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Chapter 2

Some Probability Essentials

2.1 Introduction!

In this chapter some of the essential background to probability theory is
given. Although the background is basic, very few mathematicians, sta-
tisticians or probability theorists would be familiar with all the concepts
presented.

In section 2.2 the basic concepts concerning a probability space is briefly
stated. Moments are discussed in section 2.3.

Cumulative distribution functions and partial density functions are dis-
cussed in section 2.4. Some of the main theorems of this section is stated and
proved. I section 2.5 the moments and other issues regarding the normal
distribution is specified.

A short detour is taken in section 2.6 where returns series are discussed.
The section ends with section 2.7 where some important hypothesis tests
are discussed.

2.2 Probability Space

2.2.1 Probability Space

The triple ({2, F, P) is called a probability space. The set {2 is 2 non-empty
set, F = {Fi}ten,>0 is filtration of o —algebras F; defined on  and P is a
probability measure on F.

A function Z; : Q — R, on the probability space, is called a stochastic
process.

2.2.2 o—algebra
A family of subsets F of a set {2 is called a o—algebra if the following holds:

!For further discussions on probability theory and measure theoretical aspects see [31],
[7], 13] and [27]. [4], {13], [17], {26] and [32] are also useful.
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2.2.3 Borel Sets in R

The Borel sets (one thing) is the smallest o—algebra generated by all the
open sets in R.

2.2.4 Filtration

F = {Fi}iene>o0 is a filtration of c—algebras with the following properties
1. Fo contains all null sets
2. f‘t = ﬂs;s)tfg fOl' t 2 0

Property 2 is called right continuous. A filtration with these properties
is said to satisfy the “usual conditions”.

2.2.5 Measurability and Adaptedness

Definition 2.2.1 A stochastic process, Z; : ! — R, is said to be measurable
with respect to a o-algebra F if

{Zg & B} eF
for every Borel set B € B(R).

Definition 2.2.2 A stochastic process, Z;, is said to be adapted to a filtra-
tion F if Z; i3 F; measurable for all t € R.

Remark 2.2.3 Throughout this dissertation only real-valued stochastic pro-
cesses defined on (Q, F, P) will be considered, that is X : Q@ — R.

Remark 2.2.4 A stochastic process at a specific time is often referred to as
a random variable.

Remark 2.2.5 Take note that a stochastic process/random variable is de-
fined in terms of a probability space.
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2.2.6 Almost everywhere

Definition 2.2.6 Two functions, f and g are equal almost everywhere
(sometimes called almost surely) if

f(z) =g(z)

for all x ¢ N € F where P(N) = 0. Almost everywhere is abbreviated by
a.e.

Definition 2.2.7 A sequence of functions (fn) converges to f almost every-

where if there exists a set N € F with P (N) = 0 such that f (z) = lim f, (z)
forallz ¢ N.

2.3 Moments and Stationarity

2.3.1 Expected Value
Definition 2.3.1 A random variable X € Q) — R is said to be integrable if

/|X|dP< oo
Q

The family of integrable random variables are denoted by L' (Q, F, P) or in
this dissertation L for short.

Definition 2.3.2 For any X € L' (9, F, P),

E[X]:= / XdP
Q
is called the expected value of X.

Remark 2.3.3 The expected value of a random variable from a symmetric
distribution is often called the mean or average.

Remark 2.8.4 For a probability space with density function f and inte-
grable Borel function h : R — R,

o0

E[h(X)]:/thPX:[mh(z)f(z)dm

Proof. See Brzezniak et al. [7]. =
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2.3.2 Conditional Expectation

We can call the filtration F; C F, the o—algebra that contains all the
information available to an investor at time f£. A o-algebra can also be a
condition in a conditional expectation.

Definition 2.3.5 (Q, F, P). The conditional expectation given a c—algebra
is: for an integrable random variable X and o-algebra ® C F

E[X | 9]
where E[X | ®] : @ — R is unique P a.s. satisfying
1. E[X | ®] is & measurable
2. [, E[X | ®|dP = [, XdP, for all H € ®.

Theorem 2.3.6 For X, Y € L', a,b € R and 0 — algebra ® C F the
conditional expectation has the following basic properties (all equalities a.s.):

1. E[aX +bY |®]|=aE[X | ®]+bE[Y | €]
2. E[F[X | 9] | ¥ =E[X| Y] where ® C ¥ is also a 0 — algebra
3. ElX |®] =X if X is ® measurable
4. E[X | 9] = E[X] if X is independent of &
Proof. See Appendix B in Oksendal [27]. =
2.3.3 Variance, Conditional Variance and Standard Devia-
tion

Definition 2.3.7 (2, F, P). A random variable X € Q@ — R is said to be
square integrable if

/XQdP<oo
Y

The family of square integrable random variables are denoted by L? (2, F, P)
or L? for short.

Definition 2.3.8 (Q, F, P). The variance of a square integrable random
variable X is defined as

Var[X] = E[(X—E[X]f}
= E[X? - (E[X])?

2
= /deP—{—(f XdP) >0
H H
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Definition 2.3.9 (Q,F, P). The standard deviation of a square integrable
random variable X is defined as

Std[X] = /Var[X]

The conditional variance and its properties follows directly from that of
the conditional expected value:

Definition 2.3.10 (2, F, P). For any square integrable random variable X,
the conditional expected value of X given a o — algebra H C F, is

Var[X | H] = E[(X~E[X|H})2|H]
= E[X2~2XE[X]H]+(E[X|H])2[H] as. P
= E[X?|H|-(E[X|H])?as P

Theorem 2.3.11 (2, F, P). For a square integrable random variable Z and
a,c € R, the conditional variance of K = aX +¢, given a0 —algebra H C F,
18

Var (K | H) =d*Var (X | H) a.s. P
Proof. Equalities almost surely

Var [K | H]

= B[(&)|H| - (BIK |H])?
E[a®?X? + 2acX + ¢ | H| - (E[aX | H]+¢)®
a?E[X?% | H| 4+ 2acE [X | H| + & - &® (E[X | H])?
—2ac(E|X | H]) - ¢

= d?E[X? | H]-d*(E[X | H])?

= a*Var(X | H).

n

Theorem 2.3.12 (Q, F, P).For two square integrable random variable X
andY and a,b,c €R, the conditional variance of Z =aX +bY + ¢

Var(Z | H) = a®*Var (X | H)4+b*Var (Y | H)+2abCov(X,Y | H) a.s. P

Proof. From theorem 2.3.11. Equalities almost surely P
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VarlaX +bY +c | H]
= Var[aX +bY | H|
- E [(aX +bY)? | H] —(ElaX +bY | H])?
= o’E [X? | H| +2abE[XY | H| +b’E [Y? | H|
—(aE[X | H]+bE[Y | H])®
= a’E[X?|H| +2abE[XY | H|+E[Y? | H] - o*(E[X | H])?
—2bE[X |H|E[Y | H - ¥ (E[Y | H])?
= a?Var(X | H) +b*Var (Y | H)
+20b(E[XY |H| - E|X | H E[Y | H])

In the next section covariances will be properly defined, for now assume
Cov(X,Y |H)=FE[XY |H|-E[X | HE[Y | H].
Thus

Var[aX +bY +c| H]
= a®Var(X |H)+b*Var (Y | H) 4 2abCov (X,Y | H)

2.3.4 Covariance and Autocovariance

Definition 2.3.13 (€, F, P). For two square integrable random variables
X andY in our probability space, the covariance between X andY is

cov[X,Y] = E[(X-E[X])(Y - E[Y])]

= FE[XY]-E[X]|E[Y]

Definition 2.3.14 (2, F, P). For a square integrable stochastic process
(Xt);en, adapted to F, the covariance between X; and X,y for anyt,k € N
18

cov [Xe, Xp k] = E(X:—- E[X]) (Xi—i — E[Xy—r])]

= B[XiXii| - E[Xi] E[Xi—]

The covariance between elements of the same stochastic process is called the
autocovariance.

The conditional covariance and autocovariance can be defined in a sim-
ilar fashion as the conditional variance, bearing in mind that conditional
covariances are random variables.
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2.3.5 Correlation and Autocorrelation

Definition 2.3.15 (2, F, P). For two square integrable random variables
X and Y the correlation between X andY is
cov[X,Y]

o [X,¥] = var [ X]var [Y]

Definition 2.3.16 (2, F, P). For a square integrable stochastic process
(Xt)icn> adapted to F, the correlation between X; and Xy_y, for anyt,k € N
5

cov [ Xy, X¢—k)

cor [X¢, Xp—k] = Vvar [Xy]var [ X ]

The correlation between elements of the same stochastic process is called
the autocorrelation.

2.3.6 Lag

Definition 2.3.17 Consider a stochastic process, say (Xy),cpn. At any time
step t a lag of size k is an integer that represents the process at time t — k,
X k-

2.3.7 Higher Moments

Definition 2.3.18 (2, F,P). The r* moment of a random variable X
(about its mean) is

E{(Xx - E[X])]

The first moment of a random variable is defined as its mean. The
second moment of a random variable is its variance. The second moments
of a stochastic process also include the autocovariances. The third moment
of a random variable is skewness and the fourth is kurtotsis. For a stachastic
process (X;),cy the set of r*» moments can be defined as

{E Ll;il (Xi, — E[X;;i])] | for all k; € N}

2.3.8 Stationarity

Definition 2.3.19 A stochastic process is called stationary if all of its mo-
ments are constants.

Definition 2.3.20 A stochastic process is called weakly stationary if its first
and second moments are constant. This means that its mean is constant and
for every lag k and time t the cov [X;, Xi-k] is a constant.
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2.4 Cumulative Distribution Function and Proba-
bility Density Function

Definition 2.4.1 The (cumulative) distribution function (cdf) of a random
variable X : Q@ — R is defined as

F(z)=P{X <z}

Theorem 2.4.2 The cdf F of a random wvariable X : Q — R has the fol-
lowing properties

L O0<F<1
2. Uim F(z)=0and limF(z)=1
T——00 r—00

3. F is right-continuous, F (z) = ling, 4 F (xy) for a decreasing se-
quence T,

4. F is increasing.
Proof. See Brzezniak et ol. [7]. ®

Theorem 2.4.3 If g : R — R is integrable then

(o 0]

Emwn=/ g () dF (z)

—00

Proof. A result of exercise 1.7 in Brzezniak et al. [7]. ®

Theorem 2.4.4 A measurable function f(x) > 0 on R such that for any
Borel measurable set B

P{XEB}=/Bf(y)dy

is called the (probability) density function (pdf) of X. The pdf can in par-
ticular also be written in terms of the cdf of X, F

Y
Fa= [ rwa
Proof. See Brzezniak et al. [7]. m

Theorem 2.4.5 If X has a continuous pdf f then

d
P (@)= ()

Proof. A resull from the fundamental theorem of calculus. W
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2.4.1 Joint Continuous Distributions

The joint distribution of a k-dimensional random variable,
X =(X1,X2, .., Xi),

is a measure Px on R” such that for any Borel set, B € R®
Px(B)=P{X € B}

If the random variables of X are independently distributed then

k
Px (B) =[] P{X: e Bi}

i=1
where
By
B=
By,
Definition 2.4.6 The joint probability density function (joint pdf) of a k-
dimensional random variable,
X =(X1, X2y, X&)
1s a Borel function
f(z1,22, .. 2) : R > R
such that

Px (B) = /B £t tay o ti) dr...d (2.1)

Definition 2.4.7 The joint cumulative distribution function (joint cdf) of
a k-dimensional random variable,

X = (X1, X2, - X)
8
F(zy,enz) = P[X) <21y 00y Xi < 2]
If the random variables of X are independently distributed then
flzy,zy) = f(z1) - f (2)

and
F(.’Z‘l, ...,il?k) = F(.}Il) . ($k)

which follows directly from the case of independence of Px.
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Theorem 2.4.8 The joint cdf of a k-dimensional random variable X can
be written in terms of the joint pdf of as follows

Ti 31
F(z1, 22,y k) = f / J(Laytay .y tg) diy..dly (2.2)
—00  J—oo

Proof. From definition 2.4.7 and the fact that (—oo,z;] is a Borel set
for every applicable ¢ it is clear that the joint cdf of X is a special case of
the joint probability of X. Equation 2.2 follows directly from 2.1. =

Theorem 2.4.9 If X, Y € R are independent random variables and g (x)
and h(y) are functions then

Elg(X)h(Y)] = E[g(X)] E[h(Y)]
and
covfg(X),h(Y)] =0
Proof. With a joint pdf f(z,¥)

Elg(X)h(Y)] = /_:f_zg(ﬂr)h(y)f(x,v)dxdv
- [_°° f’g(x)h(y)fl (2) f2 (y) dasdy

due to independence. The cdfs of X and Y are f; and f; respectively, then

E0sml = [ h) ) [_Zg(x)fl(m) dady

~00

- /_:g(m)fl (z) dzf_:h(y)fz(y) dy
= Elg(X)]Eh(Y)]
The covariance can be expressed as
cov[g (X), h(Y)]
= Elg(X)h(Y)]-Elg(X)]E[RY)
=

2.5 The Normal Distribution and its Moment Gen-
erating Function

2.5.1 The Normal Distribution

The normal distribution, the most frequently used statistical distribution,
was first published by Abraham de Moivre (1733).
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A pormal random variable X € R, with mean g € R and variance
o2 € R* is denoted by
X ~ N (p,0%)

The probability density function (pdf) of the normal distribution is

)= e [5(552)]

Another way to define the pdf in terms of the probability space (22, F, P) is
as follows

P(A)=[4dP=[4f(x;p,02)dm

The cumulative distribution function (cdf) of the normal distribution is
given by

F(z;p,a2) = P{X <z}

1 l1(z—p 2
= Xp | —= d
/[‘st} V2ro xp [ 2 ( o ) ] ¥

21 l1({z—p 2
= —€ —— dx
[—oo V27r0' P [ 2 ( o ) ]
The standard normal distribution, frequently used in this dissertation

is defined as the normal distribution with zero mean and a variance of
one, N (0,1). The standard normal distribution’s pdf is

2
f(z;0,1) = —\/12-—_7;exp (—%)

and cdf is

F(zx;0 1)—/2 —l—ex (—-Ti)dz
s Uy - ~°o\/2'—7r- P 9 .

2.5.2 Moments of the Normal Distribution

Consider a normally distributed random variable X ~ N (p, 02) with prob-
ability density function

rene)= g [5(552)]

then the random variable

x ——#
}’ = —— v
—£ ~N(0,1)
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Definition 2.5.1 The moment generating function of X is defined as
Mx (t) = E (e'X)

Theorem 2.5.2 The moment generating function of X ~ N (;,s, 02) is

2
My (t) = exp (;,et + (a;) )

Proof.
Mx (t) = E(¥)

© 1w -i(z=e)?
= e VT ) dx
[—-oo Vviro

o0 _ 2
/ ;exp tx — 1 (T ,u) di
—c0 V210 2 g

00 2*2 2t 2
:/ 1 e)(p(m (p+o )m+,u)dw

i

—o0 V210 —202
00 . 2t 2 - Qt — 2t 2
_ /’ 1 xp (¢ — p+o?t) 22;1,0 (o) i
—o0 V210 ~20
2
(ot)? / Sl | (z — p+ o)
= t+ —— St |
exp (p. + 2 o Tone exp )
2
= exXp (y,t+ (02) )

Theorem 2.5.3 Moments about the mean of X ~ N (,u, 02), If v is even
then

_ (2r)la?

E[(X - #)f] plor ?

if r is odd then

E[(X - p)]=0
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Proof., The

2
Mx_ , = exp ((1;2—)

_ io‘znt% (2n!)
oy 270! (2nl)
S\ 02 (nl) 2
22nt  (2n!)

The second line is due to the Maclaurin series expansion for e. Note that
only positive integers are contained in the last line Theorem 2.5.1 in [2]

states that
tn
nl

Mv(t)=1+§j5[m]

m==x]

for a random variable V. Thus

E[(X-wT=0
if r is odd and
= o
BIX == o

ifriseven. m

The following characteristics of random variable X ~ N (p,0?) follows
from theorem 2.5.3:

1. The skewness of X is
B[x -] =0

2. The kurtosis of X is

ﬂw”ﬂzzmﬁ

and thus if 02 = 1
EUX-Mﬂ=3
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2.5.3 Chi-square Distribution

Definition 2.5.4 If random variable Y is chi-square distributed with v de-
grees of freedom then

Y ~ X% (v)
where the chi-square distributed is a special case of the gamma distribution
¥ (v) ~ GAM (2, g)

Theorem 2.5.5 A random variable Y ~ x%(v) has the following charac-
teristics

1. Probability density function

1 v/2~1

- —a /e
f (y) = 9u/2p (‘U/ZZ)y 23

e
where I’ is the gamma function
w -
(k)= / thle~tdt
0

for all x> 0.

2. Moment generating function
My (1) = (1 -2/
3. Moments aboul the mean
By =2 /24 T) gj’(/f /“;)’)
4. Frpected value
ElY]=v
5. Variance

Var[Y]=2v

Proof. Results follow from the gamma distribution. See Bain [2] m
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Theorem 2.5.6 If
X ~ N (p,0%)

then

72 = (X—#)ZNxz(l)

o
Proof. The moment generating function of Z?

My = E [et”]
/_ : ‘/.12_; exp (t2%) exp (—%2) dz
/ : \/l__exp (tz2 - %z2> dz
- «1—— 7 [ e (F) o

—\/1‘:'2‘

which is the moment generating function of the chi-square distribution. ®

Definition 2.5.7 If Z2 ~ x2 (1) then
(Z-»?

is noncentral chi-square distributed with 1 degree of freedom and non-cen-
trality parameter .

Theorem 2.5.8 The expected value of a noncentral chi-square distributed
random variable is

E [(Z—)\)z] =1+ M2
where Z? ~ % (1).
Proof.
B(Z- = B[22-222+)]

= E[Z% -2)\E[Z] + X
1+ A2

since E'[Z] =0 because Z ~ N (0,1). m

1 165L2502
brsasuzul
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Theorem 2.5.9 The expected value of a noncentral chi-square distributed
random variable is

E [(z_- ,\)4] =3+ 622 + A4
where Z% ~ X2 (1).
Proof.
Blz-N = B[(Z -2+
= E[Z'—4Z°X+62°)% — 42°Z + A"

= E[Zz%] - ME[Z%] +6X2E [2%] — AN E[Z] + A
= 3+6N%+X

This is done by remembering that
Z~N(0,1)
thus the expected value of Z is
E[Z]=0
the skewness is
E[Z*] =0
and the kurtosis is
E[z']=3

2.6 The Return Series and Lognormal Distribu-
tion

2.6.1 Returns Series

The financial value of a company or fund is represented by its (stock) price.
The stock price has a clear, time dependent trend. It is hard to model se-
ries with trends, at least in an objective, scientific sense. To remove this
trend, the financial time series is transformed into a series with “manage-
able” mean, a returns series. This is done with difference equations.

It will be proved that the returns series still has the same variance as the
original series. The returns series is of great importance in risk management
and derivatives pricing.
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Figure 2.1: The stock price of Sanlam from 1999/01/05 to 2002/04/19.
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——Sanlam Returns Series

Figure 2.2: The returns series of Sanlam from 1999/01/05 to 2002/04/19.



il

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Q¥ YU

NIBESITHI YA PRETORIA

CHAPTER 2. SOME PROBABILITY ESSENTIALS 24

2.6.2 The Arithmetic Returns Series

Definition 2.6.1 The arithmetic returns series, for process (St) is defined
as

_— St — Si—1
¢ Si—1

2.6.3 The Geometric Returns Series

The geometric returns series, for process (S;) is defined as

ry = InSy—InSi_1

l‘n( 5 )
811

The relationship between the geometric and arithmetic series, by the Taylor
series expansion, are as follows:

Si _ S
In (St—l) = In (L_S't——_l— 1+ 1)

St — St-1 )
Y et S |
n( St-1

St — Sp1
Si—1

Q

o | 8t—=5t_1
if l—st—-l | < 1.

The geometric returns series will be considered in this dissertation.

Theorem 2.6.2 If we assume that a returns series is normally distributed
then the log of the stock process is also normal, and vice versa.

Proof.

5 S S S\ _ . (S
In ("STO') +In (S_l) +In (S]) +m+ln(st—l) = In (SO)

= InS; —InSy

The sum of normally distributed random variables are also normal and we
assume that Sp is known. =

2.6.4 Lognormal Distribution

(Q,F,P). A random variable X € R, with mean p and variance o2 is said
to be lognormally distributed if In{X) is normally distributed.

It’s often observed that stock prices are lognormally distributed. In
chapter 5.4.1 we deduce, given the assumed process 5.10, that a stock price
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S; can be defined in terms of an initial stock price Sy and Brownian motion
I“]Vt )

S = Sgexp ((,u, - -302) t+ GW’g) (2.3)

Taking the logarithm on both sides of equation 2.3 yields
InS;~ N (ln So + (/L - -12-02> t,aQt)

The return on stock S; is defined as In (%) which clearly has the distri-
bution

St 1 2 9
In—— ~N{p-=
nSz-l (g; 20’,0’

It is possible to test with the Jarque-Bera test for normality whether the
return is in reality normally distributed.

2.7 Hypothesis Testing?

Hypothesis tests are done to verify whether the properties of an observed se-
ries, say {&;},c , are consistent with assumed properties under a model The
properties that need to be tested include tests for normality, autocorrelation
and heteroscedasticity.

The formal procedure for conducting a hypothesis test involves a state-
ment of the null hypothesis and an alternative hypothesis. The sample
estimate on which the decision to reject or not reject the null hypothesis
comes from the sample space. The Neyman-Pearson methodology [20] in-
volves partitioning the sample space into two regions. If the sample estimate
falls in the critical region, the null hypothesis is rejected. If it falls in the
acceptance region, it’s not.

2.7.1 Jarque-Bera Test for Normality

The Jarque-Bera tests whether observations are not likely to have come from
the normal distribution.
Define for n observations the following

1 n
&2 S g.%’ (24)
t=1 ,
o 1 = ~3 ¢
iy =~ ;at, (2.5)

?Suggested reading: [1], [2], [18] and [24].
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1 n
fy==> & (26)
nt:l

In equations 2.4 to 2.6 are the second, third and fourth moments of &,
respectively.
The skewness is defined as

skewness = s = ;—f%
&
and the kurtosis as
kurtosis = k = l—f%
s

The Jarque-Bera statistic is defined as
~2 ~ ~4\2
2, (g —36%)
JB = o e
" (6&6 T )
(32 +2(k - 3)2)

n

6

JB ~x*(2)
The nuull hypothesis is
Hy:83=0and k=3
against the alternative
Hy :reject Hy

Remark 2.7.1 Many text books and computer packages calculates the ad-
justed kurtosis, that is the k — 3.

2.7.2 Autocorrelation

Durbin-Watson

The most famous test for autocorrelation is the Durbin-Watson test

Yora (Er —8r1)?

t 22
rasl O

No exact distribution for this test is available.
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Ljung-Box

For a series with m observations the Ljung-Box statistic over K lags is
K 52
2)Y —F—~ A (K
m (m + )kz_;m_k (K)

where 7)% is the observed autocorrelation at lag k given by

By = Zr k+1 (Et ~‘72) (w% k “‘72)
i, (& -a%)°

where &; is the observed return at time ¢ and 62 is the sample variance.

2.7.3 Volatility Clustering

Many financial time series and also the Black-Scholes option pricing model
make the assumption of constant volatility. Empirical evidence indicates
that volatility of financial instruments tends to be dynamic. Volatility lev-
els tend to alternate between periods of higher volatility and more tranquil
periods. This clustering together of volatility levels for a period of time is
called volatility clustering. Volatility clustering is due to the strong autocor-
relation of squared returns or absolute returns. The Box-Pierce Lagrange
multiplier test for the significance of first-order autocorrelation in squared
returns, éf, is

Z_tﬂ_l

TA4
t=2 &t

The Lagrange multiplier tests are chi-squared distributed with T' degrees of
freedom.

2.7.4 The Leverage Effect

Volatility tends to be higher in a falling market, than in a rising market.
Similarly volatility tends to be higher after a large negative return than
after a large positive return, for an individual stock. The reason for this is
that when a stock price falls, the leverage or debt/equity ratio increases. In
laymen’s terms, the part of the company’s assets “owned” by the creditors
increases, leaving less for the shareholders. This causes more uncertainty in
the stock price.

An asymmetric version of the Lagrange multiplier test is used to inves-
tigate the influence of the leverage effect, and asymmetric returns levels in
general

Zf 2at=2%t5t~1 égét—

Zt—z 5'?5%—
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where &; is the observed return at time ¢.
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