
Chapter 3 

An Introduction to Time 
Series Models 

3.1 Objectives1 

The purpose of this introductioll to Autoregressive Moving Averages (ARMA) 
time series is to provide enough background to the reader to understand and 
appreciate the more advanced models in later chapters. For a more complete 
discussion on ARMA time series see Ferreira [16J. 

3.2 Preliminaries 

3.2.1 White Noise 

A white noise series is often part of a time series in the form of all "error", 
an unpredictable randomness. 

Definition 3.2.1 A white noise series (et) has the follo'wing chamcteristics 
for every t, s E 'Ii 

1. E[ed = 0 

2. E [e;] = 0-
2 

3. E [etesJ = 0 for 8 =1= t 

The white noise process is thus stationary. 

lSuggested reading: [1) and [18J 
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3.2.2 Linear Time Series 

Definition 3.2.2 (n, F, P). A linear time series at time t consists of a 
Ft-l pred'ictable part plus a random part, that is for a time series 

where the expected value of the white noise process, Vt where 

3.2.3 Lag Operators and Difference Operators 

Definition 3.2.3 A lag operator L is defined by 

LkZt = Zt-k 

for all k E IR+ . 

Definition 3.2.4 A difference operator ~ i.5 defined by 

~kZt = Zt ~ Zt-k 

fo?' all k E IR+. 

Example 3.2.5 The power of a difference operator ~k is different from a 
higher order difference operator ~k' 

~2Zt 	 ~ (Zt Zt-l) 


.6.zt AZt- 1 


Zt 2Zt- 1 + Zt-2 


Definition 3.2.6 In'oertibility of a time series: A time series (Zt) is in­

'vertible if it is possible to write it in terms of an infinite combination of 

lags. 


3.3 Autoregressive Process (AR) 


Definition 3.3.1 For a stochastic process (Zt) and white noise pmcess {et}, 

the AR (P) process is defined by 


<Pp (L) Zt = et 

with 

(3.1) 

L is a lag operator and p the order of the autoregression polynomial 3.1. 

The AR (P) process (Zt) can thus be written as 

Zt =cPIZt-l + <P2Zt-2 ••• + cPpZt-p +et 
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3.4 Moving Averages Process (MA) 

Definition 3.4.1 For a stochastic process (Zt) and white noise process (et), 
the lY[A (q) process is defined by 

with 

(3.2) 

where L is a lag operntor and q the order of the moving averages polynomial 
3.2. 

The M A (q) process (Zt) can thus be written as the sum of past errors 

(3.3) 

The lag operator thus acts on the white noise process not on Zt. 

3.5 Autoregressive Moving Averages (ARMA) 

Definition 3.S.1 For a stochastic process (Zt) and white noise process (et), 
the ARMA (p, q) process is defined by 

urith 

9 q(L) - 1+ (hL + (hL2 + ... + OqLq 


(J)p (L) - 1 - 4>IL - 4>2L2 4>,):1 


where L is a lag operntor, p the order of the autoregression polynomial and 
q the order of the moving averages polynomial 

The AR.MA(p,q) process (Zt) is 

Zt - 4>IZt-l + 4>2Zt-2 + ... + 4>pZt-p +et + 91et-l + ... + 9qet-q 
p q 

- 2: 4>i Zt-i + 2: 9i et-'i 

i=1 i=1 

where 00 = 1. It is clear that the ARMA (p, q) process, is a combination of 
an AR(P) and an MA(q) process. 
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3.6 Stationarity of ARMA Processes 

The results in this section was proved in Ferreira [16]. 
An M A (00) process 

is stable if and only if its 'Weights are square summable 

The AR (p) process 

(3.4) 


can be rewritten in terms of the Vector Autoregressive process denoted 
by VAR(I) 

Zt 

Zt-l 


Zt-2 


Zt-(p-l) 

-


<Pl <P2 <Pp-l <Pp 
1 0 0 0 
0 1 0 0 

0 0 1 0 

Zt-l 

Zt-2 

Et 

0 
Zt-3 + 0 

Zt-p 0 

or 

et = Fet-l + Vt 

From this equation we can obtain 

et = Fteo +F 
t

-
1 

€1 + ... + F€t-l +Vt 

Theorem 3.6.1 If all eigenvalues of the matrix F lie within the unit circle, 
IAI < 1, then 

L00 

Fj (I - F)-l (3.5) 
j=O 

where 1 is the applicable identity matrix and the right-hand side of equation 
3.5 is the in'lIerse of I - F. 

Proof. Ferreira [16]. • 
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Theorem 3.6.2 If all the eigenvalues of the p X P matrix F lie within the 
unit circle, then 

(Ip F)-1 

exists and its element (1,1) is 

1 

1 - 4>1 4>2 - ... - 4>p 

Proof. Ferreira [161. • 

Corollary 3.6.3 If all the eigenvalues of F are less than 1 in magnitude 
then Fi decays to zero as j increases to ·infinite. A time series with such a 
property is said to be stable. 

Process 3.4 can be rewritten as 

<1> (L) Zt et 

where 

(3.6) 


Definition 3.6.4 The characteristic function of the process 3.6 is defined 
by 

(3.7) 


We can then combine the ideas of the root of polynomial 3.7 and the 
eigenvalues of F. 

Theorem 3.6.5 Factoring the characteristic function is equivalent to find­
ing the eigenvalues of the matrix F 

1- <pIL - (hL2 ... - 4>pLP = (1- AIL)(I- A2L) ... (1 ApL) 

Proof. ferreira [161. • 

Corollary 3.6.6 The process 3.4 is stable if all the eigen'llaiues ofF all lie 
inside of the unit circle. 

Theorem 3.6.7 The characteristic function () (L) of an AR (P) process can 
be written in terms of a characteristic function of a MA (00) process, say 
1r (L) 

<1>(L) =1r(L)-l 

Remark 3.6.8 Note that only <1> (L), the characteristic function of the au­
toregressive terms influence stabiUty. 

The results of this section is summarized as follows: 

Summary 3.6.9 An AR (p) process is stationary if and only if the eigen­
values of the characteristic function of that process lie inside the unit circle. 
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3. 'T Estimation of ARMA Parameters 

This section focusses on the maximum likelihood estimation (MLE) of the 
ARMA regression model. If we assume that the error process 

Et = Zt - (<PlZt-l + ... + <PpZt-p +01Et-l +.. -+ OqEt-q) 

is normally distributed. Then the likelihood function of the ARMA process 
is 

f* (B) - IT --=l=exp (- [ci/lTE ]2 /2) 
i=p+l 

where lT~ is the unconditional (stationary) variance of the error process (Et). 
The product is from the (p + l)th observation to the nth since there are p 
parameters. Define n' =n - p. 

Define the parameters matrix by 

B = (<PI' <P2' ... , <Pp, Ot,. --, Oq)' 

The loglikelihood function (the In of f* (B)) is 

1 n 


I (B) = - 2(12 . L e~. 

E l=p+l 

The MLE parameters are those that maximizes f* (B) or I (B) over a 
number of Observ'dtions of (Et). Sillce only the error process is variate in 
tenus of the parameters B, maximizing I (B) is equivalent to minimizing 

n 
E c~. 

i=p+l 

To comment on the significance of the MLE parameter fit, define the 
information matrix 

1=- lim E [~fPI(B)] 
n-+oo n' oBoe' 

The asymptotic distribution of MLE estimators is 

B '"" N (Bo, ~,rl) 
with I positive definite in the region of the optimal Bo­

For the second derivative of I (B) define 

s 021(B) 

oBoe' ­
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thus we can approximate the covariance matrix of 8, 

Va1'(8) 

 
 
 


