
Chapter 7 Waveform coding 

7.1 Introduction 

Waveform coding implies algorithms and methods that focus on single variables, such as 

body position and joint angles. No knowledge of the actual action that the figure is 

perfonning (such as walking, waving etc.) is assumed, and the exact source of the motion 

is also not under consideration, only that it is valid human motion. Whether the motion is 

captured in real-time, or generated by synthetic animation techniques, is of no concern. It 

is assumed that all of the body parameters can be decomposed into single DOF values that 

are independent of each other. An exception to this is the spatial vector quantization 

method presented at the end of the chapter, where it is assumed that there is a correlation 

between the variables. 

In general a distinction can be made between coding (or compression) in the temporal 

domain and coding in the spatial domain. These two domains can be seen as orthogonal l to 

each other, and it is often advantageous to combine methods from each domain to get 

maximum compression. Temporal coding techniques take advantage of the temporal 

correlation of a single variable, while spatial techniques take advantage of spatial 

correlation between several variables. 

Another distinction that can be made is the concept of uniform vs. non-uniform sampling. 

Traditionally we have become accustomed to sampling, frame or simulation updates that 

occur at well specified, regular intervals. However, there are many random processes in 

nature that need not be discretized in such a way, of which human motion is probably one. 

As has been reported by [45] for head orientations, human movement remains relatively 

1 Orthogonal is used not in a strictly mathematical sense. 
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static except for occasional bursty moments. The speed and acceleration of the movement 

are non-zero only during these moments of erratic actions. It is therefore natural to use a 

lower sample rate during slow movements and to increase the rate proportionally to faster 

movements. The solution of exactly how to do this is not very obvious. One such example 

is the dead reckoning algorithm, which is discussed a little later in this chapter. In the next 

chapter on model based coding, the use of non-uniform sampling will be discussed more 

extensively, 

7. 1. 1 Compression 

Compression is defined as the procedure that takes a stream of input samples {B(n)} , and 

transforms them to a finite string of codes or messages {c(n)} that is a compressed version 

of the input stream. Decompression is the procedure that takes the string {c(n)} and 

converts it to an equivalent output stream {B(n)}. If the output stream is an exact or very 

similar duplicate of the input stream, the compression scheme is lossless. Lossy 

compression schemes introduce a controlled amount of distortion in the output stream in 

exchange for better compression. All of the compression methods discussed in this chapter 

are of a lossy nature (except statistical coding, but it is never used on its own). 
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Figure 7-1: Coding/decoding delay. 

7.1.2 Delay 

Figure 7-1 shows a generic layout of a human motion coding/decoding system. The total 

coding delay is the lapsed time from the execution of an action until reconstruction at the 

receiving end, and is given by 
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t T = t IlIpli l + t C",ler + tChollllel + tVewder + t Oil/Pili' 

Of these, we are not concerned with tInput, tChannel and tOutput, which are the delays for the 

input devices, communications channel and output devices respectively. The time tCoder is 

the time the coding or compression step takes from input to output, and similarly is tDecoder 

the time the decoding or decompression step takes. The delay tChannel is often quite severe, 

but there is usually not much that can be done about that. The values of tCoder and tDecoder 

should be kept as low as possible - every little bit helps. Unfortunately, we are committed 

to a discrete sampling system at the input stage. The more coder delay we allow, the more 

samples we have to work with and the better information estimation we can get. When 

comparing compression results with the original motion, it is often convenient to 

compensate for the coding delay in order to use convenient error measures such as the 

MSE. However, it is still important to properly define the effects and tolerability of delay, 

especially when different systems are compared. Some systems can be used for off-line 

storage purposes, while others are more suitable for real-time interactive applications. In 

this thesis , we are more interested in the latter, hence more attention will be given to such 

systems. 

The rest of this chapter discusses various methods for human motion compression. We 

start with the definition of quantization and statistical coding. Both of these methods are 

not really used on their own, but are "building blocks" for other compression algorithms. 

We then look at the class of predictive and adaptive predictive coders. This is followed by 

a DCT coding method as an example of a frequency domain algorithm. Vector 

quantization is difficult to classify as a waveform coding technique, since it can be used 

temporally or spatially or both, but is presented at the end of this chapter anyway. Typical 

results are presented with each method in the form of a representative DOF for each test 

sequence, as well as an overall rate-distortion graph. The following DOFs were arbitrarily 

chosen: 

• The head angle (h ,o for the conversational sequence, 

• The left upper arm elevation angle 85,0 for the wave sequence, 
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• The left elbow hinge angle ()6,O for the dance sequence, 

• The right hand index finger flex angle th.7,1 for the gesture sequence. 

In each case, the rate-distortion graph shows the average PSNR (defined in chapter 6) for 

the whole body, except for the gesture sequence, which shows only the results for the right 

hand. The effective bit-rate is therefore considerably lower. The PSNR is used instead of 

the VPSNR measure for waveform coding techniques in order to compare the results with 

related work done by others [36]. In the following chapter on model based coding, it will 

be seen that the PSNR fails to give a good error measure and the VPSNR will be used 

instead. As a general rule-of-thumb, we have found that a PSNR of roughly 20-30 dB is 

visually acceptable. A PSNR of less than 10 dB is considered completely unacceptable, 

and a PSNR of more than 40 dB is considered almost lossless. In chapter 5, the undistorted 

bit-rate requirement for the whole body was found to be roughly 15000 bits/second. A 

compression method is regarded as useful when it can reduce the information by at least a 

factor two while sti ll maintaining an acceptable error level. Any method that exceeds 8000 

bits/second is therefore regarded as not worth the effort. The undistorted bit-rate for the 

right hand alone is roughly 2500 bits/second, and rates of less than 1250 bits/second are 

regarded as useful. 

The results shown in this chapter are but a very small subset of the complete human due to 

space limitations. Representing a OOF graphically as a time varying signal is also not very 

intuitive, but that is the best that can be done on paper. On occasion a rendered sequence of 

the human figure is shown, but the results are best viewed using the video clips provided 

on CD-ROM with this document. Appendix III describes the contents of the accompanying 

CD-ROM, as well as the parameters used for each coding algorithm. 

7.2 Quantization 

Quantization is the mapping of a variable () to an approximated variable () , 

() = Q(()), where Q is some sort of quantization function. It can be described as the process 

of comparing a real value () E R to a set of decision levels di and a set of reconstruction 
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levels ri, where i is a finite integer. The problem entails the specific?~ion of a set of 

decision levels and reconstruction levels such that if 

d; ~ () < d,+" (7-1) 

the input variable is quantized to the reconstruction value rio The decision and 

reconstruction levels are chosen to minimize some error measure between () and () . An 

example of a mathematically tractable measure is the mean-square error, and is often used. 

If () is seen as a random variable, then for N quantization levels the mean-square error is 

N -llii+1 

c=E{((}-e)2}= L f((}-rYp((})d(} , (7-2) 
1=0 J ; 

where p ( fJ) is the probabili ty density function (PDF) of e. It can be shown that the 

optimum placement of ri can be found by minimizing cwith respect to ri, and is given by 

d +d Ir = 1 1+ (7-3) 
1 2 ' 

which is the midpoint between each pair of decision levels. Finding the optimum choice of 

decision levels di involves the minimization of c with respect to di. This is rather involved 

and requires knowledge of the probability density function p( fJ). Max [48] developed a 

solution for optimum levels of a Gaussian distribution, and it can be extended to include 

uniform, Laplacian and Rayleigh densities. Calculation of the probability density function 

of human motion is virtually impossible due to the wide variation in human physiology and 

human motion. We will look at the more general case of uniform quantization and non­

unifonn quantization, and the minimum parameters that define each. 
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7. 2.1 Uniform quantization 

Uniform quantization is applicable to variables with a uniform PDF. This is mostly the 

case if quantization is to be directly applied to joint angles (see chapter 4). The parameters 

that define a uniform quantizer are the lower and upper limits, denoted by eL and eu 

respectively, and the number of quantization steps N. This means that the input variable e 
must be restricted to eL :s; e :s; eu. For practical purposes N should also be restricted to a 

power of two, since we do not want to deal with split bits in an output bit stream. In this 

case N will be an even number, and the quantizer can be designed to be symmetric or 

asymmetric in the case of a bipolar system. If quantization is to be applied directly to joint 

angles, the joint limits define the lower and upper limits as well as the symmetry. It is a 

good idea to have separate quantizers for variables with radically different limits. If some 

other quantity is to be quantized, the defining parameters should be known or calculated. 

The generalized equation for decision level i is given by 

(7-4) 


and the reconstruction is given by equation (7-3). The term 

in equation (7-4) is the step size of the quantizer and is often denoted by ~. 

7.2.2 Non-uniform quantization 

Non-uniform quantization will be applied to variables with non-uniform PDFs. The 

spacing of decision levels is narrow in large amplitUde regions of the PDF and widens in 

low amplitude portions of the PDF. Other than that not much can be said about the exact 

mathematical expression for the decision levels. There are a number of non-linear 

functions that can be used to generate an appropriate quantizer. Popular examples are the 
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A-law and Jl-Iaw quantizers used in speech coding. We have found that the bipolar ,LL-Iaw 

quantizer gives good results, and can easily be adjusted to match a variety of non-uniform 

PDFs, such as the Laplace density that is encountered in predictive or difference coding. 

The basic parameters to specify such a non-linear quantizer are the value o f,LL (a "measure" 

of the non-l inearity), the maximum bipolar limits ~'v[AX and the number of steps N. The 

generalized equation for the positive half (i.e. fJ > 0) ith decision level is given by 

B UM 10g(1 + ,l1 Ii 
d= (N I 2))I 

(7-5) 
I 10g(1 + ,LL) 

and the reconstruction is given by equation (7-3). The negative half is a mirror of the 

positive half. 

Finding the reconstruction level ri given an input fJ is trivial in the case of a uniform 

quantizer, and involves the conversion of fJ to the integer space of i using simple mUltiply 

and add operations. The same cannot be said for a non-uniform quantizer, and some search 

algorithm has to be implemented. We use a recursive binary method, where the input level 

fJ is compared with the midpoint of two decision levels, and a choice between the left or 

right branch is made. 

7.2.3 Quantization noise 

A useful mathematical concept is that of quantization noise, i.e. a measure that indicates 

the amount of distortion introduced by the quantizer. By "noise" we mean visual noise, and 

not the more traditional term of audible noise. Severe quantization noise is much more 

offensive in the visual sense compared to audible noise, and can render some compression 

algorithms completely useless. When analyzing quantization noise, it is useful to represent 

the quantized samples as 

fJ(n) = fJ(n) + e(n), (7-6) 
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where e(n) is the quantization noise or error. To study the effects of quantization noise, and 

in order to solve certain mathematical equations, it is convenient to assume a simple 

statistical model for the quantization noise: 

• The quantization noise is a stationary white noise process, i.e. 

E[e(n)e(n+m)] =0";, m=O 


=0, otherwise 


• 	 The quantization noise is uncorrelated with the input signal, i.e. 

E[O(n)e(n + m)] = 0, \1m 

• The quantization error distribution is uniform over each quantizer interval L1. 

Although these assumptions are unrealistic for some types of human motion, our 

experiments have shown that it is reasonable for a step size L1 that is small enough. 

Quantization can be seen as a compression technique, since the quantized output usually 

occupies fewer bits than the original signal for a given error in representation. Figures 7-2a 

to 7-2d show the results for direct quantization of the representative joint angles discussed 

previously. Shown are the original, 8-level quantized, 64-level quantized and the error 

signal of the 64-level quantization. Using less than 64 levels (or 6 bits) usually results in 

severe visual artifacts, except for the interesting case shown in figure 7-2d, where the 

open/close gesture movements can be quantized quite well with very few levels. In any 

case, direct quantization of DOF values results in an effective compression ratio below 2: 1, 

and such a naive method is not recommendable as a compression mechanism. Figure 7-2e 

depicts a number of consecutive 3D wireframe images from the dance sequence. The 

original is overlaid with a 16-level quantized sequence (shown in red), and the frame-to­

fame difference can clearly be seen. 
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Figure 7-2a: Quantization of B.J,0 with 8 and 64 levels for the conversational sequence. 
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Figure 7-2b: Quantization of 05,0 with 8 and 64 levels for the wave sequence. 
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Figure 7-2c: Quantization of 86,0 with 8 and 64 levels for the dance sequence. 
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Figure 7-2d: Quantization of fh.7,1 with 8 and 64 levels for tbe gesture sequence. 
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7.3 Adaptive quantization 

One is often confronted with the dilemma of choosing the correct quantization step size ,1.. 

On the one hand it should be large enough to accommodate the maximum peak-to-peak 

range of the input signal. On the other hand it should be small enough to minimize 

quantization noise. One way of alleviating this problem is to use non-linear quantization, 

while the other is to adapt the quantizer to some property of the input signal. 

The basic idea of adaptive quantization is to let the quantizer levels and ranges vary to 

match the variance of the input signal, or alternatively to adjust the gain of the input signal 

inversely with the variance of the input signal. There are two methods of doing this. A 

feed-forward scheme estimates the matching function from the input itself. A feedback 

scheme estimates the matching function from the output of the quantizer (or even the 

whole coding system). Feed-forward systems require us to transmit the quantizer settings 

as well (albeit only every nth update), while the feedback system can use the received 

messages to derive the quantizer settings. 

For simplicity, we have chosen a simple feedback algorithm where the step size ,1.(n) of a 

uniform quantizer is modified at update n by a function of the form 

,1.(n) = /3,1.(n -1), (7-7) 

where fJ is a step size multiplier and is a function of the previous code c(n-1). [n practice, 

we use a table containing values of /3 for each code word. These values have been obtained 

in a heuristic fashion to accommodate a large variety of input signals. Direct adaptive 

quantization of DOF variables is not recommended because the joint angles are generally 

non-zero-mean quantities, and do not exhibit symmetric behaviour. It is difficult under 

such circumstances to establish a proper adaptation table for /3, and the performance of the 

adaptive scheme approaches that of the standard quantization method discussed in the 
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previous section. Adaptive quantization will be used extensively in the more advanced 

compression techniques discussed below. 

7.4 Statistical coding 

Although statistical coding (sometimes referred to as entropy coding) is not a lossy 

compression technique in itself, it is usually inserted at the end of a lossy compression 

p ipeline to ensure that the stream of codes have optimal statistics. As a starting point for 

statistical coding development, it is necessary to model, estimate or measure the 

probabilities of occurrence for each value to be encoded. In our case, we use statistical 

coding after some other coding technique, and this measurement will be done in "message 

space" rather than in joint angle space. Most often a quantizer is superseded by a statistical 

coder. In this case, suppose that the probability of a quantized valu B(or message) to be 

equal to the nth reconstruction level, is given by 

Pen) =P{() = r;,} . (7-8) 

In the coding process, a code word of ben) bits is assigned to each quantization level, 

resulting in an average code length of 

N - I 

L = IP(n)b(n), (7-9) 
1/ =0 

where N is the length of the code book. There are a number of techniques that can be used 

to produce a codebook [71 ,72,73 ]. These include arithmetic coding, Shannon-Fano coding 

and Huffman coding, of which the latter is the most efficient in terms of length. In this 

coding process [71], the two messages with the lowest probability are combined in a tree 

structure and their probabilities summed at the junction. The probability is then combined 

again in the same manner with the next lowest probability until the tree converges to a 

single junction. The branches of the tree are then assigned arbitrarily bit values of one or 
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zero. A code is formed by traversing the tree back to the message node in question and 

recording the path designation. 

It is possible to calculate a fixed codebook beforehand, or to adaptively build the codes as 

the transmission progresses. In the latter case, we start with a codebook of equal length 

codes. For every message sent the probabilities of the codes are updated and the codebook 

is calculated according to the method discussed above. For a fixed codebook, the 

probabilities can be calculated using an appropriate test data set. 

Most of the compression algorithms in the remainder of this chapter use a statistical coder 

as a "black box" between the coder and decoder sections. The statistical coder can never 

increase the average code length, and can have no adverse effects on the coding process if 

used correctly. However, a properly implemented compression algorithm should not rely 

on the use of a statistical coder to achieve high compression ratios. In fact, more than a 20­

30 percent decrease in average code length is an indication that the code words from the 

output of the compression algorithm have a non-uniform distribution. This implies that the 

compression algorithm is probably poorly designed, and that further gain can be achieved 

with a better implementation. 

7.5 Predictive coding 

In chapter 5, it was shown that there is considerable correlation between adjacent samples. 

On average, joint angles do not change rapidly from sample to sample, therefore the 

difference between adjacent samples should have a lower variance than the original signal 

itself. Figure 7-4 depicts the general layout of a predictive coder. The dotted lines indicate 

an adaptive section, and can be ignored for now. The input to the quantizer is a difference 

signal 

den) = B(n) - B(n), (7-10) 
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where (J (n) is a predicted version of the input signal fX...n). If the prediction is good, the 

variance of den) will be smaller than that of fX...n), and the quantizer could be adj usted to 

give a smaller quantization error for a fixed number of levels. Figure 7-4 also shows the 

layout of a corresponding decoder. The output is given by 

A A 

(}'(n) = (}'(n) + d'(n), (7-11) 

where (J 'en) is the output of a similar predictor as in the coder. Clearly if c 'Cn) = c(n), then 
A A 

(J'(n) = {}(n) , and the only difference between the input and output is the quantization error 

incurred in den). 

8(n) t---------'r-----+f 

8(n ) 

Statistical ern) 

coder 

Decoder 
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decoder + 

• 6 (n) 

... . ., Sl8P ::;122 : 
: ; o.:(n)
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-- -.. _ .. ­

Figure 7-4: Predictive coder and decoder. 
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The predictor could have a variety of forms. A mathematically tractable and widely used 

form is a linear predictor [72,73] , i.e. the output is a linear combination of past input 

values. The general form of the predictor can be written as 

~ p ~ 

f3(n) = Lakf3(n-k). (7-12) 
k= ! 

Since we would like to minimiz the variance of den) , as denoted by 0'3, it would be 

appropriate to differentiate 0'3 with respect to each coefficient a ( 

30',~ == 0 1'5', i '5', p. (7-13)
3a, ' 

Finding an exact solution for equation (7-13) is quite involved and requires extensive 

knowledge about the input signal. In [73] a number of approximations are discussed. It has 

been found that not much is gained with high order predictors, and that it is best to keep p 

< 4. For comparison purposes, we use a first order predictor in this section, and a higher 

order adaptive predictor in the next section. In the case of p = 1, it can be shown [73] that 

(7-14) 


where Re is the autocorrelation function of f3. 

Figures 7-5a to 7-5d show the results for predictive coding of the representative joint 

angles. Indicated are the original, 8-level quantized, 64-level quantized and the error signal 

of the 8-level quantization. Even with as little as 4 quantization levels (not shown), the 

coder still provides acceptable results . It can be seen that in most cases the 8-1evel error 

signal is similar to that of 64-level direct quantization, which is a saving of almost 3 bits. 

The use of 64-level (or 6 bit) quantization results in motion that is almost indiscernible 

from the original. 
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Figure 7-5a: Predictive coding of 8.3,0with 8 and 64 levels for the conversational 

sequence. 
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Figure 7-5b: Predictive coding of (}s,o with 8 and 64 levels for the wave sequence. 
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Figure 7-5c: Predictive coding of 86,0 with 8 and 64 levels for the dance sequence. 
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Figure 7-5d: Predictive coding of Bz.7,1 with 8 and 64 levels for the gesture sequence. 

Figure 7-6 shows the PSNR against bit-rate for predictive coding. Note that the effective 

bit-rate and error for the gesture sequence are for the right hand only. The saving over 
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direct quantization can clearly be seen (chapter 9 contains a comparison between various 

coding methods for the same sequence). The graphs are also more spread out relative to 

each other, which indicates that the coding method is sensitive to temporal variation, which 

direct quantization is not. It can be seen that predictive coding, for all practical purposes, 

becomes lossless for more than 257-level quantization. However, the practical range for 

this method lies between 3000 and 6000 bits/second. 
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Figure 7-6: Distortion vs. bit-rate for predictive coding. 

9> 
I 

7.6 Adaptive predictive coding 

The structure of an adaptive predictive coder is very similar to that of a predictive coder, 

and it shares the same layout as shown in figure 7-4. However, in the case of an adaptive 

predictive coder it is important to note that either the quantizer, or the predictor, or both are 

adapted to give an improved output B(n). Note that the scheme shown in figure 7-4 is a 

feedback system, i.e . the adaptation parameters are calculated from the decoded signal. The 

concept of adaptive quantization was already covered in section 7.3. It is natural to 

consider adapting both the quantizer and predictor to match the temporal variations in the 

human motion signal. Adaptive prediction implies that the prediction coefficients {ai} are 
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now fu nctions of the current sample or update, i.e. they should be writtt.n as {ai(n)}. The 

predictor function of equation (7-12) now becomes 

J1 

(j (n) = Lak (n)8(n - k). (7-15) 
k ~ 1 

Similar to speech signals, the prediction coefficients could be chosen to minimize the 

average mean-squared prediction error over short time intervals. Again there are numerous 

approaches and methods to solve this problem, such as the autocorrelation and covariance 

methods [73). By evaluating equation (7-13) for short motion segments and omitting the 

effects of quantization noise, it can be shown that the autocorrelation method provides a set 

of equations that can be written in matrix form 

AIX = B, (7-16) 

where A is a pxp matrix of autocorrelation values 

Re(p-1)Re(O) 

Re(l) Re(P - 2) 

, (7-17)Ro(p-3)A = Re(2) 

and B is a px 1 vector of autocorrelation values 

Re(l) 


Re(2) 


(7-1 8) B = Re(3) 
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The matrix A has a To pIi tz structure, and the solution a = A-I B can be computed using a 

variety of numerical methods. In equations (7-17) and (7-18), the term Rrin) refers to the 

short-term autocorrelation function of the sequence {E{n)}, which can be calculated from a 

windowed segment of motion. The choice of window and window length depends on the 

characteristics of the DOF in question and the type of motion. We use window lengths of 

between 0.5 seconds (15 samples at 30 Hz) and 4 seconds (120 samples at 30 Hz). 

We have found that not much is gained for values of p greater than 2, and the following 

results were obtained using a second order adaptive predictor, together with an adaptive 

quantizer. Figures 7-7a to 7-7d show the results for adaptive predictive coding of the 

representative joint angles. Depicted are the original, 8-level quantized, 64-level quantized 

and the error signal of the 8-level quantization. It can be seen that the error for an 8-level 

quantizer is worse than that of simple first order non-adaptive prediction, a fact that is also 

evident on the rate-distortion graph of figure 7-8. The sharp increase in error at very low 

bit-rates is due to the omission of quantization noise effects in the calculation of the 

adaptation coeffic ients (the difference signal is severely quantized to 4 levels at these low 

rates). At low rates the system also exhibits oscillatory quantization behaviour, which can 

clearly be seen in figure 7-7d. For higher bit-rates, the adaptive coding scheme clearly 

outperforms the non-adaptive techniques. 
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Figure 7-7a: Adaptive predictive coding of fh,o with 8 and 64 levels for the 

conversational sequence. 
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Figure 7-7b: Adaptive predictive coding of ()s,o with 8 and 64 levels for the wave 

sequence. 
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Figure 7-7c: Adaptive predictive coding of 86,0 with 8 and 64 levels for the dance 

sequence. 
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Figure 7-7d: Adaptive predictive coding of BJ,owith 8 and 64 levels for the gesture 

sequence. 
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Figure 7-8: Distortion vs. bit-rate for adaptive predictive coding. 

7.7 Dead reckoning 

Dead reckoning (DR) refers to a traditional method of calculating the position of an object 

given its velocity and/or acceleration. This concept can be used to decrease the number of 

update messages that need to be sent in a networked virtual environment, since the position 

of the object can be extrapolated. Examples of such usage can be found in the Distributed 

Interactive Simulation (DIS) protocol [49] and the NPSNET system [30,31]. 

More formally, assume that there is a known function ~t) of time, and that the first and 

second derivatives e(t) and e(t) are known, or can be calculated. For convenience, let 

cu(t) = e(t) and aCt) = dJ(t) =e(t) . If aCt) is constant over a time period o ::s; t < T with a 

value of a, we can write 

OJ(t) = OJo + at , 
(7-19) 
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where eo = e(O) and (vo = (V(O). Similarly, if (V(t) is constant over a period 0 ~ t < T 

with a value of (v, we can write 

(7-20) 


where eo = e(O). Clearly, with eo, (vo, (V and/or a known, the function ~t) can be 

evaluated over the period 0 ~ t < T . The dead reckoning algorithm uses this concept in the 

following manner: 

Two copies of the human model are maintained. One is the "real" or local human 

model, as obtained from the input devices or animation system. The other is a so­

called ghost model, which is updated by the likes of equations (7-19) and (7-20). 

Denote a single DOF in the real model as the function e(t) 2 and the corresponding 

DOF in the ghost model as e'(t'). Similarly we define the functions (V'(t') and 

a'(t'). We also define some error measure £ = e(e(t) , e' (t')) between the local and 

ghost model. For simplicity, we will look only at the case of constant aJ(t) (equation 

(7-20)) in the following discussion. It can at any time be extended to use equation (7­

19) as well. At time t, we set e~ =e(t) and obtain a value for the constant (v. The 

real model is locally updated by the input devices, and the ghost model is updated 

using equation (7-20). After some time the approximation of constant aCt) or aJ(t) 

will not hold anymore, and the value of £ will exceed some threshold. At this point, 

we reset the dead reckoning time t' to zero, again set e~ = e(t) and obtain a new 

value for m. By adj usting the error threshold for £, we can control the resetting 

frequency of the DR process. 

2 In the case of joint angles, e(t) conveniently becomes the angle, (V(t ) becomes the angular velocity and 

aCt) becomes the angular acceleration. 
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This concept is shown in fi gure 7-9 . In terms of a networked environment, we only need to 

transmit messages containing e~ and OJ when the error threshold is exceeded. The above 

reasoning assumes that the relative time reference of the local and remote process is exact 

or at least very close. A similar DR process is used at every receiver for each participant in 

the virtual world. A problem that is immediately evident from figure 7-9 is that we cannot 

simply set e~ = e(t) during a reset, as it will result in a discontinuity in €I' (t'). There are 

various methods to compensate for this, but they will not be discussed here. For us, the 

important point is that it should not influence the frequency at which new updates are sent, 

nor should it influence the amount of information that needs to be sent. 

---...-.---.-- - - - -­

8 '(1 ') .............. : 8(1) 


e>£ ~.. "" 


8(t) 

• Original samples 

• Dead reckoning samples 

Figure 7-9: Dead reckoning operation. 

A generalized schematic for a DR coder and decoder is shown in figure 7-10. This includes 

the use of a quantizer, and possibly a statistical coder. Note that the DR update parameters 

are taken after the quantizer to account for quantization noise. It is not clear from other DR 

implementations [35] whether quantization and/or statistical coding are used at all. In our 

opinion, at least quantization is crucial for further reduction, as this is a basic component of 

most compression systems. In addition, we do not transmit the absolute position for each 

new update, but rather the difference between the desired and predicted position. The 

difference can be quantized with fewer levels and results in a further rate reduction. There 
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is the need for an accurate estimation of the speed and acceleration, if it cannot be 

measured directly. The use of a Kalman filter has been proposed by [35] for noisy data. We 

have found that our motion data is relatively noise free, and that it is sufficient to estimate 
. . . 

the quantities B(t) and B(t) by fitting at least a second order polynomial to fl..t), using a 

simple least-squares solution with a 7 sample window. This method introduces a 3 sample 

delay, and should be kept in mind when different systems are compared to each other. 

Initial 
'3ettingll 8'(1' ) 

~__..... Send 
Control update
device 8(t) 

Last 
update 

Figure 7-10: Dead reckoning coder (top) and decoder (bottom). 

The error measurement can be done in a variety of ways, each of which will result in 

different performances of the algorithm. A number of possibilities are discussed in chapter 

6. The most obvious method for independent single DOF variables is to take the distance 

& = iB(t) - B'(t')i as the error. However, some DOFs contribute less to visual errors, and it 

is often advantageous to group a number of DOFs together and to use a weighed mutual 

error measurement, such as joint distance. 

It is possible to use a higher level DR algorithm that analyzes actions and/or motion 

control methods to make an update decision. Such algorithms will fall under the more 
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general case of non-uniform sampling methods rather than dead reckoning, and is beyond 

the scope of this chapter. 

Figures 7-11 a to 7-1 1 d show the results for the dead reckoning compression method on the 

representative joint angles. All the DOFs were processed separately using a simple 

absolute difference as the error measurement. Figure 7-12 shows PSNR against bit-rate for 

the various test sequences. It can be seen that the dead reckoning algorithm does not 

perform very well, except possibly for the gesture sequence. In fact, it is evident from the 

dance sequence that the resulting bit-rate can even exceed the original raw bit-rate. This 

can happen when twice the amount of original information is sent (i.e. both angle and 

angular speed) too frequently. A check can be done by calculating a histogram of the 

frequency of updates for the whole sequence. Figure 7-13 shows such an average 

histogram that covers the whole of the rate-distortion range in figure 7-12. It is clear that 

the conversational sequence requires updates for every new sample for almost 70% of the 

time. The gesture sequence performs better, and requires new updates only 40% of the 

time. Still, such frequent updates result in high bit-rates, considering that the value, as well 

as the derivative, of a DOF is sent. 
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Figure 7-11a: Dead reckoning of 0.,,0 for the conversational sequence. 
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Figure 7-11b: Dead reckoning of ()s,o for the wave sequence. 

DOFs [deg] 

0.0 

-15 .0 

-30.0 

-45.0 

-60.0 

-75.0 

-90 .0 

-105.0 

-120.0 

-135.0 

-150.0 

Eo-or [deg] 

5.0 

4.0 

3.0 

oOriginal 
o 6 ~ 0.25 
o e !!!!! 2 
'V En"or 

2.0 

1.0 

0 .0 

-1.0 

-2 .0 

-3 .0 

-4.0 

-5.0 
2.0 	 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

Time [sl 

1.0 

Figure 7-lIc: Dead reckoning of ()6,Ofor the dance sequence. 
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Figure 7-11d: Dead reckoning of Bz7,1 for the gesture sequence. 
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Figure 7-12: Distortion vs. bit-rate for the dead reckoning algorithm. 
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Figure 7-13: Probability of updates. 
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The dead reckoning algorithm performs reasonably well for slow motion with infrequent 

bursts of fast motion, and indicates that non-uniform sampling is well suited to such 

movement. Motion with continuous fast and "busy" sections cannot be predicted 

accurately with a first order curve. The dance sequence fails completely at low bit-rates. 

Second order prediction requires an additional acceleration parameter, and we have found 

that the bit-rate performance even worse. A higher level dead reckoning technique, such as 

one where the prediction is based on a full dynamic simulation of human motion, might 

perform berter, but is not investigated here. 

7.8 Frequency based coding 

Frequency or transform based coding methods usually imply a transformation from the 

time to frequency domain, from which a normal coding route is then taken. Many signals 

have a more suitable representation in the frequency domain for coding than the time 

domain representation. The reason for this is that the inherent sample-to-sample correlation 

that exists in most natural signals tends to cluster the energy in the frequency domain in a 

relatively small number of transform samples. To achieve bandwidth reduction, those 
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frequency components or samples with low magnitude could be grossly quantized or even 

discarded, without introducing serious degradation. Unfortunately, human motion is 

characterized by large temporal and frequency variations. Natural human motion consists 

of slow movements with long time windows and small frequency windows, with 

occasional fast movements with narrow time windows and large frequency windows. It 

would therefore be convenient to describe the signal in both the time and frequency 

domain. This can be accomplished by a number of so-called time-frequency methods, such 

as short-term Fourier spectrum manipulation and wavelet decomposition. Wavelet 

decomposition is particularly attractive, since it helps observing rapidly changing functions 

by using shorter time windows, and low frequency components by using longer time 

windows (this is different from the Fourier transform, where the bases are characterized by 

an infinite time window). 

7.8. 1 Discrete cosine transform (OCT) 

The Karhuhen-Loeve Transform (KL T) (sometimes referred to as the eigenvector 

transform) is a technique for transforming a signal into a set of uncorrelated 

representational coefficients. However, it is well known that signals with Markovian 

properties can be decorrelated with faster and simpler approaches such as the Discrete 

Cosine Transform (DCT), while approaching the efficiency of the KL T process. In chapter 

4, we have seen that human motion indeed exhibits such temporal causal relations, or 

Markov properties, due to the inherent inertial forces at work. 

The DCT transforms a real sequence {~n)} of length N into an array {6{n)} of length N 

frequency coefficients or components. The value of 6{O) is often referred to as the DC 

component, and represents the average or mean of the sequence { ~n)}. The rest of 

coefficients are referred to as the AC components, and contains increasingly higher 

frequency information about {~n)}. Human motion data have relatively low frequencies, 

and the higher frequency components of {6{n)} are often very small and can be discarded. 

This could dramatically reduce the amount of data that is presented to the channel. The 

fo rward DCT is defined by the formula 
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N-l ( (2n+l)n"k) 
8(k) = C(k)~e(n)COs 2N ' 	 (7-21 ) 

and the inverse DCT is defined by 

B(n) = 	IC(k)e(k)COs((2n+l)Jrk ). (7-22) 
hO 2N 

The quantity C(k) is a scaling coefficient and can be implemented in various ways. We use 

1
IN' k=O 

C(k) = (7-23)
J2
IN' k >0 

Refer to [50] for more details on the DCT. 

Figure 7-14 shows a block diagram of a DCT based coder and decoder. Disregard the 

adaptive section for a moment. The input sequence is segmented in groups of length N, 

where N is a power of two, to be able to use a fast algorithm for the DCT. The resulting 

DC and AC coefficients are quantized and statistically coded. Again, there is a choice 

between using inter-frame prediction for the coefficients, or using straight quantization. 

This section of the coder is very similar to the predictive and adaptive predictive coders 

discussed earlier, and will not be explained in detail. The DCT coder is a bit more 

complicated than the simple predictive coder in the sense that there are more parameters to 

be optimized, especially regarding the quantization of various frequency components. We 

use empirically determined step sizes and ranges for the different AC and DC frequency 

components. The DCT based decoder, also shown in figure 7-14, simply performs the 

inverse operations of the coder, including an Inverse Discrete Cosine Transform (IDCT). 
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Figure 7-14: DCT coder and decoder. 

Similar to techniques used in video compression such as the MPEG format, the operation 

of the DCT coder can be adapted to short-term motion characteristics. We have found that 

the visual artifacts generated by quantization errors are less noticeable during fast 

movement. The quantization can therefore be coarsened in such situations, resulting in an 

increased compression ratio. The dotted lines in figure 7-14 indicate an adaptive solution 

that has been developed for human motion. An estimate of the first derivative (i.e. the 

speed) is obtained from the input sequence. This quantity is then passed through a 

threshold decision algorithm, which in tum chooses from a set of quantizers and predictive 

coders. This is a feed-forward approach, and the decision information must be transmitted 

along with the coded frequency components. It should be noted that the use of adaptive 

coding based on an subjective quality observation would adversely affect the use of the MS 

error measurement, although there is a decrease in bit-rate. The results and PSNR 

measurements presented at the end of the section were obtained using the adaptive method. 
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The DCT operation could obtain a more efficient frequency estimate of the input sequence 

for larger N, but we also have to realize that we introduce a delay of N samples by doing 

so. Furthermore there are more non-zero AC coefficients to be coded. On the other hand, 

for small N there are more DC components to be coded, each of which uses more bits than 

the corresponding AC components. We use a relatively small segment length of N = 16, 

which was determined empirically. Even so, at an input sample rate of 30 Hz, this 

represents a coding delay of 0.5 seconds. This delay sets the DCT method completely apart 

from the other tP('hniq1.1eS presented in thi::; chapter. If real-time lllleral:lioll is of cardinal 

importance, high delay techniques such as transform coding cannot be used. However, 

since the exact delay is known, it can be compensated for when comparison studies with 

other algorithms are done. 

Figures 7-15a to 7-15d show the results for the OCT compresslOn method on the 

representative joint angles. Depicted are the original signal, the decoded signal with two 

different adaptive threshold decision schemes, as well as the error signal of the second 

adaptive method. The threshold and quality parameters are given in Appendix III. It is 

clear that the DCT method outperforms predictive coding by at least a factor two. The 

errors introduced by the DCT algorithm are also visually much more pleasing, except for 

block effects due to the finite length window used, which results in a periodic jerk. We 

compensate for this by smoothing the first and last samples of two adjacent blocks (not 

shown in figure 7-15). The MS error increases slightly in doing so, but the visual results 

are much more pleasing, as can be seen clearly in the video clips. 
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Figure 7-15a: nCT coding of B:J,o for the conversational sequence. 
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Figure 7-15b: nCT coding of ()s,o for the wave sequence. 
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Figure 7-15c: nCT coding of 06,0 for the dance sequence. 
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Figure 7-15d: nCT coding of fh7, 1 for the gesture sequence. 

Figure 7-16 shows the PSNR against bit-rate for the DCT coding method. There is a clear 

advantage compared to the other methods presented thus far. 
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Figure 7-16: Distortion vs. bit-rate for the DeT algorithm. 

7. 8. 2 Time-frequency methods 

We briefly investigate the use of wavelet decomposition and subband coding as human 

motion compression methods. Both of these methods offer a more intuitive approach 

towards quantization strategies. For example, the structure of a subband coder closely 

resembles the defini tion of the VMSE discussed in the previous chapter. A natural bit 

allocation and quantization strategy could therefore be applied to favour the formulation of 

the VMSE in order to obtain visually pleasing decoded motion. This concept is very 

similar to the noise masking characteristics of the human ear. Speech coders (such as 

subband coders) often make use of these characteristics to enhance the perceived audio 

quality. In a similar manner wavelet decomposition allows us to choose and manipulate 

various properties of the motion signal to achieve a better visual effect. 

Figure 7-17 shows a generalized subband coder/decoder and figure 7-1 8 a basic wavelet 

approach. The subband coder divides the input signal into a number of frequency bands, 

each of which is separately coded with a predictive coder. The performance of the 

predictive coders can be adjusted to better suit visual fidelity , even if it results in a drop in 

PSNR. We use a frequency division scheme similar to figure 6-l. The wavelet approach 
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decomposes the input signal into a number of decomposition levels. We use a full 

decomposition, i.e. there are log2(N) levels for an input length N that is a power of two. 

The M largest decomposition values are retained by means of a threshold system, where M 

< N. These values are separately coded with predictive coders that can be adjusted for 

visual fideli ty. 

ern) 

Coder Decoder 

Figure 7-17: Simplified subband coder/decoder. 
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Figure 7-18: Simplified wavelet based coder/decoder. 

In theory, the time-frequency methods appear very appealing and intuitive. However, due 

to the very low sampling rate there are few samples to work with. Similar to the De T 

method, we cannot afford a coding delay of much more than 0.5 seconds or 16 samples. 

This results in practical issues such as filter length constraints and windowing problems. 
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The actual implementation also suffers from annOYlllg artifacts caused by block edge 

effects that completely mask the visual gain obtained by the selective coding process. Due 

to these edge effects we have found the resulting performance to be roughly the same as 

the DeT method, and visually below that of the adaptive DeT method for similar bit -rates. 

7.9 Vector quantization methods 

Vector quantization (VQ) involves the grouping of a number of variables together to form 

a vector. This group can then be quantized, as opposed to the single variable quantization 

discussed above. Variables or joints that are grouped together must be correlated in some 

fashion, otherwise nothing is gained and the results will be no different from single 

variable quantization. Variables can either be grouped spatially or temporally, or both. 

VQ can be formulated as follows [51]: Assume that 0 is a k-dimensional vector consisting 

of real-valued random variables. Vector quantization is defined as the mapping of 0 onto 

another k-dimensional vector 0' such that we can write 

@ =Q(0). (7-24) 

0' takes one of a finite set of values {6 J, 1 ~ i ~ N . The set {8 i } is referred to as the 

codebook, the individual entries are the code vectors and the size N of the code book is 

referred to as the number of levels . To design the codebook, we divide the k-dimensional 

space of 0 into N regions {C;}, 1 ~ i ~ N, with a vector 8 i associated with each region C. 

The quantizer then assigns the code vector 8 i if e is in C i . 

If we denoted some error measure between 0 and 0' as eC0,0 ') the overall average error 

is given by 

1 M
[; = lim '- Le(e(n),@Cn)) . (7-25) 

M -.", M 1/=1 
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The quantizer is optimal in terms of the error measure if the overall error is minimized over 

all N levels . Two conditions are necessary for this. The first is that the quantizer must be 

realized by using a nearest neighbour selection rule 

Q(0) =6 i iff e(0 ,6 J S; e(0,6), i -j; j , 1 S; j S; N, (7-26) 

The second condition is that the code vector 8i must be chosen to minimize the average 

error in region C. Such a vector 8i is called the centroid of region Ci, and again depends on 

the error measure being used. 

The establishment of an optimal codebook that fulfills the above requirements generally 

requires and exhaustive search method and is computationally extremely expensive. An 

alternative sub-optimal method is the Linde-Buzo-Gray (LBG) algorithm [72] , which 

repeatedly splits a region into two smaller regions and assign a codebook entry to each, 

until a desired size is reached. The algorithm consists of the following steps: 

• 	 Create an initial reglOn that contains the entire training set. The initial codebook 

therefore has one entry corresponding to the centroid of the entire set. 

• 	 Split the region into two using a well defined procedure. The codebook now has twice 

the amount of entries. 

• 	 Repeat the splitting process until the codebook reaches its desired size. 

The splitting procedure has a big impact on the optimality of the codebook. Ideally each 

region should be split or divided by a hyperplane that is normal to the direction of 

maximum distortion. This ensures that the maximum distortions of the two new regions 

will be less than that of the parent region. However, calculating the maximum distortion as 

the codebook size increases becomes computationally expensive, and often a simpler 

scheme is used. We simply use Euclidean distances (L2-norms) as error measurement and a 

"diameter splitting" technique, similar to the alternative LBG algorithm [72]. 
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7.9.1 Spatial quantization 

Spatial vector quantization can be done on a group of spatially correlated DOFs. In chapter 

5 it was intuitively shown that there is correlation between joints and segments that fo rm 

part of a limb, such as the arms, legs, torso etc. However, establishing a vector quantization 

codebook with sufficient entries to accommodate a large number of possible movements 

requires huge training sets and computational power. Such codebooks are also restricted to 

a very specific type of motion, and is difficult to generalize. Spatial vector quantization 

does not perform very well for arbitrary body movement where the spatial 

interrelationships between DOFs are not clearly specified (i .e. correlation is not necessarily 

measured accurately by the L2 norm). Figures 7 -19a to 7 -19b show the results for the 

conversational and gesture sequences respectively, each with a codebook length of 32 and 

256 entries. Also shown is the error for the 256 entry coding. The reconstruction of the 

other sequences is similar or even worse, and is not shown. Figure 7-20 depicts the PSNR 

for all the sequences. Note the change of scale compared to previous rate-distortion results. 

Although quite high compression ratios are achievable (l0:1 or more), the error is clearly 

unacceptable. The video clips also confirm this. 
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Figure 7-19a: Spatial vector quantization of 8.3,0 for the conversational sequence. 
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Figure 7-19b: Spatial vector quantization of fh7,1 for the gesture sequence. 
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Figure 7-20: Distortion vs. bit-rate for spatial vector quantization. 
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One example of where spatial vector quantization does perform well, is hand gestures. 

There are a limited number of universally recognized hand gestures that are frequently 

used by people. It can almost be seen in the context of a universal sign language. These 
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gestures are usually a combination of open and closed fingers. From this viewpoint, the 

whole hand can intuitively be quantized with 32 codes (5 bits - one for each finger). 

Building such a codebook using the techniques described earlier requires a representative 

gesture motion sequence that contains examples of all possible gestures. Our gesture 

sequence contains a fair number of gestures (the small example segment in figure 5- 1c 

shows a counting sequence). It should be noted that such severe vector quantization 

approaches a gesture recognition system, which is more appropriately described by model 

based coding (chapter 8). Although the PSNR shown in figure 7-20 indicates an 

improvement over other body parts, the MS error measurement is not appropriate for 

spatial vector · quantization, especially if combined with some smoothing technique. For 

example, even at extremely low bit-rates (and hence high MS errors), the information 

contained in the counting sequence is still quite evident in figure 7-19, and even more so in 

the video clips. 

7.9.2 Temporal quantization 

We have already established in previous chapters that there is a high temporal correlation 

between adjacent DOF samples. A number of consecutive samples may be grouped 

together to form a vector, which can then be quantized as described in the previous section. 

Although this technique introduces a delay that is proportional to the dimension of the 

vector, qui te high compression ratios can be achieved with an acceptable MS error. Due to 

the temporal correlation, a vector dimension of more than one will always yield better 

results than straight quantization (one-dimensional) of the DOF in question. Figures 7-21 a 

to 7-21 d show the results for the representative DO F s of all the sequences, as well as the 

reconstruction error for 256 codes. Figure 7-22 depicts the PSNR against bit-rate. In all 

cases a temporal vector dimension of 6 samples (180 ms) were used. Note the change of 

scale compared to previous rate-distortion graphs. A clear improvement can be seen 

compared to the results for direct quantization shown in figures 7-2 and 7-3. 
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Figure 7-21a: Temporal vector quantization of 8.3,0 for the conversational sequence. 
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Figure 7-21b: Temporal vector quantization of 05,0 for the wave sequence. 
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Figure 7-21c: Temporal vector quantization of 06,0 for the dance sequence. 
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Figure 7-21d: Temporal vector quantization of {h,7,1 for the gesture sequence. 
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Figure 7-22: Distortion vs. hit-rate for temporal vector quantization. 

7.10 Summary 

This chapter presented a number of waveform compression methods and results. The use 

of direct joint angle quantization has been proposed by others [5,29], but at reasonable 

compression ratios the annoying quantization artifacts prohibits the use of such a naive 

method. Quantization is left as a functional step in higher complexity methods. The same 

reasoning is applied to adaptive quantization and statistical coding processes. Predictive 

coding and especially adaptive predictive coding were quite successfully applied as human 

motion compression methods. Compression ratios in the order of 5: 1 can easily be 

achieved with these low complexity, low delay methods. Although dead reckoning has 

been successfully applied to synthetic objects in military applications as a bandwidth 

reduction technique [30], the results for human motion was not encouraging. Transform 

coding methods showed great potential, and compression ratios in excess of 10: 1 can be 

expected. However, due to the inherent low sampling rate of human motion, these 

techniques are plagued by coding delay and block artifacts. The use of vector quantization 

methods was also investigated, but the requirement of a huge representative training 

sequence prohibits general use. 
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