
ADAPTIVE HOMOPHONIC CODING TECHNIQUES

FOR ENHANCED E-COMMERCE SECURITY

Master of Engineering (Data Security)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

ADAPTIVE HOMOPHONIC CODING TECHNIQUES FOR ENHANCED E-COMMERCE

SECURITY

by

David Kruger

Studyleader: Professor W.T. Penzhom

Department of Electric, Electronic and Computer Engineering

Master of Engineering (Data Security)

This dissertation considers a method to convert an ordinary cipher system, as used to

secure e-commerce transactions, into an unconditionally secure cipher system, i.e. one

that generates ciphertext that does not contain enough statistical information to break the

cipher, irrespective of how much ciphertext is available. Shannon showed that this can be

achieved by maximizing the entropy of the message sequence to be encrypted. This, in

turn, achieved by means of homophonic coding. Homophonic coding substitutes characters

in the message source with randomly chosen codewords. It offers the advantage that it

enables protection against known- and chosen plaintext attacks on cipher algorithms since

source statistics are randomly changed before encryption. The disadvantage of homophonic

substitution is that it will in general increase the length of the message sequence. To

compensate for this, homophonic coding is combined with the data compression algorithm

known as arithmetic coding. It is shown that the arithmetic coding algorithm can be adapted

to perform homophonic coding by dyadically decomposing the character probabilities in its

probability estimation phase. By doing this, a faster version of arithmetic coding, known as

shift-and-add arithmetic coding can be implemented. A new method of statistical modelling,

based on an Infinite Impulse Response filtering method is presented.

A method to adapt the well-known Lempel-Ziv- Welch compression algorithm to perform

homophonic coding is also presented. The procedure involves a bit-wise exclusive-or

randomization operation during encoding. The results show that the adapted algorithms do

indeed increase the entropy of the source sequences by no more than 2 bits/symbol, and

even offers compression in some cases.

Keywords:

electronic-commerce, cryptography, cryptanalysis, homophonic substitution, arith-

metic coding, Lempel-Ziv-Welch compression, probability estimation.

OPSOMMING

ADAPTIVE HOMOPHONIC CODING TECHNIQUES FOR ENHANCED E-COMMERCE

SECURITY

deur

David Kruger

Studieleier: Professor W.T. Penzhom

Departement Elektries, Elektronies en Rekenaar Ingenieurswese

Meester in Ingenieurswese (Data Sekuriteit)

In hierdie verhandeling word 'n metode ondersoek wat gewone enkripsie-algoritmes,

soos die wat gebruik word om elektroniese transaksies te beskerm, te omskep in 'n

onvoorwaardelik veilige enkripsie-stelsel, dit is, 'n stelsel wat syferteks genereer wat

nie genoeg informasie bevat om die unieke ooreenstemmende skoonteks te bepaal nie,

ongeag hoeveel syferteks beskikbaar is. Volgens Shannon, kan dit verkry word deur die

entropie van die bronsekwensie wat geenkripteer moet word te maksimeer. Die entropie

van 'n sekwensie kan gemaksimeer word deur homofoniese kodering daarop uit te oefen.

Homofoniese kodering vervang karakters in 'n boodskapbron met willekeurig-gekose

kodewoorde. Dit het ook die voordeel dat dit beskerming teen "bekende-" en "gekose-

skoonteks" aanvalle op enkripsie-stelsels bied, omdat die bronstatistiek verander word

voordat dit geenkripteer word. Die nadeel van homofoniese substitusie is dat dit

gewoonlik die lengte van die sekwensie vermeerder. Om hiervoor te kompenseer word

homofoniese kodering gekombineer met die datakompressie-algoritme wat bekend staan

as rekenkundige kodering. Daar word getoon dat rekenkundige kodering aangepas kan

word om homofoniese kodering uit te voer deur die karakterwaarskynlikhede diadies te

ontbind in die waarskynlikheid-estimasie-fase. Deur dit te doen kan 'n vinniger vorm van

rekenkundige kodering genaamd skuif-en-sommeer rekenkundige kodering gemplimenteer

word. 'n Nuwe metode van waarskynlikheidestimasie, wat gebaseer is op 'n Oneindige

Impuls Responsie filter metode, word voorgestel.

'n Metode om die bekende Lempel-Ziv-Welch kompressie-algoritme aan te pas om

homofoniese kodering uit te voer word ook voorgestel. Die prosedure behels 'n bis-gewyse

eksklusiewe-of ewekansig-maak operasie gedurende enkodering. Die resultate toon aan dat

die aangepaste algoritmes inderdaad die entropie van bronsekwensies vermeerder met nie

meer as 2 bisse/simbool, en selfs kompressie in sekere gevalle aanbied.

Sleutelwoorde:

elektroniese-handeldryf, kriptografie, kripto-analise, homofoniese substitusie,

rekenkundige kodering, Lempel-Ziv-Welch kompressie, waarskynlikheidestimasie.

ACKNOWLEDGEMENT

I would like to thank our Heavenly Father for giving me the ability to think and for being
with me through the duration of the research.

I am grateful for prof. Penzhom's assistance, words of comfort, support and good
advice that he supplied throughout the years.

And last, but certainly not least, I would like to thank Martie for being there for me
and helping me get through the two years of postgraduate study.

Without the help of these people the realisation of this dissertation would not have
been possible.

CONTENTS

CHAPTER ONE - INTRODUCTION

1.1 Background....

1.2 Problem Statement

1.3 Objectives of this Study .

1.4 Overview of Current Literature .

1.5 Preview

2.1 Introduction .

2.2 Cryptography

2.3 Secure Sockets Layer .
2.4 Cryptanalysis

2.5 Discussion. .

CHAPTER THREE - HOMOPHONIC CODING

3.1 Introduction...........

3.2 Information Theory Background

3.2.1 Entropy.........

3.2.2 The Rate ofa Language

3.2.3 Redundancy .

3.3 Strongly Ideal and Unbreakable Ciphersystems

3.4 Conventional- and Variable Length Homophonic Substitution.

3.6 Source Coding and Homophonic Coding. 31

3.7 Discussion................. 32

CHAPTER FOUR - HOMOPHONIC CODING BASED ON ARITHMETIC CODING 33

4.1 Introduction................... 33

4.2 Overview of the Arithmetic Coding Algorithm. 34

4.2.1 Compression.. 34

4.2.2 Decompression. 37

4.2.3 Implementation. 39

4.3 Source Modelling 40

4.3.1 An Introduction to Source Modelling 40

4.3.2 The Model . . . 42

4.3.3 Implementation. 44

4.4 Homophonic Coding based on Arithmetic Coding . 48

4.5 Discussion...................... 50

CHAPTER FIVE - HOMOPHONIC CODING BASED ON LZW COMPRESSION 51

5.1 Introduction.......... 51

5.2 Review of the LZW Algorithm 52

5.2.1 Compression. 52

5.2.2 Decompression 54

5.2.3 Implementation. 56

5.3 Adapting the LZW Algorithm for Homophonic Coding 58

5.4 Discussion........................ 62

CHAPTER SIX - EXPERIMENTAL RESULTS 64

6.1 Introduction........................ 64

6.2 Results of Homophonic Coding with Arithmetic Coding 65

6.3 Results of Homophonic Coding with LZW Encoding 71

6.3.1 BitPatterns.... 71

6.3.2 Statistical Results. 72

6.3.3 Entropy Results

6.3.4 Bits per Symbol Results

Discussion.

CHAPTER SEVEN - CONCLUSION

7.1 Proposals for Further Research

ApPENDIX A - IMPLEMENTATION At

A.1 Introduction.................. Al

A.2 Homophonic Coding with Arithmetic Coding Al

A.2.1 Step1: Source Modeling A2

A.2.2 Step2: Design of the Homophonic Channel A3

A.2.3 Step 3: Random Selection of Homophones A4

A.2.4 Step 4: Arithmetic Coding of the Homophones A4

A.2.5 Decoding........ A7

A.3 Homophonic Coding with LZW A 7

A.3.1 Encoding A8

A.3.2 Decoding AlO

ApPENDIX D - RESULTS OF HOMOPHONIC CODING WITH THE LZW ALGORITHM Dt

D.1 Bit Patterns . . . D 1

D.2 Statistical Results D3

D.3 Entropy Results. D8

D.4 Bits/Symbol Results. DlO

ApPENDIX H- A LINEAR AGING MODELLING METHOD Hl

H.I Introduction...... HI

H.2 Linear aging probability estimation. HI

LIST OF FIGURES

2.1 A Simplified Model of Symmetric Encryption 13

2.2 SSL Protocol Stack 16

3.1 Probabilities of the alphabet letters in the English language 19

3.2 A Secret-Key Cipher System . . 23

3.3 The Key-Equivocation Function 24

3.4 A Scheme for a Strongly Ideal Cipher System 26

3.5 Perfect Conventional Fixed Length Homophonic Coder 27

3.6 Perfect Conventional Variable Length Homophonic Coder 28

4.1 The arithmetic encoding procedure ofthe sequence bbca 35

4.2 Configuration of an adaptive compression model 41

4.3 An IIR filtering scheme. 43

4.4 The system used for statistical modelling. 44

4.5 The values of k at which Tk is rounded off to its convergence value for

different values of a. .. 46

4.6 The values of k at which estimated probabilities stored in a 16-bit unsigned

integer are rounded off to 0 .. 47

6.1 The entropy of the C++ file, as calculated by various methods. 66

6.2 Entropy ofthe source and homophonic encoded C++ file 68

6.3 Statistics of the uncoded and encoded C++ file. 70

6.4 Binary tree obtained when a bit stream with P(l)=0.75 is encoded with (a)

the original binary LZW algorithm, and (b) the adapted binary LZW algorithm 71

6.5 Binary LZW trees of dictionary entries formed when encoding the C++ file

with (a) normal binary LZW, and (b) homophonic LZW . 72

6.6 Statistics of the uncoded and encoded C++ File 74

6.7 Binary entropy of the uncoded, compressed and homophonic encoded C++ file 76

6.8 Bits per symbol plotted against number of symbols encoded for the com-

pressed and homophonic encoded C++ file 77

Al Program flow chart for the adaptive homophonic arithmetic encoding algorithm A6

A2 Program flow chart for the adapted LZW encoding algorithm A9

A3 Program flow chart for the adapted LZW decoding algorithm AI2

AA Program flow chart for the decode string subroutine . . . AI3

C.I Entropy of the source and homophonic encoded html file CI

C.2 Entropy of the source and homophonic encoded T]3Xfile C2

C.3 Entropy of the source and homophonic encoded English text file C2

CA Entropy ofthe source and homophonic encoded e-commerce data C3

C.5 Statistics of the uncoded and encoded html file . C4

C.6 Statistics of the uncoded and encoded T]3Xfile . C5

C.7 Statistics of the uncoded and encoded English text file . C6

C.8 Statistics of the uncoded and encoded e-commerce data C7

D.l Binary LZW trees of dictionary entries formed when encoding (a) the HTML

file with normal LZW and (b) HTML file with homophonic LZW D I

D.2 Binary LZW trees of dictionary entries formed when encoding (a) the

T]3X file with normal LZW, (b) the T]3X file with homophonic LZW, (c)

the English text file with normal LZW, and (d) the English text file with

homophonic LZW. .. D2

D.3 Binary LZW trees of dictionary entries formed when encoding (a) the

e-commerce data with normal LZW and (b) the e-commerce data with

homophonic LZW.

DA Statistics of the uncoded and encoded html file.

D3

D4

D.5 Statistics of the uncoded and encoded TEXfile. D5

D.6 Statistics ofthe uncoded and encoded English text file. D6

D.7 Statistics of the uncoded and encoded e-commerce data. D7

D.8 Binary entropy of the uncoded, compressed and homophonic encoded html file D8

D.9 Binary entropy of the uncoded, compressed and homophonic encoded TEXfile D9

D.lO Binary entropy of the uncoded, compressed and homophonic encoded En-

glish text file D9

D.ll Binary entropy of the uncoded, compressed and homophonic encoded

e-commerce data .. D 10

D.12 bits per symbol plotted against number of symbols encoded for the com-

pressed and homophonic encoded html file. D 11

D.13 Bits per symbol plotted against number of symbols encoded for the com-

pressed and homophonic encoded TEXfile D 11

D.l4 Bits per symbol plotted against number of symbols encoded for the com-

pressed and homophonic encoded English text file , D12

D.15 Bits per symbol plotted against number of symbols encoded for the com-

pressed and homophonic encoded e-commerce data. D12

H.l Adaptive probability estimation by counting all characters encountered since

the beginning of the file ., H2

H.2 Adaptive probability estimation by counting characters in the window of n

past encountered characters . H2

H.3 Determination of m H4

H.4 Determination of m before the first 2560 characters are encountered H4

LIST OF TABLES

4.1 The example source statistics 34

4.2 Arithmetic coding as a sum of augends . 36

4.3 Example of designing a homophonic channel 49

5.1 LZW Parsing of the sequence 100110 110 1 . . 53

5.2 LZW decompression of the sequence 1001365 . 55

5.3 Exception in decompression 56

5.4 Adapted LZW Parsing of the sequence 1001101101 59

5.5 Adapted LZW Parsing of the Sequence 100110 110 1 with Variable Length

6.2 Compression results for the C++ file for various probability estimation methods 67

6.3 Relative frequency of occurrence of single bits and bit pairs in the uncoded

and homophonic arithmetic encoded C++ source file 69

6.4 Relative frequency of occurrence of single bits and bit pairs in the uncoded

and encoded C++ source file , 73

C.1 Compression results for the html file for various probability estimation methods C4

C.2 Compression results for the TEX file for various probability estimation methods C5

C.3 Compression results for the English literature file for various probability

estimation methods .. C6

C.4 Compression results for the e-commerce data for various probability estima-

CHAPTER ONE
INTRODUCTION

"The promise of the Internet is to be a mirror of society. Everything we

want to do in the real world, we want to do on the Internet ... these things

require security. Computer security is a fundamental enabling technology of

the Internet; it's what transforms the Internet from an academic curiosity into a

serious business tool. The limits of security are the limits of the Internet. And

no business or person is without these security needs."

"Online security is becoming increasingly important to companies that in-

tend to build their business over the Internet, especially with the sudden boom

of online marketplaces. "

1.1 Background

The recent growth of new communications technologies, and in particular, the Internet ex-

plosion has brought electronic commerce to the verge of widespread deployment. Nowadays

it is impossible to imagine a world without Internet banking and commerce. It has become

part of people's daily lives to do banking, pay bills and buy products or services online. The

goal ofe-commerce is to make people's lives and the tasks of businesses more comfortable

and convenient. Studies have shown that the success of e-commerce sites depends largely

on the trust that customers have in doing online transactions [1]. If a customer feels that a

site is secure and that any private information that is sent over the Internet will be protected,

the site will have a greater chance of being a success. E-commerce sites utilize the Secure

Sockets Layer (SSL) protocol for secure electronic transactions. This protocol makes use of

mechanisms that have been developed to secure online transactions, for instance encryption,

authentication and digital certificates. It is the task of an encryption algorithm to scramble

the data that represents the confidential information by making use of a secret key in such

a manner that it is "impossible" to recover the original data without knowledge of the key

used.

In reality it is impossible to design an encryption algorithm that is unbreakable. The criteria

used when designing modem encryption algorithms is usually to design an algorithm that

does not make it worth the trouble to break the algorithm. Over the years methods have been

developed to mount attacks on encryption algorithms [2]. For instance, by observing parts of

the data sent in an electronic transaction along with its encrypted version, statistical methods

can be used to discover the secret key used in the encryption process and thus compromise

the security of the system. This type of attack is referred to as a known plaintext attack.

In a chosen plaintext attack, the attacker chooses parts of the plaintext and observes the

corresponding ciphertext. Because e-commerce transactions often involve the completion of

a form with certain consistent fields, both these types of attacks are possible. This problem

causes customers to loose confidence in the security offered by on-line transaction security

mechanisms.

1.3 Objectives of this Study

The goal of this research is to investigate methods to design an unconditionally secure

encryption algorithm. This means that no matter how much knowledge an attacker has

about the information before -itwas encrypted, statistical analysis will not help in recovering

the key used to encrypt the sequence, or equivalently, the confidential information in the

sequence. It will be shown that this can be achieved by performing homophonic coding

on sources before they are encrypted. The disadvantage of applying homophonic coding

on source sequences is that it will in general increase the length of the sequences. To

compensate for this, a method of combining homophonic coding with arithmetic coding is

investigated. Arithmetic coding comprises of two distinct phases: source statistic modelling

and encoding. The source modelling phase plays an important role, because the more

accurately it models the true statistics of the source, the better the performance of the

encoder. A new method of probability estimation, based on an Infinite Impulse Response

filtering method is investigated.

Current mechanisms used to secure e-commerce will be reviewed and the theory behind

enhancing security with homophonic coding will be explained. The objective is to design

an adaptive homophonic coding algorithm that randomizes any given sequence, so that an

unconditionally secure encryption algorithm can be designed in order to win customer trust

and thus increase the success of e-commerce sites.

Even though arithmetic coding achieves much better compression than Lempel-Ziv- Welch

(LZW) coding, LZW is very popular and widely used. Because of this, a method to adapt

this algorithm to perform homophonic coding is also presented.

In 1949 Shannon wrote a seminal article that discusses the theory of secrecy systems [3]. He

defines random, pure, perfect and ideal types of cryptosystems. He also defines and gives

the formula for the "unicity distance" of a random cipher.

Massey [4] realized that the criteria that Shannon proposed can be met by applying

source coding to cryptography. He shows that the cascade of a binary symmetric source

(BSS) and a non-expanding cipher is another BSS which yields a ciphertext sequence that

is statistically independent of the secret key. According to Shannon, this is a strongly ideal

cipher. Massey illustrated that a "perfect" source coding scheme converts an information

source into a BSS. This means that applying perfect source coding to an information source

before encryption with a non-expanding cipher creates a strongly ideal cipher.

Giinter et ai. [5] showed that homophonic coding is the most adequate randomization

technique for the purpose of constructing a strongly ideal cipher. They presented a

homophonic coding algorithm that is an efficient precoding, suitable to increase the unicity

distance of a cipher to any required length.

Subsequently, Witten et ai. described how arithmetic coding, Lempel-Ziv compression

and dynamic Markov modelling can be applied to enhance privacy [6]. An adaptive

homophonic coding method was illustrated by Smith [7] based on the arithmetic coding

implementation of Nelson [8]. Penzhom [23] introduced a method to perform homophonic

coding with the shift-and-add version of arithmetic coding, and illustrated results obtained

when implementing a static probability estimation model.

The steps needed to build a trusted e-commerce infrastructure are discussed in the next

chapter. The goal is to give insight into the mechanisms currently available to achieve secu-

rity in e-commerce. Chapter 3 introduces the underlying concepts of homophonic coding,

to illustrate the motivation for the research. In Chapter 4 the operation of the arithmetic

coding algorithm is reviewed and the method of adapting it to perform homophonic coding is

described. A new method of adaptive probability estimation is presented. Chapter 5 applies

the same concepts for the Lempel-Ziv-Welch (LZW) compression algorithm. Chapter 6

gives simulation results for various real life sources. Chapter 7 contains the summary

and conclusions of this study. Appendix A illustrates how the adapted algorithms can be

implemented using the C++ programming language.

CHAPTER TWO
SECURITY IN E-COMMERCE

The Internet has become a business tool similar in importance to the telephone network and

the on-site local area network [9]. By offering products and services on the web, businesses

can gain unique benefits:

• New customers: Anyone with an Internet connection is a potential customer. Not

only are the Web storefronts open 24 hours a day, but it is also available world-wide.

• Cost-effective delivery channel: Many products and services can be delivered di-

rectly to customers via the Web, increasing profitability by eliminating shipping and

overhead costs.

• Streamlined enrollment: Paper-based applications can easily be held up in the mail,

and once received, have to be entered manually into computer systems, a labour

intensive process that can introduce errors. By accepting applications via a secure

Web site, businesses can speed application processing, reduce processing costs, and

improve customer service.

• Better marketing through better customer service: By establishing a strorefront on

the Web, products and services can be customized for individual customers instead

of large market segments. Businesses are able to facilitate one-to-one marketing by

capturing information about demographics, personal buying habits and preferences.

By analyzing this information, enterprises can target merchandise and promotions for

maximum impact, tailor web pages to specific customers and conduct effective tightly

focused marketing campaigns.

• Interception: The private content of a transaction, if unprotected, can be intercepted

en route over the Internet. This is an attack on confidentiality.

• Spoofing: The low cost of Web site creation and ease of copying existing pages

makes it easy to create illegitimate sites that appear to be published by established

organizations. Credit card numbers can be obtained illegally in this manner. This is an

attack on authenticity.

• Modification: The content of a transaction can be altered en route. This is an attack

on Integrity.

• Interruption: A competitor or disgruntled worker might alter a Web site in order to

deny potential customers its service. This is an attack on availability.

The success of an e-commerce Web site depends on the amount of trust that customers have

in using the on-line facilities [1]. Customers know about these risks and have to be assured

that some means of security is implemented to overcome them. There are mechanisms

available today that is used to prevent these Internet attacks, and it is the purpose of the

next sections to introduce these concepts. It also forms the information security background

of this dissertation.

2.2 Cryptography

In order to protect against the attacks mentioned in the previous section, the following

security services have to be provided by the communication system:

• Authentication: Customers need to be assured that they are in fact doing business and

sending confidential information with an authentic entity.

• Confidentiality: Sensitive Internet communications and transactions, such as the

transmission of credit card information, must be kept private.

• Data Integrity: Only authorized parties may be able to modify computer system

assets and transmitted information.

• Non-repudiation: Neither the sender, nor receiver of a message should be able to

deny the transmission.

The need for these services gave rise to the field of cryptography. Encryption provides some

of the services directly, and others indirectly. Encryption is the process of transforming

information before transmitting it to make it unintelligible to all but the intended recipient.

(See Fig. 2.1). The information to be transmitted is referred to as the plaintext. The

result of the transformation process is called ciphertext. Encryption employs mathematical

formulas called cryptographic algorithms, or ciphers, and utilizes keys to encrypt or decrypt

information. The basic function of an cryptographic algorithms is to substitute each

character in the plaintext with another character

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

j

Encryption
algorithm

Decryption
algorithm

The encryption process requires a key, which is a secret binary number that only the

sender and intended recipient know and share. Encryption algorithms are designed in such

a way that it is infeasible to discover the plaintext without knowledge of the key. However,

when the key is known, the plaintext can successfully be reconstructed (decrypted).

Encryption provides confidentiality, because no one except the receiver and the intended

recipient (who are both in possession of the secret key) will be able to decrypt the data. The

most well known conventional encryption algorithm is the Data Encryption Standard (DES)

[2].

The following mechanisms provide the security servIces required for e-commerce

security. The details of these mechanisms are beyond the scope of this study. (For more

details, see for example any of the books on cryptography, e.g. [2], [10] or [11]:

• Asymmetric cryptography, or Public Key Infrastructure (PKl): This encryption

technique has the same function as conventional encryption, but the sender and

recipient do not share a secret key, and do not use the same key for encryption and

decryption. The most commonly used asymmetric encryption algorithm is RSA [2]

• Hash functions, or Message Authentication Codes (MAC's): These functions make

use of symmetric encryption algorithms to derive unique "fingerprints" of the data.

The algorithms are designed in such a way that it is impossible to recover the original

data form the "fingerprint", and no two data sequences will produce the same result.

These mechanisms are used to provide data integrity, because if the sender sends

the MAC with the original message, the receiver of the message can verify if the

original message was tampered with en route by recreating the MAC from the received

message, and comparing it with the received MAC. If the two MAC's are not the same,

this indicates that the message was changed.

• Digital Signatures: Digital signatures make use of PKI and hash functions to provide

a similar service as real signatures used on paper, i.e authentication.

2.3 Secure Sockets Layer

Secure Sockets Layer (SSL) is the basis for many e-commerce systems [11]. The Internet

is a network of intranets that uses the Transmission Control Protocol (TCP) suite for

communication. The World Wide Web (WWW) is fundamentally a client/server application

running over the Internet, and because it is a public network, it is vulnerable to misuse and

abuse. There are a number of approaches to providing Web security. They are similar in the

services they provide, and to some extent, in the mechanisms that they use, but differ with

respect to their scope of applicability and their relative location within the TCPIIP protocol

stack. Security mechanisms may be applied at the network level (IPSec), the transport level

(Transport Layer Security (TLS) or SSL), or the application level (e.g. S-HTTP, S/MIME,

pap and SET) [2, 9, 12]. With Internet applications, where data may be stored on several

servers while in transit, it is preferable to utilize higher-level security protocols to assure

reliable and secure end-to-end secure services. SSL was designed to make use of TCP for

exactly this purpose [13]. SSL provides a range of security services for client server sessions:

The latest version, SSL v3.0, has been submitted as an Internet draft. SSL is not a single

protocol, but rather consists of two layers of protocols, as illustrated in Fig. 2.2. The SSL

Record Protocol is on top of the Internet TCP layer and provides basic security services to

various higher layer protocols. One particular protocol that can operate on top of the SSL

Record Protocol is the Hyper Text Transfer Protocol (HTTP) that is used to provide transfer

services between client and server on the Web. This position of SSL between the TCP layer

and application layer allows for an easy implementation on most platforms. SSL also consists

of three other higher-level protocols that operate on top of the Record Protocol, namely the

Handshake Protocol, the Change Cipher Spec Protocol and the Alert Protocol. The SSL

SSL SSL SSL AlertHandshake Change Cipher Spec Protocol
HTTP

Protocol Protocol

SSL Record Protocol

TCP

IP

Record Protocol defines the basic format for all data items sent in a session. It provides for

data compression, generating an integrity check value (a MAC) on the data, and ensuring

that the receiver can determine the correct data length. As part of the SSL Record Protocol,

the MAC is prefixed to the data prior to encryption. To protect against the reordering of data

items by an active attacker, a record sequence number is included. Cryptographic keys must

first be established between client and server before the SSL Record Protocol can calculate

an integrity checksum and use encryption. The protocol can also change to a different set of

protection algorithms and keys at any time [12].

2.4 Cryptanalysis

Cryptanalysis is the process of attempting to recover the original plaintext, or the key that

was used to encrypt it. The strategy used by the cryptanalyst depends on the nature of the

encryption scheme and the information available to the cryptanalyst. Because the operation

of encryption algorithms is publicly known, it is always assumed that a cryptanalyst has full

knowledge ofthe working ofthe encryption algorithm. According to Stallings [2], five types

of attacks are possible on encrypted messages:

• Ciphertext only attack: The analyst has knowledge of the encrypted ciphertext that is

to be decrypted.

• Known plaintext attack: The analyst knows the ciphertext as well as one or more

plaintext-ciphertext pairs formed with the same key.

• Chosen plaintext attack: The analyst knows the ciphertext and a plaintext message

chosen by the analyst, together with its corresponding ciphertext generated with the

secret key.

• Chosen ciphertext attack: The cryptanalyst knows the ciphertext and chooses pur-

ported ciphertext and observes the corresponding decrypted plaintext generated with

the secret key.

• Chosen text attack: Again the analyst knows the ciphertext, but chooses the plaintext

message and observes the corresponding ciphertext generated with the secret key. The

analyst also chooses purported ciphertext and has knowledge of the corresponding

decrypted plaintext generated by the secret key.

All the above mentioned attacks may be used in conjunction with a brute-force attack,

which amounts to trying all possible keys. In most cases this is very unpractical since the

key space used today is very large (e.g. 256 for DES). The opponent must thus rely on an

analysis of the ciphertext itself, generally applying various statistical methods and attacks.

To use this approach, the opponent must have some idea of the type of plaintext that has

been encrypted.

Two more definitions are noteworthy [2]. An encryption scheme is called unconditionally

secure if the ciphertext generated by the scheme does not contain enough information

to determine uniquely the corresponding plaintext, no matter how much ciphertext is

available. An encryption algorithm is called computationally secure if the algorithm meets

the following two requirements:

The ciphertext only attack is the easiest to thwart because the opponent has the least amount

of information available. In many cases, for example web-based transactions, the analyst

has more information and other attacks e.g. known- and chosen plaintext attacks become

possible. The analyst may be able to capture one or more plaintext messages as well as their

ciphertext. Sometimes an opponent might know certain parts of the message and may only

seek some very specific information in the plaintext. An example is a web page that contains

a form template, where one of the fields may be a credit card number.

The success of an e-commerce Web site depends on the measure of customer trust. The

requirement is thus to implement an unconditionally secure encryption algorithm, so that a

customer is ensured that the encryption algorithm can not be compromised. The next chapter

explains how this can be achieved by applying source coding techniques to the encipherment

process. These techniques make it possible to convert any existing encryption system into an

unconditionally secure encryption system. This, in return, results in an increased customer

trust to the benefit of an e-commerce Web site.

CHAPTER THREE
HOMOPHONIC CODING

This chapter explains the principle and purpose of homophonic coding in data security.

In a sequence of symbols generated by a real-life message source, it usually happens that

some symbols occur more frequently than others. In the English language, for example, the

letters "e" and "t" occur more frequently in a sequence of letters than "q" and "z". Fig. 3.1

illustrates the probability of occurrence of the 26 alphabet letters in the English language, as

given by [2]. The goal of homophonic coding is to convert any sequence of symbols into a

0.14

0.12

.e- 0.1
....•
== 0.08.c
=.c 0.06=•••

=-- 0.04

0.02

0

sequence of equiprobable codewords, or homophones. All the codewords in the resulting

sequence have the same frequency of occurrence. The term homophonic means to sound

the same. Homophonic substitution is a coding technique that maps source symbols. onto

homophones in a random fashion. Each source symbol is associated with a number of

codewords chosen to represent that specific symbol, and no codeword is assigned to more

than one letter. The number of homophones used to represent each source symbol is chosen

to be directly proportional to the probability of occurrence of the specific symbol.

A simple example can be used to explain the concept better. Consider the English

alphabet consisting of the 26 alphabet letters a-z. Suppose that the 26 alphabet letters

are mapped onto the integers 1-99, where the letters with a higher relative frequency are

assigned more homophones. The following illustrates a possible assignment of integers in

the message "hello there" (for brevity, integer assignments for the remaining letters of the

alphabet are not given):

h.-t35,36,37,38

e.-t 17,18,19,20,21,22,23,24,25,26,27,28

l.-t47 ,48,49,50

o.-t61 ,62,63,64,65,66,67,68

t.-t86,87 ,88,89,90,91,92,93,94

r.-t 72,73,74,75,76,77 ,78,79,80

Uncoded sequence: h e 1 1 0 t h e r e

Coded sequence: 37 27 48 50 67 91 35 17 79 22

Because there are more codewords that can represent the symbols with higher relative

frequency, the homophonic substitution converts a sequence of non-uniformly distributed

symbols into a sequence of uniformly distributed codewords.

3.2 Information Theory Background

The entropy ofa message source X that is emitting symbols Xl, X2, ... from an alphabet of

size L is formally defined as [14]

L

H(X) = - L P(Xi) log2P(Xi) bits,
i=l

where P(Xi) is the probability of occurrence of the ith symbol. The entropy ofa source is

the amount of information per source symbol in the language. The higher the entropy of

the source, the more information (in bits) is conveyed per symbol. The entropy of a source

will be maximum if all input symbols are equiprobable (P(Xi) = 1/L V i)[14]. Equation

(3.1) then becomes H(X) = log2L. If Y is the output of a system with an input X, the

conditional entropy is defined as

In this sense H(XIY) is called the equivocation, and is interpreted as the amount of average

uncertainty remaining in X after observing Y.

The rate ofa language that consists of messages of length k, represents the average number

of bits of information in each letter, and is defined as [10]

H(X)
r=-k-'

For English the value of r ranges from 1.0 to 1.5 bits/letter if k is large. The absolute rate R

of a language is defined as the maximum number of bits of information that could be encoded,

assuming that all possible sequences of letters are equally likely. If there are L letters in the

language, then the absolute rate is given by

\ Ib~%~Z.O

b\SbC6~\9~

which is equal to the maximum entropy of the individual letters. For a 26 letter alphabet it

follows that R = log2 26 = 4.7 bits/letter.

H(X)
D = R - r = log2 L - -k-.

This is a measure of redundant information in a language. The reason why compression

algorithms can represent information in less bits than the uncompressed data, is because the

redundancy in a language is reduced. The percentage redundancy is defined as

p = ~ = 1_ H(X) .
log2 L k log2 L

3.3 Strongly Ideal and Unbreakable Ciphersystems

Jendal et al [15] recently published an article on an information-theoretic treatment of

homophonic substitution. Some of their important results are reviewed here since they form

the basis of this study.

Message Xl'X2,·· Non-Expanding Yl' Yr:.
source X Encrypter

IZ

Key
Source

Consider a secret key cipher system as shown in Fig. 3.2. Let a source X emit symbols

Xl, X 2, ... defined on a set X of size L = IX I. For simplicity of notation, let X n and yn

denote the (finite) plaintext and ciphertext sequences [XI, X2, ... , Xn] and [YI, Y2, ... , Yn],

respectively. As is customary, and as Fig. 3.2 suggests the secret key Z is assumed

to be statistically independent from the plaintext sequence xn for all n. The system is

called non-expanding if the plaintext symbols and ciphertext symbols take values in the

same D-ary alphabet, and there is an increasing infinite sequence of positive integers

nl, n2, n3,.' . such that, when Z is known, xn and yn uniquely determine each other for

all n E S = {nl, n2, n3, ... }. A sequence of L-ary random variables is called completely

random if each of its digits is statistically independent of the preceding digits and is equally

likely to take on any of the D possible values.

The key equivocation function is thus a measure of values of the secret key Z that are

consistent with the first n digits of cipher text.

Because f (n) can only decrease as n increases, Shannon called a cipher system ideal

if f (n) approaches a non-zero value as n tends toward infinity and strongly ideal if f (n) is

constant, i.e.

This is equivalent to the statement that the ciphertext sequence is statistically independent of

the secret key. This is illustrated in Fig. 3.3.

typical cipher

n (number of bits in the cipher text)

Shannon defined the unicity distance, nu of a cipher as the smallest value of n such that there

is essentially only one value of the secret key that is consistent with n cipher text letters

Yi, 1'2,... , Yn or, equivalently, such that

H(Z)
nu=--·

p

In words, the unicity distance is the amount of ciphertext needed (in theory) to break the

cipher in a ciphertext only attack. Thus, in the case of a strongly ideal cipher system the

redundancy D = 0, so that the unicity distance tends to infinity, as illustrated in Fig. 3.3.

This implies that the message source emits completely random plaintext, so that

Proposition 1 (Jendal et al.[15]):

If the plaintext sequence encrypted by a non-expanding secret key system is completely

random, then the cipher sequence is also completely random, and is also independent of the

secret key.

Corollary 1

If the plaintext sequence encrypted by a non-expanding secret key is completely random,

then the cipher is strongly ideal (regardless of the probability distribution for the secret key).

Corollary 2

If the plaintext sequence encrypted by a non-expanding secret key is completely random

and all possible key values are equally likely, then the conditional entropy of the plaintext

sequence, given the ciphertext sequence, satisfies

The last corollary implies that, in a ciphertext-only attack, the cryptanalyst can do no

better to find Xn than by guessing at random from among as many possibilities as there are

possible values for the secret key Z. In other words, the cipher system is unbreakable in a

ciphertext only attack when the number of possible key values is large.

The purpose of this discussion is to illustrate that virtually any secret key cipher system can

be used as the cipher in a strongly ideal cipher system, provided that the plaintext source

emits a completely random sequence, as noted previously. But it is precisely the goal of

homophonic substitution to convert a source which is not of this type into such a source.

When the homophonic coding is perfect, it is then an easy task to build an unbreakable

cipher system in the form shown in Fig. 3.4. This requires that the plaintext statistics must

be known exactly.

Memoryless
Stationary L-
ary Message

source U

Vi'V2,.. Homophonic Xj,Xr
Coder

Non-Expanding Yj, Yr
Encrypter

Random
number

generator

Key
Source

3.4 Conventional- and Variable Length Homophonic Sub-

Consider again the message source U in Fig. 3.4, emitting symbols Ul, U2, .. " and

assume that the variables Ui take values in an alphabet of L letters where 2 ::s L < 00.

These variables are coded into the D-ary sequence Xl, X2". '. Note that if L = DW

for some positive integer wand all L possible values of U are equally likely, a simple

coding scheme of assigning a different one of the DW D-ary sequences of length w to each

value of U will result in a completely random sequence Xl, X 2, , .. , X w. Conventional

homophonic substitution attempts to achieve this same result when the values of U are not

equally likely. This is achieved by choosing a w so that DW > L and then partitioning

the DW D-ary sequences into L subsets. These subsets are then placed in correspondence

with the values of U in such a manner that the number of sequences in each subset is

proportional to the probability of the corresponding value of U. A codeword is then

chosen to represent a particular value U of U by an equally likely choice from the subset of

sequences corresponding to u. Note that conventional homophonic substitution for which

Xl, X2, ... , Xw is completely random is only possible if each value Ui ofU has a probability

nil DW, where ni is the number of homophones that must be assigned to U i.

Fig. 3.5 gives an example of a conventional homophonic coder with D = 2, w = 2

and a binary message source (L = 2) taken from Jendal et al. [15]. From the figure it can

/vI
ul

VI ---. 00P(U=u) =1/4 U v V XI,xz''''

~2

Vz ---. 01~
v3 ---. 10P(U=u) =3/4 Uz v3 v ---'11

1/3 4

v4

Binary Memoryless
Message Source

Homophonic
Channel

Binary Prefix-Free
Encoder

be seen that the homophonic coder of Fig. 3.4 comprises of a homophonic channel and

a binary prefix-free encoder. The homophonic channel is a memoryless channel whose

input alphabet Ul, U2, ... , UL is either finite, or countably infinite, and whose transition

probabilities P(V = Vj IU = Ui) have the property that for each j there is exactly one i such

that P(V = VjlU = Ui) 1= O. These transition probabilities are used to govern the random

choice of Vj to represent Uj. A D-ary prefix free encoder is a device that assigns a D-ary

sequence to each Vj under the constraint that this codeword is neither the same as another

codeword nor forms the first part (the prefix) of a longer codeword. A homophonic coding

scheme is said to be perfect if the encoded D-ary sequence is completely random.

Variable-length homophonic substitution, introduced by Gunter et al. [5] generalizes

the conventional scheme in that the D-ary sequences used can have different lengths. If this

is the case, the sequences in the subset corresponding to a given value U of U is selected

with unequal probabilities in order to achieve a flat frequency distribution of symbols from

the D-ary alphabet in the resulting sequence. Fig. 3.6 illustrates an example of a such a

variable-length homophonic coder (also perfect), taken from Giinter et al. [5]. When the

P(U=u) = 114 U
/vi

V VI --+00 XI,x2""ul~ 2/3 v2
~ v

2
--+ 1~

P(U=u) =3/4 u2< v
3
--+ 01

1/3 v3

Binary Memoryless
Message Source

Homophonic
Channel

Binary Prefix-Free
Encoder

codeword are of unequal length, the expected length E[W] (in bits) of a codeword can be

calculated as follows:

where li is the bit length of the i'th codeword and P(Vi) = P(viluj)P(uj)' For the scheme

in Fig. 3.6 it follows that E[W] = t(2) + HI) + t(2) = 1.5 bits. On the other hand, the

expected length for the codewords in the conventional homophonic substitution scheme in

Fig. 3.5 is E[W] = t(2) + t(2) + t(2) + t(2) = 2 bits.

This illustrates the fact that variable length homophonic substitution usually results in

shorter codeword sequences than conventional homophonic substitution. The source

sequences in the examples have only two input symbols (i.e. a binary message source).

This means that only I bit per symbol is needed to represent the source symbols. Because

the expected length of codewords in the homophonic coding example schemes is more

than 1, it can be seen that homophonic substitution results in data expansion. From Fig.

3.5 and Fig. 3.6 it is observed that the homophonic channel introduces randomness in

the sequence. It is the inclusion of this additional randomness that causes the data expansion.

For memoryless sources and channels, as in Fig. 3.5 and Fig. 3.6, a homophonic

substitution scheme will be perfect if the codeword Xl, X2, .•• , Xw for V = Vi is

completely random [15].

Proposition 2 (Jendal et al.[15]):

For the homophonic schemes in Fig. 3.5 and Fig. 3.6,

where E[W] is the expected length of the codeword. The equality on the left holds if and

only if the homophonic channel is deterministic, and the equality on the right holds if and

only if the homophonic coding scheme is perfect. Also, there exists a D-ary prefix-free

coding of V such that the scheme is perfect if and only if P(V = v) is a negative integer

power of D for all possible values v of V. When this condition is satisfied, the scheme is

perfect if and only if P(V = Vi) = D-li holds for all values Vi of V, where li is the length

of the D-ary codeword assigned to Vi. (For a proof, see [15])

From this proposition it follows that the two schemes shown in Fig. 3.5 and Fig. 3.6

are perfect, because the values of V with probability 1/4 are assigned binary codewords of

length 2 and the single value of V with probability 1/2 is assigned a binary codeword of

length 1.

3.5 Optimum Homophonic Substitution

A homophonic coding scheme is called optimum if it is perfect and minimizes the expected

length E[W] of the D-ary codeword.

Proposition 3 (Jendal et al. [15]):

A homophonic coding channel is optimum if and only if for every u E U its homophones

equal (in some order) the terms in the unique dyadic) decomposition

P(U = Ui) = LP(Vi)(j),
j?l

Proposition 2 shows that the task of designing an optimum homophonic coder requires

a homophonic coder that minimizes the entropy V. According to Proposition 3, this is

equivalent to the requirement that the homophones are to be associated according to the

dyadic decomposition of the source probabilities P (Ui)' It also follows from Proposition

3 that the homophonic channel in Fig. 3.6 is optimum and that E[W] = H(V) = 3/2 is

the minimum value of E[W] for perfect homophonic substitution for the message source of

Fig. 3.6. Jendal et al. also determined the following useful upper bound on H(V) for an

optimum homophonic coder:

Proposition 4: ([15])

For an optimum binary homophonic coder

An optimum homophonic should thus never increase the entropy of its input U by more than

2 bits, regardless of how large H(U) might be.

IThe associated probability distribution of a source is called dyadic if the values of the symbol probabilities

are distinct negative powers of two

3.6 Source Coding and Homophonic Coding

The central theme of this dissertation is to convert a practical source, having non-uniformly

distributed source symbols, into a uniformly distributed message source. The main goal

therefore, is to increase the unicity distance

H(Z)
nu=--

p

H(X)
p=l---

klog2 L

As discussed in the previous sections, this can be accomplished by performing homophonic

substitution on the source. However, reduction of redundancy can also be accomplished

by data compression. The potential disadvantage of homophonic substitution is that, even

though it reduces the redundancy of a source, it might also increase the total length of the

source sequence, as noted by Boyd [16]. This is a direct result of the inclusion of extra

randomness into the sequence, as shown in Fig. 3.4.

Data compression on the other hand reduces the redundancy and length of a source

sequence, but is a deterministic mapping between the source and compressed result. This

means that an attacker will not be able to launch a plaintext-only attack, but there exists a

one-to-one mapping between the input source and the compressed result, so that known-

and chosen-plaintext attacks would still be possible. With homophonic substitution, these

two attacks are not possible, because even if the plaintext is known, or chosen, the encoded

result is random (as a result of the randomly chosen homophones). In this dissertation,

two methods are investigated that combine these two encoding algorithms to produce an

algorithm that performs homophonic substitution, but does not increase the length of the

source sequence significantly.

Note that the unicity distance (Equation 3.10) is a function of the entropy of the

source H(X) and the number ofletters in the source alphabet L. Homophonic substitution

minimizes the redundancy by maximizing the entropy, but the redundancy can be further

reduced by minimizing the number of letters in the alphabet. The minimum value that L

may take is 2, so it is convenient to treat the source data as a binary message source.

The purpose of homophonic substitution is twofold: First, it denies an attacker the opportu-

nity to launch a known- or chosen plaintext attack by randomizing the input to the encryption

algorithm. Second, it maximizes the entropy of the input to the encryption algorithm,

resulting in a cipher with a very large unicity distance. An attacker is thus forced to perform

a ciphertext-only attack, which is essential in practice. As already mentioned, the overhead

added to the sequence as a result of homophonic substitution can be removed by means of a

suitable compression algorithm. There are two types of noiseless compression algorithms, i.e

compression algorithms in which there are no information loss during compression. The first

type isftxed-to-variable compression algorithms, in which the algorithm maps fixed length

source symbols to variable length codewords, similarly to the variable length homophonic

coder. The second type, variable-to-fixed algorithms do the opposite: it maps variable

length sequences of source symbols to fixed length codewords. One of each type of source

coding technique is investigated in this study: the statistical coding based fixed-to-variable

arithmetic coding algorithm, and the dictionary based variable-to-fixed Lempel-Ziv-Welch

data compression algorithm. These two algorithms, the reasons for choosing them and the

methods to convert them into homophonic coders are discussed in the chapters to follow.

CHAPTER FO DR
HOMOPHONIC CODING BASED ON

ARITHMETIC CODING

Arithmetic coding was first introduced by Rissanen and Langdon [17, 18, 19] and may be

viewed as a generalization of Shannon-Fano-Elias and Huffman coding [20]. Arithmetic

coding is a compression technique that requires accurate knowledge of the source statistics.

But unlike Huffman coding, it does not require that each symbol translates into a fixed code,

thereby coding more efficiently. Arithmetic coding is able to achieve the theoretical entropy

bound for any source [17, 19].

In arithmetic coding there exists a clear separation between modeling of source statistics

and encoding of source symbols, which has distinct practical advantages. The algorithm is

also easily adaptable to varying source statistics and it is not necessary to arrange symbol

probabilities in any particular order, as is required for Huffman Coding. It is because of

these properties that arithmetic coding was chosen for this study.

4.2 Overview of the Arithmetic Coding Algorithm

Arithmetic coding is a source encoding algorithm that repeatedly divides an interval into

subintervals with widths proportional to the probabilities of the input symbols. The encoded

data is simply the lower bound of the final interval. The process is best illustrated by means

of an example.

Example:

Consider a source emitting the source symbols {a, b, c, d} with probabilities of 1/8, 1/2,

1/4 and 1/8 respectively (see Table 4.1). The arithmetic coder is initialized with the

Symbol P(Si) 2: P(Si) Associated P(Si) 2: P(Si) Associated

Si subinterval (in binary) subinterval

a 0.125 0 [0,0.125) .001 .000 [.0,.001)

b 0.5 0.125 [0.125,0.625) .1 .001 [.001,.101)

c 0.25 0.625 [0.625,0.875) .01 .101 [.101,.110)

d 0.125 0.875 [0.875,1) .001 .110 [.110,1)

interval [0,I), where the lower bound is closed, indicated by the square bracket [, and the

upper bound is open, indicated by the round bracket). This interval is divided into four

subintervals, namely [0,0.125), [0.125,0.625), [0.625,0.875) and [0.875,1), corresponding to

the symbol probabilities P(a), P(b), P(c), and P(d) respectively, as shown in Fig. 4.1

Suppose that the input sequence bbea is to be encoded. The first step of the encoder is to

choose the subinterval corresponding to the first symbo1. In this case, the symbol is "b"

and the corresponding interval is [0.125,0.625). This will be the total interval for the next

iteration and is again divided into four subintervals, proportional to the symbol probabilities.

The new subintervals associated with each symbol will be:

Symbol New sub- Associated

interval width subinterval

a .5 x .125 = .0625 [.125,.1875)

b .5 x .5 = .25 [.1875,.4375)

e .5 x .25 = .125 [.4375,.5625)

d .5 x .125 = .0625 [.5625,.625)

The next input symbol to be encoded is another "b", and the corresponding interval is

[.1875,.4375). This process is repeated until all the input symbols have been encoded,

as shown in Fig. 4.1. The final subinterval is [0.34375,0.3515625) and the output of the

encoder will be the lower bound, i.e. 0.34375 (or 0.01011 in binary). The process can thus

be described by two recursive steps. The first step calculates the code point C, which is the

lower bound of the interval corresponding to the symbol to be encoded. The second step

calculates the interval width A, which is the width of the the new interval that the encoder

uses for further calculations [19].

Step 1: New Code Point

The first recursion determines the new code point as the sum of the current code point C, and

the product of the width A of the current interval and the cumulative probability L::P(Si) of

the symbol Si:

Ck = Ck-1 + Ak-1 X L P(Si) ;k = 1,2,3.. . with Co = 0 and Ao = 1. (4.1)

Step 2: New interval width

The second recursion determines the width A of the new interval, which is the product of the

probabilities of the data symbols encoded so far. The new interval width for the symbol S i is

The cumulative probabilities shown in the third column of Table 4.1 (L:: P(Si» are often

referred to as augends [17]. When the probabilities of the source symbols are dyadic, i.e.

negative powers of two, such as in this example, arithmetic coding can be reduced to the sum

of augends, as shown in Table 4.2. This means that instead of making use of dividing and

Symbol no. Symbol Augends

1 b .0 0 1

2 b 0 0 1

3 c 1 0 1

4 a 0 0 0

Codeword .0 1 0 1 1 0 0

re-scaling operations, arithmetic coding can be performed by shifting and adding operations

when the source symbol probabilities are dyadic.

It should be noted that there does not exist just one single arithmetic coding algorithm.

Rather, several classes of arithmetic coding can be identified [20, 17, 18, 19]. The

shift-and-add method illustrated here results in a much simpler and faster arithmetic coding

algorithm than any of the other cited algorithms. For example, it has been shown that the

shift-and-add algorithm is about 25% faster than the algorithm given in [20].

Decoding amounts to magnitude comparison, essentially following the inverse of the

recursive steps used in the compression procedure. In order to perform decompression,

the decoder must have the same information about the source statistics as the encoder to

determine the interval widths. Decoding is performed in the following three steps:

Step 1: Decoder comparison

When the decoder receives 0.34375, it compares this value with the cumulative probabilities

of Table 4.1. This shows that the magnitude of 0.34375 is greater than, or equal to 0.125,

but less than 0.625. Hence the first received symbol is decoded as "b", since the received

code string lies in the rage [0.125,0.625). Once the the symbol is decoded, it is possible to

use the same recursion as the encoder to calculate the interval width:

Step 2: Decoder re-adjust

In this step the decoder subtracts the cumulative probability l:P(Si) from the received

code string. For the first decoded symbol the value l:P(S2) = 0.125 is subtracted:

.34375 - 0.125 = 0.21875.

Step 3: Decoder scaling

During the encoding process, the the new code point Ck is determined by multiplying

L:P(Si) with the current interval width Ak• The effect of this multiplication can be

"undone" by division with the interval width. This gives 0.21875/0.5 = 0.4375.

By repeating these steps, the received sequence 0.34375 will be uniquely decoded

into the encoded sequence bbea.

If the shift-and-add algorithm was used to perform compression, decompression can

also be performed by "undoing" the steps in compression. In the first step it will then not

be necessary to determine the interval width Ak, and the division operation in the third step

becomes a left shift operation. In binary, the first symbol will be decoded as follows:

Step 1:

0.001 ~ 0.01011 < 0.101 :. decoded symbol = b

Step 2:

0.01011 - L:P(a) = 0.01011 - 0.001 = 0.00111

Step 3:

Left shift 0.00111 with L bits, where P(Si) = 2-£

P(Si) = P(b) = 1/2 = 2-1 :. L = 1, and the sequence becomes 0.00111 « 1 = 0.0111,

where < < x means left shift with x bits.

By repeating these steps, the entire sequence can be decoded. The fact that the shift-and-add

algorithm is much simpler than other algorithms, is a direct consequence of the dyadic

source probabilities. At first glance the requirement that symbol probabilities are constrained

to negative powers of two may appear severely restrictive. However, in Section 4.4 it will

be shown how this requirement can be used to great advantage in the case of homophonic

coding. The shift-and-add arithmetic coding algorithm is thus most suitable for the purposes

of this study.

The output of the arithmetic coder is the floating point value of the lower bound of the final

subinterval. In order to transmit or store this value, it must be subdivided into smaller parts

that can fit into a chosen data type, for instance 16 bit unsigned integers. This means that

the data will not be represented as floating point data types, but rather integers. This will

allow for incremental transmission and reception.

To see this, consider again the example illustrated in the compression section (Section 4.2.1).

After the first two symbols, i.e. "bb", are encoded, the output is 0011. Upon reception the

decoder can already determine that this value lies in the range [.001,.101) and decode the

first symbol as "b". By performing the decompression steps: 0011-0010=0001, 0001 < < 1

= 0010, the second "b" can be decoded. Before transmitting the 16 bit integer value, care

must be taken that it will not be affected by future addition operations. It is thus necessary

to stall transmission until the next augend to be added is shifted far enough not to cause any

changes in the most significant 16 bits.

Even with the above mentioned criteria an overflow can still occur. Consider the case where

the transmitted integer comprises only 1's. When constructing the next integer, a bit might

have to be carried over into the previous integer. Langdon [17] illustrate how the situation

can be resolved with bit stuffing. This implies is that if a consecutive number of 1's occur

in the stream, a 0 is inserted (stuffed) after the 1's. This 0 will then stop the ripple effect of

a carry-over. Usually the number of l's to be encountered before a 0 is stuffed, is equal to

the integer word size. So if 16 bit integers are used, a 0 will be stuffed after encountering 16

consecutive 1's. On the decoder side the stuffed bit is removed, and if the stuffed bit is aI,

the carry is propagated inside the decoder.

Another fact that has to be taken into consideration during the compression stage, is

the possibility of an underflow. This can occur because the symbol probabilities used in

compression are also stored in fixed length words. The probability of a particular symbol

can become too small to fit in the word. For instance, if the probability of a symbol is 2 -17,

it can not be represented by a 16 bit integer. Bell et al. illustrate a method of preventing

this for normal arithmetic coding [20]. This is done by limiting the maximum number of

symbols to be read in at a time when probabilities are represented by the relative frequencies

of characters. If no more than 216 symbols are used to calculate symbol probabilities, a

probability of smaller than 2-16 can not occur and a 16 bit integer can be used to store the

probabilities.

4.3 Source Modelling

Arithmetic coding consists of two stages: the modelling ofthe source statistics and the actual

encoding of the source symbols by utilizing the modelled statistics. This section explains the

method used in this study to model the source statistics.

There are a number of different issues that need attention when considering the statistical

modelling of sources, often depending on the specific source in question (text, image,

video etc.). Since the model for this study will be applied to arithmetic coding performing

homophonic coding in e-commerce transactions, this discussion is confined to issues that

apply to text messages. The various ways to perform statistical modelling of text sources

differ in two aspects, namely the order of the model and whether it is static, semi adaptive

or adaptive [21]. An order-O model is a memoryless model, which considers the probability

distribution of a symbol independent of the probability distribution of any other symbol.

In an order-n model, the occurrence of groups of symbols of size n is used to determine

the probability distribution. For example an order-l model will calculate the probability of

occurrence of character pairs for example th, qu etcetera. Higher order models generally

achieve better compression, but also require more memory.

The difference between static, semi-adaptive and adaptive models is the method of

determining the probability of occurrence of a symbol, or a group of symbols. A static

model utilizes pre-determined statistics to encode any file, and may perform very poorly

[20]. A semi-adaptive model scans an entire file before encoding it to obtain the symbol

probability distribution for that specific file. When such a model is utilized, the encoder

must transmit the symbol probabilities to the decoder before the encoding process can begin,

to make decoding possible. An adaptive model recalculates the probability distribution

of the symbols on the fly, and dynamically updates the model after a certain number of

symbols are encountered. An adaptive model does not scan the sequence beforehand and

does not need to send the character probabilities separately. But it does require an initial

model in order to operate correctly. Fig. 4.2 shows the configuration of an adaptive model.

The first string of source symbols is encoded with the initial model, and then the statistics

Probability Probability
Estimator Estimator

Source Arithmetic Arithmetic Received
Encoder Decoder Sequence

of this string are used to adapt the model afterwards to encode the next string of symbols. If

the initial model does not accurately reflect the probabilities of the first string of symbols,

which is usually the case, good compression will not be achieved initially. But after a while,

the model "learns" the statistics of the file being encoded and better compression can be

achieved. In general, the cost of transmitting the model when using semi-adaptive models is

about the same as the "learning" cost in the adaptive case [21]. Better overall compression

can however be achieved with an adaptive model because it adapts to local statistics in a

file. For example, a Microsoft Word document may contain ASCII text in certain parts of

the file and graphics in other parts. An adaptive model will estimate the symbol statistics

more accurately at a specific point in the file than a semi-adaptive model, which uses the

average statistics of the entire file to encode every part of the file. An adaptive model is

more suitable for the purposes of this study.

The most elementary method of estimating the probability of a symbol in a sequence of

symbols is to count the number of times that the symbol appears in the sequence, and to

divide it by the total number of symbols in the sequence. For example, in the sequence

"aabcbabcca", the symbol probabilities of the three symbols are calculated respectively as

Pa = 4/10, Pb = 3/10 and Pc = 3/10. Over the years various methods of probability

estimation have been developed, some specifically for the source that is to be modelled.

For instance, it is found that in most electronic transaction data, just like in text files, the

occurrence of some words or characters are clustered in some part ofthe file. Algorithms that

take locality of reference, (or recency) [22] into account usually perfrom very well in such

situations. It is thus advantageous to employ such a mechanism in the model. According to

Howard et al. [21], there are several ways to do this in practice:

• Periodically restarting the model. This often discards too much information and is

therefore ineffective.

• Using a sliding window on the text. Probabilities are calculated by counting the relative

frequency of symbols in the window and by sliding the window on the text. This

requires excessive computational resources.

• Recency rank coding. (Refer to [22] for a discussion). This is computationally simple

but results in a rather coarse model of recency.

• Periodic scaling. All the symbols' counts are periodically reduced (scaled) by the same

factor.

At this stage it is necessary to discuss the last two methods in more depth. According to

Howard et. at [21] exponential aging is moderately difficult to implement because of the

changing weight increments. Instead, periodic scaling is used, which is an approximation of

exponential aging. The only difference is, in fact, the period at which the weights are scaled.

If all weights are scaled after every symbol encoded, scaling and exponential aging perform

exactly the same operations.

As for the degree of difficulty of the implementation of exponential aging, a new

modelling method based on an Infinite Impulse Response (IIR) filtering technique is

presented here as a simple solution. This makes it feasible to utilize the actual exponential

aging algorithm, rather than an approximation of it.

The model is based on the IIR filter structure shown in Fig. 4.3. The model comprises

of L such filter stages, one corresponding to each one of the L possible input symbols

81,82, ... , SL. The system processes the entire sequence of symbols one by one, i.e.

adaptively. Let k denote the current symbol position in the sequence. The input to the filter

corresponding to the kth symbol being encoded is ai, while the input to all other filters

equals O. The output of each filter is scaled with a value of a, where 0 < a < 1, and is fed

{

= I if current character
Xi being encoded = S i

= 0 if current character
being encoded ¢ Si

message
equence:

back to be added to the next input value. After k symbols have been processed, the output of

the system is the L probabilities associated with the L symbols in the source alphabet. Each

source symbol's estimated probability Pi (k) is given by the output of its corresponding filter

Yi(k), divided by the sum of all the filter outputs:

Pi(k) = LYi(k)

E Yj(k)
j=l

L
where Tk is defined as Tk = EYi(k). The output is thus a function of k, the number of

i=l
symbols processed up to a specific point. Fig. 4.4 illustrates the entire modelling system.

In arithmetic coding, a probability of 0 is not allowed. This is known as the zero frequency

problem, thorougWy investigated by Witten and Bell [20]. A way to prevent this, is to always

add a small fixed value q to the estimated probability, so that it is never 0, ensuring that all

symbols will always be included in the model. The output of the modelling system is thus

Pi(k) = Yi(k) + q i = 1,2, ... , L.
Tk + Lq

Note that the total value of the filters' output is then equal to

L LL Yi (k) + q = Lq +L Yi (k) = Tk + Lq.
i=l i=l

The numerator of each estimated probability thus comprises of two components: q and

Yi (k). It is preferable to choose the value of q as small as possible, because it does not

really contribute to the probability estimation of the symbols. (The fraction Yi (k) /Tk is the

component used to estimate the symbol's probability). As mentioned in Section 4.2.3.1, the

estimated probabilities are stored as integers in the computer. The smallest value that q may

thus take on, is the smallest value that can be represented by the integer type it is stored in.

For example, the smallest probability that can be represented by a 16-bit unsigned integer is

b. The smallest value that q/(Tk + Lq) may take on is thus b,giving a value of q = 21r~L·

In general, if a register size of B bits are used, q is given the value of

Consider the modelling system shown in Fig. 4.4. After the first symbol has been processed,

the value of Tk is

Ta = 0: X (0: X 1+ 1)+ 1 = o:T2 + 1 = 0:2+ 0: + 1.

k
Tk is thus the k'th partial sum of the geometric series Eai = 1 + a + a2 + ... + ak, which

i=O

1-ak+l
Tk = --- (4.8)

1-a
Since a < a < 1, the series converges to l~a when k -t 00. When implementing the model,

this value is stored in a floating point register of finite size, e.g as a 32-bit floating number.

Because the register is of finite precision, the series will converge to l~a before k reaches

infinity, due to the rounding of the computer. Fig. 4.5 shows different values of k at which

Tk will be rounded off when stored as a 32-bit float for different values of a. For a = 0.5,

k is typically 24, which means that after 24 symbols are processed, Tk converges to 2. For

a = 0.9, k = 179 when Tk converges to 10, and for a = 0.99, k = 2113 when Tk converges

to 100.

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a

Figure 4.5: The values of k at which Tk is rounded off to its convergence value for

different values of a

The purpose of this discussion is to show that it is not unreasonable to substitute Tk in Eq.

4.6 with l~a' so that q may be calculated once as follows:
1"i"="a 1

q = 2B - L - (1 - a)(2B - L)"

Because of the finite precision of the integer number that is used to store the estimated

probability, the contribution of the Yi component will reach zero after a certain number of

symbols have been processed. More specifically, for a certain value of k the ratio of ak to

Tk + Lq will become smaller than 1/2B, at which point the register entry will be rounded off

to 0 (causing an underflow). The value of k at that point can be calculated by substituting

Eq. 4.8 and Eq. 4.9 into

k = -loga [(1- a)(2B
- L) + a(1- 2~)] . (4.10)

This means that after k reaches the value given in Eq. 4.10, the symbols that occurred further

back than k positions have no contribution to the current estimated symbol probabilities.

The graph of k for values of 0 < a < 1 is very similar to Fig. 4.5, and is illustrated in Fig.

4.6.

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a

Figure 4.6: The values of k at which estimated probabilities stored in a 16-bit unsigned

integer are rounded off to 0

The last point to consider in the implementation is the fact that in arithmetic coding a

special end-of-file symbol has to be included in the model, to indicate to the decoder when

decoding should terminate. This symbol is only coded once, at the end of the sequence, and

can thus also be assigned a probability of q/(Tk + Lq).

4.4 Homophonic Coding based on Arithmetic Coding

The algorithm for homophonic coding based on shift-and-add arithmetic coding comprises

four steps: [23]

Step 1: Source modelling

The first step is to estimate the statistics of the source in order to determine the subinterval

width associated with each source symbol. The method based on IIR filtering described in

Section 4.3 is used for this purpose.

Step 2: Designing the homophonic channel

The second step is to determine the homophones ViI, Vi2,' .. , Vij, ... to be associated with

each source symbol Si. This is achieved by dyadic ally decomposing the probabilities of

the source symbol. For example, if a source symbol has a probability of P(SI) = 1/3, the

decomposition will occur as follow:

P(si)=1/3

=0.01010101... (binary)

=0.0101 + c (truncated)

=1/4 + 1/16 + c

=P(ViI) + P(Vi2) + c

The two (dyadic) homophones associated with Si are thus ViI = 0.01 and Vi2 = O.OOOL

There will always occur a small error c in the dyadic approximation as a result of the

truncation of the probabilities to a finite precision. However, the magnitude of this error

can be made arbitrarily small, and depends on the choice of register size. The cumulative

probabilities of the homophones (the augends) represent the codewords for the homophones.

Table 4.3 illustrates the process for an alphabet with non-dyadic probabilities.

Source Symbols Homophones

Symbol P(8i) P(8i) P(8i) Symbol P(Vij) EP(Vij)

8i (in decimal) (in binary) (truncated) (in binary) (in binary)

81 =a .3333 .01010101 .0101 Vn .0100 .0000

V12 .0001 .0100

82 =b .125 .00100000 .0010 V21 .0010 .0101

83 =c .1666 .00101010 .0010 V31 .0010 .0111

84 =d .375 .01100000 .0110 V41 .0100 .1001

V42 .0010 .1101

Step 3: Random selection of homophones

In the third step, each source symbol to be encoded is mapped into one of its associated

homophones, chosen at random. The homophones are selected by means of an external

randomiser. This introduces additional randomness into the message, which accounts for

the increase in entropy of maximally 2 bits/symbol [15].

Step 4: Arithmetic coding of the homophones

The final step comprises of the encoding of each selected homophone by means of the

shift-and-add arithmetic coding algorithm described in the previous section. It should be

noted that any implementation of arithmetic coding could be used in this step, but the

shift-and-add algorithm is by far the fastest [23].

In this chapter the operation of arithmetic coding was reviewed. It was shown how

source statistics can be modelled, and how arithmetic coding can be adapted to perform

homophonic coding by dyadically decomposing the input symbol probabilities. By doing

this, the shift-and-add implementation of arithmetic coding can be utilized to encode the

homophones. This implementation is much faster than other implementations because it

utilizes only shift and add operations.

The output of the homophonic arithmetic coder is a string of binary digits. The developed

algorithm maps a given (non-uniformly distributed) sequence of source symbols into a

uniformly distributed sequence of bits, and in doing so, maximizes the entropy of the

sequence to be encrypted. Chapter 6 illustrates some results obtained when encoding

different sources with this adapted arithmetic coding algorithm.

CHAPTER FIVE
HOMOPHONIC CODING BASED ON LZW

COMPRESSION

The Lempel-Ziv-Welch (LZW) algorithm [24] is one of the most widely used and

well-known data compression algorithms. It is a dictionary type of data compression

algorithm, that parses a given sequence of characters into a sequence of substrings, or

phrases. The collection of these phrases is called the dictionary, or codebook. Because

of its popularity, a method was investigated on how to adapt this algorithm to perform

homophonic substitution as well. LZW coding is a good candidate for homophonic coding

because of its universal properties: it automatically models any source statistics, as is

needed to perform homophonic substitution.

There exist a large number of variants of the Lempel-Ziv algorithm which can all be

traced back to two papers, published by Lempel and Ziv in 1977 and 1978. For a good

description of most of these variants see [20]. The notations mostly used to describe these

original two variants is LZ77 and LZ78. LZ77 is a "sliding window" technique in which the

dictionary consists of a set of fixed-length phrases found in a "window" in the previously

processed text. LZ78 takes a completely different approach to building a dictionary. Instead

of using fixed-length phrases from a window into the text, LZ78 builds phrases up, one

symbol at a time, adding a new symbol to an existing phrase when a match occurs. The LZ78

scheme gave rise to an article by Welch entitled "A Technique for High-Performance Data

Compression" [24]. This technique was originally proposed as a method of compressing

data as it is written to disk, using special hardware in the disk channel. Because of the high

data rate in this application it is important that compression is very fast. This high-speed

encoding is an attractive feature, especially in communication systems where encryption

operations also have to be performed. The purpose of this chapter is to give an overview of

the compression technique described by Welch, hereafter referred to as LZW. This chapter

also illustrates the procedure used to adapt the LZW algorithm to perform homophonic

substitution.

5.2 Review of the LZW Algorithm

In order to illustrate the operation of this algorithm, the notion of a prefix and a suffix is

introduced. The suffix is sometimes also referred to as an extension, or innovation character

[25]. As with any Lempel-Ziv algorithm, the object of LZW is to parse a given sequence of

n characters into a set of distinct phrases. The term phrase is used to indicate the result of

the parsing process. The last character of a phrase is the innovation character and the string

of characters before it is the prefix. The collection of these phrases is called a dictionary,

or codebook. With LZW the codebook is initialized by assigning all the symbols in the

source alphabet to the first phrases in the dictionary. Hence, if there are L letters in the input

alphabet, these will be the first L phrases in the dictionary. The LZW encoding process can

then be described as follows:

1. For each phrase to be parsed off, search the codebook for a matching phrase, on a

character-by-character basis. Determine the longest possible matching phrase - this is

regarded as the prefix.

parsed phrase in the next position of the codebook, and output the codebook number

that contains the prefix.

3. The next phrase begins with the innovation character of the previous phrase and the

process is repeated until all characters in the input sequence have been parsed off, and

their corresponding phrases placed in the codebook.

The process can be illustrated as follows. Consider a binary source (L = 2) emitting the

following sequence of length n = 10:

First, the codebook is initialized by setting entry # 0 to 0 and entry # 1 to 1. Entry # 2 is

left open to serve as an End-of-File (EOF) character, to indicate when the decoding process

should terminate. The first character in the sequence is a 1 and it becomes the first character

of the phrase. This phrase is then extended by one character so that 10 is obtained. The

sequence 10 has not yet occurred in the codebook, so it is the next phrase to be parsed off

(codebook entry number 3).

Input Output Dictionary entry

number prefix p IC

- -+ - 0 - 0

- -+ - 1 - 1

- -+ - 2 - eof

10 -+ 1 3 1 0

00-+ 0 4 0 0

01-+ 0 5 0 1

11-+ 1 6 1 1

101-+ 3 7 3 1

110-+ 6 8 6 0

01-+ 5

The prefix of the phrase (l) is transmitted, and the codebook is updated. The next phrase

begins with entry #3's innovation character (0). The phrase is extended by one character so

that 00 is obtained. This phrase also has not yet occurred in the codebook, so it becomes

codebook entry # 4, while the prefix (0) is output.

The process is summarized in Table 5.1, where the innovation characters (Ie's) are

shown in bold print. The output of the algorithm is therefore pointers to codebook entries.

From a practical point of view it is often convenient to limit the codebook size to a fixed

maximum, e.g. 214, which corresponds to a maximum codeword length of 14 bits [24]. If

the codebook size used in this example was 14 bits, the result of compressing 10 bits would

be 7 pointers x 14 bits = 98 bits! This illustrates the fact that with Lempel-Ziv coding,

compression is usually not effective until a sizable table has been built, typically after at

least 100 or so bytes have been processed [26].

In the decoding process, the phrases received from the compression algorithm are used to

reconstruct the input stream. One reason for the efficiency of the LZW algorithm is that it

is not necessary to transmit the codebook to the receiver. At the receiver, the codebook is

built exactly in the same way as during compression. First the codebook is initialized, as

in the compression stage. Then each time a phrase is received, the corresponding (already

existing) codebook entry is output, and used as the latest codebook entry's prefix. The first

character of the next decoded phrase is the innovation character.

The compressed sequence of the example in Section 5.2.1 is decompressed as follows:

The first codeword received is a 1, so 1 is output and the prefix of codebook entry #3 is 1.

The next codeword encountered is 0, so a 0 is output, codebook entry #3 is completed by

appending the innovation character 0, and the prefix of codebook entry #4 is updated as

O. This is repeated until all the codewords have been decompressed, as illustrated in Table

5.2. Note that the codebook table is reconstructed exactly as it was in the compression stage.

Input Output Dictionary entry

number prefixp Ie

--+ - 0 - 0

--+ - 1 - 1

--+ - 2 - eof

1-+ 1 3 1 0

0-+ 0 4 0 0

0-+ 0 5 0 1

1-+ 1 6 1 1

3-+ 10 7 3 1

6-+ 11 8 6 0

5-+ 01

= First character of

next decoded sequence

In the decoding process it can happen that a phrase is encountered that is not yet

fully reconstructed in the codebook, i.e. the previous codebook entry. To see this,

consider the character 1 and the string 10. If the following combination occurred in

the input stream: character,string,character,string,character (l, 10,1,10,1), and one of the

previous codebook entries comprised of character, string (l, 10) (like entry number 8 of the

example), compression would occur as follows (assume codebook entry number 12 is to

be constructed): parse 1101, output 8 and complete entry #12 as 1101. Next, parse IlOlx,

where x is the character following the last 1, output 12 and complete entry #13. When the

decompression algorithm receives the codeword 8, 110 is output and the prefix of entry

#12 is updated as 110. Next it receives phrase 12, but codebook entry #12 is not yet fully

The problem can however be resolved because the prefix of phrase #12 is known, so

the decompressor may take its first character as the next character (innovation character),

and complete the entry. The prefix of entry # 12 is entry # 8, which corresponds to 110,

so the first character, i.e. 1, is taken as its innovation character, and the received phrase 12

can be decoded. This is fortunately the only time that the decompressor will encounter an

Input Output Dictionary entry

number prefix p IC

6-+ 11 8 6 0

5-+ 01 9 5 ····: -+ ··
8-+ 110 12 8 1

12-+ 1101 13 12 x

undefined phrase, so that an exception handler can be added to the algorithm. The modified

algorithm looks for the special case of an undefined phrase and handles it by making the

first character of the uncompleted phrase its innovation character.

In the compression stage, each time a character is encountered, a new code book entry has

to be stored. If there are, on average, 4 characters in a prefix, and if there are L letters in

the input alphabet, this means storing a prefix of 5 x rZog2L 1 bits every time, counting the

innovation character. (rx1 is the smallest integer larger than x). If the input to be compressed

is 7-bit ASCII, an average of 35 bits have to be stored for each character processed, causing a

lot of storage overhead. It also means that the algorithm has to make 35 bit comparisons when

searching through the codebook each time a character processed during compression, which

can make the computational overhead prohibitive. So instead of saving the entire prefix,

it would be wiser to store only the codebook entry number and the innovation character.

Codebook entry #8 of the example will thus be stored as 60, instead of 110. So for a 14-bit

codebook, only 14+7=21 bits have to be stored if the input is 7 bit ASCII, or 14+1=15 bits

if the input is binary (L = 2). It might seem that for the case of binary input, nothing is

gained by storing the codebook entry number, instead of the actual prefix. But the goal of a

compression is to represent a certain number of bits with less bits, so if the bit length of the

prefix is more than the number of bits that it represents, no compression occurs. So the prefix

length will in general exceed 14 characters. If only the codebook entry number is stored, the

size of the phrase to be stored and searched will never exceed 15 bits.

For the algorithm to be able to effectively search through the codebook, the phrases must be

sorted. With a 14-bit codebook, there are potentially 214 = 16384 phrases in the codebook.

Even if the phrase lengths do not exceed 14 bits, a large number of comparisons may be

needed before a match is found, if it occurs at all. This problem is rectified by using a

hashing algorithm to store phrases. This means that instead of storing entry #123 in position

123 of an array, it is stored in the location of the array based on the address formed by the

phrase itself. When a given phrase has to be located, the phrase is used to generate a hashed

address and the target phrase might be found in one search.

Nelson [26] illustrated a hashing function that, for a given phrase, bit-wise right-shifts the

value of the innovation character so that its bit length equals the bit length of the prefix,

and performs a bit-wise exclusive-or (xor) operation with the result and the prefix. This is

used as the index of the array. If the resulting entry is unused, the phrase is stored there,

and if it is in use, a comparison is made between its contents and the given phrase. If they

are the same, the match has occurred and if they differ, a new index value is calculated by

subtracting the current value from the table size and the process is repeated with the new

index value. For this to work, the table size has to be a prime number. According to Nelson

[26], the average number of searches in the table usually stays below 3 if the table size is

about 25% larger than needed. For a 14 bit codebook, the array size should be a prime

number higher than 1.25 x 214, for example 20483.

5.3 Adapting the LZW Algorithm for Homophonic Coding

When using the LZW compression algorithm to perform homophonic coding, external

randomness has to be added to the compression algorithm. Penzhorn [25] introduced a

randomization process for the LZ78 algorithm that performs a bit-wise xor operation on the

entire remainder of the original sequence and a bit chosen randomly every time a phrase is

parsed off. The following example illustrates the same idea for LZW:

Example:

Consider again the sequence in the example of the compression section (Section 5.2.1):

Now randomly choose a bit (say 1), and perform a bit-wise xor operation with the rest of the

sequence:

10,01101101

,11111111

,10010010

1,01,0010010

,0000000

,0010010

The process is repeated until all phrases have been parsed off, as shown in Table 5.4. In this

example a random bit stream of 101010 is assumed.

Input Output Diet. entry Input sequence

p Ie and xor operation

10-+ 1 3 1 0 10,01101101

11111111

01-+ 0 4 0 1 1,01,0010010

0000000

100-+ 3 5 3 1 10,100,10010

11111

00-+ 0 6 0 0 1010,00,1101

0000

011-+ 4 7 4 1 10100,011,01

11

11-+ 1 8 1 1 1010001,11,0

0

10 -+ 3 10100011,10

This randomization process effectively removes specific bit patterns that may occur in the

input stream. It also decreases the redundancy of the input stream which in turn implies

that less compression will be achieved by the algorithm. The resulting encoded sequence

will thus generally be longer than the sequence produced by the normal LZW algorithm. In

order to decode the sequence, the decoder must have knowledge of the random bits used in

the encoding. This information must thus also be transmitted to the receiver, which leads

to an additional overhead of 1 bit per codeword. The random bit used in the randomization

procedure can be transmitted after every codeword that was transmitted. The decoder must

remove this random bit from the received bit string after every codeword has been received,

and use it to undo the randomization performed during encoding.

Note that this adapted algorithm does not perform homophonic coding in the traditional

sense that input symbols are mapped into specific homophones. But it does produce the

required properties of homophonic coding, i.e. reduces the redundancy and denies a known-

or chosen plaintext attack.

In Chapter 6 simulation results are obtained for files encoded with this homophonic

substitution algorithm. These results show that the sequence that the algorithm produce is

not a uniformly distributed bit stream, as needed for maximum entropy. The main reason for

this can be seen by observing the output of the encoder. Note that the i'th output codeword

will always be less or equal than the (i - l)'th codebook entry. This implies that codewords

transmitted before the first half of the code book is constructed will always have at least one

leading O. For example, if a 14 bit codebook is used, the first 213 codewords will comprise of

one or more O's, because 14 bit words are used to represent them. Codebook entry number

9, for instance, is represented by the codeword 00000000001001. Even the 213 codewords

that start with a 1 obtained after the first half of the codebook has been constructed will

not completely compensate for all the O's that appear before them. An attacker can use

this knowledge of O's at specific points in the encoded bit stream to attack the encryption

algorithm.

The situation can be rectified by making use of variable length codeword sizes that

increase as the codebook is constructed. Because the i'th output codeword is always less or

equal than the (i - l)'th codebook entry, only flOg2(i - 1)1 bits are needed to represent that

codeword. For instance, if codebook entry number 10 is being constructed, the output of the

encoder can range between 0 and 9. The codeword that represents codebook entry number 9

can thus be represented with fl092(10 - 1)1 = 4 bits, i.e. 1001 instead of 00000000001001.

With this implementation the encoder starts by sending two bits per codeword, because

the first codebook entry to be formed is entry number 3, and the first codeword to be

transmitted can be 0, 1 or 2. After codebook entry number 4 has been constructed, the

encoder increments the number of bits to transmit per codeword to three.

In general, if the encoder is using b bits to represent the codewords at a specific point

during encoding, b is incremented with one after codebook entry number 2b has been

constructed. For this implementation the decoder must follow the same pattern as the

encoder. It starts by reading b = 2 bits at a time from the received bit string until codebook

entry number 3 is being constructed. If the next received codeword is not the end-of-file

codeword, the decoder continues by reading three bits at a time from then on. The decoder

then increments b with one every time after entry number 2b has been constructed. All

the "unnecessary" O's are removed in this manner, and cryptanalysts will not be able to

accurately identify bit values in specific positions in the encoded bit stream. This method

will from now on be referred to as the increasing-codeword-Iength (ICL) LZW algorithm,

while the old method is referred to as the Fixed Codeword Length (FCL) LZW algorithm.

The binary codewords of Table 5.4 as transmitted by the ICL LZW algorithm, follows on

the next page.

TABLE 5.5: Adapted LZW Parsing of the Sequence 1001101101 with Variable Length

Codewords

Input Binary Diet. entry Input sequence

Output # p Ie and xor operation

10 --+ 01 3 1 0 10,01101101

11111111

01 --+ 00 4 0 1 1,01,0010010

0000000

100--+ 011 5 3 1 10,100,10010

11111

00 --+ 000 6 0 0 1010,00,1101

0000

011 --+ 100 7 4 1 10100,011,01

11

11--+ 001 8 1 1 1010001,11,0

0

10 --+ 0011 10100011,10

In this chapter the operation of the LZW data compression algorithm was reviewed. It was

shown how this algorithm can be adapted to perform homophonic coding by performing

xor operations with the input sequence and random bits. Most implementations of the

LZW algorithm use fixed length codewords to represent source symbol sequences. Some

implementations however increase the codeword length as the codebook is filled up. Usually

they start with a large codeword size, e.g. 12 bits [8]. In this chapter it was shown why

this could be dangerous for security applications: cryptanalysts then know the bit values

at certain positions in the encoded sequences. A new method that continuously increases

the codeword lengths during encoding was introduced. In Chapter 6 this new technique is

applied to various message sources and simulation results are given.

CHAPTER SIX
EXPERIMENTAL RESULTS

This chapter illustrates experimental results that were obtained when encoding different

source files, using the algorithms described in the previous chapters. Appendix A describes

the C++ programs used to implement the algorithms. Five different source files are used in

the experiments:

Appendix B contains a description of the actual data contained in these files. The files are

each encoded with

Results are compared for the uncoded and encoded versions of the files to indicate the

effectiveness of the algorithms. The lengths of the uncoded and encoded files are also

compared to illustrate the effectiveness of the compression combined with homophonic

coding. The following sections describe the results obtained for the C++ file. The results for

the other files are shown in Appendix C (arithmetic coding results) and Appendix D LZW

results). All discussions about results given in this chapter is also based on, and applicable

to the results given in the appendixes.

6.2 Results of Homophonic Coding with Arithmetic Cod-

ing

The first experiment involves comparing the new IIR method of probability estimation with

other methods. A convenient way to represent a set of symbol probabilities, is to calculate

the entropy using Eq. 3.1. The entropy of a sequence of symbols is a single value that gives

a "summary" of the probabilities. The best way to indicate the entropy at a specific point in

a file is to use the sliding window method. To obtain an accurate estimate of the entropy, the

rule of thumb is to utilize at least 10 x L symbols to calculate the entropy, where L is the

number of symbols in the source alphabet. The entropy at position k in the sequence is thus

calculated utilizing the frequency of occurrence of a window of 2560 symbols preceding the

kth symbol.

Fig. 6.1 illustrates the entropy of the C++ file calculated in this manner, labeled as

SW Method (for Sliding Window Method). Also shown in the figure is the entropy

calculated with the IIR method, labeled the IIR Method. The third plot in the figure is the

method proposed by Nelson et al. [8], which is basically also a sliding window method.

But here the window of characters used for probability estimation always ranges from

the beginning of the sequence, and not just the over past 2560 symbols. It may thus be

called a variable length window method (and is labeled VW Method in the figure). Recall

5.1

5 '\ \...
~4.9

./ ;~\., /, \

"S ; / \./

>.4.8
"CIl I,-.~4.7 II

,.0

"
~
~4.6 j'.,
g "I:: 4.5 'I
~ /I

4.4 ;1
jl

4.3
.,
"

"4.20 2000

- SWMethod
..... VWMetho
- - IIRMethod
.- .. RWMetho

4000 6000 8000 10000 12000
Symbol position in file

that the IIR method is an exponential aging method. The fourth plot is a combination of

a linear aging method and the sliding window method. It assigns linearly aging weights

to successive symbols, using the past 2560 window of symbols, and disregarding any

occurrences of symbols before that. This method is labeled the LA method (for Linear

Aging). See Appendix H for a description of this method.

Fig. 6.1 clearly indicates that the fixed-size window methods give a better estimate

of local statistics better than the variable window method, which is slow to adapt to changes

in source statistics. Furthermore, it can be seen from the figure that, as more emphasis

is placed on recent characters, (such as the LA method and the IIR method), the graph is

"shifted" more to the left, or equivalently, the true entropy of symbols to come is being

reached.

The next experiment involves comparing compression results for different values of

a. Table 6.1 shows the results of encoding the C++ file with the homophonic arithmetic

a Length of Length of Percentage of

original file encoded file original length

a = 0.1 10103 bytes 14448 bytes 143%

a = 0.5 10103 bytes 13104 bytes 129.7%

a= 0.9 10103 bytes 9430 bytes 93.34%

a = 0.999 10103 bytes 7280 bytes 72.06%

better compression is achieved for larger values of a. This can be explained by observing

Fig. 4.6, which indicates that for small values of a, only a small number of symbols are

used for probability estimation. This is due to the fact that the register size is finite, and

because of round-off processes, earlier symbols are discarded. Remember that at least

10 x 256 = 2560 symbols are required for accurate probability estimation. According to

Fig. 4.6 this happens for a ~ 0.99812

Next, the compression results are compared for the different modelling techniques.

Table 6.2 shows the length of the encoded file for each probability estimation method used.

The value of a = 0.999 was used for the IIR method. Because the length of the encoded file

TABLE 6.2: Compression results for the C++ file for various probability estimation

methods

Method Length of Length of Percentage of

original file encoded file original length

SWMethod 10103 bytes 6876 bytes 68.06 %

VWMethod 10103 bytes 7353 bytes 72.78 %

LA Method 10103 bytes 6763 bytes 66.94 %

IIR Method 10103 bytes 6706 bytes 66.38 %

based on the IIR filter is the most accurate. Of all the probability estimation methods, the

IIR method's exponential nature places the most emphasis on recent characters. As can be

seen from the result, this proves to be of great advantage.

To illustrate the increase in entropy as a result of the adaptive shift-and-add homophonic

arithmetic algorithm, the running entropy of the original file and the running entropy of

the encoded file are plotted against the number of symbols encoded. The running entropy

of the uncoded file is calculated by the sliding window method, while that of the encoded

file is calculated by making use of Equation 3.1 with the probabilities of the homophones

assigned to each interval during the encoding process. The file is encoded with the value of

a = 0.999. Fig. 6.2 shows the plot for the C++ source file.

10

9·

8·

~7
>. 6 .
~
.~ 5 .e
~4

j 3
2·

1

00

entropy of homophonic
anthmetic coded sequence

2000 4000 6000 8000 10000 12000
number of characters encoded

The next experiment obtains the statistics of a source file before and after it has been

encoded to illustrate the effect of homophonic coding on the entropy of the sequence.

Table 6.3 show the results, and Fig. 6.3 illustrates the same results graphically, for easier

interpretation. Once again, the value of a = 0.999 is used. The probabilities shown in the

table are simply the relative frequency of occurrence of single bits and bit pairs, i.e. the

number of times it occurs in the file divided by the total length of the file.

TABLE 6.3: Relative frequency of occurrence of single bits and bit pairs in the uncoded

and homophonic arithmetic encoded C++ source file

~ Probabilities I P(O) I pel) I P(OO) I P(Ol) I P(lO) I P(ll) ~

Uncoded Data 0.6122 0.3878 0.3733 0.2389 0.2389 0.1489

Homophonic arithmetic 0.5025 0.4975 0.2525 0.2500 0.2500 0.2475

encoded data

0.7

0.6

o 0.5
~~ 0.4
,Do 0.3
~ 0.2

0.1

o

116arithmetic
homophonic coded
data

0.4

0.35
0.3

;>,~ 0.25~.•...
~ 0.2,D

£ 0.15
0.1

0.05
0

00 01 10 11

116arithmetic
homophonic coded
data

The results show that the encoded file has a nearly flat frequency distribution of bits and bit

pairs, once again indicating the increase in entropy, and thus the increase of unicity distance

of the encryption algorithm that is used to encrypt such files for secure transmission.

6.3 Results of Homophonic Coding with LZW Encoding

The first experiment illustrates the effect of homophonic coding on codebook entries formed

during the LZW encoding process. These entries show certain bit patterns that occur in

a source file that may lead to statistical analysis of a cipher algorithm. The goal of the

homophonic algorithm is to eliminate these patterns in order to prevent successful statistical

attacks on an encryption algorithm (used in known and chosen plaintext attacks). The input

consists of a bit stream with P{l) ~ 0.75 and P{O) ~ 0.25. A binary tree is useful to

visually illustrate bit patterns that occur in a bit stream, as shown in Fig. 6.4 (a). This tree

shows a line to the right if a 1 is encountered in a codebook entry and a line to the left if a

o is encountered. From Fig. 6.4 (a) it can be seen that the tree is biased and only certain

branches of the tree are reached, as may be the case for real sources.

The goal of the homophonic coding algorithm is to randomize the input so that virtually all

the branches are reached. This requires that the whole tree is filled up in a balanced way,

(a) (b)

Figure 6.4: Binary tree obtained when a bit stream with P(1)=O.75is encoded with

(a) the original binary LZW algorithm, and (b) the adapted binary LZW

algorithm

(a) (b)

Figure 6.5: Binary LZW trees of dictionary entries formed when encoding the C++ file

with (a) normal binary LZW, and (b) homophonic LZW

from left to right, thus indicating that the bit patterns used in statistical attacks are removed.

Fig. 6.4 (b) shows the resulting codebook entries when the same bit stream is encoded with

the homophonic LZW algorithm. The tree now has two main "legs", one to the right and

one to the left as a result of the xor operation during compression. More branches are thus

reached using the homophonic algorithm.

Fig. 6.5 (a) shows the tree that is formed when compressing the c++ file with the normal

binary LZW algorithm and Fig. 6.5 (b) shows the tree for the same file encoded with the

homophonic LZW algorithm. Note that in these figures the codebook entries are overall

shorter for the homophonic coded file than for the original compressed file, indicating the

removal of specific bit patterns, as needed.

The next experiment obtains the statistics of a source file before and after it has been encoded

to illustrate the effect of homophonic coding on the entropy of the sequence. Both the

fixed-codeword-Iength (FCL) and increasing-codeword-Iength (ICL) LZW methods were

used for this purpose. Table 6.4 contains the probabilities of occurrence of single bits and bit

pairs for

TABLE 6.4: Relative frequency of occurrence of single bits and bit pairs in the uncoded

and encoded C++ source file

~ Probabilities I P(O) I P(1) I P(OO) I P(OI) I P(10) I P(1I) ~

Uncoded Data 0.6122 0.3879 0.3733 0.2389 0.2389 0.1489

FLC LZW compressed data 0.4136 0.5864 0.3532 0.2335 0.2332 0.1804

lLC LZW compressed data 0.4994 0.5006 0.2411 0.2584 0.2584 0.2422

FLC Homophonic coded data 0.5851 0.4149 0.3493 0.2359 0.2359 0.1790

lLC Homophonic coded data 0.5006 0.4994 0.2403 0.2602 0.2603 0.2392

0.6 Duncoded

0.5 l1licompressed with FLC

Co LZW
:=l 0.4 l1licompressed with ILC.....
~ LZW
,.0

0.30 [;] homophonic codedc.t
with FLC LZW

0.2 I!J homophonic coded
with ILC LZW

0.1
0

Bit values

0.4 Duncoded

l1licompressed with FLC

>. LZW.•... 0.3..... l1licompressed with ILC-.....
~ LZW
,.0

o homophonic codede 0.2t:J,.; withFLCLZW

IillIhomophonic coded
withILC LZW

0.1
00 01 10 11

Bit values

data, nor the FCL compressed data have a flat frequency distribution of single bits or bit

pairs, indicating that the entropy of these two sequences are not a maximum, as is desired.

Secondly, note that the occurrence of bits and bit pairs of the FLC homophonic coded data is

also not evenly distributed. Even though the input is randomized, denying statistical attacks,

the output entropy is not maximized, resulting in a smaller unicity distance of the cipher.

The data encoded with ICL homophonic LZW does satisfy the desired requirements, i.e. the

homophonic coding algorithms converted the sources into streams in which the number of

The goal of the next experiment is to indicate the increase in entropy after files have

been encoded. The correct way of comparing the entropy of the input sequence to the

entropy of the output sequence would be to consider the input sequence as a collection of

symbols Xl, X2, ... Xn of the alphabet X of size n and the output as a collection of symbols

VI, V2,· " Vm of the alphabet V of size m and then use Equation 3.1 to calculate the respective

entropies. But since the adapted LZW algorithm does not map specific input symbols to

output symbols like traditional homophonic coding, other means have to be resorted to in

order to indicate the actual increase in entropy. In the following figure the entropy of the

original file and the entropy of the homophonic encoded file (both considered as binary

sequences) are plotted against the number of bits encoded. The entropy at a specific point is

calculated using the formula for entropy for the binary case:

1 1
H = P log2 P + (1 - p) log2 (1 _ p) ,

where p is the frequency of occurrence of either a 1 or a 0 in a sequence divided by the bit

length of the sequence.

To illustrate the effect of local statistics, the "windowing" method described in Appendix H

is used to calculate the values of p at a specific point in a file. Fig. 6.7 show the increase

in entropy as a result of the homophonic coding, as well as the length of the file before

and after it is encoded. This figure show that the homophonic coded sequence have nearly

maximum entropy for almost the entire length of the sequence. (Recall that the maximum

entropy of a binary sequence is 1 bit/symbol, or 1 bit/bit). It may appear that not much is

gained by a small increase in entropy. To see that this is not the case, consider a cipher

system that makes use of 56 bit keys. If the entropy of the key is maximum, the unicity

distance, given by Equation 3.10, will be 5600 bits ifthe entropy ofthe uncoded sequence is

0.99 bitslbit and 56000 bits if the entropy of the encoded sequence is 0.999 bitslbit. A 0.009

,.-,-o,D
80.8>.
~.....,D;:0.7
~
~ 0.6

0.5
o

- Entropy of the source file
- - Entropy of the homophonic coded file
. -. Entropy of the compressed file

2 4
Bit position in file

Figure 6.7: Binary entropy of the uncoded, compressed and homophonic encoded C++

file

increase in the source entropy thus resulted in a ten-fold increase in the cipher's unicity

distance.

6.3.4 Bits per Symbol Results

Recall that the entropy of a sequence is the minimum number of bits per symbol that are

needed to represent the file without loss of information. The goal of a compression algorithm

is to represent a file with the least number of bits per symbol. This idea can be used to

illustrate the increase in entropy as a result of homophonic coding in another manner. Fig.

6.8 shows the entropy of the C++ file, considered as 8 bit characters, as calculated by the

"windowing method". Also shown in the figure, is the entropy of the homophonic encoded

file (using the adapted arithmetic coding algorithm) calculated with Eq. 3.1. The number

of bits per character used to encode the file with normal arithmetic coding and homophonic

arithmetic coding at specific points in the file is also included in the figure. These two graphs

show that the entropy of the respective sequences can be approximated with the amount of

bits per character used to encode the files up to specific points. These values are calculated

by dividing the length of the output file, in bits, by the amount of characters processed from

the input file at a particular moment during encoding. The entropy of the normal binary

LZW encoded and LZW homophonic encoded files can thus be illustrated by using these

approximation methods, also shown in Fig. 6.8.

This figure indicates that the binary LZW algorithm does not compress the file as

close to its entropy as one would have expected, especially for small file sizes. The reason

for the weak: compression at the beginning of the files is that the codebook entries do

not comprise long sequences in the beginning of compression, so that the length of the

codewords are longer than the source string they represent. It can however be seen that the

bits/symbol for
the binary LZW

14 bits/symbol for the homophonic coded file
] binary LZW coded file

"812 1g bits/symbol for arithmetic entropy of the arithmetic
~ 10 homophonic coded file homophonic coded file
..8 J\\ - - - _ j
~ 8 .rl.\,/",.- .--:---.= .- - - - - - - - - - - - - - - -
~ 'l' -'-. '-'-'-'-~ -.-.-
~ 6 i /'.._._ - - - - - - - - - - - - - - -

." v '-._.-.-._._._._._._._. _._._._

4' \
bits/symbol for
arithmetic coded file

2000 4000 6000 8000
Number of symbols encoded

Figure 6.8: Bits per symbol plotted against number of symbols encoded for the

compressed and homophonic encoded C++ file

number of bits/symbol at a particular time in encoding is greater for a sequence encoded

with the homophonic algorithm than for the same sequence compressed with the LZW

algorithm, indicating an increase in entropy.

The results obtained from the experiments performed indicate that the 0/1 balance of

encoded files are closer to a 1:1 relation than those of uncoded files. Since the entropy

of a sequence is higher when the probabilities of characters appearing are more equally

distributed, it indicates that the source entropy is increased after encoding. This results in

larger unicity distances which makes a cipher algorithm that encrypt the homophonically

encoded sequences stronger than algorithms that encrypt the uncoded sequences. The

results also show that the entropy is not increased by more than 2 bits/symbol, in accordance

with Eq. 3.16. Furthermore, when comparing the results of the variable-to-fixed LZW

homophonic coding algorithm to those of the fixed-to-variable arithmetic homophonic

coding algorithm, it can be seen that the 0/1 balances are more or less equal, but the resulting

lengths of LZW encoded sequences are longer than arithmetic encoded sequences. A

reason for this might be that the arithmetic coding algorithm estimates the source statistics

more accurately than the dictionary based LZW algorithm, or it adapts faster to changing

statistics than the LZW algorithm. The entropy figures also illustrate that arithmetic coding

approaches the entropy of the source sequences closer than LZW compression. This means

that if a source has an entropy of 6 bits/symbol or less, compression is guaranteed for

arithmetic coding (if the sequence is long enough), but not for LZW coding.

The results comparing the lengths of encoded files for different modelling methods (Table

6.2) show that when the file is encoded with recency consideration, better compression is

always achieved than when it is encoded without recency. This indicates that the source

statistics are estimated more accurately, by placing emphasis on more recent characters the

algorithm employs a sort of "look ahead" mechanism: the characters following the end of

the window are more likely to have statistical properties similar to characters at the end of

the window, than those at the beginning of the window.

SEVEN
CONCLUSION

The goal of this research was to design an algorithm that is able to convert an arbitrary

message source into a uniformly distributed message source without increasing message

length. When such sources are encrypted, its unicity distance is higher than when less

random sources are encrypted. This means that the number of ciphertext needed to break:

the encryption algorithm is more for homophonic encoded sources, resulting in stronger

security. When all redundancy is removed from a source before it is encrypted, it leads to a

cipher system that is strongly ideal, because the unicity distance is increased to infinity.

Although data compression algorithms reduce redundancy in sources similar to homophonic

coding, homophonic coding is preferred, since it offers the additional advantage that it

prevents known- and chosen plaintext attacks on the encryption algorithms, because the

source symbols are randomly mapped onto homophones. This implies that even if a

cryptanalyst knows the statistics of the source to be encrypted, this knowledge cannot be

used for statistical attacks because the actual homophones that were used are not known.

The inclusion of the additional randomness in the sequences when performing homophonic

substitution often results in data expansion, hence the search for a method to combine

homophonic coding with data compression.

algorithms were investigated. The two compression algorithms considered were arithmetic

coding and LZW.

The arithmetic coding algorithm used a newly introduced probability estimation method

based on an IIR filtering scheme. The estimated probabilities were diadic ally decomposed

to form homophones for the input characters, which was encoded with a faster arithmetic

coding algorithm called shift-and-add arithmetic coding.

The LZW algorithm was adapted so that the binary source is randomized during

compression by making use of a random source and exclusive-or operations.

Both homophonic algorithms were able to randomize the different sources used in the

experiments, as indicated by the results. The arithmetic coding algorithm achieved better

overall compression and guarantees compression if the source has an entropy of not more

than approximately 6 bits/symbol (and is sufficiently long).

Because both compression algorithms are adaptive, compression is not guaranteed if

the sequences are short - the algorithms must first adapt to the source statistics before it is

accurately modeled and compression can occur. The arithmetic coding algorithm always

adapts faster than the LZW algorithm, which means that it requires less characters than

LZW to guarantee compression.

7.1 Proposals for Further Research

• The order of statistical modeling for arithmetic coding. A O-order model was used in

this study, where higher order models may achieve better compression .

• Langdon and Rissanen [17] illustrate a binary version of arithmetic coding, which

considers the source to be binary and divides the interval [0,1) into only two intervals.

Experiments can be performed to investigate the effect of the dyadic decomposition

method of homophonic coding using such an algorithm. This could result in a high

speed encoding algorithm, because bit probability estimation can be performed much

faster than character probability estimation, and if the two intervals are dyadically

decomposed, the fast shift-and-add method of arithmetic coding can be implemented.

REFERENCES

[1] "Building an E-Commerce Trust Infrastructure: SSL Server Certificates and Online

Payment Services," technical brief, available at http://www.verisign.com.

[3] C. E. Shannon, "Communication Theory of Secrecy Systems," Bell Syst. Tech. J.,

vol. 28,pp.656-715, 1949.

[4] J. L. Massey, "Some Applications of Source Coding in Cryptography," European

Transactions on Telecommunications, vol. 5, pp. 7/421-15/429, July-August 1994.

[5] C. G. GUnterand A. B. Boveri, "A Uninversal Algorithm for Homophonic Coding,"

Advances in Cryptology-Eurocrypt 1988, Springer-Verlag, pp. 405-414,1988.

[6] I. H. Witten and J. G. Cleary, "On the Privacy Afforded by Adaptive Text

Compression," Computers and Security, vol. 7, pp. 397-408, 1988.

[7] C. Smith, "Adaptive Homophonic Coding of Cryptographic Sources," Master's thesis,

University of Pretoria, October 1998.

[8] M. Nelson and J. L. Gaily, The Data Compression Book. M&T Books, 1995.

[9] W. Stallings, Internet Security Handbook. McGraw-Hill, 1995.

[10] J. Seberry and J. Pieprzyk, Cryptography An Intorduction to Computer Security.

Prentice Hall, 1988.

http://www.verisign.com.

[14] J. G. Proakis, Digital Communications. McGraw-Hill International, 4 ed., 2001.

[15] H. N. Jendal, Y. J. B. Kuhn, and J. L. Massey, "An information-Theoretic Treatment of

Homophonic Substitution," Advances in Cryptology - Eurocrypt '89 Lecture Notes in

Computer Science, Springer, pp. 382-394, 1990.

[16] C. Boyd, "Enhancing Secrecy by Data Compression: Theoretical and Practical

Aspects," Advances in Cryptology-Eurocrypt 1991, no. 547, Springer Verlag,

pp.266-280,1991.

[17] G. Langdon, "An Introduction to Arithmetic Coding," IBM J. Res. Develop., vol. 28,

no 2, pp. 135-149, March 1984.

[18] G. Langdon and J. Rissanen, "Compression of Black-White Images with Arithmetic

Coding," IEEE trans. Commun., vol. COM-29, pp. 858-867, June 1981.

[19] G. Langdon and J. Rissanen, "Arithmetic Coding," IBM J. Res. Develop., vol. 23,

pp. 149-162, March 1979.

[20] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Prentice Hall, 1990.

[21] P. G. Howard and J. S. Vitter, "Analysis of Arithmetic Coding for Data Compression,"

Information Processing and Management, vol. 28, no. 6, pp. 749-764, 1992.

[22] P. Elias, "Interval and Recency Rank Coding: Two On-line Adaptive Variable Length

Schemes," IEEE Trans. Inform. Theory IT-33, pp. 3-10, Jan 1987.

[23] W. T. Penzhorn, "A Fast Homophonic Coding Algorithm Based on Arithmetic Coding,"

Fast Software Encryption: Second International Workshop, vol. 1008, pp. 329-345,

1994.

[24] T. Welch, "A Technique for High-Performance Data Compression," IEEE Computer,

vol. 17, Number 6, pp. 8-19, June 1984.

[25] W. T. Penzhom, "Homophonic Substitution Cipher," Private communications, 1993.

[26] M. R. Nelson, "Lzw Data Compression," Dr. Dobb's Journal, pp. 29-36, October 1989.

ApPENDIX A
IMPLEMENTATION

In order to show that the two described homophonic coding algorithms do indeed convert a

practical source with a non-uniformly distributed alphabets into a "random" binary source,

computer simulations are needed. The C++ programming language was used to write

programs that implement the described encoding algorithms utilizing real-life data. The

reason for choosing C++ as the programming language is due to its efficiency and for

allowing programmers more control over the hardware, so that low level operations e.g.

bit shifting can be performed at high speeds.

A.2 Homophonic Coding with Arithmetic Coding

A shift-and-add homophonic arithmetic coding algorithm was implemented with O-order

adaptive modeling. The four steps of the arithmetic encoding procedure, as described in

Section 4.4, are performed as follows:

A.2.1 Step1: Source Modeling

The adaptive modeling procedure utilizes the frequency of occurrence of past characters to

estimate the probabilities of occurrence of future characters that are to be processed. At the

start of the encoding, no characters have been processed and the model is assigned an initial

state. The source input is considered to be 8-bit ASCII characters. This means that there

are 28 = 256 possible symbols in the source alphabet. As mentioned in Section 4.3.3, an

end-of-file symbol also has to be included in the model. In total, there are thus 257 symbols

in the model. During initialization, the model assigns equal probabilities to all symbols, i.e.

each arithmetic coding interval width is proportional to 1/257. This is done by means of the

q components in Pi' (All initial filter outputs are equal to 0, and according to Eq. 4.4, this

results in Pi(O) = (0 + q)/(O + Lq) = 1/ L = 1/257 i = 1,2, ... ,257).

The q value also prevents an underflow, because even if the value of Yi (k) / (Tk + Lq)

becomes to small to fit in the register, the non-zero q component is always added in the

estimation of Pi(k). The program uses 16-bit unsigned integers to store the estimated

probabilities. In this case, q can be calculated using Eq. 4.9

1 1
q = (1 - 0:)(2B - L) = (1 - 0:)(216 - 257)

When computing Tk, it is not necessary to calculate the sum of all the filter outputs

at each time instance. According to Eq. 4.7, Tk can be calculated by

where To = O. In the C++ implementation, an array called charwidths is used to store the

257 values of Yi, and a variable called Tk is used to store the current value of Tk• After each

symbol encoded, every value in this array, as well as Tk, is multiplied with 0:. The value in

the position in the charwidths array corresponding to the current symbol being encoded,

as well as the value of Tk, is then incremented with 1. The estimated probabilities are then

given by Eq. 4.4:

A Yi(k) + q charwidths [si] + (1-0)(2\6-257)
Pi(k) = --- = 257 i = 1,2, ... ,L

Tk + Lq aTk [k - 1] + (1-0)(216-257)

A.2.2 Step2: Design of the Homophonic Channel

Instead of performing the division process in Eq. 4.4 when a symbol's probability is

calculated, and converting the result to an integer, and dyadically decomposing the integer

to calculate the homophones assigned to each symbol, these three steps are combined for

high speed encoding performance. The way to achieve this is as follow:

Note that the binary result of a/b, where a < b, can be obtained by repeating the

following two steps until a = 0, or the required precision is reached:

Step 1:

Multiply a by 2. (left shift a with 1 bit).

Step 2:

If a ~ b output 1 and subtract b from a.

If a < b output O.

For example, to represent 5/8, the steps would be:

5 x 2 = 10 > 8 ... output 1: 0,1

a = 10 - 8 = 2

2 x 2 = 4 < 8 ... output 0: 0,10

4 x 2 = 8 ... output 1: 0,101

a = 8 - 8 = 0.'. terminate.

The result of 5/8 is thus 0,101.

The cumulative frequency counts of the characters are stored in a variable named

CumFreq, which is a 16-bit unsigned integer (initialized with 0). 5/8 will thus be stored

as 1010000000000000. This implies that the steps should be repeated until x = 0, or the

bit-length of the result is equal to 16. The homophones for a character are obtained by taking

the entries of the charwidths array, adding the value of q to it, and dividing the result

by (tk+Lq) using the two steps described above. If the output is a 1 after the i-th round,

the particular codeword for that homophone is equal to CumFreq and the value of 216-i is

added to CumFreq. The probability associated with that particular homophone is equal to

2-i. The number of homophones associated with each symbol is equal to the number of l's

in the 16 bit result of the "division" process. Refer to Appendix E for an example of this

procedure.

A.2.3 Step 3: Random Selection of Homophones

When randomly choosing the specific homophone to represent the particular source symbol,

homophones with shorter lengths (higher probabilities) must be chosen more frequently

than those with longer lengths (lower probabilities). The a posteriori probabilities of

the homophones must thus also be taken into account. For example, if the probability

of a particular source symbol is P(si)=5/S, its two homophones will have probabilities

of P(Vil)=4/S and P(vi2)=lIS respectively. The first homophone must thus be chosen

P(Villsi)=(4/S)/(5/S)=4/5 of the time and the second P(vi2Isi)=(lIS)/(5/S)=1I5 of the time.

This is achieved by utilizing a random number generator that generates numbers that are

uniformly distributed between 0 and a maximum value max. The interval (O-max)is divided

into subintervals with widths proportional to the a posteriori probabilities of the codewords.

When the generated random number falls in a specific subinterval, the homophone associated

with that subinterval is encoded.

A.2.4 Step 4: Arithmetic Coding of the Homophones

To store the adaptive model, the program uses a structure array called Symbo 1 s with three

members: char to store the original character that is to be associated with the homophones,

CumFreq to store the cumulative probabilities of the homophones and Length to store

the number of bits that the next homophone to be encoded have to be shifted with in the

shift-and-add procedure. The value of Length is equal to i, where i is equal to the round

number in the "division" process. Refer to Appendix E for an example of this procedure.

In order to prevent an overflow, the result of the shift-and-add procedure is stored in

a 64-bit buffer. As soon as the bit-length of the shift-and-add result exceeds 48 bits, the first

16 bits are output. Appendix G illustrates part of a log file that was kept during an encoding

simulation. The log file comprises the 64-bit buffer values calculated during encoding. As

can be seen from its output, by the time the buffer length exceeds 48, the 16 most significant

bits do not undergo any more changes. Bit stuffing is also used to prevent overflow by

inserting a 0 as soon as 16 consecutive l's have occurred. The adaptive homophonic

arithmetic encoding algorithm is shown in Fig. A.l.

The initialization procedure initiates the model by setting all the entries in the Charwidths

array equal to 0, and calling the CalculateHomophones subroutine. It also calculates

the value of q. The CalculateHomophones subroutine multiplies each entry in the

Charwidths array with a and calculates the new value of Tk from the current Tk.

It then performs the "division" process to calculate the codewords associated with each

input symbol (the cumulative probabilities of the homophones) and the shifting length

Length associated with each codeword (where Length = -log2 P(homophone».

SelectHomophone is a subroutine that randomly selects a codeword to represent a

source symbol in the manner described in the previous section, and returns the index

position of the codeword in the Symbo1s array to a variable called horn.

The initial value of the 64 bit buffer is set to O. After the last symbol has been read

in, the encoder performs one last shift-and-add operation, i.e. that of the codeword for the

EOF character. Before this is done, care must be taken that the bit length of the buffer is less

than 48, to prevent an overflow. The final value of the buffer is then broken up into parts of

16 bits long, and is output.

Read next
character: sk

Output 16 MSB
Drop 16 MSB
from buffer

CharWidths[sk] += l/a
SelectHomophone(sk)
buffer« L
L=Symbols[hom] . Length
add Symbols [horn] . CumProb to
buffer

SelectHomophone[EOF]
buffer« L

add Symbols [horn] . CumProb to
buffer

output last contents of buffer

Legend:
MSB = Most Significant Bits
« = Bit wise left shift operation
inc = increment value with 1
x += y means x = x+y

Figure A.l: Program flow chart for the adaptive homophonic arithmetic encoding

algorithm

A.2.5 Decoding

The decoding of a sequence encoded with the above described algorithm amounts to

comparison and subtraction operations that are repeated until the EOF character is received.

The decoder starts with the same model as the encoder, and updates the model as the

characters are being received. The same Symbo 1 s structure array is used as was used in

encoding. At any point during decoding, this array is the same as it was at the same point

during encoding. After the first 16 bits are received, they are stored in a buffer and the value

is compared to the cumulative probabilities in the Symbols structure array. The received

character is the one corresponding to the interval of the homophone in which the received

value lies.

The cumulative probability of the identified homophone is subtracted from the received

value, and the result is shifted left with the value of Length associated with that ho-

mophone. The same number of bits from the next received 16 bits are shifted into the

buffer. After the character has been identified, the model is updated. The decoding process

terminates the moment when the received character is the EOF character.

A.3 Homophonic Coding with LZW

The LZW implementation described by Nelson et ai. [8] was used as the basis for the LZW

homophonic coding algorithm in this study. Nelson's 12 bit fixed dictionary implementation

was adapted by changing the codebook size to 14 bits and using a maximum table size of

20483, the first prime number larger than 1.25 x 214• Instead of using 14 bits to represent

each codeword, the codeword size was incrementally increased, according to the method

described in Section 5.3.

A.3.t Encoding

The implementation of Nelson assumes that the input symbol sequence is ASCII characters,

where, for the purposes of this study, it would be better to consider it as a binary string.

(Recall from Chapter 3 that the entropy of a source can be approached better when the source

consists of low alphabet sizes). In order to convert Nelson's algorithm to a binary LZW

algorithm, each character was decomposed into bits by performing a bit-wise and operation

with the numbers 27, 26, 25, ... , 2° and each character. The results are taken as the input to

the binary LZW algorithm. For example, if the first character is an "A", corresponding to

the ASCII value of 65, or 01000001 in binary, the first input bit becomes:

01000001

& 10000000

o

01000001

& 01000000

1

and so forth. In order to accomplish this, a loop is added to their main loop that decomposes

each input character into bits in this manner.

Another aspect of Nelson's implementation that needed to be changed is that instead

of reading the input on a character-by-character basis from the input file, the entire file must

be read into an array beforehand. This is needed in order to perform the randomization

procedure on the input. A subroutine called RandomizeRest is inserted in the code just

before the output codeword is to be written to disk, to randomly choose a bit and perform the

randomization procedure on the remainder of the input sequence. This subroutine returns

the chosen random bit so that it can be added to the output stream. Fig. A.2 describes the

entire encoding algorithm. The program uses an array structure called diet, to store the

dictionary/codebook entries. This structure comprises of three members, namely code to

Read next bit
Ie = next bit

Find
child
node

dict[index] .code =
next code
dict[index] .prefix =
prefix
dict[index] .char=IC

prefix=
dict[index]

.code

inc next
code

Output -> Prefixffir
prefix = Ie

utput -> prefix
Output -> EOS

store the codebook entry number, prefix to store the prefix of that particular entry and

char to store the Innovation Character. The size of this array is 20483. In order to conserve

space in Fig. A.2, it is assumed that the input characters are already converted into its binary

form.

The initialization procedure takes care of a number of things. First it sets all the

codebook code values equal to -1, which represents them as unused. It initializes next

code to 3, the first phrase to be output, and sets the End of Stream value (EOS)equal to 2.

Then it reads the first input bit and set pre f ix equal to it.

The subroutine Find Child Node takes two parameters as input, namely the prefix

and IC. It performs the hashing function described in Section 5.2.3, and returns a value

called index to the main program. This is the index in the structure array where that

codebook entry is either unused, or contains the same value of prefix and IC as those

input into the subroutine.

The decoding program makes use of a subroutine called decode string to decode a

received codeword and an array called decode stack to store the decoded characters

in. The decode string subroutine takes two parameters: the codeword to be decoded

and a variable called count that counts the number of characters decoded for the specific

codeword. This value is also returned by the subroutine to indicate how much characters

should be read from the decode stack array. The decoding program also builds up the

(exact same) codebook as it decodes in the structure array dict.

When a codeword is received, the decode string subroutine stores the innovation

character of the codeword in the first position of the decode s tack array, and then

goes to the position in the dictionary that is equal to the prefix of the codeword. The

innovation character of this entry is then stored in the second position of the decode

s tack array and the process is repeated until the received codeword has been decoded

entirely. The decode s tack array thus contains the decoded string in reverse order.

The implementation of Nelson et aI. [8] writes the contents of the array to disk on a

character-by-character basis in the reverse order after it has been constructed. In the binary

implementation used here the contents of the array is stored in a buffer (in reversed order)

and is not written to disk until the buffer comprises of 8 bits, whereafter it is written to disk

as a character.

The exception handler that takes care of the problem that a not yet fully constructed

dictionary entry has to be decoded, is inserted in the beginning of the main loop. This is

the reason why the variable count is given as input to the decode string subroutine.

When the received codeword is not yet fully constructed, count is set to 1, (where it is

normally set to 0) and the first entry of the decode s tack array is set equal to the current

bit character, which was the last entry in the decode s tack array i.e. the first bit in

the current prefix. Instead of sending the received codeword to the decode string

subroutine, the exception handler sends the previously received codeword, and this

completes the exception handling process.

The decoding of the data constructed by the adapted encoding algorithm consists of

properly executed xor operations to undo the xor operations of the encoder. This is achieved

in the following manner. After the decoder has received and decoded the first codeword, it

obtains the first random bit inserted by the encoder. This random bit is stored in a variable

called randombi t. The decoder then reads and decodes the next received codeword as

normal. Then the decoder performs a xor operation with the first random bit (stored in

randombi t) and the first bit in the current (third) output sequence. randombi t is then

xorred with the second random bit obtained from the stream, and the remainder of the

current (third) output sequence is xorred with the result on a bit by bit basis. The first bit

of the next (fourth) output sequence is also xorred with randombi t. The third random bit

is xorred with randombi t and the result is used for the xor operation on the remainder

Legend:
dec= decrementvaluewith1
inc= incrementvaluewith1

Read new code
andxor withnext
bitinrandom

decode stack[O] =
character
count =
decode string(l,old code)

count =
decode string(O,new code)

character =
decode
stack[count-l]

deccount
Output->decode y
stack [count]

dict[next code] .prefix =
old code
dict[next code] .char =
character
incnext code
old code = new code

y

*
(_Do_ne)

of the (fourth) output sequence. This procedure is then repeated for the entire decoding

process. It is the task of the decode string subroutine to perform these xor operations.

Refer to Appendix F for an example. Fig. A,3 illustrates the flowchart of the decoding

read r from stream
randombit = randombitEf)r

decode stack[count] =
dict[code] .charEf)randombit
ine count
code = dict[code] .prefix

decode stack[count]=
code Ef)randombi t Ef)r
ine count

process. Once again it is assumed that Output-> takes care of converting 8 received bits

into characters. The initialization procedure sets the variable next code, which is used to

store the current dictionary entry in, equal to 3, the first code value. It also sets character

equal to the first received codeword xorred with the first bit in the random sequence. The

operation of comparing the new code with next code is the exception handler. Fig. A.4

illustrates a flowchart for the operation of the decode s tr ing subroutine. r is the current

random bit obtained from the received bit stream.

APPENDIXB

SOURCE FILES USED IN EXPERIMENTS

• HTML file: The source of the home page for www.ecommercetimes.com on the 8th of

September 2001.

• c++ file: The source code of the adaptive homophonic arithmetic encoder program

used to perform the experiments.

• TEX file: The TEX file of this document.

• English literature file: Chapter 1 of the book The Hobbit by J.R.R. Tolkien

• Electronic transaction data: This is obtained by purchasing a book from

www.Amazon.com. When the page that asks for the credit card number appears,

the html source can be saved and the destination of the form data as specified by

the source can be altered to send the information to a local machine instead of

www.Amazon.com.

http://www.ecommercetimes.com
http://www.Amazon.com.
http://www.Amazon.com.

APPENDIXC

RESULTS OF HOMOPHONIC CODING
WITH ARITHMETIC CODING

This Appendix show the Arithmetic coding results that was obtained for the other files used

in the experiments. The same experiments were performed as was done for the c++ file in

Chapter 6. Fig. C.1 to Fig. CA shows the entropy plots for the various source files.

10

9·

8 elltrop)'of ~°In°p~oIlic ..
arithmetic coded sequence

l·····································entropy of the source sequence

,......,-o"8
~6'3
e 5·
~g 4
~ 3·

123 4
Number of characters encoded

10

9 .

......,8 .•....•
o

"S 7>-.
~.....e.. 5 .
>-.

14
3

2·

1
0

..... .elltr()pyof h()Illoph()nic ..
arithmetic coded sequence

1 234 5 6
number of characters encoded x 104

10

9·
entropy of homophonic

..... aniiunetlc coded·sequence

123 4
number of characters encoded

8,....,•....•
0

"S>..
rn-rn.•........
.0•.....•
>.. 40..g
s::
~

2

entropy of homophonic
arithmetic coded sequence

50 100 150
Number of symbols encoded

Fig. C.5 to Fig. C.8 show the statistics of the uncoded files, and files encoded with the

homophonic arithmetic coding algorithm when statistic modelling was done with the IIR

based method, and for a = 0.999. Table C.l to Table CA show the compression results for

the files when encoded with the different statistical modelling techniques.

0.53
0.52
0.51

.£ 0.5-.;::: 0.49
~..c 0.48
~lJ.< 0.47

0.46
0.45
0.44

IIarithmetic
homophonic coded
data

0.3

0.25

0 0.2...•-...•
~ 0.15

£ 0.1

0.05

0
00 01 10 11

IIarithmetic
homophonic coded
data

TABLE C.l: Compression results for the html file for various probability estimation

methods

Method Length of Length of Percentage of

original file encoded file original length

SWMethod 47705 bytes 38930 bytes 81.61 %

VWMethod 47705 bytes 38890 bytes 81.52%

LA Method 47705 bytes 38204 bytes 80.08%

IIRMethod 47705 bytes 38126 bytes 79.92%

0.6

0.5

C 0.4...•-...•
~ 0.3
..0

£ 0.2

0.1

0
0

Bit values

II1IIarithmetic
homophonic coded
data

0.35

0.3

C 0.25....- 0.2....
~

£ 0.15

0.1

0.05

0
00 01 10 11

TABLE C.2: Compression results for the 1EX file for various probability estimation

methods

Method Length of Length of Percentage of

original file encoded file original length

SWMethod 59139 bytes 43770 bytes 74.01%

VWMethod 59139 bytes 43414 bytes 73.41%

LA Method 59139 bytes 42762 bytes 72.31%

IIR Method 59139 bytes 42666 bytes 72.15%

0.6

0.5

.0 0.4....-....
~ 0.3

£ 0.2

0.1

0
0 1

Bit values

II arithmetic
homophonic coded
data

0.35
0.3

.0 0.25
:== 0.2....
~
.J:J 0.15J: 0.1

0.05

0
00 01 10 11

TABLE C.3: Compression results for the English literature file for various probability

estimation methods

Method Length of Length of Percentage of

original file encoded file original length

SWMethod 49098 bytes 34910 bytes 71.10%

VWMethod 49098 bytes 34904 bytes 71.09%

LA Method 49098 bytes 34326 bytes 69.91%

IIR Method 49098 bytes 34320 bytes 69.90%

0.6

0.5
.0.•... 0.4.-.•...
~

£ 0.3

0.2

0.1
0 1

Bit values

IIIarithmetic
homophonic coded
data

0.3

0.25

.0 0.2
;::I.•...
~ 0.15

£ 0.1

0.05

0
00 01 10 11

IIIarithmetic
homophonic coded
data

TABLE C.4: Compression results for the e-commerce data for various probability

estimation methods

Method Length of Length of Percentage of

original file encoded file original length

SWMethod 176 bytes 178 bytes 101.14%

VWMethod 176 bytes 178 bytes 101.14%

LA Method 176 bytes 180 bytes 102.27%

IIR Method 176 bytes 164 bytes 93.18%

APPENDIXD

RESULTS OF HOMOPHONIC CODING
WITH THE LZW ALGORITHM

This Appendix show the LZW results that was obtained for the other files used in the

experiments. The same experiments were performed as was done for the C++ file in Chapter

Figure D.I: Binary LZW trees of dictionary entries formed when encoding (a) the

HTML file with normal LZW and (b) HTML file with homophonic LZW

Fig. D.1 (a) shows the binary tree obtained when compressing the html file with the binary

LZW algorithm. Fig. D.I (b) shows the binary tree obtained when encoding the same

file with the homophonic LZW algorithm. Fig. D.2 (a) and Fig. D.2 (b) show the results

obtained for the TEX file. Fig. D.2 (c) and Fig. D.2 (d) show the results obtained for the

English literature text file and Fig. D.3 (a) and Fig. D.3 (b) show the results obtained for the

e-commerce data. In all these plots the tree on the left hand side show the normal compressed

Figure D.2: Binary LZW trees of dictionary entries formed when encoding (a) the

TEX file with normal LZW, (b) the TEX file with homophonic LZW, (c)

the English text file with normal LZW, and (d) the English text file with

homophonic LZW

Figure D.3: Binary LZW trees of dictionary entries formed when encoding (a) the

e-commerce data with normal LZW and (b) the e-commerce data with

homophonic LZW

The next figures illustrate the statistical results of the files. Each file is compressed with the

binary ICL LZW algorithm and encoded with the homophonic ICL LZW algorithm. Fig.

D.4 shows the results obtained for the html file. Fig. D.S shows the results obtained for the

TEX file. Fig. D.6 shows the results obtained for the English literature text file. Finally, Fig.

D.7 shows the results obtained for the e-commerce data.

0.6

0.5
~....• 0.4-....•
~
"8 0.3
~

0.2

0.1
0 1

Bit values

• compressed with ILC
LZW

ImI homophonic coded
withILCLZW

• compressed with ILC
LZW

ImI homophonic coded
withILCLZW

0.6
0.5

.e-.... 0.4:-;:l
~,D

0.3£
0.2

0.1
0 1

Bit values

• compressed with ILC
LZW

ImI homophonic coded
withILC LZW

0.4

Duncoded

.€ 0.3- • compressed with ILC....,D
LZWCI:l,D

£ 0.2 ImI homophonic coded
withILCLZW

0.6
0.5

.c.... 0.4-....
~

£ 0.3

0.2

0.1
0

Bit values

•• compressed with ILC
LZW

ImI homophonic coded
withILCLZW

0.4

Duncoded
.c 0.3
;.::l •• compressed with ILC....
~

LZW

£ 0.2 ImI homophonic coded
withILCLZW

0.6

0.5
.e-...• 0.4-...•
~..0

0.3£
0.2

0.1
0 1

Bit values

• compressed with ILC
LZW

1m! homophonic coded
withILCLZW

• compressed with ILC
LZW

1m! homophonic coded
withILCLZW

D.3 Entropy Results

1

0.995

0.99.....,-010.985
<I)

'V.i 0.98•...-e
~0.975
g
s:: 0.97~

0.965

0.96
0 0.5

- Entropy of the source file
- - Entropy of the homophonic coded file

Entropy of the compressed file

1 1.5 2 2.5
Bit position in file

3 3.5
X 106

Figure D.8: Binary entropy ofthe uncoded, compressed and homophonic encoded html

file

,......,-o10.985
<I)

~ 0.98....e
~0.975
g
&S 0.97

0.965
- Entropy of the source file
- - Entropy of the homophonic coded file
. _. Entropy of the com ressed file

0.96o 1 2
Bit position in file

Figure D.9: Binary entropy of the uncoded, compressed and homophonic encoded 'lEX

file

1 .-·7', 7'-='" --,- - - - - - - - - - -.•

0.99

10.98
~:0
~0.97
0...

g
s::l
~ 0.96

0.95o

- Entropy of the source file
- - Entropy of the homophonic coded file

Entropy of the compressed file

1 1.5 2 2.5
Bit position in file

3 3.5
X 106

Figure D.IO: Binary entropy of the uncoded, compressed and homophonic encoded

English text file

"',/. 1'/'
'h II

II

~-o10.96

~.•...
:E
~0.94

f
~ 0.92 - Entropy of the source file

- - Entropy of the homophonic coded file
. _. Entropy of the compressed file

0.9o 0.5 I
Bit position in file

Figure D.II: Binary entropy of the uncoded, compressed and homophonic encoded

e-commerce data

D.4 Bits/Symbol Results

1O~'."""""""""" ..,' .•..•• --•.....

6~-------
- Entropy of the source file
- - bits/symbol values for the binary

LZW homophonic coded file
bits/symbol values for the
binary LZW coded file

1 2 3 4
Number of symbols encoded

Figure D.12: bits per symbol plotted against number of symbols encoded for the

compressed and homophonic encoded html file

10\
\\.,
\.. - ., - --8 ,,: , .- - '-' '-' - _

'"C.g
o 6g
(I)-o14 ,.,.'."
rn

~......
a:l

- Entropy of the source file
- - bits/symbol values for the

binary LZW homophonic coded file
bits/symbol values for the
binary LZW coded file

1 234
Number of symbols encoded

Figure D.13: Bits per symbol plotted against number of symbols encoded for the

compressed and homophonic encoded TEXfile

10

8-0
CI)
-0
0
u= 6CI)

--'0t 4fI)-fI)•......
~

2

.....

\,
....•.

\
....•. - -"- - -.-:-. - '..,;,..' -- - - - -- - - - - - -- -'- '-'- '-. -. -'- '-'- -'-'-'

.

•....
..

- Entropy of the source file
- - bits/symbol values for the

......... binary LZW homophonic coded file
._. bits/symbol values for

the binary LZW coded file

1 2 3 4
Number of symbols encoded

Figure D.t4: Bits per symbol plotted against number of symbols encoded for the

compressed and homophonic encoded English text file

-0 10.g
o5 8

14
.)

12 ~~I" '\ / .. bits/s)'lllbol,values .for the.binary. ..":~'\~.~~~:.~:W;;~O~h::~o~:~~e.....
. \ bits/symbol values for the

....... binary ~Z\\,c.oded file .

50 100 150
Number of svrnbols encoded

Figure D.tS: Bits per symbol plotted against number of symbols encoded for the

compressed and homophonic encoded e-commerce data

APPENDIXE

EXAMPLE OF ADAPTIVE MODEL
UPDATING IN ARITHMETIC CODING

This example is intended to illustrate the model updating procedure that was used in the

adaptive homophonic arithmetic coding program.

V2575
V2574

V2573

V2572
V2571

V675
V674

V673

V672
V671

P(EOF) {~~~
Vu

Example:

Say that a character read in some time during encoding is an A and the output of its

corresponding IIR filter is 0.9. Suppose the value of Tk is 2.71 at that particular time.

First, randomly choose and encode one of A's current homophones in the symbols array

(by making use of the SelectHomphone subroutine). Then multiply all values in the

charwidths array and Tk with a, and add 1 to Tk and charwdths [A], which then

becomes 0.9 x a + 1. Say a = 0.9 so that A's weight is now 1.81 and Tk=3.439, and

q = 1.53 X 10-4. Now run through all symbols in the model and calculate their new

homophones' cumulativeprobabilities and lengths. Assume that the order in which the input

symbols are assigned to a subinterval is EOF first, then the ASCII character for 0,1,2,..up

to 255, which fits in the top couple of subintervals, as shown in Fig. E.1. The EOF

character's weight is q, giving it a probability of 10-16, which is 0000000000000001, so

the first homophone is:

Homophone number horn Homophone H P(H) = 2-i 'I,

1 I 0000000000000001 I 1/65535 ~

The first entry in the Symbols structure array will be:

horn Symbols [horn] . char Symbols [horn] . CumFreq Symbols [horn] .Length

1 EOF 0000000000000000 16 I

1.81+ 1.53 x 10-4 = 2 4
3.439 + 257(1.53 x 10-4) 0.5 0 ,

or 1000010100111001, as calculated by the "division" process, described in Section A.2 on

Page 3. A's homophones will thus be:

Homophone H IP(H) = 2-i 0
1000000000000000 1/2 1
0000010000000000 1/56 6
0000000100000000 1/256 8
0000000000100000 1/2048 11
0000000000010000 1/4096 12
0000000000001000 1/8192 13
0000000000000001 1/65536 16

This table shows that the number to shift the buffer when adding the next codeword is equal

to the round number of the homophone calculation loop i. Assuming that all the characters

appearing in the character stream have ASCII characters higher than 65 ("A"), that is, the

characters 0-64 all have frequency counts of q, the corresponding entries in the Symbols
structure array, and thus codewords for A, are:

horn Symbols [hornl.char Symbols [hornl.CurnFreq Symbols [hornl.Length
67 A 0000000001000011 1
68 A 1000000001000011 6
69 A 1000010001000011 8
70 A 1000010101000011 11
71 A 1000010101100011 12
72 A 1000010101110011 13
73 A 1000010101111011 16

APPENDlxF

EXAMPLE OF DECODING OF THE
HOMOPHONIC LZW ALGORITHM

This Appendix illustrates an example of the decoding procedure for the homophonic LZW

algorithm, as described in Section 5.3. The same binary input sequence is used as was used

in the example of Section 5.3, i.e. 1001101101. The random sequence that was used for the

randomization was 101010. Note that, although not shown, the bits of this random sequence

are received after every codeword. An xor operation has to be performed every decoding

step to undo the randomization of the encoder input. Let i be the number of the decoding

round and Ti the ith random bit in the total random sequence 101010. The randomization of

the encoder input is undone in the following manner: The variable randombi t, as used in

the decoding program described in Section A.3.2, is also assigned a subscript i to indicate

the value of randombi t used in the ith round. This value is then given by

randombi to is initialized with 0, whilst TO and T -1 are both assigned the value of 0 so that

the first two output sequences are output unchanged. (This is necessary because the encoding

algorithm starts by parsing off the first two bits and begins randomization on the third bit).

Let the normal output sequence at any stage of decoding be b1b2b3 ... up to the number

of bits in the particular output sequence. b1 is the most significant bit of that particular

output sequence. The randomization at stage i is undone by xoring the particular b1 with

randombiti and the remainder of the sequence b2b3 ••• with randombiti+1' Table F.1

TABLE F.l: Decoding of the sequence 1001101101 encoded with the homophonic LZW

algorithm

Round T' randombiti Received Normal xored Dict. entryz

1, Codeword Output Output # P IC

1 Tl=1 randombitl=O 1 1 1 3 1 0

2 T2=0 randombi t2=0 0 0 0 4 0 1

3 T3=1 randombit3=1 3 10 01 5 3 0

4 T4=0 randombit4=1 0 0 1 6 0 0

5 Ts=1 randombi ts=O 4 01 01 7 4 1

6 T6=0 randombi t6=0 1 1 1 8 1 1

7 randombi t7=1 3 10 01

randombi t8=1

APPENDIxG

PART OF A LOG FILE

This appendix illustrates part of a log file that was kept during the homophonic arithmetic
encoding simulations. The particular file being encoded in this case is a c++ source file. The
purpose of the log file entries is to illustrate the actual steps performed by the algorithm. The
entries in the log file is simply the buffer values (in binary) calculated during encoding ofthe
file and the symbol being encoded at that stage. Tabs are inserted to indicate where the 16
most significant bits are written to disk (when the buffer bit length exceeds 48).

0010001011011101 #
0010001101011100011010000 i

0010001101011100011010001111111011011010 n

0010001101011100011010001111111011011010101010101100111 c

011010001111111011011010101010101100111
011010001111111011011010101010101101000011111101010011 1

11011010101010101101000011111101010011
11011010101010101101000011111101010100111111011100110 u

1101000011111101010100111111011100110

1101000011111101010100111111011100110101010101101001 d
010100111111011100110101010101101001
010100111111011100110101010101101001110110110100100 e

00110101010101101001110110110100100
00110101010101101001110110110100100000000001000000

1001110110110100100000000001000000

1001110110110100100000000001000000011100011101001 <

100000000001000000011100011101001
100000000001000000011100011101010111111011100110 v

100000000001000000011100011101010111111011100110100011000001111 c

00011100011101010111111011100110100011000001111
000111000111010101111110111001101010000101100011100 1

011111101110011010100001101100100100110 .
011111101110011010100001101100100100111001000111111001 h

10100001101100100100111001000111111001
10100001101100100100111001000111111001100010000110111 >

0100111001000111111001100010000110111
0100111001000111111001100010000110111000000000011010

111001100010000110111000000000011010

10111000000000011010000000000010100
10111000000000011010000000000010100011001010101111 #

1010000000000010100011011000111111100001 P
1010000000000010100011011000111111100010110010101111001 r

100011011000111111100010110010101111001

100011011000111111100010110010101111001110000110010100 a

11100010110010101111001110000110010100
11100010110010101111001110000110010101001011011101000 9

1111001110000110010101001011011101000
1111001110000110010101001011011101001100011110011100 m

010101001011011101001100011110011100

010101001011011101001100011110011100101110101101011 a

01001100011110011100101110101101011
010011000111100111001011101101001000011001
0100110001111001110010111011010011010100110100110 h

110010111011010011010100110100110

11001011101101001101011010111111011010 d
1100101110110100110101101101101111011101000 r

110010111011010011010110110111001100101001100000 s

110010111011010011010110110111001100101001100001110110111110111 t

11010110110111001100101001100001110110111110111
11010110110111001100101001100001110110111111000100010101011011 0

1100101001100001110110111111000100010101011011

1100101001100001110110111111000100010101011100100101100101001 P
110110111111000100010101011100100101100101001
1101101111110001000101010111001001011001110001001100

000101010111001001011001110001001100
000101010111001001011001110001001100010100

APPENDIXH

A LINEAR AGING MODELLING METHOD

This appendix describes the method to perform linear aging probability estimation, based on

the sliding window statistical modelling method, as was used in the experiments.

B.2 Linear aging probability estimation

Adaptive probability estimation models utilize a string of previously encountered symbols

to estimate the statistics of symbols to come. There are two different ways to consider

the length of this string of characters. The first method is to count the characters from the

beginning of the stream, as illustrated in Fig. H.I, and the second method is to count the

characters only from the window of n past encountered characters, as illustrated in Fig. H.2.

The first method gives a global estimate of probabilities, where the second method gives a

local estimate of probabilities. True adaptive models are supposed to adapt to changes in

source statistics. Although both methods will achieve this, the second method will adapt

more rapidly. To calculate accurate probabilities, the length of the window n must be at

least 10 times the number of possible characters that can appear in the input stream. Since

the files used in the experiments were considered to be 8-bit character sources, it means

Total lengthof file

turrent point of encoding

\ window of characters used for
probability estimation

Figure H.I: Adaptive probability estimation by counting all characters encountered

since the beginning of the file

<------------Totallength of file)

turrent point of encoding

E--n characters--)

window of characters used for
probability estimation

Figure H.2: Adaptive probability estimation by counting characters in the window of n

past encountered characters

that the past lOx 28 = 2560 characters in the stream are utilized to predict the statistics of

characters to come.

This sliding window technique introduces a locality of recency effect [22]. It considers the

past n processed characters to be equally important, and all characters that appeared before

that not important at all. This is a rather coarse method of assigning recency when encoding.

A better method is to consider characters near the end of the window to be more important

than characters in the beginning of the window when the probabilities are estimated (just

like the IIR method does). For linear aging models, it can be achieved in the following

manner: Each character in the window is assigned a weight y. This value depends on the

position of the character in the window, and is given by

which is the formula for a straight line, where

x is the position of the character in the window, and ranges between 1 and 2560

c is the minimum value that y can be assigned,

m is the slope of the line, which has to be determined, and

lX J is the largest integer smaller than X.

The frequency counts of the characters are stored in 16 bit unsigned integers in the

program, so the total of all 2560 calculated weights may not exceed 216 = 65536, and

the minimum frequency count that can be assigned to a character is 1, corresponding to a

probability of 1/65536. The second limitation indicates that the value of c must thus always

be 1. The first limitation is used to calculate the value of m in the following manner: Note

from Fig. H.3 that the line described by y = mx + c goes through the average value of the

respectively calculated weights in the middle of the window (if the window is filled up).

At that specific point, the value of x is 2560/2=1280, the value of y is the average of the

weights, 65536/2560 = 25.6, and since c = 1, m can be determined from Equation (H.l).

The probability of each input character is given by summing all the weights assigned to the

character and taking the ratio of the result to 65536.

point of
intersection~ I

____________ average=
65536/k

2558 25~9 2560
~k/2----7

<----k,---

At the start of encoding, the window is not filled up yet, and characters shifted into

the window are shifted in from the right, where the values of x are large. In this case, the

point where the straight line intersects the average value of the weights is not in the middle

of the window, as illustrated in Fig. H.4. The value of x at this point is 2560-kl2, where k is

the number of characters in the window. m is thus given by

65536/k - 1m------- 2560 - k/2 .

During this phase where the window is not yet filled up, the model is updated every time

a symbol is encountered. Furthermore, an end-of-file symbol EOF have to be added to the

model, to indicate to the decoder when decoding should terminate. The frequency count

associated with this symbol is taken as 1, since it will only occur once - at the end of the

sequence. Because all 257 characters must have a frequency count of at least 1, it is required

that the total of all the frequency counts, NT, may not exceed NT = 65536 - Ncniw, where

Ncniw is the number of characters that did not appear in the window. This value must be

calculated each time before the window is shifted. The actual formula used to calculate m is

thus
NT/k -1

m = 2560 _ k/2' (H.3)

When the window is filled up, and every time it is shifted, the model is updated by calculating

the new character frequency counts.

	FRONT
	Title page
	Summary
	Key words
	Opsomming (Afrikaans)
	Sleutelwoorde (Afrikaans)
	Dedication
	Acknowledgements
	Contents
	List of figures
	List of tables

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	REFERENCES
	APPENDICES
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

