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SUMMARY

DATA MEASURES THAT CHARACTERISE CLASSIFICATION PROBLEMS

BY

CHRISTIAAN MAARTEN VAN DER WALT

PROMOTER: PROFESSOR E. BARNARD

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER

ENGINEERING

MASTER OF ENGINEERING (ELECTRONIC)

We have a wide-range of classifiers today that are employed in numerous applications, from

credit scoring to speech-processing, with great technical and commercial success. No clas-

sifier, however, exists that will outperform all other classifiers on all classification tasks, and

the process of classifier selection is still mainly one of trial and error.

The optimal classifier for a classification task is determined by the characteristics of the

data set employed; understanding the relationship between data characteristics and the per-

formance of classifiers is therefore crucial to the process of classifier selection. Empirical

and theoretical approaches have been employed in the literature to define this relationship.

None of these approaches have, however, been very successful in accurately predicting or

explaining classifier performance on real-world data.

We use theoretical properties of classifiers to identify data characteristics that influence clas-

sifier performance; these data properties guide us in the development of measures that de-

scribe the relationship between data characteristics and classifier performance. We employ

these data measures on real-world and artificial data to construct a meta-classification system.

 
 
 



The purpose of this meta-classifier is two-fold: (1) to predict the classification performance

of real-world classification tasks, and (2) to explain these predictions in order to gain insight

into the properties of real-world data.

We show that these data measures can be employed successfully to predict the classification

performance of real-world data sets; these predictions are accurate in some instances but

there is still unpredictable behaviour in other instances.

We illustrate that these data measures can give valuable insight into the properties and data

structures of real-world data; these insights are extremely valuable for high-dimensional

classification problems.

Keywords: artificial data, classification, classification prediction, classifier selection, data

characteristics, data measures, data analysis, meta-classification, pattern recognition, super-

vised learning.

 
 
 



OPSOMMING

DATAMETINGS WAT KLASSIFISERINGSPROBLEME KARAKTERISEER

DEUR

CHRISTIAAN MAARTEN VAN DER WALT

STUDIELEIER: PROFESSOR E. BARNARD

DEPARTEMENT VAN ELEKTRIESE, ELEKTRONIESE EN

REKENAAR-INGENIEURSWESE

MEESTER IN INGENIEURSWESE (ELEKTRONIES)

’n Groot verskeidenheid klassifiseerders word vandag geı̈mplementeer in ’n wye reeks

toepassings, van kredietwaardigheid voorspellings tot spraakverwerking, met groot tegniese

en kommersiële sukses. Daar bestaan egter geen klassifiseerder wat die beste presteer vir

alle klassifiseringsprobleme nie en die proses van klassifiseerderseleksie is hoofsaaklik ’n

iteratiewe empiriese proses.

Die optimale klassifiseerder vir ’n klassifiseringsprobleem word bepaal deur die eienskappe

van die probleem. ’n Goeie begrip vir die verwantskap tussen dataeienskappe en klassi-

fiseerdergedrag word dus vereis om die optimale klassifiseerder te selekteer. Verskeie em-

piriese en teoretiese benaderings is al gevolg in die literatuur om hierdie verwantskap te

beskryf. Geen van hierdie benaderings het egter daarin geslaag om klassifiseringfouttempo’s

van regtewêreld data akkuraat te voorspel of te verduidelik nie.

Ons maak gebruik van die teoretiese eienskappe van klassifiseerders om dataeienskappe te

identifiseer wat klassifiseerder fouttempo beı̈nvloed; hierdie dataeinskappe word gebruik om

ons te lei in die ontwikkeling van datametings wat die verwantskap tussen dataeienskappe en

 
 
 



klassifiseerderfouttempo beskryf. Ons implementeer hierdie metings op regtewêreld sowel

as kunsmatige data om sodoende ’n meta-klassifiseerder te skep. Die meta-klassifiseerder

dien twee doeleindes: (1) dit voorspel die klassifiseerder fouttempo’s van regtewêreld

datastelle, en (2) verduidelik klassifisering voorspellings om sodoende meer insig te verkry

in die data eienskappe van regtewêreld data.

Ons illustreer dat datametings suksesvol geı̈mplementeer kan word om klassifiseerderfout-

tempo’s te voorspel vir regtewêreld data. Hierdie voorspellings is akkuraat in sekere gevalle,

maar daar is steeds onvoorspelbare gedrag in ander gevalle.

Ons demonstreer hoe hierdie dataeienskappe gebruik kan word om insig te verkry in

die eienskappe en strukture in regtewêreld data. Hierdie insigte is uiters waardevol vir

hoëdimensionele klassifiseringsprobleme.

Sleutelwoorde: data-analisering, data-eienskappe, data-metings, klassifiseerderseleksie,

klassifisering, kunsmatige data, leer met toesighouding, meta-klassifisering, patroonherken-

ning, voorspelling van klassifiseringfouttempo’s.

 
 
 



Trust in the Lord with all your heart and lean not on your own
understanding; in all your ways acknowledge Him, and He will

make your paths straight

Proverbs 3:5 NIV

 
 
 



TABLE OF CONTENTS

CHAPTER ONE - INTRODUCTION 1

1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Characterising the complexity of classification problems . . . . . . . . 7

1.3.3 No-free-lunch theorems . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Bounds on generalization performance . . . . . . . . . . . . . . . . . 9

1.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER TWO - CLASSIFICATION EXPERIMENTS 11

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 METHODS AND DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Artificial data generation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1.1 Multivariate Gaussian data . . . . . . . . . . . . . . . . . . 13

2.2.1.2 Multivariate uniform data . . . . . . . . . . . . . . . . . . . 14

2.2.1.3 Multivariate Gaussian mixture data . . . . . . . . . . . . . . 14

2.2.1.4 Multivariate Cauchy data . . . . . . . . . . . . . . . . . . . 14

2.2.1.5 Correlation of features . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.6 Standard deviation . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.7 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1.8 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 EXPERIMENTAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

i

 
 
 



2.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4.1 Inter-class scale variation . . . . . . . . . . . . . . . . . . . 19

2.3.4.2 Decision boundary complexity . . . . . . . . . . . . . . . . 21

2.3.4.3 Intra-class scale variation . . . . . . . . . . . . . . . . . . . 22

2.3.4.4 Variation in decision boundary complexity and scale . . . . . 22

2.3.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4.1 Inter-class scale variation . . . . . . . . . . . . . . . . . . . 30

2.4.4.2 Decision boundary complexity . . . . . . . . . . . . . . . . 33

2.4.4.3 Intra-class scale variation . . . . . . . . . . . . . . . . . . . 34

2.4.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER THREE - DATA MEASURES 43

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 STANDARD MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 DATA SPARSENESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Relationship between dimensionality, data set size and number of classes 45

3.3.1.1 Linear relationship . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1.2 Quadratic relationship . . . . . . . . . . . . . . . . . . . . . 46

3.3.1.3 Exponential relationship . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Minimum number of samples . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Data sparseness measure . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 STATISTICAL MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii

 
 
 



3.4.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Homogeneity of covariance matrices . . . . . . . . . . . . . . . . . . . 50

3.5 INFORMATION THEORETIC MEASURES . . . . . . . . . . . . . . . . . . 51

3.6 DECISION BOUNDARY MEASURES . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Linear separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.2 Variation in decision boundary complexity . . . . . . . . . . . . . . . 52

3.6.3 Complexity of decision boundaries . . . . . . . . . . . . . . . . . . . 52

3.7 TOPOLOGY MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7.1 Number of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7.2 Number of samples per group . . . . . . . . . . . . . . . . . . . . . . 54

3.7.3 Variation in feature SD . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7.4 Scale variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 NOISE MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.1 Input noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.2 Output noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.3 Feature noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 SUMMARY OF MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER FOUR - ANALYSIS OF DATA MEASURES 60

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 EXPERIMENTAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Measures experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1.1 Correlation and normality . . . . . . . . . . . . . . . . . . . 61

4.2.1.2 Variation in feature SD . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Measures experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2.1 Input noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2.2 Output noise . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Measures experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3.1 Linear separability . . . . . . . . . . . . . . . . . . . . . . . 62

iii

 
 
 



4.2.3.2 Inter-class scale variation . . . . . . . . . . . . . . . . . . . 63

4.2.4 Measures experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4.1 Variation in decision boundary complexity and inter-class

scale variation . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4.2 Intra-class scale variation . . . . . . . . . . . . . . . . . . . 63

4.2.4.3 Feature noise . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.5 Measures experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5.1 Groups per class . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5.2 Interleaving of groups . . . . . . . . . . . . . . . . . . . . . 64

4.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Measures experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1.1 Correlation and normality . . . . . . . . . . . . . . . . . . . 65

4.3.1.2 Variation in feature SD . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Measures experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2.1 Input noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2.2 Output noise . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Measures experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3.1 Linear separability . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3.2 Inter-class scale variation . . . . . . . . . . . . . . . . . . . 71

4.3.4 Measures experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.4.1 Variation in decision boundary complexity and inter-class

scale variation . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.4.2 Intra-class scale variation . . . . . . . . . . . . . . . . . . . 73

4.3.4.3 Intrinsic dimensionality . . . . . . . . . . . . . . . . . . . . 73

4.3.5 Measures experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.5.1 Groups per class . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.5.2 Interleaving of groups . . . . . . . . . . . . . . . . . . . . . 75

4.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER FIVE - META-CLASSIFICATION 77

5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iv

 
 
 



5.2 CONSTRUCTION OF META-CLASSIFIER . . . . . . . . . . . . . . . . . . 77

5.2.1 Data measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Meta-training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Meta-testing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.4 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.5 Meta-classifier performance measure . . . . . . . . . . . . . . . . . . 80

5.3 EVALUATION OF META-CLASSIFIER PERFORMANCE . . . . . . . . . . 80

5.3.1 Real-world classification results . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Weighted data measures . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 Normalisation of data measures . . . . . . . . . . . . . . . . . . . . . 82

5.3.4 Meta-classifier predictions . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.5 Evaluation of performance . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 DISCUSSION OF PREDICTIONS . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Normalisation of measures . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2.1 Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2.2 Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2.3 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2.4 Tic-tac-toe . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2.5 Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

CHAPTER SIX - CONCLUSION 92

6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 SUMMARY OF WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 FURTHER APPLICATION AND FUTURE WORK . . . . . . . . . . . . . . 93

6.4 CONTRIBUTIONS AND SHORTCOMINGS . . . . . . . . . . . . . . . . . . 94

6.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCES 96

v

 
 
 



LIST OF ABBREVIATIONS

1NN Nearest-Neighbour

DT Decision Tree

Gauss Gaussian

GMM Gaussian Mixture Model

GMMd Gaussian Mixture Model (diagonal covariance)

GMMf Gaussian Mixture Model (full covariance)

kNN k-Nearest-Neighbour

ML Machine Learning

MLP Multilayer Perceptron

MST Minimum Spanning Tree

MVN Multivariate Normality

NB Naı̈ve Bayes

NFL No-Free-Lunch

OTS Off-Training-Set

PAC Probability Approximately Correct

PCA Principal Component Analysis

PR Pattern Recognition

SD Standard Deviation

SVM Support Vector Machine

UCI University of California, Irvine

VC Vapnik Chervonenkis

WPS Wrapped Progressive Sampling

vi

 
 
 



CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

The quest to optimise the performance of trainable classifiers has a long and varied history.

Soon after the design of the earliest parametric and linear classifiers, researchers found

refinements (such as polynomial classifiers and the nearest-neighbour (1NN) rule) that

produced more accurate classification on comparable data sets. Hence, the quest for “the

most accurate” classifier was initiated, and several generations of candidates for that title

have been proposed: kernel functions, neural networks, support vector machines, etc.

In some ways, this activity has been extremely productive – we today have a wide range

of classifiers that are employed in numerous applications [1], from credit scoring to

speech processing, with great technical and commercial success. However, from another

perspective, this entire enterprise can be considered a dismal failure: we still do not have a

single classifier that can reliably outperform all others on a given data set [2, 3, 4] and the

process of classifier selection is still largely one of trial and error.

This apparent contradiction would not be surprising in the context of purely parametric

classifiers, since the accuracy of a particular parametric classifier on a given data set will

1

 
 
 



CHAPTER ONE INTRODUCTION

clearly depend on the relationship between the classifier and the data. The concept of a single

best parametric classifier is clearly not useful, and a trial-and-error process will generally be

required to find the parametric form that best describes a given data set (although statistical

tests may be employed to guide that search). In the realm of non-parametric classifiers,

however, there is less awareness of the need to harmonise the characteristics of data and

classifiers.

Several empirical studies have shown that the choice of optimal classifier does in fact

depend on the data set employed [5, 2], and some guidelines on classifier selection have

been proposed [4]. These guidelines do not, however, provide much insight into the specific

characteristics of the data that will determine the preference of classifier; several theoretical

approaches have also been employed to predict the performance of classifiers in an a priori

fashion [6, 7, 8]; we will show in the next sections that these approaches fall short of a

comprehensive solution to the task of classifier selection.

A significant amount of insight into the theoretical properties of classifiers and of data will

be required to describe the relationship between data characteristics and classifier perfor-

mance fully; we will search for such insight by (1) identifying data properties that influence

classification performance and (2) measuring these properties from data.

1.2 OVERVIEW

The purpose of this study is to investigate the relationship between data characteristics

and classifier performance; we will develop data measures to define this relationship

and will use these data measures to develop a meta-classification system that will make

classifier performance predictions. We will use the meta-classification system to construct a

framework to analyse the properties of real-world data and explain classification predictions.

The outline of this thesis is as follows:

• We identify data properties that influence classifier performance in Chapter 2.

• We propose data measures to quantify these properties in Chapter 3.

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 2

 
 
 



CHAPTER ONE INTRODUCTION

• We validate the efficacy of these data measures in Chapter 4.

• We use these measures to construct a meta-classification system in Chapter 5 and we

show how these measures can be used to explain the classification predictions of the

meta-classifier.

• We conclude by describing some of the implications of our findings in Chapter 6.

1.3 BACKGROUND

Various strategies have been employed to describe the relationship between classifiers and

the problems they try to solve; these approaches are summarised as follows:

• Empirical studies have been performed to compare the performance of classifiers on

different real-world data sets [2, 5] and to predict the domain of competence of clas-

sifiers [4, 9]. A heuristic meta-learning search method has been proposed by [10]

to find the optimal parameter settings of classifiers and to estimate the generalisation

performance of these classifiers.

• Data measures to characterise the difficulty of classification problems were studied

by [11]; their focus was on the geometrical complexity of the decision boundaries

between classes.

• A theoretical framework was developed in [6, 7] to predict and compare the general-

ization performance of classifiers.

• Statistical learning theories, such as that of Vapnik and Chervonenkis (VC) [8], have

been used to place bounds on the generalisation error rates of data sets.

We will discuss each of these approaches in some detail in this section; we will also note the

limitations of these approaches.

1.3.1 EMPIRICAL STUDIES

Several comparative studies have been conducted to determine features in data that predict

classification performance. Tax and Duin [5] considered a one-class classification problem;

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 3

 
 
 



CHAPTER ONE INTRODUCTION

19 classifiers and 101 real-world data sets were used. They defined two features to

characterise data sets, namely the effective sample size and the class overlap. They found

that the most significant variable that characterises a data set well is the effective sample

size (the ratio between the number of observations and variables in a data set). Although

this is a useful insight, it clearly is a limited view of the variability that may be present in

data sets – by themselves, these two measures give only limited insight into the way that

various classifiers will perform on a particular data set.

Brazdil et al. [4] performed a comparative study based on the results of the StatLog Project

[2]. The StatLog project compared 22 classifiers on more than 20 different real-world data

sets. The aim of [4] was to obtain a set of rules to predict classification performance of data

sets. Statistical and information theoretic measures were used to extract features from data

sets; these measures were used together with the classification results of the StatLog project

to construct an expert system, named the Application Assistant, to predict the classification

performance of various classifiers on a particular data set. The C4.5 decision tree algorithm

[12] was used to construct rules from the given data. The classification results were consid-

ered one at a time by the C4.5 algorithm, until a final set of rules had been constructed. All

the rules had a confidence measure to indicate their usefulness. The rules that were generated

by the expert system were not very meaningful owing to a lack of training data – it is easy to

find counterexamples to the conclusions reached in [4]. An example of such a rule is

Discrim-Appl↓8 N<= 1000 0 0.247

This rule states that the linear discriminative classifier will perform well with a confidence

or information score of 0.247 if the number of samples in the data set is less or equal

to 1000. All the rules with an information score of more than 0.2 are considered useful.

This is clearly not a rule that will hold in general, since only the size of the data set is

considered; several other relevant measures that are relevant to linear separability, including

the dimensionality and number of classes in the data set, are ignored.

A meta-learning ranking algorithm based on the work of Brazdil and Soares [13, 14] has

been developed and included into the Weka [15] machine learning package. This algorithm
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offers advice on classifier selection; the accuracy, training and testing times are considered

in the ranking of classifiers. The meta-classifier is trained with benchmark data sets; the

classification error rates and times of these benchmark data sets are calculated and several

data measures are performed to characterise these data sets. New data sets are characterised

by calculating their data measures and performance rankings are predicted by finding the

most similar benchmark data set. The data measures used to characterise data sets are

statistical and information theoretic measures used in [2, 16].

Landmarking is a different type of approach used to define the domains of competency of

classifiers (opposed to the traditional approach of calculating data measures and classifying

or clustering these data measures). The performance of simple classifiers (landmarkers) are

used to generalise the domain of competency to more complex classifiers. The selection

criteria of landmarkers are computational complexity within reasonable bounds and biases

that are reasonably different.

Pfahringer et al. [9] investigated and compared a landmarking meta-classification approach

to a meta-classification approach where information theoretic data measures were used; the

information theoretic measures of the Statlog project [2] were employed. Four landmarkers

were used to construct a landmarking meta-classifier; all of these were decision tree clas-

sifiers with minimal node complexity. The classification performances of the 1NN, Naı̈ve

Bayes (NB), C5.0 with boosting, neural network, rules learning and decision tree classifiers

were predicted using these landmarkers. 320 two-class artificial data sets were generated

to construct the meta-classification data set; these artificial sets all had between 5 and 12

boolean attributes. The following meta-classifiers were employed to classify the meta-data:

C5.0 trees, C5.0 rules trees, boosted C5.0 trees, RIPPER (a two-rule inducer), LTREE

(an oblique decision tree inducer), linear discriminant, 1NN and NB classifiers. The pre-

dictions made by the landmarking and information theoretic meta-classifiers were compared.

It was not conclusively shown in [9] that one of these approaches is significantly better

than the other; this suggests that additional data measures will be required to describe the

relationship between data characteristics and classifier performance fully.
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van den Bosch [10] proposed a wrapped progressive sampling (WPS) algorithm to

find the optimal parameters settings for various classifiers and to estimate the generalisa-

tion performance of these classifiers; an implementation of this algorithm is available at [10].

WPS is a heuristic search method used to optimise parameters; progressive sampling is

used to decrease the number of classifier setting combinations with increasing amounts

of training data. Classifier wrapping is used to partition training data (generated by

progressive sampling) into internal training and test sets; 10-fold cross-validation is used to

estimate the training set generalisation performance for a specific set of parameters. These

performance estimates on the various progressive training sets are used to determine the

optimal parameter settings as well as the optimal number of training samples that must be

used to obtain optimal generalisation performance.

Classification error rates of classifiers trained with default classifier settings were compared

to classifiers trained with WPS. Ten real-world data sets obtained form the UCI Machine

Learning repository [17] and five classifiers were used in this comparison. It was shown

that two of the fifty classification results were significantly worse and seventeen of the fifty

classification results were significantly better when employing the WPS procedure.

The estimates of the WPS generalisation performances of classifiers can be used to select

the optimal classifier for a given classification task; these estimates fail, however, to

provide information on these classification performances. This information is required

to gain insight into data properties and how these properties influence classifier performance.

These empirical studies have shown that understanding the relationship between data char-

acteristics and classifier performance is crucial; this relationship is not, however, fully de-

scribed by any of these approaches.
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1.3.2 CHARACTERISING THE COMPLEXITY OF CLASSIFICATION

PROBLEMS

Ho and Basu [11] studied 12 data measures to characterise the complexity of classification

problems; their focus was mainly on the geometrical complexity of classification problems.

The measures under study were grouped into the following categories: (1) measures of

overlap of individual features, (2) measures of separability of classes and (3) measures of

geometry, topology and density manifolds.

An experiment was designed to compare the measurement values of 14 real-world data

sets and 300 randomly labelled uniformly distributed artificial data sets. This experiment

showed that real-world problems contain structures significantly different from random-

labelled data; it was also shown that the measures of the random artificial data sets differed

significantly for different feature dimensionalities – this observation was attributed to the

increased sparsity of data in high-dimensional spaces.

A hundred additional Gaussian distributed artificial data sets were generated with varying

degrees of separabiliy between the classes. A case study was performed in which the

authors: (1) compared the measurement values of a real-world data set to the 100 Gaussian

distributed artificial data sets and (2) compared the measurement values of a real-world data

set to 14 other real-world data sets obtained from the UCI Machine Learning Repository

[17].

Principal component analysis (PCA) dimension reduction was applied to all the measure-

ment values of these data sets in order to investigate the relationships between data. Ho

suggests that this reduced measurement feature space may be used to define the domains of

competence of various classifiers.

This study gave some insight into the properties of data; the influence of these properties on

the performance of classifiers was, however, not investigated.

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 7

 
 
 



CHAPTER ONE INTRODUCTION

1.3.3 NO-FREE-LUNCH THEOREMS

The no-free-lunch (NFL) theorems of Wolpert [6, 7] have caused some controversy in the

fields of machine learning (ML) and pattern recognition (PR). Various papers have been

written to discuss the applicability [7] or inapplicability [18] of the NFL theorems in the

context of supervised learning.

Wolpert measures the generalisation performance of a classifier with an off-training-set

(OTS) error, which is defined as the error rate of a classifier when the samples in the training

and test sets don’t overlap.

If the input-output relationship (x − y target function) of a data set is defined as f and the

function that is learned by a classier is defined as h, then the OTS error (C) on a training set

(d) can be written as a non-Euclidean inner product between the true target function and the

target function learned by the classifier [7]. The expected generalisation (OTS) error for a

learning algorithm is expressed as

E(C|d) =
∑

h,f

Er(h, f, d)P (h|d)P (f |d), (1.1)

where P(f|d) is the true target function of the training data d and P(h|d) is the target function

learned by the classifier on training data d.

This theorem shows that the performance, E(C|d), of a learning algorithm, P(h|d), is

determined by how well it is aligned with the actual posterior, P(f|d). The suitability of a

learning algorithm for a specific learning task can thus be determined by this equation.

This NFL theorem does not explicitly define any relationship between the true target

function of the data P(f|d) and the learned target function P(h|d); the NFL theorems are thus

still valid even if these two functions are independent. This explains why the NFL theorems

have led to counter-intuitive conclusions such as: “unless one can establish a priori, before

seeing any of the data d, that the f that generated the d is one of the ones for which one’s

favourite algorithm performs better than other algorithms, one has no assurances that that
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learning algorithm performs better than the algorithm of purely random guessing.” [7], p.4.

From our perspective, these counter-intuitive consequences of the NFL theorems are a result

of their excessive neutrality with respect to the properties of data sets in pattern recognition:

for real-world problems, there is always a definite relationship between P(f|d) and P(h|d).

We return to this matter in the final chapter of this dissertation.

1.3.4 BOUNDS ON GENERALIZATION PERFORMANCE

Computational learning theory is a theoretical approach used to place bounds on the

generalisation errors of learning algorithms. Three sets of approaches comprise the main

thrust of computational learning theory: statistical physics, the probability approximately

correct (PAC) framework and the VC theory [7, 19]. We will use the VC approach as an

example to illustrate how theoretical bounds are placed on the generalisation performance

of classifiers.

Theoretical boundaries on the generalisation performance of classifiers have been derived

by Vapnik [8]; these boundaries are a function of the VC dimension (machine capacity) of a

classifier and its classification performance on the training set.

The bound on the generalisation error of a classifier (with parameters α) for a data set with l

samples is given by

R(α) ≤ Remp(α) +

√
h(log(2l/h) + 1)− log(η − 4)

l
, (1.2)

where Remp is the classification error rate on the training set, h is the VC dimension of the

employed classifier and 1− n is the confidence in the generalisation bound R(α).

If the VC dimension of a classifier is infinite (if it can shatter all points in a training set

for any value of l) then the generalisation bound R(α) will become infinite; the use of this

bound is thus not informative for classifiers with infinite VC dimensions. Even for finite

VC dimension, these bounds have proven to be so weak as to be useless for most real-world
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problems [19]. The other two approaches in computational learning theory are similarly

impressive from a theoretical perspective, but limited in their practical applicability.

1.4 CONCLUSION

We have discussed the various strategies that have been employed to define the relationship

between classifier performance and the problems they try to solve; the NFL theorems and

the bound on generalisation performance of classifiers using VC dimensions are very limited

in terms of real-world applications. Empirical studies have shown the importance of the

relationship between data characteristics and classifier performance; they have, however,

failed to describe this relationship in detail.

To address this shortcoming we will identify several data properties that influence classi-

fication performance in Chapter 2. We will then propose measures to measure these data

properties in Chapter 3 and will evaluate the efficacy of these measures in Chapter 4. Fi-

nally, we use these measures to predict the classification performance of real-world data sets

in Chapter 5.
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CHAPTER TWO

CLASSIFICATION EXPERIMENTS

2.1 INTRODUCTION

In this chapter we perform various classification experiments to investigate the properties of

data that influence classification performance. Previous empirical studies have shown that

the choice of optimal classifier does in fact depend on the data set employed [2], and some

guidelines on classifier selection have been proposed [4]. These guidelines do not, however,

provide much insight into the specific characteristics of the data that will determine the

preference of a classifier.

To address this shortcoming, we focus on pieces of conventional wisdom which are often

repeated in review papers [1] and text books [20] and we investigate the effect of data

set complexity on the classification performance of various classifiers. The first wisdom

is that discriminative classifiers tend to be more accurate than model-based classifiers at

classification tasks (see, e.g. [20], p.77); the second is that k-nearest-neighbour (kNN)

classifiers are almost always close to optimal in accuracy, for an appropriate choice of k

(e.g. [1], p.17). A common subsidiary to the latter belief is that the best value of k can only

be determined empirically. Some other conventional wisdoms are that the support vector
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machine (SVM) classifier has exceptionally good generalization performance on all types

of classification tasks and that a multilayer perceptron (MLP) classifier with two layers of

weights are capable of approximating any continuous functional mapping [21], which gives

it superior classification performance on almost all types of classification tasks.

We focus our attention on the following topics:

• Do model-based classifiers substantially outperform discriminative classifiers under

any circumstances?

• What attributes of classification data determine the optimal value of k in a kNN clas-

sifier?

• Are there specific circumstances that cause the kNN to perform considerably worse

than other classifiers?

• Are there any scenarios under which the SVM and MLP classifiers will perform worse

than other typical discriminative classifiers?

• What is the effect of data set complexity on the classification performance of classi-

fiers?

We develop a methodology (summarized in Section 2.2) that uses artificial data sets to probe

the interaction between classifiers and data set properties. In Section 2.4 we endeavour to

answer the five questions posed using this methodology and in Section 2.5 we discuss the

implications of our findings.

2.2 METHODS AND DATA

In order to experiment with the relationship between data and classifiers, we have generated

several series of artificial data, and experimented with both model-based and discriminative

classifiers. We use 10-fold cross-validation to evaluate and compare the performance of the

classifiers on the different data sets.
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2.2.1 ARTIFICIAL DATA GENERATION

2.2.1.1 MULTIVARIATE GAUSSIAN DATA

We will generate multivariate Gaussian data by generating independent univariate Gaussian

features; we will then rotate and stretch the univariate data with a matrix A. The matrix

AAT is equivalent to the covariance matrix of the resulting data. We generate n samples per

distribution by using d single variable Gaussian distributions of the form

p(x) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

, (2.1)

where µ is the mean and σ2 is the variance of the distribution; this results in a d-by-n matrix

x.

We combine the d single dimensional variables into a multivariate Gaussian distribution by

using the transformation

Y = Ax + B, (2.2)

where B is the d-dimensional mean of the distribution repeated n times and AAT is the

covariance, Σ, of the multivariate distribution. The resulting multivariable distribution may

be written as

p(x) =
1

(2π)
d
2 |Σ| 12

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (2.3)

where x is a d-component column vector, µ is a d−component mean vector, Σ is the d-by-d

covariance matrix, (x - µ)T is the transpose of (x - µ), Σ−1 is the inverse of Σ, and |Σ| is the

determinant of Σ.

Class-conditional probability density functions for each class in a data set are generated by a

weighted mixture of multivariate Gaussian distributions of the form given in (2.3). Data sets

are generated for three different experiments explained later in this section.
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2.2.1.2 MULTIVARIATE UNIFORM DATA

To generate multivariate uniform data we will employ the same strategy as in Section 2.2.1.1.

We will generate univariate uniform features between zero and one of the form

pU(x) =





1
b−a

for a ≤ x ≤ b

0 for x < a or x > b
(2.4)

where a is equal to zero and b is equal to unity.

We rotate and stretch these univariate features with an A matrix similar to the multivariate

Gaussian case.

2.2.1.3 MULTIVARIATE GAUSSIAN MIXTURE DATA

We will generate data with a mixture of Gaussians by generating multivariate Gaussian data

and then assigning data from different distributions to the same class. The resulting class-

conditional probability density functions will be a mixture of Gaussians.

2.2.1.4 MULTIVARIATE CAUCHY DATA

To generate multivariate Cauchy data we generate univariate uncorrelated Cauchy distributed

features of the form

pC(x) = x0 + γ tan(πpU(x)), (2.5)

where x0 is the location parameter, γ is the scale parameter and pu(x) is the uniform

univariate distribution with zero mean; we use a location parameter of zero and scale

parameter of one.

We use d single variable Cauchy distributions of the form given in (2.5) to generate n samples

per distribution. We introduce rotation and stretch into this data in a similar fashion as the

multivariate Gaussian data.
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2.2.1.5 CORRELATION OF FEATURES

To introduce correlation into the features of the artificial data we generate a rotation matrix

AR with the Gram Schmidt orthogonalisation procedure [22]. This procedure is used to

ensure that the column vectors of the AR matrix are orthogonal to one another and that the

features are correlated. We introduce standard deviation into the data by multiplying the

rotation matrix AR with a stretch matrix AS . The Gram Schmidt procedure ensures that the

eigenvalues of the resulting A matrix are similar to the diagonal component values of the

stretch matrix AS . We thus ensure that the standard deviations of the correlated data are

similar to the standard deviations of the uncorrelated data. We use diagonal A matrices to

generate uncorrelated data; this results in diagonal covariance matrices AAT .

2.2.1.6 STANDARD DEVIATION

In our experiments we will use two types of covariance matrices; we will use covariance

matrices with: (1) feature variances that vary and (2) equal feature variances. Standard

deviation (SD) is introduced into the uncorrelated data by multiplying the uncorrelated

features with a diagonal stretch matrix (AS) that has values equal to the desired SD values.

The diagonal components of this A matrix are equal in the case where we use similar SDs for

all features. To create features with varying SDs we generate random diagonal components

for the A matrix. These random values are between zero and the specified maximum SD of

the features.

SD is introduced into the correlated data by multiplying the AR matrix generated by the

Gram Schmidt procedure with a diagonal stretch matrix AS . We use the same stretch matrix

AS for both correlated and uncorrelated data.

We should note that the SD of a Cauchy distribution is theoretically undefined; for the pur-

poses of this study we will refer to the values of the stretch matrix AS as the SDs of the

Cauchy distributed data.
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2.2.1.7 NOISE

Two forms of noise are relevant in classification problems: input noise affects the class-

conditional density functions, and can be adjusted by changing A and B in (2.2). Output

noise is simulated by changing the class labels of the observations in the original data set.

In our experiments below, we sometimes need to quantify the extent of the noise. For input

noise, this is best achieved through a measure of class overlap (e.g. the Bayes error rate for

a given problem [20]); for output noise, the percentage noise is measured by the percentage

of class labels that have been changed.

2.2.1.8 CLASSIFIERS

Two model-based and five discriminative classifiers are used in this study. The model-based

classifiers are the NB [23] and Gaussian (Gauss) classifiers. The discriminative classifiers

are the Gaussian mixture model (GMM), decision tree (DT) [12], kNN [24], MLP and

SVM [25] classifiers.

The NB, DT, kNN, MLP and SVM classifiers are implementations of the machine learning

package Weka [15] and the Gaussian and GMM classifiers are Matlab implementations

available at [26] and [27].

The kNN classifier uses a LinearNN nearest neighbour search algorithm with an Euclidean

distance metric; we determine the optimal k value by performing 10-fold cross-validation.

Two variations of the GMM classifier are used: a full covariance GMM classifier (GMMf)

and diagonal covariance GMM classifier (GMMd). The GMMf classifier takes correlation

between variables in a mixture into account when determining the probability density

functions of each mixture. The GMMd classifier assumes that the variables in a mixture

are independent. The expectation-maximisation algorithm is used to find the weights, mean

values and covariance matrices of the mixtures. The number of mixtures per class must be

specified to the GMM classifiers (we use iterative methods to find suitable values).

We use a k-means clustering algorithm to initialise the weights of the mixtures in the GMM
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classifier; the prior probabilities of the mixtures are initialised as the proportions of the

samples in a cluster belonging to each class; the covariance matrix is initialised as the

sample covariance of the points associated with each mixture.

The SVM uses C-Support Vector classification where a regularisation parameter (C) is

introduced to incorporate cost due to non-separability for linearly non-separable data; we

use a radial basis function kernel. For each experiment the optimal cost parameter (C) and

kernel width parameter (g) are determined by performing 10-fold cross-validation; g values

in the range [10−8,106] and C values in the range [10−8,104] are considered. The Golden

Ratio search [28] is used to search through the C and g dimensions to find the optimal error

rate for the SVM classifier.

A single hidden-layer back-propagation MLP is used for which the optimal number of nodes

in the hidden layer is determined by 10-fold cross-validation - we search through the range

of two to ten hidden nodes.

2.3 EXPERIMENTAL DESIGN

The five research questions introduced in Section 2.1 are studied through the design of tar-

geted data sets. All the experiments are repeated ten times on ten different data sets (with

the same properties) to reduce the effect of variability in the results.

2.3.1 EXPERIMENT 1

Experiment 1 uses artificial data sets with Gaussian distributed classes to illustrate where

the Gaussian classifier and the NB classifier outperform discriminative classifiers.

The method of data generation explained in Section 2.2.1 is used. We generate artificial data

sets with correlated and uncorrelated variables and each data set contains three classes. The

number of samples per class in each data set ranges from 20 to 100 and we use ten features.

We range the SDs of these features from 1 to 25. The class means are chosen from different

hypercubes to give well-separated means and all variables are in the range [-1, 1].
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The purpose of this experiment is to generate data sets with models that fit the Gaussian

classifier and the NB classifier assumptions well. The Gaussian classifier assumes data with

Gaussian distributed classes and potentially correlated variables, whereas the NB classifier

assumes independent variables of a particular one-dimensional distribution (for simplicity,

we have employed Gaussian distributions for those cases as well). We vary the number of

samples per class to probe for cases where the model-based assumption is optimally useful.

2.3.2 EXPERIMENT 2

Experiment 2 uses artificial data sets with Gaussian distributed classes and added output

noise to illustrate the effect of output noise on the optimal value of k in the kNN classifier.

The effect of output noise on the ratio between the error rate of the optimal kNN classifier

and the error rate of the 1NN classifier is also illustrated.

We generate two and ten dimensional correlated data sets with noise fractions ranging from

5-25 % ; all the data sets have three classes and the number of samples per class ranges from

20 to 100. The standard deviations of the distributions are varied from 1 to 25 to illustrate

the effect of the SD on the optimal k values. The 10-fold cross validation error rates of the

optimal kNN classifier and the 1NN classifier are calculated; we compare these error rates

for all the data sets.

2.3.3 EXPERIMENT 3

Experiment 3 uses two dimensional Gaussian distributed data with different SDs in the

horizontal (x) and vertical (y) directions; these data sets are used to illustrate the effect of

the constant distance metric used by the kNN classifier throughout the entire variable space.

Data sets with two and four classes are generated; we vary the number of samples per class

from 20 to 100. We compare the 10-fold cross-validation error rates for the model-based and

discriminative classifiers to the optimal kNN classifier.
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2.3.4 EXPERIMENT 4

When an SVM classifier with Gaussian radial basis function kernel is optimised, two pa-

rameters are extremely important: The Gaussian kernel width (g) and the penalty parameter

(C). The roles of these two parameters give us a useful hint on the key ingredients to the

SVM’s typically excellent performance, but also suggest potential weaknesses that will be

explored in this experiment. The kernel width (g) is influenced by the scale of the various

classes and the complexity measure (C) is influenced by the complexity of the decision

boundaries between classes.

When an MLP classifier with one hidden layer (two layers of weights) is optimised, the

number of hidden nodes in the hidden layer is similarly important. The number of hidden

nodes is an indication of the complexity of the decision boundaries between the various

classes.

We will probe these properties of the SVM and MLP classifiers by generating artificial data

sets with classes that have varying scale and varying decision boundary complexity. All the

data sets in experiment 4 are generated in two and ten dimensions. Each two-dimensional

data set is expanded to ten dimensions by adding eight additional variables; this method is

used to ensure that the specific properties of the data sets remain the same when the data are

projected into higher dimensions. Each additional variable has a zero mean and SD equal to

the original pair of variables of the class; these variables don’t contribute information that

aids in classification - they can thus be regarded as nuisance variables.

We investigate two important data properties: (1) the variation in decision boundary com-

plexity between the various class combinations in a data set and (2) the scale variation of data

in a data set, where we will distinguish between inter-class and intra-class scale variations.

2.3.4.1 INTER-CLASS SCALE VARIATION

To probe the effect of scale variation on the performance of classifiers, we start by construct-

ing a data set with four Gaussian distributed classes. To create variation in scale we generate

classes 1 and 2 with low SDs and classes 3 and 4 with high SDs. We ensure that the de-
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gree of overlap between classes 1 and 2 is approximately the same as the degree of overlap

between classes 3 and 4; there is consequently almost no variation in decision boundary

complexity between the classes. The parameters used to generate these artificial data sets are

summarised in Table 2.1. We will term these data sets artificial set 4.1.

Table 2.1: Summary of artificial set 4.1 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-50, 0.1) 0.1
2 Gaussian (-50, -0.1) 0.1
3 Gaussian (50, 20) 20
4 Gaussian (50,- 20) 20

To amplify the effect of scale variation and include extreme outliers, we will also gener-

ate artificial data with Gaussian and Cauchy distributed classes. We generate two classes

with Cauchy class conditional probability density functions and four classes with Gaussian

distributed class conditional probability density functions; the variances of the Cauchy dis-

tributed classes are extremely large compared to the Gaussian distributed classes. We will

term these data sets artificial set 4.2. The parameters used to generate these artificial data

sets are summarised in Table 2.2.

Table 2.2: Summary of artificial set 4.2 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-90, 25) 0.3
2 Gaussian (-90, 24) 0.3
3 Gaussian (-90, 23) 0.3
4 Gaussian (-90, 22) 0.3
5 Cauchy (100, -100) 10
6 Cauchy (100, 100) 10

Note that the class overlaps between classes 1-4 are similar and the class overlap between

classes 5 and 6 is slightly more.

We generate similar data sets with a slight variation in the mean value of class 4 - we move

class 4 closer to class 3. The class overlap between classes 3 and 4 is now bigger than the
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class overlaps between classes 1 and 2 and classes 2 and 3. These data sets will allow us

to probe the effect of a variation in decision boundary complexity on the MLP and SVM

classifiers.

Table 2.3: Summary of artificial set 4.3 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-90, 25) 0.3
2 Gaussian (-90, 24) 0.3
3 Gaussian (-90, 23) 0.3
4 Gaussian (-90, 22.5) 0.3
5 Cauchy (100, -100) 10
6 Cauchy (100, 100) 10

Note that the class overlaps between classes 1 and 2 and classes 2 and 3 are similar while the

overlap between classes 3 and 4 is bigger; we thus also include a slight variation in decision

boundary complexity.

2.3.4.2 DECISION BOUNDARY COMPLEXITY

We generate an artificial data set to probe the effect of varying decision boundary com-

plexity on classification performance. The data set consists of six Gaussian distributed

classes; these six classes all have different means but the same SD. This allows us to focus

on the variation in decision boundary complexity. We will term these data sets artificial

set 4.4. The parameters used to generate these artificial data sets are summarised in Table 2.4.

Table 2.4: Summary of artificial set 4.4 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-1, 25) 0.3
2 Gaussian (-1, 24) 0.3
3 Gaussian (-1, 23) 0.3
4 Gaussian (-1, 22.5) 0.3
5 Gaussian (0, 24.5) 0.3
6 Gaussian (1, 22.5) 0.3

Note that the SDs are the same for all classes; there is thus no variation in scale. The
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class overlap between the various classes varies, which in turn causes a variation in deci-

sion boundary complexity between the various class combinations.

2.3.4.3 INTRA-CLASS SCALE VARIATION

We generate similar data sets to artificial sets 4.1 and 4.3 with slight variations: we will

assign only two class labels to these data sets. This will allow us to investigate the effect of

intra-class scale variation on the classification performance of the MLP and SVM classifiers.

The parameters used to generate these artificial data sets are summarised in Tables 2.5 and

2.6; we will term these data sets artificial sets 4.5 and 4.6.

Table 2.5: Summary of artificial set 4.5 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-50, 0.1) 0.1
2 Gaussian (-50, -0.1) 0.1
1 Gaussian (50, 20) 20
2 Gaussian (50,- 20) 20

Table 2.6: Summary of artificial set 4.6 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-90, 25) 0.3
2 Gaussian (-90, 24) 0.3
1 Gaussian (-90, 23) 0.3
2 Gaussian (-90,- 22.5) 0.3
1 Cauchy (100, -100) 10
2 Cauchy (100, 100) 10

2.3.4.4 VARIATION IN DECISION BOUNDARY COMPLEXITY AND SCALE

To probe the simultaneous effect of inter-class scale variation and variation in decision

boundary complexity on the classification performances of the SVM and MLP classifiers,

we generate artificial data sets with five Gaussian distributed classes. We will term these

data sets artificial set 4.7. The parameters used to generate these artificial data sets are sum-

marised in Table 2.7.
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Table 2.7: Summary of artificial set 4.7 parameters.

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-50, 12) 5
2 Gaussian (-50, -12) 5
3 Gaussian (-50, -0.2) 0.1
4 Gaussian (50, 0) 0.1
5 Gaussian (50, 0.2) 0.1

It is important to note that the class overlap between classes 1 and 2 is much smaller than

the class overlaps between classes 3-5. These data sets simulate both variation in scale and

variation in decision boundary complexity simultaneously.

We will introduce a slight variation to these data sets by labelling the data with only two

classes; this will allow us to probe the simultaneous effect of intra-class scale variation and

variation in decision boundary complexity. We will term these data sets artificial set 4.8. The

parameters used to generate these artificial data sets are summarised in Table 2.8.

Table 2.8: Summary of artificial set 4.8 parameters

Class Distribution µ(feature1,feature2) SD
1 Gaussian (-50, 12) 5
2 Gaussian (-50, -12) 5
1 Gaussian (-50, -0.2) 0.1
2 Gaussian (50, 0) 0.1
1 Gaussian (50, 0.2) 0.1

2.3.5 EXPERIMENT 5

In this experiment we investigate the relationship between data set complexity and classi-

fication performance. We simulate data set complexity by sampling data from a Gaussian

mixture model distribution; the complexity of the data set is determined by the number of

mixtures per class and by the SDs of the mixtures. If there is significant overlap between

the mixtures in a class the mixtures will fuse together to create a larger mixture. From the

perspective of decision-boundary complexity, the effective number of mixtures per class is
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consequently less than the actual number of mixtures per class.

Data sets with two and ten features are generated; the two-dimensional data have SDs in

the range [0.1, 1]. The ten-dimensional data have SDs in the range [1, 10]. The SDs of the

ten-dimensional data are a factor ten bigger than those used for the two-dimensional data;

this ensures that the degree of overlap in two dimensions and in ten dimensions is similar.

Data sets with 10 and 50 groups per class are generated; all data sets contain three classes

and ten samples per group. The mean values of the groups are chosen randomly and all

features are in the range [-1, 1].

2.4 RESULTS

The results of the experiments in Section 2.3 are summarised in this section. Throughout

our discussion, high-dimensional data are defined as data with a small number of samples in

each class per dimension.

2.4.1 EXPERIMENT 1

The classification results of experiment 1 are given in Figures 2.1 and 2.2; we abbreviate

samples per class as spc. Figures 2.1 and 2.2 show that the Gaussian classifier achieves

the lowest error rate over all the correlated data sets in this experiment. This result is not

surprising in itself since the data are in fact normally distributed; the interesting results

are contained in: (1) the extent to which the discriminative classifiers underperform the

appropriate model-based classifier, and (2) the dependence of this underperformance on

factors such as data overlap and the size of the training set.

We see that all the discriminative classifiers perform considerably worse than the model-

based classifier in the ten-dimensional space. It is thus not safe to assume that discriminative

classifiers will perform comparably to a Gaussian classifier on correlated high-dimensional

data with a small number of samples per class.
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Figure 2.1: Classification results of correlated ten-dimensional data (20 samples per class)
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Figure 2.2: Classification results of correlated ten-dimensional data (100 samples per class)

Figures 2.3 and 2.4 show that the NB classifier has the lowest error rate over all the uncorre-

lated data sets used in this experiment, whereas all the other classifiers had substantial error

rates for at least some experimental conditions. It is thus not safe to assume that discrimina-

tive classifiers will perform comparable to a NB classifier on uncorrelated high-dimensional

data with a small number of samples per class.
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Figure 2.3: Classification results of uncorrelated 10 dimensional data (20 samples per class)
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Figure 2.4: Classification results of uncorrelated 10 dimensional data (100 samples per
class)

2.4.2 EXPERIMENT 2

The results of experiment 2 are given in Figures 2.5-2.8. Figure 2.5 shows that the optimal

value of k for the kNN classifier increases monotonically as the (output) noise in the data

increases, whereas the optimal k value seems to decrease (though not as predictably) when

the SD increases. At first glance these results seem contradictory, since the SD can also be

viewed as a form of noise – specifically, input noise. However, these results are actually

consistent, and provide an important hint on the choice of k: whereas increasing SD does
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create increasing overlap of the different classes, samples that overlap tend to lie at the edges

of these distributions. Output noise, on the other hand, permeates the entire feature space

– hence, a larger k value is required to properly smooth over these samples as the noise

percentage increases.
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Figure 2.5: kNN classification results of correlated noisy two-dimensional data

Figure 2.6 shows that in a high-dimensional feature space with high SD, the optimal k values

are close to 1. This might be because, for large k, the contributing samples may be so far

away from the sample as to be meaningless.

0 5 10 15 20 25
0

5

10

15

Noise (%)

O
pt

im
al

 k
 v

al
ue

20 spc SD 1
100 spc SD 1
20 spc SD 9
100 spc SD 9
20 spc SD 25
100 spc SD 25

Figure 2.6: kNN classification results of correlated noisy ten-dimensional data
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Figure 2.6 also shows that the optimal k value continues to increase reasonably monotoni-

cally with the noise percentage in 10 dimensions both for high and low overlap.

How significant are the differences between the accuracies obtained with the various values

for k? Figures 2.7 and 2.8 show the error rates of the 1NN classifier divided by those of the

optimal kNN classifier for each of the cases corresponding to Figures 2.5 and 2.6.
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Figure 2.7: Error rate ratios of correlated noisy two-dimensional data
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Figure 2.8: Error rate ratios of correlated noisy ten-dimensional data

In the vast majority of cases, for a SD of 1 and dimensionality of 10, the 1NN classifier has
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more than 1.5 times the error rate of the optimal classifier, suggesting that these differences

are indeed significant.

2.4.3 EXPERIMENT 3

Two-dimensional data sets with uncorrelated class-conditional densities were used in

experiment 3. The SDs of the classes in the data sets were different in the horizontal (x) and

vertical (y) directions. Figure 2.9 is a scatter plot of a four-class data set (with 100 samples

per class) that was used in one of the experimental runs.
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Figure 2.9: Scatter plot of four-class 100 samples/class two-dimensional data

Figure 2.9 shows that the classes marked with ‘X’, ‘O’ and ‘∆’ all have the same SD in

the y direction (Feature 2) but have different SDs in the x direction (Feature 1). The class

marked by ‘+’ has a very large SD in the x direction and a very small SD in the y direction.

The kNN classification results of uncorrelated two-dimensional artificial data sets similar to

the data set illustrated in Figure 2.9 are summarised in Figures 2.10 and 2.11. Figures 2.10

and 2.11 show that the kNN classifier has high error rates for these artificial data sets and that

the classification results become worse, compared to the other classifiers, when the number

of classes increase. These results show that the kNN classifier is best employed in cases

where the “natural” metric is fairly constant throughout the feature space.
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Figure 2.10: kNN classification results of uncorrelated two-class data
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Figure 2.11: kNN classification results of uncorrelated four-class data

2.4.4 EXPERIMENT 4

The classification results for experiment 4 are summarised in Figures 2.12 - 2.23. (We denote

dimensionality as D.)

2.4.4.1 INTER-CLASS SCALE VARIATION

Figures 2.12 - 2.15 show that the MLP classifier has the highest classification error rate of

all the classifiers for artificial sets 4.1 and 4.3. Artificial sets 4.1 and 4.3 were both generated

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 30

 
 
 



CHAPTER TWO CLASSIFICATION EXPERIMENTS

to simulate large variations in scale between various classes. These results suggest that the

classification error rate of a MLP increases as the variation in scale between classes increases.
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Figure 2.12: Classification results of artificial set 4.1 (2 D)
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Figure 2.13: Classification results of artificial set 4.1 (10 D)

Figures 2.12 and 2.13 show that the NB classifier error rate decreases significantly as the

number of samples per class increases in artificial set 1. Figures 2.14 and 2.15, on the other

hand, show that the classification error of the NB classifier increases slightly as the number

of samples per class increases. Both sets of data have large inter-class scale variation; the

distributions of the classes within these sets of data do, however, differ significantly. Artifi-

cial set 4.1 contains only Gaussian distributed classes while artificial set 4.3 contains classes
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Figure 2.14: Classification results of artificial set 4.3 (2 D)
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Figure 2.15: Classification results of artificial set 4.3 (10 D)

with Gaussian and Cauchy distributions. The NB classification performance of artificial set

4.1 improves since the data sets contain only Gaussian distributed classes - the assumptions

made by the NB classifier thus fit the distributions of the classes and the data are modelled

more accurately with an increase in training data. The Cauchy distributed classes in artificial

set 4.3, on the other hand, do not fit the assumption of normality made by the NB classifier;

this explains why the NB classification performance does not improve with an increase in

training data.
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2.4.4.2 DECISION BOUNDARY COMPLEXITY

Figures 2.16 and 2.17 show that the MLP has relatively good classification performance on

artificial set 4.4.
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Figure 2.16: Classification results of artificial set 4.4 (2 D)
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Figure 2.17: Classification results of artificial set 4.4 (10 D)

The results suggest that the classification performance of the MLP is not compromised

when the variation in decision boundary complexity increases if there is no significant

scale variation. We also see that the classification performance of the SVM classifier is not

influenced by a variation in decision boundary complexity; we note, however, that the kNN
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seems to be sensitive to a variation in decision boundary complexity in the ten-dimensional

case.

We can investigate the simultaneous effect of inter-class scale variation and variation in de-

cision boundary complexity by comparing Figures 2.15 and 2.18, since artificial set 4.3 has

the same scale variation as artificial set 4.2 but a higher variation in decision boundary com-

plexity.
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Figure 2.18: Classification results of artificial set 4.2 (10 D)

We see that the classification performance of the MLP is approximately the same for both

sets of data; these results suggest that the variation in decision boundary complexity doesn’t

influence the classification performance of a MLP classifier, even when the variation in scale

is extremely high.

2.4.4.3 INTRA-CLASS SCALE VARIATION

Figures 2.19 and 2.20 show that the MLP has relatively poor classification performance on

artificial set 4.5; this suggests that the MLP is also sensitive to intra-class scale variation,

since the data in artificial set 4.5 consist of two classes with two groups per class.
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Figure 2.19: Classification results of artificial set 4.5 (2 D)
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Figure 2.20: Classification results of artificial set 4.5 (10 D)

If we compare the classification results of Figure 2.15 and Figure 2.21 we see that the

classification error rates of the SVM have increased significantly in Figure 2.21; the relative

SVM classification error rates for artificial set 4.6 are much higher than for artificial set 4.3.

Note that inter-class scale variation was simulated in artificial set 4.3 and intra-class scale

variation was simulated in artificial set 4.6; these results thus imply that SVM classification

error rate increases as intra-class scale variation increases.
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Figure 2.21: Classification results of artificial set 4.6 (10 D)

Figures 2.22 and 2.23 show that the SVM classification error rates for artificial set 4.8 are

significantly higher than for artificial set 4.7. Artificial set 4.7 has high inter-class scale vari-

ation and high variation in decision boundary complexity while artificial set 4.8 has high

intra-class scale variation and high variation in decision boundary complexity. These re-

sults verify that SVM classification error rate is increased by an increase in intra-class scale

variation.
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Figure 2.22: Classification results of artificial set 4.8 (2 D)

If we compare the relative SVM classification performance of artificial set 4.8 (Figure

2.22) to that of artificial set 4.5 (Figure 2.19) we see that the relative SVM performance
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Figure 2.23: Classification results of artificial set 4.7 (2 D)

is considerably worse for artificial set 4.8. Artificial set 4.8 simulated both intra-class

scale variation and variation in decision boundary complexity, while artificial set 4.5

simulated only intra-class scale variation. These results suggest that the negative effect of

the intra-class scale variation on the SVM classification performance is amplified by the

additional variation in decision boundary complexity.

We finally note that the DT classifier had extremely good classification performance

in general on all the data sets employed in this experiment, especially on the data sets

containing Cauchy distributed data, see e.g. Figures 2.15 and 2.18. The DT classifier had

the best relative classification performance on artificial set 4.6 (see Figure 2.21); the data

sets in artificial set 4.6 contained a combination of Gaussian and Cauchy distributed classes.

The DT classifier has two desirable properties for the data used in this experiment: (1)

the DT distinguishes between the importance of features (in terms of classification) and

defines relationships between variables; these properties allow the DT classifier to do well

on data sets that have uncorrelated variables and a high number of noisy features; (2) the DT

classifier is discriminative (it doesn’t make any assumptions regarding the distribution of the

data)
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The first property explains why the DT classifier performed very well (compared to the

other classifiers) on the ten-dimensional data - the data sets used in this experiment had only

two features that contributed to classification, the ten-dimensional data thus had eight noisy

features. The second property also explains the good overall classification performance of

the DT classifier, since Cauchy distributed classes were used in some of the data sets in this

experiment and no assumptions were made regarding these class-conditional probability

density functions by the DT classifier.

The excellent classification performance of the DT classifier on artificial set 4.6 (Figure

2.21) might be attributed to three data properties: (1) the data sets contain high intra-class

scale variation; (2) the data sets contain Cauchy distributed data; (3) the data sets contain

large proportions of noisy features.

We have shown that the classification performances of the MLP and SVM classifiers are

greatly decreased by the intra-class scale variation, whereas the localized nature of DT dis-

criminants allows it to handle scale variations successfully. The classification performances

of the model-based classifiers (Gauss and NB) are greatly decreased by the Cauchy dis-

tributed data while the DT does not make any assumptions regarding the distribution of the

data. The DT classifier determines the importance of features when performing classifica-

tion; this property of the DT classifier makes it very robust against noisy features, and gives

it an advantage over the other classifiers on artificial set 4.6. The combination of these three

data properties might explain the excellent classification performance of the DT classifier on

artificial set 4.6.

2.4.5 EXPERIMENT 5

The results of experiment 5 are given in Figures 2.24-2.27. Figure 2.24 shows that the

GMMd, GMMf and kNN classifiers achieve the lowest classification error rates for two-

dimensional data with ten groups per class. This result is not surprising in itself since the data

sets were generated from Gaussian mixtures. The interesting result is the good classification

performance of the kNN classifier. The sparseness of the data (each group contains only ten

samples) might explain why the kNN has better overall classification performance than the
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SVM and MLP classifiers since the SVM and MLP classifiers require more data points to

obtain accurate decision boundaries.
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Figure 2.24: Classification results of GMM data (2 D, ten groups per class)

Figure 2.25 shows that the GMMd classifier achieves the lowest error rate for ten-

dimensional data with ten groups per class.
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Figure 2.25: Classification results of GMM data (10 D, 10 groups per class)

We see that the error rates of the kNN and GMMf classifiers relative to the GMMd have

increased with dimensionality. The sparsity of data in the feature space increases as the

dimensionality of the data increases; this sparseness of the data, combined with the effect
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of so many mixtures, causes the discriminative classifiers to underperform the GMMd

classifier by a considerable margin. The GMMd classifier performs considerably better

than the GMMf classifier, as would be expected given that the samples within each mixture

component are uncorrelated. The GMMf requires more samples to obtain accurate estimates

of the mixture parameters since the GMMf has more parameters than the GMMd to estimate;

it cannot obtain accurate model parameters since the data is so sparse in ten dimensions.

Figures 2.26 and 2.27 show that the results obtained for ten groups per class also hold for 50

groups per class.
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Figure 2.26: Classification results of GMM data (2 D, 50 groups per class)

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 40

 
 
 



CHAPTER TWO CLASSIFICATION EXPERIMENTS

1 2 3 4 5 6 7 8 9 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

SD

C
la

ss
ifi

ca
tio

n 
E

rr
or

Gauss
NB
DT
kNN
SVM
MLP
GMMf
GMMd

Figure 2.27: Classification results of GMM data (10 D, 50 groups per class)

2.5 CONCLUSION

We have studied several examples where data sets do not behave according to “conventional

wisdom”. We have shown classification problems where model-based classifiers outperform

several discriminative classifiers by a wide margin, and where kNN classifiers, even with

optimised k, perform poorly in comparison with the other classifiers studied.

At least some of these observations can be understood by reference to the detailed properties

of the particular classifiers employed. For example, we have seen that kNN classifiers are

best employed in cases where the “natural” metric is fairly constant throughout feature

space, and that the optimal value for k depends on the effective output noise, rather than

the input noise (which produces a different form of class overlap). We have also seen that

model-based classifiers are a viable alternative to discriminative classifiers when the amount

of training data is severely limited (relative to the dimensionality of the feature space),

and the parametric form of the assumed model is a sufficiently good fit for the actual data

distribution.

Similarly, we have shown that the classification performance of the MLP is influenced by

the inter-class and intra-class scale variation in a data set. We have also shown that the SVM
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classification performance is degraded by an increase in intra-class scale variation and that

the negative effect of the intra-class scale variation is amplified by an additional variation

in decision boundary complexity. Finally, we have shown that the DT classifier performs

very well (compared to the other classifiers) on data that contain noisy features which

are uncorrelated with more informative features. We have also seen that the DT classifier

performance is not influenced by any scale variations or distributions of data.

All these specific results show that data properties influence even non-parametric classifiers

in much the same way that the parametric fit can influence the performance of parametric

classifiers. However, in order to use such insights for practical purposes, we need measures

that allow us to predict how well a classifier will perform on an arbitrary classification task.

That task is taken up in the next chapter.
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CHAPTER THREE

DATA MEASURES

3.1 INTRODUCTION

In Chapter 2 we identified several important data properties that influence classification

performance; in this chapter we will develop data measures that are specifically tailored to

measure such data properties. Previous empirical studies have shown that data measures can

be employed to give valuable insight into data set properties [11, 29]; these studies have,

however, failed to explain how these properties influence classification performance. A true

understanding of this relationship is required to develop a successful meta-classification

system.

We will use the data properties that we identified in Chapter 2 to guide us in developing

data measures; these measures will allow us to define the relationship between data

characteristics and classifier performance. We group these measures into the following

categories: standard measures, data sparseness measures, statistical measures, information

theoretic measures, decision boundary measures, topology measures and noise measures.
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Each section in this chapter will discuss a group of measures in detail. We will conclude this

chapter with a summary of all these measures and their relationships to the data properties

that influence classification performance.

3.2 STANDARD MEASURES

We list three generic measures that serve to normalise many of our other measures in Table

3.1.

Table 3.1: Standard measures

Measure Data property
d Number of features
C Number of classes
N Number of samples

We have illustrated in Section 2.4.1 that the number of samples per dimension can have a

great influence on selecting model-based classifiers over discriminative classifiers, and in

general the number of dimensions plays a critical role in the selection of classifiers. The

number of classes in a data set influences the sparsity of data in a class; any classifier re-

quires samples from each class, either to model the class-conditional probability density

function (model-based) or to determine the decision boundaries between classes (discrimi-

native). Similarly, the number of samples per class influences classification performance to

a great extent, since it determines the amount of information available for the purposes of

training. We will discuss these three standard features in more detail in the next section.

3.3 DATA SPARSENESS

In this section we will investigate the relationship between the dimensionality of data and

the number of samples required to model the data accurately; this relationship is not trivial

and we will define measures that capture some of the relevant factors.

In Section 3.3.3 we will develop a single measure to quantify whether the number of samples

in a data set is sufficient to model the data accurately; this measure will measure how sparse
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data is by taking the dimensionality, number of classes and number of samples in a data set

into account.

3.3.1 RELATIONSHIP BETWEEN DIMENSIONALITY, DATA SET SIZE AND

NUMBER OF CLASSES

The amount of data required to obtain a given level of classification accuracy is typically

a monotonic function of the number of dimensions in the feature space, for a given data

family. In typical cases, this relationship between dimensionality (d) and the number of

samples (N) can be linear, quadratic or exponential, as we show below. Specific data

properties can be used to decide which one of these relationships is more accurate. The way

in which the number of classes (C) is factored into this relationship depends on the type of

relationship.

We will use theoretical properties of classifiers to describe each of the three types of rela-

tionship. We will use Gaussian data distributions to illustrate how the first two cases arise,

but it should be clear that these relationships hold for much wider families of distributions.

3.3.1.1 LINEAR RELATIONSHIP

If the variables in a data set are uncorrelated, the NB classifier will be a suitable candidate

for classification. The NB assumes that the features are independent and, for data with a

Gaussian distribution, requires a SD for each of these features; the NB also requires mean

values of the features and prior probabilities for each class. The number of parameters that

must thus be estimated is therefore 2dC + C. The relationship between d and the number of

samples required to model the data accurately for a NB classifier is thus a linear function of

the dimensionality.

To test if a linear relationship holds between d and N we will employ the same tests that

are required to test the important data properties of a NB classifier. These properties are

the normality of the data and the correlation between features; they are sufficient, but not

necessary tests for a linear relationship. We will discuss how to measure these two properties

in Section 3.4.
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3.3.1.2 QUADRATIC RELATIONSHIP

If correlations between variables exist and the covariances of all the classes are close to the

pooled covariance matrix then the normal-based linear classifier will be a suitable candidate

for classification.

The normal-based linear classifier assumes that all the class covariance matrices are similar,

d2 variables must thus be determined; C class means and C class priors are also required.

The total number of parameters that must thus be estimated is d2 + dC + C - thus, a quadratic

function of d.

To test if this quadratic relationship between d and N holds we will measure the homogene-

ity of class covariance matrices as well as the normality of the class data. We will discuss

these measures in Section 3.4. The requirements are again sufficient, but not necessary.

If the class covariance matrices are not (approximately) equal, and the data are normally

distributed, the standard Gaussian classifier will be a suitable candidate for classification. A

Gaussian classifier must determine the full covariance matrix of each class, C class means

and C class priors; the total number of parameters that must be estimated is thus Cd2 + dC +

C, which is once again a quadratic function of d (there is also a linear relationship between

the required number of samples and C).

To test if this type of quadratic relationship between N and d holds and if a linear relationship

between N and C holds, we will measure the normality of the class-conditional probability

density functions.

3.3.1.3 EXPONENTIAL RELATIONSHIP

If no assumptions concerning the distributions of the class-conditional probability density

functions can be made, it will not be safe to assume a linear or quadratic relationship

between N and d since an exponential relationship between N and d can arise [30]. It

is useful to think of a histogram approach to understand this relationship. If we want to

construct a histogram from data with at least one sample in each bin and with Dsteps discrete
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steps per feature, we will require at least Dd
steps samples. The number of samples required

to model the data accurately is in this case an exponential function of d.

In practice, pattern-recognition problems tend to have sufficient structure in the relationships

between features to ensure that exponential growth does not occur. However, the existence

of this upper bound must be kept in mind when analyzing data properties.

How do we decide which of the three relationships between N and d is most appropriate?

• A linear relationship can be tested by employing tests for multivariate normality and

correlation.

• Quadratic relationships can be tested by testing for multivariate normality and the

homogeneity of class covariance matrices.

• If the linear and quadratic relationships don’t hold, an exponential relationship be-

tween N and d is possible.

3.3.2 MINIMUM NUMBER OF SAMPLES

After we have determined the relationship between d and N we need to quantify whether

there are enough samples in the training set to model the structure of the data accurately.

For each of the four relationships mentioned above, we define a measure (Nmin), which sets

the scale for the minimum number of samples that is required to model the data accurately.

If the data are normally distributed and uncorrelated, a linear relationship between d and N

will exist and the minimum number of samples that are required will be in the order of

Nl(min) = 2dC + C. (3.1)

If the data are normally distributed, correlated and the classes have homogeneous covariance

matrices, then a quadratic relationship will exist between d and N and the minimum number

of samples that are required will be proportional to

Nq1(min) = d2 + dC + C. (3.2)
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If the data are normally distributed, correlated and the classes have non-homogeneous co-

variance matrices, then a quadratic relationship will exist between d and N and the minimum

number of samples that are required will be on the order of

Nq2(min) = Cd2 + dC + C. (3.3)

If the data are not normally distributed, an exponential relationship between d and N will be

assumed and the number of samples that are required may be as plentiful as

Ne(min) = Dd
steps, (3.4)

where Dsteps is the discrete number of steps per feature.

3.3.3 DATA SPARSENESS MEASURE

We will now quantify if the number of samples are sufficient to model the data accurately by

defining a ratio between the actual number of samples and the minimum number of samples

that are required. We define a measure of data sparsity as follows:

DSR =
N

Nmin

, (3.5)

where Nmin is the appropriate minimum number of samples measure and N the actual

number of samples in the data set.

We also define a measure to indicate if the number of samples are sufficient by inverting

equation (3.4) as follows:

DS =
d
√

N, (3.6)

where N is the number of samples in the data set and d the dimensionality of the data set.

3.4 STATISTICAL MEASURES

In this section we will propose statistical measures to measure the correlation between fea-

tures, the multivariate normality of class-conditional probability density functions and the

homogeneity of class covariance matrices.
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3.4.1 CORRELATION

Correlation is a very important property in classifiers such as the NB and DT classifiers. The

NB classifier assumes that all the variables in a data set are uncorrelated while the DT clas-

sifier only allows correlation between certain variables and assumes that other variables are

uncorrelated. We will use the following measure (proposed by [2]) to quantify the correlation

between features in a data set:

p =
1

T

C∑
i=1

d−1∑
j=1

d∑

k=j+1

|pjk|, (3.7)

where |pjk| is the absolute value of the Pearson correlation coefficient between features j

and k, T is the total number of correlation coefficients added together, C is the number of

classes and d is the number of features.

The measure p is the average absolute correlation coefficient value between all variable pairs

for all classes. This measure gives us an indication of the interdependence between all fea-

tures and is strictly zero if all the features are uncorrelated and equal to unity if all the

features are identical. Values of p close to unity indicate that features are highly correlated

and suggest that there is redundant information since the correlated variables share similar

information.

3.4.2 NORMALITY

Measures such as skewness and kurtosis are not robust in the sense that distributions exist

that are incorrectly identified as normal distributions. These measures also do not provide

any information on the rejection of a hypothesis of normality.

The BHEP test for multivariate normality is a robust test and has the following desirable

properties [31, 32]:

• Affine invariant

• Consistent against non-normal distributions

• Can be applied to data sets of any size and dimensionality.
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The BHEP test for multivariate normality (MVN) calculates a weighted L2-distance between

the true characteristic function of a normal distribution and the empirical characteristic func-

tion obtained from the data. The calculation of this measure is rather involved; we refer the

reader to [31] for a full discussion of this test. We will use this weighted distance measure

as a measure of normality and indicate it as MVN.

3.4.3 HOMOGENEITY OF COVARIANCE MATRICES

The geometric mean ratio between the pooled covariance matrix and the individual class

covariance matrices can be used to evaluate the homogeneity of class covariance matrices.

The individual class matrices can be tested for homogeneity by making use of Box’s M test

statistic [2]. The M test statistic is defined as:

M = γ

C∑
i=1

(ni − 1) log |S−1
i S|, (3.8)

where

γ = 1− 2d2 + 3d− 1

6 (d + 1) (C − 1)

[∑
i

1

ni − 1
− 1

n− C

]
, (3.9)

and ni is the number of samples in class i, S is the pooled covariance matrix and S−1
i is the

inverse of the class covariance matrix of class i, d and C are the same as defined in Section

3.2.

The M statistic can be used in the following expression (proposed by [2]) to give a measure

of homogeneity of the class covariance matrices:

SDR = exp

(
M

d
∑C

i=1 (ni − 1)

)
. (3.10)

The value of SDR is strictly equal to unity if all the class covariances are equal to the pooled

covariance matrix, the value of SDR increases as the class covariances become more non-

homogeneous.
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3.5 INFORMATION THEORETIC MEASURES

It is important to note that the statistical measures that were discussed in the previous section

are all based on the assumption that the features are continuous. Information measures are,

however, suited for continuous and categorical variables [2].

The mutual information between classes and features, M(C,X), can be used to determine

the intrinsic dimensionality of a data set. We will measure how many features are not

contributing significantly to classification by measuring the importance of features with

their values of M(C, X).

We calculate a cumulative distribution function of the mutual information between class

and features (ordered from most to least significant) to determine how many features are

required to represent 90% of the total mutual information between class and features. We

define the intrinsic dimensionality as the number of features required to represent 90% of

the mutual information between class and features. We denote this measure as ID and the

ratio between ID and the true dimensionality as IDR.

If IDR is low (close to 1/d) there are numerous redundant features, which may be caused

by highly correlated features; this suggests that an eigenvalue transformation should be con-

sidered. If IDR is close to unity most features contain a significant amount of classification

information and the classification problem is described well by the features.

3.6 DECISION BOUNDARY MEASURES

In this section we propose data measures that characterise the decision boundaries of classi-

fication problems.

3.6.1 LINEAR SEPARABILITY

We measure the linear separability of classification problems by employing a linear-

discriminative classifier described in [20].
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The linear discrimination function is a linear combination of the variables in a sample.

An optimal hyperplane is selected to discriminate between data of different classes in a

d-dimensional feature space. The linear discriminant rule maximises the distance between

classes in a least-square sense by optimising the weight and bias terms with a sum-of-squares

error function.

We use the 10-fold cross-validation error rate of this linear classifier as a measure of linear

separability; we denote this error rate as L1.

3.6.2 VARIATION IN DECISION BOUNDARY COMPLEXITY

We have shown in Chapter 2 that a variation in decision boundary complexity between

classes can influence classification performance; we will use the linear classifier error rates

between the different class combinations of a data set to define a measure of variation in

decision boundary complexity. We calculate the SD of the linear classifier error rates of all

the class combinations with the maximum-likelihood estimates given by:

µ̂e =
1

n

n∑
i=1

ei, (3.11)

σe =

√√√√ 1

n

n∑
i=1

(ei − µ̂)2, (3.12)

where ei is the linear classification error rate of the ith class combination, µ̂eis the mean

error rate of the n class combinations and σe is the SD of the error rates between all the class

combinations.

We define σe as a measure of variation in decision boundary complexity and denote this

measure as L2.

3.6.3 COMPLEXITY OF DECISION BOUNDARIES

We use an ε-neighbourhood pretopology approach proposed by [11, 33], to grow successive

adherence subsets from points in each class. Each adherence subset is grown to the highest
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order such that it includes only points of the same class.

A sample in each class is randomly selected and an Euclidean distance measure is used

to compute the nearest neighbours of these points. If the nearest neighbour of a selected

sample is of the same class it is included in the adherence subset; the next nearest neighbour

of this centre is then calculated again. The adherence subset grows by repeating this process

until a sample from a different class is encountered. The final result is that all samples are

grouped into hyper-spheres that contain samples of the same class. A good topological

description of a data set is given by the sizes and centres of all the retained adherence subsets.

The interleaving of retained adherence subsets of different classes gives us a good indication

of the decision boundary complexity; we will make us of a minimum-spanning tree (MST)

proposed by [11] to quantify the degree of interleaving between retained subsets. The MST

connects all the samples in a data set to their nearest neighbour regardless of class. The con-

nections can thus either be between samples of the same class or samples of different classes.

We can obtain a measure of interleaving between the retained subsets by employing the MST

on the centres of these subsets and then counting the number of connections between centres

of the same class and centres of different classes. The complexity of the decision boundaries

can be measured by the amount of inter-class centre connections; we consequently define the

following measure of decision boundary complexity:

DBC =
Ninter

Nretained

, (3.13)

where Ninter is the number of inter-class connections made by the MST on the retained

subset centres and Nretained is the total number of subsets retained by the ε-neighbourhoods

algorithm.

3.7 TOPOLOGY MEASURES

In this section we will focus on measures that attempt to explain the topology of a data set;

we will regard the retained subsets of the ε-neighbourhoods approach as hyper-spheres.
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3.7.1 NUMBER OF GROUPS

The number of retained adherence subsets and the size of these subsets give us a good in-

dication of whether data are clustered together in feature space or distributed in other more

obscure structures. If data are clustered together, fewer subsets will be retained and subsets

will have higher orders. We define the following measure to give us an indication of how

much data are clustered together:

T1 =
Nretained

N
, (3.14)

where Nretained is the number of retained adherence subsets and N is the number of samples

in the data set.

Measure T1 gives us an indication of how many groups per class occur in the data, since

groups of data will be clustered together and each group will belong to a different hyper-

sphere. We have shown in Section 2.4.5 that this is an important measure for the GMM

classifier. This measure can also give us an indication of central tendency in data since the

size of adherence subsets are larger for data with central tendency.

3.7.2 NUMBER OF SAMPLES PER GROUP

The number of samples in the retained adherence subsets gives us an indication of what the

sizes of groups in the data are. The average size of these subsets can be seen as a measure of

the average number of samples per group; we propose the following measure to give us an

indication of the number of samples per group in a data set:

T 2 =
1

Nretained

Nretained∑
i=1

Si, (3.15)

where Nretained is the number of retained adherence subsets and Si is the number of samples

in adherence subset i.
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3.7.3 VARIATION IN FEATURE SD

We have shown in Chapter 2 that the variation in SD of features in a class can give model-

based classifiers an advantage over discriminative classifiers if the distribution of the data

fits the model-based classifier assumptions. We will calculate the variation of feature SDs in

a class by calculating the SD of the feature SDs for each class; we use the equations (3.11)

and (3.12) to calculate these SDs. We denote this SD of feature SDs as measure T3.

3.7.4 SCALE VARIATION

We have shown in Chapter 2 that scale variation influences the classification performances of

the MLP and SVM classifiers significantly. The scale of data in various parts of the feature

space of a data set can be measured by the density of the retained hyper-spheres obtained by

the pretopology ε-neighbourhoods approach. We define the density of a retained subset as

follows:

ρ =
Nsphere

Vsphere

, (3.16)

where Nsphere is the number of samples in a retained hyper-sphere and Vsphere is the volume

of the retained hyper-sphere. The radius of the hyper-sphere is the Euclidean distance from

the sphere centre to the furthest sample in the sphere.

If samples are far apart in feature space the hyper-spheres that encapsulate these samples

will have a large volume and the densities of these spheres will be low. If samples are

close together in feature-space the hyper-spheres containing these samples will have smaller

volumes and the density of these spheres will be higher. The variation of the densities

of these hyper-spheres can thus give us an indication of the scale differences in feature space.

We calculate the SD of the sphere densities of a data set to give us an indication of the

variation in sphere density in a data set and consequently a measure of variation in scale

through the feature space. The SD of sphere densities will give us a measure of both intra-

class and inter-class scale variation. We will denote the SD of sphere densities as measure

T4.
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3.8 NOISE MEASURES

In Chapter 2 we identified and investigated three types of noise. We defined the overlap of

class samples as a form of input noise, we defined incorrectly labelled samples as a form of

output noise and we mentioned that the ten-dimensional data sets in experiment 4 contained

a large proportion of features that didn’t contribute to classification; we will call this phe-

nomenon feature noise. In this section we will propose measures to measure each of these

types of noise.

3.8.1 INPUT NOISE

To determine input noise we will determine the amount of overlap between features of dif-

ferent classes; we will follow an approach suggested by [11] with two slight variations - we

will rotate the feature axes with an eigenvalue transformation and also consider the number

of dimensions in which overlap occurs. The reason for the eigenvalue transformation is to

decorrelate the data as much as possible since correlation can create the false impression

that overlap between features exists (if only one feature is considered at a time).

The maximum and minimum values of a feature in each class are used to define boundaries

for a feature; if the feature value of a sample lies in the boundaries of another class’s feature

values, then we will assume that this sample contributes to overlap in this specific feature. We

will count for each sample in how many dimensions it overlaps and then normalise the total

overlap with Nd. We will denote this measure of input noise as measure N1. The value of N1

will be unity if all the samples overlap in all dimensions with samples of different classes,

conversely the value of N1 will be zero if none of the features of any sample overlaps with

feature values of samples from different classes.

3.8.2 OUTPUT NOISE

To determine output noise we will use the nearest neighbour classification error rate.

Incorrectly labelled samples will typically lie closer to samples from different groups than

samples of their own group, this proximity of points in different classes will thus influence

the error rate of the nearest neighbour classifier. We will use 10-fold cross-validation to find
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an approximation to the true error rate of the nearest-neighbour classifier.

The nearest neighbour error rate will also give us an indication of the amount of input noise

present in a data set, since samples in regions that are highly overlapped will also be mis-

classified more often. The nearest neighbour error rate can thus be seen as a measure of the

sum of input and output noise present in the data. We will denote the nearest neighbour error

rate as N2.

3.8.3 FEATURE NOISE

The intrinsic dimensionality measure that we proposed in Section 3.5 can be used to measure

the proportion of features that don’t contribute to classification. We propose the following

measure as a measure of feature noise:

ID2 =
d− ID

d
, (3.17)

where d is the dimensionality of the data and ID is the intrinsic dimensionality measure.

3.9 SUMMARY OF MEASURES

Table 3.2 summarises the relationship between data measures proposed in this chapter and

the properties of data they measure.
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Table 3.2: Summary of proposed data measures and corresponding data properties

Data properties Measures

Standard measures
Dimensionality d
Number of samples N
Number of classes C
Data sparseness measures
Data sparseness ratio DSR
Data sparseness DS
Statistical measures
Correlation of features p
Multivariate normality MVN
Homogeneity of class covariances SDR
Information theoretic measures
Intrinsic dimensionality ID
Intrinsic dimensionality ratio IDR
Decision boundary measures
Linear separability L1
Variation in decision boundary complexity L2
Decision boundary complexity DBC
Topology measures
Normalised measure of groups per class T1
Number of samples per group T2
Variation in feature SD T3
Variation in scale T4
Noise measures
Input noise N1
Output noise N2
Feature noise ID2

Table 3.3 summarises the relationship between data measures proposed in this chapter and

data properties investigated in Chapter 2. The data properties and measures are grouped

according to the experiments in Sections 2.3.1 - 2.3.5.
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Table 3.3: Data properties and measures applicable to classification experiments

Data properties Measures

Experiment1
Multivariate normality MVN
Correlation of features p
Variation in feature SD T3
Data sparseness ratio DS, DSR
Experiment 2
Input noise N1
Output noise N2
Experiment 3
Variation in scale T4
Experiment 4
Variation in scale T4
Variation in decision boundary complexity L2
Correlation of features p
Intrinsic dimensionality ID, IDR, ID2
Experiment 5
Groups per class T1
Samples per group T2
Interleaving of groups of different classes DBC
Variation in feature SD T3

3.10 CONCLUSION

We identified properties of data that influence classifier performance in Chapter 2 and in this

chapter we developed measures to measure each of these properties from data. It is clear

that measuring and interpreting these properties is not trivial and in the next chapter we will

evaluate the contribution of each of the measures proposed in this chapter to understanding

classifier performance.
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CHAPTER FOUR

ANALYSIS OF DATA MEASURES

4.1 INTRODUCTION

In Chapter 3 we have developed several measures to measure data properties that influence

classifier performance. In this chapter we will use artificial data from the classification exper-

iments in Chapter 2 and additional artificial data to evaluate the efficacy of the data measures

proposed in the previous chapter.

4.2 EXPERIMENTAL DESIGN

In this section we will discuss the design of experiments that will be performed to evaluate

the efficacy of the data measures. We will refer to the experiments in Chapter 2 as

classification experiments and to the experiments in this chapter as measures experiments.

We will use the methods discussed in Section 2.2.1 to generate additional artificial data sets;

the important properties of these artificial data sets are: (1) the distribution of the data, (2)

the correlation between variables, (3) the relative sizes of the SD for different variables, (4)

the degree of SD for each variable (input noise) and (5) the degree of output noise.
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We will distinguish between two types of feature SDs: constant feature SD will refer to the

case where the SDs of features in a class are similar, and varying SD will refer to the case

where the SDs of features in a class are all significantly different. We will generate data sets

with Gaussian, uniform and Gaussian mixture distributions.

4.2.1 MEASURES EXPERIMENT 1

We will evaluate the efficacy of the correlation (p), multivariate normality (MV N ) and vari-

ation in feature SD (T3) measures in this experiment.

4.2.1.1 CORRELATION AND NORMALITY

We generate additional artificial data sets with uniform, Gaussian and Gaussian mixture

model class-conditional probability density functions to investigate the correlation and mul-

tivariate normality measures. The attributes of these artificial sets of data are summarised in

Table 4.1.

Table 4.1: Attributes of artificial data sets 1-4

Artificial set Distribution Correlation SD type SDs
1 Uniform Uncorrelated C 1-25
2 Uniform Correlated C 1-25
3 GMM Uncorrelated C 0.1-0.5
4 GMM Correlated C 0.1-0.5

We will compare the measurement values of p and MVN for these artificial data sets and the

data sets used in classification experiment 1.

4.2.1.2 VARIATION IN FEATURE SD

We investigate the variation in feature SD measure by comparing the values of measurement

T3 for: (1) the data used in classification experiment 1 (with varying feature SD), (2) uni-

formly distributed data with constant feature SD values and (3) Gaussian data with constant

feature SD values. These artificial sets are summarised in Table 4.2.
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Table 4.2: Attributes of artificial data sets 5-6

Artificial set Distribution Correlation SD type SDs
5 Gaussian Uncorrelated C 1-25
6 Gaussian Correlated C 1-25

4.2.2 MEASURES EXPERIMENT 2

We will investigate the input noise (N2), variation in feature SD (T3) and output noise (N1)

data measures in this experiment.

4.2.2.1 INPUT NOISE

We investigate the relationship between the measure of input noise and feature SD by using

artificial data sets used in classification experiment 2. We vary the feature SD values from

1-25.

4.2.2.2 OUTPUT NOISE

We illustrate the effect of output noise on the measure of output noise by using the data used

in classification experiment 2 with varying degrees of output noise. We vary the percentage

of output noise from 5-25%.

4.2.3 MEASURES EXPERIMENT 3

We will investigate the measures of linear separability (L1) and inter-class scale variation

(T4) in this experiment.

4.2.3.1 LINEAR SEPARABILITY

We investigate the effectiveness of the linear separability measure by using the data sets

in artificial set 5; we vary the degree of SD to probe the effect of overlap on the linear

separability measure.
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4.2.3.2 INTER-CLASS SCALE VARIATION

We analyse the measure of inter-class scale variation by making use of artificial set 5 and the

artificial data used in classification experiment 3.

4.2.4 MEASURES EXPERIMENT 4

We will investigate the measures of variation in decision boundary complexity (L2), inter-

class scale variation (T4), intra-class scale variation (T4) and feature noise (ID2) in this

experiment.

4.2.4.1 VARIATION IN DECISION BOUNDARY COMPLEXITY AND INTER-CLASS

SCALE VARIATION

To analyse the efficacy of the variation in decision boundary complexity measure and inter-

class scale variation measure we will use artificial sets of data that were used in classification

experiment 4. We will compare these measures for data with large-scale variations (artificial

set 4.1) and large variation in decision boundary complexity (artificial set 4.4).

4.2.4.2 INTRA-CLASS SCALE VARIATION

To evaluate the efficacy of the variation in scale measure on data with intra-class scale varia-

tion we compare artificial set 4.4 (with only two classes) to artificial set 4.5. Artificial set 4.4

has no variation in scale and high variation in decision boundary complexity, while artificial

set 4.5 has high variation in scale and almost no variation in decision boundary complexity.

4.2.4.3 FEATURE NOISE

We evaluate the efficacy of the measure of feature noise by using artificial sets 4.1, 4.4 and

4.5. The dimensionalities of these artificial sets will be increased from two to ten dimen-

sions by adding additional features that don’t contribute to classification performance. We

compute the values of measure ID2 for dimensionalities from two to ten.
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4.2.5 MEASURES EXPERIMENT 5

We will investigate the groups per class measure (T1) in this experiment. We will also show

how this measure can be used to measure the interleaving of groups in a class.

4.2.5.1 GROUPS PER CLASS

We investigate the groups per class measure by making use of the GMM artificial data sets

that were used in classification experiment 5; these data sets have 10, 50 and 100 groups per

class.

4.2.5.2 INTERLEAVING OF GROUPS

We evaluate the efficacy of the measure (T1) to measure how much the groups of data (in

this case Gaussian mixtures) are interleaved in a data set. We make use of the data used in

classification experiment 5 as well as two additional artificial sets of data. These additional

artificial sets are summarised in Table 4.3.

Table 4.3: Attributes of artificial data sets 7-8

Artificial set Distribution Correlation SD type SDs
7 GMM Uncorrelated C 1-10
8 GMM Correlated C 1-10

The GMM data sets that were used in classification experiment 5 are identical to these artifi-

cial sets of data – except for the selection of the group means. The group means of the data

sets in classification experiment 5 were chosen randomly, whereas the groups in a class are

selected close to the class mean for artificial sets 7 and 8 – the groups of data in these data

sets are thus not as dispersed as the data sets that were used in classification experiment 5.

4.3 RESULTS

The results of the experiments that were designed in Section 4.2 are summarised in this

section.
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4.3.1 MEASURES EXPERIMENT 1

4.3.1.1 CORRELATION AND NORMALITY

The data measures obtained from the experiments in Section 4.2.1.1 are given in Figures 4.1

and 4.2.
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Figure 4.1: Data measures of uniform and Gaussian data
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Figure 4.2: Data measures of Gaussian and GMM data

Figure 4.1 shows that the uncorrelated Gaussian distributed data used in classification

experiment 1 (Exp1-1) and the similar correlated data (Exp1-2) are separated by the

correlation measure p. It is interesting to observe that the p measure of the uncorre-
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lated uniform data (ASet1) and correlated uniform data (ASet2) are close together –

the correlated data sets have slightly higher p values. This might suggest that correlated

and uncorrelated uniform data have very similar properties, when assessed with this measure.

We observe that the Gaussian distributed data sets (Exp1-1 and Exp1-2) are separated from

the uniformly distributed data sets (ASet1 and ASet2) by the MV N measure; it is, however,

interesting to note that the MV N measures of the uniform and Gaussian data are very close.

This is reasonable given that Gaussian and uniformly distributed data have very similar

properties such as short tails and no extreme outliers; this might be an important property

for model-based classifiers that assume Gaussian distributed data.

Figure 4.2 shows that the correlations of the GMM distributed data sets (ASet3 and ASet4)

are influenced by the SDs of the features in each group (the markers to the right have

lower SDs than the markers to the left); this suggests that the correlation measure p is not

invariant to SD for GMM distributed data. We also see that the p measures of the corre-

lated and uncorrelated data GMM data sets are not clearly separated; this suggests that the

correlation measure p is not invariant against distribution type - as we have seen in Figure 4.1.

We see that the MV N measures of the GMM data are in some instances very far from

normality and in other instances very close to normality; mixture data with large standard

deviations can be close to the normally distributed data by these measures. This phenomenon

is encountered when the standard deviations of mixtures are large enough so that they overlap

significantly; the shape of the distributions converges to a single mixture - the distribution

is then similar to a Gaussian distribution. If the SDs of the mixtures are small, the mixture

structure of the data is more prominent; this explains why the MV N measure moves away

from normality as the SDs of the mixtures decrease.

4.3.1.2 VARIATION IN FEATURE SD

An important property of the artificial data used in classification experiment 1 is the

variation in feature SDs of the Gaussian distributed classes. The SD values of the features

were randomly chosen between zero and the specified SD value, consequently the data sets
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have a large variation in feature SD.

This property is important since it gives the Gaussian and NB classifiers an advantage over

other classifiers. Classification becomes more difficult for other classifiers (the decision

boundaries become more complex and the data are sparse) while the classification difficulty

remains the same for the Gaussian and NB classifiers since they can estimate the exact class

conditional probability density functions (the properties of the data match their assumptions)

with a small amount of data.

Figure 4.3 shows the results of the variation in feature SD measure (T3) for data sets with

varying degrees of feature SD variation.
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Figure 4.3: Data measures of variation in feature SD

We see that the values for T3 are small for correlated and uncorrelated uniformly distributed

data (ASet1 and ASet2); this implies small variation in feature SDs. The artificial data

sets ASet1 and ASet2 were generated with constant feature SD values and we see that the

values of measure T3 are small for these data sets. This implies that measure T3 is able to

measures the variation in feature SD accurately.

The interesting result is that of the correlated GMM data (ASet6), since a stretch matrix

with equal values on the diagonal components was used to introduce SD into the features;
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we thus expect no variation in feature SD. We did however multiply the stretched data with

a rotation matrix (generated by the Gram Schmidt procedure) to introduce correlation. If we

calculate the eigenvalues of the A matrix after rotation we will find that the eigenvalues of

the resulting matrix generally differ from one another.

It seems as if the eigenvalues of the correlated Gaussian data covariance matrix are still

very similar (ASet2) after rotation but the addition of mixtures causes the eigenvalues to

vary more; the result is a variation in feature SD, which results in the high T3 measurement

values for the data in ASet6. We see that the values of T3 are small for the uncorrelated

GMM data (MData8), which is as expected, since all the feature SD values are equal.

4.3.2 MEASURES EXPERIMENT 2

4.3.2.1 INPUT NOISE

The results of the experiments explained in Section 4.2.2.1 are given in Figure 4.4. Figure

4.4 illustrates the relationship between the input noise measure (N2) and the SD values of

features in a class.
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Figure 4.4: Input noise data measures

We see that there is a monotonic relationship between the SD of features and the measure

N2 for SDs 1-9; as the SD becomes larger than 9 almost all of the samples are marked as

overlapped for the ten-dimensional data (thus a N2 value close to unity). We can safely say
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that the value of N2 increases monotonically with SD until it approaches the limit where all

of the samples overlap in all feature dimensions.

We also note that the data sets with more samples per class have higher values for N2; this

may be due to the fixed size of the feature space. The feature spaces for the 20 samples per

class and 100 samples per class data are exactly the same size (all features are in the region

[-1, 1]); if the number of samples increases and the volume of the feature space remains

constant, then more overlap of samples will occur.

We finally observe that the N2 values for the ten-dimensional data are influenced less by

the number of samples per class than the two-dimensional data; we might attribute this to

the fact that the volume of a ten-dimensional feature space is much larger than the area of

a two-dimensional feature space. The number of samples per class thus has a much bigger

influence on the overlap of the two-dimensional data, since the area of the feature space is

significantly smaller.

4.3.2.2 OUTPUT NOISE

Figure 4.5 illustrates the relationship between the measure of output noise (N1) and the

percentage of incorrectly labelled samples in a data set (output noise).
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Figure 4.5: Output noise data measures
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We see that measure N1 increases monotonically as output noise increases; the error rate of

the nearest neighbour classifier thus increases in proportion to the number of switched class

labels.

An interesting observation is that the error rates of the two-dimensional data sets are sig-

nificantly more than the ten-dimensional data. Figure 4.5 shows that the overlap between

features is significantly more for lower dimensional data; this increased overlap in lower

dimensions (due to a smaller feature space) causes the error rates of the two-dimensional

data to be higher than the error rates of the ten-dimensional data. The measure N1 is thus

a measure of the total amount of noise, since it includes both the input noise and the output

noise of a data set.

4.3.3 MEASURES EXPERIMENT 3

4.3.3.1 LINEAR SEPARABILITY

Figure 4.6 illustrates the relationship between the linear separability measure (L1) and the

SD of features in a data set.
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Figure 4.6: Linear classifier error rate

We see that the linear classifier error rate (L1) increases as the SDs of the data sets increase

due to an increase in class overlap. We also note that the linear classifier error rates are not

influenced significantly by the number of samples per class; the dimensionality, however,
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influences the linear classification error rate to a great extent for SDs between 1 and 4. The

linear classification error rate converges for all samples per class and all dimensionalities as

the SD increases to 25. This convergence is caused by the class overlap that starts to permeate

through the entire feature space as the SD increases; the noise caused by this overlap then

tends to be more like a form of output noise. The linear classifier error rate successfully

measures an increase in class overlap for SDs 1-4 - which is the region where class overlap is

still at the decision boundaries. These results show that this measure can effectively measure

input noise.

4.3.3.2 INTER-CLASS SCALE VARIATION

Figure 4.7 illustrates the values of the linear separability measure (L1) and the inter-class

scale variation measure (T4) on the artificial data sets used in classification experiment 3

and ASet5.
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Figure 4.7: Scale variation and linear separability data measures

Measure T4 indicates that the data sets that were used in classification experiment 3 have

high variations in scale; this measure is correct since the data sets were designed with

classes that have large variations in feature SDs. Measure T4 has low values for the data

sets used in ASet5, which is appropriate since these data sets were generated with equal SDs

for all features.
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We observe that measure L1 has low values for the data sets that were used in classification

experiment 3; measure L1 thus suggests that the data sets are quite separable linearly – this

is as expected since the classes were generated with a small degree of overlap (see Figure

2.9). Measure L1 has low values for the data sets in artificial set 5; this is appropriate since

the data are two-dimensional, which leads to a high degree of overlap between the various

classes in this case.

4.3.4 MEASURES EXPERIMENT 4

4.3.4.1 VARIATION IN DECISION BOUNDARY COMPLEXITY AND INTER-CLASS

SCALE VARIATION

Figure 4.8 shows the measures of scale variation (T4) and variation in decision boundary

complexity (L2) for the data sets that were employed in classification experiment 4.
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Figure 4.8: Scale variation and variation in decision boundary complexity data measures

Measure T4 indicates that all the data sets in artificial set 4.1 have relatively high variations

in scale while all the data sets in artificial set 4.4 have relatively low variations in scale; this

is as expected, since artificial set 4.1 has classes with varying degrees of SDs while artificial

set 4.4 has classes with equal feature SDs.

Measure L2 indicates that the data sets in artificial set 4.1 all have relatively low variations in

decision boundary complexities while the data sets in artificial set 4.4 all have relatively high
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variations in decision boundary complexity. The data sets in artificial set 4.1 were generated

in such a way that all the classes had the same degree of overlap; this is reflected in measure

L2. The data sets in artificial set 4.4 were all generated with varying degrees of overlap

between the various classes; measure L2 measures this relationship appropriately.

4.3.4.2 INTRA-CLASS SCALE VARIATION

Figure 4.9 shows the measures of scale variation (T4) and variation in decision boundary

complexity (L2) for artificial sets 4.4 and 4.5. Note that a slight modification has been made

to artificial set 4.4 – the classes were relabelled so that the data set contains only two classes.
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Figure 4.9: Intra-class scale variation measures

Measure L2 has values of zero for all the data sets since all the data sets used contain only

two classes; there is thus only one decision boundary. We see that measure T4 predicts

higher variations in scale for all the data sets in artificial set 4.5; this is as expected, since the

data sets in artificial set 4.4 have Gaussian distributed classes with equal covariance matrices

while the data in artificial set 4.5 have Gaussian distributed classes with varying feature SDs.

4.3.4.3 INTRINSIC DIMENSIONALITY

Figure 4.10 shows the measurement values of feature noise ID2 for varying dimensionali-

ties.
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Figure 4.10: Feature noise data measures

We see that the predicted feature noise (ID2) increases monotonically as the dimensionality

of the data increases. All the data sets were generated with two features that contribute to

classification; the additional features were all noisy ones. Figure 4.10 thus shows that the

feature noise is correctly measured by measure ID2.

4.3.5 MEASURES EXPERIMENT 5

4.3.5.1 GROUPS PER CLASS

Figure 4.11 shows the measurement values of the number of groups per class measure (T1)

for varying feature SDs. We see that the data sets with the highest T1 values are the artificial

data sets with 100 groups per class; these data sets were used in classification experiment 5.

We see that the data sets with the lowest T1 values are the artificial sets with 10 groups per

class. Figure 4.11 thus shows that the measure T1 is an effective measure of the number of

groups per class. We also note that the measure T1 decreases as the SD increases; this can be

attributed to an increase in overlap between groups - this overlap causes the groups of data

to fuse together and form fewer but larger groups of data.
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Figure 4.11: Groups per class data measures

4.3.5.2 INTERLEAVING OF GROUPS

Figure 4.12 shows the measurement values of the measurement T1 on two sets of data that

were used in classification experiment 5 and two additional artificial sets that are summarised

in Section 4.2.5.2.
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Figure 4.12: Relationship between group interleaving and groups per class measure

We see that the data sets that were employed in classification experiment 5 have higher values

for T1; these data sets have random group means while the data sets from ASet7 and ASet8
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have group means near the class means. The groups in the data sets from experiment 5 are

thus more dispersed, which causes the mixture structure of the data to be more prominent.

This shows that measure T1 also takes the degree to which groups in a class are interleaved

into account; this is an important characteristic for the GMM classifier.

4.4 CONCLUSION

We have used artificial data from previous experiments (with very specific properties) as

well as additional artificial data to probe the effectiveness of the data measures that were

proposed in Chapter 3. We have shown that these data measures can successfully measure

important data properties that were identified in Chapter 2. However, we have also seen that

some of these measures are sensitive to factors that are incidental to their main focus – for

example, the effect of dimensionality on feature overlap (N1).

We will use these measures to construct a meta-classification system in the next chapter, to

see whether a combination of features can be constructed that predicts classifier performance

in the face of such variability.
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CHAPTER FIVE

META-CLASSIFICATION

5.1 INTRODUCTION

In this chapter we will construct a meta-classifier to predict the classification performances

of ten real-world data sets. We will construct a meta-training data set by utilising artificial

data sets with various data properties; we will then employ a nearest-neighbour classifier

to find the most similar artificial data set to the real-world data sets. The reason for this

methodology is twofold: (1) to predict the classification performances of real-world data

sets by using the error rates of artificial data sets with similar data properties, and (2) to

deduce information regarding the structures and properties of real-world data sets.

We will explain the construction of the meta-classification system in Section 5.2, and we will

evaluate the efficacy of the meta-classifier in Section 5.3. We will explain the predictions of

the meta-classifier in Section 5.4 by making use of data measures and we will conclude on

our findings in Section 5.5.

5.2 CONSTRUCTION OF META-CLASSIFIER

The flow diagram in Figure 1 illustrates the process used to predict and evaluate the classifi-

cation performances of real-world data sets.
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Figure 5.1: Flow diagram of meta-classification system

The data measures discussed in Chapter 3 are employed on a real-world data set and

artificial data sets are generated with exactly the same dimensionality, number of samples

and number of classes; these artificial data sets contain various data properties that were

identified in Chapter 2. Data measures are employed on these artificial data sets and the

10-fold cross validation classification error rates of the artificial data sets are determined.

A weighted Euclidean distance is used to compare the data measures of the real-world

data set to the data measures of the artificial data sets. The artificial data set closest to the

real-world data set (in terms of Euclidean distance) is considered as the data set with the

most similar data properties; the classification error rates of this artificial data set are used

as the predicted error rates of the real-world data set.

The classification error rates of the real-world data set are estimated by performing 10-fold

cross-validation; these error rates are used to evaluate the efficacy of the meta-classifier by

comparing them to the predicted classification error rates.

We give a detailed discussion of the components in the meta-classifier in Sections 5.2.1 -

5.2.5.
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5.2.1 DATA MEASURES

We will employ all of the data measures proposed in Chapter 3 (see Table 3.2) on ten real-

world data sets and on artificial data sets that will be discussed next. These measures will

be used to make predictions regarding the classification performance of the real-world data

sets.

5.2.2 META-TRAINING DATA

We will construct a meta-training set by employing the above-mentioned data measures

on the artificial sets described in sections 2.3 and 4.2. Versions of these artificial sets are

generated for each real-world data set with exactly the same dimensionality (d), number

of classes (C) and number of samples (N ); by doing this we effectively ensure that all the

artificial data measures are normalised in terms of these three parameters, which were seen

to be potentially problematic in Chapter 4.

We create a meta-training set by using the measurement values of each artificial data set

as input and the 10-fold cross-validation classification results as output. We will use this

meta-training set to predict the classification error rates of the real-world data sets.

5.2.3 META-TESTING DATA

The meta classifier will be tested by employing the data measures on the ten real-world data

sets. Each of the real-world data sets will produce an observation that can be classified

by the meta-classifier. The 10-fold cross-validation error rates of the classifiers will be the

desired outputs of these observations, which will be compared to the classification error rates

predicted by the meta-classifier; these predictions will be discussed in more detail in section

5.3.

5.2.4 PREDICTIONS

Error rates will be predicted for each real-world data set by using a nearest-neighbour ap-

proach. The Euclidean distances between the real-world data set measures and each of the

artificial data set measures are calculated in order to determine which artificial data set is
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most similar (in terms of these measured data properties) to the real-world data set. The

classification error rates of the most similar artificial data set will be used as the predicted

classification error rates of the real-world data set.

5.2.5 META-CLASSIFIER PERFORMANCE MEASURE

We will evaluate the performance of the meta-classifier by calculating the Pearson correlation

coefficient between the true error rates and predicted error rates of each real-world data set;

these results will be discussed in the next section.

5.3 EVALUATION OF META-CLASSIFIER PERFORMANCE

The real-world data sets that will be used to evaluate the efficacy of the meta-classifier are

summarised in Table 5.1. (We denote the number of numerical features as d(Num) and the

number of categorical features as d(Cat).)

Table 5.1: Summary of real-world data sets

Data set d(Num) d(Cat) d N C
Iris 4 - 4 150 4

Balance-scale 4 - 4 625 3
Diabetes 4 4 8 768 2

Tic-tac-toe - 9 9 958 2
Heart 7 6 13 270 2

Australian 6 9 15 690 2
Vehicle 18 - 18 846 4
German 7 13 20 1000 2

Ionosphere 34 - 34 351 2
Sonar 60 - 60 208 2

These data sets were obtained from the UCI Machine Learning repository [17] - the Diabetes,

Heart, Australian, Vehicle and German data sets were studied in the Statlog project [2].

5.3.1 REAL-WORLD CLASSIFICATION RESULTS

The classification results of the ten real-world data sets, when classified with several of the

classifiers described previously, are given in Table 5.2.
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Table 5.2: Classification error rates of real-world data sets

Data set NB Gauss GMMd GMMf kNN DT SVM MLP
Iris 0.0467 0.0200 0.0400 0.0333 0.0333 0.0600 0.0267 0.0400

Balance-s. 0.0960 0.0983 0.2720 0.0832 0.0976 0.2176 0.0000 0.0512
Diabetes 0.2422 0.2579 0.2566 0.2695 0.2500 0.2630 0.2305 0.2227

Tic-tac-toe 0.2265 0.3011 25.00 0.2140 0.0313 0.0438 0.0939 0.0167
Heart 0.1667 0.1704 0.1519 0.1814 0.1926 0.2037 0.1519 0.1667

Australian 0.2290 0.2103 0.1942 0.2029 0.1478 0.1507 0.1464 0.1217
Vehicle 0.5627 0.1451 0.5638 0.1525 0.2943 0.2731 0.1478 0.1690
German 0.2510 0.2890 0.3200 0.3220 0.2690 0.2600 0.2120 0.2490

Ionosphere 0.1738 0.0765 0.3589 0.3049 0.1311 0.1168 0.0884 0.0855
Sonar 0.3173 0.3500 0.1680 0.3269 0.1490 0.2933 0.2260 0.1490

We will compare these error rates to the predicted error rates to evaluate the performance of

the meta-classifier.

5.3.2 WEIGHTED DATA MEASURES

We found that certain data measures are more informative when characterising data sets;

these measures should thus be weighted more heavily when calculating the Euclidean

distances between measurement observations.

We obtained measurement weights empirically by employing a hill climbing procedure with

search directions parallel to the coordinate axes. All weights were initialised with values

of one and the optimal weights were determined by iterating the weight of each measure

from 1-10 while keeping the other measurement weights constant. The optimal weight of a

measure was determined by evaluating the average correlation coefficient between the true

and predicted classification error rates of the ten real-world data sets when using the specific

weight value in the Euclidean distance measure. After an optimal weight was found for a

measure, the optimal weight was fixed and used to determine the optimal weights of the

remaining measures.

The most informative measures and their corresponding weights that were obtained by using

this procedure are given in Table 5.3.
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Table 5.3: Most informative data measures

Measure Weight
p 10

N1 4
T3 4

MV N 4
L1 2
T4 2
T2 2
ID2 2

These measurements are not necessarily more efficient than the other proposed measures.

They are more informative since the data properties that they measure influence classifier

behaviour more than the other measured data properties; these weights thus give us insight

into which data properties are more important in terms of classification.

5.3.3 NORMALISATION OF DATA MEASURES

We generate artificial data sets for each real-world data set with exactly the same dimen-

sionality, number of classes and number of samples to construct a meta-training set for each

real-world data set; this procedure ensures that all the data measures are normalised in terms

of dimensionality, number of classes and data set size. All of the data measures are also

designed to give values that don’t exceed unity to a great extent. These normalisation proce-

dures enable us to compare data measures of data sets with an Euclidean distance measure

without bias.

5.3.4 META-CLASSIFIER PREDICTIONS

The artificial data sets with the most similar measurement values (in terms of weighted

Euclidean distance) to each real-world data set are given in Table 5.4; these artificial sets

were used to make classification predictions for the real-world data sets. We use the same

names for the artificial sets in section 4.2 and we denote the artificial sets in Section 2.3 with

the sub-experiment they belong to; we also denote groups per class with gpc.
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An interesting observation is that seven of the ten data sets are judged to be closest to GMM

distributed data and the other three data sets are closest to Gaussian distributions. This sug-

gests that real-world data may have a tendency to be distributed in mixtures of Gaussians or

in Gaussian distributed classes when processed with realistic feature-extraction algorithms.

None of the nearest data sets contained uniform or Cauchy distributed data.

Table 5.4: Nearest data sets

Data set Artificial Set
Iris 6

Balance-scale Exp5 (100 gpc)
Diabetes Exp5 (100 gpc)

Tic-Tac-Toe Exp4-4 (2C)
Heart Exp5 (100 gpc)

Australian Exp5 (50 gpc)
Vehicle 6
German Exp5 (10 gpc)

Ionosphere Exp4-4 (6C)
Sonar Exp5 (10 gpc)

The data properties of each of these artificial sets are summarised in Table 5.5. We denote

variation in feature SD with V and no variation in feature SD with C.

Table 5.5: Data properties of nearest artificial data sets

Artificial set Distribution Correlation SD type SD
6 Gaussian Correlated C 1

Exp5 (100 gpc) GMM Uncorrelated C 1
Exp5 (100 gpc) GMM Uncorrelated V 5

Exp4-4 (2C) GMM Uncorrelated V 0.3
Exp5 (100 gpc) GMM Uncorrelated V 5
Exp5 (50 gpc) GMM Uncorrelated V 0.8

6 Gaussian Correlated V 1
Exp5 (10 gpc) GMM Uncorrelated C 2
Exp4-4 (6C) Gaussian Uncorrelated V 0.3

Exp5 (10 gpc) GMM Uncorrelated C 0.25

We see that nine of the ten nearest data sets in this study have SDs equal to or smaller than

unity. Real-world data may thus tend to have standard deviations typically smaller or equal

to unity, which implies that the conditioning of the effective covariance matrices is fairly
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regular.

The predicted error rates that were obtained by using the error rates of these nearest artificial

data sets are given in Table 5.6.

Table 5.6: Predicted error rates of real-world data sets

Data set NB Gauss GMMd GMMf kNN DT SVM MLP
Iris 0.1867 0.0400 0.1533 0.0400 0.1133 0.1667 0.0667 0.0667

Balance-s. 0.6333 0.6400 0.6083 0.6250 0.6117 0.6700 0.6250 0.6117
Diabetes 0.4838 0.5275 0.4925 0.5175 0.4975 0.5050 0.4788 0.4888

Tic-tac-toe 0.3052 0.3156 0.1885 0.1865 0.2063 0.1323 0.2531 0.1479
Heart 0.4500 0.4150 0.4100 0.3850 0.4550 0.5100 0.4350 0.4150

Australian 0.3786 0.4757 0.3271 0.2443 0.1414 0.3757 0.2671 0.3086
Vehicle 0.0248 0.0000 0.0248 0.0000 0.0142 0.1168 0.02005 0.0224
German 0.3600 0.4330 0.3560 0.3740 0.3690 0.4110 0.3390 0.3420

Ionosphere 0.1893 0.4567 0.1864 0.4522 0.4096 0.1808 0.1525 0.2175
Sonar 0.0150 0.3550 0.0000 0.0050 0.0000 0.1350 0.0000 0.0050

We need to compare these predicted error rates to the real-world data set classification error

rates in order to evaluate the accuracy of these predictions; we will perform this evaluation

in the next section.

5.3.5 EVALUATION OF PERFORMANCE

The Pearson correlation coefficients between the cross-validation classification error rates

(Table 5.2) and the predicted error rates (Table 5.6) are calculated for each data set; the cor-

relation coefficients give us an indication of how accurately the measurements can explain

the behaviour of all the classifiers. We summarise these correlation coefficients in Figure 5.2.

We see in Figure 5.2 that the Tic-tac-toe data set is the only one with a negative correlation

coefficient; this is to be expected, since this data set is the only one that contains only cate-

gorical features. Closer evaluation of the classification error rates in Table 5.2 reveal that the

NB, Gaussian, GMMd and GMMf classifiers have very poor classification performance for

this data set; this is due to the fact that these classifiers are not suited for categorical data.
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All the data sets in the meta-training set contain continuous variables, which explains why

the predictions of these error rates are not accurate.
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Figure 5.2: Correlation coefficients of real-world data sets

The Ionosphere data set has the lowest correlation coefficient of the non-categorical data

sets. If we investigate the classification results and the predicted classification error

rates more closely we find that the predicted error rate of the Gaussian classifier differs

significantly from the 10-fold cross-validation error rate. If we calculate the correlation

coefficient excluding the Gaussian classifier we obtain a correlation coefficient of 0.2861.

The two data sets with the highest correlation coefficients are the Iris and Diabetes data

sets. The artificial data set nearest to the Iris data set has Gaussian distributed classes with

feature SDs close to unity; the nearest data set to the Diabetes has GMM distributed classes

with 100 groups per class with feature SDs between 0 and 5. What is interesting is that

the Diabetes data set contains four numerical and four categorical features. If we evaluate

the classification error rates we observe that these four categorical features do not influence

the model-based classifiers too negatively compared to the discriminative classifiers; this

explains why the correlation coefficient is still very good even though the data set contains

categorical attributes.
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The remaining data sets have correlation coefficients between 0.1364 and 0.5862; we will

investigate some of these data sets further in the next section.

We calculate the correlation coefficients for each classifier across the ten real-world data

sets to give us an indication of how well the data measures describe the properties of

each classifier. The Pearson correlation coefficients between the predicted and 10-fold

cross-validation classification error rates of each classifier are given in Figure 5.3.
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Figure 5.3: Correlation coefficients of classifiers

We see that the NB and SVM classifiers have negative correlation coefficients across all the

real-world data sets, and that the observed correlation values are generally lower than the

values across the different classifiers for a fixed data set. This suggests that our features

are more successful in predicting the relative performance of different classifiers across the

same data set than error rates across data sets. These results are not surprising in the light

of the tremendous variability of data sets. Fortunately, the prediction of relative classifier

performance is the more interesting task from a practical perspective.

We will evaluate the actual measurement values for several of the real-world data sets in the

next section to gain insight into the predictions of the meta-classifier.
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5.4 DISCUSSION OF PREDICTIONS

In this section we will explain the predictions of the meta-classifier by evaluating the nor-

malised values of the most informative data measures. We will use the Iris, Diabetes, Heart,

Tic-tac-toe and Ionosphere data sets to illustrate the relationships between these measures

and classification performance.

5.4.1 NORMALISATION OF MEASURES

We need to normalise the obtained measurement values in order to compare these measures

across real-world data sets with different sizes, dimensionalities and classes. We normalise

each measure by dividing its values with the maximum value obtained from the meta-

training set. Each measure is thus normalised relative to N , d and C and scaled in to the

range [0, 1], where 0 will be the lowest value in the meta-training set for a measure and 1

will be the highest value for a measure in the meta-training set.

The only exception to this normalisation procedure is the MV N measure. We found that

the normality of MV N measure is linearly correlated to the number of samples per class;

as the number of samples increases (for any type of data distribution), the normality of the

data increases (according to MV N ) and the value of MV N consequently decreases (since

smaller MV N values signify data closer to normality) - this is clearly not correct if the data

are not normally distributed.

We normalise the MV N measures by multiplying the measurement values with the N/C

ratio; after we normalise with this ratio the normality measure only increases with an in-

crease in N if the data distribution is normal. Since the MV N measurement is invariant

to dimensionality, we can compare these normalised MV N values across all the real-world

data sets.

5.4.2 MEASUREMENT RESULTS

The most informative data measures (summarised in Table 5.4) that were obtained for each

real-world data set are given in Figures 5.4 and 5.5. These measures are normalised as
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discussed in the previous section.
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Figure 5.4: Informative data measures of real-world data sets
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Figure 5.5: Informative data measures of real-world data sets (continued)

5.4.2.1 IRIS

We see in Figure 5.4 that the Iris data set has a high correlation measure value (p) and a low

multivariate normality value (MV N ), which indicates that the class-conditional probability

density functions are close to normality. The nearest-neighbour error rate (N1) is very low,
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which suggests that the data set contains very little input and output noise. This low measure

of noise explains the low linear classification error rate (L1) that is shown in Figure 5.5. We

also note that the variation in feature SD (T3) is relatively high for the Iris data set.

We see in Figure 5.5 that the Iris data set contains a relatively high proportion of features that

don’t contribute to classification (ID2) and the average sphere size (T2) is relatively high,

which implies that the data has a high degree of central tendency, since larger adherence

subsets are formed when data are clustered together.

The nearest data set to the Iris data set has correlated Gaussian class conditional probability

density functions with similar feature SDs. We have explained in Section 4.3.1.2 that the

eigenvalues of the correlated artificial data may, however, still differ significantly.

All of the measured data properties of the Iris data set are suited for any one of the classifiers

in this study; this is verified by the good classification performance of all the classifiers on

the Iris data set in Table 5.2.

5.4.2.2 DIABETES

Figure 5.4 shows that the Diabetes data set has relatively low correlation between features

and the class-conditional probability density functions are close to multivariate normality

(low (MV N ) value). We see in Figure 5.5 that the average sphere size measure is very high;

this implies a measure of central tendency in the data.

Table 5.2 shows that the classification error rate of the NB classifier is lower than all the

classifiers except for the MLP and SVM classifiers; this shows that the assumptions of nor-

mality and uncorrelated features are valid ones for the Diabetes data set as indicated by the

data measures. We see in Figure 5.5 that the variation in scale is very low; this explains the

excellent classification performances of the MLP and SVM classifiers.
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5.4.2.3 HEART

Figure 5.4 shows that the Heart data set has a relatively low measure of feature correlation

and the small (MV N ) measure indicates that the class-conditional probability density

functions are close to normality. We also observe that the average sphere size measure is

small, which implies that there are more than one retained hyper-sphere per class and thus

more than one group per class in this data set.

We see in Table 5.2 that the NB and GMMd classifiers perform better than the Gaussian and

GMMf classifiers - this suggests that the features are highly uncorrelated as measured. The

classification performance of the GMMd classifier is better than the performance of the NB

classifier; this verifies that there are more than one group per class in the data. The NB and

the Gaussian classifiers perform better than the kNN and DT classifiers, which shows that

the class-conditional probability density functions are close to normality even though there

are several groups per class.

5.4.2.4 TIC-TAC-TOE

Figure 5.4 shows that the correlation between the variables in the Tic-tac-toe data set are

very high; we also see that the feature noise is relatively high. This high feature noise may

be a consequence of the high correlation between features.

Table 5.2 shows that the classification performance of the DT classifier is better than all the

other classifiers except for the MLP and kNN classifiers; this good classification performance

of the DT classifier may be attributed to the relatively high feature noise, since this feature

noise does not affect its performance as much as the other classifiers.

5.4.2.5 IONOSPHERE

Figure 5.4 shows that the MV N measure of the Ionosphere data set is very high; this

implies that the class-conditional probability density functions are not close to normality.

We also see that the correlations between features are extremely high.
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Figure 5.5 shows that the Ionosphere data set has virtually no scale variation and a very

small average sphere size (this is because no adherence subsets were retained by the

ε-neighbourhood pretopology algorithm). For an adherence subset to be retained, the subset

must have at least more than (N/C)/d samples. We can thus deduce that the Ionosphere

data set consists of data that have almost no central tendency; the data points are thus

scattered through feature space. We see that the measure of feature noise is very high, which

is not surprising in view of the scattered nature of the data.

The low classification error rate of the Gaussian classifier given in Table 5.2 is extremely

surprising, since the MV N and T2 measures imply that the data are not close to normality

and that the data are scattered through the feature space. These results shows that there might

be more complex relationships in the data that must still be investigated. We see, however,

that the classification error rate of the NB classifier is significantly higher than that of the

Gaussian classifier - this may be attributed to the high feature correlation as suggested by

the correlation measure. We finally observe that the MLP and SVM classifiers perform very

well, which might be attributed to the low variation in scale through the feature space.

5.5 CONCLUSION

We have illustrated how the data measures proposed in Chapter 2 can be employed to

characterise a data set and how these data measures can be used to predict the classification

performance of real-world data. Further, we have illustrated that these measures can give

us valuable insights into the properties and structures of real-world data; these insights are

extremely valuable in the case of high dimensional data.

Positive correlation coefficients were obtained between the true and predicted classification

error rates of all the non-categorical real-world data sets. These results show that the meta-

classifier captured important characteristics of the relationship between data and classifier

performance. The performance of the meta-classifier across all real-world data sets for each

classifier, however, suggests that further insight into the properties of data is required to fully

describe the relationship between data characteristics and classifier performance.
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CONCLUSION

6.1 INTRODUCTION

It is clear from this research that none of the current classifiers is optimal under all circum-

stances. Understanding the relationship between data characteristics and the performance

of classifiers is therefore crucial to the selection of the optimal classifier for a classification

task. We have investigated this relationship in our research and we summarise our findings

in the next section.

6.2 SUMMARY OF WORK

We have shown in that “conventional wisdoms” regarding classification selection are not

applicable to all types of data. We illustrated scenarios where model-based classifiers out-

perform discriminative classifiers significantly; similarly we have identified data properties

that cause highly-rated discriminative classifiers to perform poorly in comparison with the

other classifiers studied.

We used theoretical properties of classifiers to guide us in the development of data measures

that describe the relationship between data characteristics and classifier performance, and we
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constructed a meta-classification system using these measures to predict the classification

performance of real-world classification tasks without training classifiers. The performance

of this system shows that some important characteristics of the relationship between data

and classifiers are successfully captured by these data measures - only one of the ten

real-world data sets used in this study had a negative correlation between the true and

predicted classification error rates.

We illustrated how the meta-classifier can be used to explain classification predictions

of real-world data sets by evaluating the data measures. Evaluation of these measures

gave us valuable insights into the properties and structures of the real-world data sets that

were studied. We were able to quantify properties such as data sparseness, correlation

between features, multivariate normality of class-conditional probability density functions,

homogeneity of class covariance matrices, intrinsic dimensionality, variation in feature SD

through feature space, input and output noise, linear separability, variation in scale through

feature space, decision boundary complexity, variation in decision boundary complexity,

significant number of groups per class and the proportion of noisy features.

We used artificial data sets to perform experiments under controlled circumstances. Control

over the properties of data was extremely important, since the structure and properties of

real-world data sets are very complex and we do not fully understand the relationship be-

tween data properties and how they influence classification performance. The artificial data

sets assisted us in (1) probing the data properties that influence classifier performance, (2)

developing and verifying data measures and (3) constructing meta-classification data sets.

6.3 FURTHER APPLICATION AND FUTURE WORK

We would like to address the following issues in our future endeavours:

• Creation of a theoretical framework that models the relationship between data charac-

teristics and classifier performance. This framework will allow us to compare classi-

fiers theoretically and explain classifier behaviour from a more fundamental perspec-

tive.
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• Construction of hybrid classifiers using this theoretical framework. These hybrid clas-

sifiers will allow us to gain increased performance over existing classifiers.

• Generation of artificial data sets in a more systematic fashion to gain a more com-

prehensive view of the space of possible classification problems, and to assist us in

improving the performance of the meta-classification system.

6.4 CONTRIBUTIONS AND SHORTCOMINGS

The contributions that were made by this research are summarised as follows:

• We have shown scenarios for which conventional wisdoms regarding the relative per-

formance of various classification systems are inappropriate.

• We have identified new data characteristics that influence classifier performance.

These include properties such as the spatial variability of the mean intra-class dis-

tance, which are seen to be quite important in practice and had not been described

previously.

• We have developed novel data measures to measure these data characteristics and have

investigated their performance as indicators of these data properties. Some of these

measures function well in isolation, whereas others need to be normalised by other

variables (such as the dimensionality of the feature space).

• We have developed a meta-classification system that describes important aspects of

the relationships between data characteristics and classifier performance. This system

allows us to gain insight into the properties and structures of real-world data and allows

us to predict classification performance without training classifiers on the real-world

data.

We have identified the following shortcomings in our research:

• The correlation values between the predicted and cross-validation classification error

rates of some real-world data sets were very low. This implies that not all of the

data characteristics that influence classification performance were captured by the em-

ployed data measures.
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• The correlation values for fixed classifiers across all real-world data sets were gener-

ally lower than the observed correlation values across different classifiers for fixed data

sets. This implies that the employed data measures did not capture all of the necessary

data properties to characterise the behaviour of the classifiers that were studied.

These shortcomings are not surprising in the light of the tremendous variability of the real-

world data sets that were used. Further insights into the relationship between data character-

istics and the performance of classifiers are required to address these shortcomings; we will

search for such insights in our future endeavours.

6.5 CONCLUSION

This research has shown that the optimal choice of classifier depends on the data set

employed and that a true understanding of data characteristics and their influence on

classification performance is required to select the optimal classifier for a classification task.

We have developed data measures that characterise real-world classification problems and

we have shown that these measures can successfully be employed to predict classification

performance.

Classification has great theoretical interest and practical importance. This work has given

new perspectives on classification, and we hope that this will lead to further progress in this

field.
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