)

and

q r
0';“’ = g + Zai (&t—-z‘ — )\0’;..;‘)2 + Zﬁ,—o’%_i (616)
=1

g:=1 7

Note that the parameters T and t in this context are in terms of time i.e.
fractions with the days of the year as the denominator, not as the discrete
index. That is, for 63 days in a 252 day year t = 0.25.

Proof, As proved in theorem 6.7.8, In E’Sf—‘-[ft_.l is normally distributed
under measure (. It can thus be written in terms of a deterministic and
random. variable

Sy

In =uv+& (6.17)
Si—1

under Q. The random variable is obviously normal with mean zero and vari-
ance the same of that of In Ts%j under Q. It will be proved that

1
1. w=r—io0?

2. "% = og + Zg=1 oy (gt-i - A"1’t—i)2 + Z?xx 5&03—5

Proof of 1:
From equation 6.17

St o e’Ut‘H’tfg
St—1

o] - sl
= eME9 [ec‘f‘ 'Ft—l]

then by the moment generating function for an normally distributed random
variable we have

lygr S,
E9 [SStl 1Ft~1] — etV Q[]ngﬁlﬁ-l]EQ [1F-1]
b
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Since
S, S
Q 2t - P 2t
Var []n (St-—l) lft_.1] Var [ln (St-l) I]‘}_{l
= o} P-as.

from theorem 6.7.3 we can write

St
| St—1

E® {ft—q:‘ = "+l

It was also proved in theorem 6.7.3 that

S
| Si-1

EQ

!]:t—l] =e"
thus
1,
v¢+-2-0£ =7

V=T — %af
Proof of 2.
Recall the original stock price process with GARCH volatility under the
P measure, equation 6.2,

o 1
ln—S—t—_—l-=r+Aag-§af+st

and the process implied by proof 1 above under measure — @

S; 1
hl“é;: =‘l‘-—-2-0'%+§t

Again using the result

Var® [ln (*:S}E-) lft—l] = Var® [hl ( % ) lfi-ﬁ] P-as
Sg...l St-—l

from theorem 6.7.3 we can write

1 1.
r—l—z\crg—éog—!—et:r—:z—orf—{—{t

thus
Substituting this result into

St 1 2
In -t — -
ns,i-1 r+ Aoy 50t + &t
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yields
St - 1 2
h’lg:l- =7 - _2'0-t ‘!"ft

and into the GARCH process, yields
. q , &
or=an+ Yo (§i — ATims) + Y Biot; (6.18)
i=1 i=1

under the () measure. W
The equivalent GJR-GARCH process under the ¢} measure is
2 2
o7 =+ Pos_y +a (€ — Aop1)” +ymax (—€,_1 + Aoy—1,0)

where v > 0.
The EGARCH variance process under the ¢ measure is

ln 0’? =g+ 3 lnaf_l + Gy (Ic‘;}ﬁl - )«n_ll - ({;“t_l - /\Ut—l))

where 35,y > 0.

Theorem 6.8.1 can easily be proved for the above two GARCH processes
by substituting equation 6.18 with the respective process and replacing the
P variable &, with the Q) variable £,_; — Aoy—;.

Corollary 6.8.2 Theorem 6.8.1 vmplies that under the QQ measure

T T
1
ST::Stexp((T-—t)xr—-é Yoot > 5,,) (6.19)
s=t+1 s=t+1
Proof. From theorem 6.8.1 we have that
Sy 1
lIl—S-t-: =7 — 50? +£t

for every t € R under Q. Thus

St L S,
In— = In
St s:zh:‘-l Ss—l
T
1
= Z Uil 563 +€s
s=f4+1
1 I T
. 2
= r(T~1)-3 S A+ > & (6.20)

§=t+1 g=i-+1
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which means that

T T
1
5r :Sgexp((T—t)r-— LS ot Y gs)
s=t+1 8=t-+1

by taking exponents on both sides of equation 6.20. =
Corollary 6.8.3 The discounted process ¢~ ™S, is a martingale under the

@ measure.
Proof. Corollary 6.8.2 is equivalent to

1
St = Sp—1exp (r — -2—02 + 5,«,)
thus the conditional expected value of €™ ™5; is
E® [exp (—rt) S¢ | Fy-1
1 B
= FE9 [&;4 exp (—rt) exp (r — §a§ + 55) | .?},_1}
1
= Spjexp(—r(t—1))E? [exp (m§a§ + ft) | .?:t...1]
= Spyexp(—r(t—1))
because &,|F¢—1 2N (O, og) and by the moment generating function
1
E? [exp (&) | Fo-1] = exp 507

which completes the proof. m



