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Chapter 5

Risk-Neutral Valuation

5.1 Objectives!

The aim of this chapter is to provide essential background to continuous-
time finance concepts and the standard risk-neutral valuation framework,
which is the cornerstone of the Black-Scholes option pricing framework. The
Black-Scholes framework is the benchmark pricing method for options. In
this framework we assume constant volatility of stock returns which leads
to the helpful property of a complete market model.

Empirical evidence shows that the constant volatility assumption is gen-
erally incorrect. The GARCH option pricing model discussed in chapters
6 and 7 is an attempt to include stochastic volatility into the option pric-
ing framework, the price is that the market model is no longer complete.
Although volatility is generally stochastic, it is important to know the risk-
neutral valuation framework, since it is so widely used and because many of
the concepts are used in incomplete market models.

In this chapter only the bare skeleton of the risk-neutral valuation frame-
work is given. For more complete discussions see [25], [4], [32] or any of the
many other similar books.

An introduction to continuous time stochastic calculus is given in sec-
tion 5.2. The essential definitions of Brownian motion, martingales and Ito
processes are given. The proofs of the Tto formula, absolute continuous mea-
sures and equivalent measures, the Radon-Nikodym theorem and Girsanov’s
theorem are excluded.

Continuous-time finance concepts are briefly discussed in section 5.3.

Section 5.4 is the core section of this chapter. The risk-neutral valuation
framework is discussed under the assumption of constant volatility. Only the
proofs vital for a better understanding of the model investigated in chapters
6 and 7 are proved. Special attention is paid to the concept of the market
price of risk.

!Suggested reading: [4], [13], [17], [26] and [32].
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5.2 Essentials of Continuous-time Stochastic Cal-
culus

5.2.1 Brownian Motion

Definition 5.2.1 Brownian motion, Wy, is a real-valued stochastic process
satisfying the following conditions:

1. Continuous sample paths: t — W; P as.

2. Stationary increments: Wy, s — Wy has the same probability law for
any t € R varying and s € RY fized.

3. Independent increments: Wi s — Wy is independent of
Fi=0(Wy,u < t)
4. Wo =0 P a.s.
The probability law mentioned in point 2, will throughout this disserta-
tion be the Normal distribution with mean zero and variance s.

5.2.2 Martingales

Definition 5.2.2 In discrete time: An adapted process, (M;)icy, where I is
a countable index and E |M;| < oo, is called:

1. A martingale if
E(M, | Fs) = M, Pa.s.
foralls,t eI, s <{t.
2. A super-martingale if
E(M|Fs) <M, Pas.
foralls,tel, s<t.

Definition 5.2.3 In continuous time: An adapted process, (My)ier+, where
R* is the positive real numbers and, F |M;| < oo is called:

1. A martingale if
E[M;|Fs) =M, P a.s.
foralistel, s<t.
2. A super-martingale if
E[M|Fs] <My, Pas.
foralstel, s<t.
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5.2.3 Ito Process

Definition 5.2.4 A stochastic process, X;, is called an Ito process if it has
a.s. continuous paths and

T T
X, = Xo + / Alt,w)dt + / B(t,w)dW, (5.1)
0 0
where A(t,w) and B(t,w) are F; measurable,

T
/ A(t,w)|dt < 00 P as,
JO

and

T
E [ f B(t,w)%tt] <oo Pas.
[4]

X 18 also called the stock price process. In short hand notation
dX; = A(t,w)dt + B(t,w)dW;

Definition 5.2.5 A stochastic process, S, follows a geometric Brownian
motion if

ds; = Stu(t, w)dt + Sf,(!(t, w)de

5.2.4 Tto Formula (in 1-Dimension)

Definition 5.2.6 Let X; be an Ito process as defined in equation (5.1). For
the function

f(t,z) € C*([0,00) x R)

the Ito formula s given by

df = &f-dw af deLla f (dX.)? (5.2)
af  of 282 of
m+Aa + = B 2)dt+Ba —dW, (5.3)

In integral notation this is:

fi= fo+f( +Aaf+ Bﬁazf)dpr/ %d&’[/’t (5.4)
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5.2.5 Absolute Continuous

Definition 5.2.7 In our probability space (0, F, P), probability measure P
is said to be absolutely continuous with respect to P if

P(A)=0 = Pi(A)=0
for all A € F. This is sometimes denoted by
P << P

Theorem 5.2.8 Probability measure Py is absolutely continuous with re-

spect to P if and only if there exists an adapted random variable K such
that

PL(A) = / K (0)dP (5.5)
A
Proof. See Lamberton and Lapeyre [26]. m
Definition 5.2.9 The state price density is defined as

ar,
dP

thus from integral { 5.5 )
dP
P

Definition 5.2.10 In the probability space (2, F) two probability measures
Py and Py are equivalent if

Pi(A) =0 & Py(A) =0
for all A € F.( See Lamberion and Lapeyre [26])

5.2.6 Radon-Nikodym

Theorem 5.2.11 Let measure @@ be absolutely continuous with respect to
measure P. There then exists a random variable A > 0, such that

EPAl =1

and

Q(A) = /A dQ = fA AdP (5.6)

Jorall A€ F. A is P — a.s. unique. Conversely, if there exists a random
variable, A with the mentioned properties and @ is defined by equation 5.6,

then ) is a probability measure and () is absolutely continuous with respect
to P.

Proof. See [25]. =



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
W UNIVERSITEIT VAN PRETORIA
el

CHAPTER 5. RISK-NEUTRAL VALUATION 82

5.2.7 Risk-neutral Probability Measure

Definition 5.2.12 A probability measure, Q, is called a risk-neutral proba-
bility measure if

1. Q is equivalent to the “real world” measure P.

2. %’; = E¢ (gﬁt:].ﬂ) forallt,T € R™.

-
T

In this definition, B; is the deterministic price process of a risk-free asset,
where

B, = Boexp ( fo tr(s)ds)

The variable r(t) is the short rate.

5.2.8 Girsanov’s Theorem in One Dimension

Girsanov’s theorem is used to tramsform stochastic processes in terms of
their drift parameters. In option pricing, Girsanov’s theorem is used to find
a probability measure under which the risk-free rate adjusted stock price
process is a martingale.

Definition 5.2.13 A function f(s,t) € v(s,t) if
Ft,w):[0,00) x 2 =R
and the following holds:

1. (t,w) — f(t,w) is B x F-measurable, where B is the Borel sets on
[0, 00)

2. f(t,w) is adapted

3. E[fgf(t,w)zdt] < 00

Theorem 5.2.14 Girsanov’s theorem. Let X; € R be an Ito process, of the
form

X, = B (t,w) -+ O(t,w)dW;

with t <T < oo. Suppose that there exist a v(t,w)-process u(t,w) € R and
aft,w) € R such that

a(ta w)u(t’ “") = )3(}‘,, w) - O"(ta w)
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Since we are only looking at the one dimensional case

(ﬂ(t: w) - a(t, w))
0, w)

u(t,w) =

We further assume that

EF [exp (é ,[0 ‘ u? (s,w) ds)} < 0o (5.7
Let

M; = exp (— ‘/Ot u (s, w)dW; — fot u? (s,w) ds) (5.8)
and

dQ = MpdP (5.9)

We then have that
t
W, =W, +f u(s,w)ds
0

is a Broumian motion with respect to Q. Xy in terms of W, is
dX; = a(t,w) + 6(t,w)dW,

M, is a martingale.
Proof. See Girsanov theorem II, Oksendal [27]. m

Remark 5.2.15 Result 5.9 is equivalent to
E [B] = EF [BMy)

for all Borel measurable sets B on C[0,T].

5.3 Continuous-time Finance Essentials

This section contains a short summary of vital continuous-time finance con-
cepts. For complete discussions on continuous-time finance see Bjork [4],
Lamberton and Lapeyre [26] and Steele [32].
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5.3.1 Self-financing

Definition 5.3.1 A trading strategy is called self-financing if the value of
the portfolio is due to the initial investment and gains and losses realized on
the subsequent investments. This means that no funds are added or with-
draum from the portfolio.

Theorem 5.3.2 Let ¢ = (H{, Ht) .,y be an adapted process of portfolio
weights satisfying T

T T
/ |H?|dt+/ Hldt < oo Pas.
0 0

Then the discounted value of portfolio V; (¢) = H?B,+H,S; namely, V; (¢) =
Vi (@) /B can be expressed for allt € [0,T] as

e t ~
U(6) =Vo(d) + [ Hudbu Qas
0
if and only if ¢ is a self-financing strategy.

Proof. The product of V; (¢) and with the bond process 3 yields

) = ¢)+/—dw ¢)+/0vs(¢)d—t+<m¢),ﬂ—t>

= W)+ [ @)+ [ Vi@ds
since the process E doesn’t have a stochastic term. Since we can express
Vi(¢) as
Vi (¢) = HYB, + H:S:
a change in V; (¢) can be expressed by
dV; (¢) = HYdp, + HydS,

thus

1

5, (@)

= Vo(é)+ / 7 (HPdp, + HydS:) + f (HB, + H.S;) dﬂit

i
= W (¢) + Hto (/ I—B—dﬂt +ﬂtdﬁt) + H; (-/0 ﬂlthdSt +HtStd,31t)

— 0 :Bt Ot
- ((»b) + Ht ,Bt + th,Bt

= Vo(d)+ thﬁ
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5.3.2 Admissible Trading Strategy

Definition 5.3.3 A irading strategy is admissible if it is self-financing and
if the corresponding discounted portfolio, V; is nonnegative and supycio ) Vi
is square integrable under the risk-neutral probability measure Q).

5.3.3 Attainable Claim
Definition 5.8.4 A claim is attainable if there exists an admissible trading
strategy replicating that claim.

5.3.4 Arbitrage Opportunity

Definition 5.3.5 An arbilrage opportunity is an admissible trading strat-
egy, such that the value of the portfolio at initialization, V (0) = 0 and
E[V(T)] >0.

5.3.5 Complete Market

The completeness of a market can be defined in terms of the risk-neutral
probability measure or in terms of the attainability of a contingent claim.

Definition 5.3.6 Under no arbitrage conditions, the market model is com-
plete if and only if every contingent claim is attainable.

Theorem 5.8.7 The market model is complete if and only if there exists a
unique risk-neutral probability measure.

Proof. See Pliska [28]. =

5.4 Risk-Neutral Valuation under Constant Vola-
tility

The aim of this section is to introduce the notion of risk-neutral valuation.
The process of risk-neutral valuation is as follows:

1. In section 5.4.1 a simple stock price process is evaluated. A solution
to this process is found and its distribution is discussed. The solution
is obtained by applying the Ito process.

2. The next step, in section 5.4.2, is to evaluate the discounted stock price
process. We get the discounted stock price process by discounting the
solution to the original process in step 1 and then utilizing the Ito
formula in reverse order.
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3. This new process still has a trend. The so-called risk-neutral measure
and related Brownian process is derived with Girsanov’s theorem in
section 5.4.3.

4. A wide-class of options are priced under risk-neutral valuation in sec-
tion 5.4.4.

5.4.1 The Stock Price Process

It is generally assumed that stock prices follow geometric Brownian motion,
under the real world measure P,

ng - Sg[ldt + SgO’iin (5.10)

where 1 € R and Sp,0 € R*, W; is Brownian motion and the process is
defined on [0, 7.

A solution, S, to this equation can be found with the help of Ito’s
formula. Let f(t,z) = In(z). It follows from section 5.2.4 that f(t,r) €
C?%([0,00) x R). Fortunately, if we assume that S; € R*, we can define
f(t, 1) € C*(0,00) x R). From (5.4) we have®

din(S,) = Sitdst - %—1——0153
t
== 'SlT (Stpdt -+ StO‘de)
[4
11

—5 57 (Sepdt + Syod;)?
t

= updt+odW; — %azdt

= (;},—- %02) dt + adW,

which in integral notation is

In(S) = In(So)+ /; t (y-— %02) du + fﬂ W,
= In(So) + (ﬂ - %02) t+oW,; (5.11)

The solution, Sy, is

S; = Spexp ((,u - %02) t+ OM) (5.12)

*In this chapter the drift p, the variance ¢ and the risk-free interest rate r are all
defined in terms of the same time period for instance 1 year.
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Thus by assuming that the stock price follows the geometric Brownian
motion described in equation 5.10, we are also assuming that the stock price
process is lognormally distributed. There are ample empirical evidence to
support this assumption. This means that from equation 5.11

In(S;) ~ N (m(so) + (n - %(;2) t,o«%)

5.4.2 The Discounted Stock Price Process

The next aim is to find a probability measure under which S; = St/ B is
a martingale, called the risk-neutral probability measure. The discounted
process

S = So exp ((g -7 - %0'2) t+ a‘Wt) (5.13)

where By = €™ and r is the constant risk—frge rate of interest.
To get the stochastic process driving S; = Sie™™, we again use Ito’s
formula

df (t,8;) = dS;

d(Se™™)

—rSie” "t dt + e dS;

—pSiedt + e (Spudt + SiodWy)
(1 — 1) See™dt + e "' SpadW,

= (p—r) gtdt + S’sadi%

Il

It

thus
dS; = (u— 1) Sidt + 0 SdW;, (5.14)

In integral form this is

- 1 1 1
S;:Soﬁ-/ ﬁ"T——JQ)d‘u+f0qu
0 2 0

5.4.3 Girsanov’s Theorem Applied

It’s clear that the process S; has a trend, (i —7) S;. This trend causes S;

not to be a P-martingale (a martingale under probability measure P).
The risk-neutral probability measure is found by employing Girsanov’s

theorem. By using the notation of the Girsanov theorem in section 5.2.8,
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we can define, for the process Sj,

(=75
oS
(p—r)

g

w(t,w) =

Note that «(f,w) = 0 (in the sense of theorem 5.2.14 ) and u ({,w) = u
is a finite scalar since we assumed that ¢ is strictly positive. The result of
this is that condition 5.7 is met and u € v (¢,w).

M, was defined in equation 5.8, as follows

M, = exp (-/;u(s,w)m -f:u? (s,w)ds)

In this case, for u(t,w) =u
M,; = exp (-uW}, - u2t)
The new measure, the risk-neutral probability measure can be defined as
d() = MrydP
‘We can define a new process
Wi = ut + W,
which is a (J- Brownian motion. The original process, S,, in terms of W, is
dS; = o5 dW; (5.15)

Remark 5.4.1 The scalar u(t,s) = Q_{;—_r) is also known as the market price

of risk. If p = r then the investor is called risk-neutral and dP = dQ. Under
the measure (} we price instruments as if they are risk-neutral.

5.4.4 Pricing Options under Constant Volatility

Theorem 5.4.2 The opiion price at time t defined by a nonnegative, F;-
measurable random variable h such that

E® [h,z] < 00
18 replicable and its value at time t is given by

Vi=e"T0EQ R | F (5.16)
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Proof. Lets assume there exists an admissible trading strategy ¢ =
(HY?, Hi)sejo,r) replicating the option. The value of the replicating portfolio
at time £ is

V, = HYB, + HS,

The discounted value of the process at time ¢ is

Vi = eV
= H?“{"‘Hf,gt

Since no new funds are added or removed from the replicating portfolio, the
portfolio is self-financing, by theorem 5.3.2 we can write the portfolio as

~ t ~
V(9) = Vo (9) + ]0 Hyd3,

by equation 5.15 we can write

o~ t ~ ~
¥ (9) = Vo (¢) + [ Hyo8udW,
0

By the assumption of an admissible trading strategy we have by theorem
5.3.3 proved that sup;e(p V2 is square integrable. It can then be proven
(see Lamberton and Lapeyre [26]) that if

E® [SUPLE[O,T} f’f] < 00

then

ER [ /O t (Huogu)2d1c] <oo (5.17)

Further, there exists a unique continuous mapping from the class of adapted
processes with property 5.17 to the space of continuous F; martingales on
[0,7]. We thus have that

V, = E% [VT | ft]
and hence
V= @ [T | :a} (5.18)

which is a square-integrable martingale.
We have assumed that there exists a portfolio replicating the option, an
admissible trading strategy can easily be found by the use of the martingale
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representation theorem (see Lamberton and Lapeyre [26]). By the mar-
tingale representation theorem there exists a square integrable martingale
under Q with respect to F; such that for every 0 < ¢t < T,

M, = E? [e”"Th | ft]

and that any such martingale is a stochastic integral with respect to ﬁf',
such that

t Bad
E° [e'“’Th. ] .ZF}] = My + [ T AWy
[i]

where 7, is adapted to F; and .
T
ER [/ (ns)2ds] < oo,
0

By letting Hy = M; — H,S; and H; = 1/ (652) we have found a self-
financing trading strategy. m

5.4.5 The Black-Scholes Formula and Implied Volatility

The Black-Scholes formula for a European put option is a solution to equa-
tion 5.16 when

h=(X - Sr),

Black and Scholes (1973) and Merton (1973) proved that this as a solution
to the Black-Scholes partial differential equation (pde). A martingale proof
was later discovered. For the derivation of the pde proof for this formula see
Black and Scholes [5], for a martingale proofs see Lamberton and Lapeyre
[26] and Steecle [32]. The Black-Scholes formula for a European put option
at time ¢ is

PBS = e " T-O KN (—dp) — SiN (—dy)
where

_In(So/X)+ (r+30%)T

d
' ovVT

and
dy =d; — VT

In this formula K is the strike price of the option and N (-) is the cumulative

normal distribution. The risk-free interest rate r and the variance o2 are
. both annualized.
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Volatility is the only parameter of the Black-Scholes formula that isn’t
directly observable. Implied volatility, o, is the solution to the following
problem

. | pBS
min |PP® (o) - P|

where PB5 (o) is the estimate of the put option as a function of implied
volatility and P is the market value of the put option at time ¢.



