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1 Introduction 

In [4], the authors propose a portfolio optimization model under concave 
transaction costs employing" absolute deviation" a.<; a mea.<;ure of risk as out­
lined in [3]. It is further shown in [3], by applying the model to historical data 
of NIKKEI 225, that the "mean-absolute deviation model" (MAD) removes 
most of the difficulties a.<;sociated with H. Markowitz' mean-variance (MV) 
model which leads to tedious quadratic programming. The MAD model leads 
to a linear programming instead of a quadratic one, thus enabling us to solve 
a large-scale programme of more than 1 000 stocks at a fa.<;ter and efficient 
way. 

The standard Markowitz MV model [6] ba.<;es itself upon the a.<;sumptions 
that: (1) the distribution of the rate of return is multivariate normal, or 
(2) the utility of the investor is a quadratic function of the rate of return; 
a.<;snmptions which do not necessarily hold in practice. 

Investors prefer a positively skewed distribution to a negative one, if the 
expected value and the variance are the same. Moreover, some investors 
prefer a distribution with larger skewness at the expense of larger variance, 
meaning to say utility functions of investors are not quadratic. In the late 
50's, Samuelson [10] suggested the importance of the third moment in port­
folio optimization. As recent a.<; 1992, Maghrebi [13] tested the skewness 
preference and persistence hypothesis ba.<;ed on the extended CAPM which 
incorporates the effect of the third moment of the rate of return using the 
data of Tokyo Stock Exchange. He reported that investors have a preference 
for positive skewness in their portfolios and that it is not rejected that pos­
itively skewed assets in one period are likely to remain positively skewed in 
the next period. 

In 1995 [2] the authors proposed a mean-variance-skewness (MVS) port­
folio optimization model a.<; a natural extension of the cla.<;sical MV model to 
the situation where the third order term is not negligible. Earlier on in 1993 
[1] the authors had proposed the mean-absolute-deviation-skewness (MADS) 
model and demonstrated that this model generates a portfolio with a large 
third moment very quickly. 
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It is the intention of this project to extend further the MADS model to 
take into consideration transaction costs. We will a..')sume under MADS that 
the amount of investment is below the critical point D:j where the transac­
tions cost function is a wen specified concave function. We also assume that 
short-selling (borrowing) is not allowed. We will derive a fairly large-scale 
non-linearly constrained minimization problem using special techniques. For­
tunately, due to ongoing advances in programming softwares, we are now able 
to solve some large-scale programming problems within a short space of time, 
and it is our hope that the system proposed in [1] can aL')o be adjusted to 
solve our problem. 
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2 Mean Variance Portfolio Theory 

As a first example of a portfolio problem, we consider standard mean-variance 
optimization. Historically, this was one of the earliest problems considered, 
and it is important because mean-variance analysis provides a basis for the 
derivation of the equilibrium model known variously a..<; the capital a..<;set 
pricing model (CAPM), Sharpe-Lintner model, Black model, and the two­
factor model. Mean-variance analysis is fully consistent with expected utility 
maximization but only under special circumstances a..<; will be seen later. 

2.1 Describing the probability distributions 

In the standard mean-variance portfolio problem, the treatment of risk is 
limiting in that it takes the variance (or equivalently the standard deviation) 
of portfolio returns a..<; an adequate risk mea..<;ure. The question we pose is 
"how else can one best describe the uncertainty of portfolio rates of return"? 
In principle, one could list all possible outcomes for the portfolio over a 
given period. If each outcome results in a payoff such a..<; a Rl profit or rate 
of return, then this payoff value is the" random variable" in question. A list 
a..<;signing a probability to all possible values of the random variable is called 
the" probability distribution" of the random variable. 

The reward for holding a portfolio is typically mea..<;ured by the expected 
rate of return across all possible scenarios (next section). Actually, the ex­
pected value or mean is not the only candidate for the central value of a 
probability distribution. Other candidates are the median and the mode. 

The median is defined a..<; the outcome value that exceeds the outcome 
value for half the population and is exceeded by the other half. Wherea..<; the 
expected rate of return is a weighted average of the outcomes, the weights 
being the probabilities, the median is ba..<;ed on the rank order of the outcomes 
and takes into account only the order of the outcome values rather than the 
values themselves.. The median differs significantly from the mean in ca..<;es 
where the expected value is dominated by extreme values. An example is the 
income (or wealth) distribution in a population. A relatively small number 
of households command a disproportionate share of total income (wealth). 
The mean income is "pulled up" by these extreme values which makes it non­
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representative. The median is free of this effect, since it equals the income 
level that is exceeded by half the population, regardless of by how much. 

Finally, a third candidate for the measure of central value is the mode, 
which is the most likely value of the distribution or the outcome with the 
highest probability. However, the expected value is by far the most widely 
used measure of central or average tendency. 

Lets turn to the characterization of the risk implied by the nature of the 
probability distribution of returns. The idea is to describe the likelihood and 
magnitude of "surprises" (deviations from the mean) with as small a set of 
statistics as is needed for accuracy. The easiest way to accomplish this is to 
answer a set of questions in order of their infonnational value and to stop 
at the point where additional questions would not affect our notion of the 
risk-return trade-off. 

The first question is "what is a typical deviation from the expected 
value?" A natural answer would be, "The expected deviation from the ex­
pected value is -." Unfortunately this answer is meaningless because it is 
necessarily zero: positive deviations from the mean are offset exactly by 
negative deviations. 

There are two ways of getting around this problem. The first is to use the 
expected "squared deviation" from the mean, which is simply the variance 
of the probability distribution. The second is to use the expected" absolute" 
value of the deviation. This is known a'> MAD (mean-absolute-deviation) 
which will be seen later and fonns the backbone of this present work. 
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2.2 Expected return of a portfolio 

We assume the standard assumption that the cla..<;s of potentially optimal 
portfolios are those with greatest expected return for a given level of variance, 
and, simultaneously, the smallest variance for a given expected return, and 
no short-selling. The return on a portfolio of assets is a weighted average of 
the return on the individual assets, the weight applied to each return being 
a fraction of the portfolio invested in that a..<;..<;et. If Xi is the amount invested 
in the ith asset, and Rp the return on the portfolio, we have: 

(1) 

where ~ is the return on the a.<;..<;et i and i = 1, ... , n 

The expected return therefore becomes a weighted average of the expected 
returns on the individual a.<;sets: 

n 

i=l 

(2) 

where r'i = E(~). 

2.3 Variance of a portfolio 

The variance of a portfolio is given by: 

n n n 

= L x;O"t + L L XiXjO"ij 
i=l i=1 j=l 

n n 

L L O"ijXiXj (3) 
i=l j=l 
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where E~=l x;a; captures the variance tenllS and the remainder captures 
the covariance terms. 

Let Mo be the investor's total fund and p be the minimal rate of return 
he requires. His objective is therefore to minimize risk while getting back at 
least his minimal expected return. Thus Markowitz employed the standard 
deviation a.o;; a measure of risk to solve the cla.o;;sical i\.TV problem eWe shall 
consider n a.o;;sets right through): 

n n 

lYfinimize E[C2::: Rjxj - E[.E Rj Xj])2] 
j=1 j=1 

Subject to E[.E Rjxj] ~ pMo 
n 

.EXj = Mo 
j=1 

X· > 0 (-1)J ­

Since aij cov[~, Rj], our problem reduces to: 

n n 

Minimize .E .E aijXiXj 
i=1 j=1 

n 

Subject to .ErjXj ~ pMo (.3 ) 
j=1 

n 

.E Xj = lYl0 
j=1 

X· > 0j ­

Among the factors that discredited the application of Markowitz' model 
wa.o;; the computational burden a.o;;sociated with it. For a portfolio of only 
n stocks, we need to calculate n(n - 1) /2 standard deviations. Thus for 
S&P500 an amount of 124 750 is required. 
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3 Review of large-scale portfolio optimization 

From now onwards we normalize our problem by considering the xi's as 
fractions of the total fund, rather than the amount, corresponding to each 
asset j. Thus we want to solve: 

n n 

Minimize LLaijXiXj 
i=l j=l 

n 

Subject to Lrjxj 2': p (6) 
i=l 

n 

LXj = 1 
j=l 

Xj 2': 0 

If n is small, we can use many standard algorithms to solve the above. 
When n is over a few thousands, the problem becomes more complex mainly 
due to the fact that the aij'S are usually non-zero for all i, j and that the 
number of arithmetic operations to solve the programme depends on the 
number of non-zero coefficients contained in the model as well as the number 
of variables. 

Perold and Markowitz obtained an alternative representation of a quadratic 
programme by using a multi-factor model. Assume: 

~ ai + !3il FI + ... + !3iK F K + €j, i = 1, ... , n (7) 

where Fk is the k-th random factor; ai, !3ij are constants, €i is a random 
disturbance with mean zero and COV[Fk' til = 0, k = 1, ... )K 

Theorem 3.1 Let 0/' = E[€i2
], frs = cov[Fr, Fs], then the above relation 

leads to the following expression: 

nn n nnKK 

L L aijXiXj = L a?xi
2 + L L L L frs!3ir!3js Xi Xj (8) 

i=Ij=I i=l i=lj=lr=ls=l 
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Proof 
n n n 

LLO"ijXiXj L[O"U X i X I + O"i2 X i X 2 + ... + O"inXiXn] 
i=1 j=1 i=1 

= 	 (0"12X12 + 0"12XIX2 + ... O"lnXIXn) + 

(0"21X2Xl + 0"22 X2 2 + ... 0"2nX 2Xn) 

+ ... + (O"nl X n X I + O"n2 X n X 2 + ... + O"n2Xn2) 
2 2 2 2 2 2)( 0"1 Xl + 0"2 X2 + ... + O"n Xn + 


[0"12 X I X 2 + 0"13 X I X3 + .. . 

+O"ln X I Xn + 0"21X2Xl + ... 0"2n X 2Xn + 0"31 X3 X I + ... 

+ ... + O"n(n-l)Xn Xn -l] 

n n n K K 

LO"i2Xi 
2 + L L L Lcov[FTl F s ](3ir(3js Xi X j 

i=l i=1 j=1 r",,1 8=1 

n 	 n n K K 
2X= 	 LO"i i 

2 + L L L L !rs(3ir(3js Xi X j_ (9) 
i=1 i=lj=lr=ls=1 

If we let Yk = I:f=1 (3jkXh k = 1, ... , K, our problem reduces to: 

n K K 

]I.!inimize L O"i
2X

i
2 + L L !rsYrYs 

i=1 r=ls=1 
n 

Subject to L T"jXj :2: P 
j=1 

n 

L(3jkX j - Yk = 0 (10) 
j=1 

n 

LXj= 1 
j=1 

Xj :2: 0 
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Because K < < n, this programme can be efficiently solved by using, 
for example, the sparse matrix techniques developed by Pang and Perold. 
Taking into account transaction costs cj(Xj) we get the programme: 

n K K 
Minimize 	 L O/Xi

2 + L L frsY1'Ys 
i=l 1'=18=1 

n 

Subject to 	 L(rjxj - Cj(Xj)) ~ P 
j=l 

n 

L !3jkX j Yk 	= 0 (11) 
j=l 

n 

LXj= 1 
j=l 

Xj ~ 0 
n 

LaijXj ~ bi 
j=l 

l,<x<u'J - J J 

(12) 

where the la..<;t two correspond to institutional constraints. The model ap­
pears nice from a theoretical viewpoint, but it ha..<; not found the doors open 
in the practitioners' homes. 

3.1 Problems with Markowitz' model 

Markowitz' model itself wa..<; not used extensively by practitioners as a tool 
for optimizing a large-scale portfolio. According to one fund manager of a 
leading security company in Japan, the problems containing more than 200 
variables are rarely solved in practice because of the following: 

Computational burden. To build a model, we have to calculate n(n 1)/2 
constants (Jij'S through historical data or through some future projection. We 
would not be surprised if practitioners felt that this computation is quite a 
tedious task. Furthermore, solving a large-scale dense quadratic program­
ming problem like the one just seen where almost all (Jij'S are non-zero is 
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very difficult if n is over, say 500. This computational difficulty can be sub­
stantially alleviated through the Ilse of the factor (index) models (Sharpe 
1963, Perold 1984) and sparse matrix techniques (Pang 1980, Perold 1984), 
but it is still not ea."ly to obtain an optimal solution of a large-scale quadratic 
programming problem on a real-time ba."lis. 

Inv8.'itor perception. Many practitioners were not fully convinced by the 
validity of the standard deviation a."l a measure of risk. They were certainly 
unhappy to have small or negative profit, bllt a."l we know, they feel happy 
to have larger profits. This means that the investors' perception against risk 
is not asymmetric around the mean. Unfortunately, recent studies on stock 
prices in Tokyo Stock Market revealed that most ~ 's are not nonnally nor 
symmetrically distributed. Thus we need to consider the third moment of 
the distribution in addition to the first and the second. So we can view 
Markowitz' model as a great motivation to the main ta."lk we wish to solve. 

Transaction/Management cost and cut-off effect. An optimal solution x* 
of a large-scale quadratic programming problem seen in the previous section 
usually contains many non-zero elements. In fact at lea."lt 100-200 compo­
nents of the solution are expected to be positive when n is over 1000. This 
means that an investor ha."l to purcha."le many different stocks, most of which 
are just a fraction of a percent of the total fund. This is very inconvinient in 
practice since we have to pay significant amount of transaction costs to buy 
many different stocks by a small amount. On the other hand we may not be 
able to purcha."le small amounts of stock below minimum transaction units. 
Thus we have to round the numbers to the integer multiples of this mini­
mal unit or else we have to solve an integer quadratic programming problem 
which is intractable when n is larger than 20, for example.Thus we are forced 
to eliminate stocks with smaller weight to get around the difficulty. But then 
this cut-off process distorts the portfolio to an extent that the resulting stan­
dard deviation is considerably larger than the one obtained through an exact 
modeL In summary, even though Perold's "Optimizer" is widely used by 
practitioners to solve problems of the type above when Cj (Xj) = 0, 
(1) we have to introduce a."l many a."l one hundred factors to obtain a good 
statistical fitting, making the process time consuming and tedious. It has 
been reported that it takes several hours to solve the above programme for 
n bigger than a few thousands. 
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(2) it contains n quadratic terms, making it difficult to solve for n bigger 
than a few thousands, at lea.<;t until recently. 
(3) the optimal solution usually contains many positive x variables which 
then requires us to spend time eliminating a portion of variables to organize 
a manageable size of assets. 
(4) many investors were not convinced of the validity of the quadratic risk 
function. 

In [15], the author proposed an approximation scheme which can partic­
ularly take care of the transaction costs and the constraints a.<;sociated with 
minimal transaction units. Also, he demonstrated that this scheme is very 
effective for the model consisting of up to 500 stocks. In brief, large-scale 
portfolio optimization using Markowitz' model has been considered imprac­
tical not only because of the reasons above but also because of the com­
plications inherent in the implementation of the solution. To address this 
problem of large-scale optimization, the absolute deviation model ha.<; been 
recently proposed as a substitute to the standard deviation, a.<; a mea.<;ure of 
risk. This is the objective of the next section. 
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4 Mean absolute deviation model 

The purpose of this section is to introduce a portfolio optimization model 
L1 or better known as MAD, that removes most of the difficulties associated 
with the cla..'isical Harry Markowitz' modeL 

4.1 Compound L1 risk function 

Let 

n n n n 

Wa (X1, ... , xn) = E[I L Rjxj -E[L RjXjll-l aE[I L Rjxj-E[L Rjxjll+l
j=1 j=1 j=1 j=1 

(13) 
where a is a positive parameter representing the degree of risk aversion of 
an investor and 

(14) 

(15) 

See corresponding graphs on next page. 
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Table of graphs. 

Figure 4.1 a :The graph oflH,. 

Figure 4.1b. The graph ofl~! 

... 
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Theorem 4.1 If (R 1, ••• , Rn) are multi-variate normally distributed with 
mean (J.Ll, ... ,J.Ln) and variance-covariance matrix E ((J'ij) then 

(16) 

Proof. Perold shows that the random variable Y = E'l=l Rjxj is normally 
distributed with 

n n n 

(J.L, (J'2) =CE J.LjXj, I: I: (J'ijXiXj) (17) 
j=l i=lj=l 

Therefore 

n n n 

W",(Xl, ... ,Xn ) = E[II:R;;Xj-E[I:Rjxj]I-] E[I: RjXjji+l 
j=l j=l j=l j=l 

= E[lY E[Yll - aE['Y - E[Yll+] 

= 1/J27r(J'2Lf~oo u exp( - 2:2 )du - a J;" u exp( - t2 )du] 

=(J'(1 - a:)/(27r) 1/2 • 


which shows that minimizing variance is the same 8.0<; minimizing w'" if 
a < 1 and (R1 , ••• , Rn) are multi-variate and normally distributed. 

Our next step is to try and represent w'" using historical data from some 
future projection. We shall 8.o<;sume also that the expected value of the ran­
dom variable can be approximated by the average derived from these data. 

Let rjt be the realization of random variable Rj during time period t 
1, ... ,T. In particular let 

r·J - E[Rj ] 

1 T 
- (18)TI:Tjt 

t=l 
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Then 
n 

r'(x1'" ., Xn) = ELL ~x/ 
j=1 

n 

= I:TjXj (19) 
j=1 

and 

Wa(Xb ... ,Xn) = E[I I:RjXj E[I: RjXjll - aE[1 I:RjXj - E[I: RjXd+! 

= E[I I:RjXj - I:E[Rj]Xjl - aE[1 I:RjXj - I: E[RjJXjl+l 

= ~E{I t(r;, - r;)x;1 - a1 t(r;o- r;)x;l+ } (20) 

If we let 

n 

r)x­~t = I:(Tjt J J (21) 
j=1 

and 

(22) 

Thus 

1 T 
Wa T I:{I~tl- - al~tl+} 

t=1 

1 T ­
= T I:ga(~t) (23) 

t=l 

For a = -1 we have the absolute value L1 risk while a = 0 is 3..'lsociated 
with the investor who cares about "below average" returns, and a > 0 is 
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associated \vi th the investor whose" below average" returns are compensated 
by some "above average" returns and specifically for 0 > 1 the investor is 
viewed as prone to risk. Refer to tables of graphs below and on the next 
page for the corresponding graphs of g(.) for some different values of o. 

Figure 4.2a) Graph of g.l(~) Figure 4.2b) Graph of go(~) 
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Going hack to our portfolio problem, now replacing the quadratic risk 
fUllction by compound L1 rh:;k fUllction Wcn and letting o,jt = T'jt - T'j, J = 
1, ... 1 rl, t = 1. ... , T we get the programme: 

T n 	 It 

[Pal : Minimize I:{I I: ajtXj - 0:1 I: ajt1;j!+} 
j=1 

11 

Su.bject to 	 I:rjXj ~ p 
j=1 

n

I:Xj 1 	 (24) 
j=1 

~O 

We show that the class Po. of sllch portfolio optimization problems have 
the same optimal solution for all 0: E (0,1) U (1, +00) 

Figure 4.2c) Graph of gld~) 	 Figure 4.2~) Graph of g2(~) 
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Theorem 4.2 The class of optimization programme [Pal have the same op­
timal solution for all a E (0,1). Also they have the same optimal solution 
for all a > 1. 

Proof 
Note that 

1 
I~I+ = 2(1~1 +~) 

I~I- = ~(I~I -~) 
Thus 

1 T 

T L{I~tl- - al~tl+} 
t=l 

1 T 1 
T L 2{(I~tl - ~t) - a(l~tl + ~t)} 

t=l 

1 T I-a l+a 
- L(-I~tl - -~t) (25)
T t=l 2 2 

II-aT n I+aT n 

= T{-2- L ILajtxjl- -2-LLajtXj} 
t=l j=l t=l j=l 

II-aT n 

= ---LI Lajtxjl
T 2 t=l j=l 

since 

T n n T 

LLajtxj L L(rjt - rj)xj 
t=l j=l j=l t=l 

n 

= L xj(Trj - Tl'j) (26) 

= 
j=l

° 

Thus for fixed T, minimizing Wa is the same as minimizing l:-i=l 1l:-J=l ajtxj I, Va < 
1. Also for fixed T it is equivalent to maximizing l:-i=l l:-J=l ajtxjl, Va> 1..1 

21 
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So our portfolio problem becomes split into two according to alpha. 
For a < 1 we get the programme: 

T n 

[Pal lA-Jinimize L ILajtxjl 
t=l j=l 

n 

Subject to 	 Lr'jxj ~ p 
j=l 

n 

LXj = 1 	 (27) 
j=l 

Xj ~ 0 

For a> 1: 

T n 

LILajtxjl 
t=l j=l 

n 

Subject to Lrjxj ~ p 
j=l 

n 

LXi 1 	 (28) 
j=l 

Xj ~ 0 

The second programme cannot be converted into a linear programme. Note 
that the objective function is convex. 

Theorem 4.3 There exists an optimal solution Xj * of [Pa2: for which at most 
two indices j satisfy Xj* > O. 

Proof Since the objective function of the programme is convex, there exists 
an optimal solution among extreme points of the feasible region, which has 
the stated property.• 
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We go back to [Pad, letting Yt = 'E-:=1 I 'E-j=l ajtxjl, we can convert it to: 

T 

!v!inimize I: Yt 
t=1 

T n 


Subject to Yt I: I: ajtxj ~ 0 

t=1 j=1 

T n 

Yt + I: I: ajtxj ~ 0 
t=l j=1 

n 

(29)"'r-x-L..-JJ-> p 
j=1 

I:
n 

Xj = 1; Xj ~ 0, j = 1, ... , n; t = 1, ... , T 
j=1 

whose dual is 

.Maximize Zl + Z2 

T 

Subject to 2 I: ajtet + 1'j Z l + Z2 .,; 0 
t=l 

o.,; et .,; 1; Zl ~ 0 (30) 

which is easier to solve than [Pall. 

4.2 Mean absolute deviation model 

A special case is when Q: = -1 (see table of graphs) Letting Wa=-l = W(x), 
we denote the absolute deviation function by: 

n n 

W(x) = E[I I: Rjxj E[I: Rjxjll! (31) 
j=1 j=1 

Theorem 4.4 If (R1' ... ,Rn) are multi-variate normally distributed, then 

W(x) = /fu(x). 
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Note that this is a special ca.c;e of Theorem 4.1. Thus our problem reduces 
to the linear programme: 

n n 

Minimize W(x) = E[I LRjxj E[LRjxjlll 
j=1 j=1 

n 

Subject to 	 L E(Rj)xj ~ p (32) 
j=1 

n 

LXj = 1 
j=1 
X· > 0J ­

Let rjt be the realization of the random variable Rj during a time period 
t = 1, ... , T and let 

rj = E[Rj] 
1 T 

= - L"'jt (33)
T t=1 

Hence we can approximate W (x) by: 

n n 

W(x) = E[I L Rjxj - E[L Rjxj]i] 
j=1 j=1 

n n 

E[IL14Xj [LE[Rj]xj]l] (34) 
j=1 j=1 

n n 

= E[I L14Xj - [Lrjxj]i]
j=1 j=1 

1 T n n 

= T L I(L rtjxj - L rjxj)1
t=1 j=1 j=1 

1 T 
= L I L xj(rtj rj)1

T t=1 
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Letajt rjt-rj,j=l, ... ,n;t=l, ... ,T 
Then our portfolio problem becomes: 

Minimize 

n 

Subject to Lrjxj ~ p 
j=1 
n 

LXj = 1 (35) 
j=1 

Xj ~ 0 

Let Yt = IEj=1 ajtxjl· Thus we have the standard linear programme: 

1 T 
Minimize W(x) = T LYt 

t=1 
n 

Subject to ""r·x·.L..,.JJ-> p 
j=l 

(36) 
j=l 

n 

Yt + Lajtxj ~ 0 
j=1 

n 

Yt - Lajtxj ~ 0 
j=l 

X·J >- 0 
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We can certainly add transaction costs and linear institutional constraints 
to obtain: 

T 

[PMADJ.i\tfinimize LYt 
t=l 

n 

Subject to L {rjxj - Cj(Xj)} ~ P 
j=l 

n 

Yt - L ajtxj ~ 0 
j=l 

n 

Yt + Lajtxj ~ 0 
j=l 

n 

LXj = l;xj ~ 0 (37) 
j=l 

n 

L~jXj ~~;j,i= 1, ... ,n 
j=l 

lj ~ Xj ~ Uj 

In [3] it is shown that the portfolios generated by the above programme are 
ea."ly to constmct because of the following advantages of the mean absolute 
deviation model : 

(1) It can be solved much fa."lter than its counterparties, the ivIV model, 
since it is a linear programme (when Cj(Xj) is linear) 

(2)Its optimal solution contains no more than (T + 2) a."lsets with positive 
weights 

(3) It can incorporate all the other features like transaction and institu­
tional constraints (we look at how to deal with the non-linear Cj(Xj) next). 

4.2.1 Method for solving [PMADJ 

We look at how we can tackle our programme with the inclusion of the non­
linear costs function Cj(Xj). We let 

n n n 

F {(x,y) ; Yt - L ajtxj ~ O;Yt + Lajtxj ~ 0; LXj = 1; 
j=l j=l j=l 

n 

Xj ~ 0; Lo'ijXj ~ bi; lj ~ Xj ~ Uj;Yt ~ O} (38) 
j=l 
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Thus we want to solve 

n 

Alinimize I:: Yt 
t=l 

n 

Subject to I:: {1'jXj - Cj(Xj)} 2 P 
j=l 

(x,y) E F (39) 

I::Xj = 1 
j=l 

Approximate the concave non-decrea.<;ing transaction costs function by a lin­
ear under-estimating function 8jOXi and solve the programme: 

n 

[P.wADoJAlinimize I:: Yt 
t=l 

n 

Subject to I::{1'iXi 8jOx i} 2 P 
j=l 

(x,y) E F 
n

I:: Xi = 1, ii ::; xi ::; ui (40) 
j=l 

Let x* be the optimal solution to the above programme. If L:{Cj (x/) 

8jox/} < E then 8iOxj is a good approximation of Cj (Xj) and the problem is 

solved. 

Suppose its not a good approximation. Divide [ij, ui] into two equal parts 

[ij, lj~uj 1and [IJ~Ul, Uj] and solve two linear sub-programmes by under-estimating 

Cj(Xj) by two linear functions 8i1Xi and 8i2Xi and solve: 


T 


[PMADJAlinimize I:: Yt 

t=l 
n 

Subject to I::{1"jXj - 8j1 xj} 2 P 
j=l 

(x,y) E F 
n i· +U·I:: Xj = 1, Ii ::; xi::; J J (41) 

j=l 2 
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a.nd 

T 

LYi 
t=1 

n 

Subjfct to L {Tjd:j - dj2 X j} ~ p 
j=1 

(x,y)EF 

~ . _ lj + 11)
L..J~j - 1, < Xj < 'Uj (42) 
j=1 2 

Let (Xl", X2 *) be the optimal solution to (PMADl , PMADJ. IO:j=1 {Cj(Xj*)­

djiXj*} < t, i = 1,2 then djiXj is a good a.pproximation of our costs function 
and we compare our solutions to get the ultimate solution to our problem. 
If otherwise, we continue the process by increasing the number of iterations 
and fa.thoming sub-programmes accordingly. 

Linear under-estimation of the cost function 

Costs 

 
 
 



5 Utility Theory and Risk Aversion 

"Utility" is used a.',> a mea.qure of "happiness" to compare competing invest­
ment portfolios based on the expected return and risk of those portfolios. 
The utility score is then used a.q a means of ranking portfolios:- higher utility 
scores imply higher expected return, and lower utility scores imply higher 
volatility. 

The standard consumer's allocation problem is for consumers to choose 
the most preferred complex in the feasible set. They wish to maximize util­
ity or "happiness" subject to their budget constraints. Extending utility 
maximization to situations involving risk, the investor expects the greatest 
of happiness with minimal or no risk. Put in short, the investor wishes to 
maximize expected utility subject to minimal risk. 

What do we mean by risk aversion? A decision maker with a von Neumann­
Morgenstern utility function is said to be "risk averse" (at a particular wealth 
level) if he is unwilling to accept every actuarially fair and immediately re­
solved gamble with only wealth consequences, that is, those that leave con­
sumption good prices unchanged. If the decision maker is risk averse at all 
(relevant) wealth levels, he is globally risk averse. 

Lets examine a little bit the rationale behind the contention that investors 
are risk averse. Recognition of risk aversion as central in investment decisions 
goes back at least to 1733. Daniel Bernoulli, one of a famous Swiss fanlily 
of distinguished mathematicians spent the years 1725 through 1733 in St 
Petersburg where he analyzed the following coin-toss game. To enter the 
game one pays an entry fee. Thereafter a coin is ta.",'>ed until the first head 
appears. The number of tails, denoted by n, that appears until the first head 
is tossed is used to compute the pay-off, $R to the participant, as : 

(43) 

The probability of no tails before the first head (n = 0) is 1/2 and the 
corresponding pay-off is 2° = $1. The probability of one tail and then heads 
(n 1) is 1/2 x 1/4 with pay-off 21 = $2. The probability of two tails and 
then heads (n 2) is 1/2 x 1/2 x 1/2 etc. 
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Thus the expected pay-off is therefore: 

00 

E(R) 2: Pr'(n)R(n) 
n=O 

- 1/2+1/2+ ... (44) 

= 00 

The evaluation of this game is called the" St Petersburg Paradox". Although 
the expected pay-off is infinite, participants obviously will be willing to pur­
chase tickets to play the game only at a finite, and p08..,>ibly quite modest, 
entry fee. 

Bernoulli resolved the paradox by noting that the investors do not as­
sign the same value per dollar to all pay-offs. Specifically, the greater their 
wealth, the less their "appreciation" for each extra dollar. We can make this 
insight mathematically precise by assigning a welfare or " utility value" to any 
levelof investor wealth. Our utility should increase as wealth is higher, but 
each extra dollar of wealth should increase utility by progressively smaller 
amounts. The utility function here refers not to investors' satisfaction with 
alternative portfolio choices but only to the subjective welfare they derive 
from different levels of wealth. Modern economists would say that investors 
exhibit" decreasing marginal utility" from an additional pay-off dollar. 

Von-Neumann and Morgenstern adapted this approach to investment the­
ory in a complete axiomatic system in 1946, details of which we shall not 
bother look into in this report. 

5.1 The von N eumann-Morgenstern utility theory 

Lets assume that we have a risk-less asset with return ~ and n risky as­
sets with stochastic returns R;.. Then the overall return on the portfolio is 
Rp(x) = R(x). Let U : ?R I---t ?R be a utility function. 

Definition 5.1 (optimal efficient portfolio) A portfolio x· is called op­
timal relative to the N-M utility U : ?R I---t ?R if it is a solution of the opti­
mization problem 

Maximize E{U[R(x)]} 


Subject to I:~l Xi 1 (45) 
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But R(x) := L:~=l Xi~. Thus the problem reduces to (max = maximize): 

n n 

maxE{U[L Xi~]} = maxE{U[Ro + L Xi~ - Ro]} 
i=l i=l 

n n 

= maxE{U[Ro + LXi~ - Ro LXi]} 
i=l i=l 

n 

= maxE{U[Ro + LXi(~ - Ro)]} (46) 
i=l 

Proposition 5.1 x* -is optimal relative to U iff 

E{U'[R(x*)](~ - Ron = 0 (47) 

Proof 
By forming the Langrangian 

n 

L = E[U(.)] + A(l - LXi) (48) 
i=l 

we get the first order conditions 

8L 
E[U'(.)~] - A = 0 (49) 

(50) 

and since we have a riskless asset in our portfolio, it is convinient to use the 
second condition to write the first as: 

n 

E{U'[(L Xi~)](~ - Ron = 0 (51) 
i=l 

E{U'[R(x*)](~ - Ron = 0 (52) 

and if x* is an optimal solution, L:~=l Xi~ = x*, then E{U'[R(x*)](~ ­Ron = o. The other direction follows .• 
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5.2 Economic properties of utility functions 

1. Utility increa.'>es a.<; end of period wealth increa.<;es, thus U'(.) > O. 
2. The second property takes into account the investor's ta.<;te for risk 

i) if the investor is averse to risk then U" (.) < 0, i.e the investor rejects fair 
gamble. 

ii) if the investor is risk neutral then U"(.) = 0, i.e he is indifferent to fair 
gamble. 

iii) otherwise U"(.) > 0 and the investor selects a fair gamble. 
3. The third is related to the question: if the investor's wealth increases, 

will more or less wealth be invested in risky a.<;sets? 
i) if the investor increa.<;es the amount in risky a.'>sets a.<; wealth increa.<;es, 
then he exhibits decrea.<;ing absolute risk aversion. 

ii) if the investor's investments remain unchanged a.<; wealth increa.<;es then 
he manifests constant absolute risk aversion. 

iii) otherwise, he exhibits increa.,>ing absolute risk aversion. Absolute risk 
aversion is mea.'>ured by the function: 

A(w) = -U"(w) (53)
U'(w) 

4. The la.<;t property seeks to answer the question: how does the percentage 
of wealth invested in risky a.<;sets change a.<; wealth changes? This is relative 
risk aversion. Its mea.'>ure is the function: 

-wU"(w)
R(w) = U'(w) = -wA(w) (54) 

The cla.'>s of NM utility functions is important in risk theory and its known 
a.<; HARA (hyperbolic absolute risk aversion) or LRT (linear risk tolerance) 
cla.<;s of utility functions. Its characterized by 

1 - "f aw
U(w) = --(-- + b)!, b > 0 (55)

"f 1 - "f 

with absolute risk tolerance function 
1 w 

T(w) = -- = -- +ba (56)
A(w) 1 - "f 

which is linear a.'> the name suggests. We get different special functions each 
corresponding to some "f and/or b value(s).We shall not occupy ourselves 
analyzing them. 
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5.3 Higher-order derivat'ives of the utility function 

Theorem 5.1 If investors are consistent in their first m preferences (each 
of the first m derivatives of U is uniformly pos·itive, negative, or zero) over 
an unbounded positive domain of w. then the derivatives must alternate in 
szgns, z.e 

(-lYU\w) < O,i = l, ... ,m 	 (57) 

Proof We prove this result by induction. Define fn(w) == (_l)nun(w) and 
a'lsume that fiCW) < 0 for i = 1, ... ,n. Using the mean value theorem we 
get 

fn-I(W2) 	 = fn-l(Wl) + f~_1(W*)(W2 - W.) 

= fn-l(wd - fn(W*)(W2 -wd (58) 

for some w* in [Wi,W2]. Now assume (_1)iUi (W) < O,i = l, ... ,m is false 
for n + 1; that is 

(59) 

Then 
(60) 

thus 
(61) 

+ In ~ Th' h" 'bl' th ..Now c hoose W2 > WI "-1-( )' IS C OlCe IS POSSi e Since e ratIO IS 
n U'l 

positive and the domain of interest is unbounded above. Substituting gives 
us 

fn-I(W2) > fn-I(wd - fn(Wdff:(~)) = 0 (62) 

which contradicts our a'lsnmption .• 
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6 Skewness and portfolio analysis 

Elton and Gruber in [8] referring to the importa.nce of skewness in portfolio 
analysis said. " ... this developmental work has not been done. Thus practical 
portfolio analysis ill three moments IHlIst mvait development of a set of an­
alytical tcchniCJllcs for cstimating and solving problems in\'olYing skmvncss" . 
In this respect, a nllluber of authors have proposed selecting portfolios on the 
basis of the first three moments of return distributions rather than the first 
two. Skewness is a measure of the asymmetry of a distribution. The nonnal 
distribution has zero skewness since the shape of the distriblltion above the 
mode is a mirror's image of the shape below the mode.The log-normal dis­
tribution in the diagram below ha<; positive skewness. Point A indicates the 
mode. The log-normal has more observations above this value than below. 
It is said to be ske\ved towards high values or exhibit posith'e skewness. Re­
searchers in skewness believe investors should prefer posith'e skewness. All 
else constant. they should prefer portfolios with a larger probability of very 
large payoffs. This is not only logical but also consistent \vith the empirical 
evidence that investors are risk averse and looking for higher returns. 

Figure 6.1: The log-normal distribution 

Prob.ofreturn 
.... 

Return 
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Skewness usually means the third central moment divided by the cube of 
the standard deviation, i.e if R is a random variable then: 

K, R _ E[R - E[R]J3 
( ) - E[(R-E(R))J~ (63) 

but in general it is the un-normalized third central moment: 

(64) 

Although the variance mea..<;ures the average squared deviation from the 
expected value, it does not provide a full description of risk. To see why~ 
consider two log-normal distributions for rates of return on a portfolio (See 
tables of graphs on next page). A and B are probability distributions with 
identical expected values and variances. The graphs show that variances are 
identical because probability distribution B is a mirror image of A. What 
is the empirical difference between A and B? A is characterized by more 
likely but small losses and less likely but extreme gains. This pattern is 
reversed in B. The difference is important. When we talk about risk, we 
really mean "bad surprises". The" bad surprises" in A, although they are 
more likely, are small (and limited) in magnitude. The ones in B could be 
extreme, indeed unbounded! A risk averse investor will prefer A to B on 
these grounds; hence it is worthwhile to quantify this characteristic. The 
asymmetry of the distribution is called "skewness", and is mea..<;ured by the 
third central moment m3 seen above in this section. 

Cubing the deviations from the expected value preserves their signs, which 
allows us to distinguish good from bad surprises. Because this procedure 
gives greater weight to larger deviations, it causes the "long tail" of the 
distribution to dominate the mea..sure of skewness. Thus the skewness of the 
distribution will be positive for a right-skewed distribution such a..<; A and 
negative for a left-skewed distribution like B. To summarize. or rather to 
introduce, the first moment represents the reward. The second and higher 
moments characterize the uncertainty of the reward. All the even moments 
(variance, m4 ,etc) represent the likelihood of extreme values. Larger values 
for these moments indicate greater uncertainty. The odd moments ( m3 , m 5 : 

etc) represent measures of symmetry. Positive numbers are associated with 
positive skewness and hence are desirable. 
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Log-normal distributions for rates of return on a portfolio 

------------------4---------------------~ rA 

E(r A) 

Pr (r) 

--------------------~--------------------~.rB 

E(rB) 
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6.1 A mean-variance skewness model 

Let R be the random variable representing rate of return of the a..s..c;ets Sj 
and let Xj be the fraction of the fund to be invested in a..c;set Sj. The rate of 
return of the portfolio x = (Xl, ... 1 Xn) is given by: 

(65) 
j=l 

Let U = U(R(x)) be the investor's utility function. Then, a..c; seen in 
the previous section, his portfolio optimization problem is to maximize his 
expected happiness subject to his budget constraints. In other words, he 
wishes to: 

Maximize E[U(R(x))] 

Subject to L
n 

Xj = 1 
j=l 

Xj ~ 0 (66) 

Assume that U(.) can be approximated by the third order Taylor's ex­
pansion around the mean 1'(X) of R(x). Thus 

U(R(x)) = U(r(x)) + U'(1'(x))[R(x) - r(x)j + 
1 1 

+ 2UI/(r(x))[R(x) - r(xW + 6UIII(r(x))[R(x) - r(x)]3 (67) 

Thus applying E(.) we get: 

E[U(R(x))J = U(r'(x) )+~UI/(r(x))E[(R(X)-r(x) )21+~UIII(1'(x) )E[(R(x)-r(x) )3] 

(68) 
since E[R(x)] = r(x). 
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So the ma..ximal value of the expected utility can be obtained by solving 

l'vfaximize E[U(R(x))] 

Subject to E(R(x)) = l' (69) 
n 

LXj = l;xj ~ 0 
j=l 

Maximizing the objective function here is simply reduced to maximizing only 
the last term E[(R(x)-r(x))3] since U(1'(x)) is a constant and !U"(r'(x))E[(R(x)­
r'(x))2] < O. Therefore formulating our MVS problem we wish to: 

Alaximize E[(R(x) - r(x)n 
Subject to E((R(x) - r(x))2] = (]"2 

E[R(X)] = 7' (70) 
n 

~x·=l·x·>OL.tJ 'J­
j=l 

which can also be written in the following way letting: 

V[R(x)] = E[(R(x) - 7'(X))2] 


'Y[R(x)] = E[(R(x) - r'(x))3] (71) 


where 1', (]" are given parameters: 

Maximize 'Y[R(x)] 
Sllbject to E[R(x)] = l' 

V[R(x)] = (]"2 (72) 
n 

LXj= 1 
j=l 

X· >0J ­

Let x* (r, (]") be an optimal solution of this parametric programme and let 
'Y"(1', (]") be the associated maximal value of 'Y[R(x)j. Then we have: 

1 1
E[U(R(x))] = U(r(x)) + ZUII (r(x))(]"2 + '6UIII(r(x)),,),*(r, (]") (73) 
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Thus we could be able to obtain an approximate optimal value of E[U(R(x)r 
if we can parametrically calculate the" efficient surface" 1* (1', oJ Let 

1'j = E[R:!] 

aij = E[(Rz - 1'i)(Rj - 1'j)] (74) 

lijk = E[(Ri - 'T'i)(R:! - 'T'j)(Rk -1'k)] 

Thus our MVS problem can now be written as: 

n n n 

Maximize L L L lijkXiXjXk 
i=l j=l k=l 

n n 
2Subject to L L aijXiXj = a 

i=l j=l 
n

L 1'jXj = l' (75) 
j=l 

n 

LXj = l;xj?:: 0 
j=1 

Unfortunately both forms of our MVS problem are typical non-concave max­
imization problems whose global maximum cannot be calculated by state-of­
the-art non-linear programming algorithms. Also it is virtually impossible to 
collect the lijk when n is over one thousand, not to mention the aij' Hence 
we need to introduce some kind of approximation to convert an intractable 
problem into a tractable one. 
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7 Mean-absolute-deviation-skewness model with 
transaction costs 

In the standard portfolio analysis, it is assumed that the investor is risk 
averse and that his utility is a function of the lIlean and variance of the 
return of the portfolio, or can be approximated as such. It turns out that 
the third moment plays an important role if the distrihllt ion of the rate of 
retUI11 of the assets is asymmetric around the mean. As mentioned earlier, an 
investor would prefer a portfolio with larger third moment if the mean and 
the variance are the same. In this section we propose a portfolio with a large 
third moment under the constraints of the first and the second moments, and 
concave transaction costs. We ...\"ish to formulate and and propose a solution 
to a programme with among the constraints. a strictly concave function. 

An investor ha..'> to pay a certain amount of fees when investing (or dis­
investing). Let Xj be the amount of investment in a..'>set j. Let Cj(Xj) be the 
transaction costs associated with investing in a..'>set j. Cj(Xj) is non-decrea..,>ing 
and concave up to some point aj. The total transaction costs is therefore 
2:,j'=1 Cj(;;;j). See graph below. 

Transaction costs function 

Trans. Costs 

L-____________~________________________-;.~~ 

Ct; 

Amount of transactions 


40 


 
 
 



\\'e 1I0W proceed to approximat.e the third moment and introclnce our 
mode!. 

Let 
1120 

g(u) = { 'Il~ (76)
u<o 

See graph below, \Ye define the lower semi-third moment of a random \'ari­
able R by: 

r-(R) = E[g(R - E[R])] 77) 

Instead of optimizing the third moment. in the previons section, ,,'e \vill 

optimize the lower semi-third moment. of the rate of return of the portfolio, 

Minimize /_ (R(J:)) 
Sltbject to E[R(x)] = r 

V[R(x)] = (T2 

n

LXj = 1 (78) 
j=I 

Xj 20 

Figure 7.2 
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We wish to replace the non-convex constraint in terms of variance by 
"absolute deviation" a.s seen earlier on. 

W[R] = 	E[IR - E[R] I! (79) 

Then we obtain the programme: 

Minimize r-(R(x)) 
Subject to E[R(x)] = r 

W[R(x)] :S w 
n 

2:Xj = 	1 (SO) 
j=1 

Xj;::: 0 

where w is some specified risk. 
If x" is an optimal solution to the above programme, then the portfolio 

x* is expected to have a shorter tail to the left of the mean. Hence it will be 
expected to have a relatively big positive third moment. 

But 
n 

R(x) 	 2: Rjxj (81) 
j=1 

and 

r-(R) 	 = E[g(R - E(R))] 
n n 

= E[g(2: Rjxj - E(2: Rjxj))] 
j=1 j=1 

n n 

= E[g(2: Rjxj 2: TjXj)] (S2) 
j=1 j=1 

n 

= E[g(2:(Rjxj - TjXj))] 
j=l 

n 

= E[g(2:(Rj - Tj)Xj)] 
j=l 
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We wish to replace the non-convex constraint in terms of variance by 
"absolute deviation" as seen earlier on. 

W[R] = E[IR - E[R] I] (79) 

Then we obtain the programme: 

Minimize i-(R(x)) 

Subject to E[R(x)] = T 
W[R(x)] ::; w 

n 

:EXj = 1 (80) 
j=1 
Xj ::::: 0 

where w is some specified risk. 
If x* is an optimal solution to the above programme, then the portfolio 

x* is expected to have a shorter tail to the left of the mean. Hence it will be 
expected to have a relatively big positive third moment. 

But 
n 

R(x) :ERjxj
j=1 

(81) 

and 

i-(R) - E[g(R E(R))] 
n n 

E[g(:E Rjxj 
j=1 

E(:ERjxj))] 
j=1 

n n 

E[g(:E Rjxj ­ :ETjXj)]
j=1 j=1 

(82) 

n 

= E[g(:E(Rjxj
j=1 

TjXj))] 

n 

E[g(:E(Rj ­ rj)xj)] 
j=1 
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So that our problem becomes: 

n 

Afin'irnize E[g(Z]Rj - Tj)Xj)] 
j=l 

Subject to W (L Rjxj) S; W 

j=l 
n 

L r'jXj = l' (83) 
j=l 

n 

LXj = 1 
j=l 

Xj ?: 0 

This is a non-linear programming problem because the preference function 
is concave. We replace g(.) by a piecewise linear concave function G(.) where: 

and 
·v >- 0

ivl_ = { _~ , (85)
iV < 0 

Thus we obtain the problem: 

n n 

Min'imize E[I L Rjxj pll-l + aE[I L Rjxj ­ P2! 
j=l j=l 

n 

Subject to W(L Rjxj) S; w (86) 
j=l 

n 

LTjXj = T 
j=l 

n 

LXj = l;xj ?: 0 
j=l 
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Recall that: 

(87) 
j=1 

n 

E[I:L Rjxj - p21-l (88) 
j=1 

Thus 
n 	 n 

E[g(:L Rjxj)] = E[G(:L Rjxj)] 
j=1 j=1 

n n 

= Ell:L Rjxj - pll-l + aE[I:L Rjxj - P21-J 
j=1 j=1 

1 T nIT n 

= 	 T _ 1 :L I:L 1'jtX j PI I + a T _ 1 :L I:L l' jtXj p21­
t=1 	 j=1 t=1 j=1 

1 T 
=	 T- :L(Ut + aVt) (89)

1 t=l 

where 
n 

Ut = I:L rjtxj - PI 1- (90) 
j=1 

n 

Vt = I :L 1'jtX j P21 (91) 
j=1 

On the other hand 
n 	 n n 

W(:L Rjxj) = Ell:L Rjxj - :L r"jxjlJ 
j=1 j=1 j=1 

1 T n n 

-	 T _ 1 :L I:L rjtxj - :L1'jxjl 
t=l 	 j=1 j=1 

1 T n 

= 	--:L I:L(rjt - rj)xjl (92)
T - 1 t=1 j=1 

1 T 

= T -1 :Let 
t=1 
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where l2:j=,=1 (1'jt 1'j )Xj I ~t 
Now if Cj (Xj) is a concave function representing the expected transaction costs 
a..<;""lociated with the investment then our expected return with transaction 
costs is transformed to: 

n 

LhXj - Cj(Xj)] = l' (93) 
j=,=l 

where again r is the given parameter of rate of return. 
Substituting accordingly we get the non-linear programming problem: 

1 T 

Minimize T1 L(Ut + aVt) 


t='=l 

1 T 

Subject to --L~t :Sw 


T - 1 t='=1 

n 

L[1'jXj - Cj(Xj)] = l' 
j=,=l 

n 

ttt + L rjtxj ::::: PI 

j=,=l 

n 

Vt + L 1'jtXj ::::: P2 (94) 
j=,=l 

n 

L Xj = 1, Ut ::::: 0, Vt ::::: 0, ~t 2>: 0,0 :S Xj :S aj, t = 1, ... , T, 
j=,=l 

Which can be transformed into: 
T 

Nfinimize LYt 
t='=l 

1 T n n 

Subject to F = {(x,y) : T _ 1 L(t :S w; Ut + I>jtXj ::::: PI; Vt + L rjtXj ::::: P2; 
t=l j=l j=l 

n 

L Xj = 1; Ut ::::: 0, Vt ::::: 0; ~t ::::: 0,0 :S Xj :S aj} 
j=l 

n 

L[rjxj - Cj(Xj)] = r 
j=l 

Yt ::::: 0,0 :S Xj :S aj (95) 
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where Yt = Ut + aVt· 
This program is non-linear because of the transactions cost function, and 

thus it will not be p08..')ible to apply directly conventional methods to solve 
it. We suggest the following method to tackle it. It should be noted however 
that if a solution is not encountered early, the method can be tedious but a 
computer programme should iron out this hurdle. 

7.1 An algorithm for the solution of the problem 

Replace Cj(Xj) by an underestimating linear function OjXj and solve the stan­
dard linear programme Po by the simplex: method, taking into account that 
we require higher returns than expected: 

T 

[Pol: Minimize LYt 
t=l 

Subject to (x,y) E F 
n 

L[rjxj OjXj] ~ r (96) 
j=l 

o :s: Xj :s: aj; Yt ~ 0 

Let xo* be the optimal solution to Po. If l:J=l[Cj(XO*) - OjXo*] < E then 
OjXj is a good approximation of Cj(Xj) with error less than a chosen E and 
Xo * is the optimal solution to our problem. 
Now, suppose that l:j=r[Cj(xo*) - OjXo*] < E is not tme. Subdivide the 
interval [0; aj] into two equal intervals [0, ¥l and (¥, ajl Solve two linear 
sub-programmes PI and P2: 
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Graph showing iterated lIIleler-estimations of the COllCa\'e transactions 
cost fllnction. 

Figure 7.3: Linear under-estimation of the costs function 

Costs 

al2 
Amount of transactions 
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T 

[Pd : Minimize I:Yt 
t=1 

Subject to (x,y) E F 
n 

I:[rjxj - OjXj] ~ r 
j=1 

a-
o~ Xj ~ {; Yt ~ 0 (97) 

T 

[P2] : Minimize I:Yt 
t=1 

Subject to (x,y) E F 
n 

I:hxj - OjXj] ~ r 
j=1 
a­
-1. < x- < '" -- Yt > 0 (98)2 - J - "'J' - ,­

For Pr and P2; approximate Cj(Xj) each by an underestimating linear function 
OjhXj; h 1,2 and solve the programmes: 

T 

[PI] : Minimize I: Yt 
t=l 

Subject to (x, y) E F 
n

I:hxj - OjlXj] ~ r 
j=1 

a-o~ Xj ~ {; Yt ~ 0 (99) 

T 

[P2] : Minimize I: Yt 
t=l 

Subject to (x, y) E F 
n

I:hxj - Oj2Xj] ~ r 
j=1 
a­
-1.<x·<a··Yt>O (100)2 - J - J' ­
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8 

Let {Xl*;X2*} be an optimal solution to {PI; P2 }. IO=[Cj(X/)-OjhX/] ~ 
€, then OjhXj is an approximation of Cj(Xj) with error less than € The solution 
is therefore S = min{Xl *; X2*} because we are dealing with a minimization 
problem. 

It may happen that some of the resultant sub-programmes have no solu­
tions, in which ca'le they are fathomed. If OjhXj is not an approximation of 
Cj(Xj) then repeat the process with more iterations a'l shown on the graph. 

Back-Testing MADS 

In [1] the authors did some numerical experiments of MADS (without trans­
action costs of course ). They used historical data of the Tokyo Stock Ex­
change with the aim of checking whether this model actually generates a 
portfolio with large skewness. 

They prepared three sets of data D1 , D2 and D3, all of which consist(ed) 
of 36 data representing the rate of return of 224 stock.s for 36 months. Dl 
covered three years from 1984 to 1986, while D2 and D3 covered 36 months 
from 1985 to 1987, 1986 to 1988, respectively. 

They then first solved the MAD model for r = 2.0, 2.5, 3.0% per month 
and calculated the minimal absolute deviation. 

(101) 

The skewness wa'l negative for all r. They then proceeded to conduct pre­
liminary experiments to solve the MADS for w = 1.lOw(r) and fOlmd that 
the maximal value of the skewness is attained when the parameters in the 
objective function of the MADS model are chosen a'l follows: (Ct, Pb P2) = 
(1.0, r - 1.0, r' 2.0). Then they fixed the value of these parameters at this 
level throughout subsequent experiments. Let P(r, w) be the portfolio cor­
responding to an optimal solution of the MADS for fixed value of (r, w). 
Also, let x:(r, w) be the skewness of the distribution of the portfolio P(r, w). 
Refer to the corresponding table for clarity on this issue. The table shows 
the value of x:(r,w) for data sets Dl - D3 . We see from this that x:(r,w) 
increases a'l w increases. Particularly the skewness of the portfolio associ­
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r' w(r) Standard Dev. Skewness 

I DI 2.0 
2.5 
3.0 

0.8350 
0.8400 
0.4270 

2.048 
1.969 
1.961 

-1.252 
-2.226 
-3.060 

Dz 2.0 
2.5 
3.0 

0.8440 
0.7990 
0.8770 

1.756 
1.705 
1.866 

-0.286 
-1.121 
-1.618 

D3 2.0 
2.5 
3.0 

1.5930 
1.2520 
1.0710 

2.840 
2.442 
2.255 

-0.693 
-0.848 
-1.220 

Table 1; Results showing negative skewness for all r' 

ated with w = 1.50 X w(r') is always positive, which is contrary to the MAD 
portfolio where skewness is always negative. 

With the three portfolios 

PI = P(r', w(r)) 


P2 - P(r', 1.2Oy!:(T)) 


P3 - P(r', (0) (102) 


for T = 3.01% per month, they discovered that the distribution a.'>sociated 
with the MAD portfolio PI ha.'> a larger tail to the left of the mean and hence 
has a large negative skewness. The distribution a.'>sociated with P3 ha.'> a long 
tail to the right of the mean. Also, it has a large absolute deviation since the 
constraint on the absolute deviation is completely relaxed. The distribution 
of P2 lies between the other two. In particular, the skewness is much larger 
than PI while the absolute deviation is slightly larger than Pl' Even though 
it appears most investors would prefer P2, P3 to PI, the preference also is 
dependent on the functional form of the utility function. Their experiments 
were carried out using the SUN 4/280 system which produced results in less 
than one minute for T = 36 and n = 225! 
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Skewness 

I r wJw(r) Dl D2 D3 

12 
i 

1.0 
1.1 
1.2 
1.5 

-2.252 
0.230 
0.271 
0.846 

-0.287 
0.652 
1.187 
1.802 

-0.693 
0.543 
1.217 

2.5 1.0 
1.1 
1.2 
1.5 

-2.226 
-0.120 
0.206 
0.537 

-1.121 
0.148 
0.707 
1.520 

-0.848 
0.323 
0.850 
1.637 

3 1.0 
1.1 
1.2 
1.5 

-3.060 
-1.405 
-0.421 
0.351 

-1.618 
-0.740 
-0.076 
1.522 

-1.220 
-0.902 
0.346 
1.292 

Table 2: Values of fi(1', w) for data sets DI to D3 

Note: Value for D3 when r = 2, wJfiJ(r) = 1.5 not available. 
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9 Conelusion 

We have seen how various techniques have come into play to reduce some very 
difficult optimization problems to more manageable levels. The advances in 
computational technologies have helped a lot in the running of some mathe­
matical models and programmes, unfortunately these softwares do not come 
cheap. 

We have here suggested a model that appears ea..':;y to solve, and which 
can be used a..<; a practical tool to generate a portfolio with larger if not 
maximal skewness under the constraints on the first and second moments 
of the distribution. Moreover, this model ha..<> the advantage that it also 
admits the incorporation of other institutional linear constraints. However, it 
remains the ambitions of the author to try to produce a computer programme 
and, with the availability of data, put to practical test the benefits herein 
justified. 

It ha..<; been noted that we only considered investments up to some point 
O'.j, point of inflection. The rea..<;on being that from this point up the trans­
action costs start to unbearably sky-rocket making investment worthless be­
yond this point. 
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