
Chapter 5 Data analysis 

5.1 Introduction 

Analysis of human motion can be interpreted on a number of levels. Low level analysis 

includes parameters such as limb position and orientation. High level analysis includes 

posture, gesture and expression analysis. Human motion has been studied for many years 

on both high and low level. For the purpose of this study it is convenient to represent the 

data as a discrete-time stochastic process, and the human motion is viewed as low level 

digital waveform representations. Mathematically tractable and precise engineering 

approaches can be used to analyze and characterize the waveforms. Specific attention will 

be given to the analysis of joint angles, since this is the primary source of information that 

will be compressed and coded. 

There are fundamentally two approaches in determining the statistics of human motion. 

The first is to look at the driving force or process behind the motion and to analyze the 

motion from a purely analytical perspective. The other approach is to look at an infinite 

amount of stored motion data and to interpret it purely numerically . Both of these methods 

are fraught with difficulties. A useable mathematical model might not always exist for 

every human motion variable to be analyzed. Even with appropriate models there are still 

too many unknowns, which tend to undermine an analytical approach. On the other hand, it 

is impossible to store and process an infinite amount of data, which raises the question 

whether the sample used is representative of the population. This research approaches the 

analysis of the motion numerically, provided it is understood that the results are only 

applicable to the few types of motion discussed here. 
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5.2 Numerical analysis 

It is convenient to assume that the human motion waveforms can be represented by an 

ergodic random process. Although this is a gross simplifi cation, such a statistical point of 

view can yield useful results. The random process in question here is applicable only to 

specific types of motion (i.e. to the examples presented here) - we do not attempt to derive 

statistics for human motion in general. Such a task would be almost impossible. It is 

occasionally convenient to group a number of DOFs together to avoid tedious repetition 

and to clarify results. We assume that there are a number of such groups that are 

independent of each other, and that each has different characteristics. Clearly, foot 

movement does not depend on hand movement for normal human behaviour. Where 

appropriate, the characteristics of head movement, torso movement, arm movement, leg 

movement and finger movement will be jointly investigated. Table 5-1 shows this in more 

detail. 

Table 5-1: Joint and segment grouping 

Group Reference 
number 

Number of 
joints 

Number of 
segments 

Number 
of DOFs 

Root and torso 0 2 2 7 
Neck and head 1 2 2 5 

Left arm 2 3 3 8 
Left hand 3 14 14 19 
Right arm 4 3 " .) 8 
Right hand 5 14 14 19 

Left leg 6 3 3 7 
Right leg 7 3 3 7 

Denote the jth DOF of the ith joint as a sequence {Bi;Cn)} of a discrete-time random 

process. From table 2-1 and figure 2-4 it can be seen that 0 ~ i ~ 48 and 1 ~j ~ 6. The same 

notation can be used for a group of DOFs, with the subscript i indicating the group number, 

and in this case we have from table 5-1 that 1 ~ i ~ 8 and 1 ~ j ~ 19. Refer to Appendix I 

for additional information. For the purposes of this research it is adequate to characterize 

the motion signal and its derivative in terms of its first order probability density, and in 

terms of its autocorrelation and power spectral density functions. These methods will be 

discussed in the following sections. 
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5.2. 1 Examples 

Three examples of human motion will be used for statistical analysis. The first example is 

obtained from general conversational movements, the second is obtained from fast dance 

movements and the third from hand gestures. The latter is used specifically for analysis of 

finger movement - general body activity often lacks detailed hand gestures. We assume 

that most common motion will fall between the extremes represented by these examples. 

Figure 5-1a shows a 10 second segment of conversational movement for the left arm, 

figure 5-1 b a 10 second segment of dance movement for the left arm, and figure 5-1 cal 0 

second segment of finger movement. Figure 5-1 d depicts an image of 1 second ' s worth of 

overlaid 3D rendered frames for the dance sequence (skeleton only). The length of the 

original sequences is 300 seconds each. For clarity these figures show but a fraction of the 

available DOFs and sequence lengths. The full motion sequences are available on request. 

The motion sequences were captured using the techniques described in chapter 3, at a 

sampling rate of 30 Hz. We therefore assume that the frequency content of the motion is 

less than 15 Hz to satisfy the Nyquist criterion. It will later be shown that this is indeed the 

case, except possibly for extremely fast motion such as found in sport activities. 
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Figure 5-1a: Conversational motion example for left arm. 
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Figure 5-1b: Dance motion example for left arm. 
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Figure 5-1c: Finger gesture example for left hand. 
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Figure 5-1d: Overlaid frames fo r the dance sequence. 

5.2.2 Spatial content 

Ranges 

The range of each degree of freedom is mainly a function of the theoretical joint limits as 

discussed in chapter 2. However, table 5-2 summarizes the practical ranges as obtained 

from the motion sequences of figure 5-1 , excluding the hands. Table 5-3 summarizes the 

characteristics of the finger movement for the gesture sequence. Also shown in the tables 

are the mean and standard deviation for each DOF. 

Table 5-2: Summary of body DOF characteristics. 

Description Conversational sequence Dance sequence 

Joint 
name 

DOF Min Max Range Mean Std. 
dey 

Min Max Range Mean Std. 
dey. 

Root 80. 1 -71.4 59.7 131.2 -0.1 18.16 -63.6 51.5 115.1 -1.8 14.75 
Root 80•2 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.00 
Root ( 0) 0.0 0.0 0.0 0.0 0.00 0.0 0 .0 0.0 0 .0 0.00 
Root 80.4 -0.100 0.165 0.265 0.016 0.046 -0.163 0.247 0.410 0.034 0.088 
Root 80•5 0.860 1.068 0.208 0.997 0.010 0.804 1.037 0.233 0.965 0.026 
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Root 110,6 -0.118 0,085 0,203 -0,011 0,028 -0,280 0,060 0,340 -0,060 0.049 

Torso 191,1 0.0 0,0 0,0 0,0 0.00 0.0 0,0 0,0 0.0 0,00 

Torso ()1,2 -16.3 31.9 48.2 6.5 6,05 -8,2 30.0 38,2 10.7 5.26 

Torso ()1 ,3 -29.6 20.4 50,0 -1.7 5.35 -26,8 28,9 55.7 1.1 6.61 

Neck e." I -24,1 22.2 46.4 0,5 7,99 -29.1 22.8 51.9 -6.1 7.63 

Neck (h, ,2 -15,0 15,0 30.0 0,7 4.97 -15.6 15.4 30,9 2.4 6.58 

Head th,1 -76.3 82.9 159.3 9.5 25.92 -88,5 89,2 177,7 -9,9 30,56 

Head 193,2 -24,1 22 ,2 46.4 0.5 7,99 -31.4 22 ,8 54,2 -6.1 7,65 

Head th,3 -15.0 15.0 30.0 0.7 4,97 -15,6 15.4 30,9 2.4 6.58 
Left 
shoulder 

()5, I -82.8 131.8 214,5 29,5 35,66 -100.0 100.9 200.9 -7.5 30.10 

Left 
shoulder 

195,2 -1103 -6 .5 103 ,8 -27,0 11,65 -91, I -3,9 87.2 -32.4 11.77 

Left 
shoulder 

195,3 -167.9 169.7 337.6 29,0 55 .34 -95.4 85.0 180.4 8.8 30.63 

Left 
elbow 

116, [ -153.0 -4.0 149,0 -66,7 45,69 -148,8 -4,3 144,6 -86.0 22.42 

Left 
elbow 

196.2 -91.0 110,7 201.7 0.5 45,68 -38.7 90.4 129.0 45.8 22.83 

Left wrist ~, I 0.0 0.0 0.0 0.0 0,00 0.0 0,0 0,0 0.0 0.00 
Left wrist ~,2 0.0 0,0 0.0 0.0 0.00 0,0 0.0 0,0 0.0 0,00 

Right 
shoulder 

(h,2, I -113,6 104.8 218.4 -8.1 38.75 -103,5 104.5 208,0 1.8 29,79 

Right 
shoulder 

(h,2 ,2 6.0 137,0 131.0 23.6 18,83 3.3 129.4 126,0 32 .9 15.28 

Right 
shoulder 

(h,2 ,3 -112.2 132.9 245.1 -7.5 39,55 -90,3 167.7 258.0 -4,7 28.92 

Right 
elbow 

(h,3 , [ -156 ,2 -4.0 152, I -77, I 46.30 -161.4 -4,3 157,1 -74.4 29.41 

Right 
elbow 

(h,3 ,2 -90.3 90,0 180,3 -15,3 31.93 -90.4 89,8 180,2 -24.4 33.60 

Right 
wrist 

()24, I 0,0 0.0 0,0 0.0 0,00 0.0 0,0 0,0 0.0 0,00 

Right 
wrist 

e.,4,2 0.0 0,0 0.0 0,0 0.00 0,0 0.0 0.0 0,0 0,00 

. Left hip 1939 ,\ -32.6 7,2 39,8 -5.4 3,57 -42.6 2.7 45.4 -17.4 7,90 

Left hip th9.2 0.0 0.0 0.0 0.0 0.00 0.0 0,0 0.0 0.0 0.00 

Left hip th9 ,3 -10,7 7.6 18,3 -0,9 3.18 -18.8 12,0 30,8 -2,2 5,95 

Left knee 1940 ,[ 0.1 68,0 67,9 8.4 5,69 -0.8 80.4 81.2 25.1 13,92 

Left ankle 1941 ,1 -30,0 14.5 44.6 -2.9 4,15 -30.0 19,9 49,9 -7,7 8.27 

Left ankle 194 [,2 -15.0 15.0 30,0 0,5 10.40 -15, I 15,8 30.9 1.3 9,80 

Right hip 1943, 1 -32.4 4,8 37,2 -5.5 3.41 -41.9 4.0 45.9 -17.2 7.82 

Right hip 1943 ,2 0.0 0,0 0.0 0.0 0,00 0.0 0,0 0.0 0.0 0,00 

Right hip 1943 ,3 -Il.l 6,6 17.7 -1.3 3.22 -15,0 12.1 27 . 1 -2.5 5.88 

Right 
knee 

1944 ,\ 0, I 68.0 67.9 8.5 5,71 -0 .8 80,5 81.3 25.4 13,91 

Right 
ankle 

1945,1 -30.0 10.2 40,2 -3,0 3,84 -30,0 21.5 51.6 -8.1 8,06 

Right 
ankle 

1945 ,2 -15.0 15.0 30.0 0.5 10.40 -15, I 15.8 30.9 1.3 9.80 
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Table 5-3: Summary of finger DOF characteristics. 

Joint name DOF Min Max Range Mean Std. dey. 
Left thumb I Bs,\ -0. 0 30 ,0 30.1 11.7 4.73 
Left thumb 2 199. 1 -0.1 80.1 80,2 31.1 12.62 
Left index I 1910,1 0.0 0.0 0,0 0.0 0.00 
Left index I 1910,2 -0.1 74,9 75.0 27.4 16.74 
Left index 2 1911 . 1 -0 . 1 74 .9 75 .0 27.4 16.74 
Left index 3 1912, 1 -0.1 60.0 60.0 21.9 13.39 
Left middle 1 1913 ,1 0.0 0.0 0.0 0.0 0.00 
Left middle I 1913 .2 -0.0 75.0 75.1 27.6 17.29 
Left middle 2 1914 •1 -0.0 75.0 75.1 27 .6 17.29 
Left middle 3 1915•1 -0.0 60.0 60.1 22.1 13.83 
Left ring I BIG •1 0.0 0.0 0.0 0.0 0.00 

Left ring I 1916•2 -0.1 7S.1 7S.2 24.S 16.08 
Left ring 2 1917•1 -0 . 1 7S .1 7S.2 24.S 16.08 
Left ring 3 Bl s . 1 -0.0 60.1 60.1 19.6 12. 86 
Left little I 1919. 1 0.0 0.0 0.0 0.0 0.00 
Left I ittle I 1919,2 -0.1 7S.1 7S.2 20.6 IS.87 
Left little 2 ~O.I -0.1 7S .1 7S.2 20.6 IS .87 
Left little 3 ~I.I -0.1 60.1 60.1 16.5 12.70 
Right thumb 1 ~5. 1 -0.0 30.1 30 .1 11.7 6.44 
Right thumb 2 ~6. 1 -0.0 80.2 80.2 31.3 17.18 
Right index I ~7. 1 0.0 0.0 0 .0 0.0 0.00 
Right index I ~7,2 -0.0 7S.1 7S.1 21.7 20.26 
Right index 2 ~8. 1 -0.0 7S.1 75 . 1 21.7 20.26 
Right index 3 ~9. 1 -0.0 60.1 60.1 17.4 16.21 
Right middle I 8.JO.1 0.0 0.0 0.0 0.0 0.00 
Right middle 1 8.JO.2 -0 .1 7S.0 7S.1 26.3 21.49 
Right middle 2 8.J 1. 1 -0 .1 7S.0 75.1 26.3 21.49 
Right middle 3 8.J2.1 -0.1 60 .0 60.1 21.0 17.19 
Right ring I 8.J 3. 1 0.0 0.0 0.0 0.0 0.00 
Right ring I 8.J3 .2 -0.1 75.1 7S .1 29.6 20.S8 
Right ring 2 8.J4. 1 -0.1 75.1 7S.1 29.6 20.S8 
Right ring 3 8.JS.1 -0.1 60.0 60 .1 23 .7 16.46 
Right little I 8.J6. 1 0.0 0.0 0.0 0.0 0.00 
Right little 1 8.J6.2 -0 .1 75.2 7S.3 26.9 22.49 
R ight little 2 8.J7. 1 -0.1 75.2 7S.3 26 .9 22.49 
Right little 3 8.JS.l -0 .1 60.2 60.2 21.5 17.99 

Resolution 

The resolution of each DOF is a function of the resolution of the input device used to 

digitize the motion. As described in chapter 3, we use 6 OOF electromagnetic sensors for 

body tracking and fiber optical data gloves for finger fl exure sensing. The electromagnetic 

sensors output a 16-bit value for a ±3 m and a ±180° range respectively [74], while the 

glove device outputs an 8-bit value for full flexure [75]. The output of both of these 
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devices is converted to a floating-point representation for internal use . The useable 

hardware resolution of the electromagnetic sensors is a function of the distance from the 

transmitter, as was indicated in figure 4-1. The useable glove sensor hardware resolution is 

constant under all circumstances. The total useable resolution in bits is a function of both 

the hardware and range resolution, denoted by Nh and Nr respectively. Using the noise 

power (J'~ from figure 4-1 , we find that the maximum number of useable bits for the 3 

position DOFs is given by 

N" = 16-(N" +NJ 

(5-1) 
= 16 [ ( 

65536.(J'" J ( 6 JJ '- log2 6 + log2 RI' 

where Rp is the range as found in table 5-2. The bits for the 3 angular DOFs is given by 

Na = 16 -(N" + NJ 

(5-2) 
=16- ( 10 ( 65536.(J'r)+10 ( 360 JJ g2 360 g2 R ' 

1I 

where Ra is the range as found in table 5-2, and (J'; is the noise power from figure 4- l. 

Similarly, if we assume a full finger flexure of roughly 70°, from chapter 4 we find that the 

useable number of flexion bits is given by 

256.(J'/ J 
= 8-log2 70 . (5-3)N f ( 

Assuming that the non-linear inverse kinematics calculations do not adversely influence 

resolution and range, the useable number of bits for each DOF can be found using the 

above mentioned equations. Table 5-4 shows the bit quantities with respect to the test 

sequences discussed above. A maximum, typical and minimum resolution is presented. 

Note that the number of finger bits is constant, and is only shown once. Throughout the 
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rest of the text, the typical value will be used for comparison purposes. Table 5-4 shows 

only the DOFs that we can actually measure, as described in chapter 4. In all fairness, only 

these DOFs should be used to calculate the raw, uncompressed bit-rate requirement. From 

table 5-4, it can be seen that the reduced skeleton model typically requires 345 bits/frame 

for the body and 168 bits/frame for the hands. At a sampling rate of 30 Hz, the bit-rate 

requirement is 15390 bits/second. 

Table 5-4: Resolution in bits for each DOF 

Joint name DOF Range Maximum Typical Minimum 
Root 8 0.1 131.2 14 12 9 
Root 8 0,4 0.410 14 11 7 
Root 80,5 0,264 13 1 1 7 

Root 8 0,6 0 ,3 64 13 I I 7 

Torso 8 1,2 48.2 13 10 7 

Torso 8 u 58.4 13 II 8 

Neck ~, I 51.9 13 10 8 

Neck ~,2 30.9 12 10 7 

Head 8.J , 1 177.7 15 12 9 

Head 8.J ,2 54.2 13 1 1 8 

Head 8.J ,3 30.9 12 10 7 

Left shoulder 8 5. 1 231.8 15 13 10 

Left shoulder 8 5,2 106.4 14 12 9 

Left shoulder 8 5,3 337 .6 16 13 10 

Left elbow 8 6,1 149.0 14 12 9 
Left elbow 8 6,2 201.7 15 12 10 

Right shoulder ~2,1 218.4 15 13 10 

Right shoulder ~2,2 133.6 14 12 9 
Right shoulder ~2,3 279.9 15 13 10 
Right elbow ~3,1 157.3 15 12 9 

Right elbow ~3,2 180.4 15 12 9 

Left hip 8.J 9, I 49.8 13 10 8 
Left hip 8.J9,3 30 .8 12 10 7 
Left knee 8 40, 1 81.2 14 11 8 

Left ankle 8 41 , 1 49.9 13 10 8 

Left ankle 8 41 ,2 30.9 12 10 7 
Right hip 8 43 ,1 46.7 13 10 7 
Right hip 8 43,3 27 .1 12 10 7 

Right knee 8 44 ,1 81.3 14 11 8 

Right ankle 8 45,1 51.6 13 10 8 

Right ankle 8 45 .2 30.9 12 10 7 
Fingers 14 DOFs per 70 8 6 6 

hand 
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5.2.3 Temporal content and statistics 

Average 

The average of {Biin)} is given by 

(5-4) 


for a sequence oflength N. For a stochastic process to be ergodic, we must be able to prove 

that the time averages are equal to the ensemble or probability averages. Although we do 

not prove it explicitly here, it is reasonable to assume that this is the case and that {Biin)} 

is ergodic. The results from the following sections also give strong indications that this 

assumption is reasonable. 

Variance 

The variance of {Biin)} is given by 

~ 7] 1 N 
O"i,j = EL(Bi,/n)-17i./[ = N"[;(Bj,j(n)-17j ,j[, (5-5) 

for a sequence of length N. 

Autocorrelation 

The autocorrelation function of {B;in)} is given by 

(5-6) 


A stochastic process is wide sense stationary (WSS) if its mean is constant, i.e. 17;,) is not a 

function of n, and its autocorrelation function depends only on the lag or time difference m 

= k -I. In this case, the autocorrelation function can be written as 
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(5-7) 

for a sequence of length N. We have evaluated the mean and autocorrelation functions of 

the example sequences for arbitrary DOFs and various time origins to test the validity of a 

WSS process. 

Figure 5-3 shows the mean of the arbitrarily chosen head yaw angle 8:3 ,0, the left shoulder 

elevation angle 85, I, the index finger flexion fh7 ,1 and the middle finger flexion 8:30, I for the 

test sequences as a function of sample origin n. Although there is a small variation, the 

mean can comfortably be approximated by a constant. Figure 5-4a shows a number of 

overlaid autocorrelation functions of the head pitch angle 8:3,1 for the conversational test 

sequence, evaluated at a number of arbitrary sample origins n. Figure 5-4b shows the same 

functions for the dance sequence. Similarly, figure 5-4c and 5-4d depict the autocorrelation 

functions for the left shoulder twist angle 85.2. Figure 5-4e shows the overlaid 

autocorrelation functions for the right index finger flexion angles €h.7. l. It is clear from the 

results that these functions depend little on the sample origin n, and are mainly a function 

of the lag m. The autocorrelation functions and mean of all the other DOFs exhibit similar 

behaviour, and it is therefore reasonable to assume that the stochastic process {8iJ(n)} is 

wide sense stationary. It should be noted that this is true only if all of {8iJCn)} is within the 

same type ofmotion, and the concept of WSS cannot be extended to include human motion 

in general. 
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Figure 5-3: Mean as a function of time. 
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Figure 5-4a: Autocorrelation function of head pitch fh. l for conversational motion. 
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Figure S-4b: Autocorrelation function of head pitch 8:J,1for dance motion. 
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Figure 5-4c: Autocorrelation function of shoulder twist angle 85;2 for conversational 

motion. 
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Figure 5-4d: Autocorrelation function of shoulder twist angle OS,2 for conversational 

motion. 
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Figure 5-4e: Autocorrelation function of right index finger flexion angle €h.7, } for 

gesture motion. 
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It is often convenient to model a time signal as a Markov process , for which the correlation 

between samples is proportional to their time difference. The autocorrelation function of a 

discrete, second order, zero-mean Markov process can be written as 

2 2 

¢(m)=k-alll 
, 	 (S-8) 

where A and a are scaling constants. Figure S-Sa depicts the autocorrelation function for 

the left shoulder elevation angle e5,1 for the conversational test sequence, with ¢i...m) where 

A = I and a = 2.Se-4. Figure S-Sb shows the same function for the dance sequence with 

a= O.OIS. It can be seen that there is a close match for m < 10, and the assumption that the 

motion can be modeled as a Markov process is reasonable. The other DOFs exhibit similar 

behaviour. 
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Figure 5-5a: Autocorrelation comparison with a Markov process for the 

conversational sequence. 
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Figure 5-5b: Autocorrelation comparison with a Markov process for the dance 

sequence. 

Probability density function (PDF) 

From tables 5-1 and 5-2 it can be seen that most of the DOFs have vastly different ranges 

and characteristics, and that it would be necessary to obtain separate PDFs for each DOF. 

For clarity we only show examples of four such PDFs in figure 5-6a to 5-6d, which 

represent the arbitrary DOFs for the head, arm, leg and finger sections. It is clear that the 

graphs peak at the orientation favoured by the specific motion sequence, and are also an 

indication of the mean value. The shoulder angle shows two distinct peaks for the 

conversational motion. This is an indication that the person who performed the actions 

favoured two separate postures. The finger PDFs indicates either an open or closed gesture. 

Some of t.~e body PDFs resembles a Gaussian-like distribution, except for those with 

strong peaks, in which case the sum of a number of distributions would be more 

appropriate. The finger PDFs resembles a one sided Rayleigh-like distribution for the open 

handed gesture and a Gaussian-like distribution for the other gestures. 
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Figure 5-6a: PDF of the head angJe th,l for the conversational and dance motion. 
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Figure 5-6b: PDF of tbe shoulder angle 85,1 for tbe conversational and dance motion. 
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Figure 5-6c: PDF of the ankle angle 841,0 for the conversational and dance motion. 
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Derivative PDF 

Linear predictive coders generally calculate a difference signal that is subsequently coded 

and transmitted. It is convenient to obtain a PDF for the first order difference diin) = Biin) 

- ~in-l) as an indication of the range and statistics of this difference signal. Under the 

assumption that there are a number of DOFs that exhibit similar difference behaviour, such 

as the arm DOFs or leg DOFs, it is possible to obtain a combined PDF by grouping these 

together. Figure 5-7 a-d depict the first difference PDFs for the head, arm, leg and finger 

groups. It can be seen that the first difference is a zero mean sequence, with considerably 

less variance than the DOF PDFs. Most of the difference PDFs resembles a Laplace-like 

distri bution. 
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Figure 5-7a: PDF of the head joint group difference angle. 
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Figure 5-7b: PDF of the left arm joint group difference angle. 
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Figure 5-7c: PDF of the left leg joint group difference angle. 
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Figure 5-7d: PDF of the right hand finger joint group difference angle for the gesture 

sequence. 

Joint cross dependence 

There are a number of coding techniques that rely on the correlation or dependence 

between two or more joints. It is reasonable to assume that joints or DOFs from completely 

different body sections, such as the legs and arms, will have very little correlation. 

Therefore, only the correlation between the OOFs belonging to the body, head, arm, leg 

and finger sections will be investigated. One way of visualizing the relationship between 

DOFs is to plot them on a phase space diagram. Figure 5-8 shows such a plot of the left 

shoulder elevation angle OS,! against the other four arm DOFs for the dance sequence. 

There is a clear clustering behaviour, and it can be concluded that these DOFs are indeed 

dependant on 85,1. It becomes tedious to plot every OOF against all the others in a group, 

and the graph quickly becomes cluttered, especially for long sequences. The rest of the 

body sections exhibit similar behaviour, and the results are not shown here. 

Electrical and Electronic Engineering 87 

 
 
 



----
----

Chapter 5 Data analysis 

[deg] 

180 

Os, > 

6,~ 

-180 L-________~__________J_________ ___________L________~ ~ 

o",0 

-180 180 
0',0 [deg] 

Figure 5-8: Phase plot of left arm angles. 

A statistically more correct method is to calculate the joint POF (where it is understood 

that joint does not mean physical human joint) for the OOFs in the relevant section. The 

visual results are kept to two-dimensional POFs, as it is difficult to visualize more than that 

in a three-dimensional world. Figures 5-9 a-d show various POFs of arbitrarily chosen 

body DOF pairs for the conversational test sequence, while figures 5-1 0 a-d similar PDFs 

for the dance sequence. The PDFs are shown as gray scale bitmaps, with a darker value 

indicating a higher occurrence. They all range from -180° to 180° on both axis. A single 

point or line on the PDF indicates that one or both of the OOFs is constant, while a large 

ro und cluster indicates not much of a cross correlation. However, it is clear from the 

images that the DOFs are indeed dependent on each other. Figures 5-11 a and 5-11 b show 

joint PDFs of arbitrarily chosen finger OOF pairs for the gesture sequence. The range is 0° 

to 60° on both axis. The finger DOFs are extremely correlated, and this fact will be used 

later to achieve higher compression ratios. 
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Figure 5-9: a) Joint PDF for 85,0 and 85,1 and b) Joint PDF for 85,1 and 85,2 for the 

conversational sequence. 
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Figure 5-9: c) Joint PDF for 85,1 and 86,1 and d) J oint PDF for 85,2 and 86,1 for the 

conversational sequence. 
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Figure 5-10: a) Joint PDF for 85,0 and 85,1 and b) Joint PDF for 8S,1 and 85,2 for the 

dance sequence. 
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Figure 5-10: c) Joint PDF for Bs,1 and B6,1 and d) J oint PDF for Bs,2 and B6,) for dance 

sequence. 
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Figure 5-11: a) Joint PDF for fh7,1 and B:JO,1 and b) J oint PDF for ~O,l and B:J3,) for the 

gesture sequence. 

5.2.4 Frequency content 

A very important measure of motion information can be found by investigating the 

frequency content of the motion. It can be used to conclude the minimum sample rate 

required to capture, process or display human motion. The power spectrum or power 

spectral density (PSD) of a WSS process {Bi/n)} is defined as the Fourier transform of its 

autocorrelation function. To avoid an impulse at the origin in the case of a process where 

the mean 7];j is non-zero, it is often more convenient to use the auto covariance of the 

process, which is given by 

(5-9) 
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The PSD is then defined by 

t/:::.OO 

P (m) = " c . (n)e -jOJ/II (5-10)'.) L.. • 
I ,) 

11'= - «) 

For a fi nite length sequence, only an estimate of the PSD can be made, but the term will be 

used anyway. There are a number of efficient algorithms that can be used to evaluate 

equation (5-10). We use the Blackman-Tukey [47] method for general PSD calculations 

and a parametric model based approach for smooth spectra. In the latter case we assume 

that human motion spectra have broadband characteristics, and autoregressive (AR) 

parameters are obtained using the autocorrelation method [47]. 

It is convenient to assume that there are DOFs that ex~ibit similar frequency behaviour, 

and to group them together to obtain a combined PSD for the relevant body section. 

Similar to groupings done elsewhere, we calculate PSDs for the body, head, arm, leg and 

finger sections. Figures 5-12 a-d show long-term PSDs (i.e. the average PSD of the whole 

sequence) for both the conversational and dance sequences. Figure 5-12e shows the PSD of 

the fingers for the gesture motion sequence, together with the PSD for arm movement of 

the same sequence. If a suppression of 50 dB is taken as the cut-off threshold for 

perceptible motion, then it is clear that the average frequency content is limited to roughly 

3 Hz and 6 Hz for the conversational and dance sequences respectively. The finger content 

is slightly more, which is to be expected since the inertial forces are the smallest on the 

fingers. However, these results do not imply that the short-term content will necessarily 

follow the same pattern. Figure 5-13 shows a short term PSD of arm movement at various 

time intervals for the conversational test sequence, and figure 5-14 a similar PSD for the 

dance sequence. It can be seen that the short term frequency content stays relatively 

constant with time. The higher mid-frequencies can clearly be seen across the time range 

for the dance sequence. 
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Figure 5-12a: PSD for body movement. 
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Figure 5-12b: PSD for head movement. 
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Figure 5-12c: PSD for arm movement. 
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Figure 5-12d: PSD for leg movement. 
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Figure 5-12e: PSD for finger movement. 

Figure 5-13: Short term PSD vs. time of the body position 00,4 for the conversational 

sequence. 
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Figure 5-14: Short term PSD vs. time of the body position 00,4 for the dance sequence. 

5.3 Summary 

This chapter presented a detailed statistical analysis of the human motion captured by the 

techniques described in chapter 4. The spatial content in terms of range and resolution was 

investigated, and it was found that these quantities rely on both the nature of the motion as 

well as the performance of the capturing hardware. Temporal content and statistics were 

investigated and it was found that it is reasonable to assume the motion data to be ergodic 

and wide sense stationary. Probability density studies revealed similarities in joint angle 

behaviour and indicated potential for predictive coding methods. Frequency content 

analysis indicated that human motion in general is rather band-limited, with the exception 

of a few peculiar movements. 40 dB cut-off was achieved at as low as 3 Hz for relaxed 

movement and the frequency content almost never exceeded 8 Hz, even for the dance 

motion. 
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An error measure is a quantitative or qualitative indication of the amount of dissimilarity 

or distortion between two processes. Quantitative measures can be expressed 

mathematically and the result is some numerical value. Qualitative measures are a bit more 

difficult to pin down. They are usually given in some descriptive form, such as "it looks 

horrible". In the following sections, we will give an analysis of a number of error 

measurement techniques, and their applicability to human motion. Low level coding 

methods, such as waveform coding, require quantitative error measures that are 

mathematically tractable. High level methods, such as model based coding play havoc with 

strictly quantitative error measurements, since there is usually not a one-to-one relationship 

between the original and coded motion. The best that one can do for model based coding is 

to define some long-term measurement that will give an indication of the visual quality, or 

to develop subjective testing mechanisms. 

6.1 Quantitative measures 

6.1 .1 MS error 

One of the most common and well-known error measurements is the Mean Square (MS) 

error. Assume a sequence of values (or degrees of freedom) {~n)}, and a processed 

sequence {e'(n)}, which is an approximation of {~n)}. For clarity the subscript i,J is 

dropped, and it is understood that the sequence {~n)} can represent any DOF. The mean 

square error is given by 

MSE = ~ I(e(n)-e'(n)Y, (6-1) 
N 11=1 
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for a sequence of length N. The square root of the MS error is sometimes more convenient, 

and is given by 

RMSE = "'MSE. (6-2) 

Some useful variations on the MSE are the normalized MSE 

N 

~)B(n) -B'(n)Y 
NMSE = -"'"=::.!..I---;Nc----- (6-3) 

L B(n)2 
11=1 

and the peak MSE 

1 N 
- I(B(n)-B'(n)Y 

PMSE = _ II=,,-I_--::-___N---".:: (6-4)
R2 

where R is the range of {6(n)}. The mean square error is often described in logarithmic or 

decibel form as an equivalent signal-to-noise ratio (SNR) 

NSNR = -10 loglo (NMSE), (6-5) 

or 

PSNR = -10 10glO (PMSE). (6-6) 

Mean square error measurements are generally used as an evaluation tool after some 

process or operation has been completed, i.e. it is performed on a whole sequence of 

values. 

Electrical and Electronic Engineering 97 

 
 
 



Chapter 6 Error measurement 

6.1.2 Instantaneous error 

Many of the compression algorithms require an error measurement that is applicable to the 

current frame or update. The best that can be done in this case is to use a distance metric as 

the error measurement. If tXn) is a value at the nth sample, and (F(n) is an approximation 

of ~n), the distance is simply given by 

den) = IB(n) - B'(n)l· (6-7) 

Sometimes it is desirable to use a metric that is mathematically more tractable (such as 

being easily differentiable), and we can use 

den) = (B(n) -B'(n)Y- (6-8) 

6.1.3 Vector error 

Although the distance errors specified in equation (6-7) and (6-8) are useful on their own, 

it is often convenient to group a number of dependent variables together as a vector and 

use their combined error (the reasons for doing so are explained in more detai l in chapters 

6 and 7). Mathematically it serves no purpose to group independent variables, as the 

uncorrelated result will be meaningless to the compression algorithm. Table 6-1 repeats 

the grouping scheme, together with the number of joints, segments and DOFs for each 

group. Refer to the human skeleton representation in figure 3-4 for details. 

Table 6-1: Joint and segment grouping 

Group Reference 
number 

Number of 
joints 

Number of 
segments 

Number 
ofDOFs 

Root and torso 0 2 2 7 
Neck and head I 2 2 5 

Left arm 2 3 3 8 
Left hand 3 14 14 19 
Right arm 4 3 3 8 
Right hand \ 5 14 14 19 

Left leg 6 3 3 7 
Right leg 7 3 3 7 
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Although we do not attempt to prove it here, it is reasonable to a::,sume that the above 

combined joints or variables are correlated to some extent. The body specification of 

MPEG-4 uses a similar grouping scheme [39]. 

We denote the sequence of a group or vector of DOFs by {8 i (n)} , and the vector of the 

approximated DOFs by {6 ;(n)} , where {i = 0.. . 7}. Individual components of the vector are 

denoted by {Oi, /n)} or {O;)n)}, where {i = 0...7, ) = O.. .K-l } and K is the number of 

DOFs of the ith vector as given in table 6-l. Using this notation, we define the normalized 

weighted vector error of the ith group for the nth sample as 

K 11 L:- ai (Oi(n)-O;(n)Yw (n) = _ ..1 ~ ,.I ,.I 
f 2' 

(6-9) 
K i=O bl, i 

where K is the number of DOFs and bij is the range of the )th DOF. The quantity aij is a 

weighing coefficient that defines the contribution of the )th DOF to the error. If aij is in 

[0, 1] , then w,(n) will be in [0, 1] with lower values indicating a good match. The values 

for aij and bij can also be defined in such a manner that the quantity w,(n) has meaningful 

units, such as [deg2
]. 

We are often interested in the maximum error for a group of joints, instead of a linear 

combination of errors. The maximum normalized weighted error for the nth sample of the 

ith group is given by 

a .10 (n) - Of (n)\ J
mi en) = MAX f,J f ,J . f, J ,0 ~) < K, (6-1 0)

( bf,J 

where K is the number of DOFs and bij is the range of the )th DOF. The quantity a iJ is a 

weighing coefficient that defines the contribution of the )th DOF to the error. If aij is in 
\ 

[0, 1], then m,(n) will be in [0, 1] with lower values indicating a good match. It should be 
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noted that equation (6-10) is not easily differentiable (compared to equation (6-9» , and is 

not very useful in error minimizing algorithms. 

Equations (6-7) to (6- 10) can also be used on a sequence of values similar to the definition 

of MS error and its variants. For example, we can write 

(6-11) 


as the normalized weighted error on a whole sequence of length N. The maximum error 

can be redefined in a similar manner. 

6. 1.4 Joint and segment errors 

Cases of special interest in human motion analysis are those of joint and segment position 

and/or orientation error, which are often geometrically more meaningful and intuitive than 

individual joint angle errors. By taking three-dimensional volume displacement into 

consideration, we get a bit closer to visual based comparisons between various body 

postures. We denote a sequence of joint positions by {u;) n)}, and that of the 

approximated joints by {u;,/n)}, where {i = 0...7, j = O.. .K-l}. K is the number of joints 

for the ith group, and is given in table 6-1. The joint position error for the ith group of 

joints is given by 

(6-12) 


where ai j and bij are weighing and normalizing coefficients similar to equation (6-9) and 

(6- 10). It is often more meaningful to define the coefficients such that Pi(n) has units of 

meters. The coefficients aij can also be defined as an impulse function to obtain the error 
\ 

for a single joint in the group. 
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When the axis of rotation is parallel to the rotated segment, the use of equation (6-12) on 

its own can sometimes result in complete failure to detect a rotation error. An example of 

this is the upper and lower arm twisting motion, both of which can result in a constant 

elbow or wrist joint position. To satisfy both position and rotation errors in a single 

generalized equation, we define additional DOFs for each group. The original and 

additional DOFs are grouped together in a configuration vector c. Configuration vectors 

describe both joint position and rotation. For example, the l4-dimensional configuration 

vector for the left arm group would be given by 

(6-13) 

assuming that the shoulder is fixed at the world origin [0 0 0]. The additional DOFs are the 

elbow position, which is given by [ex ey ez], and the wrist position, which is given by 

[wx Wy wz] . A sequence of configuration vectors for the ith group is written as {ci(n) }, and 

individual components as {cii n)}. Using similar notation as in equation (6-9), the 

generalized error for the ith group can be written as 

1 IK-I aik~n)-C;(n)rc (n) = _ ,/ ,./ ,/ (6- 14) 
J 2 ' 

K j =O b i, j 

where K is the number of elements in the configuration vector. Given proper coefficients , 

equation (6-14) is a useful error measure under many conditions. We obtained suitable 

values for a i ,j and bi,j for equations (6-9), (6-10), (6-12) and (6-14) using heuristic methods 

and subjective testing. 

6.2 Visual measures 

Visual error measurement implies a method that will tell us whether the visual posture and 

motion of the human figure are acceptable, and if possible, to what extent. It should be 

noted that there is often a vast difference between a visual measure and a strictly 

mathematical measure. If the animation has natural and pleasing motion, it does not 
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necessarily mean it has the correct original position or orientation. Visual measurement 

techniques often rely on sUbjective tests by a panel of viewers. Many parameters of our 

compression techniques were obtained in this manner. However, it need not be done only 

subjectively . In fact, it would be desirable to define an objective visual measure that is 

mathematically tractable. When seeking such a solution, there is often no clear 

mathematical relationship between the original quantity and distorted quantity, and we are 

forced to look at the characteristics of these quantities separately. 

6.2. 1 Natural movement 

One method of identifying visual artifacts is by evaluating the joint angles and their first 

and second derivatives for discontinuities or abnormally large values. Naturally, if both the 

original and coded values contain such anomalies not much can be said about the error. 

However, if the decoded motion exhibits values that are out of bounds compared to the 

original, it is reasonable to assume that something had gone wrong in the coding process. 

A more advanced method than simply identifying discontinuities is to compare the 

decoded human motion with dynamically simulated motion. One way of doing this is to 

calculate the metabolic energy spent in performing a motion, and to compare it to the 

original. It has been established that humans try to accomplish movement using the least 

amount of energy [44). Abnormally large values indicate unnatural movement, and can be 

considered as an error in the coding process. Unfortunately, the methods described above 

rely primarily on the decoded sequence. We need at least some reference to the original 

sequence, otherwise the error between completely different original and decoded actions 

will be pronounced acceptable. 

Discontinuities and unnatural movement aside, common errors on a waveform level are 

primarily due to phase and amplitude differences l. Phase errors are usually generated by 

coding delay and motion interpolation approximations. Amplitude errors are primarily 

generated by quantization in the spatial, temporal and frequency domains . We have found 

I Not to be confused with the actual amplitude and phase functions ofthe original signal. 
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that phase errors are visually more tolerable than amplitude errors, especially high 

frequency amplitude errors. For example, spatial quantization generates high frequency 

discontinuities and jerkiness, and the differentiating characteristics of the human visual 

system causes such errors to be perceived as visually annoying. It is common practice to 

compensate for the (known) coding delay when calculating quantitative errors. The 

remaining phase error is therefore primarily a function of the compression method. These 

errors vary relatively slowly over time compared to quantization errors, which can occur at 

every sample. Phase errors in general result in fewer high frequency discontinuities and 

artifacts. 

6.2.2 Visual MS error (VMSE) 

The observed low and high frequency relationship between phase and amplitude errors led 

us to develop the visual mean square error, or VMSE. Figure 6-1 shows a conceptual 

diagram of the method. The difference between the original and coded signal (i.e. the 

error) is divided into a number of frequency bands, each is assigned a certain weight, and 

the results are combined again. By adjusting the coefficients ai, the importance of various 

visual dissimilarities and artifacts that exist between the original and coded sequences can 

be set. Naturally, by setting all of the coefficients to unity, the VMSE measurement 

reduces to the normal MSE measurement. Similar to the MS rror defined in equation (6­

1), it is understood that by signal we mean any DOF, and that the VMSE of the total figure 

is given by the sum of the VMS errors of some or all of the DOFs. Mathematical ly, the 

VMSE can be written as 

N(M )2
VMSE = ~ ~ ~a'AII(n) , ( 6-15) 

for a sequence of length N, with M frequency bands. The quantity el1zCn) is the output of the 

mth bandpass filter. The fi ltering can be implemented in any number of convenient ways. 

Similar to equations (6-4) and (6-6), the peak visual mean square error is defined as 
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VPMSE= VMSE (6-1 6) R2 ' 

where R is the range of the original input sequence. The equivalent peak signal-to-noise 

ratio is defined as 

VPSNR =-10log ,o(VPMSE). (6-17) 

L 
0-1 Hz 

Original teL 
~+ 1-3 Hz 

L 

/­ tiL 
Coded 3-7 Hz 

La 
7-15 Hz 

Figure 6-1: Visual mean square error algorithm. 

Figure 6-2 shows a comparison between the normal MS measurement and the visual MS 

measurement (using the peak signal-to-noise ratio variation). The rate axis indicates a 

dimensionless quantity chosen for convenience. We simulate noisy amplitude errors by 

quantizing a signal to various levels, and phase errors by shifting a signal in time by 

various amounts. The amplitude errors are visually quite obvious, while the phase errors 

are indistinguishable without reference to the original sequence. Although this is an 

oversimplification of errors encountered from real compression methods, it gives an 

indication of what to expect from best and worst case scenarios. We use the filter banks as 

shown in figure 6-1, i.e. the error signal is divided into four consecutive frequency bands, 

with bandwidth increments by a power of two starting at one. The coefficients were 

heuristically chosen as ai = {0.25, 0.5, 1, 2.25}, i.e. low frequency and mean errors are 

subdued while high frequency errors are emphasized. In chapter 5 it was shown that the 
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original signal contains very little or no high frequency components. It is therefore in order 

to set a4 to quite a high value, since errors in this band can originate only from the 

compression method. The coefficients defined above clearly fonns a high-pass fi lter and 

equation (6-15) could have been implemented as such. However, we have found it more 

intuitive to work with a number of discrete frequency bands, each representing a certain 

type of visual artifact. For example, the lowest frequency band contains the general gist of 

the motion, while the middle frequency bands add emotion to the movement. High 

frequency bands contain jerky behaviour, which is often a result from quantization errors. 

PSNR, VPSNR (dB I 

80 

70r--------T---------r------~--------~~~~--

60 f---------+---------+--------4----~~_+_~~---- o PSNR for amplitude errors 
o VPSNR for amplitude error 
/:, PSNR for phase errors 

50 f---------+---------+--------;r''''-f-------,i'¥''----_+_------- 0 VPSNR for phase errors 

4 0 f---------+------~~----~~--------_+_--~~~ 

20f----~=_=+--------~------~--~~~~--------

10r--------+--~~~~------~--------~--------

OL-______-L________~______~_________L______~ 

o 2 4 6 8 10 
Rate 

Figure 6-2: PSNR vs. VPSNR for simulated errors. 

It is clear from figure 6-2 that the VMSE measure consistently indicates a lower SNR 

compared to the MSE measure for high frequency amplitude errors, Severe quantization 

results in long constant values with occasional high frequency jumps to adjacent levels, In 

this case, it can be seen that the VMSE starts to favour the low frequency errors introduced 

by these constant values. As is to be expected, at high quantization levels the error 

diminishes (i.e, the coding becomes lossless), and the two measures converge (not shown), 

In the case of phase errors, the MSE measure starts failing even for moderate errors. In this 

case the VMSE in figure 6-2 shows a clear advantage, which is consistent with the visual 

appearance of the errors. 
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6.3 Summary 

This chapter presented a number of error measurement techniques. A distinction was made 

between purely quantitative methods such as the naive mean square error (MSE) measure, 

and qualitatively motivated methods such as the newly proposed visual mean square error 

(VMSE). Quantitative methods such as the MSE and its variants are easy to implement, are 

mathematically tractable and are suitable for direct implementation in a wide variety of 

compression algorithms. However, these methods clearly failed to distinguish acceptable 

error artifacts from annoying visual errors such as severe quantization noise. In order to 

accommodate visual errors the VMSE was introduced, which is similar in concept to the 

noise-shaping error measures used in speech coding. 
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