
Chapter 4 

Univariate Volatility 
Processes 

4.1 Objectives1 

A univariate model assumes only one source of randomness, in the 
case of volatility models the source of randomness is the conditional 

returns. Define, under measure P t the conditional returns as 

Ct ln~ 
8t-l 

In this chapter two of the main univariate volatility processes are dis­
cussed. The Exponentially Weighted Moving Averages (EWMA) process is 
discussed in section 4.2 and the various GARCH processes is discussed in 
section 4.3 and further. This chapter includes a discussion on Asymmetric 
GARCH in section 4.7. 

4.2 Exponentially Weighted Moving Averages 

Weighing the M A (q) process in equation 3.3, by the sum of its parameters 
yields 

z - Ct + >'ct-l +>.2ct_2 + .. +>.qct-q 
(4.1) 

t ­ 1 + >. + >.2 + .. + >.q 

where OJ = >.i and>. E (0,1). 
Taking the limit of 4.1 to infinite 

_ lim Ct +>'ct-l + >.2ct_2 + .. + >.qct-q
lim Zt 

q-oo q--oo 1 + >. + >.2 + .. + >.q 

(1 >.) L
00 

>.iCt_i (4.2) 
i-I 

1 Suggested reading: [IJ, [18) and [23J. 
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37 CHAPTER 4. UNIVARIATE VOLATILITY PROCESSES 

since A E (0,1). 
Equation 4.2 is the basis of the EWMA conditional variance process, 

00 
~2 ut - (1- A) LAi-lC:~_i 

i=l 
00 

- (1- A) LAi-1c:Li + (1- A) er-l 
i=2 

00 

- A(1 - A) LAi
-

2e:Zt_ 1)_i + (1- A) eLl 
i=l 

- AU~_l + (1- A) eLl 	 (4.3) 

with A E (0,1). 
Alexander [1] interprets the smoothing constant A in the following two 

ways: 

1. 	The term, (1 A) e~_l determines the intensity of reaction of volatility 
to market events. A low value of A will give a process highly reactive 
to shocks. The effect of these shocks will quickly die away. Lower 
values of A is mostly used for short term forecasts. 

2. 	Term Aut I determines the persistence in volatility. A high Awill give 
a process that persists at a certain level of volatility, despite recent 
shocks. 

Parameters of the EWMA process can be estimated by minimizing the 
root mean square error or similar method. The accuracy of forecasts are 
however difficult to assess. 

4.2.1 RiskMetrics 

The EWMA model is also the basis of volatility forecasts in the RiskMet­
rics system by J.P. Morgan. The RiskMetrics model has the following to 
distinctive features: 

1. 	The parameter A is fixed, A = 0.94. 

2. 	 The definition of volatility is different than the standard definition of 
volatility. Under the assumption of normality, the RiskMetrics volatil­
ity is the 95th percentile or 1.65 times the standard deviation. 
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4.3 	 Generalized Conditional Autoregressive Con­
ditional Heteroscedasticity 

The Autoregressive Conditional Heteroscedastic (ARCH) process was intro­
duced by Engle (1982) ~14]. This process allows for the change of conditional 
volatility over time as a function of past errors. 

The Generalized Autoregressive Conditional Heteroscedastic (GARCH) 
process by Bollerslev (1986) [6] is the most popular and widely used sto­
chastic volatility measure and forecasting method. 

The GARGH(p,q) process is discussed in section 4.4 below. It will be 
shown that this discussion encompasses the ARCH process in a simple way. 
The GARCH process is also the basis for many subsequent models. 

4.4 	 GARCH(p,q) 

The GARCH(p, q) process under conditionally normal, discrete time errors, 
is defined by 

Et :Ft - 1 ,...., N (0, un 
q p 

'" 2 '" 2ao + L.." aiEt_i + L.." l1iu t-i (4.4) 
i=1 i=l 

where p, q are nonnegative integers, a;, fJj are nonnegative real numbers for 
every applicable i, j and 00 is a positive real. 

For p, q = 0, the GARCH process is sinlple white noise. For p = 0, q =f=. 0 
the process is an ARCH process. Thus, the GARCH process is to volatility 
what the ARMA process is to the AR process, for means. 

Any GARCH(p,q) process can be defined as a GARCH(l,l) process. 
Define 

Uf = 00 + A (L) Et + B (L) uf 

where for lag operator L, 
q 

A(L) 	 - LOiLi 
i=l 

P 

B(L) 	 = LfJiLi 
i=::l 

4.4.1 	 Stationarity 

Theorem 4.4.1 A GARGH (p, q) process is stationary, with (long-term) 
'tlariance 
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for any t if and only if A (1) + B (1) < l. 

Proof. For any t 

E [un = E [var [et l.rt-l]] 
= E [E [e; l.rt-l]] 

since we assume that E [et I.rt-l] = O. It follows that 

E [£1;] = E [e;J 
by the tower property of conditional expectation. Since e t is white noise, we 
have that 

var [et] = E [Ct2] = £12 

for all t, where £12 is the long-term variance of ct- It follows directly then 
that 

and 

E [£1;] = E [ULI] 

The expected value of the CARCH (p, q) process 


q p 


£1; = ao +2: aicLi +2:,oiuLi 
i=l i=l 

is 

q p 

- ao +2:a i E [eLi] + 2:,oiE [U;_i] 
i=l i=l 

q P 

- ao +L aw2+ L,oiU2 
i=l i=l 

It follows that 

or 
2 ao


£1 = (~q ~P)
1 - 6i=1 ai - 6i=1 ,oi 
For £12 to be finite it's required that 

q p 

Lai+ L,oi < 1 

• 

 
 
 



40 CHAPTER 4. UNIVARIATE VOLATILITY PROCESSES 

4.4.2 Stylized Facts 

In the financial literature four properties of returns series have been coined, 
stylized facts. These stylized facts are volatility clustering, mean reversion, 
excess kurtosis and the leverage effect. The leverage effect is discussed in 
section 4.7. 

A stationary GARCH process captures these stylized facts in the follow­
ing ways: 

1. 	Volatility clustering is described in section 2.7.3 as strong autocorrela­
tion of squared returns. Thus if O'LI is high (low), then at will prob­
ably also be high (low). The long-term variance of a GARCH (p, q) 
process was provided in theorem 4.4.1. The long-term variance of a 
GARCH (1,1) process is 

(4.5) 

thus 

no == V(1-a-11) 

and 

equivalently, 

Taking expected value yields 

E [0'; - V l.1"t-2] E [a (eLl V) + 13 (aLl - V) l.1"t-2] 
- aE [ELI V 1 .1"t-2] + 13 (aLl - V) 

- (a + 13) (aLl - V) (4.6) 

since E [ct-l l.1"t-2] = 0 and Var [Et-l l.1"t-2] 0';-1' This equation 
can be rewritten as 

thus if aLl is large (small) then it's expected for at also to be large 
(small). 

2. 	 Mean reversion is the gradual return of variance levels, after a shock, 
to a long-term variance level. Equation 4.6 can be rewritten as 
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By repeating this relationship yields 

or 

(4.7) 


Since the GARCH process is stationary, a + f3 < 1. This means that 
the second term of equation 4.7 tends to zero, as k tends to infinity. 
Thus the expected value of the conditional variance tends to the long­
term variance level, V. 

3. Excess kurtosis in returns series can be described as kurtosis, see sec­
tion 2.5.2, larger than that of the normal distribution. In theorem 
4.4.1 above, we proved that for the CARCH (1, 1) process 

E ret] - E [ur] 
ao 

-
1 a-{3 

Bollerslev, see (6], proved that if 3a2 + 2a{3 + f32 < 1 the stationary 
fourth moment of e exi'3ts, 

E ret] = (1 

The stationary kurtosis is 

E [e1] 3(1- (a + {3}2) 
K= 2= 2 >3 

E [et] 1 - f3 - 2a{3 - 3a2 

thus the GARCH process is heavy-tailed (leptokurtic). 

4.4.3 Estimation of GARCH Regression Model 

This section focusses on the maximum likelihood estimation (MLE) of the 
GARCH regression model. The GARCH model in equation 4.4 may be 
written in terms of the following nonlinear regression model 

which is the means process of the error et, which is conditionally normal 
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where 

z'wt 

is the GARCH(p, q) process. The vector 

and parameter vector 

Define e as a compact subspace of a Euclidean space, with 9 = (b/,w') E e. 
Denote the true parameter values of by 0o, where 00 E irtl e. 

The likelihood function of et is the pdf of the error process et, written in 
terms of its parameters 

T 

r (O,O'n = n 1 2 e-[ct /ut}2/2 (4.8) 
t=1 y'21rO't 

since the conditional mean is zero and the process follows GARCH variance. 
There are T observations. 

It's computationally easier to take the In of equation 4.8. The loglikeli­
hood function is 

T 	 2
2) '"' 1 2 1 etf (O,O't = ,L..--2 ln O't --2 2 +constants (4.9) 

t=1 O't 

The constants will have no effect on later results, thus redefine 

T 	 2 
f (0, iff) = 	 I:-! lnu; _ ! e~ (4.10) 

t=1 2 2ut 

T 

- I: ld9) 
t=1 

where it (9) is the likelihood function of observation t. 
Differentiating h (9) with respect to the variance parameters yields 

8It 1 	 _20U; 1 2 ( 2)-2 8u~ 
- -20't ow + 2'E't Ut owow 
_ _I_out (ef _1)

2u; ow ut 
the second derivative 

O ) _1_ OUt 0 2 2 2 
ow8w' ( ut Ow 2ut Ow 2 (un 2 Ow ow' ut 

It = !!i2_ 1 OUt2[2] _ 1 ut OUt !!i 
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where 

aUf ~ /3 aht-i- = Zt +.L..J .- ­
8w i=l l aw 

Differentiating It (8) with respect to the mean parameters yields 

8lt = EtXt + 1 aut (E~ -1)
ab u1 2 (u;)2 ab Ul 

the second derivative 

8lt 

aMII 

where 

....2 q q 8u2 .a 
Vt '" "'/3 t-]8b = -2 .L..J CtjXt-jEt-j +.L..J j-m;­

j=l j=1 


4.5 Integrated GARCH 

The Integrated GARCH or I-GARCH process is defined as the standard 
GARCH (p, q) process defined in equation 4.4 where etl + /31 = 1, thus if we 
put /31 = A then 

u~ eto +(1- A)et-l + Autl 

where Et I:Ft-l rv N (0, un and clearly A E [0,1]. 
From the stationary variance of the GARCH (1, 1) process defined in 

equation 4.5, it's clear that the stationary variance of the I-GARCH process 
doesn't exists. I-GARCH processes are often encountered in foreign ex­
change and commodity markets. 

When the constant term eto °then the I-GARCH process is an EWMA 
process. 

The I-GARCH process can however by strictly stationary, this result 
follows from Nelson (see [18]). For the GARCH (1, 1) process 

u~ - 0'0 +act! + /3uF-l 


'" 2 /32
= 0'0 +aCt-lut-l Ut-l 
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where c:; IFt-l N (0, 1). Further f'V 

O'~ 0:0 + (o:e7.-1 + 13) O'tl 
0:0 + (ae;_l + 13) (0:0 + (aC:t_2 + 13) O'r-2) 

0'0 (1 + (O'C:;_1 + 13)) + (o:e;_1 + 13) (O'C:;_2 + 13) O't2 


where 0'6 is the first conditional variance. Nelson proved that the process is 
strictly stationary if 

for every applicable i. 

4.6 GARCH-in-Mean 

The ARCH-in-Mean (GARCH-M) process was introduced by Engle, Lilien 
& Robins in 1987. In thLq process the connection between returns and risk, 
represented by AR and GARCH processes respectively, is set. Risk averse 
investors are expected to demand higher returns 011 risky assets than on less 
risky ones. The GARCH process in this model is therefore fixed to a risk 
premium. This risk premium can be seen as the positive correlation between 
current return and conditional covariance. 

An example of an GARCH-M process is 

'Yt = cf>o + tPIYt-1 + ... + tPpYt-p + 9 (O'tl A) +et (4.11) 

where the q>-parameters are AR parameters and 9 is a flmction of a GARCH 
process, O't and the risk premia, A. The function is mostly taken as the 
identity or square root function of O't multiplied with A. 

The GARCH-M process by Duan, discussed in chapter 6, is 

St = St-l exp (rAt - ~O'; + AO't +c:t ) (4.12) 

or 

St 1 2
in -S = rAt - -20't + AO't +et 

t-l 

where, for an annual risk-free rate r and daily volatility measurements t, 
6.t = 1/252, since we aSBmne 252 trading days in a year. 


GARCH-M process can be extended by any other GARCH process. 
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4.7 Asymmetric GARCH and the Leverage Effect 

The leverage effect was reviewed in section 2.7.4. The jest of the leverage 
effect is: markets tend to react more volatile to negative information than to 
positive information. Symmetric GARCH processes react equally to positive 
and negative news. 

Asymmetric GARCH processes have an extra parameter, denoted by , 
in this dissertation, that skew returns information to market reaction. Here 
follow a few Asymmetric GARCH processes: . 

4.7.1 Exponential GARCH 

The Exponential GARCH (EGARCH) was introduced by Nelson (1991). 
The EGARCH process is given by 

lna~ ao+,8}lnatl +,82(lct-II-,ct-t} 

where ,82" > O. 
The upside of EGARCH is that it generally fits empirical financial data 

well, but the downside is that EGARCH has no analytic form for its term 
structure. 

4.7.2 Asymmetric GARCH 

The Asymmetric GARCH (AGARCH) process is by Engle and Ng (1993). 
The AGARCH process is as follows 

a~ ao + a (ct-l - ,)2 + ,8atl 

where ao > 0 and a,,8,, ~ O. 
The parameters of the AGARCH process is easier to estimate than that 

of the EGARCH process, and it possesses an analytical term structure. 

4.7.3 Glosten, Jagannathan and Runkle GARCH 

The Glosten, Jagannathan and Runkle GARCH (GJR) process (1993), is 
named after its founders. The process is 

2 _ f.l 2 2 (0)2at -aO+/Jat_l + aCt_1 +,max -Ct, 

where "y > O. 

4.8 Limitations of the GARCH Process 

The GARCH processes have the following limitations: 
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1. 	The GAROH processes perform best under stable market conditions. 
This process often fails to capture highly unexpected shocks, like mar­
ket crashes. Except for the direct effect of a sudden shock, it may also 
cause structural changes in the market. 

2. 	 It's often hard to decide which GAROH process fits empirical data the 
best. There is no single GARCH process that can adequately model 
all conditional volatility processes. The conditional volatility structure 
of underlying assets also occasionally changes, which necessitates the 
using a different process. 

3. 	The GAROH processes presented here depends on normal innovations. 
These proce.sse.'J often fail to fully capture the heavy tails observed in 
return series. Student's t-distribution and distributions like the Nor­
mal Inverse Gaussian distribution are often used as sources of innova­
tion. 

4. 	 Investment decisions mustn't be solely based on the results of the 
GAROH processes. Other sources of information and models must 
also be used to make such decisions. 

 
 
 


