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Chapter 3

An Introduction to Time
Series Models

3.1 Objectives!

The purpose of this introduction to Autoregressive Moving Averages (ARMA)
time series is to provide enough background to the reader to understand and
appreciate the more advanced models in later chapters. For a more complete
discussion on ARMA time series see Ferreira [16].

3.2 Preliminaries

3.2.1 White Noise

A white noise series is often part of a time series in the form of an “error”,
an unpredictable randomness.

Definition 3.2.1 A white noise series (e;) has the following characteristics
for everyt,s €R

1. E[&'t] =0
2. E[&f] = g2
3. Eleies] =0 fors#1

The white noise process is thus stationary.

! Suggested reading: [1] and [18]
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3.2.2 Linear Time Series

Definition 3.2.2 (2, F, P). A linear time series at time t consists of a
Fi-1 predictable part plus a random part, that is for a time series

Zg =L [Zg l ft-l] + Vi
where the expected value of the white noise process, vy where

E[Vt | ft—l] = )

3.2.3 Lag Operators and Difference Operators
Definition 3.2.3 A lag operator L is defined by
LFz, =2, &
for all k € RY.
Definition 3.2.4 A difference operator A is defined by
ApZy =2y — Zyy,
for allk € R

Example 3.2.5 The power of a difference operator A is different from a
higher order difference operator Ag.

A%Z = A(Zy—Ziy)
= AZ ~AZ,
= Zy =221+ 22

Definition 3.2.6 Invertibility of a time series: A time series (Z;) is in-
vertible if it is possible to write it in terms of an infinite combination of
lags.

3.3 Autoregressive Process (AR)

Definition 3.3.1 For a stochastic process (Z;) and white noise process (&¢),
the AR (p) process is defined by

Oy (L) Zs =&
with
Dp(L)=1—¢L— ¢L* ~...— ¢, IF (3.1)
L s a lag operator and p the order of the autoregression polynomial 3.1.
The AR (p) process (Z;) can thus be written as
Ly =121+ Qo+t dpZsptey
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3.4 Moving Averages Process (MA)

Definition 3.4.1 For a stochastic process (Z;) and white noise process (e;),
the M A(q) process is defined by

Ly = eq (L) £t
with
Oq (L) =1+01L+02L% + ...+ 0,L9 (3.2)

where L is a lag operator and q the order of the moving averages polynomial
3.2,

The M A (q) process (Z;) can thus be written as the sum of past errors
Zy =gt + 01601 +0aer 2+ ..+ 0ger—yg (3.3)

The lag operator thus acts on the white noise process not on Z;.

3.5 Autoregressive Moving Averages (ARMA)

Definition 3.5.1 For a stochastic process (Z;) and white noise process (e4),
the ARM A (p, q) process is defined by

(bp(L)theq(L)Er,

with
Og(L) = L1+01L+02L+...+0,L9
Dp(L) = 1—$L—gpl?—...— ¢, 17

where L is a lag operator, p the order of the autoregression polynomial and
g the order of the moving averages polynomial

The ARMA (p, q) process (Zy) is

Zy = Q1 Zi 1t G a+...+ ¢ng~p ‘et + e+, + ﬂqet_ﬁq
)4 q
= Z ¢iZp—; + Z Oier i
i=1 i=1

where 0y = 1. It is clear that the ARM A (p, q) process, is a combination of
an AR (p) and an M A (q) process.
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3.6 Stationarity of ARMA Processes

The results in this section was proved in Ferreira [16].
An M A {oo) process

Zy=er+ 01+ e+
is stable if and only if its weights are square summable

o0
Z()?<oo

=0

The AR (p) process
Zy=41Zp 1+ GpZea+... .+ ¢pZip+e (3.4)

can be rewritten in terms of the Vector Autoregressive process denoted
by VAR(1)

Z S b2 b by || D €t
Zp-1 1 0 -« 0 0 Zt-2 0
YA =10 1 .-« 0 0 Zt-3 |4+ | 0
| Zep-1) | 0 0 10 J]Z,] LO]
or
£ =F¢ 1+

From this equation we can obtain
£, =Flgy+F g1 +...+Fe 1+ v

Theorem 3.6.1 If all eigenvalues of the matriz F le within the unit circle,
|Al < 1, then

o0

SN F=1-F)" (3.5)

=0

where 1 is the applicable identity matriz and the right-hand side of equation
3.5 is the inverse of I - F.

Proof. Ferreira [16]. m
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Theorem 3.6.2 If all the eigenvalues of the p X p matriz F lie within the
unit circle, then

(I, - F)~
ezists and its element (1,1) is
1
l—¢1—dg—...— ¢,
Proof, Ferreira [16]. =

Corollary 3.6.3 If all the eigenvalues of F are less than [ in magnitude
then FJ decays to zero as j increases to infinite. A time series with such a
property is said to be stable,

Process 3.4 can be rewritten as

i (L) Zz = £¢
where
(L) =1-¢L—¢pL? —...— ¢, L7 (3.6)

Definition 3.6.4 The characteristic function of the process 3.6 is defined
by

®(L)=1~¢;L— L —...— ¢ I7 (3.7)

We can then combine the ideas of the root of polynomial 3.7 and the
cigenvalues of F.

Theorem 3.6.5 Factoring the characteristic function is eguivalent to find-
ing the eigenvalues of the matric F

1= L—gol? — ... =[P = (1= ML) (1= XL)...(1 = \L)
Proof. Ferreira [16]. =

Corollary 3.6.6 The process 3.4 is stable if all the eigenvalues of F all lie
inside of the unit circle. '

Theorem 3.6.7 The characteristic function ® (L) of an AR (p) process can

be written in terms of a characteristic function of a MA{00) process, say
w (L)

O(L) =7 (L)

Remark 3.6.8 Note that only ® (L), the characteristic function of the au-
toregressive terms influence stability.

The results of this section is summarized as follows:

Summary 3.6.9 An AR(p) process is stationary if and only if the eigen-
values of the characteristic function of that process lie inside the unit circle.
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3.7 Estimation of ARMA Parameters

This section focusses on the maximum likelihood estimation (MLE) of the
ARMA regression model. If we assume that the error process

et =21 —($1Zt-1+ -+ OpZi_p+ 01601+ ... + 0451 g)

is normally distributed. Then the likelihood function of the ARMA process
is

It

fr(6)

exp (= [ei/oe]” /2)

1-p+l

_ 1 1
= ( 2,.__....7“02) exp (w‘ZO’g th)

where 02 is the unconditional (statlonary) variance of the error process (g;).
The product is from the (p + l) observation to the nt® since there are p
parameters. Define n' =n —p.

Define the parameters matrix by

0= (‘;513‘3523 .- *a¢p$913° . waq)’
The loglikelihood function (the In of f*(6)) is

= 2(722:2

€ f=pt1

The MLE parameters are those that maximizes f*(8) or f(8) over a
number of observations of (g¢). Since only the error process is variate in
terms of the parameters 8, maximizing f(€) is equivalent to minimizing

ki
x
i=pt1

To comment on the significance of the MLE parameter fit, define the
information matrix

18%£(6)
I=-lim F|=—=-+
o [n’ 9006

The asymptotic distribution of MLE estimators is

o~N (e{,, 1,1-1)
7

with I positive definite in the region of the optimal 8.
For the second derivative of f (6) define

n—o00

_0%*f @ __1 2
S= 5068 20’2 0080’ Z

i=p-i-1
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thus we can approximate the covariance matrix of 6,

var(8) = -?%I_l

~ 2078
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