
Part I 


Background 


6 


 
 
 



Chapter 2 

Som.e Probability Essentials 

2.1 Introduction1 

In this chapter some of the essential background to probability theory is 
given. Although the background is basic, very few mathematicians, sta­
tisticians or probability theorists would be familiar with all the concepts 
presented. 

In section 2.2 the basic concepts concerning a probability space is briefly 
stated. Moments are discussed in section 2.3. 

Cumulative distribution functions and partial deIlsity functions are dig.. 
cussed in section 2.4. Some of the main theorems of this section is stated and 
proved. In section 2.5 the moments and other issues regarding the normal 
distribution is specified. 

A short detour is taken in section 2.6 where returns series are discussed. 
The section ends with section 2.7 where some important hypothesis tests 
are discussed. 

2.2 Probability Space 

2.2.1 Probability Space 

The triple (n, F, P) is called a probability space. The set n is a non-empty 
set, F {FthEN,t;?:O is filtration of a-algebras Ft defined on nand P is a 
probability measure on F. 

A function Zt : n ---+ R , on the probability space, is called a stochastic 
process. 

2.2.2 O'-algebra 


A family of subsets F of a set n is called a a-algebra if the following holds: 


1 For further discussions on probability theory and measure theoretical aspects see [31], 
[7J, [3J and [27]. [4], P3], [17], [26jand [32] are also useful. 
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8 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

1.0E:F 

2. If X E :F then n\X E :F 

00 
3. If (Xn) is a sequence of sets in n then U Xn E :F. 

. n=1 

2.2.3 Borel Sets in lR. 

The Borel sets (one thing) is the smallest O"-algebra generated by all the 
open sets in lIt 

2.2.4 Filtration 

:F = {.1'thEN,t?;o is a filtration of O"-algebras with the following properties 

1. .1'0 contains all null sets 

Property 2 is called right continuous. A filtration with these properties 
is said to satisfy the "usual conditions" . 

2.2.5 Measurability and Adaptedness 

Definition 2.2.1 A stochastic process, Zt : n --t lR, is said to be measurable 
with respect to a 0" -algebra:F if 

{Zt E B} E .1' 

for every Borel set B E B(lR). 

Definition 2.2.2 A stochastic process, Zt, is said to be adapted to a filtra­
tion .1' if Zt is .1't measurable for all t E lR. 

Remark 2.2.3 Throughout this dissertation only real-valued stochastic pro­
cesses defined on (n, .1', P) -will be considered, that -is X : n --t lR. 

Remark 2.2.4 A stochastic process at a specific time is often referred to as 
a random variable. 

Remark 2.2.5 Take note that a stochastic processjmndom ·variable ·is de­
fined in terms of a probability space. 

 
 
 



9 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

2.2.6 Almost everywhere 

Definition 2.2.6 Two functions, f and 9 are equal almost eveT'lJwhere 
(somet'imes called almost surely) if 

f{x)=g{x) 

for all ;1: ~ N E F where P (N) = O. Almost ever!!Whe1"e is abbreviated by 
a.e. 

Definition 2.2.7 A sequence of functions Un) converges to f almost every­
where if there exists a set N E F with P (N) = 0 such that f (x) = lim fn (x) 
for all x ~ N. 

2.3 Moments and Stationarity 

2.3.1 Expected Value 

Definition 2.3.1 A random variable X E n --+ JR is said to be integrable if 

in \X\dP < 00 

The family of integrable random variables are denoted by L1 (n, F, P) or in 
this dissertation L1 for short. 

Definition 2.3.2 For any X E L1 (n,F,p), 

E[X]:= kXdP 

is called the eJ,pected value of X. 

Remark 2.3.3 The expected value of a random variable from a symmetric 
distribution is often called the mean or average. 

Remark 2.3.4 For a probability space with density function f and inte­
grable Bo'rel function II. : JR --+ JR, 

00 

E[h{X)] = { hdPx = h{x)f{x)dx
JIR. 

1
-00 

Proof. See Brzezniak et al. [7]. • 

 
 
 



10 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

2.3.2 Conditional Expectation 

We can call the filtration F t C F, the u-algebra that contains all the 
information available to an investor at time t. A u-algebra can also be a 
condition in a conditional expectation. 

Definition 2.3.5 (0., F, P) . The conditional expectat-ion given a u-algeb-ra 
is; for an integrable random variable X and u - algebra <1> ~ F 

E [X I <1>] 

where E [X I <l>J : 0. -+ lR is unique P a.s. sat-isfying 

1. E [X I <1>J is <1> measurable 

2. IH E [X I <1>J dP fH XdP, for all H E <1>. 

Theorem 2.3.6 For X, Y E £1, a, b E lR and u algebra <It C F the 
conditional expectation has the follo-wing bas'tc properties (all equalities a.s.): 

1. E[aX +bY I <1>] aE[X I <1>] +bE[Y I <1>] 

2. E [E [X !<1>11 w] = [X I W] where <I> C W is also a u - algeb1'a 

3. E [X !<ItJ = X if X is <1> measurable 

4. 	 E [X I <1>] = E [Xl if X ,is independent of <I> 


Proof. See Appendix B in Oksendal [27].• 


2.3.3 	 Variance, Conditional Variance and Standard Devia­
tion 

Definition 2.3.7 (0., F, P). A random variable X E 0. -+ lR -is said to be 
square integrable if 

in X 2dP<oo 

The family of square integrable random variables are denoted by £2 (0., F, P) 
or £2 for short. 

Definition 2.3.8 (0., F, P). The variance of a square integrable -random 
variable X is defined as 

Var[XJ E [(X E [X])2] 

E [X2] (E [X])2 

LX 2dP+ (L XdP)2 > 0 

 
 
 



11 CHAPTER 2. SOME PROBABILITY ESSENTIALS 

Definition 2.3.9 (Q,:F, P). The standard deviation of a square integrable 
random variable X is defined as 

Std[X] = v'Var[X] 

The conditional variance and its properties follows directly from that of 
the conditional expected value: 

Definition 2.3.10 (Q,:F, P) . Fo?' any square integrable random variable X, 
the conditional expected 'value of X given a (J' - algebra H ~ :F, is 

VariX IH] - E [(X E[X IHJ)21 H] 
- E [X2 2XE[X IH] + {E[X IH])2 IH] a.s. P 

- E [X21 H] - {E(X IH])2 a.s. P 

Theorem 2.3.11 (Q,:F, P) . For a square integrable random 'variable Z and 
a, c E R, the conditional variance oj K = aX+c, gi'uen a (J' -algeb-ra H ~ :F, 
is 

Var{K IH) =a2Var(X IH) a.s. P 

Proof. Equalities almost surely 

Var(K IH] 

_ E [{K)21 H] - (E[K IH])2 

- E[a2X2 + 2acX +c2 
1 H] (E(aX I H] + c)2 

- a2E[X21 H] + 2acE [X IH] + c? - a2 (E[X IH])2 
2-2ac(E[X IH]) - c


_ a2 E[X2 IH]- a2(E(X IH])2 


- a2Var(X IH) . 


• 
Theorem 2.3.12 (Q,:F, P) .For t'wo square integrable random variable X 
and Y and a, b, c E R, the conditional variance of Z aX + bY + c 

Var(Z IH) = a2Var{X IH)+b2Var(Y IH)+2abCov{X, Y IH) a.s. P 

Proof. From theorem f.3.11. Equalities almost surely P 
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Va'r [aX + bY + c IH] 


- Var[aX +bY IH] 


E [{aX +by)21 H] - {E[aX +bY IH])2 

a2E [X21 H] +2abE[XY IH] +b2E [y21 H] 

- {aE[X IH] + bE[Y IH])2 

a2E [X21 H] + 2abE[XY IH] + b2E [y21 H] - a2(E[X IHl)2 

-2abE[X IH]E[Y IH]-b2 (E[Y IH])2 

a2Var(X IH) +b2Var{Y IH) 

+2ab(E[XY IH]- E[X IH]E[Y IH]) 

In the next section covariances will be properly defined, for now assume 

CO'v{X, Y IH) 	= E[XY IH]- E[X IH] E[Y I H]. 

Thus 

Var [aX + bY + c I H] 

a2Var(X IH) +b2Var{Y IH) + 2abCov(X, Y IH) 

• 
2.3.4 Covariance and Autocovariance 

Definition 2.3.13 (O, F, P). For two square integmble mndom 'variables 
X and Y in our probabil'ity space, the covariance between X and Y is 

cov [X, Y] 	 - E [(X - E [Xl) (Y - E [V])] 

= E[XY]- E[X]E[Y] 


Definition 2.3.14 (O, F, P). Fo'r a sqUa1'e integmble stochastic process 
(Xt)tEN' adapted to F, the covariance between X t and X t- k for any t, kEN 
is 

cov tXt, Xt-k] 	 = E [(Xt - E tXt]) {Xt-k - E [Xt-kDl 


= E [XtXt- k] - E [Xt! E [Xt- k ] 


The covariance between elements of the same stochastic process is called the 
autocovariance. 

The conditional covariance and autocovariance can be defined in a sim­
ilar fashion as the conditional variance, bearing in mind that conditional 
covariances are random variables. 
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2.3.5 Correlation and Autocorrelation 

Definition 2.3.15 (n,:F, P). For two squam integrable random variables 
X 	 and Y the cormlation between X and Y is 

cov[X, Y]
cor [X, Y] 

vvar [Xl var [Y] 

Definition 2.3.16 (O,:F, P) . For a square integrable stochastic process 
(Xt)tEN' adapted to:F, the cormlation between X t and Xt-k for any t, kEN 
1.8 

The correlation between elements of the same stochastic process is called 
the autocorrelation. 

2.3.6 Lag 

Definition 2.3.17 Consider a stochastic process, say (Xt)tEN' At any time 
step t a lag of size k is an integer that represents the process at time t k, 
Xt-k. 

2.3.7 Higher Moments 

Definition 2.3.18 (O,:F, P). The rth moment of a random tlariable X 
(about its mean) is 

E[(X -E[X]n 

The first moment of a random variable is defined as its mean. The 
second moment of a random variable is its variance. The second moments 
of a stochastic process also include the autocovariances. The third moment 
of a random variable is skewness and the fourth is kurtotsis. For a stochastic 
process (Xt)tEN the set of rth moments can be defined as 

2.3.8 Stationarity 

Definition 2.3.19 A stochastic process is called stationary if all of its mo­
ments are constants. 

Definition 2.3.20 A stochastic process is called weakly stationary if its first 
and second moments are constant. This means that its mean is constant and 
for every lag k and time t the CO'v [Xt, Xt-k] is a constant. 
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2.4 	 Cumulative Distribution Function and Proba­
bility Density Function 

Definition 2.4.1 The (cumulat'i've) distribut'ion funct'ion (cdf) of a random 
variable X : n --7 lR is defined as 

F(x) = 	P{X ~ x} 

Theorem 2.4.2 The cdf F of a random variable X : n --7 R has the fol­
lo'wing properties 

1. 	 0 ~ F ~ 1 

2. lim F(x)=Oand UmF(x)=1
x--+-oo X-+OO 

3. 	 F is right-cont'inuous, F (x) = lllnxn _ x F (:r.n ) for a decreasing se­
quence Xn 

4. 	 F is 'increasing. 

Proof. See Brzezniak et al. [7j. • 

Theorem 2.4.3 If 9 : R --7 R is integrable then 

E [g (x)] = i: 9 (x) dF (x) 

Proof. A result of exercise 1.7 in B1'zezniak et al. [7j. • 

Theorem 2.4.4 A measurable function f (x) ~ 0 on R such that for any 
Borel measurable set B 

P {X E B} = is f (y) dy 

is called the (probability) density funct'ion (pdf) of X. The pdf can in par­
ticular also be written in terms of the cdf of X, F 

F(x)= i~f(Y)dY 

Proof. See Brzezn'iak et al. [7j. • 

Theorem 2.4.5 If X has a continuous pdf f then 

d 
dxF(x)=f(x) 


Proof. A result from the fundamental theorem of calculus.• 
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2.4.1 Joint Continuous Distributions 

The joint distribution of a k-dimensional random variable, 

is a measure Px on ~n such that for any Borel set, B E ~n 

Px (B) = P {X E B} 

If the random variables of X are independently distributed then 

k 

Px (B) = IIP {Xi E Bi } 

i=l 

where 

Definition 2.4.6 The joint probabilUy density Junct'ion (joint pdJ) oJ a k­
dimensional random variable, 

is a Borel Junction 

J (Xl, X2, •• " Xk) : ~n --i- ~ 

such that 

Px (B) =1J (tt, t2, .." tk) dtl ... dtk (2.1) 

Definition 2.4.7 The joint cumulative distribut'ion function (joint cdJ) oJ 
a k-dimensional random variable, 

'is 

F (Xl, ... , XI.) = P [Xl ~ Xl, ... , XI. ~ XI.] 

If the random variables of X are independently distributed then 

and 

which follows directly from the case of independence of Px . 
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Theorem 2.4.8 The joint cdf of a k-dimensional random 'variable X can 
be written in term.s of the joint pdf of as follows 

(2.2) 

Proof. From definition 2.4.7 and the fact that (-00, Xi} is a Borel set 
for every applicable -i it is clear that the joint cdf of X is a special case of 
the joint probability of X. Equation 2.2 follows directly from 2.1. • 

Theorem 2.4.9 If X, Y E IR are independent random 'variables and 9 (x) 
and h (y) are functions then 

E [g (X) h (Y)] = E [g (X)] E [h (Y)] 

and 

cov [g (X) , h (Y)] = 0 

Proof. 	With a joint pdf f (x, y) 

E[g(X)h(Y)] f:f:g(X)h(Y)f(X,Y) dxdy 

- !:!:g (x) h(-y) fdx) h (y) dxdy 

due to independence. The cdfs of X and Y are It and h respectively, then 

E[g(X)h(Y)] - f: h(Y)h(Y) !:g(X) It (x) dxdy

1:g(x) it (x) dx1:h (y) h (y) dy 

E [g (X)] E [h (Y)] 

The covariance can be expressed as 

cov [g (X), h(Y)] 
E [g (X) h (Y)] - E [g (X)] E [h (Y)] 


- 0 


• 
2.5 	 The Normal Distribution and its Moment Gen­

erating Function 

2.5.1 The Normal Distribution 

The normal distribution, the most frequently used statistical distribution, 
was first published by Abraham de Moivre (1733). 
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A normal random variable X E R, with mean J.L E R and variance 
a2 E R+ is denoted by 

The probability density function (pdf) of the normal distribution is 

f (x; Jl, u') = ;';u exp [-Hx ~ " )'] 

Another way to define the pdf in terms of the probability space (Q,:F, P) is 
as follows 

The cumulative distribution function (cdf) of the normal distribution is 
given by 

P{X ~ z} 

hX91 ;';u exp H(x ~ p)'] dx 
L ;';U exp [-Hx ~prj dx 

The standard nonnal distribution, frequently used in this dissertation 
is defined as the normal distribution with zero mean and a variance of 
one, N (0, 1). The standard normal distribution's pdf is 

f(x;0,1) = vk exp (_ x:) 

and cdf is 

j z 1 (x2)
F(x;0,1) = --exp -~ dx. 
-00 v'21r 2 

2.5.2 Moments of the Normal Distribution 

Consider a normally distributed random variable X rv N (J.L, ( 2 ) with prob­
ability density function 

then the random variable 

y = X - J.L rv N (0,1) 
a 
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Definition 2.5.1 The moment generating function of X is defined as 

Theorem 2.5.2 The moment generating function of X rv N (It, 0-2 ) is 

Mx It) = exp (I't + (~)2) 

Proof. 

• 
Theorem 2.5.3 Moments about the mean of X rv N (It, 0-2 ). If r is even 
then 

(2r)!0-2r
E[(X - Itt] 

r!2T ' 

if r is odd then 

E[(X - Itn 0 
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Proof. 	The 

Mx-p 	 = exp (~}2) 
(~)n 

- L 
00 

n! 
n""O 

00 (12nt2n 

- L: 	2'ln! 
n=O 

00 a2n t2n (2n!) 


- ~ 2nn! (2n!) 


00 (12n (2n!) t2n 


~ 2nn! (2n!) 


The second line is due to the Maclaurin series expansion for e. Note that 
only positive integers are contained in the last line Theorem 2.5.1 in [2] 
states that 

Mv (t) 

for a random variable V. Thus 

E [(X J-L)"] = 0 

if r is odd and 

E [(X - J-Lt] 
zr/2 (r/2)! 

if r is even. _ 
The following characteristics of random variable X '" N (J-L, (12) follows 

from theorem 2.5.3: 

1. 	The skewness of X is 


E [(X J-L)3 ] 0 


2. 	 The kurtosis of X is 


(144! 

E[(X 	 J-L)4] 22 (2)! 


3/74 


and thus if (12 1 


E [(X - J-L)4] 3 
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2.5.3 	 Chi-square Distribution 

Definition 2.5.4 If random variable Y is chi-square distrib'uted with v de­
grees of freedom then 

'where the chi-sq'uare di.strib~tted 'is a special case of the gamma distrib~ttion 

Theorem 2.5.5 A random variable Y '" X2 (v) has the following charac­
teristics 

1. Probability density function 

where r 	is the gamma function 

100 

r (/'b) = tk-1e-tdt 

for all r;, > O. 

2. 	 Moment generating function 


My (t) = (1 - 2t)-v/2 


3. Moments about the mean 

4. 	 E:l:pected value 


E[Y] =v 


5. Variance 

Va'r[YJ = 2v 

Proof. Results follow from the gamma distribution. See Bain [2/ • 
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Theorem 2.5.6 If 

then 

Proof. The moment genemUng fund-ion of Z2 

E [etZ2
AIZ 2 - ]

1:~ exp (tz
2)exp ( _~z2) dz 

00 _1_ exp (tz2- !z2) dz 
-00 ..;21r 2 

00 

1
= 1 1 y"['=-2t exp (z2 (1 - 2t)) dz 

V1 - 2t ..j2ii 2-00 

1 

which is the moment genemting function of the chi-square distribution. • 

Definition 2.5.7 If Z2 rv X2(1) then 

is noncentml chi-square distributed with 1 degree of freedom and non-cen­
tmlity pammeter 'x. 

Theorem 2.5.8 The expected value of a noncentml chi-square distributed 
random variable is 

E [(Z - ,X)2] = 1 +,X2 

where Z2 rv X2 (1). 

Proof. 

E [(Z - ,X)2] 	 _ E [Z2 - 2,XZ + ,x2] 


- E[z2]-2'xE[Zl+,X2 

1 +,X2 

since E [Zl = 0 because Z rv N (0,1).• 

\ \ lo 54 2. 50 2. 

b' &9 C?u 3 W \ 
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Theorem 2.5.9 The expected value of a noncentral chi-square distributed 
random. 11ariable is 

E [(Z - A)4] = 3 + 6A2 + A4 

'where z2 tV X2 (1). 

Proof. 

E[(Z-A)4] _ E[(Z2_2AZ+A2)2] 

_ E [Z4 - 4Z3A+6Z2A2 _ 4A3Z + A4] 

_ E [Z4] - 4AE rZ3] +6A2E [Z2] - 4A3E [Z} + A4 

3+6A2+A4 

This is done by remembering that 

Z tV N(O, 1) 

thus the expected value of Z is 

E[Z] 	 0 

the skewness is 

and the kurtosis is 

• 
2.6 	 The Return Series and Lognormal Distribu­

tion 

2.6.1 Returns Series 

The financial value of a company or fund is represented by its (stock) price. 
The stock price has a clear, time dependent trend. It is hard to model se­
ries with trends, at least in an objective, scientific sense. To remove this 
trend, the financial time series is transformed into a series with "manage­
able" mean, a retums series. This is done with difference equations. 

It will be proved that the returns series still has the same variance as the 
original series. The returns series is of great importance in risk management 
and derivatives pricing. 
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Figure 2.1: The stock price of Sanlam from 1999/ 01 / 05 to 2002/04/19. 
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Figure 2.2: The returns series of Sanlam from 1999/ 01/ 05 to 2002/ 04/19. 
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2.6.2 The Arithmetic Returns Series 

Definition 2.6.1 The a'rithmetic returns series, faT process (St) is defined 
as 

St - St-l
Tt = 

St-l 

2.6.3 The Geometric Returns Series 

The geometric returns series, for process (St) is defined as 

Tt lnSt - lnSt-l 

- In(~)
St-l 

The relationship between the geometric and arithmetic series, by the Taylor 
series expansion, are as follows: 

- In (~-1+1)
St-l 

In (St - St-l + 1)
St-l 

St ­ St-l 
~ 

St-l 

if I8t-8t -1 I< 1. 
8t-1 

The geometric returns series will be considered in this dissertation. 

Theorem 2.6.2 If we assume that a returns se'ries is normally distributed 
then the log of the stock process is also normal, and trice veTsa. 

Proof. 

In (~~) + In (~~) + In (~~) + ..,+ In (S~~l) - In (~~) 
lnSt -lnSo 

The sum of normally distributed random variables are also normal and we 
assume that So is known. • 

2.6.4 Lognormal Distribution 

(n, F, P). A random variable X E R, with mean J.L and variance (12 is said 
to be lognormally distributed if In(X) is normally distributed. 

It's often observed that stock prices are lognormally distributed. In 
chapter 5.4.1 we deduce, given the assumed process 5.10, that a stock price 
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St can be defined in terms of an initial stock price So and Brownian motion 
vVt , 

St = So exp ( (IL - ~(12) t + (1Wt ) (2.3) 

Taking the logarithm on both sides of equation 2.3 yields 

InSt rv N (In So + (1-£- ~(12) t,(12t ) 

The return on stock St is defined as In (l~l) which clearly has the distri­

bution 

In ~ rv N (IL - .!.(12, (12)
St-l 2 

It is possible to test with the ,Jarque-Bera test for normality whether the 
return is in reality normally distributed. 

2.7 Hypothesis Testing2 

Hypothesis tests are done to verify whether the properties of an observed se­

ries, say {et}tEN' are consistent with assumed properties under a model The 
properties that need to be tested include tests for normality, autocorrelation 
and heteroscedasticity. 

The formal procedure for conducting a hypothesis test involves a state­
ment of the null hypothesis and an alternative hypothesis. The sample 
estimate OIl which the decision to reject or not reject the null hypothesis 
comes from the sample space. The Neyman-Pearsoll methodology [20] in­
volves partitioning the sample space into two regions. If the sample estimate 
falls in the critical region, the null hypothesis is rejeeted. If it falls in the 
acceptance region, it's not. 

2.7.1 .Jarque-Bera Test for Normality 

The Jarque-Bera tests whether observations are not likely to have come from 
the normal distribution. 

Define for n observations the following 

(2.4) 


(2.5) 


2Suggested reading; [1], [2], [18] and [24J. 
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1~:!4 
- L-Ct (2.6) 
n t=1 

In equations 2.4 to 2.6 are the second, third and fourth moments of €t 
respectively. 

The skewness is defined as 

itaskewne.'Js = 8 = -:::"'2 
(J' 

and the kurtosis as 

. . ft4 
kurto.'J'ts = k = ~ 2 

(J' 

The Jarque-Bera statistic is defined as 

JB = 

The null hypothesis is 

Ho : s 0 and k = 3 

against the alternative 

HI ; -reject Ho 

Remark 2.7.1 Many text books and computer packages calculates the ad­
justed kurtosis .• that is the k 3. 

2.7.2 Autocorrelation 

Durbin-Watson 

The most famous test for autocorrelation i"3 the Durbin-Watson test 

No exact distribution for this test i"3 available. 
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Ljung-Box 

For a series with m observations the Ljung-Box statistic over K lags is 

K -2 

m (m + 2) L 11:~ k '" Xl (K) 
k=l 

where p~ is the observed autocorrelation at lag k given by 

"t (~2 -2) (~2 -2) _ L."r=k+l Ct - (J' Et-k - (J' 

Pk = "t (202 _ -2)2
L."r=1 "t (J' 

where Et is the observed return at time t and 0-2 is the sample variance. 

2.7.3 Volatility Clustering 

Many financial time series and also the Black-Scholes option pricing model 
make the assumption of constant volatility. Empirical evidence indicates 
that volatility of financial instruments tends to be dynamic. Volatility lev­
els tend to alternate between periods of higher volatility and more tranquil 
periods. This clustering together of volatility levels for a period of time is 
called volatility clustering. Volatility clustering is due to the strong autocor­
relation of squared returns or absolute returns. The Box-Pierce Lagrange 
multiplier test for the significance of first-order autocorrelation in squared 

t ~2 . re urns, Ct, IS 

"T ~2~2 
L."t=2 C t C t-l 


"T ~4 

L."t=2 Ct 

The Lagrange mUltiplier tests are chi-squared distributed with T degrees of 
freedom. 

2.7.4 The Leverage Effect 

Volatility tends to be higher in a falling market, than in a rising market. 
Similarly volatility tends to be higher after a large negative return than 
after a large positive return, for an individual stock. The reason for this is 
that when a stock price falls, the leverage or debt/equity ratio increases. In 
laymen's terms, the part of. the company's assets "owned" by the creditors 
increases, leaving less for the shareholders. This causes more uncertainty in 
the stock price. 

An asymmetric version of the Lagrange multiplier test is used to inve&­
tigate the influence of the leverage effect, and asymmetric returns levels in 
general 

"T ~2~ 
L."t=2 Ct ct-l 
"T ~2~2 
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where et is the observed return at time t. 

 
 
 




