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Abstract 
There are several timing mechanisms on presently available commercial operating 
systems. Two operating system platforms that immediately come to mind are the 
Microsoft Windows environment (the WIN32 platform) and its UNIX-based 
counterpart, Linux (with its POSIX standard). The timing mechanisms under these 
operating systems are adequate for use in conventional multimedia applications 
currently run on these platforms. However, the requirements of such applications are 
not as stringent within a real-time environment. 
The goal of this dissertation was to determine if it would be possible to find a 
workaround for applications where current timing mechanisms in the WIN32 and 
POSIX environments do not meet the requirements of real-time. Before a proposed 
workaround is presented, a clarification is given as to what is meant by the notion of 
a timer. Attention is also given to the fact that its accuracy is quantified in terms of its 
resolution. It is acknowledged that real-time extensions to both the Windows and 
Linux operating systems exist. However, it was decided to find a solution without 
such assistance. 
Real-time is also defined and sub-classified into hard- and soft real-time, 
differentiating environments that have precise constraints (hard real-time) on timing 
as opposed to environments where demands on accuracy and efficiency are less 
stringent (soft real-time). The timer that was ultimately implemented had to conform 
to the latter form of real-time.  
This dissertation therefore aims to provide a solution in a soft real-time environment. 
The current timing mechanisms are discussed and their performance is quantified. 
Their deficiency in measuring a reliable periodic interval of 1 ms is highlighted. From 
this qualification of timers stems the requirements for the soft real-timer timer. The 
areas in which improvement is sought are stated.  
The design and implementation of a soft real-time timer that meets these 
requirements is presented and its performance at various frequencies is quantified. A 
comparison is given between the timer and the existing timing mechanisms as well 
as comparison between its implementation under both Windows and Linux. 
Additionally, the viability of the proposed timer compared to a proven hard real-time 
timer is presented. 
Finally it is recognised that a timer would not be useful if it was not effective in a 
practical environment. Consequently, the timer’s performance under the same load 
that it would experience in a practical soft real-time environment is investigated as 
well. The dissertation concludes with a discussion on the compatibility of this timer 
with expected advances in future Central Processing Unit (CPU) technologies.  
 
Supervisor:  Prof D G Kourie 
Department of Computer Science 
Magister Scientia 
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Chapter 1 
Background 

In this chapter, introductory material on the broad theme of this dissertation is given: 
designing and implementing a high-resolution soft real-time timer. Various key 
notions are explained. Thus, in section 1.1, the notion of a timer is explained. Since 
the value of a timer is dependent on its resolution, and since the study is in quest of a 
high-resolution timer, section 1.2 encapsulates the meaning of timer resolution. The 
next area of concern in the study is the notion of real-time, which is explained in 
section 1.3. Many different types of timers can, in principle, be used to measure real-
time. Section 1.4 surveys these. Section 1.5 then introduces the analysis method that 
will be employed in this study. Finally, section 1.6 points the reader ahead to the 
remainder of the work, indicating the themes of chapters.  

1.1 What is a Timer? 
In everyday day life, time is measured using a clock, and the same principle applies 
to computer systems. Computer systems apply a number of mechanisms to keep 
track of time, be they clocks on the hardware itself or software time mechanisms that 
are based on these clocks – specifically on the operating system clock [Peng 2002] 
(refer to section 1.2). The operating system running on the computer system uses the 
operating system clock to determine processor usage and when timers should fire 
[Yoav et al. 2003]. This raises the question: “What, precisely, is a timer?” 
According to the MSDN [MSDN 2003], a timer is “… an internal routine that 
repeatedly measures a specified interval, in milliseconds.”  It is a mechanism that 
allows software events to be scheduled efficiently [Li et al. 2003].  
An application may require time to be segmented into consecutive intervals of equal 
size. Specified events may be executed within each segment. For example, on an 
aircraft, the flight computer needs to have accurate information at all times about 
where the aircraft is. It will therefore communicate with the Global Positioning System 
(GPS) periodically at a constant interval, determine the aircraft’s position and then 
carry out necessary operations based on this information. The flight computer needs 
to know when the interval has elapsed. The timer is said to fire an event when the 
interval has elapsed, at which point the flight computer executes the next required set 
of computations. 

 
Figure 1-1: Timer Illustration 

Therefore, a timer may be thought of as a clock that measures a constant interval 
repeatedly, firing an event after each interval has elapsed. This is illustrated in Figure 
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1-1. The figure shows the operation of a timer over a period of 80 ms. Every 20 ms, 
an event is fired to which the application using the timer may react.  
A further example is an application that displays a countdown in intervals of one 
second. The countdown, for the sake of argument, is 10 seconds. The application will 
require a timer that fires an event every second, upon which the application displays 
“x SECONDS” (where x is the number of seconds remaining), until 10 seconds have 
been counted down. This is depicted in Figure 1-2. 

 
Figure 1-2: Countdown Timer Depiction 

The reason these timers are based on the operating system clock is to reduce the 
overhead involved in processing a separate interrupt for every timer that is created 
[Yoav et al. 2003]. However, this mechanism of measuring time has its drawbacks, 
as will be illustrated in section 1.2 and section 2.3.2. 

1.2 Timer Resolution 
According to [Yoav et al. 2003], a computer system employs the service of two clocks 
– one is hardware based and the other is governed by the operating system. The 
frequency of the operating system clock is not predetermined as is the case with the 
hardware clock. Instead, the decision as to which frequency is deemed most suitable 
is made during the operating system’s design.  
The most common frequency of the operating system clock in use at present is 
100Hz. This is the frequency used in the Linux, BSD, Solaris and WIN32 operating 
systems [Yoav et al. 2003]. In other words, 100 clock ticks per second (or 100Hz) are 
registered and processed or one clock tick every 10 ms. Therefore in these systems, 
the smallest interval of time that may be “accurately” measured by the operating 
system clock is 10 ms. As explained in section 2.3.1, this interval under the WIN32 
operating system is actually 10 – 15 ms. 
The notion of accuracy needs some explanation and qualification. As with any 
physical system, measurement is inevitably subject to a degree of inaccuracy – i.e. it 
is seldom 100% accurate. The above claim that 10 ms is the smallest interval of time 
that may be accurately measured by the operating clock systems under discussion, 
should be seen in this context.  In general, there is a need to characterize a timer 
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clock’s accuracy. This is done in terms of two quantities: the margin of error that is 
manifested, and the resulting timer clock’s resolution.  
The margin of error may be explained as referring to the maximum extent to which 
the actual occurrence of a timer event deviates from the desired time at which the 
timer event should take place [Lamie 2003]. Figure 1-3, shows a time-line where a 
timer event should be fired every 10 ms. Instead, two actual timer events are shown 
below the time-line. In the first case, the event takes place 10 ? s after it should have, 
and in the second case it takes place 10 ? s before it should have. 

This means that the first actual time interval depicted is 10.010 ms, or 10 ? s longer 
than it should be. The duration of the second actual time interval is 9.990 ms. This is 
10 ? s shorter than it should be, if the next timer event should be 20 ms from the start. 
However, if the next timer event should be 10ms after the last actual timer event then 
it is 20 ? s shorter than it should have been.   
For the purposes of this document, the desired time for the next timer event will be 
deemed to be a constant amount of time after the last timer event was supposed to 
have happened. Under this assumption then, the margin of error observed in Figure 
1-3 is between  -10 ? s and +10 ? s. 

 
Figure 1-3: Margin of Error 

The resolution of the timer will accordingly be denoted as desired interval ?  margin of 
error1. In the above example, the timer has a resolution of 10 ms ?  10 ? s. 

1.3 Real Time 
A real-time system typically consists of a set (or sets) of operations that have to be 
executed at periodic intervals of predictable size. The correctness of these 
computations is determined by the logical correctness of the operations as well as by 
the time it takes to execute these operations [Gopalan 2001]. Since the execution 
time of an operation plays such an important role, a real-time system may be 
regarded as a system that is dependent on accurate and predictable time 
measurement. Therefore, when a real-time system is designed and implemented, the 
reliability of both the hardware and the 1software of the system have to be 
guaranteed [Barr 1999]. 

                                                        
1 Note that this is a practical and not a statistical notation. The margin of error is an indication of the worst 
possible error in interval size and not a representation of the standard deviation. This entails that the actual interval 
may for example exceed the desired interval by the margin of error and never be less than the desired interval. 
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To measure the duration of the periodic intervals, an accurate or high precision timer 
is required. Such a timer may also be referred to as a real-time timer. The timer may 
be based on either a hardware- or a software source. The hardware source is 
typically a device external to the computer (refer to section 2.5)  
The PC based Win32 platform was not developed with hard real-time as a feature 
[Newcomer 2000]. This applies to Windows NT, Windows 2000 and Windows XP. 
These operating systems were designed as general purpose or networking platforms 
[Timmerman et al. 2002]. That being said, real-time extensions for the Win32 
platform are available from Microsoft and from other third party companies. Windows 
XP Embedded and Windows CE are Win32 implementations that were developed 
with real-time in mind. These extensions and operating systems are beyond the 
scope of this dissertation, as the aim is to investigate the Win32 and POSIX standard 
timers and endeavour to find a solution to their inadequacies (more on this section 
3.3). Results that illustrate these shortcomings are presented in chapter 2. 
[Timmerman et al. 2002] define a real-time system as one that ‘… responds in a 
timely predictable way to unpredictable external stimuli arrivals’ and also 
distinguishes between hard- and soft real-time. 
A hard real-time system does not allow a task to exceed the maximum allowable 
delay. In other words, if an operation should complete within a certain time, a hard 
real-time system expects it to meet its deadline. It is assumed that if this does not 
happen, then a system failure has occurred [Barabanov 1997]. Furthermore, the cost 
of such failure is regarded as ‘infinitely” high [Barr 1999].  
On the other hand, a soft real-time system is tolerant of a measure of deviation from 
the maximum allowable delay. Deviations may cause some measure of system 
degradation such as lower performance, and this may worsen as the deviation rises. 
An example of this is a video-conferencing system, where although it is preferable 
that every frame of the video is displayed, it is acceptable if a frame or two is 
occasionally missed [Barabanov 1997]. 
Soft real-time systems are often used in conjunction with hard real-time. Before a 
hard real-time system is deployed in its operational environment, it has to be 
thoroughly tested. Often a real-time system (for example, the weapons computer on 
a fighter aircraft [Gill et al. 2001]) may have catastrophic results should it fail 
unexpectedly. A soft real-time equivalent is consequently used to validate such 
systems, where the operational environment for the real-time system under test is 
simulated. In this environment, deviations from the maximum allowable delay are 
less important; the focus of the validation is more on the functionality of the real-time 
system. An example of this is covered by [Gill et al. 2001] in their article “The Design 
and Performance of a Real-Time CORBA Scheduling Service”. 
However, since the soft real-time system’s performance degrades as the extent of 
deviation rises, unpredictable results may occur if the timing mechanisms are not 
predictable. Thus, to test the hard real-time system’s reliability, the soft real-time 
deviation has to be constrained within acceptable limits. 
Henceforth unqualified reference to real-time will be construed to refer to soft real-
time. 

1.4 Sub-Classification of Timers 
There are various types of timers whose use is dictated by the application at hand. 
This could be either in a hard or soft real-time context. A single application can create 
multiple timers that measure different interval durations. These timers could either 
measure a single interval or measure intervals periodically [Friesen 2001]. Of course 
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this is completely dependant on the design and function of the software. Here, a 
classification of such timers is given. 
However, before this sub-classification is presented, it is necessary to clarify the 
meaning of the concept of a “timestamp”: 
“A timestamp is a representation of the amount of time elapsed since a pre-
determined moment in time” [Perkins 2003]. 

1.4.1 One-Shot Timers 
A one-shot timer is a timer that measures a single interval. After the interval expires, 
the timer terminates [Austin Group 2004]. The logical application of such a timer is an 
operation that has to be executed once after a fixed period of time [Sridhar 2003].  

1.4.2 Periodic Timers 
A periodic timer measures a constant interval repeatedly and fires an event after 
each interval expires [Austin Group 2004]. After the end of such an interval, the timer 
immediately starts to measure the same interval duration again. This process it 
continuous for as long as the timer is required to run [Sridhar 2003]. 

1.4.3 Waitable Timers 
A "waitable" object is a synchronization object that is placed in a suspended state 
until a specified interval has elapsed at which point its state is set to signalled. The 
waitable object could also be configured to wait on an I/O device connected to for 
example the serial port. A process can therefore “wait” until the timer object’s state 
becomes signalled using it as a queue to for example initiate a routine [Henderson 
2003].  
There are two types of waitable timers that can be created: manual-reset and 
synchronization. Unlike a normal timer, multiple processes can “wait” for a single 
waitable object’s state to transition to “signalled”. This is summarized in Table 1-1. 

Table 1-1: Timer Classification 

Object  Description 
Manual-reset object A waitable object whose state 

remains signalled until a waiting 
process acknowledges the signal 
and resets it.  

Synchronization object  A waitable object whose state 
remains signalled until a waiting 
process acknowledges the signal. 
The object will reset automatically. 

An object of either type can be used in the implementation of a periodic timer. If a 
waitable object is incorporated into an algorithm that repeatedly sets it to a 
suspended state, the resulting behaviour of such an application is comparable to that 
of a periodic timer.  
Another process is able to wait for the object to become signalled, execute the 
operations for which it requires periodic scheduling and wait for the object to become 
signalled again. In the case of the manual-reset object, the process resets the state 
of the object before waiting for it to become signalled again. 
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1.4.4 Duration Measurement Timers 
A duration timer is used to determine the length of an operation. Such a timer could 
typically be used to quantify the amount of time required to execute certain 
operations within a software application. A timestamp may be taken at the beginning 
and another at the end of the operation. The difference between the two time 
measurements is the duration of the operation.  
In Figure 1-4, a duration measurement timer is requested to provide a timestamp, 
namely T0. After the operation, another timestamp is taken – T1. Therefore the 
duration of the operation equates to T1-T0. 

 
Figure 1-4: Duration Measurement Timer 

1.5 Analysis Methods 
Since chapters 2 and 3 through 5 present results attesting to the performance of the 
timers under scrutiny within the particular chapters, it is necessary to provide an 
explanation of the methods followed to perform the analysis. As will be seen, the 
systems under scrutiny are: 
?  Loop Timer 
?  System Timer 
?  Multimedia Timer 
?  POSIX Timer 

?  External Timers 
?  WIN32 Sleep Timer (Non Multimedia) 

?  WIN32 Sleep Timer (Multimedia Timer) 
?  Thread Induced Waitable Timer 
An application is developed for each timer, in terms of which the following happens 
whenever the timer fires: a) the application reads a timestamp value; and b) the 
timestamp value recorded in dynamic memory for storage in an output file after the 
conclusion of the timer’s run. This is done repeatedly, so that measurements are 
taken over a specified period of time. These timestamp values are subsequently 
utilised to calculate, in each case, the timer’s actual interval size for each of its firings 
(activations). These values are plotted against the timestamps, converted into a time 
value. 
Also, the maximum and minimum interval durations are recorded – These are used 
to calculate the timer resolution (see section 1.2).  
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For each timer, these statistics are recording for the following frequencies: 
?  1 kHz (1 ms intervals) 
?  50 Hz (20 ms intervals) 

?  1 Hz (1000 ms intervals) 
The reason why these frequencies were selected was because an external real-time 
timing source was available (see section 2.5) that could be used to benchmark the 
real-time accuracy of the various timers (as is done in section 4.5). This external real-
time timer provides hardware signals at these frequencies.   
The resource consumption of each timer is quantified. The minimum, maximum and 
average is recorded and the resource usage is presented in graphical form.  

1.6 Dissertation Layout 
The remainder of the dissertation is outlined in this section. Chapter 2 focuses on the 
background of existing timers, from the hardware timers to software timers currently 
available under open source and commercial operating systems. The performance 
and accuracy of these timers are also discussed, and existing timing mechanisms will 
be shown to be deficient.  
Accordingly, among the goals of this research is to determine whether a work around 
could be devised to compensate in the areas where the current timers are lacking; 
thus leading into to culmination of the chapter – the problem statement (section 2.6). 
To ensure the reader understands the process that culminated in the implementation 
of an alternative timer, chapter 3 focuses on design-, implementation decisions 
made, as well as analysis methods used. The main reasoning is to enhance the 
readers grasp of the solution in chapter 4. Chapter 4 will first focus on rejected 
solutions and show how they eventually suggested an alternative solution. The 
performance and accuracy thereof is also under scrutiny. 
Further testing of the proposed solution is presented in chapter 5, aimed at exploring 
whether the solution is viable and practical for application in a real-time environment. 
Finally, the conclusion is provided in chapter 6. 
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Chapter 2 
Currently Available Timing Mechanisms 

This chapter looks at timing mechanisms currently available under the common open 
source and commercial operating systems – Linux, Unix and Windows (WIN32 
platform). Note that the performance results of the timers presented in this chapter, 
have been derived in conformance with the analysis methods explained in section 
1.5. A question that could be raised is whether timers on the computer’s hardware 
exist that may be used effectively as a real-time timer. This is addressed in section 
2.1. Special timing mechanisms do exist on current computer hardware. This is the 
subject of section 2.2.The remaining timers that require investigation are the software 
timers provided by common operating systems, specifically those provided by the 
WIN32 and POSIX standards. Sections 2.3 and 2.4 are devoted to these timers. 
Finally, to ensure real-time timing, such implementations on consumer level 
hardware usually incorporate an external reliable hardware source of known and 
extremely high accuracy. This will be discussed in section 2.5. However, the main 
goal of this chapter is to provide a statement of the problem that this research sought 
to solve. This is provided in section 2.6. 

2.1 Current Hardware Based Timers 
The timers currently in use on current x86 computer platforms and the reason why 
they were not considered for a timing source in a real-time environment are 
discussed in this subparagraph. These timers are commonly used as the basis for 
the software timers under the operating system implementation. There are three such 
timers, each of which is now discussed in turn. 

2.1.1 8254 Programmable Interrupt Timer  (PIT) 
In 1981, IBM introduced the 8254 Programmable Interrupt Timer, with a resolution of 
one millisecond [Peng 2002]. It is essentially a software programmable counter/timer 
device designed to address control problems in microcomputer system design [Intel 
1993]. Provided by the PIT is a 16-bit counter that is capable of handling clock inputs 
at 10MHz. The timer provides accurate time delays under software control, 
eliminating the need for such loop timers as the one in section 2.2.2. The 
programmer has the ability to program the 8254 for the desired delay. After the 
desired time has elapsed, the 8254 will interrupt the CPU. The software that wishes 
to use the timer is simply tasked with waiting for such interrupt. 
On consumer level Intel microcomputers, the 8254 interfaces to the system is an 
array of I/O ports: three counters and a fourth is an interface to a control register that 
is used for mode management. The counters are independent and may operate in 
different modes simultaneously. Possible modes are: 

?  Interrupt on Terminal Count (Mode 0) 
An initial count is loaded into the counter register. The counter is decremented on 
each clock input, and an interrupt is fired when the counter equals 0. At this point 
a new counter may be loaded.  
It is typically used as an event counter. 
 

?  Hardware Re-triggerable One-Shot (Mode 1) 
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Like Mode 0, an initial count is loaded into the counter register, with an interrupt 
when this counter is decremented to 0. However, this countdown may be 
repeated without a new counter being loaded into the register 

?  Rate Generator (Mode 2) 
An initial count is loaded into the counter register, decremented and an interrupt 
fired as with Mode 0 and Mode 1. However, when the interrupt is fired, the count 
is loaded again automatically and the process is repeated. Therefore Mode 2 is 
periodic.  
Mode 2 is typically used to generate a Real Time clock interrupt.  

?  Square Wave Mode (Mode 3),  
Software Triggered Strobe (Mode 4) and  
Hardware Triggered Strobe (Re-triggerable) (Mode 5) 
These 3 modes are similar to mode 2 and produce a periodic timer in each case, 
but with different implementations on the hardware level. Details are beyond the 
scope of this text, but are available in the 8254’s datasheet [Intel 1993].  
Mode 3 is typically used for baud rate calculation. 

Since I/O operations through the IO ports the timer uses to interface to the system 
are expensive, the PIT is not viable for generating small intervals, and the problem is 
aggravated by the fact that the clock inputs are handled at 10 MHz, i.e. every 100 
ms. This implies that the smallest interval that the timer could measure reliably is in 
the order of 100 ms. 

2.1.2 Real Time Clock (RTC) 
The real-time clock (RTC) was shipped for the first time in 1984, in addition to the 
8254 [Peng 2002]. The RTC performs two main functions, namely:  
?  Keeping track of time 
?  Storing system data, even when powered down [Intel 1995].   
The RTC is sourced from a 32.768 kHz crystal and runs off a 3V battery. The RTC 
may also be used to generate wake up calls for the system, up to 30 days in 
advance. 
The RTC provides 3 interrupt services: 
?  A time of day alarm (range 1 second to 30 days) 

?  Periodic interval timing (interval range 120 ? s to 500 ms) 
?  End of update cycle notification 
Using the 32.768 kHz crystal, the RTC’s time is updated every second, thus keeping 
track of seconds, hours, days, weeks, months and years with daylight savings 
capabilities.  
As is the case with 8254 timers in section 2.1.1, the RTC has to be accessed via an 
I/O port that is generally mapped to IRQ 8 on the computer’s motherboard. The high 
cost of I/O communication renders the RTC incapable of being used for a reliable 1 
ms interval on a software level [Peng 2002]. 

2.1.3 Advanced Programmable Interrupt Controller (APIC) 
The Advanced Programmable Interrupt Controller (APIC) was designed by Intel 
specifically for use in multi-processor environments to solve inter-processor interrupt 
routing issues. According to [Wikipedia 2006], it consists of two parts: 
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?  The local APIC (LAPIC) – this is integrated into the CPU system. Should it be a 
multi processor environment, an LAPIC exists for every CPU. Not only does the 
LAPIC manage all external interrupts for the processor its part of, it is also able to 
generate and accept interrupts. These interrupts form the basis for the LAPIC 
interval timer. 

?  The Input/Output APIC (IOPIC) 
This is used throughout the system’s peripheral buses. It routes interrupts it 
receives from these buses to the LAPIC via the use of a redirection table. 

Spurious interrupts also occur within the APIC that may be mistakenly construed to 
be a genuine interrupt [Intel 1997]. It suffers from severe jitter in its interrupt latency, 
in other words the time that elapses from the moment an interrupt is generated to the 
moment that it is serviced varies and is not predictable. The consequence of this is 
that the jitter is exhibited in the APIC interval timer as well [Wikipedia 2006].  

2.2 High Resolution Hardware Counters 
This section is concerned with hardware counters located on current x86 central 
processing units (CPUs). First the counters themselves will be explained in section 
2.2.1. This is followed by the description of a software implementation that makes 
use of these counters to calculate timestamps in sections 2.2.2 through 2.2.2.3. 
Section 2.2.2 introduces the loop timer and states the need for the timer. Section 
2.2.2.1 presents the algorithm used to the implement such a timer. The performance 
results of this timer are presented in section 2.2.2.2. The conclusion is given in 
2.2.2.3 as well as the motivation for not relying on the loop timer as a final 
implementation of a real-time software timer.  

2.2.1 Hardware Timestamp Counters 
The following are counters available on modern hardware: 
?  Power Management Timer (PM Timer) 

Modern personal computer hardware provides a counter on the Advanced 
Configuration and Power Interface (ACPI) [Intel 1999]. The clock is also called 
the Power Management Timer (or the PM clock). The ACPI requires a 
mechanism to measure the ACPI system idle time. This PM Timer manages a 
counter incremented at a fixed frequency of 3.579545 MHz. The current value of 
the counter is stored in a register that may be accessed programmatically. 
According to the ACPI specification [Intel 1999], this register is referred to as the 
PM_TMR_BLK register. 

?  Timestamp Counter (TSC) 
The Timestamp Counter is a 64-bit counter on the CPU, supported since the 
Pentium family of processors [Dongarra et al. 2001]. The counter is set to 0 on 
every hardware reset of the computer and incremented every processor clock 
cycle, making it independent of processor speed. It is thus very fine-grained with 
the accuracy limited to the CPU frequency. This counter is guaranteed to 
monotonically increase, except for the 64-bit wraparound, which is several 
thousand years in the Pentium family of processors.  

These counters ought to serve as the basis for a very accurate timer. However, no 
other functionality is provided. In particular, no mechanism is provided to fire an 
event at a certain timestamp value. The counter has to be polled externally to 
determine the current timestamp value.  
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A timer was implemented that makes use of the counter generated by the ACPI clock 
or Timestamp Counter (TSC) in order to generate a timestamp at set intervals. This 
approach is described in section 2.2.2. 

2.2.2 Loop Timer 
With the availability of the high-resolution hardware counters described in section 
2.2.1, it is possible to develop a timer with a maximum deviation within acceptable 
limits (refer to section 2.6). To illustrate this, a loop timer was designed and 
implemented as discussed below. 
The loop timer queries a high-resolution counter until a suitable interval has expired. 
At this point the timer event is triggered, and the process restarts. 
Since the value read from such a counter is an incremental value indicating the 
number of times a clock cycle has occurred, the actual timestamp (in time units such 
as milliseconds, not in clock cycles) has to be calculated. This calculation is 
discussed in section 4.1. 

2.2.2.1 Algorithm 
The following pseudo code is a representation of the loop timer algorithm: 

Algorithm 1 - Loop Timer Algorithm 
The algorithm commences with the calculation of an initial timestamp, designated 
? previous and assigns it to the current timestamp variable, designated ? current. The 
timer enters a loop for the duration of its execution. 
Another loop tests the time elapsed against the required interval designated X. This 
is accomplished by taking the difference between the current timestamp calculated 
from the high-resolution counter and the previous timestamp, ? previous. While this 
value is less than the required interval value X ? s, the next timestamp is read and 
stored in ? current.  
When the difference between ? current and ? previous is greater equal to X ? s, the 
current timestamp ? current is saved in ? previous. The timer event is fired, and the 
process restarts unless the timer should terminate. 

 

? previous := current timestamp  

? current  := ? previous  

While the timer is running  

 While (? current - ? previous < X ? s) 

  ? current := timestamp from the  

                    high precision counters  

 End While 

 ? previous := ? current 

 Fire the timer event  
End While  
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2.2.2.2 Results 
As is clear from Algorithm 1, at no point is a wait instruction used to prevent the timer 
from consuming all available CPU resources. Therefore the timer’s CPU usage 
equates to 100% of the available resources leaving none available to do anything 
else. The accuracy, however, is extremely high.  
The loop timer was developed in C++, based on reading Timestamp Counter (TSC) 
and the Power Management (PM) clock counter values (The WIN32 API determines 
which counter to use). It can be set to fire at various frequencies. 
The accuracy of the results for different frequencies is presented in the following 
sections. Note that frequency in the current context refers to the rate at which a timer 
event is fired, i.e. to the inverse of the timer interval, measured in appropriate time 
units. 

2.2.2.2.1 Loop Timer Performance (1 kHz) 

The results for a frequency of 1 kHz are presented in Figure 2-1. The desired interval 
size should thus be as close to 1 ms (or 1000 ? s) as possible. As is clear from the 
figure, the timestamps measured is extremely accurate, only deviating once 
significantly from the desired interval duration over a period of approximately 32 
seconds (32000 ms).  

 

Figure 2-1: Loop Timer Performance (1 kHz) 

For this timer, the maximum interval duration is 1.167 milliseconds (1167 ? s). The 
minimum interval duration is 1 ms (1000 ? s). Thus a resolution of 1 ms ?  167 ? s was 
achieved over the time span for which measurements were taken. 

2.2.2.2.2 Loop Timer Performance (50 Hz) 

The results for a frequency of 50 Hz are presented in Figure 2-2 and therefore the 
desired interval size should be as close the 20 ms (20000 ? s) as possible. Although 
the figure only shows the results for the first 10 seconds, the experiment was 
conducted over a period of 60 seconds. The reason for showing a subset of the 
results in the graph is to increase readability.  
For the 50 Hz timer, the maximum interval duration is 20.002 ms (20002 ? s). The 
minimum interval duration is 19.998 ms (19998 ? s). Accordingly, the resolution 
equates to 20 ms ?  2 ? s. This is an extremely accurate measurement. However, this 
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achievement is overshadowed by the timer’s consumption of all available CPU 
resources. 
 

 
Figure 2-2: Loop Timer Performance (50 Hz) 

2.2.2.2.3 Loop Timer Performance (1 Hz) 

The results over a period of 60 seconds for a frequency of 1 Hz (desired interval size: 
as close to one second as possible) are presented in Figure 2-3.  

 
Figure 2-3: Loop Timer Performance (1 Hz) 

With the maximum interval duration of 1.000001 seconds and minimum interval 
duration of 0.999999 seconds, the maximum deviation on this interval is 1 ? s, which 
is again extremely accurate. Accordingly, the resolution equates to 1 second ?  1 ? s. 

2.2.2.2.4 CPU usage 

The CPU usage was the same for all the cases discussed in sections 2.2.2.2.1 to 
2.2.2.2.3 is depicted in Figure 2-4. The average CPU resources consumed by the 
timer were 83.59%. However, the total CPU usage was 100% throughout the 
operation of the loop timer. Since the timer was not the only process running on the 
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system on at the time, it is assumed that the other processes were consuming the 
CPUs resources. 

 
Figure 2-4: Loop Timer CPU usage 

2.2.2.3 Conclusion 
From the foregoing it is clear that, in terms of accuracy; the loop timer is extremely 
accurate. The reason for rejecting the solution is it consumes all available processing 
time on the CPU. 
It is apparent from the implementation of the loop timer in section 2.2.2.2 that the 
polling of the counter consumes 100% of the processor resources available to it. This 
is unacceptable since no resources would be available for an application that 
encapsulates such a loop timer to execute other operations.   
For more information, see 4.1. 

2.3 WIN32 Timers 
The timers discussed in sections 2.1 and 2.2 are all based on the hardware itself and 
can be used independently of the operating system running on the computer. 
However, the WIN32 operating system does provide two timing mechanisms of its 
own, albeit based on the hardware discussed in the previous sections: a system 
clock and a multimedia timer. From the point of view of the developer, these timers 
may be used on a software level via API (refer to 3.2) calls provided by the operating 
system, instead of accessing the hardware directly.  
This section discusses these mechanisms and reports on various experiments in 
which timers of various interval lengths were built based on these timing 
mechanisms. It is also highlighted why these timers were deemed inappropriate for 
real-time application. 

2.3.1 System Timer 
In the article Guidelines For Providing Multimedia Timer Support [Peng 2002] 
explains the inner workings of the WIN32 timing system. According to the article, the 
WIN32 platform uses a periodic clock interrupt to keep track of time, trigger timer 
objects and manage thread execution. At boot time, this clock interrupt interval varies 
between approximately 10 ms and 15 ms. The result is therefore that the clock 
interrupt is updated every 10 ms to 15 ms, depending on the system. For the purpose 
of this discussion, 10 ms will be assumed [Abeni et al. 2002]. 
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On receipt of a clock interrupt, the WIN32 Operating System is mainly tasked with the 
following operations: 
?  Update the timer tick count. The primary purpose of the timer tick count is to give 

effect to the abstract notion of time that Windows uses to keep track of time of 
day and to keep track of a thread quantum’s time. Therefore a timer tick 
constitutes 10 ms to 15 ms in elapsed time. 

?  Check the timer objects expiration. The operating system checks if the interval of 
any timer object has expired. Should this be the case, the system schedules a 
Timer Deferred Procedure Call (DPC). A DPC is specified by the application that 
requested the timer object. Such a DPC specifies an event that has to occur 
when a specified interval has elapsed. Such timer objects are used by the 
operating system to track deadlines and to signal applications when a deadline is 
reached. 

When a WIN32 operating system boots up, the current value of the real-time clock 
(or the RTC) is taken as the immediate system time. From this point onwards, the 
system time is updated every time a clock interrupt is received. This system clock 
can be used to determine the duration of intervals when constructing a system timer. 
Such a system timer may be constructed using WIN32 API calls in languages such 
as C++ and Visual Basic [MSDN 2003]. A pointer to a function that contains the 
routines that have to be executed at each timer event is given to an API call that 
creates a timer object. An application was developed to create such a timer object via 
the WIN32 API and specified to fire timer events at intervals of 1ms, 20ms and 
1000ms. The results are presented in the following sections.  

2.3.1.1 1 kHz Interval System Timer 
Figure 2-5 depicts the performance of the System timer with a desired frequency of 1 
kHz. Therefore the interval should be as close to 1ms as possible. Although the 
experiment was conducted over a period of sixty seconds, the figure only shows the 
first 200 milliseconds to increase the readability of the graph.  

 
Figure 2-5: 1 kHz System Timer 

As can be seen, the timer does not provide the required 1 ms second interval. 
Instead it provides a maximum interval of 25.431 ms and a minimum interval of 5.881 
ms. The timer’s maximum deviation is thus 25.431 ms – 1 ms = 24.431 ms with the 
resolution equating to 1 ms ?  24.431 ms. 
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2.3.1.2 50 Hz Interval System Timer 
Figure 2-6 depicts the performance of the System timer with a desired frequency of 
50 Hz. Again, for the sake of readability; the figure only shows the first 10 seconds of 
the 60 second period over which the experiment was conducted. The required 
interval should be as close to 20 ms as possible.  

 
Figure 2-6: 50 Hz System Timer 

During the first 10 seconds depicted in the graph, the timer did not manage to 
produce an interval smaller than 25 ms. Over the entire period the timer was running, 
it managed to generate a minimum interval of 27.291 ms. The recorded maximum 
interval was 36.151 ms. The timer’s maximum deviation is thus 36.151 ms –20 ms = 
16.151 ms and the resolution 20 ms ?  16.151 ms. 

2.3.1.3 1 Hz Interval System Timer 
The period of 60 seconds shown in Figure 2-7 depicts the performance of the System 
timer with a desired frequency of 1Hz. The required interval should therefore be in 
the close vicinity of 1s. 

 
Figure 2-7: 1 Hz System Timer 

As can be seen, the timer seldom provides 1-second interval and deviates from this 
required duration in general. The maximum interval recorded was 1.011667 s and a 
minimum interval 0.988237s. The timer’s maximum deviation is thus 1s-0.988237s = 
0.011763 s. The timer’s resolution is therefore 1 s ?  11.763 ms. 
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2.3.1.4 Conclusion 
The performance of a system timer based on the system clock as measured above 
was enough to disqualify it for use as a soft real-time timer. It did not achieve the 
granularity to enable it to even come close to measuring the required interval. 
The overriding reason for the degraded performance is that the periodic clock 
interrupt is used to update the system time. Thus, only when this periodic interrupt is 
raised does the Windows operating system check whether the timer’s interval has 
elapsed. On most systems, the interval of this periodic clock interrupt is 10ms to 
15ms [Peng 2002]. The System timer is dependant on the message queue of the 
application that spawned it. Every WIN32 application that opens a Windows frame 
requires such a queue to process messages from the operating system. When the 
operating system determines that the system timer’s interval has elapsed, a message 
that instructs it to fire the timer event is place in this message queue.  
This could explain both the maximum and minimum intervals recorded for 1 kHz 
timer in section 2.3.1. Due to the 10 ms to 15 ms interrupt the operating system uses 
to update the system time, the expected interval size should be between 10ms and 
15ms. However, the range recorded was 5.881ms to 25.431ms. If the system timer 
starts an interval ? ms after the interrupt to the operating system, 10 ms – ? ms 
remain before the operating system inspects the timer again. This explains how the 
minimum interval could be less than 10ms.  
The maximum interval can be explained if the periodic interrupt occurred to the 
operating system at an interval of 15 ms. For example, the timer interval commences 
at the start of the 15 ms gap between interrupts. When the next interrupt comes 
around, the timer would have been waiting for ± 14 ms for the message that enables 
it to fire the timer event. Since the message from the operating system that causes 
the interval to expire is placed in the message queue of the application that 
encapsulates the timer, it is possible for the message to be stuck in this queue for an 
undetermined amount of time. If the message gets stuck in this queue for the next 10 
ms, the timer will experience and interval of ± 25 ms. 
It is clear that the system timer cannot compete with the loop timer (in section 2.2.2) 
since it does not accurately measure out a 1 ms interval. Furthermore, when the 
frequency was decreased, the accuracy failed to improve to a point where the result 
was satisfactory. The system timer is inaccurate to such an extent when compared to 
the loop timer that the amount of CPU resources that it consumes is irrelevant. 
Although it uses considerably less CPU resources than the loop timer, the system 
timer is so inaccurate that it could never be used to measure an interval of one 
millisecond reliably. Therefore the CPU usage of the system timer is not presented in 
this dissertation.  

2.3.2 Multimedia Timer 
Multimedia timer services allow applications to schedule timer events with the 
greatest resolution (or accuracy) possible for the x86 personal computer (PC) 
platform. These multimedia timer services allow one to schedule timer events at a 
higher resolution than through other conventional timer services, such as the system 
timer (refer to 2.3.1). 
The drawback of the system timer is obvious as the minimum interval duration that 
can accurately be measured is comparable to the interval of the clock interrupt that 
the operating system uses to update the system time. In applications where accurate 
timing is required to schedule events, these events could be late by 10 ms or more. 
Applications typically associated with smaller than 10 ms intervals are related to 
multimedia implementations. 
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For example a multimedia application may require an event such as audio playback 
to occur every 23 ms. The measurement of this interval is depicted in Figure 2-8. 

 
Figure 2-8: System Time Depiction 

The multimedia application will configure a timer object to indicate when an interval of 
23 ms has elapsed. Figure 2-8 shows the accumulation of elapsed time, as it is 
measured by the operating system. It is clear from the figure that although timer 
object interval should elapse after 23 ms, this is only determined after the third timer 
tick, or 30 ms. Therefore, the sound is played 7 ms late.  
This is a clear drawback of the timing architecture of the WIN32 operating system. A 
solution to this problem was to lower the interval of the clock interrupt that the 
operating system uses to update the system time. This resulted in the multimedia 
timer. 
To overcome the deficiency of the of the system timer, the clock interrupt should 
ideally be 1ms and not 10ms, as depicted in Figure 2-9. When the 23rd timer tick is 
received, 23 ms will have passed and the sound is played at exactly the right time. 

 
Figure 2-9: Ideal System Timer Depiction  
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However, according to [Peng 2002], Microsoft has found that the impact of lowering 
the clock interrupt to 1ms degrades system performance significantly, to the extent of 
not being worth the cost, specifically in terms of cache consistency and power 
management. Lowering it to 2ms however, has negligible effect. Therefore, in the 
multimedia application, the sound will be played within 1ms of the time that it is 
supposed to be heard, as depicted in Figure 2-10. 

 
Figure 2-10: Actual Multi-Media Timer Depiction 

Using a periodic clock interrupt is a common concept in contemporary operating 
system design and results in weighing increased accuracy against degrading system 
performance [Yoav et al. 2003]. The result still remains that the WIN32 platform 
provides interval accuracy with a variance of ? 1ms, as will be seen below. 

2.3.2.1 1 kHz Interval Multimedia Timer 
The multimedia timer was executed over a period of 60 seconds and the minimum 
and maximum interval durations were recorded.  

 

Figure 2-11: Multimedia Timer 1 kHz Frequency 
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Figure 2-11 illustrates the interval duration of the multimedia timer the first second. 
The performance of the timer over the remaining 59 seconds was similar to its 
performance in the first second.  The frequency was set to 1 kHz (i.e. 1ms intervals).  
From the figure it is clear that the timer stays within the range 1 ms to 2 ms. The 
maximum interval recorded was 1.983 ms and the minimum interval 0.503 ms. The 
timer thus exhibits a maximum deviation of 983? s and the resolution is therefore 1ms 
?  0.983 ms.  
Note that out of the 60000 intervals recorded in this experiment (there are a thousand 
one millisecond intervals within a second), the interval was greater than 1.5 ms 1439 
times. The interval duration of 1.5 ms is significant since it exceeds the required 
interval size by half the length of the desired interval. Therefore, 2.398% of the 
intervals deviated from the desired interval of one millisecond by half the desired inter 
or more (500 ? s in this case). 

2.3.2.2 50 Hz Multimedia Timer 
The multimedia timer was configured generate intervals of 20 ms (a frequency of 50 
Hz) and executed over a period of 60 seconds. Only the first 5 seconds are shown in 
Figure 2-12. 

 
Figure 2-12: Multimedia Timer 50 hz Frequency 

Figure 2-12 clearly illustrates the interval duration of the multimedia timer stays within 
the range 19.5 ms and 20.5 ms. This remains true for the 55 seconds not shown on 
the graph. The maximum interval was recorded at 20.613 ms and the minimum at 
19.444 ms, which constitutes a resolution of 20 ms ?  613 ? s. 
Of the 3000 intervals recorded (remember that there are fifty 20 ms intervals in a 
second), 1062 intervals deviated from 20 ms by 500 ? s and more. In other words, 
35.4% of the time the multimedia timer deviated from 20 ms by 500 ? s and more.  

2.3.2.3 1 Hz Interval Multimedia Timer 
The final frequency tested was 1Hz, in other words, intervals of one second. Figure 
2-13 illustrates the interval duration of the multimedia timer over a period of 
approximately 60 seconds. Over this period, the maximum interval recorded was 
1.000139 s and the minimum interval 1.000069 s. The timer thus exhibits a maximum 
deviation of 139 ? s, which is extremely accurate. The resolution of 1 s ?  139 ? s 
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confirms the multimedia timer is capable of generating intervals of one second 
reliably. 

 
Figure 2-13: Multimedia Timer 1 Hz Frequency 

2.3.2.4 CPU Usage 
The multimedia timer consumes the very little in terms of CPU resources. In all the 
cases presented in sections 2.3.2.1 to 2.3.2.3, the multimedia timer consumed the 
same amount of resources. The CPU usage is shown in Figure 2-14. 

 
Figure 2-14: Multimedia Timer CPU Usage 

The average amount of CPU resources consumed by the multimedia timer was 
0.9957%. Therefore, the multimedia timer consumes a very small portion of the 
available processing power, especially compared to the 83.59% of the loop timer 
(refer to section 2.2.2). Therefore, the application that encapsulates such a 
multimedia timer has ± 99.0043% of the CPU resources to its disposal, depending on 
other the processes running on the system. 

2.3.2.5 Conclusion 
As was stated in section 2.3.2, Microsoft tests have determined that lowering the 
interval at which the system time is updated to 2 ms (as was done when the 
multimedia timer was introduced) has a negligible effect on processor usage. 
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However, they report that the overall system performance is greatly reduced when a 
resolution of 1 ms is used [Peng 2002]. It was for this reason that the clock update 
interval for the multimedia timer was kept at 2 ms.  
Although it was determined that the multimedia timer is capable of generating a 1 ms 
interval (refer to section 2.3.2.1), 2.398% of those intervals deviated from the 
required interval by more than 500 ? s. In the case of the 50 Hz multimedia timer 
(refer to section 2.3.2.2), this percentage was increased to 35.4 %. It does however 
deliver a reliable performance for an interval of one second (refer to section 2.3.2.3). 
However, the multimedia timer uses no more that 1% of the available CPU 
resources, as long as the clock update interval for the multimedia timer is kept at 2 
ms [Peng 2002]. 
Although the results clearly show that the multimedia timer outperforms the loop 
timer in terms of resource consumption and the system timer in terms of accuracy 
(refer to section 2.3.1), it is less accurate than the loop timer. The multimedia timer is 
able to measure an interval of one millisecond with a maximum deviation of ± 1 ms 
whereas the loop timer was able to do it reliably to 200 ? s.  

2.4 POSIX Timer 
Section 2.3 focussed on software timers provided under the WIN32 platform. The 
POSIX standard for UNIX based operating systems such as Linux, UNIX, Solaris and 
AIX [Beal et al. 2003] provide timing mechanisms of their own. : 
?  BSD Timers: 

The BSD timers are interval timers with a granularity of around 10 ms. This 
seems similar to the system timer (refer to section 2.3.1) and it is expected that 
the BSD timers is similar to its WIN32 counterpart. However, the result exhibited 
by such a timer is presented nonetheless.  

?  IEEE 1003.1 Real-Time Timers – These timers are supposed to have the ability 
to measure intervals with a maximum deviation in the order of microseconds. 
However, IEEE 1003.1 is a real-time extension to UNIX, and therefore not 
included in the standard Linux kernel distributions. The IEEE 1003.1 standard is 
an extension to a UNIX base operating system, also known as the Real-Time 
Extension, or Real-Time Linux. However, as is the case with the real-time 
extensions to the WIN32 platform (refer to section 1.3 and also section 3.3) the 
Real-Time Linux timers are beyond the scope of this dissertation. 

The results of these timers performance are presented below. 

2.4.1 BSD Timers 
These timers are included with the normal Linux kernel distributions. Three types of 
timers are available: 
?  A timer that is able to measure intervals. When the interval expires, a signal is 

sent to the application that encapsulates the timer as a notification. 
?  A timer that quantifies the processor time used by the timer. 
?  A profiling timer that measures the processor time used by the timer in addition to 

the time the processor spends on system calls related to the timer. 
Therefore, the BSD timer capable of measuring intervals is under investigation in this 
section. An application was developed that initialises and executes such a timer. The 
results are presented below. 
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2.4.1.1 BSD Timers (1 kHz Frequency) 
The results for a frequency of 1 kHz are presented in Figure 2-15. The figure shows 
the performance of the timer over a period of 32 seconds. It is clear that the 
performance of the BSD timer differs from that of the WIN32 system timer discussed 
in section 2.3.1.1. 

 
Figure 2-15: BSD Timer (1 kHz) 

The minimum interval duration recorded was 1.070 ms and the maximum 7.976 ms. 
Compared to the system timer, this is a vast improvement, however, its performance 
is surpassed by that of the multimedia timer. The figure shows that the BSD timer 
was able to measure an interval close the one millisecond. Over a period of 60 
seconds, the timer was able to do this once.  
The number of intervals that were greater than 1.5 ms equates to 99.99633% of the 
intervals measured. Accordingly the timer exhibits a resolution of 1 ms ± 7.976 ms. 

2.4.1.2 BSD Timers (50 Hz Frequency) 
Figure 2-16 shows the performance of the timer over a period of sixty seconds. The 
frequency of the timer set to 50 Hz and was supposed the measure intervals of 20 
ms. The minimum interval duration recorded was 20.885 ms and the maximum 
28.014 ms.  

 
Figure 2-16: BSD Timer (50 Hz) 
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Therefore the resolution of the timer in this case is 20 ms ± 8.014 ms. Again the BSD 
timer outperforms the system timer in that it is able to generate an interval of 20 ms 
within a smaller margin of error.  
However, the multimedia timer, whose resolution was 20 ms ?  613 ? s (refer to 
2.3.2.2), surpasses the BSD timer. As is clear from the figure, the timer was not able 
to generate an interval smaller than 20.885 ms. Accordingly, the required interval 
duration is exceeded by more that 500 ? s 100% of the time. 

2.4.1.3 BSD Timers (1Hz Frequency) 
With the frequency set 1 Hz (presented in Figure 2-17), the minimum interval 
duration recorded was 1.000830 seconds and the maximum 1.011517 seconds. The 
timer was run for a period of 60 seconds, as shown in the figure.  

 
Figure 2-17: BSD Timers (1 Hz) 

Therefore a consistent one second interval was not achieved. The desired interval 
size should be as close the one second as possible. The resolution of the timer is 1 s 
± 11.517 ms.  
On this occasion, the performance of the BSD timer is comparable to the 1 s ± 
11.763 ms of the system timer (refer to section 2.3.1) at a frequency of 1 Hz. 
However, as was the case with the previous frequencies, the multimedia timer whose 
resolution was 1 s ?  139 ? s (refer to section 2.3.2.3), outperforms the BSD timer.  

2.4.2 Conclusion 
Section 2.4.1 shows that the BSD is capable of better performance than the system 
timer, but is surpassed by the multimedia timer. Since the loop timer outperforms the 
multimedia timer in terms of accuracy, it exhibits better performance than the BSD 
timer as well. Since a timer with better accuracy exists and the maximum deviation of 
the timer is in the order of milliseconds, the CPU usage of the BSD timer is not 
presented (as was the case with the system timer in section 2.3.1). Even if the BSD 
timer put the CPU under less strain than the multimedia timer (which is difficult 
considering the average CPU usage of the multimedia timer is 0.9957%), the 
multimedia timer is a better timing mechanism since it is more accurate.  

2.5 External Timers 
Hard real-time systems that rely heavily on precise timing constraints will typically be 
found in, for example, avionics systems [Newcomer 2000]. Such systems use high-
resolution hardware timers as the timing source. As mentioned in section 1.3, such 
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hard real-time systems have to be thoroughly tested. These testing systems are often 
based on commercial operating systems such as Windows 2000 and XP. 
To circumvent the inadequacies of WIN32 timers that were exposed in 2.3 above, 
external timers have been developed that deliver the required high-resolution timing 
mechanism to the computer. Since these devices are external to the PC, the 
communication is facilitated via the serial port.  
Such an external timer device is designed to generate signals at a fixed and reliable 
frequency based on an oscillating quartz crystal. These signals are transmitted using 
the control line signals provided by the serial port technology. These include: 

?  RLSD – receive-line-signal-detect 
?  CTS – clear-to-send 

?  DSR – data-set-ready. 
A common nominal signal frequency is 1 kHz, although these devices may be 
programmed to generate signals at other frequencies as well. Since more than one 
control signal may be transmitted via the control lines, such devices often transmit 
signals at different frequencies on different control lines simultaneously.  
A typical configuration is a device that emits signals at 1 kHz (one millisecond 
intervals), 50 Hz (20 millisecond intervals) and 1 Hz (one second intervals). 
An application was developed to catalogue the time at which the control signals are 
received. This application incorporates the waitable objects discussed in section 
1.4.3. A waitable object is configured to repeatedly wait for the signals from the 
external timer. The timestamps at which these signals are received is recorded and 
accordingly, the results are presented in section 2.5.1 through 2.5.3. 

2.5.1 1 kHz Synchronisation Signal 
Figure 2-18 illustrates the elapsed time between the signals from the synchronisation 
box over a period of approximately 30 seconds where the interval frequency was set 
to 1 kHz (i.e. 1 ms intervals). 

 
Figure 2-18: 1 kHz Synchronisation Box 

Over the period of 30 seconds the minimum interval recorded was 0.953 ms and the 
maximum interval 1.047 ms. The timer thus exhibits a margin of error of 47 ? s. Since 
the crystal on which the signal is based oscillates at a constant interval, it is safe to 
assume that the deviation is due to delays induced by the operating system. 
However, a timer with a resolution of 1 ms ?  47 ? s is very accurate. It outperforms 
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the loop timer whose resolution was 1 ms ± 167 ? s (refer to section 2.2.2.2.1) for a 
frequency of 1 kHz. 

2.5.2 50 Hz Synchronisation Signal  
With the frequency set to 50 Hz (i.e. 20 ms intervals), the minimum interval recorded 
was 19.999 ms and the maximum 20.001 ms. This is illustrated in Figure 2-19 and 
depicts a period of approximately 60 seconds. 

 
Figure 2-19: 50 Hz Synchronisation Box 

In this instance, the performance of the loop timer is comparable to the signal from 
the synchronisation box. Therefore, the resolution exhibited was 20 ms ± 1 ? s. The 
loop timer’s resolution was 20 ms ± 2 ? s for a frequency of 50 Hz. However, reading 
the signal from the serial port consumes virtually no CPU resources, whereas the 
loop timer consumes nearly 84% (refer to section 2.2.2.2.2).  

2.5.3 1 Hz Synchronisation Signal 
Figure 2-20 illustrates a period of seconds in which the 1 Hz (i.e. 1s intervals) from 
the synchronisation box. The minimum interval recorded was 0.999999 seconds and 
the maximum 1.0000000 seconds.  

 
 Figure 2-20: 1 Hz Synchronisation Box 

The resolution in this case is 1 s ± 1 ? s which was the resolution calculated for the 
loop timer in section 2.2.2.2.3.  
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2.5.4 Conclusion 
Since the external timer is an accurate real-time timer based on an oscillating quartz 
crystal, the results exhibited by the synchronisation serve to verify the accuracy of 
the “timestamp calculator” software that will be discussed in section 4.1. The 
timestamp calculator was used to measure the timestamp throughout chapter 2. 
Since the external timer, the synchronisation box, is a proven method of providing a 
real-time signal, the fact that the maximum deviations recorded in sections 2.5.1 
through 2.5.3 were less than 50 ? s, it stands to reason that the timestamp calculator 
could be trusted to provide an elapsed time interval whose accuracy is in the order of 
50? s.  
The elapsed time measurements presented thus far, as well as in forthcoming 
chapters are thus assumed to be within about 50 ? s of the actual elapsed time, since 
all the measurements rely on the timestamp readings and calculations. 

2.6 Problem Statement 
As stated in 1.3, a soft real-time system allows the timer some latitude in missing 
deadlines. This is in contrast to hard real-time systems, where such a situation would 
constitute a system failure. Sections 2.1 through 2.5 describe the software timers 
provided by the WIN32 and Linux operating systems and some comparisons are 
made between them.  
Reconsider the results presented in these sections. The following is apparent in 
regard to the smallest interval measured (1 kHz frequency = 1 ms intervals): 
?  The loop timer (section 2.2.2): Of all the timers whose performance was 

quantified in sections 2.2.2, 2.3.1, 2.3.2 and 2.4.1, the loop timer performed the 
best in terms of accuracy compared to the external timer in section 2.5. The 
resolution exhibited at 1 kHz was 1 ms ?  167 ms.  

?  The system timer (section 2.3.1): The minimum interval of 5.881 ms and a 
maximum of 25.431 ms were recorded. Since 1ms was required, the result is a 
timer with a resolution of 1ms ?  24.431 ms (25.431 ms – 1 ms).  

?  The multimedia timer (section 2.3.2): With a minimum interval of 0.503ms and a 
maximum of 1.983ms, when 1ms was required, a timer with a resolution of 1ms 
?  0.983ms is yielded (1.983ms – 1ms). Therefore, the multimedia timer will miss 
the deadline by as much as 0.983ms. 

?  The POSIX timer (section 2.4): The resolution of this timer turned out to be 1 ms 
?  6.976 ms. The maximum interval was 7.976 ms and the minimum 1.070 ms. 
Therefore, the timer could deviate from the required interval by almost 7 ms. 

The comparison of the performance of the timers can be summarized as follows: 
?  The loop timer is the most accurate (the maximum deviation is less than 

500? s). 

?  The system timer is the least accurate (the maximum deviation is more than 
one millisecond). 

?  The BSD timer is more accurate than the system timer, but less so than the 
multimedia timer (the maximum deviation is more than one millisecond as 
well). 

?  The multimedia timer is less accurate than the loop timer (the maximum 
deviation is in the order of one millisecond).  

Since the multimedia timer and loop timer are the most accurate, their attributes are 
more conducive to the notion of a real-time timer than the system- and BSD timers. 
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Although the loop timer is the most accurate, it also puts the most load on the CPU. 
The multimedia timer consumes very little in terms of CPU resources, but its 
maximum deviation is ± 1 ms. Thus, from the evidence collected above and 
summarized in Table 2-1 it is clear that the highest precision software timer possible 
under the WIN32 operating system guarantees that the interval length of the timer 
will be within ?  1ms of what was desired duration, without consuming all available 
CPU resources.  
The aim of this research is to determine if it is possible to design and implement a 
software timer under the WIN32 operating system that yields better performance than 
that of the multimedia timer. It is clear that to implement a timer that is efficient in 
terms of resource usage and accuracy, a compromise between the two is a probable 
side effect.  
Nominally, it was decided aim at a margin of error that improves on the best margin 
of error exhibited by the timers studied above by at least 50% – thus a resolution of 
at least 1ms ?  500? s is sought. 

Table 2-1: Timer Resolution Comparison 

Timer Resolution 
WIN32 System Timer 1 ms ?  24.431 ms 
WIN32 Multimedia Timer 1 ms ?  0.983 ms 
Linux Timer 1 ms ?  6.976 ms 
Referring to sections 2.2.2 and 2.2.2.2, it is clear that the design and implementation 
of the timer has to take processor usage into account, and therefore it is an additional 
requirement that the timer to be built should not consume all available resources.  
It is also necessary for the timer to fire an event when the interval duration has 
elapsed as an indication of this event to the application using the timer.  
Therefore, the problem statement is as follows: 
A timer needs to be developed that presents a margin of error less than or equal to 
500? s, that consumes minimal processor resources and that fires an event at the 
conclusion of each interval.   
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Chapter 3 
Design and Implementation Decisions 

This chapter describes the design and implementation decisions made to solve the 
problem as it is described in section 2.6. The aim of this chapter is to familiarize the 
reader with the process that was adopted, in other words to show how the problem 
was tackled. Firstly, the choice of programming language is discussed in section 3.1. 
Furthermore, since it is important that the notion of Application Programmer 
Interfaces (APIs) is understood, this is explained in section 3.2. Section 3.3 focuses 
on the choice of operating system followed by a discussion in section 3.4 on the 
important aspect of real-time systems, namely: Process Scheduling Priority. 

3.1 Development Programming Language 
The development language chosen was C++. The reasons are simple in that it 
provides easy access to both the WIN32 and POSIX APIs (section 3.2). In addition, it 
is widely used and therefore familiar to most researchers.  
From the outset it was decided that the design of the timer would heavily rely on 
object orientation, the programming paradigm for which C++ was designed [Lischner 
2003]. C++ also allows the programmer to implement and optimize software in an 
efficient manner [Bulka et al. 1999].   

3.2 Application Programming Interfaces (APIs) 
An API is a set of functions that is exposed by a piece of software and that may be 
used by another application to interact with that software [Palmer 2002]. An “Interface 
Definition” informs the API user how to use (or invoke) the software in other code 
[Webopedia 2003].  
These functions may be a set of protocols, routines, and/or tools for building software 
applications. An efficient API will simplify software development in providing quick 
access to building blocks provided by another application [Wikipedia 2006].  
A software module, containing the implementations of mathematical functions for 
example, may be made available to others through an API, thereby exposing these 
functions to another user’s application. Let the name of such a module be the “Math 
Module”. 
This functions within the math module is made available via an API. This is depicted 
in section Figure 3-1. 

 
Figure 3-1: API Definition 

As is shown Figure 3-1, the math module exposes two functions: 
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?  float circa(float radius); - calculates and returns the circumference of a circle with 
a specific radius. 

?  float area(float radius); - calculates and returns the area of a circle with a specific 
radius. 

The math module functionality will typically be compiled into a DLL (Dynamic linked 
library) under the WIN32 operating system or dynamically linked Linux library under 
Linux. The user’s application will be either statically or dynamically linked to the DLL, 
and will be able to access the function via the DLLs API.  
Both the WIN32 and POSIX environments provide APIs that give a developer the 
ability to access core functions within the operating system. These APIs were used to 
develop the solution. The ability to create threads, initialise platform timers and in the 
case of the WIN32 platform – to initialise the multimedia subsystem, is made 
available in the APIs.  

3.3 Operating Systems 
On the consumer end of computer hardware, specifically the x86-based platforms, 
the primary operating systems available to the consumer are the various WIN32 
platforms (Windows 9x, Windows ME, Windows NT, Windows 2000 and Windows 
XP) and the UNIX platform that uses the POSIX standard (Linux – specifically the 
2.6.x line of kernels). 
As discussed in section 1.3, real-time extensions to these operating systems exist to 
address their real-time inadequacies (also according to [Klein et al. 1994] and 
[Hardeski 2001]). However, it was decided that a solution would be sought without 
the aid of such extensions. 

3.4 Process Priority 
The WIN32 operating system, like its POSIX counterpart, uses a process scheduling 
mechanism known as preemptive multitasking. This not only allows the operating 
system to ensure that each process being scheduled receives a fair amount of 
processing time – it also allows an external hardware event to interrupt the operating 
system (in other words the operating system may be preempted).  
Processes demanding processing time may be divided into two groups: 
?  Processes waiting for input or a specified time to elapse (idle processes) for 

example a timer. 
?  Processes that are fully utilizing the processor. 
The architecture of both the Linux and WIN32 operating systems consists of two 
levels: user mode and kernel mode. Applications in user mode are limited in terms of 
their access to system resources, whereas kernel processes have unrestricted 
access to system memory and external devices. However, in both systems, these 
processes are serviced at fixed at intervals with a typical size of 10 ms [Peterson et 
al. 1998]. Therefore a situation may arise where all processes are serviced in less 
than 10ms, however, the processes will not be serviced until the next 10ms interval. 
Moreover, certain kernel level processes are non-preemptable and may take an 
unknown amount of time to complete. 
Both the WIN32 and Linux platform allow the user to set a process’s priority. In the 
case of the various timer solutions presented in this dissertation, the timer should 
enjoy the highest possible priority to ensure that its timer measurement is as 
accurate as possible.  
Under the WIN32 platform, the following are possible priority settings: 
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?  IDLE_PRIORITY_CLASS  – This class is for low priority threads that only need to 
run when the system is idle. Processes with this priority may be pre-empted by 
processes of higher priority. 

?  NORMAL_PRIORITY_CLASS – Processes with this priority are not in need of 
any special scheduling. 

?  HIGH_PRIORITY_CLASS – this class is used for a process that performs time-
critical tasks that must be executed immediately. The threads of such a process 
may pre-empt any other thread with lower priority. 

?  REALTIME_PRIORITY_CLASS – This class is specified when a process 
requires the highest possible priority. Threads of such a process preempt the 
threads of all other processes, including operating system processes. This is also 
the priority class that the timer implementation will be awarded 

Under the Linux platform, process priority allocation is somewhat simpler in that a 
process is given a priority number from 1 to 20, 20 being the highest priority. Any 
process of higher priority may pre-empt another process of lower priority. Therefore 
the timer implementations under the POSIX standard were given a priority of 20. 
Note that, even though a process may have a priority of 20, it cannot pre-empt kernel 
processes, at least not for current (at the time of this writing) normal Linux 
implementations. However, the Linux 2.6.x line of kernels are said to allow this and 
therefore this version of the research that relate to POSIX relies on this version of 
Linux [Santhanam 2003]. 
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.

Chapter 4 
Solution 

In this chapter, a workaround is proposed for the shortcomings identified on the 
WIN32 platforms in regard to the software timers that it provides. However, before 
the timer implementation is presented, the timestamp calculator is discussed. This 
piece of software is significant as it is used in the solution to calculate timestamps. 
This is discussed in section 4.1. Initial solutions to this problem were not successful; 
however, those rejected solutions that had a direct hand in the final solution are 
presented in section 4.2. The actual solution, called a Thread Induced Waitable 
Timer or TIW timer, is presented in section 4.3. With a solution implemented, the 
validity and performance thereof has to be investigated, and this is done in section 
4.4 where its performance is compared to the software timers discussed in chapter 2. 
As stated in section 1.5, the external hardware timer is the benchmark for the TIW 
timers. The TIW timer is compared to this timer in section 4.5. 

4.1 Timestamp Calculator 
A timestamp may be defined as the time at which a specified event occurs. This time 
is usually relative to another timestamp referred to as a base timestamp. In the case 
of the timestamp calculator, this is the time at which the timer is turned on. In other 
words, all the timestamps that the timestamp calculator generates represent an offset 
from the timestamp at which the calculator was initiated. 
The timestamp calculator is the subject of the initial discussion in this chapter. This 
piece of software was used in the development of all the timers discussed in both this 
chapter and chapter 2, specifically for the calculation of interval duration. As was 
stated in section 2.5, these timestamps are within 50 ? s of the actual timestamp. 
Accordingly it is imperative to understand the timestamp calculator before the 
solution is discussed. 
The timestamp calculator is based upon the high-resolution counters discussed in 
section 2.2. The timestamp calculator accesses one of these counters (depending on 
the processor) whenever a timestamp is required. The value of the counter as well as 
the knowledge of the frequency at which it is incremented may be combined into the 
calculation of a timestamp. The mechanisms used to accomplish this are discussed 
in section 4.1.1. 

4.1.1 Query Functions 
The WIN32 API provides the means to access the high-resolution counters. Two 
routines are available to developers that simplify the implementation. These routines 
are: 
?  QueryPerformanceFrequency 

If the high-resolution performance counter is available, this function retrieves the 
frequency of the counter. If the hardware is a uni-processor system, the 
frequency is 3.579545 MHz whereas the frequency equates to the CPU’s 
frequency in a multi-processor environment (as discussed in section 2.2). The 
units are in Hz (counter ticks per second). This routine is called once, since the 
frequency is constant and therefore there is no runtime overhead to access it. 

?  QueryPerformanceCounter 
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If the high-resolution performance counter is available, this function retrieves the 
current value of that counter. If the hardware is a uni-processor system, the 
counter is read from the Power Management timer whereas the CPUs timestamp 
counter (TSC) is utilised in a multi-processor environment (as discussed in 
section 2.2.1). As is apparent from section 2.2.2.2, the time to access this routine 
combined with the calculation of the timestamp is less than 50? s. 

All the routines required to access these counters in the POSIX environment were 
implemented utilising assembler instructions as opposed to API calls. The equivalent 
implementations for the calls above were realized in the POSIX environment as 
follows:  

?  QueryPerformanceCounter 
The TSC is accessed via assembler calls. Note that for readability, the assembler 
is presented in normal Turbo Assembler syntax, in other words the way it would 
be implemented under a WIN32 operating system. However, the Linux equivalent 
is provided directly thereafter. 
//---------------------------------------------------------- 
// WIN32 Assembler presented for readability 
//---------------------------------------------------------- 
CPUID;   // Return the identification  

// of the CPU for the rdtsc  
// instruction 

RDTSC;  // Read the current value of 
// the high-resolution counter 
// into a 64 bit integer 

mov var_low, EAX;  // Move the lower part of the 
// 64 bit integer into EAX  

mov var_high, EDX; // Move the higher part of the 
// 64 bit integer into EDX 

Subsequently, var_low and var_high are combined to form a single 64bit value 
that represents the value read from the TSC on the CPU. 
//---------------------------------------------------------- 
// LINUX (POSIX) Assembler – the actual implementation 
//---------------------------------------------------------- 
asm("CPUID;"); 
asm("rdtsc;"); 
asm("mov %%eax, %0" : "=r"(var_low)); 
asm("mov %%edx, %0" : "=r"(var_high)); 

?  QueryPerformanceFrequency 
Unfortunately, the POSIX implementation under this routine is not as elegant. 
Again the implementation will first be presented in “WIN32” syntax in an 
endeavour to increase readability. 
QueryPerformanceCounter (&start); // Read an initial value 

// of the counter and  
// store it in a       
// variable “start” 

sleep(1000); // Sleep for a second 
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QueryPerformanceCounter (&end); // Read an end value of 
// the counter 

frequency = (end – start); // Therefore the       
// frequency is        
// calculated as the   
// difference between  
// start and end 

4.1.2 Timestamp Calculation 
The combination of the two routines discussed in section 4.1.1 may be used to 
calculate a timestamp. With the value of the current high-resolution counter known as 
well as its frequency, the time elapsed since the counter started incrementing may be 
calculated. Since the counter starts incrementing from zero the moment that 
electrical power is applied to the computer, the exact time since the PC was turned 
on can be determined. Likewise, the time that has elapsed since the previous 
occasion on which the counter was polled can be calculated. 
Let ?  be the current value of the high-precision counter and ?  be its frequency. 
Remember that the frequency is specified in Hz and represents the number of times 
that the counter is incremented per second. Therefore the time elapsed since the 
computer was turned on ?  (representing the current timestamp) is calculated as: 

 
In this case, the value ?  is in seconds, but it may be processed to represent values in 
ms, ? s, ns etc. This is elaborated on in the following section. 

4.1.2.1 Precision 
The timestamp precision in the final version of the timestamp calculator is 
configurable. In other words, the timestamp calculator returns the timestamp in 
seconds, milliseconds, microseconds etc. This is accomplished through the division 
of the timestamp ?  (as calculated above ). This is required for the obvious reason that 
the timestamp calculator has to measure intervals considerably smaller than 1 
second. 
The timestamp calculator is configured via a floating-point parameter specifying the 
precision. The value specified and the precision obtained is tabulated in Table 4-1. 
Let ?  denote the requested precision. 

Table 4-1: Timer Calculator Precision 

Precision Units Requested Precision (? ) 
Seconds 1 (10 to the power 0) 
Milliseconds 0.001 (10 to the power -3) 
Microseconds 0.000001 (10 to the power -6) 
Nanoseconds 0.000000001 (10 to the power -9) 

4.1.2.2 Process of timestamp calculation 
The following process of the timestamp calculator is designed in such a way that the 
timestamp calculated is relative to a base timestamp taken at initialisation of the 
timer. This process is as follows: 
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?  When the timestamp calculator is initialised, an initial timestamp is calculated. 
This timestamp is saved as the base timestamp ? . The base timestamp ?  is a 
representation of the time elapsed since the high-resolution counter started 
incrementing, in other words the number of counter ticks since the computer was 
turned on. The time elapsed ?  is divided by the precision ?  to obtain the base 
timestamp, therefore: 

 
?  Every time a subsequent timestamp is requested the current timestamp relative 

to ?  is calculated and returned. Therefore, the current timestamp ?  is calculated 
as: 

 

4.1.3 Class Description 
As was stated in section 3, a fundamental design decision was to implement the 
solution using object orientation. Therefore timestamp calculator is designed as a 
class that may be instantiated by any application that requires such a component to 
calculate timestamps.  
This class design is simple and consists of the following: 

Timestamp Calculator Class 
The C++ class definition of the timestamp calculator class is as follows: 
class TimestampCalculator  
{ 
  public: 
    TimestampCalculator  (double precision); 
    ~ TimestampCalculator  (void); 
 
    bool enabled (void); 
    void reset (void); 
    unsigned long long getTimestamp (void); 
 
  private: 
   
    unsigned long long performanceFrequency ; 
    unsigned long long performanceCounter ; 
   
    unsigned long      baseTimestamp; 
    unsigned long      precision; 
}; 
The notable functions of the class are as follows: 
Class Constructor ( TimestampCalculator (double precision); ) 
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Input Parameters: Single floating-point value – the precision ? . 
The current timestamp is calculated and saved as the base time ? , with precision 
as specified by ? . 
Reset Function ( void reset (void);) 
The reset function resets the base time to the timestamp at the moment the reset 
function is called. 
Get Timestamp Function (unsigned long long getTimestamp();) 

This function returns the current timestamp ? . 

Typically, a single application will use only one instance of the timestamp calculator, 
which is the case in the final solution. However, it is of course possible to instantiate 
multiple instances of this class. 

4.2 Rejected Solutions 
During the course of this research, a number of unsatisfactory solutions to the 
problem of constructing a soft real-time timer were implemented. However, as is 
often the result of a trial and error process, elements of the final solution are 
frequently a part of a rejected implementation that preceded it. The rejected 
scenarios that contributed to the final solution are presented in the following sub-
paragraphs. In fact, it is necessary to understand these rejected solutions in order to 
understand the eventual solution. The rejected solutions are all based on the WIN32 
operating system platform. 

4.2.1 WIN32 Sleep Timer (Non Multimedia) 
The sleep timer is a waitable timer (see 1.4.3) based on the WIN32 system timers 
discussed in 2.3.1. As seen in 2.2.2 with the loop timer, it is essential that some 
mechanism be found to ensure that the timer does not take up all the available 
processing power of the CPU. 
To accomplish this, we turn to a mechanism provided by the WIN32 API. The WIN32 
API provides a mechanism to suspend a thread for a specified amount of 
milliseconds, called the “Sleep” function. The desired number of milliseconds for 
which the process is required to sleep is specified as a single parameter. The 
implementation of the sleep timer utilising this function is explained in the algorithm in 
section 4.2.1.1. 

4.2.1.1 Algorithm 
The algorithm consists of a single loop, wherein the execution thread is instructed to 
sleep for ?  ms. The current timestamp ? current is taken before the loop commences, 
and then after completion of every sleep interval. The value of ? current is obtained 
from the timestamp calculator calculator’s function, getTimestamp()  discussed in 
section 4.1. At this point, a timer event may be fired.  
This is depicted in algorithm 2. 
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Algorithm 2 - Normal Timer Algorithm 

It should be assumed that every new assignment of a value to ? current in the 
algorithm is accompanied by some statements necessary to store this value. Using 
this algorithm, the goal of the software timer is to generate intervals of duration ?  
ms. 

4.2.1.2 Results 
The performance of the timer is presented in this section. The analysis techniques 
are as described in section 1.5. The timestamp calculator was used calculate the 
timestamps. 

4.2.1.2.1 1 ms interval (1 kHz) 

The results for a frequency of 1 kHz are illustrated by Figure 4-1. The desired interval 
should be as close to one millisecond (1000 ? s) as possible. The maximum interval 
recorded was 16.336 ms (16336 ? s) and the minimum interval 14.528 ms (14528 
? s). The timer therefore provides a resolution of 1 ms ± 15.336 ms on 1 kHz 
frequency. Already it is clear that this timer is not effective with the realisation that 
although an interval of 1 ms was desired, an interval that deviates by ± 15 ms was 
obtained. Accordingly, the requirement of a maximum deviation of 500 ? s is not met. 

 
Figure 4-1: Sleep Timer (Non Multimedia) (1 kHz) 

4.2.1.2.2 20 ms interval (50 Hz) 

The performance for a frequency of 50 Hz is illustrated by Figure 4-2 and intervals 
close to 20 ms (20000 ? s) is expected. The maximum interval recorded was 31.879 
ms (31879 ? s) and the minimum interval 30 ms (30000 ? s). The timer therefore 
provides for a resolution of 20 ms ± 11.879 ms on 20 ms interval. This is further proof 

? current := getTimestamp()    
While the timer is running 

 Sleep (for ?  ms) 
 ? current := getTimestamp()   
 Fire Timer Event 
End While; 
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of the ineffectiveness of the timer. It seems that in actual fact, if an interval of 20 ms 
is desired, more accurate results could be obtained when required interval duration is 
set to one millisecond. 

 
Figure 4-2: Sleep Timer (Non Multimedia) (50 Hz) 

4.2.1.2.3 1 second interval (1Hz) 

Finally, the timer was tested with a frequency of 1 Hz and its performance on this 
occasion is depicted in Figure 4-3. The target interval is as close to one second 
(1000000 ? s) as possible. 

 
Figure 4-3: Sleep Timer (Non Multimedia) (1 Hz) 

The maximum interval recorded was 1.000166 s (1000166 ? s) and the minimum 
interval 0.998872 ms (998872 ? s). The timer therefore provides for a resolution of 1 s 
± 0.2 ms at a frequency of 1 Hz interval. This is actually an occasion where the 
where the timer exhibits acceptable results, although it fails on the smaller intervals. 

4.2.1.3 Conclusion 
It is clear from the results of the 1 ms and 20 ms interval tests that the timer is not 
suitable and the resolution is not high enough, even though timer is effective for a 1 
Hz frequency. The requirement for the real-time software timer specified in section 
2.6 requires the maximum deviation from the requested interval duration to be 500? s 
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or less and it is clear that the sleep timer does comply in these two cases. The 
excellent performance of the timer in the 1 Hz study is not adequate to allow the 
timer to be considered as a soft real-time solution. Neither is the fact that the timer 
consumes minimal system resources (due to the sleep instruction) nor the fact that 
the timer event is able to fire at the conclusion of every interval.  
The reason for the poor performance of the sleep timer is that the sleep function only 
returns when the underlying operating system informs it that the desired sleep 
interval has elapsed. The reason for the tardiness of the operating system was 
covered in section 2.3.1. An attempt was made to solve this problem using the 
multimedia sleep timer in section 4.2.2. 

4.2.2 WIN32 Sleep Timer (Multimedia Timer) 
This timer is a derivative of the sleep timer discussed in 4.2.1. As discussed in 
section 2.3.2, it is possible to increase the frequency at which the system clock is 
updated when relying on the multimedia timer. This can be done via the multimedia 
sub-system initialisation API calls provided by the WIN32 operating system platform 
[MSDN 2005]. When the subsystem is enabled, the timer object, including the Sleep 
instruction is serviced at the highest rate provided by the WIN32 platform – 500 Hz or 
every 2 ms. 

4.2.2.1 Algorithm 
Algorithm 3 is essentially the same as Algorithm 2 discussed in section 4.2.1.1, 
barring the initialisation of the multimedia subsystem before the timer commences its 
loop, thus yielding Algorithm 3 below: 

Algorithm 3 - WIN32 Multimedia Sleep Timer Algorithm 

4.2.2.2 Results 
The performance of the WIN32 sleep timer is presented in this section. Again, the 
analysis techniques conform to the guidelines described in section 1.5 and the 
timestamp calculator was used to calculate the timestamps.  

4.2.2.2.1 1 ms interval (1kHz) 

To generate 1ms (1000? s), the frequency of the timer is set to 1 kHz and the results 
are presented in Figure 4-4. The figure shows the results over the first ±7 seconds to 
improve the readability of the graph. However, the experiment was conducted over a 
period of 60 seconds. The maximum interval recorded was 2.024 ms (2024 ? s) and 
the minimum interval 1.883 ms (1883 ? s). 

Initialise the Multimedia Subsystem 

? current := getTimestamp()  
While the timer is running 

 Sleep (for ?  ms) 
 ? current := getTimestamp() 
End While 
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Figure 4-4: Sleep Timer (Multimedia) (1 kHz) 

The timer therefore provides for a resolution of 1ms ± 1.024 ms on 1 ms interval. In 
fact, the average interval duration was 1.95 ms. This is an improvement from the 
result of the normal sleep timer in section 4.2.1.2.1. However, it only serves to 
illustrate the one millisecond margin error that is the best that the normal WIN32 
platform provides (refer to section 2.6). 
It should be noted that of the 60000 intervals recorded over the period of minute, the 
desired interval of 1 ms was exceeded by more than 1 ms (in other words, the 
number of intervals of 2 ms and more) 119 times. This equates to 0.198% of the 
intervals. 

4.2.2.2.2 20 ms interval (50 Hz) 

The results for a frequency of 50 Hz are illustrated by Figure 4-1. The desired interval 
should be as close to 20 ms (20000 ? s) as possible. The figure shows the 
performance over a period of approximately 15 seconds, although the experiment 
was conducted over the course of a minute. 

 
Figure 4-5: Sleep Timer (Multimedia) (50 Hz) 

Over a period 60 seconds, the maximum interval recorded was 21.906 ms (21906 
? s) and the minimum interval 20.059 ms (20059 ? s). The timer therefore provides for 
a resolution of 20 ms ± 1.906 ms at a frequency of 50 Hz. As was the case with the 1 
kHz sleep timer in section 4.2.2.2.1, the maximum deviation exceeds 500 ? s, which 
is outside the range of specified by the requirements in section 2.6.  
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4.2.2.2.3 1 second interval (1Hz) 

Figure 4-1 illustrates the results for the multimedia sleep timer at a frequency of 1 Hz 
and accordingly the desired interval duration is one second (1000000 ? s). Results 
shown in the figure spans a period of 60 second. 

 
Figure 4-6: Sleep Timer (Multimedia) (1 Hz) 

The maximum interval recorded over the period under scope was 0.999956s 
(999956? s) and the minimum interval 0.983568s (983568? s). The timer therefore 
provides for a resolution of 1 s ± 16.432 ms at a frequency of 1 Hz.  
Strangely enough, where the 1 Hz interval yielded the best performance from the 
sleep timer in section 4.2.1, the worst performance is exhibited in the case of the 
multimedia sleep timer under discussion in this sub-paragraph.  

4.2.2.3 CPU usage 
The resource consumption recorded in sections 4.2.2.2.1 to 4.2.2.2.3 was basically 
the same and is represented by Figure 4-7. The maximum usage recorded at any 
given time was 1% and the minimum 0%. The average usage was 0.768%. 
The multimedia sleep timer therefore consumes very little in terms of CPU resources 
and actually surpasses the performance of the multimedia timer recorded in section 
2.3.2.4. 

 
Figure 4-7: Sleep Timer (Multimedia) CPU usage 
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4.2.2.4 Conclusion 
Although the multimedia sleep timer’s performance is a considerable improvement 
over the sleep timer without the multimedia subsystem enabled, it still fails to meet 
the requirement of a margin of error less than 500 ? s. Again minimal resources are 
consumed (less than 1%) and an event is fired at the conclusion of each interval. 
However, as was the case with the normal sleep timer, this is insufficient to qualify it 
as suitable soft real-time timer as per the definition in section 2.6. 
It is clear from the results that the smallest interval of time that a running process can 
be suspended is in the order of 1 – 2 ms. This is derived from the resolutions of the 
POSIX timer (section 2.4.1.1), the multimedia timer (section 2.3.2.1) and the 
multimedia sleep timer (section 4.2.2.2.1) at a frequency of 1 kHz.  
Up to this point in the dissertation, the timer with the best resolution is the loop timer 
(section 2.2.2). The sleep timers were an attempt to introduce a waiting period into 
the loop timer to prevent it from consuming all available CPU resources. However, it 
is clear from the sleep timers’ performance that to implement a timer with a maximum 
deviation of 500 ? s, it is necessary to find a mechanism to induce a waiting period of 
less than one millisecond to prevent it from consuming all available CPU resources.   

4.2.3 Critical Section Timer 
[Manko 2002] proposed a solution that uses critical sections that can be entered as 
soon as they become available. The development of this timer is an attempt to 
incorporate a waiting period in the timer to prevent it from consuming all available 
CPU resources, without inhibiting the generation of reliable intervals.  
Two threads are created, each attempting to enter a critical section shared between 
them. When this is accomplished, the thread measures the required interval in the 
same way that the loop timer would (Refer to section 2.2.2). Subsequently the thread 
relinquishes the critical section to be entered by the second thread that in turn would 
follow the same process. And so it would continue. This is depicted in Figure 4-9. 
The assumption was that forcing the threads to wait for the ownership of a critical 
section would induce sufficient idle time to allow the CPU to award its resources to 
other processes. This assumption proved to be incorrect and yet again no waiting 
period is induced and the timer consumes nearly all available processor resources. 
The average usage was 83.201% depicted in Figure 4-8. 

 
Figure 4-8: Critical Section Timer CPU usage 

However, it exhibits the same accuracy as the loop timer, providing a margin of error 
less than 500 ? s (refer to section 2.2.2). The timer may be implemented to fire an 
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event at the conclusion of each interval. However, since it consumes most of the 
available CPU resources, it is not suitable for the soft real-time implementation 
defined in section 2.6. 

 
Figure 4-9: Critical Section Timer 

4.3 Thread Induced Waitable Timer 
As stated in section 2.2, high-resolution hardware counters are supported in modern 
hardware and provide a mechanism to compute accurate timestamps as discussed in 
section 4.1. The loop timer discussed in section 2.2.2 can be used to accurately 
measure a specified interval by reading one of these counters, but consumes all 
available CPU time in the process.  
A mechanism needs to be found where these high-resolution hardware counters may 
be polled to determine timestamps without using all available processing time. The 
critical section timer (in section 4.2.3) attempts to solve this problem through the use 
of the concurrent process concept of critical sections, but as stated gives 
unsatisfactory results. 
According to the empirical evidence of section 4.2.2.2.1, if the multimedia timer is 
initialised and the sleep function instructs a thread to sleep for an interval of 
approximately 1ms, then the thread sleeps for an average of 1.95ms instead.  
Therefore the inadequacies of these solutions are known. To achieve a solution, 
these inadequacies have to be taken into account and remedied in the 
implementation.  
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Firstly a waiting period has to be enforced to prevent the timer from taking up all the 
available CPU processing time, in contrast to the loop timer and critical section timer. 
The waiting period has to be small enough for a 1 ms interval timer to be derived that 
has a maximum deviation of 500? s, unlike the sleep timers. A solution to this 
seemingly contradictory set of objectives presented itself, based on the use of 
multiple threads, inspired by the critical section timer. In fact, it turns out that two 
threads suffice to build the required timer.  
This observation suggests a way of improving the margin of error of 1 ms, without 
making excessive demands on the CPU. 
As stated, two threads are necessary which we will refer to as thread A and thread B. 
Both threads use the timestamp calculator to determine how much time has elapsed. 
Only one of these threads are active at any given time, accomplished through the 
use of a common critical section, as is the case with the critical section timer. Both 
threads are started at the same time and both will try to enter the critical section.  The 
timing between the two threads is shown in Figure 4-10. The thread that enters the 
critical section first is referred to as thread A in the rest of this section. 
Initially, thread A will wait in a loop polling the high-resolution hardware counters until 
an interval of 1 ms has elapsed after which the timer event is issued followed 
immediately by the 2 ms sleep instruction. At this point thread B is made active and 
waits in a loop polling the high-resolution hardware counters for an interval of 1 ms, 
followed by the timer event and 2 ms sleep instruction as was the case with thread A. 
Since thread A would only have been sleeping for 1 ms by this time, 1 ms from the 
timer event issued by thread B has to elapse before thread A resumes. In this time, 
neither thread is executing. This process induces the required waiting period. 
By the time that thread B has waited in the loop for 1 ms, thread A has approximately 
1 ms of sleeping time left. Therefore when thread A completes its 2 ms sleeping time, 
approximately 0.95 ms (1.95 ms – 1 ms) has elapsed since the timer event issued by 
thread B. When thread A resumes, it waits in a loop polling the high-resolution 
hardware counters for on average approximately 50 ? s (950 ? s – 1000 ? s) until 1 ms 
has elapsed since thread B started its 2 ms sleep interval. This period is the ? ?period 
in Figure 4-10.  
Therefore, from this point, thread B will resume execution after a period of on 
average 0.95ms, resulting in another ? ?period, processed by thread B in this case. 
After another approximate 0.95ms thread A resumes and so on. 

 
Figure 4-10: Thread Induced Waitable Timer Timing diagram 

Our prior results already suggest that this wait in a loop where high-resolution 
hardware counters are polled, will endure on average for about 50? s, which does not 
seem too severe on the CPU. Furthermore, the data in Figure 4-4 suggests that there 
will occasionally be intervals that last for slightly longer than the required 2 ms. In the 
experiment in section 4.2.2.2.1, the interval duration was more than 2 ms 119 times 
over a period of 60 seconds. Therefore, over a period of 60 seconds, 0.198% of the 
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intervals were 2 ms and longer. However, they are well within the allowed tolerance 
of 500 ? s. Should this be the case, the active thread at this point will issue the timer 
event immediately and enter the 2 ms sleep interval. In order to compensate for the 
resulting drift, the following timer event will occur 1 ms from the time the previous one 
should have been issued (refer to 4.3.2).   
The top-level algorithm of the timer is given in Algorithm 4. 

Algorithm 4 - Normal Timer Algorithm 

The first timestamp is taken from the high-resolution hardware counters and saved 
as ? previous. Thread A is started first and will start measuring the initial 1 ms interval 
immediately. Thread B will be started as well, but will wait for thread A to finish the 
initial 1 ms interval before commencing its execution. While these two threads are 
executing the main application thread will wait in a loop while the timer is active. The 
body of the loop consists of a single statement that suspends the main application 
thread for on average 1.95 ms (refer to section 4.2.2.2.1). This ensures that the main 
application thread does not consume all available processing resources and will 
continue until the timer is terminated. This loop is necessary to ensure that the main 
thread does not exit until the timer is terminated. When the timer is terminated, 
threads A and B have to be terminated as well. 
However, such a configuration – i.e. where each thread operates entirely 
independently of the other – would be subject to more time drift in addition to the drift 
caused when the sleep instruction sleeps more than 2 ms. Instead of such 
independent functioning, the readings taken from the high-resolution hardware 
counters using the timestamp calculator should be stored in variables that are 
globally available to both threads. (Reads and writes to these variables should of 
course be in critical sections of code, protected by mutual exclusion mechanisms that 
prevent simultaneous access.)  Call these variables ? previous and ? current.  
The timers implemented according to the discussed concepts, may be regarded as 
thread-induced waitable timers. For the remainder of this text, such a timer will be 
referred to as a TIW timer. The variables and their role in the algorithm of the TIW 
timer are presented in section 4.3.2. 

4.3.1 Design 
In accordance with the design decisions made in section 3 the design relies on object 
orientation. The design is simple and structured in such the way that the architecture 
is modular. However, the extent of object orientation is simple as no inheritance is 
used – for example.  
Throughout the code snippets that will be presented in this section, the statements 
#ifdef __WIN32__ and #ifdef __POSIX__ often occur. This is to ensure the 
portability of the code, since the APIs for the different operating system vary. The 
statement instructs the compiler to include only the code that is relevant to a specific 
operating system. 

Initialize thread A 
Initialize thread B 
? previous := getTimestamp() 
Start thread A 
Start thread B 
While the timer is running 
 Sleep for 1ms 
Stop thread A 
Stop thread B 
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The timer itself consisting of the following classes: 
?  Thread Class 

This class encapsulates a mechanism to create a thread, providing it with a 
function to execute, initiate and terminate it.  

Thread Class  
The C++ definition of the thread class is as follows: 
class ThreadClass 
{ 
  public: 
    ThreadClass (); 
    ~ThreadClass (); 
 
    void initialise( void (*func)(), 
     CRITICAL_SECTION *criticalSection  
      ); 
    void start(); 
    void stop(); 
    void setInterval(unsigned short sleepInt); 
  protected: 
  private: 
    void (*fire)(); 
    bool threadRunning ; 
    unsigned short sleepInt; 
    CRITICAL_SECTION *criticalSection ; 
    THREAD_HANDLE threadHandle ; 
  friend 
#ifdef __WIN32__ 
  unsigned long  CALLBACK 
#else 
  #ifdef __POSIX__ 
    void* 
  #endif 
#endif 
  callback(void* argument); 
}; 
Class Constructor and Destructor (ThreadClass();~ThreadClass();) 
No significant operations are performed in these methods and they serve purely 
as class construction/destruction methods. 
Initialisation function (void initialise(…);) 
This function is used to initialise the class. The following are the parameters: 
“func” – a pointer the function that contains the logic that the thread should 
execute 
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“critical_section” – a pointer to the critical section that will be shared among the 
threads 
Start Function (void start();) 
Starts the thread 
Stop Function (void stop();) 
Stops the thread 
Set Interval (void setInterval(unsigned short sleepInt);) 
Sets the interval for which the thread should sleep. Referring to the description 
of the TIW timer in the previous section, this interval would be set to 1 ms. 
CALLBACK Function (callback(void* argument);) 
Both the WIN32 and POSIX APIs require a callback of which the pointer has to 
be passed to the API function call that creates the threads. This function 
provides this pointer. The function pointed to by “fire” is called within this 
callback. The significance of this function is explained below. 
Private Variables 
“fire” – the pointer to the function that is specified to the thread class at 
initialisation and executed within the callback function. 
“threadRunning” – a flag that keeps track of whether the thread is running 
“sleepInt” – the interval specified by the setInterval operation 
“criticalSection” – the critical section 
“threadHandle” – a handle to the thread created using API funcion calls 

 
?  Timestamp Calculator Class 

This class provides the capability to determine the current timestamp based on 
the high-precision counters discussed in section 2.2. The calculator was 
discussed in detail in section 4.1. 

?  Multimedia Subsystem Class 
This class provides the capability of setting the operating system in the high-
resolution clock interrupt mode that is provided by the multimedia subsystem, 
as discussed in section 2.3.2. As the following description will show, the class is 
simple, and serves only to activate/deactivate the multimedia subsystem. 

Multimedia Subsystem Class 
class MMSubsystem 
{ 
  public: 
    MMSubsystem (void); 
    ~ MMSubsystem (void); 
    bool initialise(unsigned int targetResolution ); 
    void close(void); 
  protected: 
  private: 
    unsigned int timerResolution ; 
}; 
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Class Constructor and Destructor (MMSubsystem();~MMSubsystem();) 
No significant operations are performed in these methods and they serve purely 
as class construction/destruction methods. 
Initialisation function (void initialise(…);) 

This function is used to initialise the WIN32 Multimedia subsystem.  
Close Function (void close();) 

?  TIW timer Class 
This class provides the interface between the user application and the TIW 
timer classes. It is therefore the only class visible to the user application. 

TIW timer Class 
class TIWTimerClass 
{ 
  public: 
    TIWTimerClass (); 
    ~TIWTimerClass  (); 
    void initialise( 
                     void (*func)(void * args), 
                     unsigned long interval, 
                     unsigned long sleepInterval, 
                     unsigned long noOfThreads, 
                     unsigned long mod 
                    ); 
    void start (); 
    void stop (); 
    bool isRunning (); 
  protected: 
  private: 
    void (*timerCallback )(void* args); 
    unsigned long sleepInterval; 
    unsigned long interval; 
    unsigned long noOfThreads; 
    unsigned long mod; 
    CRITICAL_SECTION criticalSection ; 
    vector <ThreadClass *> threads; 
    unsigned long recordCounter; 
    TimestampCalculator * timestampTimer; 
    unsigned long long oldTime; 
    HANDLE timerEvent; 
    bool threadRunning ; 
#ifdef __WIN32__ 
  friend void  

 



 

Janno Grobler 
jannogrobler@gmail.com 
M.Sc Computer Science 
University of Pretoria 

Page 56 of 111 
 

#else 
  #ifdef __POSIX__ 
    void* 
  #endif 
#endif 
                        tiwTimerCallback (void* argument); 
}; 
Class Constructor and Destructor (TIWTimerClass(); 
~TIWTimerClass();) 
No significant operations are performed in these methods and they serve purely 
as class construction/destruction methods. 
Initialisation function (void initialise(…);) 

This function is used to initialise the TIW timer. 
“func” – This function encapsulates the functionality that has to be executed at 
each timer event. This pointer is saved in the private variable timerCallback. 
“interval” – This parameter represents the desired interval duration. This is 
saved in the private variable “interval” 
“sleepInterval” – The sleeping interval that is passed to the Sleep instruction in 
the case of the WIN32 operating system (“nanosleep” under POSIX). Therefore 
it represents the number of ms for which each thread will be suspended when 
the instruction is issued. This is saved in the private variable “sleepInterval” 
“noOfThreads” – The number of threads that the timer should used. This is 
saved in the private variable “noOfThreads” 
“mod “ – The thread measures an interval specified by the “interval” parameter. 
However, the timer event need not be issued immediately after each interval. 
The number of intervals that has elapsed (see recordCounter below) is divided 
by mod. If the number of intervals is divisible by mod, the timer event is issued. 
This is saved in the private variable “mod”. 
Start Function (void start();) 

Starts the TIW timer 
Stop Function (void stop();) 
Stops the TIW timer 
Is Running Function (void isRunning();) 
This function is an indication of whether the TIW timer is currently running. This 
is done via the Boolean private variable, threadRunning. 

Private Parameters  
“criticalSection” – This represents the critical section that is shared between the 
threads, as a single object.  
“threads” – This is a link list that holds the pointers to all the threads currently in 
use. 
 “recordCounter” – The parameter keeps track of the number of intervals that 
have elapsed since the timer was started. 
“timestampTimer” – This variable points to an instance of the timestamp 
calculator. 
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“oldTime” – this parameter is used to keep track of the previous timestamp 
(? previous in section 4.3.2) 
“timerEvent” – This is a pointer to the timer event that issued at the appropriate 
times. 

An user application can instantiate the TIW timer Class and provide it with the 
information necessary to initialise and run it. The information it has to provide to the 
timer is the following: 
?  The number of threads the TIW timer should use 
?  The required interval to measure 
?  The time period until the timer expires 
?  The sleep interval of the threads 
?  The modulo factor. This factor determines the number of intervals that has to 

pass before the timer event is fired. 
Such an user application was developed, and was designed to “host” a TIW timer 
instance – with the following classes encapsulated: 
?  The User Application itself. This is the main application class for the user 

application, responsible for the initialisation of the remaining user application 
classes, discussed shortly, as well as TIW timer class. The user application 
basically acts as a host to the timer.  

?  The Command Line Class. This class enables the user application to be 
configured via the command line, with the same options as those taken by the 
TIW timer class. The command line options are primarily to configure the TIW 
timer. Should the command line options provided be incorrect, the following 
message will be displayed by the user application: 

Usage : msc_timer <options> 
Options: 
--timestamps <no of timestamps>  
--interval   <interval size>  
--threads    <no of threads>  

?  The CPU Load class. For the sake of the analysis in this dissertation (refer to 
section 1.5), a mechanism is required to determine the CPU usage of the timer. 
The CPU Load class provides this capability.  

Figure 4-11 presents the relationships between these classes in the form of a class 
diagram. The figure is divided into two sections. The top half represents the classes 
that are encapsulated in the TIW timer implementation, whereas the bottom half 
represents the user application.  
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Figure 4-11: TIW timer Class Diagram 

The sequence of operations of the system presented in Figure 4-11 is as follows: 
?  The user application reads the options from the command line using the 

command line class. There is therefore a one-to-one relationship between the 
user application and the command line class. The command line class will 
determine whether the command line options are valid or not. 

?  If the command line options specified are valid, the user application initialises 
the CPU Load class. Again, there exists a one-to-one relationship between the 
user application and the CPU load class. 

?  The user application initialises the TIW timer class, passing to it the options 
from the command line. The TIW timer uses this information to configure itself 
correctly. 

?  The TIW timer in turn initialises the operation parameters (from the command 
line). At this point, the TIW timer initialises the number of threads that were 
specified on the command line. These threads are subsequently started when 
the user application “starts” the TIW timer. 

?  At this point the user application enters a loop to keep it active, sleeping for 
intervals of 1 ms, taking the CPU load at the conclusion of each waiting period 
utilising the CPU load class. For the purposes of the TIW timer testing, this loop 
will terminate when the required number of timestamps was recorded. This 
number of timestamps is equivalent to the number of intervals that elapsed 
during the timer’s execution. 
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?  The “function” that contains the logical operations that the timer has to execute 
each interval, in this case is a routine that records the current timestamp. In 
other words, the current timestamp should differ from the previous one by the 
amount of time equivalent to the size of the interval duration. 

?  At the conclusion of the loop, the recorded timestamps are written to a comma-
delimited file for analysis.  

4.3.2 Algorithm 
The first timestamp in Algorithm 5 is saved as ? previous. The interval at any point in 
time is given by ? current-? previous. A thread induced waitable timer for a 1 ms interval 
can thus be built by starting off a thread (thread A), waiting for 1 ms, recording the 
high-resolution hardware counters value as ? previous, and starting off a second 
thread (thread B). When each thread is started, both will execute the algorithm given 
in Algorithm 5.  

 
Algorithm 5 - Normal Timer Algorithm 

It should be noted that ? previous is incremented by the interval size just before the 
timer event is issued. Therefore ? current - ? previous represents time elapsed since 
the previous 1 ms interval should have ended. This compensates to an extent for the 
drift induced when the sleep instruction sleeps more than 2 ms. Therefore, when the 
sleep instruction suspends a thread longer than 2 ms, it results in a longer interval 
greater than 1 ms followed by a shorter interval less than 1 ms to compensate for the 
drift. 

4.3.3 Results 
This section is focused on the results recorded in terms of the performance of the 
TIW timer. In each case, a figure is presented depicting the recorded interval sizes 
generated by the TIW timer; over a fixed period of time. In addition, a figure is shown 
displaying the amount of CPU resources consumed during the period for which the 
timer was running. 

While the timer is running 
 Wait to enter the critical section 

// Initial value of ? previous read just before  
// thread 2 starts 
// Both threads execute the algorithm below 
For (duration of the test) 

   ? current := getTimestamp(); 
While (? current - ? previous <1000? s) 

? current := getTimestamp(); 
? previous := ? previous + 1000? s 
Fire the timer event 
Sleep for 2ms 

  End for 
 Leave the critical section 
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4.3.3.1 TIW timer (1kHz Interval) 
The results of the algorithm in section 4.3.2 for a frequency of 1kHz, is illustrated in 
Figure 4-12 and shows the performance over a period of 30 seconds. The command 
line parameters specified to the TIW timer are as follows:  
Number of timestamps   – 60000 

Interval Duration   – 1000 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 2  
The “mod”     – 1  
Over a period of 60 seconds the maximum interval recorded was 1.036 ms and the 
minimum interval recorded 0.964 ms. Therefore an interval with a maximum deviation 
of approximately 50 ? s is achieved. Also as is clear from the figure, an interval with 
duration more than the desired 1010 ? s seconds is the exception and not the rule.  

 
Figure 4-12: TIW timer (1 kHz Interval) 

Accordingly the TIW timer exhibits excellent performance when configured to 
generate 1 kHz intervals. However, this would be in vain if the CPU was too 
intensively utilized. It turns out that the processor usage varied between 0% and 
14.833%. This is illustrated in Figure 4-13, in which CPU utilization is plotted against 
sample number (oldest first). The reason for the difference in processing is due to the 
fact that the amount of work done by the threads in the ? ?period varies due to the 
performance of the Sleep instruction (refer to 4.2.2). Therefore the interval ? ’s size 
varies depending on the duration of the Sleep interval.  
However on average, processor utilization was 4.661%. The result is that the 
routines that use the TIW timer at a frequency of 1 kHz have on average ± 95.339% 
of the CPU to its disposal. It is clear from this result that that a waiting period was 
successfully induced and that an accurate 1 ms interval could still be generated. 
Therefore the timer exhibits a resolution of 1ms ± 50? s with an average CPU load 
requirement of 4.661%. The CPU usage for the entire period the timer was running is 
depicted in Figure 4-13. However, this is a best-case scenario, as was determined 
after exhaustive testing. The deviation from the actual interval of 1000 ? s that is 
required never exceeded 500 ? s – never reaching this number in actual fact. This is 
illustrated in Figure 4-14. Section 5.4 discusses a further study in which the TIW 
timer was able to retain its accuracy over a period of one hour. 
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Figure 4-13: 1 kHz TIW timer CPU usage 

 
Figure 4-14: TIW timer 1 kHz Worst Case 

Figure 4-14 illustrates the worst case recorded during the investigation of the TIW 
timer. The maximum interval in this case was 1.437ms (1437? s) with a minimum of 
0.563ms (563? s). However, as is clear from the figure, an interval duration greater 
than 1.2 ms is an isolated event. 

4.3.3.2 TIW timer (50 Hz Interval) 
The results of this algorithm for a frequency of 50 Hz, is illustrated in Figure 4-15 and 
shows the performance over a period of 60 seconds. One would expect that if the 
TIW timer exhibits satisfactory results as in 4.3.3.1 – for larger intervals the 
performance should be better. The command line options are: 
Number of timestamps   – 3000 

Interval Duration   – 1000 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 2  
The “mod”     – 20 
Note that with such a configuration, the TIW timer operates in exactly the same 
fashion as in the case of the TIW timer in the 1 kHz case in that each thread 
measures 1000 ? s intervals. However, the timer event is issued after every 20th 
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interval (in accordance with the “mod” command line option), instead of after each 1 
ms interval.  
Over a period of 60 seconds the maximum interval recorded was 20.018 ms and the 
minimum interval recorded 19.982 ms. Therefore an interval with a maximum 
deviation of approximately 18 ? s is achieved.  

 
Figure 4-15: TIW timer (50 Hz Interval) 

The processor usage varies between 0% and 14.833%, as was the case with the 1 
kHz timer. The average processor utilization was 4.553%, again leaving the routines 
using the timer with around 95.447% of CPU resources on average. The CPU usage 
is plotted against sample number (oldest first) in Figure 4-16. 

 
Figure 4-16: 50 Hz TIW timer CPU usage 

Therefore the timer exhibits a resolution of 20 ms ± 18 ? s with an average CPU load 
requirement of 4.553%. This conforms to the requirement of a soft real-time timer in 
section 2.6. 

4.3.3.3 TIW timer (1Hz Interval) 
The results of this algorithm for a frequency of 1Hz, is illustrated in Figure 4-15 and 
shows the performance over a period of 65 seconds. Over this period, the maximum 
interval recorded was 1.000006 seconds and the minimum interval recorded 
0.999994 seconds. Therefore an interval with a maximum deviation of approximately 
6 ? s is achieved. 
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This was accomplished with the TIW timer configured as follows: 
Number of timest amps   – 65 

Interval Duration   – 1000 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 2  
The “mod”     – 1000 

 
Figure 4-17: TIW timer (1 Hz Interval) 

The processor usage varies between 0% and 14.833%. The average processor 
utilization was 4.902%. The CPU usage is therefore more or less consistent, 
regardless of interval that the timer is measuring. This is illustrated plotted against 
sample number (oldest first) in Figure 4-18. 

 
Figure 4-18: 1 Hz TIW timer CPU usage 

4.3.4 An alternative TIW timer 
The WIN32 Sleep Timer has the tendency to sleep for a little longer than required – 1 
ms longer in the case discussed for a frequency of 1 kHz (see 4.2.2 where both the 
maximum and minimum intervals recorded were greater than 1 ms by ± 1 ms). The 
TIW timer was designed to use two overlapping threads that operate in tandem, thus 
compensating for the sleep timer’s inaccuracy at high frequencies. The idea arose of 
basing a timer on one execution thread only, instead of two. The sleep interval is 
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chosen close to the desired interval and the impact on the performance of the TIW 
timer is investigated.  
The design of the alternative method fits in with that of the TIW timer. In fact, the 
ability to configure the timer allows it to be set up in such a way that only one 
execution thread is used. This thread is requested to sleep for an interval of 1 ms 
less than the required interval. For example, in the case of the 20 ms interval (50 Hz 
frequency), the timer is configured to use one thread and its sleep interval is set to 19 
ms.  
This renders the operation of the TIW timer similar to that of the sleep timers in 
section 4.2. The results are to follow in the subsequent sections. 

4.3.4.1 TIW timer Alternative (50 Hz Frequency) 
As was stated before, the TIW timer did not need to be modified for this investigation. 
To achieve the required interval the TIW timer could be configured via its command 
line options detailed in section 4.3.1 to run with only one thread. 
This configuration is as follows: 
Number of timestamps   – 3000 

Interval Duration   – 20000 ? s  
Requested Sleep Interval  – 19 ms  
Number of threads to use  – 1 
The “mod”     – 1 
The results of the alternative algorithm for a frequency of 50 Hz, is illustrated in 
Figure 4-19 and shows the performance over a period of 60 seconds. Over this 
period, the maximum interval recorded was 20.005 ms and the minimum interval 
recorded – 19.995 ms. Therefore an interval with a maximum deviation of 
approximately 5 ? s is achieved. Immediately it is clear that in terms of accuracy, 
configuring the TIW timer this way results in the same performance as when multiple 
execution threads are used. 

 
Figure 4-19: TIW timer Alternative (50 Hz Interval) 

The processor usage varies between 0% and 16.5%. The average processor 
utilization was 2.990%. Therefore, in terms of processor usage, there is not too much 
of an improvement but an improvement none the less. This is illustrated plotted 
against sample number (oldest first) in Figure 4-20. 
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Figure 4-20: 50 Hz TIW timer Alternative CPU usage 

Although its accuracy is the same and its average processor usage is slightly less 
than the “normal” TIW timer at 50 Hz (refer to 4.2.2.2.2), the overhead of 
continuously switching between multiple threads is eliminated in this alternative 
configuration. Where the normal TIW timer would be switching between two threads 
for the duration of the 20 ms interval, the TIW timer in this alternative configuration 
would be suspended for the better part of the interval. 

4.3.4.2 TIW timer Alternative (1Hz Frequency) 
The alternative solution was applied to the 1 Hz frequency timer as well.  
The achieve the one second interval, the TIW timer was configured as follows: 
Number of timestamps   – 60 

Interval Duration   – 1000000 ? s  
Requested Sleep Interval  – 999 ms  
Number of threads to use  – 1 
The “mod”     – 1 

 
Figure 4-21: TIW timer Alternative (1 Hz Interval) 

The results of the alternative algorithm at a frequency of 1 Hz, is illustrated in Figure 
4-21 and shows the performance over a period of 60 seconds. Over this period, the 
maximum interval recorded was 1.000001 seconds and the minimum interval 
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recorded 0.999999 seconds. Therefore an interval with a maximum deviation of 
approximately 1 ? s is achieved. 
The processor usage varies between 0% and 84.333%. The average processor 
utilization was 2.446%. This is illustrated plotted against sample number (oldest first) 
in Figure 4-22. As is clear from the figure is that the usage seems to spike initially to 
the maximum usage followed by a drop to below 2% for the remainder of the timer’s 
operation.  

 
Figure 4-22: 1 Hz TIW timer Alternative CPU usage 

The reason for this initial spike is due to the design of the TIW timer (refer to section 
4.3.1. According to Algorithm 5, thread A will enter the loop and measure the 
required interval, which in this case is ± 999 ms. The first sleep instruction is only 
issued after thread A has measured the first interval, therefore, for the first 999 ms, 
the TIW timer consumes all available CPU resources. However, the TIW timer in this 
alternative configuration uses significantly fewer resources after this initial interval 
than its “normal” counterpart. 

4.3.4.3 TIW timer vs TIW timer Alternative 
In the previous sections it was shown that the TIW timer alternative solution based on 
one execution thread only, outperforms the two execution thread configuration for 
frequencies 50Hz and 1Hz in terms of CPU usage and thread switching overhead. 
Clearly, since it is impossible to generate a reliable 1 kHz frequency with a single 
thread (see section 4.2.2), the TIW alternative timer cannot be constructed to run at 
this frequency. However, it remains to be determined whether its better resolution 
would be retained across a range of frequencies lower that 1 kHz. This is the next 
matter to be explored, starting with a 500 Hz timer (2 ms intervals). 
The first interval that is compared between the two versions of the timer has duration 
of 2 ms. To achieve the interval using the normal version of the timer, the 
configuration was as follows: 
Number of timestamps   – 30000 

Interval Duration   – 1000 ? s  
Requested Sleep In terval  – 1 ms  
Number of threads to use  – 2 
The “mod”     – 2 
To achieve the same results using the alternative method, the configuration is altered 
slightly, with the resulting configuration as follows: 
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Number of timestamps   – 30000 

Interval Duration   – 2000 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 1 
The “mod”     – 1 
The performance of the normal TIW timer is shown in Figure 4-23. The performance 
is shown over a period of 60 seconds. 

 
Figure 4-23: Normal TIW timer 500 Hz 

A maximum of 2.001 ms (2128 ? s) and a minimum of 1.999 ms (1999 ? s) were 
recorded. Therefore, the resolution in this case is 2 ms ± 1 ? s is achieved. The 
average CPU usage was 4.873%, as illustrated in Figure 4-24. 

 
Figure 4-24: 500 Hz Normal TIW timer CPU Usage 

Using the alternative version of the timer is presented in Figure 4-25. The period 
show in the figure is 60 seconds. A maximum of 2.015 ms (2015 ? s) and a minimum 
of 1.985ms (1985? s) were recorded. Therefore, the resolution in this case is 2ms ± 
15? s is achieved. T 
Therefore the normal TIW timer yielded a marginally better performance. However, 
as is clear from Figure 4-25, the 15 ? s spike in the alternative version’s results 
occurred once. For the rest of the alternative timer’s operation, the interval deviation 
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remained below 5 ? s. The conclusion therefore is that the performance of the two 
timers in this case is essentially the same in terms of accuracy. 
However, the average CPU usage was 2.925% as apposed to the 4.873% of the 
normal solution. As is clear from Figure 4-24 and Figure 4-26, the alternative solution 
consumes a smaller percentage of the CPU. 

 
Figure 4-25: Alternative TIW timer (500 Hz) 

 
Figure 4-26: 500 Hz Alternative TIW timer CPU usage 

For a interval of 3 ms, the configuration of the two timers were as follows: 
?  The normal TIW timer –  

Number of timestamps   – 20000 

Interval Duration    – 1000 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 2 
The “mod”     – 3 

?  The alternative TIW timer –  
Number of timestamps   – 20000 

Interval Duration    – 3000 ? s  
Requested Sleep Interval  – 2 ms  
Number of threads to use  – 1 
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The “mod”     – 1 
The normal TIW timer achieved a maximum of 3.232 ms and a minimum of 2.768 ms 
(refer to Figure 4-27). The average CPU usage was 4.826% illustrated in Figure 
4-28. Again the experiment was conducted over a period of 60 seconds. 

 
Figure 4-27: 333.33 Hz Normal TIW timer 

 
Figure 4-28: 333.33 Hz Normal TIW timer CPU usage 

 
Figure 4-29: 333.33 Hz Alternative TIW timer 
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On the other hand, the alternative TIW timer achieved a maximum of 3.207 ms and a 
minimum of 2.793 ms (Figure 4-29). The average CPU usage was 2.915% as shown 
in Figure 4-30. These results yields resolutions of 3 ms ± 273 ? s and 3 ms ± 232 ? s – 
in other words, the performance is essentially identical in terms of accuracy. 

 
Figure 4-30: 333.33 Hz Alternative TIW timer CPU usage 

The next interval under investigation was a 4 ms interval (250 Hz frequency). To 
achieve this interval, the timers were configured as follows: 
?  The normal TIW timer –  

Number of timestamps   – 15000 

Interval Duration    – 1000 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 2 
The “mod”     – 4 

?  The alternative TIW timer –  
Number of timestamps   – 15000 

Interval Duration    – 4000 ? s  
Requested Sleep Interval  – 3 ms  
Number of threads to use  – 1 
The “mod”     – 1 

The normal TIW timer achieved a maximum of 4.360 ms and a minimum of 3.640 
ms. The results for the normal TIW timer are illustrated in Figure 4-31. The average 
CPU usage was 4.841% (Figure 4-32). 
The alternative TIW timer achieved a maximum of 4.234 ms and a minimum of 3.766 
ms. Figure 4-33 illustrates the results of the alternative TIW timer. The CPU usage is 
shown in Figure 4-34. The average usage was 3.078%. These results yield 
resolutions of 4 ms ± 360 ? s and 4 ms ± 234 ? s in the two respective cases. Once 
more the results are essentially the same. 
The conclusion therefore is that the normal TIW timer and its alternative configuration 
yield essentially the same performance in terms of accuracy. However, on the 
evidence at hand, the alternative configuration to the TIW timer yields better 
performance when it comes to CPU usage. 
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Figure 4-31: Normal TIW timer (250 Hz) 

 
Figure 4-32: Normal TIW timer (250 Hz) 

 
Figure 4-33: Alternative TIW timer (250 Hz) 
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Figure 4-34: Alternative TIW timer (250 Hz) CPU usage 

4.4 Comparison 
This section compares the results from the TIW timer with current timers under the 
WIN32 and UNIX operating systems discussed in section 2.3 and 2.4. This serves to 
indicate whether the TIW timer’s performance justifies it as an improvement over 
these timers. Since section 4.3.4 indicates that the performance of the alternative 
and normal configurations of the TIW timer are essentially the same in terms of 
accuracy, only the alternative solution is used for frequencies less than 1 kHz in the 
comparisons in section. This is due to the fact that it is less resource intensive.  
Note that in each case, the maximum and minimum recorded intervals are presented 
in tabular form to ease the comparison. The values supplied are in the units noted in 
the column headings. The results for corresponding frequencies are tabulated in 
adjacent columns.  
The results presented are also the “best” case scenario measured in section 4.3, as 
far as the TIW timer is concerned. Should the “worst” case scenario render 
performance below that of the existing timer under investigation, its results will be 
provided. 

4.4.1 WIN32 Timers 
The WIN32 API provides both the system timer (refer to section 2.3.1) and the 
multimedia timer (refer to 2.3.2). The performance of these timers is plotted against 
that of the TIW timer. These results are presented in subsections 4.4.1.1 and 4.4.1.2 
of this section respectively.  

4.4.1.1 System Timer 
This section investigates the performance of the System timer versus the TIW timer. 
The result presented here is taken from the investigations in sections 2.3.1 and 4.3. 
The maximum and minimum intervals of each implementation are tabulated in Table 
4-2.  
The comparison in the table clearly indicates that the TIW timer is superior in every 
instance.  
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Table 4-2: System Timer vs. TIW timer 

Interval 1kHz TIW 
timer (ms) 

1kHz System 
Timer (ms) 

50Hz TIW 
timer Alt. 

(ms) 

50Hz System 
Timer (ms) 

1Hz TIW 
timer Alt. 

(ms) 

1Hz System 
Timer (s) 

Maximum 1.036 25.431 20.018 36.151 1.000001 1.011667 

Minimum 0.964 5.881 19.982 27.291 0.999999 0.988237 
The following sections provide graphical representations of the results in Table 4-2. 

4.4.1.1.1 1 kHz System Timer Comparison 

Figure 4-35 Illustrates the difference between the minimum and maximum intervals 
produce by the System timer and TIW timer respectively.  

 
Figure 4-35: System Timer vs. TIW timer (1 kHz) 

Since the desired interval size is 1 ms (1000 ? s), the TIW timer clearly outperforms 
the system timer with a maximum deviation in this case of 36 ? s as opposed to the 
±25 ms deviation that the system timer shows. Not even the minimum interval 
recorded (5.881 ms) is close to the desired 1 ms interval. 
Since the TIW timer was established to exhibit a maximum deviation of less than 500 
? s for the 1 kHz timer, the TIW timer clearly out performs the system timer. 

4.4.1.1.2 50 Hz System Timer Comparison 

Figure 4-35 illustrates the difference between the minimum and maximum intervals 
produced by the system timer and TIW timer respectively, for a frequency of 50 Hz. 
As was the case with the 1 kHz frequency (section 4.4.1.1.1), the TIW timer clearly 
outperforms the system timer, achieving the desired 20 ms (20000 ? s) within 500 ? s, 
as apposed to the 16.151 ms deviation in the case of the system timer. To add insult 
to injury, the TIW timer achieves this interval with a margin of error of 18 ? s in this 
case. 
It is clear that the TIW achieves higher accuracy and is therefore shown to be 
superior yet again.  
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Figure 4-36: System Timer vs. TIW timer and TIW timer Alternative (50 Hz) 

4.4.1.1.3 1 Hz System Timer Comparison 

For a frequency of 1 Hz, the TIW timer achieves the required interval within 1 ? s, 
outperforming the system timer that suffers from a 11.667 ms maximum deviation. 
Therefore in the case of the 1 Hz frequency, the TIW timer outperforms the system 
timer.  
This is illustrated in Figure 4-37. 

 
Figure 4-37: System Timer vs. TIW timer and TIW timer Alternative (1 Hz) 

4.4.1.2 Multimedia Timer 
This section investigates the performance of the multimedia versus the TIW timer. 
The maximum and minimum intervals of each implementation are tabulated in Table 
4-3.  
The result is a mixed bag since the multimedia timer provides good results for the 1 
second (1 Hz frequency) and 20 ms  (50 Hz frequency) intervals. 
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Table 4-3: Multimedia Timer vs. TIW timer 

Interval 1KHz TIW 
timer (ms) 

1KHz 
Multimedia 
Timer (ms) 

50Hz TIW 
timer Alt. 

(ms) 

50Hz 
Multimedia 
Timer (ms) 

1Hz TIW 
timer Alt. 

(s) 

1Hz 
Multimedia 
Timer (s) 

Maximum 1.036 1.981 20.018 20.52 1.000001 0.999953 

Minimum 0.964 0.545 19.982 19.516 0.999999 0.999941 
 

4.4.1.2.1 1 kHz Multimedia Timer Comparison 

Figure 4-38 illustrates the difference between the minimum and maximum intervals 
produced by the Multimedia timer and TIW timer respectively. As is indicated in the 
figure, the TIW timer provides better performance for a frequency of 1 kHz. The 
maximum deviation of the multimedia timer is clearly more than the 500 ? s that is a 
requirement of the TIW timer (refer to section 2.6) – clocking in at 981 ? s.  
It is interesting to not that the multimedia timer generated an interval of less than 1 
ms, and that it did so with a deviation of 455 ? s. It does not generate such an interval 
reliably though since the maximum interval was 1.981 ms 
Therefore, the TIW timer is able to measure the interval with a smaller margin of error 
than the multimedia timer when a 1 kHz frequency is required. 

 
Figure 4-38: Multimedia Timer vs. TIW timer (1kHz) 

4.4.1.2.2 50 Hz Multimedia Timer Comparison 

The minimum and maximum intervals produced by the multimedia timer and TIW 
timer are depicted in Figure 4-39. As is clear from the figure, the maximums differ by 
a spread of ± 502 ? s and the minimum intervals by ± 466 ? s. 
At first glance it seems as if the multimedia timer might conform the requirement that 
the maximum deviation should not be more than 500 ? s. However, if we take the 
results in sections 4.3.3.1 and 4.3.4.1 into account, the TIW timer outperforms the 
multimedia timer again with a maximum deviation of 18 ? s as opposed to the 520 ? s 
exhibited by the multimedia timer. Therefore, as was the case in with the 1 kHz 
timers in section 4.4.1.2.1, the TIW timer is justified as a replacement for the 
multimedia timer. 
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Figure 4-39: Multimedia Timer vs. TIW timer (50Hz) 

4.4.1.2.3 1 Hz Multimedia Timer Comparison 

As was the case in the previous sections, Figure 4-40 illustrates the difference 
between the minimum and maximum intervals recorded by the multimedia timer and 
TIW timer respectively. The results are even closer together than that of the 50 Hz 
TIW timer and 50 Hz multimedia timer.   

 

Figure 4-40: Multimedia Timer vs. TIW timer (1Hz) 

Again the TIW timer outperforms the multimedia timer exhibiting a maximum 
deviation of 1 ? s. The multimedia timer on the other hand never recorded an interval 
duration closer than 47 ? s to the target of 1 second. The multimedia timer exhibits a 
maximum deviation of 59 ? s although it should be noted that in this specific case, the 
result is satisfactory for the soft real-time timer specified in section 3.  
Therefore, either the multimedia timer or the TIW timer is suitable for this interval. 
However, since the TIW timer outperforms the multimedia timer on the other two 
intervals, its development is justified. 
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4.4.2 POSIX Timer 
This section compares the performance of the TIW timer against that of the POSIX 
timer. It also compares the TIW timer under the UNIX and WIN32 environments. The 
first investigation, which is a comparison between the WIN32 TIW timer and the timer 
provided by the POSIX API, serves to illustrate why the soft real-time may not be 
realised under a normal distribution of the Linux platform. Remember that this text 
does not take real-time extensions like Real-Time Linux into account, as the goal of 
this dissertation was the development of a soft real-time timer without such 
assistance. 
The second investigation aims to show whether the TIW timer implementation is 
viable on the Linux platform. The TIW timer has been implemented to be portable to 
the POSIX environment, as was illustrated by its design in section 4.3.1.  
Firstly, a direct comparison is made between an implementation of the POSIX timer 
under the Linux environment using a 2.6.x kernel and the WIN32 TIW timer. This is 
tabulated in Table 4-4. 

Table 4-4: POSIX Timer vs TIW timer 

Interval 1KHz TIW 
timer (ms) 

1KHz POSIX 
Timer (ms) 

50Hz TIW 
timer Alt. 

(ms) 

50Hz POSIX 
Timer (ms) 

1Hz TIW 
timer Alt. 

(s) 

1Hz POSIX 
Timer (s) 

Maximum 1.036 7.976 20.018 28.014 1.000001 1.011517 

Minimum 0.964 1.07 19.982 20.885 0.999999 1.000083 

4.4.2.1 WIN32 TIW timer vs. POSIX Timer. 
As is observed in Figure 4-41 the interval recorded with the POSIX timer deviates 
from the required interval of 1 ms by up to ± 7 ms. The WIN32 TIW timer is able to 
measure the 1 ms interval within a maximum deviation of 500 ? s. Figure 4-42 
represents the performance of the TIW timer versus the POSIX timer at a frequency 
of 50 Hz. The latter exhibits an eight ms deviation against the maximum deviation of 
±5 ? s exhibited by the TIW timer (refer to section 4.3.4.1). 

 
Figure 4-41: 1kHz TIW timer vs POSIX Timer 

Figure 4-43 reinforces the fact that the POSIX timer is not reliable. It has a deviation 
of ± 12 ms for a required interval of 1 second (1 Hz frequency). Again the TIW timer 
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outperformed the POSIX timer with a maximum deviation of 1 ? s (refer to section 
4.3.4.2). 

 
Figure 4-42: 50Hz TIW timer vs. External Timer 

 
Figure 4-43: 1Hz TIW timer vs. External Timer 

The reason for this problem under the Linux platform is similar to that of the WIN32 
platform as the Linux timer objects are serviced at each system timer interrupt that 
occur at a rate of 100Hz [Yoav et al. 2003]. Another reason is the ability for a user 
process to pre-empt a kernel level process. In section 3.4 it was stated that certain 
kernel level processes are not preemptable.  
Various extensions to the Linux operating system exist that address these issues.  
An example of this is the Kansas University RT Linux (or KURT) that claim to provide 
“Microsecond timing resolution and event-driven real-time scheduling” 
[Atlas et al. 1998] as well as the real-time Linux foundation that endeavours to 
provide a common real-time platform based on Linux [Wurmsdobler 2002].  
However, as was stated in section 3.3, extensions such as these were not taken into 
account since the goal was to achieve the solution without them. The bottom line is 
that the WIN32 TIW timer outperforms the Linux POSIX timer. 
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4.4.2.2 WIN32 TIW timer vs. POSIX TIW timer. 
The logical next step is to implement the TIW timer under Linux and measure its 
results. Obviously the architecture and performance of the operating systems differ 
and therefore the performance of the TIW timer may not be necessarily the same on 
both platforms.  
With minor modifications, the TIW timer was successfully implemented under the 
Linux operating system. Figure 4-44 illustrates the timestamps generated by the TIW 
timer on the Linux platform for a 1 ms interval timer. The maximum interval recorded 
was 5.001 ms (5001 ? s) and a minimum of 1.001 ms (1001 ? s). This results in a 
resolution of 1 ms ± 4.001 ms. This is a far cry from the excellent performance of the 
TIW timer under the WIN32 operating system for this interval which meets the 
requirement of the resolution of 1 ms ?  500 ? s. 
Therefore the WIN32 TIW timer outperforms the POSIX TIW timer when a frequency 
of 1 kHz is required. 

 
Figure 4-44: 1 kHz POSIX TIW timer 

Figure 4-45 show the intervals generated by the POSIX TIW timer at 50 Hz. Once 
again the performance of the WIN32 TIW timer could not be matched with a 
maximum of 40.019 ms and a minimum of 29.871 ms. Therefore the resolution in this 
instance is 20 ms ± 20.019 ms, which is not comparable to the excellent resolution of 
the alternative WIN32 TIW timer – 20 ms ± 18 ? s. 

 
Figure 4-45: 50Hz POSIX TIW timer 
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The same is true of the 1 Hz POSIX TIW timer in Figure 4-46. The maximum 
recorded in this instance was 1.573653 seconds and a minimum of 1.499666 
seconds. Therefore the resolution in this case is a staggering 1 second ± 574 ms. 
There is a vast difference between this resolution and the 1 second ± 1 ? s resolution 
of the 1Hz alternative WIN32 Timer. 

 
Figure 4-46: 1 Hz POSIX TIW timer 

The TIW timer is heavily dependant on the amount of time that the “sleep” instruction 
suspends the execution threads. This interval of time was more or less consistent 
under the WIN32 platform (section 4.3). The main reason for the TIW timer 
ineffectiveness is the WIN32 “Sleep” instruction’s replacement under the POSIX 
platform – “nanosleep”. This instruction may also be instructed to suspend an 
execution thread for an elapsed time of 1 ms. However, the amount that the 
instruction sleeps is not consistent, rendering the design of the TIW timer ineffective 
in the POSIX environment [Locke 2005]. 

4.5  Benchmark (External Timer) 
In this section, the TIW timer is compared to a true real-time timing source: the 
external timer discussed in section 2.5. These results are a testament to the true 
performance capabilities of the TIW timer, since these external timers are examples 
of hard real-time timing mechanisms. 
The maximum and minimum interval of each implementation is tabulated in Table 
4-5. Unlike the previous results, in this section, the timer with which the TIW timer is 
compared actually outperforms the TIW timer – hence the external timer’s use as a 
benchmark. 

Table 4-5: External Timer vs. TIW timer 

Interval 1kHz TIW 
timer (ms) 

1kHz External 
Timer (ms) 

50Hz TIW 
timer Alt. 

(ms) 

50Hz External 
Timer (ms) 

1Hz TIW 
timer Alt. 

(s) 

1Hz External 
Timer (s) 

Maximum 1.036 1.047 20.018 20.094 1.000001 1.000017 

Minimum 0.964 0.953 19.982 19.906 0.999999 0.999983 

4.5.1 1 kHz TIW timer vs. External Timer. 
Figure 4-47 depicts the difference between the minimum and maximum intervals 
produce by the external timer and TIW timer respectively. Unlike previous results, the 
external timer and TIW timer are almost identical when the best case performance of 
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the TIW timer is taken into account. The difference between the 1 ms intervals 
recorded for the timers are within 50 ? s with resolutions of 1 ms ± 36 ? s and 1 ms ± 
47 ? s for the TIW and external timers respectively.  
Likewise, the resolutions of the TIW and external timers for an interval 20 ms (50 Hz 
Frequency) are 20 ms ± 18 ? s and 20 m ± 94 ? s (Figure 4-48). The resolutions for 
the 1 Hz timer is 1s ± 1? s for the TIW timer and 1 second ± 17 ? s for the external 
timer (Figure 4-49).  
The trend of these resolutions seems to suggest that the TIW timer outperforms the 
external timer. However, the TIW timer only stays within 500 ? s of the target interval, 
whereas the external timer stays within 100 ? s (refer to section 4.3.3.1). 

 
Figure 4-47: 1 kHz TIW timer vs. External Timer 

 
Figure 4-48: 50 Hz TIW timer vs. External Timer 

As the external timer is based on an oscillating crystal, one would expect the external 
timer not to exhibit any deviation from the desired interval. However a discrepancy is 
detected (also mentioned in section 2.5.1). This discrepancy may be attributed to 
operating system, being induced by the time that elapses between the arrival of the 
signal at the serial port to the arrival of the signal at the application that is expecting 
it. Another contributing factor is the amount of time required for the Timestamp 
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calculator (see section 4.1) to read the high-precision counter and calculate the 
timestamp.  
Since the performance accuracy of the external timer is closely tied with the 
performance of the operating system, the TIW timer may be concluded to merely 
circumvent operating system deficiency. 

 
Figure 4-49: 1 Hz TIW timer vs. External Timer 

The bottom line of this comparison is that the TIW timer is able to reliably generate 
intervals within 500 ? s of the interval duration that the hard real-time external timer is 
able to generate. 

4.6 Timer Performance 
This chapter presented both rejected and final solutions to the problem of developing 
a soft real-time timer that fits the description in section 2.6. 
?  The TIW timer was shown be exhibit a margin of error of 500 ? s or less (section 

4.3.3) 
?  The TIW timer was shown to use minimal system resources. The average usage 

was quantified to remain below 5 % (section 4.3.3) 
?  The TIW timer was designed to fire a timer event at the conclusion of each 

interval (section 4.3.1) 
Therefore, the TIW timer meets the requirement of a soft real-time timer discussed in 
section 2.6. The TIW timer was also shown to outperform the existing timers 
discussed in section 2 in terms of accuracy. Of the timers discussed, the loop timer 
was found to be the most accurate, measuring a one millisecond interval with a 
maximum deviation of 167 ? s (refer to section 2.2.2). The TIW timer is able to do so 
reliably with a margin of error less than 500 ? s. This margin of error is half that of the 
multimedia timer which can only produce 1 ms intervals with one millisecond of the 
desired interval (refer to section 2.3.2.1). 
When the issue of CPU consumption is investigated, the TIW timer performs very 
well. The main drawback of an implementation such as the loop timer is that it put 
considerable strain on the processor. The consumption of the TIW timer remains on 
average below 5 %, as was shown in section 4.3.3. When the alternative 
configuration of the TIW timer is used for frequencies lower than 1 kHz, the average 
usage remains below 3 % (section 4.3.4). It is true that the multimedia timer is 
superior in this area, consuming an average of 0.9957% of the available resources 
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(section 2.3.2.4). However, as stated, the TIW timer cuts the margin of error exhibited 
by the multimedia timer by half. These may be summarised as the benefits of the 
TIW timer, as well as being a justification for its development.  
The TIW timer does have one significant disadvantage however – the solution is 
ineffective under POSIX based platforms such as Linux. 
This section was restricted to testing the timer’s accuracy. However, further testing is 
required to attest to primarily the stability of the TIW timer. This is the subject of the 
next chapter.    
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Chapter 5 
Further Testing 

This chapter presents further testing of the TIW timer, since chapter 4 only covered 
the accuracy of the timer. It also aims to answer the question as to whether there is 
more to the TIW timer than just being able to generate a reliable 1ms interval. 
Section 5.2 looks into this question. But before that, section 5.1 investigates the 
effects of load on the TIW timer, whether it be load on a single timer, multiple timers 
on a single machine or the effects of running the timer along with other multimedia 
applications. Section 5.3 investigates the effect on the timer when the number of 
execution threads are varied, and finally section 5.4 investigates the performance of 
the TIW timer in a real-world application. 

5.1 Load Testing 
A timer with accurate time measurement is desirable, and the TIW timer has 
demonstrated this capability in section 4.3.3. However, a timer is of little value if it 
cannot be used in practical applications. Therefore, in addition to providing accuracy, 
it must demonstrate the same desirable performance when placed under strain. This 
section investigates the viability of the timer in terms of load – in other words if the 
timer can maintain its accuracy. 

5.1.1 Load on a single timer 
In this investigation, a single timer is placed under load. The timer is tested under 
both reasonable and unreasonable load (overload). Section 5.1.1.1 investigates the 
TIW timer’s performance under reasonable load. The timer fires a timer event for a 
task that will consume all available CPU resources for a time period fractionally 
smaller than the interval measured by the timer. 
Section 5.1.1.2 investigates the TIW timer’s performance under overload, in other 
words the timer fires a timer event for a task that will consume 100% of the CPU 
resources for a time period equal or greater than the desired interval measured by 
the timer. In this case, the timer will be in a position where it has to “share” CPU 
resources with the application using it. 

5.1.1.1 Reasonable Load 
Figure 5-1 presents the results for the TIW timer under reasonable load. The timer is 
configured to measure an interval of 1 ms. The load consists of a function that 
measures an interval of 700 ? s using the loop timer algorithm discussed in section 
2.2.2. Since the loop timer consumes all available CPU’s resources, 100% of the 
processor is unavailable for a period of 700 ? s in each 1000 ? s interval measured by 
the TIW timer.  
The maximum interval recorded was 1.402 ms and the minimum 0.598 ms. 
Therefore, under reasonable load a single timer demonstrates a resolution of 1 ms ?  
402 ? s. The deviation is within 500 ? s. Therefore the TIW timer is still accurate and 
still maintains the required resolution of 1 ms ± 500 ? s.  
The maximum percentage of CPU resources consumed at a given time was 80%. 
Note that this includes the resource usage introduced by the load as well. This is 
shown in Figure 5-2. 
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Figure 5-1: 1kHz Reasonable Load 

 
Figure 5-2: TIW timer Reasonable Load CPU usage 

5.1.1.2 Overload 
Figure 5-3 presents the results for the TIW timer under an overload. Again the TIW 
timer is configured to measure an interval of 1 ms, as was the case in the previous 
section. This time the load consists of a function that measures an interval of ? 1000 
? s using the loop timer algorithm discussed in section 2.2.2. Therefore, the CPU will 
be kept occupied for the entire interval duration that it is required to measure. 
Referring back to the TIW timer investigation in section 4.3.2, it is expected that this 
will have an adverse affect on the TIW timer, since it leaves no time for the TIW timer 
to record the interval. 
The maximum interval recorded was 1.951 ms and a minimum of 0.525ms. 
Therefore, under overload a single TIW timer exhibits a resolution of 1ms ?  951? s 
which is essentially the same as the 1 kHz multimedia timer (refer to section 2.3.2.1). 
This is a situation in which the task to be executed in during every interval takes the 
same amount of time or more time to execute as the interval duration measured by 
the timer.  
Therefore, the TIW timer does not hold its own when required to measure time for 
unreasonable load. However, since the load is unreasonable, the TIW timer (or any 
other timer for that matter) could not be reasonably expected to measure such an 
interval. 
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Such a scenario constitutes poor design of the application using the timer. It is 
therefore safe to assume that the timer will be accurate under normal operational 
environments where a single timer is used. This is deduced from the results in 
section 5.1.1.1.  

 
Figure 5-3: 1kHz Overload 

The total processor usage was quantified. The maximum amount of CPU resources 
consumed at a given time is 100%, as expected. However, the average CPU 
resources consumed over the measured period are 90.916%. Note that these figures 
are an indication of the CPU usage of both the TIW timer and the load. This is shown 
in Figure 5-4.  

 
Figure 5-4: 1kHz Overload CPU Usage 

5.1.1.3 Conclusion 
This investigation illustrates that the TIW timer retains its accuracy with minimal 
adverse affect on its resource consumption when tasked to measure time for a 
routine that places reasonable load on the timer. 
On the other hand, the timer exhibits a similar resolution to the WIN32 multimedia 
timer when the routine it is measures time for, is “unreasonable” in that it consumes 
the same amount of time or more time than the interval duration measured by the 
TIW timer. 
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5.1.2 Multiple Timers 
In this experiment, the number of timers that can be executed on a single system is 
investigated. Real-time systems commonly need to employ more than one timer and 
therefore the TIW timer’s performance in this regard deserves to be quantified. Since 
the performance of a single timer is known (section 4.3), this investigation firstly 
focuses on the performance of the TIW timer when of two instances are running 
simultaneously. This will be followed by the estimation of the maximum number of 
timers that may be running on a single system at the same time. 

5.1.2.1 1 kHz, Two TIW timers running 
For the purpose of this investigation, the timers will be referred to as Timer A and 
Timer B. These two timers were spawned within the same user application and 
tasked to provide timer events at a frequency of 1 kHz. 
Figure 5-5 depicts the results from the Timer A. A maximum of 1.309 ms and 
minimum 0.691 ms was recorded. Therefore the timer exhibits a resolution of 1ms ± 
309? s. 

 
Figure 5-5: Timer A 1 kHz Test  

As is clear from Figure 5-5 Timer A provides an interval accurate within 500 ? s. The 
figure also indicates that this deviation appeared irregularly. The rest of the time the 
interval remains below 1.100 ms. Therefore the TIW timer in the case of timer A 
exhibits the required resolution of 1ms ± 500? s or better.  
The maximum amount of CPU resources consumed at any moment was 66% with an 
average of 5.077%. It is clear from Figure 5-6 that this is only an initial spike and that 
the rest of the time Timer A’s performance is comparable to the single TIW timer in 
section 4.3.3. The CPU usage of Timer A is presented in Figure 5-6. The conclusion 
that applies to Timer A is that its performance is the same as if it was running on its 
own. 
Figure 5-7 depicts the results from the Timer B. A maximum of 1.100 ms and 
minimum 0.9 ms was recorded. Therefore, timer B exhibits a resolution of 1ms ± 100 
? s. Timer B, like timer A, exhibits the required resolution of 1 ms ± 500 ? s or better. 
Timer B consumed a maximum of 14.883% of the available CPU resources and a 
minimum of 0%. The average CPU usage was 4.885% as can be seen from Figure 
5-8. Like timer A, timer B’s performance is analoguous to the single TIW timer. Again 
it may be concluded that timer B performs the same, as it would have if it was 
running alone. 
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Figure 5-6: Timer A CPU Usage 

 
Figure 5-7: Timer B 1 kHz Test 

 
Figure 5-8: Timer B CPU usage 

5.1.2.2 1 kHz six TIW timers running 
From the previous section, it is known that two TIW timer’s can be run together on a 
single machine. The following investigation endeavours to determine by how much 
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the number of TIW timers may be increased before the timer’s performance starts to 
degrade significantly.  
Six TIW timers were initialised and started – configured to fire timer events at a 
frequency of 1 kHz. Accordingly, the accuracy of all six timers was recorded. The 
timer that presented the best result had the following behaviour: 

?  The maximum interval recorded – 1.191ms 
?  The minimum interval recorded – 0.809ms 
Therefore this particular timer’s resolution is 1ms ± 191? s, thus conforming to the 
required resolution of 1 ms ± 500 ? s. This is shown in Figure 5-9. 

 
Figure 5-9: Best Timer with 6 Timers Running 

The timer with the worst performance, however, exhibited the following behaviour: 
?  The maximum interval recorded – 1.993ms 
?  The minimum interval recorded – 0.007ms 
With a resolution of 1 ms ± 0.993 ms (1.993ms – 1ms), the TIW timer’s performance 
is considerably worse than that of a TIW timer that is running on its own (although 
still analogues to the multimedia timer). This is shown in Figure 5-9.  

 
Figure 5-10: Worst Timer with 6 Timers Running 

Although the “best” timer did indeed provide satisfactory performance results, it is not 
predictable which of the TIW timers among the six running concurrently will exhibit 
acceptable results, and which will not. Therefore, six TIW timers cannot be run 
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continuously on a single machine and be expected the generate 100% of their 
interval within a maximum deviation of 500 ? s. 
This leads to the investigation described in the following section, where the test is 
repeated with five TIW timers at 1 kHz.   

5.1.2.3 1 kHz Five TIW timers Running 
Five TIW timers were initialised and started, with a configuration that will allow them 
to fire timer events at  a frequency of 1 kHz, as was the case in the previous section. 
Again, the accuracy of the timers was calculated. Subsequently, the performance of 
the “best” and “worst” timer was used to quantify the results of the investigation.  
The TIW timer with the best performance recorded a maximum interval of 1.034 ms 
and a minimum interval of 0.966 ms. Thus a resolution of 1 ms ± 34 ? s was achieved 
– well within the requirement of a soft real-time timer in section 2.6. This is shown in 
Figure 5-11.  

 
Figure 5-11: Best Timer with 5 Timers Running 

 
Figure 5-12: Worst Timer with 5 Timers Running 

On the other hand, the timer with the worst performance exhibited the following 
behaviour: 
?  The maximum interval recorded – 1.375 ms 
?  The minimum interval recorded – 0.625 ms 

 



 

Janno Grobler 
jannogrobler@gmail.com 
M.Sc Computer Science 
University of Pretoria 

Page 91 of 111 
 

The resolution is therefore 1 ms ± 375 ? s. As was the case with the “best” TIW timer, 
the resolution is within the required value of 1 ms ± 500 ? s. 
This is shown in Figure 5-12. The figure indicates that the spike in interval occurred 
only once over a period of 30 seconds – the rest of the intervals were below 
1.100ms. Therefore, 5 timers can be run concurrently on a single system and will still 
generate its intervals within a maximum deviation of 500 ? s. 

5.1.2.4 Conclusion 
When multiple TIW timers on a single machine are configured to generate timer 
events at a frequency of 1 kHz, the following is concluded: 
?  From section 5.1.2.1 it is obvious that two TIW timers can run concurrently on a 

single machine without notable degradation in performance.  
?  It is apparent from the performance of the worst timer in section 5.1.2.2 that six 

TIW timers may not be run reliably in a concurrent fashion at a frequency of 1 
kHz. (Although the performance is analogues to that of the multimedia timer 
(refer to section 2.3.2.1)) 

?  Section 5.1.2.3 shows that it is possible to run 5 TIW timers concurrently at a 
frequency of 1 kHz and thus the maximum number of TIW timers that may be 
running concurrently with reliability equates to 5 when a frequency of 1 kHz is 
used. 

The test was repeated for the 50 Hz timer. However, the performance of TIW timer 
did not degrade significantly, even when a significant number of timers (20 in total) 
were executed. It was not possible to determine a maximum number of timers for this 
interval. However, since the 1 kHz frequency may be seen as the most “difficult” to 
achieve for the TIW timer (without considering section 5.2) and it is possible to run 5 
of them concurrently at 1 kHz, the TIW timer’s performance in this regard will be 
construed to be at most 5 timers at 1 kHz. This implies however that more timers 
may be run concurrently at lower frequencies. 

5.1.3 Other Multimedia Applications running with the TIW timer 
This section investigates the performance of the TIW timer whilst another multimedia 
application is running. When the multimedia subsystem is activated, the entire 
operating system is put into the high performance state [MSDN 2005]. Should 
another application be using the default WIN32 timers and another application 
initialises the multimedia subsystem, the first application will benefit from it.  
As the name implies, the multimedia subsystem is used by multimedia applications 
such as the Windows Media Player. The purpose of this section is therefore to 
determine the TIW timer’s performance while another multimedia application, such as 
the Windows Media Player, is running. 

5.1.3.1 1 kHz TIW timer with other Multimedia Application 
Figure 5-13 illustrates the performance of the timer with a frequency of 1 kHz 
required. At the time the TIW timer was started, an instance of the Windows Media 
Player is already running and is in the midst of video playback. Accordingly the 
multimedia subsystem is already activated by the TIW timer starts. 
The maximum interval recorded was 1.866 ms and the minimum 0.133 ms over a 
period of 60 seconds (although only the first 30 seconds are depicted in the figure). 
The resulting resolution of the TIW timer in this case is 1 ms ?  866 ? s and therefore 
outside of the required resolution for a soft real-time timer defined in section 2.6. (It is 
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interesting to note again that this performance is on par with the multimedia timer 
(refer to section 2.3.2.1). 

 
Figure 5-13: 1 kHz other Multimedia Application 

 
Figure 5-14: 1 kHz TIW timer with other Multimedia application CPU Usage 

Furthermore, the CPU consumption is not completely consistent with instances 
where the TIW timer is running without interference from another application that 
uses the multimedia subsystem. The maximum amount of CPU resources consumed 
at a given time was 100%, an initial spike. However the average was 4.835%. 

5.1.3.2 50 Hz TIW timer with other Multimedia Application 
Figure 5-15 illustrates the performance of the timer with a frequency of 50 Hz 
required, again with the Windows Media Player presented the contents of a video 
recording in the background. Again the player was started up first with the TIW timer 
in tow. 
The maximum interval recorded on this occasion was 20.636 ms and the minimum 
19.364 ms. Therefore the timer exhibits a resolution of 20 ms ?  636 ? s, very similar 
to that of the multimedia timer with the same frequency (refer to section 2.3.2.2).  
The maximum amount of CPU resources consumed at a given time was 16.5%. The 
average was 3.001%, a result consistent with that of a single TIW timer running 
without the added load of another multimedia application on the same machine. 
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Figure 5-15: 50 Hz other Multimedia Application 

5.1.3.3 1 Hz TIW timer with other Multimedia Application 
Figure 5-16 illustrates the performance of the TIW timer configured to generate timer 
events every second – a rate of 1 Hz.  

 
Figure 5-16: 1 Hz other Multimedia Application 

As before, the Windows Media Player application is started before the TIW timer. The 
maximum and the minimum intervals recorded were both 1.0 second. Therefore the 
timer exhibits a resolution of 1 second ?  0 ? s. Comparing this resolution to that 
recorded for the single TIW timer with an alternative configuration in section 4.3.4.2, 
it is clear that the accuracy of the TIW timer is retained in this instance. The 
resolution on that occasion was 1 second ?  1 ? s. 
The maximum amount of CPU resources consumed at a given time was 84.333%, an 
initial spike like that of the TIW timer with an alternative configuration in section 
4.3.4.2. The average was 2.452% and when this is compared to the results in section 
4.3.4.2, it can be surmised that the performance the TIW timer is not adversely 
affected by another multimedia application in this case. 

5.1.3.4 Conclusion 
Running a multimedia application concurrently with the TIW timer has notable effects 
on the performance of the timer – especially at higher frequencies. The TIW timer 
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displays the same performance as the multimedia timer at certain frequencies (in this 
case 50 Hz and 1 kHz, refer to sections 5.1.3.1 and 5.1.3.2).  
However, at lower frequencies such 1 Hz (in section 5.1.3.3), the TIW timer retains 
its performance. Therefore, it is possible to run the TIW timer reliably alongside 
another multimedia application at lower frequencies – which may not be adequate for 
all soft real-time implementations although that TIW timer performs on par with the 
multimedia timer in terms of accuaracy.  

5.2 Period Adjustment 
In section 4.3, it was shown that the TIW timer is able to generate an interval of 1000 
? s (1 ms) utilising 2 threads. This section investigates whether it is possible to 
measure smaller intervals than 1 ms by varying the number of execution threads that 
the TIW timer is using.  
The investigation shows that it is indeed possible to do so, given that the choice of 
thread numbers is made correctly. This section will only present the results of the 
TIW timer at higher frequencies than 1 kHz, showing that it is possible with the 
number of threads chosen wisely. Section 5.3, however, serves as an explanation of 
how the correct number of threads is chosen. 

5.2.1 4 Threads, 500 ? s Interval (2 kHz) 
In this first experiment, the objective was to double the highest frequency of the TIW 
timer; namely 1 kHz. Therefore the TIW timer is required to generate timer events at 
2 kHz. To achieve this, the number of threads was increased to four, and the 
required interval set to 500 ? s. The complete configuration follows: 
Number of timestamps   – 120000 

Interval Duration   – 500 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 4  
The “mod”     – 1 
The results are shown in Figure 5-17.  

 
Figure 5-17: 2 kHz TIW timer 

A maximum interval of 591 ? s was recorded and a minimum of 409 ? s over a period 
of 60 seconds with the first 16 seconds shown in the figure. Therefore, the timer 
exhibits a resolution of 500 ? s ?  91 ? s in this case. The worst resolution recorded for 
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the timer with this frequency is 500 ? s ?  250 ? s – 200 ? s being within the 500 ? s 
maximum deviation specified in section 2.6.  
However, 500 ? s doesn’t seem like an acceptable deviation for a timer with an 
interval size of 500 ? s. Since a resolution of 1 ms ± 500 ? s is acceptable for a 1 kHz 
with the maximum deviation fixed at half the interval size, it is reasonable to expect 
that the TIW timer at 2 kHz exhibits a maximum deviation of half its interval size, in 
this case 250 ? s. Figure 5-18 depicts the worst case recorded for the 2 kHz timer and 
shows that the maximum deviation is less than or equal to 250 ? s. The maximum 
interval recorded was 682 ? s and as the figure shows, it was an isolated incident. 

 
Figure 5-18: 2 kHz TIW timer – Worst Case 

Since the 2 kHz TIW timer utilises more threads than the 1 kHz TIW timer, it is to be 
expected that there will be an increase in resource consumption. The maximum slice 
of CPU resources consumed by the timer shows an initial spike of 66% where after 
the usage remains below 30%. However, the average usage was 8.885% leaving 
whatever application requiring 500 ? s interval measurements with on average ?  
91.115% of the CPU to its disposal.  
This is depicted in Figure 5-19. 

 
Figure 5-19: TIW timer 2 kHz CPU usage 
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5.2.2 8 Threads, 250 ? s Interval (4 kHz) 
Since the TIW timer successfully doubled the 1 kHz frequency to 2 kHz, the next 
obvious step is to determine whether the frequency may be doubled again to 4 kHz. 
Therefore the number of threads was increased to 8, and the required interval set to 
250 ? s. Figure 5-20 illustrates the results recorded with the TIW timer configured as 
follows: 
Number of timestamps   – 240000 

Interval Duration   – 250 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 8  
The “mod”     – 1 

 
Figure 5-20: 4 kHz TIW timer 

A maximum interval of 347 ? s was recorded, however, over a period of 60 seconds 
this only occurred once; in fact, Figure 5-20 illustrates the period of 8 seconds in 
which the maximum interval was recorded. The interval stays below 350 ? s save for 
the solitary maximum and spike. The minimum recorded interval was 153 ? s. The 
resolution is therefore 250? s ?  100? s. Again the maximum deviation is less than half 
the length of the interval and obviously within 500 ? s of the target interval duration. 

 
Figure 5-21: TIW timer 4 kHz CPU usage 
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Again the number of threads were doubled from the previous experiment in section 
5.2.1 and accordingly and increase in resource consumption is to be expected. As 
Figure 5-21 illustrates, the CPU usage varies between 0% and 45.167% with an 
average of 16.594%. 

5.2.3 16 Threads, 125 ? s Interval (8 kHz) 
In this experiment, the goal was yet again to attempt to double the previous 
frequency (in this case from 4 kHz to 8 kHz). To achieve this, the number of threads 
was increased to 16, and the required interval set to 125 ? s. The full configuration of 
the timer is as follows: 
Number of timestamps   – 480000 

Interval Duration   – 125 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 16  
The “mod”     – 1 
The results are shown in Figure 5-22 illustrates the results from this experiment over 
a period of 4 seconds. A maximum interval of 347 ? s was recorded, however, as 
shown in Figure 5-22, deviations greater than 75 ? s occur sporadically. The minimum 
recorded was 4? s and therefore the resolution in this case is 125? s ?  222? s. 
Therefore, the TIW timer does not measure the interval reliably for all the intervals 
generated and the maximum deviation is greater than the interval size. However, 
Figure 5-22 shows that the interval measured is always within 500 ? s of the desired 
interval duration. Since 75 ? s is half the length of the required interval of 125 ? s, it is 
concluded that the TIW timer’s acceptable performance at 1 kHz and 2 kHz cannot 
be extrapolated to a frequency of 8 kHz. 
With the increase of the number of threads to 16, the CPU usage is once again 
expected to increase and that is exactly what the timer demonstrated. The maximum 
% CPU resources consumed were 84.333% and the average CPU usage was 
32.063% (refer to Figure 5-23).  
Therefore, should an application require the TIW timer to measure 125 ? s intervals, 
the estimated interval will be accurate within 222 ? s and the application itself will 
have on average ?  77.937% of the CPU at its disposal. 

 
Figure 5-22: 8 kHz TIW timer 

 



 

Janno Grobler 
jannogrobler@gmail.com 
M.Sc Computer Science 
University of Pretoria 

Page 98 of 111 
 

 
Figure 5-23: TIW timer 8 kHz CPU usage 

5.2.4 5 Threads, 400? s Interval (2.5 kHz) 
Up to this point, the intervals recorded were all divisors of 1000 ? s: 
?  1000 ? s/2 = 500? s 

?  500 ? s/2  = 250? s 

?  250 ? s/ 2 = 125? s 
Therefore in this experiment, the idea was to generate an interval less than 1000 ? s 
that is not a factor of 1000 ? s. The interval chosen was 400 ? s.  
The results for this interval are presented in Figure 5-24. The maximum interval 
recorded was 600 ? s and a minimum of 200 ? s. Again the maximum deviation is half 
of the length of the required interval culminating in a resolution of 400 ? s ?  200 ? s. 
The CPU usage is presented in Figure 5-25. The average usage was 10.766%.  
The TIW timer was tested at his frequency several times and the maximum deviation 
of up to 300 ? s was recorded. However, it was always an isolated incident with the 
rest of the timestamps recorded within 200 ? s of the required interval. However, as 
was the case with the 8 kHz TIW timer in section 5.2.3, the TIW timer is able to 
generate the required interval within 500 ? s, but fails produce intervals that do not 
exceed the required interval by more than half. 

 
Figure 5-24: 2.5kHz TIW timer 
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Figure 5-25: TIW timer 2.5kHz CPU usage 

5.2.5 Conclusion 
The definition of the soft real-time timer in section 2.6 specified a required resolution 
of 1 ms ?  500 ? s for the soft real-time timer. Therefore, the maximum deviation 
equates to half the duration of the required interval. The TIW timer achieved this for 
the 1 kHz frequency, as seen in section 4.3.3.1.  
In section 5.2.1, the resolution exhibited was 500 ? s ?  200 ? s for a 2 kHz timer.  Note 
that, not only is the maximum deviation less than 500? s; it is also less than half of the 
required interval, namely less than half of 500 ? s. In this sense, the 2 kHz TIW 
timer’s performance is the same, relatively speaking, as the 1 kHz timer. This 
unfortunately does not apply to the 2.5 kHz timer in discussed in section 5.2.4. It was 
seen there that this timer had a resolution of 400 ? s ?  200 ? s in general, although an 
occasional interval may exceed 400 ? s by as much as 300 ? s. 
However, it does apply to the 4 kHz timer discussed in section 5.2.2 where the 
resolution was 250 ? s ?  100 ? s. Although the maximum deviation is less than half of 
the interval size, it would compel the timer to generate intervals of ±150 ? s to 
compensate when the maximum deviation occurs. The resolution thus complies with 
the original timer specifications that were enunciated in section 2.6, but would 
probably be unacceptable for an application that really needed a 4 kHz timer. 
The same is true of the 8 kHz timer in section 5.2.3. It has a resolution of 125 ? s ?  
222 ? s – in other words the deviation is more than half the interval size. The 
maximum deviation is in fact greater than the interval size, which is probably not 
desirable for a real application that needed an 8 kHz timer, although these deviations 
are irregular and sporadic.  
Taking these results into consideration it is clear that the TIW timer is capable of 
generating intervals smaller than 1000 ? s with a maximum deviation that was 
considered acceptable for the 1 kHz timer, namely 500 ? s. In fact, for timers with a 
frequency lower than 2.5 kHz (i.e. a required interval higher than 400 ? s), the 
maximum deviation was less than or equal to the duration of half the required 
interval, although the 2.5 kHz timer only exhibited occasional deviations that 
exceeded half the interval size.  
Therefore, for timers with frequency of 2.5 kHz and higher, the maximum deviation 
will be less than 500 ? s, but it may also be greater than half the interval duration. 
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5.3 Number of Threads 
The choice of number of threads is crucial to the TIW timer’s operation, especially 
when generating intervals smaller that 1000 ? s (refer to section 5.2), as will be 
shown in this section. Refer back to the TIW timer timing diagram in Figure 4-10 for 
the 1 kHz timer using two threads. In the startup phase of the timer which precedes 
the first event that is fired, three intervals may be identified. The first two intervals 
occur successively, each enduring for 1000 ? s, and each being generated via the 
loop timer method. The third interval endures for another ?  1000 ? s, being the period 
during which both threads are “sleeping”. 
Now consider Figure 5-26 that represents the timing of the TIW Timer with a required 
interval of 500 ? s. Four threads (A, B, C and D) are initialized, each successively 
measuring out 500 ? s intervals, using the loop timer mechanism. After thread D has 
measured its interval, a fifth interval ensues during which all threads are sleeping. At 
the start of this fifth interval, thread A will have roughly 500 ? s of sleeping time left 
before it fires the first timer event.   
 

 
Figure 5-26: 2 kHz TIW timer Timing Diagram 

Figure 5-27 represents the timing diagram for the 2.5 kHz timer and shows that the 
five threads (A through E) will each measure an initial 400 ? s interval using the loop 
timer mechanism. When thread E is done with this initial interval measurement, a 
sixth interval ensues during which all threads are sleeping. At the start of this sixth 
interval, thread A has roughly 400 ? s of sleeping time left. 
 

 
Figure 5-27: 2.5 kHz TIW timer Timing Diagram 

The same is true of Figure 5-28, which represents the timing diagram for the 4 kHz 
timer. The eight threads (A through H) will start by measuring an interval of 250 ? s 
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each. When thread H has measured its interval, a ninth interval ensues during which 
all threads are sleeping. At the start of this ninth interval, thread A will have roughly 
250 ? s left to sleep. 
Therefore, in all cases, the first interval during which all threads are sleeping is 
approximately the same length as the timer’s interval duration. 
 
 

 
Figure 5-28: 4kHz TIW timer Timing Diagram 

Now, consider all these timing diagrams (Figure 4-10, Figure 5-26, Figure 5-27 and 
Figure 5-28). In each of these diagrams, the time elapsed since the end of timer A’s 
interval calculation and the firing of the first timer event (in other words the time 
elapsed since the end of timer A’s interval calculation and the end of the first ?  
period), is 2 ms2. Within the 2 ms there is one period with a duration equal to that of 
the interval size during which all of the threads are asleep.  
Let N denote the number of threads for a TIW timer that is to measure an interval of t 
milliseconds. In all the figures, N threads each measure one t-millisecond interval 
within this 2 ms period. Therefore, including the interval during which all threads are 
asleep, N intervals of t-milliseconds have been measured with an interval of t-
milliseconds to come before thread A has completed its 2 ms suspension. In other 
words, the relationship: 2 = N X t holds in all theses cases, or N = 2/t. 
Now consider Figure 5-29, which depicts the situation where the TIW timer is 
configured to use five threads to measure a 500 ? s interval (in other words, a number 
that is not equal to 2 ms divided by the interval size). The configuration of the TIW 
timer is accordingly as follows: 
Number of timestamps   – 120000 

Interval Duration   – 500 ? s  
Requested Sleep Interval  – 1 ms  
Number of threads to use  – 5  
The “mod”     – 1  
It is clear that the interval during which all threads are sleeping is replaced by the fifth 
thread (thread E) running a loop timer during that time to measure an interval of 500 
                                                        
2 For the purposes  of this discussion, assume that there is no overshoot, i.e. that a = 0 
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? s. The resulting TIW timer will constantly consume 100% of the available CPU 
resources.  

 
Figure 5-29: 2kHz TIW timer Timing Diagram – Wrong number of threads 

Figure 5-30 shows the CPU usage for a TIW timer set up to measure a 500 ? s 
utilizing 5 threads. The average usage was 83.22%. 

 
Figure 5-30: 2 kHz TIW timer, 5 threads CPU usage 

However, the sleep instruction may suspend a thread for more than 2 ms, which 
does occur as shown in section 4.2.2.2.1. If for example, thread A sleeps for 2.100 
ms after its initial interval in the figure, a period of 200 ? s exist after thread E has 
entered the sleep cycle for the first time where no thread will be running. However, 
the sleep instruction does not overshoot every time and the intervals where no thread 
is running is so small that it fails to induce a sufficient wait period that would prevent 
the TIW timer from using an unacceptable amount of CPU resources. 
Figure 5-31 shows the TIW timer configured to generate timer intervals at 2 kHz 
using three threads (again a number that is not equal to 2 ms divided by the interval 
size). As is clear from the figure, when the third thread (thread C) finishes its interval 
calculation, a period of ± 1000 ? s ensues during which all threads sleep before 
thread A goes into a running state and measures out the first a interval. In fact, this 
same “hiccup” occurs so that every third timer event is cumulatively delayed by 
0.5ms.  
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Figure 5-31: 2kHz TIW timer Timing Diagram – Wrong number of threads 

Therefore, the number of threads is should be equal to the 2 ms divided by the 
interval size or either the situation depicted in Figure 5-29 and Figure 5-31 is the 
result. Since it is impossible to have a fraction of a thread, the intervals that can be 
generated are dependent on factors of 2000 ? s. For example, an interval of 300 ? s or 
800 ? s can not be generated reliably since 2000 ? s is not divisible by these values. It 
is impossible to have 2.5 threads (2000/800 = 2.5). However, an interval of 333.33 ? s 
(3 kHz TIW timer) is possible since the result of the division of 2000 ? s by this 
number is 6 – a number of threads that the TIW timer is able use.  
This is depicted in Figure 5-32. The maximum interval recorded was 365 ? s – a 
maximum deviation of 32 ? s in this case. 

 
Figure 5-32: 3 kHz TIW timer 

In the present study, the TIW timer with the largest number of threads had 16. To test 
larger factors is beyond the scope of the present study. The evidence gathered thus 
far suggests that intervals of, for example, 40 ? s could be generated using 50 
threads, but that the resolution and CPU utilization would degenerate. 
Note that this is only applicable to intervals of 1000 ? s or less. As was shown in 
section 4.3.4, the alternative TIW timer is able to generate reliable interval larger than 
1000 ? s with the use of one thread. 

5.4 A real world application 
The inclusion of this sections stems from experienced gained by the author in the 
defense industry – specifically involvement in the development of a ground station for 
fighter aircraft. The basic idea of this system is that vast amounts of data are 
imported for analysis from data recorders on the aircraft. During this import process, 
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the data is converted into a format that eases the analysis process. These recorders 
record the data relative to time, and therefore every piece of data has a timestamp 
attached to it. 
Therefore the data imported from the aircraft has timestamps connected to each 
parameter encapsulated in the data. However, the data is imported from two different 
sources on the aircraft. The first source is an embedded platform that uses a hard 
real-time timer to calculate the timestamps for the data. The second source is a 
commercial computer with the Windows XP operating system installed on it. The data 
is assigned timestamps on this second machine calculated using the system timer 
(see section 2.3.1) provided by the WIN32 API. When the timestamps were 
compared, the time measured from the WIN32 machine was greater than the 
corresponding timestamp from the hard real-time source (after ± one hour of data) by 
as much as 9 minutes. 
This caused severe problem since the data from these two sources had to be 
matched according to timestamp. This led to the question of whether the TIW timer 
would still generate a reliable interval after an hour. Accordingly an application was 
developed that configured a TIW timer to fire timer events at a frequency of 1 kHz. 
An example of such a setup is given in section 4.3.3.1 with the exception that the 
number of timestamps was set to 3600000 (the number of one millisecond intervals 
in one hour). Therefore, the final timer event should fire after ± 3600000 ms have 
passed. 

 
Figure 5-33: TIW Timer 1 hour: Final Timestamp 

Figure 5-33 shows two bars representing timestamps in milliseconds relative to the 
moment that the timer was started. The first bar represents the time elapsed at the 
moment the TIW timer fires its final event after on 1 hour. The second bar represents 
the amount of time that should have elapsed. As is clear from the figure, the TIW 
fired its final event 1 ? s short of the time that it should have – in other words, within 
500 ? s retaining the target deviation specified in section 2.6. 
Another interesting note is that the maximum interval over this period was 1.111 ms. 
The 20 second period in which this maximum interval occurred is depicted in Figure 
5-34. The yellow line represents what the interval size should be – 1 ms. It is clear 
that the interval durations of the TIW timer remain within close vicinity of this required 
interval length as the maximum deviation was 111 ? s. 
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Figure 5-34: TIW Timer 1 kHz: One Hour 

Since the TIW timer fired its final event 1 ? s before it was supposed to after running 
for an hour and this timer event was used to measure a duration of one hour, the 
measurement would be inaccurate by a margin of 1 ? s. As stated, this deviation is 
within 500 ? s and therefore very accurate. A further point of interest is that the TIW 
timer maintains accurate one millisecond intervals over the period of an hour.  
Therefore this particular experiment shows that the TIW timer would be able to solve 
the problem in the real world situation described in the beginning of this section. If the 
system timer is replaced with the TIW timer to measure the timestamps, the 
discrepancy of 9 minutes could be reduced to 1 ? s.  
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Chapter 6 
Conclusion 

The goal of this chapter is to serve as conclusion to the research presented in this 
text. The chapter first focuses on how future trends in technology are likely to 
influence the TIW timer. It also presents a summary and a conclusion to this text. 
Chapter 1 served as introduction and some general background to the subject matter 
discussed in this text. The definition of a timer was formalised along with the 
explanation of timer resolution and real-time. These concepts are important and 
serve to provide a better understanding of the problem statement that was given in 
section 2.6 in which certain requirements are placed on real-time timers, whether in a 
soft or hard real-time environment.  
After providing some background on existing timers, chapter 2 shows that neither the 
Win32 nor standard POSIX timers are able to provide constant intervals that comply 
with a maximum deviation requirement of 500 ? s or less and that this failure may be 
attributed to the rate at which the operating systems service their timers. Another 
example from the defence industry illustrates this deficiency, specifically under the 
WIN32 operating system in section 5.4.   
However, a workaround was found. Chapter 3 is a brief introduction to the design 
and implementation decisions that were used in implementing the workaround.  
The workaround is in the form of the thread induced waitable timer (TIW timer) 
discussed in section 4.3. Within this section, the design and results for this timer 
were presented. The final solution went through a couple of rejected solutions before 
being formalised into the TIW timer. These solutions were presented in section 4.2. 
The TIW timer is capable of providing a constant interval with a maximum deviation 
recorded on a 1 ms interval of 500 ? s while consuming on average less than 5% of 
the available processing power (refer to section 4.3). The TIW timer is waitable and 
periodically fires an event when the specified interval elapses. Thus the TIW timer 
conforms to our requirements for a soft real-time timer given in section 2.6. 
The TIW timer was shown to outperform the current WIN32 and standard POSIX 
timers. This was the subject of section 4.4. In that section, the TIW timer was also 
compared to an external hard real-time timer – the benchmark for the accuracy of the 
TIW timer. The comparison yielded satisfactory results for the TIW timer. 
Further studies on the TIW timer were also presented, and these are summarised as 
follows: 
?  The performance of the TIW timer on the Win32 platform and under a UNIX 

platform was compared in section 4.4.2.2. Since the TIW timer’s performance 
under the WIN32 operating system is superior to that of the standard POSIX 
timers, the logical next step was to implement the TIW timer under the Linux 
operating system. However, it was found that due to architectural and operational 
differences, the TIW timer is not a viable solution under the Linux environment.  

?  The effect of load on the TIW timer was investigated in section 5.1. The TIW 
timer was shown to retain its accuracy when measuring time for routines that 
placed a reasonable amount of load on the timer. 
The research done in section 5.1 specifically focused on the performance of the 
TIW timer when placed under load. The whole idea behind the development of a 
timer is to trigger the operations that have to be completed at periodic intervals. 
The triggered operations have priority when it comes to processor usage. 
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Untimely scheduling of the concurrent threads of the TIW timer may hamper the 
real-time accuracy of the solution [Chu 1997].  However, the fact that the timer is 
a multi-threaded application means that its design is well positioned to take 
advantage of impending hardware technology improvements to better support 
threads. 
Intel recently introduced such improvements in the form of hyper-threading 
technology on their Pentium 4 processor. This technology enables multi-threaded 
applications to execute threads in parallel. In the past, threads were split into 
multiple streams in order to enable multiple physical processors to execute them. 
This technology basically enables multi-threaded software to simultaneously 
execute its threads [Intel 2004]. In a hyper-threading enabled processor, certain 
sections outside of the main execution resources are duplicated; typically the 
sections that store the architectural state of the processor. This allows the 
processor to be seen as two logical processors by the host operating system. 
This allows the operating system to schedule two threads or processes 
simultaneously. A thread executing on a processor does not necessarily use all of 
the execution resources available on the processor. Hyper-Threading allows the 
processor to use these unused resources to execute a second thread [Wikipedia 
2005]. 
Since the TIW timer threads are mutually exclusive, only one will occupy the CPU 
at any time. This will allow another thread to be scheduled using idle CPU 
resources. Therefore, this thread may be spawned within the timer, and may be 
given the responsibility for the execution of the desired operations. 
When one of the timer threads wants to execute, and the thread executing the 
desired operations is still running, the TIW timer threads may be executed at the 
same time thanks to hyper-threading, boosting the viability of the TIW timer. 
The TIW timer provides a mechanism to implement a timer using software, 
without being too concerned about the underlying hardware. This suggests that 
the mechanism will be easily portable to processors that might be developed in 
the near future.  
With demands on new hardware developments as they are at the moment, it 
seems as if multi-threaded applications could benefit even more. The following 
are some of the demands on new hardware systems: 
- Greater business productivity 
- Increase in the number of transactions processed 
- Larger workloads [Intel 2004]. 
To achieve the above, the processors will have to continue supporting the 
execution of multiple concurrent processes at once. In other words, multi-
threaded applications will be used more and more and the TIW timer will still be a 
viable solution with new processor developments.  
Microsoft and Intel have jointly developed a new timer called the High 
Performance Event Timer (HPET). This timer was designed specifically to 
measure 1 ms intervals, without excessive deviation. Tests on the HPET by 
Microsoft engineers have determined that the HPET improves accuracy and 
system performance [Peng 2002]. When the HPET becomes widely available, all 
Win32 APIs will be ported and the underlying Windows code extended to take 
advantage of the new timer.  
In future, the TIW timer may be extended to read the timestamp from the HPET 
rather than the high-resolution hardware counters, for greater accuracy. 
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?  The number of TIW timer instances that can be run reliably together on a single 
computer was discussed in section 5.1.2. The maximum number of timers that 
may be run reliably together on a single machine at a frequency of 1 kHz was 
found to be five in total. However, it may be possible to execute more timers 
concurrently at lower frequencies.  

?  Determining the effects of other multimedia applications that are running on the 
same machine as the TIW timer was the focus of section 5.1.3. It was shown that 
the TIW timer is vulnerable to interference from other multimedia applications. It 
only retains is accuracy at lower frequencies such as 1 Hz. However, when the 
TIW timer is executed concurrently with a multimedia application, its performance 
is still comparable to that of the multimedia timer. 

?  Section 5.2 quantified the performance of the TIW timer at frequencies greater 
than 1 kHz. Since the TIW timer was successful in generating a relatively small 
interval of 1000 ? s, it was decided to investigate whether it would be possible to 
measure even smaller intervals. It was determined that the TIW timer is indeed 
able to measure intervals smaller than 1000 ? s, with maximum deviations within 
500 ? s and with reasonable processor consumption (although the processor 
consumption increases as the frequency rises). This is accomplished through 
configuration of the TIW timer to use more than two threads. 

 However, only for frequencies of 2 kHz and lower, does the maximum deviation 
of the timer not exceed half the duration of the required interval reliably. For 
frequency greater than 2 kHz, the TIW timer does succeed in generating intervals 
within deviations within half the interval size. However it is not guaranteed that 
the interval will not exceed that required duration by more than half. 

?  Ever since the initial design of the TIW timer was laid down (the final design was 
presented in section 4.3.1) it was clear that the number of threads that the TIW 
timer uses in a specific configuration impacts the accuracy of the timer 
significantly. In section 5.3, the goal was to quantify the effect of the number of 
threads. It was determined that for the TIW timer to generate a reliable interval 
two conditions have to be met: The number of threads should represent a whole 
number that is a factor of 2000. 

?  Finally the TIW timer’s performance when required to solve a real world problem 
was tested in section 5.4. It was determined that the TIW timer is able to maintain 
its accuracy over a period of one hour. The TIW timer fired the timer event that 
indicated that an hour had passed only 1 ? s short of 60 minutes. Furthermore, 
the maximum deviation produced by the TIW timer over this period was 111 ? s. 

The TIW timer is thus a flexible algorithm that conforms to the definition of a soft real-
time timer and provides a timer event at the specified frequency that can be used by 
an application to measure time and schedule events. However, the TIW timer was 
found to be an effective solution under the WIN32 platform only and is unfortunately 
not as accurate under an operating system that uses the POSIX standard.  
In addition to being an effective workaround for the inadequacies of timers currently 
available under the WIN32 operating system, the TIW timer is also positioned to take 
advantage of new processor technologies such as hyper-threading and the high 
performance event timer. 
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