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Chapter 6 

Local Risk-Neutral Valuation 

6.1 Introduction 

One of the properties of Brownian motion is that equally spaced increments 
are stationary, that is, it can be assumed that they are independently and 
identically distributed. The vast majority of empirical studies show that 
this is generally not the case. 

Stochastic volatility in stock prices complicates the pricing of derivative 
instruments. The assumption of a complete market model and therefore the 
risk-neutral probability measure derived in chapter 5 no longer holds. This 
is because we cannot completely hedge away the risk posed by stochastic 
volatility. 

Jin-Chuan Duan (1995) [10] defined a new measure, the local risk-neutral 
probability mea,9ure. Hf! showed that an economic agent maximizf'4"1 itR ex­
pected utility by using this measure. In this incomplete market, extra as­
sumptions are made about the consumer (its utility function) and the risk 
premium demanded by the market for taking additional risk. Duan named 
the properties of the measure, the local risk-neutral valuation relationship 
(LRNVR). 

In this chapter the GARCH, EGARCH and G.JR-GARCH processes are 
considered in the GARCH-M framework. The GARCH processes are in 
discrete time, thus unlike the risk-neutral pricing framework which forms 
the basis for Black-Scholes framework, the LRNVR is in discrete time. 

In section 6.2, the continuous-time option pricing model discussed in 
chapter 5 is converted into a discrete time model. The goal of this section is 
to translate and compare some of the well-known continuous time finance 
concepts into discrete time statistical concepts. For example the continuous 
time concept of Brownian motion is converted in discrete time to that of 
expected returns. 

The GARCH-in-Mean model for the volatility of a discrete time stock 
price process used by Duan for option pricing, is introduced ill section 6.3. 
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Utility functions and the risk aversion of economic agents are discussed 
in section 6.4. A general consumption-investment strategy is maximized in 
section 6.5. 

The LRNVR is defined in section 6.6 after which the local risk-neutral 
measure is derived in section 6.7. The stock pri<:e process under the new 
measure is discussed in section 6.B. 

6.2 The Stock Price Process in Discrete Time 

Recall the stock price process of se..ctioll 5.13 with solution 

In discrete time, with equally spaced observations, 

which gives 

At time t, the value of 

8t = 80exp [(IL - ~lT2) t + lTWt] 

- 8t - 1exp [- (IL - ~lT2) (t -1) - lTWt-1] 

X ex}) [(IL - ~lT2) t + lTWt] 

Since 

Wt - Wt- 1'" Wt-t+1 '" N (0, 1) 

let 

where et is Ft-1 measurable. 

The one period alIe.ad stock price is defined by 


- - (1 2 )8 t = 8t-1exp IL - '2lT + lTCt (6.1) 
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where 

p
etlFt - 1 "" N (0,1) 

If we let 

).=~0' 
where r 	is the risk-free rate of interest, equation 6.1 would become 

(1 	2- - r - '20" +).0" + O"Ct )St = St-l exp 

In the discrete case where the information on time t 1 is known, we 
could just as well have considered a volatility process which is constant 
between time t - 1 and t. 

6.3 	 The Stock Price Model under certain GARCH 
Volatility 

Jin-Chuan Duan proposed the following conditional, lognonnally distributed 
stock price process, with stochastic volatility, under the P measure 

(6.2) 

where 

p 
etlFt-l "" N (0, 1) 

is the conditional error process, 0'1 is the conditional variance (GARCH 
process) and ).1 the unit risk premium. :Ft-l is the u-algebra of information 
up to time t. The yearly risk-free rate of return is 1.'*. Henceforth define r 
over period b.t, the same time period over which the conditional variance is 
taken. From this point on the period is daily. 

1 A possible interpretation of the unit risk premium follows from section 6.2 which deals 
with the market price of l'isk, Define the risk premium as 

>.*=p.-r 
(7 

where (7 is the long term or unconditional standard deviation of the series {Xt}.We can 
simplify the term with the risk premium from equation 6.3 to get 

• ( ) (7t
). (7t = p. r-. 


(7 


(p. - r) can be seen as a fixed (positive) premium. ).*(7t increases as the predicted condi­
tional volatility O't increases over the long term volatility 0'. The economic interpretation 
is that the market agent demands a higher premium as the expected volatility increases. 
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The conditional expected rate of return is defined as 

1 2ln~ r - '2O't + >"O't +O'tet (6.3)
St-l 

I'J N (r - ~O'~ + >"O't,O'~) 
This is derived by transfonning equation 6.2. 

The GARCH option pricing model prices options under conditional het­
eroscedasticity. This means that conditional variance is allowed to change 
over time while keeping unconditional variance constant. In this disserta­
tion, options whose variance follows (vanilla) GARCH, GJR-GARCH and 
EGARCH process will be investigated. The main focus will be on the 
GARCH(p, q) process and specifically GARCH(l, 1) process. 

The GARCH(p, q) conditional variance process is 

q p 


0'2 

t aD +I:Qieti +I: j3iO'ti 

i=l i=l 

where aD > 0 and ai, j3i ~ 0 for all applicable numbers i. Notice that O'f 
is predictable at time t - 1. 

The GJR-GARCH variance process is 

O'~ = ao + j3O'tl +aetl + 'i'max (-et, 0)2 

where 'i' > O. 
The EGARCH variance process is 

6.4 Consumer Utility Essentials 

6.4.1 Utility Functions 

The satisfaction (utility) an economic agent gets from consumption can often 
not be described on a monetary scale. A utility function represents an 
economic agent's welfare from consumption. 

In this di.."!Sertation we assume that utility is measurable and possible to 
represent in a function. This function is called a (cardinal) utility function. 
Define the utility function by 
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that is 

'lJ. (monetary cost of consumption) = "welfare" from that consumption 

It is generally assumed that a utility function has the following three prop­
erties: 

1. 'lJ. (x) is twice differentiable 

2. 'U (x) is an increasing function of x, 'U' (x) > 0 

3. 'U(x) is a concave fUllction of x, 'II!' (x) < O. 

Property 2 is due to the fact that an economic agent prefers to con­
sume more than less. Property 3 can be interpreted in terms of additional 
consumption. The utility that an economic agent gains from additional 
consumption g, in excess of an existing consumption x, 

'U(x+g) -'u,(x) < u(g) 

Each economic agent has its own unique preferences and thus utility func­
tion. 

6.4.2 Risk Aversion 

Absolute Risk Aversion 

For a given utility function n(x), in continuous time, we can associate an 
absolute risk aversion function defined by 

-'U" (x) d
R(x) =, = --lnu' (x) (6.4a)

u. (x) d.rc 

Properties 2 and 3 of section 6.4.1 insures that R (x) > 0 for all x. The bigger 
R (x) is, the less risk the economic agent is willing to take for additional 
consumption. The discrete time version of equation 6.4a 

In u! (Xt) In u! (Xt-l)
R(x) = 

Xt - Xt-l 

In u' XI) 
U/(Xt_l 

Xt - Xt-l 

Relative Risk Aversion 

The relative risk aversion for a utility function u (x) is defined by 

'U" (x)
r (x) = xR(x) = ---x 

u'(x) 


fx In u' (x) 

..!llux
dx 
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The discrete time risk aversion function is 

Inu' (Xt) Ind (xt-d ...!.... hlXt -InXt-l
r(x) = 

Xt - Xt-l Xt - Xt-l 

In-IL' (Xt) -lnu' (Xt-l) 

Inxt -lnXt_l 
In 1.4'(3;t) 

'U.'(3;t-l) 

In2.L
3;t-l 

6.5 A General Consumption-Investment Strategy 

Consider an investor with the following discrete time consumption-invest­
ment plan: The investor maximizes its differentiable utility function, u(x) : 
R+ -- R+, at any point in time t 1 by either consuming, Ot-l E 1R+ or 
by investing, H t - 1 E R, in a portfolio with random payoff St E R+ at time 
t. At time t the investor again has the same choice between consumption 
and investment from the payoff from time t - 1. Like most investors, this 
investor gets more satisfaction out of consuming immediately than waiting 
for the next period, hence define the impatience factor pER. At time t 1 
this plan can be written as 

(6.5) 

subject to 

'v - Ct- 1+ Ht-1St-l (6.6) 

Ht-1St - Ot + HtSt (6.7) 

v is the payoff of the investment made at time t - 2. Take note that at time 
t - 1 the only choices this investor make is to consume now or invest for one 
period ahead, thus the expected utility of consumption of periods after time 
t isn't of concern. Siuce Ot-l is predictable at time t - 1 problem (6.5) can 
be rewritten as 

(6.8) 

The amI here is to maximize utility in terms of consumption and invest­
ment. From equations (6.6) and (6.7) consumption in subject (6.8) can be 
rewritten in terms of investment as 
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If we then maximize problem (6.9) in terms of Ht-l we get 

8 o = 1t(V - Ht-lSt - l )
8Ht-l 

+8H
8 

exp (-p) EP [u (Ht- I St - HtSt) IFt-1]
t-1 


- -St-17l (v - Ht-ISt-I) 


+exp(-p)EP [StU' (Ht-ISt HtSt) 1Ft-I] 


which by further simplification and equations (6.6) and (6.7) yield 

P [ vi (Ct) ]8t-l = E exp( -p) '(C) 8t IFt-l 	 (6.10) 
'It t-1 

Thus the price of the portfolio at time t -1 is written in terms of the ex­
pected value of the economic agent's utility, its impatience and the expected 
future portfolio value. 

6.6 	 The Local Risk-Neutral Valuation Relation­
ship 

The conventional risk-neutral valuation doesn't accommodate heteroscedas­
ticity of stock returns. The Local Risk-neutral Valuation Relationship 
(LRNVR) is a way to generalize risk-neutral valuation to accommodate het­
eroscedasticity. 

Definition 6.6.1 (n, F, P). A probability measure Q is flaid to be a local 
1'isk-neutral probability measure il 

1. Q is equi1.1alent to measure P 

:? F)Q [In (S;:'l) 1Ft-I] = 'r 1m' all t EjR+ 

3. Vm,Q [In (l:.J IFt-1] =Va".P [hl (S;~l) IFt-1] P a.s. 

Remark 6.6.2 Condition 1 is the same as in 5.2.7. Condition:? io8 also 
similar but only defined over one period. The expected return doesn't locally 
depend on pnderences. The one period conditional 'Variance 01 the returns 
are invariant almost surely under the equivalent measures. 

The rest of this chapter focuses on the possible characteristics of an 
economic agent and the distribution of returns for which the LRNVR will 
hold. 
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6.7 The Local Risk-Neutral Probability Measure 

Theorem 6.7.1 Let a process yt be such that yt I :Ft- 1 !?- i.'.l normally 
distributed with constant mean and variance under the P -measure. Define 
Qas 

dQ ~ exp ((r - p)T + t,y.) dP 

then Q is a measure and is equivalent to P. 
Proof. Measure. Q ·is a measure by Corollary 4.9 of Bartle [3], since 

is a nonnegative :Ft-l measurable function from fi to R. 
Equivalence. Let A E:F be a set such that 

peA) =0 

Then 

peA) - 0

{::} L in lAd? = 0dP = 

where lA is a characteristic function for A, lA is a measurable and nonneg­
ative function. 

in lAdP = 0 {::} lA = 0 P - a.s. 

This means that 

lew) = 0 

fO'r all wE A == fi\M where P(M) = O. This holds if and Qnly if 

l(w)f(w)=O 

for all w E A == fi\M 'where P (M) = O. f (w) is a measurable positive 
continuous function from n to R+. The product of real measurable function.'.l 
f AlA is also measurable. This is the same as 

fIA=O P-a.s. 

It is also equivalent to [3} 

in fAlAdP = LfdP 
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It is clear that 

i(w) =exp ((r-p)T+ ~Y,(w)) 

is a nonnegative, measumble continuous function from n to lR+ (Ys : n -+ lR 
for e1Jery s). 

j(w) = 0 

'if and only ifYs (w) = -00 for any s. Fortunately P {'Va = -oo} = 0 since 
'Va is normal. 

Thus 

P(A) 0 


¢:} In IAdP = 0 


¢:} In(exp ((1' - p) T + t'Va (W») lAdP = 0 
8=1 


¢:} Q(A) = 0 


Th'us the measure Q is equivalent to measure P. • 

The measure Q isn't, in general, a probability measure. In the next 
theorem conditions under which Q is a probability measure will be defined 
and a desirable property of Q will be derived. 

Theorem 6.7.2 If 

St-l = E P [St exp (-p + yt) 1Ft - I ] (6.11) 

then 

1. Q is a probability measure 

2. If Wt is :Ft measumble then 

Proof. From the definition of Q 
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In integml notation 

1, dQ 	 ~ 1,exp ((r - p)T+ ~y.) dP 


= EP[exp((r-p)T+tY.)] 


- EP [exp ((r-p)T+ tY.) 11'0] 


- EP [exp ((r - p)(T -1) +~Y.) exp(r- p+ YT ) 11'0] 

1 

_ EP [e«r-p)(T-IHL:;':1 Y')e r EP [eP+YT IFT-l] IFo] 

This last step is due to the tower property of conditional expectation. As­
!Jumption 6.11 states that 

E P (exp (-p + yt) St 1Ft-I] = St-l 

th'US 

(6.12) 

fOT' a risk-free asset. The result is that 


EP
JdQ 	 ~ [exp ((r p)(T -1) +~Y.) exp (r) exp( -r) 11'0] 

= E" [exp((,. p)(T 1)+ ~y.) 11'0] 

The tower pmperty can again be vn:L1oked and an argument similar to 6.12 
can be derived. 

(dQ 	 = E P [e(r-P)(T-2)+L:;':?Ya)erE P [e(P+YT-l) IFT-2] IFO]In 
P 

- E [exp ((r - p)(T - 2) +%;V,) 11'0] 

This can be repeated until we ha've, at filtmtion Fo, 

l dQ = E P [exp((r - p) + yt} IFo] = 1 

Th'US 

Q(O) = 	1 
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·with this property, the measure Q is a probability measure. We also have 
that 

Q (0) = E P [exp «r - p) + Yl)] = 1 

-it is clear that 

and we proved in theorem 6.1.1 that Q is equivalent to P. The Radon­
Nikodym theorem can be invoked thus 

is P - a.s. unique and for any Ft measurable set Wt , 

• 
Theorem 6.7.3 If 

St-l = EP [exp (-p +yt) St l.1't-l] 

then 

1. In (l'~1) I .1't-l £ normal 

r2 . .eQ [l~l IFt-l] = e for all t E R+ 

3. Var
Q [In (l'~1) 1Ft-I] =VarP [In (l~l) IFt-l] P a.s. 


Proof. Lemma 2. 

From theorem 6.1.2 we have 


EQ [~ 1Ft-I]

St-l 

P 
- E [:~1 exp «r - p) + yt) IFt-l] 

r 


- Se EP [St exp (-p + yt) 1Ft- I ]

t-l 

_ er 


Proof of lemmas 1 and 9. 
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In the01'em 6. 7.2 'we proved that 

Cfor all F t measurable sets Wt. If Wt is Ft-measuroble, so is W t for all 
c E R Prom theorem 6.7.2 we have that 

then 

Q[ Sf I ] = E P [;/ e«r-p)+Yt) 1Ft- I ]E sc- Ft-l 
t-l t-l 

Q cln....E.L. ]E 
[ 
e IFt-l E P [eclnB:~le«r-p)+Yt) 1Ft- I ]Bt_l _ 

EQ [ecXt 1Ft-I] - E P [eCXte«r-p}+Yt) 1Ft-I] 
if we define 

St
Xt=ln-.


St-l 


T111'Oughout this chapter there's been assumed that X t I Ft-I is normally 
distributed under P, say 

In theorem 6. 7.1 we assumed that yt is also conditionally normal. yt can 
thus be written in terms of X t • a constant a and another random 'l1ariable 
with zero mean Ut, which is independent of Xt. Then 

yt = a + j3Xt + Ut 

with j3 E R Thus 

EQ [eCXt 1Ft-I] 
- E P [eCXte«r-p)+Yt} 1Ft- I ] 

E P [eCXt+.BXt+O!+Ut+(r-p) IFt-l] 

_ eCt+r-PEP [e(c+.B)Xt+Ut 1 Ft- I ] (6.13) 

The joint tla'nance of (c + j3) X t and Ut under P is 
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since Ut is of zero mean. By the moment generating function 

EP [e(c+.B)Xt+Ut IFt-l] 

_ e#'t(c+.B)+H (c+.B)2vhEP [ul]) 

#t (c+.B)+j (c2+2c.B+.B2)v~+iEP lull 


_ e i.B2v;+#'t.B+ 4EP lull+ ~c2'fJl+c(#'t+.Bvn 


Then equation 6.13 becomes 

EQ [ecXt 1Ft-I] = 	 e[(r-p)+~EP[U?IFt-l]+#'t.B+.B2vrJ x 


e[!c2v;+c(Pt+.BvnJ 


This equation holds for all c E JR. If we let c = 0 then 

1 	 - FfJ [1 1Ft -I] 
_ e(r-p)+!EP[U;IFt -l]+ptfH .B2v; 

so we are left with 

eQ [ecXt 1 Ft-I] =e! c2vr+c(Pt+{3vn 

If we let c = 1, then by the form of the answer of a moment generating 
function, 

Which proves 1. The conditional variance under P of X t i.5 also (T2 thus 
lemma 3 ,is also proved. • 

Theorem 6.7.4 An economic agent who's an expected utility maximizer 
and whose utility function is sepamble and additive is a LRNVR investor 
under the following conditions: 

1. 	 The utility function is ofconstant relative risk aversion and the changes 
in the logarithm of the agg1'egate consumption are conditionally nor­
mally distributed with constant mean and variance under the P mea­
sure 

2. 	 The utility function is ofconstant absolute ri.'lk aversion and the changes 
in the logm'ithm of the aggregate consumption are conditionally nor­
mally distributed wUh constant mean and variance under the P mea­
sure 

3. 	 The utility function is linear. 
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The local risk-neutral measure is 

dQ =e-(r-p)T U' (Gt ) dP 

U' (Gt-d 


The implied interest mte is assumed constant. 
Proof· 

1. 	 Prom the disc'ltSsion on the utility function and risk aversion it i.e; pos­
sible to define conditions 1 to 3: 

(a) 	Condition 1: A util-ity funct-ion of constant relat'i-ue risk a'uersion 
is defined by 

dlnU' (G) . dInG 
dG -;- dG 

InU' (Gt ) InU' (Gt-l) 
InGt -InGt - 1 

InU' (Gt ) -InU' (Gt-1) (-Ad (In Gt -In Gt-t) 

In ( U' (Gt ) ) (-AI) In (G~~l) (6.14)U' (Gt-I) 

Since -we assume that In (Gt/Gt-l) is normally distributed wUh 
constant mean and -variance unde1' P, In (U' (Gt ) / U' (Gt - d) is 
also normal with constant mean and 'llariance. 

(b) 	Condition 2: A utility function of constant absolute risk aver­
sion is defined by 

dlnU' (G) 
dG 

InU' (Gt ) -InU' (Ct-d 
Gt - Ct- 1 

thus 

(-A2}{Gt - Ct-I) 

(-A2) (Ct - Gt - 1 ) 

By the assumption that Ct - Ct - I is normally distributed with 
constant mean and 'tIariance under P 1 In (U' (Ct ) / U' (Ct - 1 )) is 
also normal-with constant mean and variance. 

(c) 	Condition 8: A l'inea'!' utility function is defined by 

th'us 

u' (Cd a 
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St-l = 

and 


U'(Ct ) =1 

U' (Ct-I) 


The ratio of marginal utilities 


U'{Ct) ) P 

In ( U' (Ct-d = 0 rv N(O,O) 

From all three conditions it is clear that In (:'~b~~b) is normal 
w'ith constant mean and variance. 

2. 	 In section 6.5 we saw that under the P-measure 

(6.15) 

where rt = In ( 'IJ,~(b~~b ). rt, as mentioned, is normally distributed 
under conditions 1 to 3. If we define Q as 

dQ = e(r-p)T+L~=l YedP 

then from theorem 6.7.1, Q is a measure which is equivalent to P. 
Prom theorem 6.7.2 we see that Q is a probability measure and 

liP [Wt 1Ft-I]. = E P [l¥te(r-P)T+t'j, IFt-l] 

for any Wt which is Ft measurable. Another result from equation 6.15 
stated in theorem 6.7.3 is that 

(a) in (l~l) IFt-l £ normal 

r(b) EQ [ l~l 1Ft-I] = e for all t E R+ 

(c) VarQ [In (i::-;) 1Ft-I] = VarP [In (i:-i) 1Ft-I] P a.s. 

3. 	 Thus for an economic agent who's an expected utility maximizer, whose 
utility function is separable, additive and fulfills one of the three stated 
conditions, the Local risk~neutral Valuation Relat'ionship also holds . 

• 
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6.8 The Stock Price Process under LRNVR 

In this section the stock price process under the LRNVR is derived. 

Theorem 6.S.1 	Under the Q - measure, imp/:i.ed by the LRNVR, 

St 1 2
1n- = l' - -20't 	+ ~tO'tSt-l 

where 

~tl.rt-l '"
Q 

N (0,1) 

and 
q 	 P 

0'; = ao +Lai (~t-i - AO't_i)2 + L,BiO';-i 	 (6.16) 
i:ol 	 i=l 

Note that the parameters T and t in this context are in terms of time i.e. 
fractions with the days of the year as the denominator, not as the discrete 
index. That i8, for 69 days in a 252 day year t = 0.25. 

Proof. As proved in theorem 6.7.9, In .JiL.1.rt-l is normally distributed 8 t -l 

under measure Q. It can thus be written in terms of a deterministic and 
random variable 

St
111- = Vt +~t 	 (6.17)

8t-l 

under Q. The random variable is ob'l}iously normal with mean zero and vari­
ance the same of that oflnl~l under Q. It will be proved that 

1. Vt = l' - ~O'~ 

2. O'~ = ao + El=:l aj (~t-i - AO't-i) 
2 + 'L:f=1 ,BiO'Li 

Proof of 1: 
From equation 6.17 

St 

St-l 


E'J [S~~ll.rt-l] 	 ­

_ eVteCJ [eUt';tl.rt _ l ] 


then by the moment generating function for an normally distributed random 
variable we have 

EQ [S~~ll.rt-l] = 	eVt+iVarQ[ln s~~ll.'Ft-l]EQ [ll.rt-l] 
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Since 

P 
Var

Q [In (S:I) 1Ft- I] - Var [In (s:~J 1Ft- I ] 

(1";' P - a.s. 

from theorem 6.7.3 we can write 

EQ [ St IT.rt-l] _ Vt+ 12 q2-- - e t 
St-l 

It was also pro'ued in theorem 6.7.3 that 

rEQ [(JSt 1 Ft-I] = e
Dt-l 

thus 

1 2 
Vt = r - -(1"t

2 
Proof of 2. 

Recall the original stock price process with GARCH volatility under' the 
P measure: equation 6.2, 

St 1 2
In -8 = r + ).(1"t - -2(1"t +€t 


t-l 


and the process implied by proof 1 above under measure Q 

St 1 2
II1- = r - -2(1"t +~t 

S t-l 

Again using the result 

from theorem 6.7.3 we can write 

1 2 1 2 
2(1"t +C't = r - '2(1"t +~t 

thus 

Substituting this 1"eSUlt into 

St
In -- = r + ).(1"t 

St-l 
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yields 

St
In-- =r 

St-l 

and into the GAReB process, yields 

q p 
2u; = ao + 2..: ai (et-i - AUt-i) + 2..: /3iUF-i (6.18) 

~l ~l 

under the Q measure. _ 

The equivalent GJR-GARCH process under the Q measure is 

u; = ao + /3utl + a (et-l - AUt_l)2 +"( max (-et-l + AUt-I! 0)2 

where,,( > O. 
The EGARCH V'iLriance process under the Q measure is 

where /32' "( > O. 
Theorem 6.8.1 can easily be proved for the above two GARCH processes 

by substituting equation 6.18 with the respective process and replacing the 
P variable Ct with the Q variable et -l - AUt-I. 

Corollary 6.8.2 Theorem 6.8.1 implies that under the Q measure 

1 T T)
ST=Stexp ( (T-t)xr-2' L us + L es (6.19) 

s=t+l s=t+l 

Proof. From theorem 6.8.1 we have that 

St1n-- =r 
St-l 

for every t E lR under Q. Thus 

t1n~ 
Ss-1s=t+l 

T 

L'r 
s=t+l 

(6.20) 


 
 
 



81 CHAPTER 6. LOCAL RISK-NEUTRAL VALUATION 

which means that 

IT T)
ST = Stexp (T-t)r- '2 L O's+ L ~s( 

s=t+l s=t+l 

by taking exponents on both sides of equation 6.20. _ 

Corollary 6.8.3 The d'iscounted proces.s e-rtSt is a martingale under the 
Q measure. 

Proof. Corollary 6.8.2 is equi'llalent to 

St = St-l exp (r - ~O'; + ~t) 

thus the condU'ional expected value of e-rtSt is 

EQ [exp (-rt) St 1Ft- I ] 

- ~ [St-lexp(-rt)exp(r-~O';+~t) 1Ft-I] 

- St-1 exp(-r (t 1)) ~ [exp ( -~O'; + ~t) 1Ft-I] 

- St-l exp (-dt - 1)) 

because ~tIFt-l £ N (0, 0';) and by the momentgenemting function 

which completes the proof. _ 

 
 
 


