

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 1 of 111

Design and Implementation of a High
Resolution Soft Real-Time Timer

by

Johannes Petrus Grobler

Submitted in fulfilment of the requirements for the degree
Magister Scientia

in the Faculty of Engineering, Built Environment and Information
Technology

University of Pretoria
Pretoria

February 2006

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 2 of 111

ABSTRACT.. 7

CHAPTER 1... 8
1.1 What is a Timer? ... 8
1.2 Timer Resolution ... 9
1.3 Real Time.. 10
1.4 Sub-Classification of Timers .. 11

1.4.1 One-Shot Timers.. 12
1.4.2 Periodic Timers ... 12
1.4.3 Waitable Timers .. 12
1.4.4 Duration Measurement Timers ... 13

1.5 Analysis Methods... 13
1.6 Dissertation Layout ... 14

CHAPTER 2... 15
2.1 Current Hardware Based Timers ... 15

2.1.1 8254 Programmable Interrupt Timer (PIT) .. 15
2.1.2 Real Time Clock (RTC) ... 16
2.1.3 Advanced Programmable Interrupt Controller (APIC) .. 16

2.2 High Resolution Hardware Counters ... 17
2.2.1 Hardware Timestamp Counters .. 17
2.2.2 Loop Timer.. 18

2.2.2.1 Algorithm .. 18
2.2.2.2 Results... 19

2.2.2.2.1 Loop Timer Performance (1 kHz) .. 19
2.2.2.2.2 Loop Timer Performance (50 Hz) .. 19
2.2.2.2.3 Loop Timer Performance (1 Hz) .. 20
2.2.2.2.4 CPU usage... 20

2.2.2.3 Conclusion... 21
2.3 WIN32 Timers ... 21

2.3.1 System Timer .. 21
2.3.1.1 1 kHz Interval System Timer .. 22
2.3.1.2 50 Hz Interval System Timer .. 23
2.3.1.3 1 Hz Interval System Timer.. 23
2.3.1.4 Conclusion... 24

2.3.2 Multimedia Timer .. 24
2.3.2.1 1 kHz Interval Multimedia Timer ... 26
2.3.2.2 50 Hz Multimedia Timer .. 27
2.3.2.3 1 Hz Interval Multimedia Timer ... 27
2.3.2.4 CPU Usage .. 28
2.3.2.5 Conclusion... 28

2.4 POSIX Timer... 29
2.4.1 BSD Timers... 29

2.4.1.1 BSD Timers (1 kHz Frequency) ... 30
2.4.1.2 BSD Timers (50 Hz Frequency) ... 30
2.4.1.3 BSD Timers (1Hz Frequency) .. 31

2.4.2 Conclusion .. 31
2.5 External Timers... 31

2.5.1 1 kHz Synchronisation Signal .. 32
2.5.2 50 Hz Synchronisation Signal .. 33
2.5.3 1 Hz Synchronisation Signal .. 33
2.5.4 Conclusion .. 34

2.6 Problem Statement .. 34
CHAPTER 3... 36

3.1 Development Programming Language ... 36
3.2 Application Programming Interfaces (APIs)... 36

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 3 of 111

3.3 Operating Systems... 37
3.4 Process Priority .. 37

CHAPTER 4... 39
4.1 Timestamp Calculator ... 39

4.1.1 Query Functions .. 39
4.1.2 Timestamp Calculation .. 41

4.1.2.1 Precision .. 41
4.1.2.2 Process of timestamp calculation .. 41

4.1.3 Class Description ... 42
4.2 Rejected Solutions ... 43

4.2.1 WIN32 Sleep Timer (Non Multimedia) .. 43
4.2.1.1 Algorithm .. 43
4.2.1.2 Results... 44

4.2.1.2.1 1 ms interval (1 kHz) ... 44
4.2.1.2.2 20 ms interval (50 Hz) ... 44
4.2.1.2.3 1 second interval (1Hz) .. 45

4.2.1.3 Conclusion... 45
4.2.2 WIN32 Sleep Timer (Multimedia Timer) ... 46

4.2.2.1 Algorithm .. 46
4.2.2.2 Results... 46

4.2.2.2.1 1 ms interval (1kHz) .. 46
4.2.2.2.2 20 ms interval (50 Hz) ... 47
4.2.2.2.3 1 second interval (1Hz) .. 48

4.2.2.3 CPU usage ... 48
4.2.2.4 Conclusion... 49

4.2.3 Critical Section Timer .. 49
4.3 Thread Induced Waitable Timer... 50

4.3.1 Design ... 52
4.3.2 Algorithm .. 59
4.3.3 Results... 59

4.3.3.1 TIW timer (1kHz Interval).. 60
4.3.3.2 TIW timer (50 Hz Interval)... 61
4.3.3.3 TIW timer (1Hz Interval) ... 62

4.3.4 An alternative TIW timer ... 63
4.3.4.1 TIW timer Alternative (50 Hz Frequency) .. 64
4.3.4.2 TIW timer Alternative (1Hz Frequency) ... 65
4.3.4.3 TIW timer vs TIW timer Alternative... 66

4.4 Comparison... 72
4.4.1 WIN32 Timers... 72

4.4.1.1 System Timer... 72
4.4.1.1.1 1 kHz System Timer Comparison... 73
4.4.1.1.2 50 Hz System Timer Comparison... 73
4.4.1.1.3 1 Hz System Timer Comparison... 74

4.4.1.2 Multimedia Timer .. 74
4.4.1.2.1 1 kHz Multimedia Timer Comparison .. 75
4.4.1.2.2 50 Hz Multimedia Timer Comparison .. 75
4.4.1.2.3 1 Hz Multimedia Timer Comparison .. 76

4.4.2 POSIX Timer... 77
4.4.2.1 WIN32 TIW timer vs. POSIX Timer. ... 77
4.4.2.2 WIN32 TIW timer vs. POSIX TIW timer. .. 79

4.5 Benchmark (External Timer).. 80
4.5.1 1 kHz TIW timer vs. External Timer. ... 80

4.6 Timer Performance.. 82
CHAPTER 5... 84

5.1 Load Testing ... 84
5.1.1 Loading on a single timer ... 84

5.1.1.1 Reasonable Load.. 84

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 4 of 111

5.1.1.2 Over Load.. 85
5.1.1.3 Conclusion... 86

5.1.2 Multiple Timers ... 87
5.1.2.1 1 kHz, Two TIW timers running... 87
5.1.2.2 1 kHz six TIW timers Running ... 88
5.1.2.3 1 kHz Five TIW timers Running... 90
5.1.2.4 Conclusion... 91

5.1.3 Other Multimedia Applications running with the TIW timer 91
5.1.3.1 1 kHz TIW timer with other Multimedia Application .. 91
5.1.3.2 50 Hz TIW timer with other Multimedia Application .. 92
5.1.3.3 1 Hz TIW timer with other Multimedia Application.. 93
5.1.3.4 Conclusion... 93

5.2 Period Adjustment ... 94
5.2.1 4 Threads, 500 ? s Interval (2 kHz) ... 94
5.2.2 8 Threads, 250 ? s Interval (4 kHz) ... 96
5.2.3 16 Threads, 125 ? s Interval (8 kHz) ... 97
5.2.4 5 Threads, 400? s Interval (2.5 kHz) ... 98
5.2.5 Conclusion .. 99

5.3 Number of Threads.. 100
5.4 A real world application.. 103

CHAPTER 6... 106

REFERENCES... 109

List of Figures
Figure 1-1: Timer Illustration.. 8
Figure 1-2: Countdown Timer Depiction... 9
Figure 1-3: Margin of Error .. 10
Figure 1-4: Duration Measurement Timer ... 13
Figure 2-1: Loop Timer Performance (1 kHz) ... 19
Figure 2-2: Loop Timer Performance (50 Hz) ... 20
Figure 2-3: Loop Timer Performance (1 Hz) ... 20
Figure 2-4: Loop Timer CPU usage .. 21
Figure 2-5: 1 kHz System Timer ... 22
Figure 2-6: 50 Hz System Timer ... 23
Figure 2-7: 1 Hz System Timer ... 23
Figure 2-8: System Time Depiction .. 25
Figure 2-9: Ideal System Timer Depiction... 25
Figure 2-10: Actual Multi-Media Timer Depiction .. 26
Figure 2-11: Multimedia Timer 1 kHz Frequency.. 26
Figure 2-12: Multimedia Timer 50 hz Frequency .. 27
Figure 2-13: Multimedia Timer 1 Hz Frequency ... 28
Figure 2-14: Multimedia Timer CPU Usage .. 28
Figure 2-15: BSD Timer (1 kHz) .. 30
Figure 2-16: BSD Timer (50 Hz) .. 30
Figure 2-17: BSD Timers (1 Hz)... 31
Figure 2-18: 1 kHz Synchronisation Box... 32
Figure 2-19: 50 Hz Synchronisation Box... 33
Figure 2-20: 1 Hz Synchronisation Box .. 33
Figure 3-1: API Definition.. 36
Figure 4-1: Sleep Timer (Non Multimedia) (1 kHz)... 44
Figure 4-2: Sleep Timer (Non Multimedia) (50 Hz)... 45
Figure 4-3: Sleep Timer (Non Multimedia) (1 Hz) .. 45
Figure 4-4: Sleep Timer (Multimedia) (1 kHz) .. 47
Figure 4-5: Sleep Timer (Multimedia) (50 Hz) .. 47
Figure 4-6: Sleep Timer (Multimedia) (1 Hz) .. 48
Figure 4-7: Sleep Timer (Multimedia) CPU usage... 48
Figure 4-8: Critical Section Timer CPU usage... 49

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 5 of 111

Figure 4-9: Critical Section Timer... 50
Figure 4-10: Thread Induced Waitable Timer Timing diagram .. 51
Figure 4-11: TIW timer Class Diagram ... 58
Figure 4-12: TIW timer (1 kHz Interval) ... 60
Figure 4-13: 1 kHz TIW timer CPU usage .. 61
Figure 4-14: TIW timer 1 kHz Worst Case.. 61
Figure 4-15: TIW timer (50 Hz Interval) ... 62
Figure 4-16: 50 Hz TIW timer CPU usage .. 62
Figure 4-17: TIW timer (1 Hz Interval) ... 63
Figure 4-18: 1 Hz TIW timer CPU usage .. 63
Figure 4-19: TIW timer Alternative (50 Hz Interval) ... 64
Figure 4-20: 50 Hz TIW timer Alternative CPU usage .. 65
Figure 4-21: TIW timer Alternative (1 Hz Interval) ... 65
Figure 4-22: 1 Hz TIW timer Alternative CPU usage .. 66
Figure 4-23: Normal TIW timer 500 Hz .. 67
Figure 4-24: 500 Hz Normal TIW timer CPU Usage ... 67
Figure 4-25: Alternative TIW timer (500 Hz) .. 68
Figure 4-26: 500 Hz Alternative TIW timer CPU usage... 68
Figure 4-27: 333.33 Hz Normal TIW timer ... 69
Figure 4-28: 333.33 Hz Normal TIW timer CPU usage ... 69
Figure 4-29: 333.33 Hz Alternative TIW timer.. 69
Figure 4-30: 333.33 Hz Alternative TIW timer CPU usage.. 70
Figure 4-31: Normal TIW timer (250 Hz) ... 71
Figure 4-32: Normal TIW timer (250 Hz) ... 71
Figure 4-33: Alternative TIW timer (250 Hz) .. 71
Figure 4-34: Alternative TIW timer (250 Hz) CPU usage .. 72
Figure 4-35: System Timer vs. TIW timer (1 kHz) .. 73
Figure 4-36: System Timer vs. TIW timer and TIW timer Alternative (50 Hz) 74
Figure 4-37: System Timer vs. TIW timer and TIW timer Alternative (1 Hz)..................................... 74
Figure 4-38: Multimedia Timer vs. TIW timer (1kHz)... 75
Figure 4-39: Multimedia Timer vs. TIW timer (50Hz)... 76
Figure 4-40: Multimedia Timer vs. TIW timer (1Hz)... 76
Figure 4-41: 1kHz TIW timer vs POSIX Timer ... 77
Figure 4-42: 50Hz TIW timer vs. External Timer .. 78
Figure 4-43: 1Hz TIW timer vs. External Timer .. 78
Figure 4-44: 1 kHz POSIX TIW timer .. 79
Figure 4-45: 50Hz POSIX TIW timer ... 79
Figure 4-46: 1 Hz POSIX TIW timer .. 80
Figure 4-47: 1 kHz TIW timer vs. External Timer ... 81
Figure 4-48: 50 Hz TIW timer vs. External Timer ... 81
Figure 4-49: 1 Hz TIW timer vs. External Timer ... 82
Figure 5-1: 1kHz Reasonable Load ... 85
Figure 5-2: TIW timer Reasonable Load CPU usage ... 85
Figure 5-3: 1kHz Overload ... 86
Figure 5-4: 1kHz Overload CPU Usage .. 86
Figure 5-5: Timer A 1 kHz Test .. 87
Figure 5-6: Timer A CPU Usage... 88
Figure 5-7: Timer B 1 kHz Test .. 88
Figure 5-8: Timer B CPU usage .. 88
Figure 5-9: Best Timer with 6 Timers Running ... 89
Figure 5-10: Worst Timer with 6 Timers Running... 89
Figure 5-11: Best Timer with 5 Timers Running ... 90
Figure 5-12: Worst Timer with 5 Timers Running... 90
Figure 5-13: 1 kHz other Multimedia Application ... 92
Figure 5-14: 1 kHz TIW timer with other Multimedia application CPU Usage................................... 92
Figure 5-15: 50 Hz other Multimedia Application ... 93
Figure 5-16: 1 Hz other Multimedia Application ... 93
Figure 5-17: 2 kHz TIW timer .. 94
Figure 5-18: 2 kHz TIW timer – Worst Case ... 95

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 6 of 111

Figure 5-19: TIW timer 2 kHz CPU usage .. 95
Figure 5-20: 4 kHz TIW timer .. 96
Figure 5-21: TIW timer 4 kHz CPU usage .. 96
Figure 5-22: 8 kHz TIW timer .. 97
Figure 5-23: TIW timer 8 kHz CPU usage .. 98
Figure 5-24: 2.5kHz TIW timer .. 98
Figure 5-25: TIW timer 2.5kHz CPU usage... 99
Figure 5-26: 2 kHz TIW timer Timing Diagram .. 100
Figure 5-27: 2.5 kHz TIW timer Timing Diagram ... 100
Figure 5-28: 4kHz TIW timer Timing Diagram ... 101
Figure 5-29: 2kHz TIW timer Timing Diagram – Wrong number of threads 102
Figure 5-30: 2 kHz TIW timer, 5 threads CPU usage... 102
Figure 5-31: 2kHz TIW timer Timing Diagram – Wrong number of threads 103
Figure 5-32: 3 kHz TIW timer .. 103
Figure 5-33: TIW Timer 1 hour: Final Timestamp... 104
Figure 5-34: TIW Timer 1 kHz: One Hour .. 105

List of Tables
Table 1-1: Timer Classification... 12
Table 2-1: Timer Resolution Comparison.. 35
Table 4-1: Timer Calculator Precision... 41
Table 4-2: System Timer vs. TIW timer .. 73
Table 4-3: Multimedia Timer vs. TIW timer ... 75
Table 4-4: POSIX Timer vs TIW timer ... 77
Table 4-5: External Timer vs. TIW timer .. 80

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 7 of 111

Abstract
There are several timing mechanisms on presently available commercial operating
systems. Two operating system platforms that immediately come to mind are the
Microsoft Windows environment (the WIN32 platform) and its UNIX-based
counterpart, Linux (with its POSIX standard). The timing mechanisms under these
operating systems are adequate for use in conventional multimedia applications
currently run on these platforms. However, the requirements of such applications are
not as stringent within a real-time environment.
The goal of this dissertation was to determine if it would be possible to find a
workaround for applications where current timing mechanisms in the WIN32 and
POSIX environments do not meet the requirements of real-time. Before a proposed
workaround is presented, a clarification is given as to what is meant by the notion of
a timer. Attention is also given to the fact that its accuracy is quantified in terms of its
resolution. It is acknowledged that real-time extensions to both the Windows and
Linux operating systems exist. However, it was decided to find a solution without
such assistance.
Real-time is also defined and sub-classified into hard- and soft real-time,
differentiating environments that have precise constraints (hard real-time) on timing
as opposed to environments where demands on accuracy and efficiency are less
stringent (soft real-time). The timer that was ultimately implemented had to conform
to the latter form of real-time.
This dissertation therefore aims to provide a solution in a soft real-time environment.
The current timing mechanisms are discussed and their performance is quantified.
Their deficiency in measuring a reliable periodic interval of 1 ms is highlighted. From
this qualification of timers stems the requirements for the soft real-timer timer. The
areas in which improvement is sought are stated.
The design and implementation of a soft real-time timer that meets these
requirements is presented and its performance at various frequencies is quantified. A
comparison is given between the timer and the existing timing mechanisms as well
as comparison between its implementation under both Windows and Linux.
Additionally, the viability of the proposed timer compared to a proven hard real-time
timer is presented.
Finally it is recognised that a timer would not be useful if it was not effective in a
practical environment. Consequently, the timer’s performance under the same load
that it would experience in a practical soft real-time environment is investigated as
well. The dissertation concludes with a discussion on the compatibility of this timer
with expected advances in future Central Processing Unit (CPU) technologies.

Supervisor: Prof D G Kourie
Department of Computer Science
Magister Scientia

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 8 of 111

Chapter 1
Background

In this chapter, introductory material on the broad theme of this dissertation is given:
designing and implementing a high-resolution soft real-time timer. Various key
notions are explained. Thus, in section 1.1, the notion of a timer is explained. Since
the value of a timer is dependent on its resolution, and since the study is in quest of a
high-resolution timer, section 1.2 encapsulates the meaning of timer resolution. The
next area of concern in the study is the notion of real-time, which is explained in
section 1.3. Many different types of timers can, in principle, be used to measure real-
time. Section 1.4 surveys these. Section 1.5 then introduces the analysis method that
will be employed in this study. Finally, section 1.6 points the reader ahead to the
remainder of the work, indicating the themes of chapters.

1.1 What is a Timer?
In everyday day life, time is measured using a clock, and the same principle applies
to computer systems. Computer systems apply a number of mechanisms to keep
track of time, be they clocks on the hardware itself or software time mechanisms that
are based on these clocks – specifically on the operating system clock [Peng 2002]
(refer to section 1.2). The operating system running on the computer system uses the
operating system clock to determine processor usage and when timers should fire
[Yoav et al. 2003]. This raises the question: “What, precisely, is a timer?”
According to the MSDN [MSDN 2003], a timer is “… an internal routine that
repeatedly measures a specified interval, in milliseconds.” It is a mechanism that
allows software events to be scheduled efficiently [Li et al. 2003].
An application may require time to be segmented into consecutive intervals of equal
size. Specified events may be executed within each segment. For example, on an
aircraft, the flight computer needs to have accurate information at all times about
where the aircraft is. It will therefore communicate with the Global Positioning System
(GPS) periodically at a constant interval, determine the aircraft’s position and then
carry out necessary operations based on this information. The flight computer needs
to know when the interval has elapsed. The timer is said to fire an event when the
interval has elapsed, at which point the flight computer executes the next required set
of computations.

Figure 1-1: Timer Illustration

Therefore, a timer may be thought of as a clock that measures a constant interval
repeatedly, firing an event after each interval has elapsed. This is illustrated in Figure

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 9 of 111

1-1. The figure shows the operation of a timer over a period of 80 ms. Every 20 ms,
an event is fired to which the application using the timer may react.
A further example is an application that displays a countdown in intervals of one
second. The countdown, for the sake of argument, is 10 seconds. The application will
require a timer that fires an event every second, upon which the application displays
“x SECONDS” (where x is the number of seconds remaining), until 10 seconds have
been counted down. This is depicted in Figure 1-2.

Figure 1-2: Countdown Timer Depiction

The reason these timers are based on the operating system clock is to reduce the
overhead involved in processing a separate interrupt for every timer that is created
[Yoav et al. 2003]. However, this mechanism of measuring time has its drawbacks,
as will be illustrated in section 1.2 and section 2.3.2.

1.2 Timer Resolution
According to [Yoav et al. 2003], a computer system employs the service of two clocks
– one is hardware based and the other is governed by the operating system. The
frequency of the operating system clock is not predetermined as is the case with the
hardware clock. Instead, the decision as to which frequency is deemed most suitable
is made during the operating system’s design.
The most common frequency of the operating system clock in use at present is
100Hz. This is the frequency used in the Linux, BSD, Solaris and WIN32 operating
systems [Yoav et al. 2003]. In other words, 100 clock ticks per second (or 100Hz) are
registered and processed or one clock tick every 10 ms. Therefore in these systems,
the smallest interval of time that may be “accurately” measured by the operating
system clock is 10 ms. As explained in section 2.3.1, this interval under the WIN32
operating system is actually 10 – 15 ms.
The notion of accuracy needs some explanation and qualification. As with any
physical system, measurement is inevitably subject to a degree of inaccuracy – i.e. it
is seldom 100% accurate. The above claim that 10 ms is the smallest interval of time
that may be accurately measured by the operating clock systems under discussion,
should be seen in this context. In general, there is a need to characterize a timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 10 of 111

clock’s accuracy. This is done in terms of two quantities: the margin of error that is
manifested, and the resulting timer clock’s resolution.
The margin of error may be explained as referring to the maximum extent to which
the actual occurrence of a timer event deviates from the desired time at which the
timer event should take place [Lamie 2003]. Figure 1-3, shows a time-line where a
timer event should be fired every 10 ms. Instead, two actual timer events are shown
below the time-line. In the first case, the event takes place 10 ? s after it should have,
and in the second case it takes place 10 ? s before it should have.

This means that the first actual time interval depicted is 10.010 ms, or 10 ? s longer
than it should be. The duration of the second actual time interval is 9.990 ms. This is
10 ? s shorter than it should be, if the next timer event should be 20 ms from the start.
However, if the next timer event should be 10ms after the last actual timer event then
it is 20 ? s shorter than it should have been.
For the purposes of this document, the desired time for the next timer event will be
deemed to be a constant amount of time after the last timer event was supposed to
have happened. Under this assumption then, the margin of error observed in Figure
1-3 is between -10 ? s and +10 ? s.

Figure 1-3: Margin of Error

The resolution of the timer will accordingly be denoted as desired interval ? margin of
error1. In the above example, the timer has a resolution of 10 ms ? 10 ? s.

1.3 Real Time
A real-time system typically consists of a set (or sets) of operations that have to be
executed at periodic intervals of predictable size. The correctness of these
computations is determined by the logical correctness of the operations as well as by
the time it takes to execute these operations [Gopalan 2001]. Since the execution
time of an operation plays such an important role, a real-time system may be
regarded as a system that is dependent on accurate and predictable time
measurement. Therefore, when a real-time system is designed and implemented, the
reliability of both the hardware and the 1software of the system have to be
guaranteed [Barr 1999].

1 Note that this is a practical and not a statistical notation. The margin of error is an indication of the worst
possible error in interval size and not a representation of the standard deviation. This entails that the actual interval
may for example exceed the desired interval by the margin of error and never be less than the desired interval.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 11 of 111

To measure the duration of the periodic intervals, an accurate or high precision timer
is required. Such a timer may also be referred to as a real-time timer. The timer may
be based on either a hardware- or a software source. The hardware source is
typically a device external to the computer (refer to section 2.5)
The PC based Win32 platform was not developed with hard real-time as a feature
[Newcomer 2000]. This applies to Windows NT, Windows 2000 and Windows XP.
These operating systems were designed as general purpose or networking platforms
[Timmerman et al. 2002]. That being said, real-time extensions for the Win32
platform are available from Microsoft and from other third party companies. Windows
XP Embedded and Windows CE are Win32 implementations that were developed
with real-time in mind. These extensions and operating systems are beyond the
scope of this dissertation, as the aim is to investigate the Win32 and POSIX standard
timers and endeavour to find a solution to their inadequacies (more on this section
3.3). Results that illustrate these shortcomings are presented in chapter 2.
[Timmerman et al. 2002] define a real-time system as one that ‘… responds in a
timely predictable way to unpredictable external stimuli arrivals’ and also
distinguishes between hard- and soft real-time.
A hard real-time system does not allow a task to exceed the maximum allowable
delay. In other words, if an operation should complete within a certain time, a hard
real-time system expects it to meet its deadline. It is assumed that if this does not
happen, then a system failure has occurred [Barabanov 1997]. Furthermore, the cost
of such failure is regarded as ‘infinitely” high [Barr 1999].
On the other hand, a soft real-time system is tolerant of a measure of deviation from
the maximum allowable delay. Deviations may cause some measure of system
degradation such as lower performance, and this may worsen as the deviation rises.
An example of this is a video-conferencing system, where although it is preferable
that every frame of the video is displayed, it is acceptable if a frame or two is
occasionally missed [Barabanov 1997].
Soft real-time systems are often used in conjunction with hard real-time. Before a
hard real-time system is deployed in its operational environment, it has to be
thoroughly tested. Often a real-time system (for example, the weapons computer on
a fighter aircraft [Gill et al. 2001]) may have catastrophic results should it fail
unexpectedly. A soft real-time equivalent is consequently used to validate such
systems, where the operational environment for the real-time system under test is
simulated. In this environment, deviations from the maximum allowable delay are
less important; the focus of the validation is more on the functionality of the real-time
system. An example of this is covered by [Gill et al. 2001] in their article “The Design
and Performance of a Real-Time CORBA Scheduling Service”.
However, since the soft real-time system’s performance degrades as the extent of
deviation rises, unpredictable results may occur if the timing mechanisms are not
predictable. Thus, to test the hard real-time system’s reliability, the soft real-time
deviation has to be constrained within acceptable limits.
Henceforth unqualified reference to real-time will be construed to refer to soft real-
time.

1.4 Sub-Classification of Timers
There are various types of timers whose use is dictated by the application at hand.
This could be either in a hard or soft real-time context. A single application can create
multiple timers that measure different interval durations. These timers could either
measure a single interval or measure intervals periodically [Friesen 2001]. Of course

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 12 of 111

this is completely dependant on the design and function of the software. Here, a
classification of such timers is given.
However, before this sub-classification is presented, it is necessary to clarify the
meaning of the concept of a “timestamp”:
“A timestamp is a representation of the amount of time elapsed since a pre-
determined moment in time” [Perkins 2003].

1.4.1 One-Shot Timers
A one-shot timer is a timer that measures a single interval. After the interval expires,
the timer terminates [Austin Group 2004]. The logical application of such a timer is an
operation that has to be executed once after a fixed period of time [Sridhar 2003].

1.4.2 Periodic Timers
A periodic timer measures a constant interval repeatedly and fires an event after
each interval expires [Austin Group 2004]. After the end of such an interval, the timer
immediately starts to measure the same interval duration again. This process it
continuous for as long as the timer is required to run [Sridhar 2003].

1.4.3 Waitable Timers
A "waitable" object is a synchronization object that is placed in a suspended state
until a specified interval has elapsed at which point its state is set to signalled. The
waitable object could also be configured to wait on an I/O device connected to for
example the serial port. A process can therefore “wait” until the timer object’s state
becomes signalled using it as a queue to for example initiate a routine [Henderson
2003].
There are two types of waitable timers that can be created: manual-reset and
synchronization. Unlike a normal timer, multiple processes can “wait” for a single
waitable object’s state to transition to “signalled”. This is summarized in Table 1-1.

Table 1-1: Timer Classification

Object Description
Manual-reset object A waitable object whose state

remains signalled until a waiting
process acknowledges the signal
and resets it.

Synchronization object A waitable object whose state
remains signalled until a waiting
process acknowledges the signal.
The object will reset automatically.

An object of either type can be used in the implementation of a periodic timer. If a
waitable object is incorporated into an algorithm that repeatedly sets it to a
suspended state, the resulting behaviour of such an application is comparable to that
of a periodic timer.
Another process is able to wait for the object to become signalled, execute the
operations for which it requires periodic scheduling and wait for the object to become
signalled again. In the case of the manual-reset object, the process resets the state
of the object before waiting for it to become signalled again.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 13 of 111

1.4.4 Duration Measurement Timers
A duration timer is used to determine the length of an operation. Such a timer could
typically be used to quantify the amount of time required to execute certain
operations within a software application. A timestamp may be taken at the beginning
and another at the end of the operation. The difference between the two time
measurements is the duration of the operation.
In Figure 1-4, a duration measurement timer is requested to provide a timestamp,
namely T0. After the operation, another timestamp is taken – T1. Therefore the
duration of the operation equates to T1-T0.

Figure 1-4: Duration Measurement Timer

1.5 Analysis Methods
Since chapters 2 and 3 through 5 present results attesting to the performance of the
timers under scrutiny within the particular chapters, it is necessary to provide an
explanation of the methods followed to perform the analysis. As will be seen, the
systems under scrutiny are:
? Loop Timer
? System Timer
? Multimedia Timer
? POSIX Timer

? External Timers
? WIN32 Sleep Timer (Non Multimedia)

? WIN32 Sleep Timer (Multimedia Timer)
? Thread Induced Waitable Timer
An application is developed for each timer, in terms of which the following happens
whenever the timer fires: a) the application reads a timestamp value; and b) the
timestamp value recorded in dynamic memory for storage in an output file after the
conclusion of the timer’s run. This is done repeatedly, so that measurements are
taken over a specified period of time. These timestamp values are subsequently
utilised to calculate, in each case, the timer’s actual interval size for each of its firings
(activations). These values are plotted against the timestamps, converted into a time
value.
Also, the maximum and minimum interval durations are recorded – These are used
to calculate the timer resolution (see section 1.2).

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 14 of 111

For each timer, these statistics are recording for the following frequencies:
? 1 kHz (1 ms intervals)
? 50 Hz (20 ms intervals)

? 1 Hz (1000 ms intervals)
The reason why these frequencies were selected was because an external real-time
timing source was available (see section 2.5) that could be used to benchmark the
real-time accuracy of the various timers (as is done in section 4.5). This external real-
time timer provides hardware signals at these frequencies.
The resource consumption of each timer is quantified. The minimum, maximum and
average is recorded and the resource usage is presented in graphical form.

1.6 Dissertation Layout
The remainder of the dissertation is outlined in this section. Chapter 2 focuses on the
background of existing timers, from the hardware timers to software timers currently
available under open source and commercial operating systems. The performance
and accuracy of these timers are also discussed, and existing timing mechanisms will
be shown to be deficient.
Accordingly, among the goals of this research is to determine whether a work around
could be devised to compensate in the areas where the current timers are lacking;
thus leading into to culmination of the chapter – the problem statement (section 2.6).
To ensure the reader understands the process that culminated in the implementation
of an alternative timer, chapter 3 focuses on design-, implementation decisions
made, as well as analysis methods used. The main reasoning is to enhance the
readers grasp of the solution in chapter 4. Chapter 4 will first focus on rejected
solutions and show how they eventually suggested an alternative solution. The
performance and accuracy thereof is also under scrutiny.
Further testing of the proposed solution is presented in chapter 5, aimed at exploring
whether the solution is viable and practical for application in a real-time environment.
Finally, the conclusion is provided in chapter 6.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 15 of 111

Chapter 2
Currently Available Timing Mechanisms

This chapter looks at timing mechanisms currently available under the common open
source and commercial operating systems – Linux, Unix and Windows (WIN32
platform). Note that the performance results of the timers presented in this chapter,
have been derived in conformance with the analysis methods explained in section
1.5. A question that could be raised is whether timers on the computer’s hardware
exist that may be used effectively as a real-time timer. This is addressed in section
2.1. Special timing mechanisms do exist on current computer hardware. This is the
subject of section 2.2.The remaining timers that require investigation are the software
timers provided by common operating systems, specifically those provided by the
WIN32 and POSIX standards. Sections 2.3 and 2.4 are devoted to these timers.
Finally, to ensure real-time timing, such implementations on consumer level
hardware usually incorporate an external reliable hardware source of known and
extremely high accuracy. This will be discussed in section 2.5. However, the main
goal of this chapter is to provide a statement of the problem that this research sought
to solve. This is provided in section 2.6.

2.1 Current Hardware Based Timers
The timers currently in use on current x86 computer platforms and the reason why
they were not considered for a timing source in a real-time environment are
discussed in this subparagraph. These timers are commonly used as the basis for
the software timers under the operating system implementation. There are three such
timers, each of which is now discussed in turn.

2.1.1 8254 Programmable Interrupt Timer (PIT)
In 1981, IBM introduced the 8254 Programmable Interrupt Timer, with a resolution of
one millisecond [Peng 2002]. It is essentially a software programmable counter/timer
device designed to address control problems in microcomputer system design [Intel
1993]. Provided by the PIT is a 16-bit counter that is capable of handling clock inputs
at 10MHz. The timer provides accurate time delays under software control,
eliminating the need for such loop timers as the one in section 2.2.2. The
programmer has the ability to program the 8254 for the desired delay. After the
desired time has elapsed, the 8254 will interrupt the CPU. The software that wishes
to use the timer is simply tasked with waiting for such interrupt.
On consumer level Intel microcomputers, the 8254 interfaces to the system is an
array of I/O ports: three counters and a fourth is an interface to a control register that
is used for mode management. The counters are independent and may operate in
different modes simultaneously. Possible modes are:

? Interrupt on Terminal Count (Mode 0)
An initial count is loaded into the counter register. The counter is decremented on
each clock input, and an interrupt is fired when the counter equals 0. At this point
a new counter may be loaded.
It is typically used as an event counter.

? Hardware Re-triggerable One-Shot (Mode 1)

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 16 of 111

Like Mode 0, an initial count is loaded into the counter register, with an interrupt
when this counter is decremented to 0. However, this countdown may be
repeated without a new counter being loaded into the register

? Rate Generator (Mode 2)
An initial count is loaded into the counter register, decremented and an interrupt
fired as with Mode 0 and Mode 1. However, when the interrupt is fired, the count
is loaded again automatically and the process is repeated. Therefore Mode 2 is
periodic.
Mode 2 is typically used to generate a Real Time clock interrupt.

? Square Wave Mode (Mode 3),
Software Triggered Strobe (Mode 4) and
Hardware Triggered Strobe (Re-triggerable) (Mode 5)
These 3 modes are similar to mode 2 and produce a periodic timer in each case,
but with different implementations on the hardware level. Details are beyond the
scope of this text, but are available in the 8254’s datasheet [Intel 1993].
Mode 3 is typically used for baud rate calculation.

Since I/O operations through the IO ports the timer uses to interface to the system
are expensive, the PIT is not viable for generating small intervals, and the problem is
aggravated by the fact that the clock inputs are handled at 10 MHz, i.e. every 100
ms. This implies that the smallest interval that the timer could measure reliably is in
the order of 100 ms.

2.1.2 Real Time Clock (RTC)
The real-time clock (RTC) was shipped for the first time in 1984, in addition to the
8254 [Peng 2002]. The RTC performs two main functions, namely:
? Keeping track of time
? Storing system data, even when powered down [Intel 1995].
The RTC is sourced from a 32.768 kHz crystal and runs off a 3V battery. The RTC
may also be used to generate wake up calls for the system, up to 30 days in
advance.
The RTC provides 3 interrupt services:
? A time of day alarm (range 1 second to 30 days)

? Periodic interval timing (interval range 120 ? s to 500 ms)
? End of update cycle notification
Using the 32.768 kHz crystal, the RTC’s time is updated every second, thus keeping
track of seconds, hours, days, weeks, months and years with daylight savings
capabilities.
As is the case with 8254 timers in section 2.1.1, the RTC has to be accessed via an
I/O port that is generally mapped to IRQ 8 on the computer’s motherboard. The high
cost of I/O communication renders the RTC incapable of being used for a reliable 1
ms interval on a software level [Peng 2002].

2.1.3 Advanced Programmable Interrupt Controller (APIC)
The Advanced Programmable Interrupt Controller (APIC) was designed by Intel
specifically for use in multi-processor environments to solve inter-processor interrupt
routing issues. According to [Wikipedia 2006], it consists of two parts:

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 17 of 111

? The local APIC (LAPIC) – this is integrated into the CPU system. Should it be a
multi processor environment, an LAPIC exists for every CPU. Not only does the
LAPIC manage all external interrupts for the processor its part of, it is also able to
generate and accept interrupts. These interrupts form the basis for the LAPIC
interval timer.

? The Input/Output APIC (IOPIC)
This is used throughout the system’s peripheral buses. It routes interrupts it
receives from these buses to the LAPIC via the use of a redirection table.

Spurious interrupts also occur within the APIC that may be mistakenly construed to
be a genuine interrupt [Intel 1997]. It suffers from severe jitter in its interrupt latency,
in other words the time that elapses from the moment an interrupt is generated to the
moment that it is serviced varies and is not predictable. The consequence of this is
that the jitter is exhibited in the APIC interval timer as well [Wikipedia 2006].

2.2 High Resolution Hardware Counters
This section is concerned with hardware counters located on current x86 central
processing units (CPUs). First the counters themselves will be explained in section
2.2.1. This is followed by the description of a software implementation that makes
use of these counters to calculate timestamps in sections 2.2.2 through 2.2.2.3.
Section 2.2.2 introduces the loop timer and states the need for the timer. Section
2.2.2.1 presents the algorithm used to the implement such a timer. The performance
results of this timer are presented in section 2.2.2.2. The conclusion is given in
2.2.2.3 as well as the motivation for not relying on the loop timer as a final
implementation of a real-time software timer.

2.2.1 Hardware Timestamp Counters
The following are counters available on modern hardware:
? Power Management Timer (PM Timer)

Modern personal computer hardware provides a counter on the Advanced
Configuration and Power Interface (ACPI) [Intel 1999]. The clock is also called
the Power Management Timer (or the PM clock). The ACPI requires a
mechanism to measure the ACPI system idle time. This PM Timer manages a
counter incremented at a fixed frequency of 3.579545 MHz. The current value of
the counter is stored in a register that may be accessed programmatically.
According to the ACPI specification [Intel 1999], this register is referred to as the
PM_TMR_BLK register.

? Timestamp Counter (TSC)
The Timestamp Counter is a 64-bit counter on the CPU, supported since the
Pentium family of processors [Dongarra et al. 2001]. The counter is set to 0 on
every hardware reset of the computer and incremented every processor clock
cycle, making it independent of processor speed. It is thus very fine-grained with
the accuracy limited to the CPU frequency. This counter is guaranteed to
monotonically increase, except for the 64-bit wraparound, which is several
thousand years in the Pentium family of processors.

These counters ought to serve as the basis for a very accurate timer. However, no
other functionality is provided. In particular, no mechanism is provided to fire an
event at a certain timestamp value. The counter has to be polled externally to
determine the current timestamp value.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 18 of 111

A timer was implemented that makes use of the counter generated by the ACPI clock
or Timestamp Counter (TSC) in order to generate a timestamp at set intervals. This
approach is described in section 2.2.2.

2.2.2 Loop Timer
With the availability of the high-resolution hardware counters described in section
2.2.1, it is possible to develop a timer with a maximum deviation within acceptable
limits (refer to section 2.6). To illustrate this, a loop timer was designed and
implemented as discussed below.
The loop timer queries a high-resolution counter until a suitable interval has expired.
At this point the timer event is triggered, and the process restarts.
Since the value read from such a counter is an incremental value indicating the
number of times a clock cycle has occurred, the actual timestamp (in time units such
as milliseconds, not in clock cycles) has to be calculated. This calculation is
discussed in section 4.1.

2.2.2.1 Algorithm
The following pseudo code is a representation of the loop timer algorithm:

Algorithm 1 - Loop Timer Algorithm
The algorithm commences with the calculation of an initial timestamp, designated
? previous and assigns it to the current timestamp variable, designated ? current. The
timer enters a loop for the duration of its execution.
Another loop tests the time elapsed against the required interval designated X. This
is accomplished by taking the difference between the current timestamp calculated
from the high-resolution counter and the previous timestamp, ? previous. While this
value is less than the required interval value X ? s, the next timestamp is read and
stored in ? current.
When the difference between ? current and ? previous is greater equal to X ? s, the
current timestamp ? current is saved in ? previous. The timer event is fired, and the
process restarts unless the timer should terminate.

? previous := current timestamp

? current := ? previous

While the timer is running

 While (? current - ? previous < X ? s)

 ? current := timestamp from the

 high precision counters

 End While

 ? previous := ? current

 Fire the timer event
End While

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 19 of 111

2.2.2.2 Results
As is clear from Algorithm 1, at no point is a wait instruction used to prevent the timer
from consuming all available CPU resources. Therefore the timer’s CPU usage
equates to 100% of the available resources leaving none available to do anything
else. The accuracy, however, is extremely high.
The loop timer was developed in C++, based on reading Timestamp Counter (TSC)
and the Power Management (PM) clock counter values (The WIN32 API determines
which counter to use). It can be set to fire at various frequencies.
The accuracy of the results for different frequencies is presented in the following
sections. Note that frequency in the current context refers to the rate at which a timer
event is fired, i.e. to the inverse of the timer interval, measured in appropriate time
units.

2.2.2.2.1 Loop Timer Performance (1 kHz)

The results for a frequency of 1 kHz are presented in Figure 2-1. The desired interval
size should thus be as close to 1 ms (or 1000 ? s) as possible. As is clear from the
figure, the timestamps measured is extremely accurate, only deviating once
significantly from the desired interval duration over a period of approximately 32
seconds (32000 ms).

Figure 2-1: Loop Timer Performance (1 kHz)

For this timer, the maximum interval duration is 1.167 milliseconds (1167 ? s). The
minimum interval duration is 1 ms (1000 ? s). Thus a resolution of 1 ms ? 167 ? s was
achieved over the time span for which measurements were taken.

2.2.2.2.2 Loop Timer Performance (50 Hz)

The results for a frequency of 50 Hz are presented in Figure 2-2 and therefore the
desired interval size should be as close the 20 ms (20000 ? s) as possible. Although
the figure only shows the results for the first 10 seconds, the experiment was
conducted over a period of 60 seconds. The reason for showing a subset of the
results in the graph is to increase readability.
For the 50 Hz timer, the maximum interval duration is 20.002 ms (20002 ? s). The
minimum interval duration is 19.998 ms (19998 ? s). Accordingly, the resolution
equates to 20 ms ? 2 ? s. This is an extremely accurate measurement. However, this

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 20 of 111

achievement is overshadowed by the timer’s consumption of all available CPU
resources.

Figure 2-2: Loop Timer Performance (50 Hz)

2.2.2.2.3 Loop Timer Performance (1 Hz)

The results over a period of 60 seconds for a frequency of 1 Hz (desired interval size:
as close to one second as possible) are presented in Figure 2-3.

Figure 2-3: Loop Timer Performance (1 Hz)

With the maximum interval duration of 1.000001 seconds and minimum interval
duration of 0.999999 seconds, the maximum deviation on this interval is 1 ? s, which
is again extremely accurate. Accordingly, the resolution equates to 1 second ? 1 ? s.

2.2.2.2.4 CPU usage

The CPU usage was the same for all the cases discussed in sections 2.2.2.2.1 to
2.2.2.2.3 is depicted in Figure 2-4. The average CPU resources consumed by the
timer were 83.59%. However, the total CPU usage was 100% throughout the
operation of the loop timer. Since the timer was not the only process running on the

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 21 of 111

system on at the time, it is assumed that the other processes were consuming the
CPUs resources.

Figure 2-4: Loop Timer CPU usage

2.2.2.3 Conclusion
From the foregoing it is clear that, in terms of accuracy; the loop timer is extremely
accurate. The reason for rejecting the solution is it consumes all available processing
time on the CPU.
It is apparent from the implementation of the loop timer in section 2.2.2.2 that the
polling of the counter consumes 100% of the processor resources available to it. This
is unacceptable since no resources would be available for an application that
encapsulates such a loop timer to execute other operations.
For more information, see 4.1.

2.3 WIN32 Timers
The timers discussed in sections 2.1 and 2.2 are all based on the hardware itself and
can be used independently of the operating system running on the computer.
However, the WIN32 operating system does provide two timing mechanisms of its
own, albeit based on the hardware discussed in the previous sections: a system
clock and a multimedia timer. From the point of view of the developer, these timers
may be used on a software level via API (refer to 3.2) calls provided by the operating
system, instead of accessing the hardware directly.
This section discusses these mechanisms and reports on various experiments in
which timers of various interval lengths were built based on these timing
mechanisms. It is also highlighted why these timers were deemed inappropriate for
real-time application.

2.3.1 System Timer
In the article Guidelines For Providing Multimedia Timer Support [Peng 2002]
explains the inner workings of the WIN32 timing system. According to the article, the
WIN32 platform uses a periodic clock interrupt to keep track of time, trigger timer
objects and manage thread execution. At boot time, this clock interrupt interval varies
between approximately 10 ms and 15 ms. The result is therefore that the clock
interrupt is updated every 10 ms to 15 ms, depending on the system. For the purpose
of this discussion, 10 ms will be assumed [Abeni et al. 2002].

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 22 of 111

On receipt of a clock interrupt, the WIN32 Operating System is mainly tasked with the
following operations:
? Update the timer tick count. The primary purpose of the timer tick count is to give

effect to the abstract notion of time that Windows uses to keep track of time of
day and to keep track of a thread quantum’s time. Therefore a timer tick
constitutes 10 ms to 15 ms in elapsed time.

? Check the timer objects expiration. The operating system checks if the interval of
any timer object has expired. Should this be the case, the system schedules a
Timer Deferred Procedure Call (DPC). A DPC is specified by the application that
requested the timer object. Such a DPC specifies an event that has to occur
when a specified interval has elapsed. Such timer objects are used by the
operating system to track deadlines and to signal applications when a deadline is
reached.

When a WIN32 operating system boots up, the current value of the real-time clock
(or the RTC) is taken as the immediate system time. From this point onwards, the
system time is updated every time a clock interrupt is received. This system clock
can be used to determine the duration of intervals when constructing a system timer.
Such a system timer may be constructed using WIN32 API calls in languages such
as C++ and Visual Basic [MSDN 2003]. A pointer to a function that contains the
routines that have to be executed at each timer event is given to an API call that
creates a timer object. An application was developed to create such a timer object via
the WIN32 API and specified to fire timer events at intervals of 1ms, 20ms and
1000ms. The results are presented in the following sections.

2.3.1.1 1 kHz Interval System Timer
Figure 2-5 depicts the performance of the System timer with a desired frequency of 1
kHz. Therefore the interval should be as close to 1ms as possible. Although the
experiment was conducted over a period of sixty seconds, the figure only shows the
first 200 milliseconds to increase the readability of the graph.

Figure 2-5: 1 kHz System Timer

As can be seen, the timer does not provide the required 1 ms second interval.
Instead it provides a maximum interval of 25.431 ms and a minimum interval of 5.881
ms. The timer’s maximum deviation is thus 25.431 ms – 1 ms = 24.431 ms with the
resolution equating to 1 ms ? 24.431 ms.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 23 of 111

2.3.1.2 50 Hz Interval System Timer
Figure 2-6 depicts the performance of the System timer with a desired frequency of
50 Hz. Again, for the sake of readability; the figure only shows the first 10 seconds of
the 60 second period over which the experiment was conducted. The required
interval should be as close to 20 ms as possible.

Figure 2-6: 50 Hz System Timer

During the first 10 seconds depicted in the graph, the timer did not manage to
produce an interval smaller than 25 ms. Over the entire period the timer was running,
it managed to generate a minimum interval of 27.291 ms. The recorded maximum
interval was 36.151 ms. The timer’s maximum deviation is thus 36.151 ms –20 ms =
16.151 ms and the resolution 20 ms ? 16.151 ms.

2.3.1.3 1 Hz Interval System Timer
The period of 60 seconds shown in Figure 2-7 depicts the performance of the System
timer with a desired frequency of 1Hz. The required interval should therefore be in
the close vicinity of 1s.

Figure 2-7: 1 Hz System Timer

As can be seen, the timer seldom provides 1-second interval and deviates from this
required duration in general. The maximum interval recorded was 1.011667 s and a
minimum interval 0.988237s. The timer’s maximum deviation is thus 1s-0.988237s =
0.011763 s. The timer’s resolution is therefore 1 s ? 11.763 ms.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 24 of 111

2.3.1.4 Conclusion
The performance of a system timer based on the system clock as measured above
was enough to disqualify it for use as a soft real-time timer. It did not achieve the
granularity to enable it to even come close to measuring the required interval.
The overriding reason for the degraded performance is that the periodic clock
interrupt is used to update the system time. Thus, only when this periodic interrupt is
raised does the Windows operating system check whether the timer’s interval has
elapsed. On most systems, the interval of this periodic clock interrupt is 10ms to
15ms [Peng 2002]. The System timer is dependant on the message queue of the
application that spawned it. Every WIN32 application that opens a Windows frame
requires such a queue to process messages from the operating system. When the
operating system determines that the system timer’s interval has elapsed, a message
that instructs it to fire the timer event is place in this message queue.
This could explain both the maximum and minimum intervals recorded for 1 kHz
timer in section 2.3.1. Due to the 10 ms to 15 ms interrupt the operating system uses
to update the system time, the expected interval size should be between 10ms and
15ms. However, the range recorded was 5.881ms to 25.431ms. If the system timer
starts an interval ? ms after the interrupt to the operating system, 10 ms – ? ms
remain before the operating system inspects the timer again. This explains how the
minimum interval could be less than 10ms.
The maximum interval can be explained if the periodic interrupt occurred to the
operating system at an interval of 15 ms. For example, the timer interval commences
at the start of the 15 ms gap between interrupts. When the next interrupt comes
around, the timer would have been waiting for ± 14 ms for the message that enables
it to fire the timer event. Since the message from the operating system that causes
the interval to expire is placed in the message queue of the application that
encapsulates the timer, it is possible for the message to be stuck in this queue for an
undetermined amount of time. If the message gets stuck in this queue for the next 10
ms, the timer will experience and interval of ± 25 ms.
It is clear that the system timer cannot compete with the loop timer (in section 2.2.2)
since it does not accurately measure out a 1 ms interval. Furthermore, when the
frequency was decreased, the accuracy failed to improve to a point where the result
was satisfactory. The system timer is inaccurate to such an extent when compared to
the loop timer that the amount of CPU resources that it consumes is irrelevant.
Although it uses considerably less CPU resources than the loop timer, the system
timer is so inaccurate that it could never be used to measure an interval of one
millisecond reliably. Therefore the CPU usage of the system timer is not presented in
this dissertation.

2.3.2 Multimedia Timer
Multimedia timer services allow applications to schedule timer events with the
greatest resolution (or accuracy) possible for the x86 personal computer (PC)
platform. These multimedia timer services allow one to schedule timer events at a
higher resolution than through other conventional timer services, such as the system
timer (refer to 2.3.1).
The drawback of the system timer is obvious as the minimum interval duration that
can accurately be measured is comparable to the interval of the clock interrupt that
the operating system uses to update the system time. In applications where accurate
timing is required to schedule events, these events could be late by 10 ms or more.
Applications typically associated with smaller than 10 ms intervals are related to
multimedia implementations.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 25 of 111

For example a multimedia application may require an event such as audio playback
to occur every 23 ms. The measurement of this interval is depicted in Figure 2-8.

Figure 2-8: System Time Depiction

The multimedia application will configure a timer object to indicate when an interval of
23 ms has elapsed. Figure 2-8 shows the accumulation of elapsed time, as it is
measured by the operating system. It is clear from the figure that although timer
object interval should elapse after 23 ms, this is only determined after the third timer
tick, or 30 ms. Therefore, the sound is played 7 ms late.
This is a clear drawback of the timing architecture of the WIN32 operating system. A
solution to this problem was to lower the interval of the clock interrupt that the
operating system uses to update the system time. This resulted in the multimedia
timer.
To overcome the deficiency of the of the system timer, the clock interrupt should
ideally be 1ms and not 10ms, as depicted in Figure 2-9. When the 23rd timer tick is
received, 23 ms will have passed and the sound is played at exactly the right time.

Figure 2-9: Ideal System Timer Depiction

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 26 of 111

However, according to [Peng 2002], Microsoft has found that the impact of lowering
the clock interrupt to 1ms degrades system performance significantly, to the extent of
not being worth the cost, specifically in terms of cache consistency and power
management. Lowering it to 2ms however, has negligible effect. Therefore, in the
multimedia application, the sound will be played within 1ms of the time that it is
supposed to be heard, as depicted in Figure 2-10.

Figure 2-10: Actual Multi-Media Timer Depiction

Using a periodic clock interrupt is a common concept in contemporary operating
system design and results in weighing increased accuracy against degrading system
performance [Yoav et al. 2003]. The result still remains that the WIN32 platform
provides interval accuracy with a variance of ? 1ms, as will be seen below.

2.3.2.1 1 kHz Interval Multimedia Timer
The multimedia timer was executed over a period of 60 seconds and the minimum
and maximum interval durations were recorded.

Figure 2-11: Multimedia Timer 1 kHz Frequency

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 27 of 111

Figure 2-11 illustrates the interval duration of the multimedia timer the first second.
The performance of the timer over the remaining 59 seconds was similar to its
performance in the first second. The frequency was set to 1 kHz (i.e. 1ms intervals).
From the figure it is clear that the timer stays within the range 1 ms to 2 ms. The
maximum interval recorded was 1.983 ms and the minimum interval 0.503 ms. The
timer thus exhibits a maximum deviation of 983? s and the resolution is therefore 1ms
? 0.983 ms.
Note that out of the 60000 intervals recorded in this experiment (there are a thousand
one millisecond intervals within a second), the interval was greater than 1.5 ms 1439
times. The interval duration of 1.5 ms is significant since it exceeds the required
interval size by half the length of the desired interval. Therefore, 2.398% of the
intervals deviated from the desired interval of one millisecond by half the desired inter
or more (500 ? s in this case).

2.3.2.2 50 Hz Multimedia Timer
The multimedia timer was configured generate intervals of 20 ms (a frequency of 50
Hz) and executed over a period of 60 seconds. Only the first 5 seconds are shown in
Figure 2-12.

Figure 2-12: Multimedia Timer 50 hz Frequency

Figure 2-12 clearly illustrates the interval duration of the multimedia timer stays within
the range 19.5 ms and 20.5 ms. This remains true for the 55 seconds not shown on
the graph. The maximum interval was recorded at 20.613 ms and the minimum at
19.444 ms, which constitutes a resolution of 20 ms ? 613 ? s.
Of the 3000 intervals recorded (remember that there are fifty 20 ms intervals in a
second), 1062 intervals deviated from 20 ms by 500 ? s and more. In other words,
35.4% of the time the multimedia timer deviated from 20 ms by 500 ? s and more.

2.3.2.3 1 Hz Interval Multimedia Timer
The final frequency tested was 1Hz, in other words, intervals of one second. Figure
2-13 illustrates the interval duration of the multimedia timer over a period of
approximately 60 seconds. Over this period, the maximum interval recorded was
1.000139 s and the minimum interval 1.000069 s. The timer thus exhibits a maximum
deviation of 139 ? s, which is extremely accurate. The resolution of 1 s ? 139 ? s

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 28 of 111

confirms the multimedia timer is capable of generating intervals of one second
reliably.

Figure 2-13: Multimedia Timer 1 Hz Frequency

2.3.2.4 CPU Usage
The multimedia timer consumes the very little in terms of CPU resources. In all the
cases presented in sections 2.3.2.1 to 2.3.2.3, the multimedia timer consumed the
same amount of resources. The CPU usage is shown in Figure 2-14.

Figure 2-14: Multimedia Timer CPU Usage

The average amount of CPU resources consumed by the multimedia timer was
0.9957%. Therefore, the multimedia timer consumes a very small portion of the
available processing power, especially compared to the 83.59% of the loop timer
(refer to section 2.2.2). Therefore, the application that encapsulates such a
multimedia timer has ± 99.0043% of the CPU resources to its disposal, depending on
other the processes running on the system.

2.3.2.5 Conclusion
As was stated in section 2.3.2, Microsoft tests have determined that lowering the
interval at which the system time is updated to 2 ms (as was done when the
multimedia timer was introduced) has a negligible effect on processor usage.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 29 of 111

However, they report that the overall system performance is greatly reduced when a
resolution of 1 ms is used [Peng 2002]. It was for this reason that the clock update
interval for the multimedia timer was kept at 2 ms.
Although it was determined that the multimedia timer is capable of generating a 1 ms
interval (refer to section 2.3.2.1), 2.398% of those intervals deviated from the
required interval by more than 500 ? s. In the case of the 50 Hz multimedia timer
(refer to section 2.3.2.2), this percentage was increased to 35.4 %. It does however
deliver a reliable performance for an interval of one second (refer to section 2.3.2.3).
However, the multimedia timer uses no more that 1% of the available CPU
resources, as long as the clock update interval for the multimedia timer is kept at 2
ms [Peng 2002].
Although the results clearly show that the multimedia timer outperforms the loop
timer in terms of resource consumption and the system timer in terms of accuracy
(refer to section 2.3.1), it is less accurate than the loop timer. The multimedia timer is
able to measure an interval of one millisecond with a maximum deviation of ± 1 ms
whereas the loop timer was able to do it reliably to 200 ? s.

2.4 POSIX Timer
Section 2.3 focussed on software timers provided under the WIN32 platform. The
POSIX standard for UNIX based operating systems such as Linux, UNIX, Solaris and
AIX [Beal et al. 2003] provide timing mechanisms of their own. :
? BSD Timers:

The BSD timers are interval timers with a granularity of around 10 ms. This
seems similar to the system timer (refer to section 2.3.1) and it is expected that
the BSD timers is similar to its WIN32 counterpart. However, the result exhibited
by such a timer is presented nonetheless.

? IEEE 1003.1 Real-Time Timers – These timers are supposed to have the ability
to measure intervals with a maximum deviation in the order of microseconds.
However, IEEE 1003.1 is a real-time extension to UNIX, and therefore not
included in the standard Linux kernel distributions. The IEEE 1003.1 standard is
an extension to a UNIX base operating system, also known as the Real-Time
Extension, or Real-Time Linux. However, as is the case with the real-time
extensions to the WIN32 platform (refer to section 1.3 and also section 3.3) the
Real-Time Linux timers are beyond the scope of this dissertation.

The results of these timers performance are presented below.

2.4.1 BSD Timers
These timers are included with the normal Linux kernel distributions. Three types of
timers are available:
? A timer that is able to measure intervals. When the interval expires, a signal is

sent to the application that encapsulates the timer as a notification.
? A timer that quantifies the processor time used by the timer.
? A profiling timer that measures the processor time used by the timer in addition to

the time the processor spends on system calls related to the timer.
Therefore, the BSD timer capable of measuring intervals is under investigation in this
section. An application was developed that initialises and executes such a timer. The
results are presented below.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 30 of 111

2.4.1.1 BSD Timers (1 kHz Frequency)
The results for a frequency of 1 kHz are presented in Figure 2-15. The figure shows
the performance of the timer over a period of 32 seconds. It is clear that the
performance of the BSD timer differs from that of the WIN32 system timer discussed
in section 2.3.1.1.

Figure 2-15: BSD Timer (1 kHz)

The minimum interval duration recorded was 1.070 ms and the maximum 7.976 ms.
Compared to the system timer, this is a vast improvement, however, its performance
is surpassed by that of the multimedia timer. The figure shows that the BSD timer
was able to measure an interval close the one millisecond. Over a period of 60
seconds, the timer was able to do this once.
The number of intervals that were greater than 1.5 ms equates to 99.99633% of the
intervals measured. Accordingly the timer exhibits a resolution of 1 ms ± 7.976 ms.

2.4.1.2 BSD Timers (50 Hz Frequency)
Figure 2-16 shows the performance of the timer over a period of sixty seconds. The
frequency of the timer set to 50 Hz and was supposed the measure intervals of 20
ms. The minimum interval duration recorded was 20.885 ms and the maximum
28.014 ms.

Figure 2-16: BSD Timer (50 Hz)

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 31 of 111

Therefore the resolution of the timer in this case is 20 ms ± 8.014 ms. Again the BSD
timer outperforms the system timer in that it is able to generate an interval of 20 ms
within a smaller margin of error.
However, the multimedia timer, whose resolution was 20 ms ? 613 ? s (refer to
2.3.2.2), surpasses the BSD timer. As is clear from the figure, the timer was not able
to generate an interval smaller than 20.885 ms. Accordingly, the required interval
duration is exceeded by more that 500 ? s 100% of the time.

2.4.1.3 BSD Timers (1Hz Frequency)
With the frequency set 1 Hz (presented in Figure 2-17), the minimum interval
duration recorded was 1.000830 seconds and the maximum 1.011517 seconds. The
timer was run for a period of 60 seconds, as shown in the figure.

Figure 2-17: BSD Timers (1 Hz)

Therefore a consistent one second interval was not achieved. The desired interval
size should be as close the one second as possible. The resolution of the timer is 1 s
± 11.517 ms.
On this occasion, the performance of the BSD timer is comparable to the 1 s ±
11.763 ms of the system timer (refer to section 2.3.1) at a frequency of 1 Hz.
However, as was the case with the previous frequencies, the multimedia timer whose
resolution was 1 s ? 139 ? s (refer to section 2.3.2.3), outperforms the BSD timer.

2.4.2 Conclusion
Section 2.4.1 shows that the BSD is capable of better performance than the system
timer, but is surpassed by the multimedia timer. Since the loop timer outperforms the
multimedia timer in terms of accuracy, it exhibits better performance than the BSD
timer as well. Since a timer with better accuracy exists and the maximum deviation of
the timer is in the order of milliseconds, the CPU usage of the BSD timer is not
presented (as was the case with the system timer in section 2.3.1). Even if the BSD
timer put the CPU under less strain than the multimedia timer (which is difficult
considering the average CPU usage of the multimedia timer is 0.9957%), the
multimedia timer is a better timing mechanism since it is more accurate.

2.5 External Timers
Hard real-time systems that rely heavily on precise timing constraints will typically be
found in, for example, avionics systems [Newcomer 2000]. Such systems use high-
resolution hardware timers as the timing source. As mentioned in section 1.3, such

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 32 of 111

hard real-time systems have to be thoroughly tested. These testing systems are often
based on commercial operating systems such as Windows 2000 and XP.
To circumvent the inadequacies of WIN32 timers that were exposed in 2.3 above,
external timers have been developed that deliver the required high-resolution timing
mechanism to the computer. Since these devices are external to the PC, the
communication is facilitated via the serial port.
Such an external timer device is designed to generate signals at a fixed and reliable
frequency based on an oscillating quartz crystal. These signals are transmitted using
the control line signals provided by the serial port technology. These include:

? RLSD – receive-line-signal-detect
? CTS – clear-to-send

? DSR – data-set-ready.
A common nominal signal frequency is 1 kHz, although these devices may be
programmed to generate signals at other frequencies as well. Since more than one
control signal may be transmitted via the control lines, such devices often transmit
signals at different frequencies on different control lines simultaneously.
A typical configuration is a device that emits signals at 1 kHz (one millisecond
intervals), 50 Hz (20 millisecond intervals) and 1 Hz (one second intervals).
An application was developed to catalogue the time at which the control signals are
received. This application incorporates the waitable objects discussed in section
1.4.3. A waitable object is configured to repeatedly wait for the signals from the
external timer. The timestamps at which these signals are received is recorded and
accordingly, the results are presented in section 2.5.1 through 2.5.3.

2.5.1 1 kHz Synchronisation Signal
Figure 2-18 illustrates the elapsed time between the signals from the synchronisation
box over a period of approximately 30 seconds where the interval frequency was set
to 1 kHz (i.e. 1 ms intervals).

Figure 2-18: 1 kHz Synchronisation Box

Over the period of 30 seconds the minimum interval recorded was 0.953 ms and the
maximum interval 1.047 ms. The timer thus exhibits a margin of error of 47 ? s. Since
the crystal on which the signal is based oscillates at a constant interval, it is safe to
assume that the deviation is due to delays induced by the operating system.
However, a timer with a resolution of 1 ms ? 47 ? s is very accurate. It outperforms

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 33 of 111

the loop timer whose resolution was 1 ms ± 167 ? s (refer to section 2.2.2.2.1) for a
frequency of 1 kHz.

2.5.2 50 Hz Synchronisation Signal
With the frequency set to 50 Hz (i.e. 20 ms intervals), the minimum interval recorded
was 19.999 ms and the maximum 20.001 ms. This is illustrated in Figure 2-19 and
depicts a period of approximately 60 seconds.

Figure 2-19: 50 Hz Synchronisation Box

In this instance, the performance of the loop timer is comparable to the signal from
the synchronisation box. Therefore, the resolution exhibited was 20 ms ± 1 ? s. The
loop timer’s resolution was 20 ms ± 2 ? s for a frequency of 50 Hz. However, reading
the signal from the serial port consumes virtually no CPU resources, whereas the
loop timer consumes nearly 84% (refer to section 2.2.2.2.2).

2.5.3 1 Hz Synchronisation Signal
Figure 2-20 illustrates a period of seconds in which the 1 Hz (i.e. 1s intervals) from
the synchronisation box. The minimum interval recorded was 0.999999 seconds and
the maximum 1.0000000 seconds.

 Figure 2-20: 1 Hz Synchronisation Box

The resolution in this case is 1 s ± 1 ? s which was the resolution calculated for the
loop timer in section 2.2.2.2.3.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 34 of 111

2.5.4 Conclusion
Since the external timer is an accurate real-time timer based on an oscillating quartz
crystal, the results exhibited by the synchronisation serve to verify the accuracy of
the “timestamp calculator” software that will be discussed in section 4.1. The
timestamp calculator was used to measure the timestamp throughout chapter 2.
Since the external timer, the synchronisation box, is a proven method of providing a
real-time signal, the fact that the maximum deviations recorded in sections 2.5.1
through 2.5.3 were less than 50 ? s, it stands to reason that the timestamp calculator
could be trusted to provide an elapsed time interval whose accuracy is in the order of
50? s.
The elapsed time measurements presented thus far, as well as in forthcoming
chapters are thus assumed to be within about 50 ? s of the actual elapsed time, since
all the measurements rely on the timestamp readings and calculations.

2.6 Problem Statement
As stated in 1.3, a soft real-time system allows the timer some latitude in missing
deadlines. This is in contrast to hard real-time systems, where such a situation would
constitute a system failure. Sections 2.1 through 2.5 describe the software timers
provided by the WIN32 and Linux operating systems and some comparisons are
made between them.
Reconsider the results presented in these sections. The following is apparent in
regard to the smallest interval measured (1 kHz frequency = 1 ms intervals):
? The loop timer (section 2.2.2): Of all the timers whose performance was

quantified in sections 2.2.2, 2.3.1, 2.3.2 and 2.4.1, the loop timer performed the
best in terms of accuracy compared to the external timer in section 2.5. The
resolution exhibited at 1 kHz was 1 ms ? 167 ms.

? The system timer (section 2.3.1): The minimum interval of 5.881 ms and a
maximum of 25.431 ms were recorded. Since 1ms was required, the result is a
timer with a resolution of 1ms ? 24.431 ms (25.431 ms – 1 ms).

? The multimedia timer (section 2.3.2): With a minimum interval of 0.503ms and a
maximum of 1.983ms, when 1ms was required, a timer with a resolution of 1ms
? 0.983ms is yielded (1.983ms – 1ms). Therefore, the multimedia timer will miss
the deadline by as much as 0.983ms.

? The POSIX timer (section 2.4): The resolution of this timer turned out to be 1 ms
? 6.976 ms. The maximum interval was 7.976 ms and the minimum 1.070 ms.
Therefore, the timer could deviate from the required interval by almost 7 ms.

The comparison of the performance of the timers can be summarized as follows:
? The loop timer is the most accurate (the maximum deviation is less than

500? s).

? The system timer is the least accurate (the maximum deviation is more than
one millisecond).

? The BSD timer is more accurate than the system timer, but less so than the
multimedia timer (the maximum deviation is more than one millisecond as
well).

? The multimedia timer is less accurate than the loop timer (the maximum
deviation is in the order of one millisecond).

Since the multimedia timer and loop timer are the most accurate, their attributes are
more conducive to the notion of a real-time timer than the system- and BSD timers.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 35 of 111

Although the loop timer is the most accurate, it also puts the most load on the CPU.
The multimedia timer consumes very little in terms of CPU resources, but its
maximum deviation is ± 1 ms. Thus, from the evidence collected above and
summarized in Table 2-1 it is clear that the highest precision software timer possible
under the WIN32 operating system guarantees that the interval length of the timer
will be within ? 1ms of what was desired duration, without consuming all available
CPU resources.
The aim of this research is to determine if it is possible to design and implement a
software timer under the WIN32 operating system that yields better performance than
that of the multimedia timer. It is clear that to implement a timer that is efficient in
terms of resource usage and accuracy, a compromise between the two is a probable
side effect.
Nominally, it was decided aim at a margin of error that improves on the best margin
of error exhibited by the timers studied above by at least 50% – thus a resolution of
at least 1ms ? 500? s is sought.

Table 2-1: Timer Resolution Comparison

Timer Resolution
WIN32 System Timer 1 ms ? 24.431 ms
WIN32 Multimedia Timer 1 ms ? 0.983 ms
Linux Timer 1 ms ? 6.976 ms
Referring to sections 2.2.2 and 2.2.2.2, it is clear that the design and implementation
of the timer has to take processor usage into account, and therefore it is an additional
requirement that the timer to be built should not consume all available resources.
It is also necessary for the timer to fire an event when the interval duration has
elapsed as an indication of this event to the application using the timer.
Therefore, the problem statement is as follows:
A timer needs to be developed that presents a margin of error less than or equal to
500? s, that consumes minimal processor resources and that fires an event at the
conclusion of each interval.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 36 of 111

Chapter 3
Design and Implementation Decisions

This chapter describes the design and implementation decisions made to solve the
problem as it is described in section 2.6. The aim of this chapter is to familiarize the
reader with the process that was adopted, in other words to show how the problem
was tackled. Firstly, the choice of programming language is discussed in section 3.1.
Furthermore, since it is important that the notion of Application Programmer
Interfaces (APIs) is understood, this is explained in section 3.2. Section 3.3 focuses
on the choice of operating system followed by a discussion in section 3.4 on the
important aspect of real-time systems, namely: Process Scheduling Priority.

3.1 Development Programming Language
The development language chosen was C++. The reasons are simple in that it
provides easy access to both the WIN32 and POSIX APIs (section 3.2). In addition, it
is widely used and therefore familiar to most researchers.
From the outset it was decided that the design of the timer would heavily rely on
object orientation, the programming paradigm for which C++ was designed [Lischner
2003]. C++ also allows the programmer to implement and optimize software in an
efficient manner [Bulka et al. 1999].

3.2 Application Programming Interfaces (APIs)
An API is a set of functions that is exposed by a piece of software and that may be
used by another application to interact with that software [Palmer 2002]. An “Interface
Definition” informs the API user how to use (or invoke) the software in other code
[Webopedia 2003].
These functions may be a set of protocols, routines, and/or tools for building software
applications. An efficient API will simplify software development in providing quick
access to building blocks provided by another application [Wikipedia 2006].
A software module, containing the implementations of mathematical functions for
example, may be made available to others through an API, thereby exposing these
functions to another user’s application. Let the name of such a module be the “Math
Module”.
This functions within the math module is made available via an API. This is depicted
in section Figure 3-1.

Figure 3-1: API Definition

As is shown Figure 3-1, the math module exposes two functions:

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 37 of 111

? float circa(float radius); - calculates and returns the circumference of a circle with
a specific radius.

? float area(float radius); - calculates and returns the area of a circle with a specific
radius.

The math module functionality will typically be compiled into a DLL (Dynamic linked
library) under the WIN32 operating system or dynamically linked Linux library under
Linux. The user’s application will be either statically or dynamically linked to the DLL,
and will be able to access the function via the DLLs API.
Both the WIN32 and POSIX environments provide APIs that give a developer the
ability to access core functions within the operating system. These APIs were used to
develop the solution. The ability to create threads, initialise platform timers and in the
case of the WIN32 platform – to initialise the multimedia subsystem, is made
available in the APIs.

3.3 Operating Systems
On the consumer end of computer hardware, specifically the x86-based platforms,
the primary operating systems available to the consumer are the various WIN32
platforms (Windows 9x, Windows ME, Windows NT, Windows 2000 and Windows
XP) and the UNIX platform that uses the POSIX standard (Linux – specifically the
2.6.x line of kernels).
As discussed in section 1.3, real-time extensions to these operating systems exist to
address their real-time inadequacies (also according to [Klein et al. 1994] and
[Hardeski 2001]). However, it was decided that a solution would be sought without
the aid of such extensions.

3.4 Process Priority
The WIN32 operating system, like its POSIX counterpart, uses a process scheduling
mechanism known as preemptive multitasking. This not only allows the operating
system to ensure that each process being scheduled receives a fair amount of
processing time – it also allows an external hardware event to interrupt the operating
system (in other words the operating system may be preempted).
Processes demanding processing time may be divided into two groups:
? Processes waiting for input or a specified time to elapse (idle processes) for

example a timer.
? Processes that are fully utilizing the processor.
The architecture of both the Linux and WIN32 operating systems consists of two
levels: user mode and kernel mode. Applications in user mode are limited in terms of
their access to system resources, whereas kernel processes have unrestricted
access to system memory and external devices. However, in both systems, these
processes are serviced at fixed at intervals with a typical size of 10 ms [Peterson et
al. 1998]. Therefore a situation may arise where all processes are serviced in less
than 10ms, however, the processes will not be serviced until the next 10ms interval.
Moreover, certain kernel level processes are non-preemptable and may take an
unknown amount of time to complete.
Both the WIN32 and Linux platform allow the user to set a process’s priority. In the
case of the various timer solutions presented in this dissertation, the timer should
enjoy the highest possible priority to ensure that its timer measurement is as
accurate as possible.
Under the WIN32 platform, the following are possible priority settings:

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 38 of 111

? IDLE_PRIORITY_CLASS – This class is for low priority threads that only need to
run when the system is idle. Processes with this priority may be pre-empted by
processes of higher priority.

? NORMAL_PRIORITY_CLASS – Processes with this priority are not in need of
any special scheduling.

? HIGH_PRIORITY_CLASS – this class is used for a process that performs time-
critical tasks that must be executed immediately. The threads of such a process
may pre-empt any other thread with lower priority.

? REALTIME_PRIORITY_CLASS – This class is specified when a process
requires the highest possible priority. Threads of such a process preempt the
threads of all other processes, including operating system processes. This is also
the priority class that the timer implementation will be awarded

Under the Linux platform, process priority allocation is somewhat simpler in that a
process is given a priority number from 1 to 20, 20 being the highest priority. Any
process of higher priority may pre-empt another process of lower priority. Therefore
the timer implementations under the POSIX standard were given a priority of 20.
Note that, even though a process may have a priority of 20, it cannot pre-empt kernel
processes, at least not for current (at the time of this writing) normal Linux
implementations. However, the Linux 2.6.x line of kernels are said to allow this and
therefore this version of the research that relate to POSIX relies on this version of
Linux [Santhanam 2003].

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 39 of 111

.

Chapter 4
Solution

In this chapter, a workaround is proposed for the shortcomings identified on the
WIN32 platforms in regard to the software timers that it provides. However, before
the timer implementation is presented, the timestamp calculator is discussed. This
piece of software is significant as it is used in the solution to calculate timestamps.
This is discussed in section 4.1. Initial solutions to this problem were not successful;
however, those rejected solutions that had a direct hand in the final solution are
presented in section 4.2. The actual solution, called a Thread Induced Waitable
Timer or TIW timer, is presented in section 4.3. With a solution implemented, the
validity and performance thereof has to be investigated, and this is done in section
4.4 where its performance is compared to the software timers discussed in chapter 2.
As stated in section 1.5, the external hardware timer is the benchmark for the TIW
timers. The TIW timer is compared to this timer in section 4.5.

4.1 Timestamp Calculator
A timestamp may be defined as the time at which a specified event occurs. This time
is usually relative to another timestamp referred to as a base timestamp. In the case
of the timestamp calculator, this is the time at which the timer is turned on. In other
words, all the timestamps that the timestamp calculator generates represent an offset
from the timestamp at which the calculator was initiated.
The timestamp calculator is the subject of the initial discussion in this chapter. This
piece of software was used in the development of all the timers discussed in both this
chapter and chapter 2, specifically for the calculation of interval duration. As was
stated in section 2.5, these timestamps are within 50 ? s of the actual timestamp.
Accordingly it is imperative to understand the timestamp calculator before the
solution is discussed.
The timestamp calculator is based upon the high-resolution counters discussed in
section 2.2. The timestamp calculator accesses one of these counters (depending on
the processor) whenever a timestamp is required. The value of the counter as well as
the knowledge of the frequency at which it is incremented may be combined into the
calculation of a timestamp. The mechanisms used to accomplish this are discussed
in section 4.1.1.

4.1.1 Query Functions
The WIN32 API provides the means to access the high-resolution counters. Two
routines are available to developers that simplify the implementation. These routines
are:
? QueryPerformanceFrequency

If the high-resolution performance counter is available, this function retrieves the
frequency of the counter. If the hardware is a uni-processor system, the
frequency is 3.579545 MHz whereas the frequency equates to the CPU’s
frequency in a multi-processor environment (as discussed in section 2.2). The
units are in Hz (counter ticks per second). This routine is called once, since the
frequency is constant and therefore there is no runtime overhead to access it.

? QueryPerformanceCounter

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 40 of 111

If the high-resolution performance counter is available, this function retrieves the
current value of that counter. If the hardware is a uni-processor system, the
counter is read from the Power Management timer whereas the CPUs timestamp
counter (TSC) is utilised in a multi-processor environment (as discussed in
section 2.2.1). As is apparent from section 2.2.2.2, the time to access this routine
combined with the calculation of the timestamp is less than 50? s.

All the routines required to access these counters in the POSIX environment were
implemented utilising assembler instructions as opposed to API calls. The equivalent
implementations for the calls above were realized in the POSIX environment as
follows:

? QueryPerformanceCounter
The TSC is accessed via assembler calls. Note that for readability, the assembler
is presented in normal Turbo Assembler syntax, in other words the way it would
be implemented under a WIN32 operating system. However, the Linux equivalent
is provided directly thereafter.
//--
// WIN32 Assembler presented for readability
//--
CPUID; // Return the identification

// of the CPU for the rdtsc
// instruction

RDTSC; // Read the current value of
// the high-resolution counter
// into a 64 bit integer

mov var_low, EAX; // Move the lower part of the
// 64 bit integer into EAX

mov var_high, EDX; // Move the higher part of the
// 64 bit integer into EDX

Subsequently, var_low and var_high are combined to form a single 64bit value
that represents the value read from the TSC on the CPU.
//--
// LINUX (POSIX) Assembler – the actual implementation
//--
asm("CPUID;");
asm("rdtsc;");
asm("mov %%eax, %0" : "=r"(var_low));
asm("mov %%edx, %0" : "=r"(var_high));

? QueryPerformanceFrequency
Unfortunately, the POSIX implementation under this routine is not as elegant.
Again the implementation will first be presented in “WIN32” syntax in an
endeavour to increase readability.
QueryPerformanceCounter (&start); // Read an initial value

// of the counter and
// store it in a
// variable “start”

sleep(1000); // Sleep for a second

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 41 of 111

QueryPerformanceCounter (&end); // Read an end value of
// the counter

frequency = (end – start); // Therefore the
// frequency is
// calculated as the
// difference between
// start and end

4.1.2 Timestamp Calculation
The combination of the two routines discussed in section 4.1.1 may be used to
calculate a timestamp. With the value of the current high-resolution counter known as
well as its frequency, the time elapsed since the counter started incrementing may be
calculated. Since the counter starts incrementing from zero the moment that
electrical power is applied to the computer, the exact time since the PC was turned
on can be determined. Likewise, the time that has elapsed since the previous
occasion on which the counter was polled can be calculated.
Let ? be the current value of the high-precision counter and ? be its frequency.
Remember that the frequency is specified in Hz and represents the number of times
that the counter is incremented per second. Therefore the time elapsed since the
computer was turned on ? (representing the current timestamp) is calculated as:

In this case, the value ? is in seconds, but it may be processed to represent values in
ms, ? s, ns etc. This is elaborated on in the following section.

4.1.2.1 Precision
The timestamp precision in the final version of the timestamp calculator is
configurable. In other words, the timestamp calculator returns the timestamp in
seconds, milliseconds, microseconds etc. This is accomplished through the division
of the timestamp ? (as calculated above). This is required for the obvious reason that
the timestamp calculator has to measure intervals considerably smaller than 1
second.
The timestamp calculator is configured via a floating-point parameter specifying the
precision. The value specified and the precision obtained is tabulated in Table 4-1.
Let ? denote the requested precision.

Table 4-1: Timer Calculator Precision

Precision Units Requested Precision (?)
Seconds 1 (10 to the power 0)
Milliseconds 0.001 (10 to the power -3)
Microseconds 0.000001 (10 to the power -6)
Nanoseconds 0.000000001 (10 to the power -9)

4.1.2.2 Process of timestamp calculation
The following process of the timestamp calculator is designed in such a way that the
timestamp calculated is relative to a base timestamp taken at initialisation of the
timer. This process is as follows:

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 42 of 111

? When the timestamp calculator is initialised, an initial timestamp is calculated.
This timestamp is saved as the base timestamp ? . The base timestamp ? is a
representation of the time elapsed since the high-resolution counter started
incrementing, in other words the number of counter ticks since the computer was
turned on. The time elapsed ? is divided by the precision ? to obtain the base
timestamp, therefore:

? Every time a subsequent timestamp is requested the current timestamp relative

to ? is calculated and returned. Therefore, the current timestamp ? is calculated
as:

4.1.3 Class Description
As was stated in section 3, a fundamental design decision was to implement the
solution using object orientation. Therefore timestamp calculator is designed as a
class that may be instantiated by any application that requires such a component to
calculate timestamps.
This class design is simple and consists of the following:

Timestamp Calculator Class
The C++ class definition of the timestamp calculator class is as follows:
class TimestampCalculator
{
 public:
 TimestampCalculator (double precision);
 ~ TimestampCalculator (void);

 bool enabled (void);
 void reset (void);
 unsigned long long getTimestamp (void);

 private:

 unsigned long long performanceFrequency ;
 unsigned long long performanceCounter ;

 unsigned long baseTimestamp;
 unsigned long precision;
};
The notable functions of the class are as follows:
Class Constructor (TimestampCalculator (double precision);)

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 43 of 111

Input Parameters: Single floating-point value – the precision ? .
The current timestamp is calculated and saved as the base time ? , with precision
as specified by ? .
Reset Function (void reset (void);)
The reset function resets the base time to the timestamp at the moment the reset
function is called.
Get Timestamp Function (unsigned long long getTimestamp();)

This function returns the current timestamp ? .

Typically, a single application will use only one instance of the timestamp calculator,
which is the case in the final solution. However, it is of course possible to instantiate
multiple instances of this class.

4.2 Rejected Solutions
During the course of this research, a number of unsatisfactory solutions to the
problem of constructing a soft real-time timer were implemented. However, as is
often the result of a trial and error process, elements of the final solution are
frequently a part of a rejected implementation that preceded it. The rejected
scenarios that contributed to the final solution are presented in the following sub-
paragraphs. In fact, it is necessary to understand these rejected solutions in order to
understand the eventual solution. The rejected solutions are all based on the WIN32
operating system platform.

4.2.1 WIN32 Sleep Timer (Non Multimedia)
The sleep timer is a waitable timer (see 1.4.3) based on the WIN32 system timers
discussed in 2.3.1. As seen in 2.2.2 with the loop timer, it is essential that some
mechanism be found to ensure that the timer does not take up all the available
processing power of the CPU.
To accomplish this, we turn to a mechanism provided by the WIN32 API. The WIN32
API provides a mechanism to suspend a thread for a specified amount of
milliseconds, called the “Sleep” function. The desired number of milliseconds for
which the process is required to sleep is specified as a single parameter. The
implementation of the sleep timer utilising this function is explained in the algorithm in
section 4.2.1.1.

4.2.1.1 Algorithm
The algorithm consists of a single loop, wherein the execution thread is instructed to
sleep for ? ms. The current timestamp ? current is taken before the loop commences,
and then after completion of every sleep interval. The value of ? current is obtained
from the timestamp calculator calculator’s function, getTimestamp() discussed in
section 4.1. At this point, a timer event may be fired.
This is depicted in algorithm 2.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 44 of 111

Algorithm 2 - Normal Timer Algorithm

It should be assumed that every new assignment of a value to ? current in the
algorithm is accompanied by some statements necessary to store this value. Using
this algorithm, the goal of the software timer is to generate intervals of duration ?
ms.

4.2.1.2 Results
The performance of the timer is presented in this section. The analysis techniques
are as described in section 1.5. The timestamp calculator was used calculate the
timestamps.

4.2.1.2.1 1 ms interval (1 kHz)

The results for a frequency of 1 kHz are illustrated by Figure 4-1. The desired interval
should be as close to one millisecond (1000 ? s) as possible. The maximum interval
recorded was 16.336 ms (16336 ? s) and the minimum interval 14.528 ms (14528
? s). The timer therefore provides a resolution of 1 ms ± 15.336 ms on 1 kHz
frequency. Already it is clear that this timer is not effective with the realisation that
although an interval of 1 ms was desired, an interval that deviates by ± 15 ms was
obtained. Accordingly, the requirement of a maximum deviation of 500 ? s is not met.

Figure 4-1: Sleep Timer (Non Multimedia) (1 kHz)

4.2.1.2.2 20 ms interval (50 Hz)

The performance for a frequency of 50 Hz is illustrated by Figure 4-2 and intervals
close to 20 ms (20000 ? s) is expected. The maximum interval recorded was 31.879
ms (31879 ? s) and the minimum interval 30 ms (30000 ? s). The timer therefore
provides for a resolution of 20 ms ± 11.879 ms on 20 ms interval. This is further proof

? current := getTimestamp()
While the timer is running

 Sleep (for ? ms)
 ? current := getTimestamp()
 Fire Timer Event
End While;

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 45 of 111

of the ineffectiveness of the timer. It seems that in actual fact, if an interval of 20 ms
is desired, more accurate results could be obtained when required interval duration is
set to one millisecond.

Figure 4-2: Sleep Timer (Non Multimedia) (50 Hz)

4.2.1.2.3 1 second interval (1Hz)

Finally, the timer was tested with a frequency of 1 Hz and its performance on this
occasion is depicted in Figure 4-3. The target interval is as close to one second
(1000000 ? s) as possible.

Figure 4-3: Sleep Timer (Non Multimedia) (1 Hz)

The maximum interval recorded was 1.000166 s (1000166 ? s) and the minimum
interval 0.998872 ms (998872 ? s). The timer therefore provides for a resolution of 1 s
± 0.2 ms at a frequency of 1 Hz interval. This is actually an occasion where the
where the timer exhibits acceptable results, although it fails on the smaller intervals.

4.2.1.3 Conclusion
It is clear from the results of the 1 ms and 20 ms interval tests that the timer is not
suitable and the resolution is not high enough, even though timer is effective for a 1
Hz frequency. The requirement for the real-time software timer specified in section
2.6 requires the maximum deviation from the requested interval duration to be 500? s

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 46 of 111

or less and it is clear that the sleep timer does comply in these two cases. The
excellent performance of the timer in the 1 Hz study is not adequate to allow the
timer to be considered as a soft real-time solution. Neither is the fact that the timer
consumes minimal system resources (due to the sleep instruction) nor the fact that
the timer event is able to fire at the conclusion of every interval.
The reason for the poor performance of the sleep timer is that the sleep function only
returns when the underlying operating system informs it that the desired sleep
interval has elapsed. The reason for the tardiness of the operating system was
covered in section 2.3.1. An attempt was made to solve this problem using the
multimedia sleep timer in section 4.2.2.

4.2.2 WIN32 Sleep Timer (Multimedia Timer)
This timer is a derivative of the sleep timer discussed in 4.2.1. As discussed in
section 2.3.2, it is possible to increase the frequency at which the system clock is
updated when relying on the multimedia timer. This can be done via the multimedia
sub-system initialisation API calls provided by the WIN32 operating system platform
[MSDN 2005]. When the subsystem is enabled, the timer object, including the Sleep
instruction is serviced at the highest rate provided by the WIN32 platform – 500 Hz or
every 2 ms.

4.2.2.1 Algorithm
Algorithm 3 is essentially the same as Algorithm 2 discussed in section 4.2.1.1,
barring the initialisation of the multimedia subsystem before the timer commences its
loop, thus yielding Algorithm 3 below:

Algorithm 3 - WIN32 Multimedia Sleep Timer Algorithm

4.2.2.2 Results
The performance of the WIN32 sleep timer is presented in this section. Again, the
analysis techniques conform to the guidelines described in section 1.5 and the
timestamp calculator was used to calculate the timestamps.

4.2.2.2.1 1 ms interval (1kHz)

To generate 1ms (1000? s), the frequency of the timer is set to 1 kHz and the results
are presented in Figure 4-4. The figure shows the results over the first ±7 seconds to
improve the readability of the graph. However, the experiment was conducted over a
period of 60 seconds. The maximum interval recorded was 2.024 ms (2024 ? s) and
the minimum interval 1.883 ms (1883 ? s).

Initialise the Multimedia Subsystem

? current := getTimestamp()
While the timer is running

 Sleep (for ? ms)
 ? current := getTimestamp()
End While

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 47 of 111

Figure 4-4: Sleep Timer (Multimedia) (1 kHz)

The timer therefore provides for a resolution of 1ms ± 1.024 ms on 1 ms interval. In
fact, the average interval duration was 1.95 ms. This is an improvement from the
result of the normal sleep timer in section 4.2.1.2.1. However, it only serves to
illustrate the one millisecond margin error that is the best that the normal WIN32
platform provides (refer to section 2.6).
It should be noted that of the 60000 intervals recorded over the period of minute, the
desired interval of 1 ms was exceeded by more than 1 ms (in other words, the
number of intervals of 2 ms and more) 119 times. This equates to 0.198% of the
intervals.

4.2.2.2.2 20 ms interval (50 Hz)

The results for a frequency of 50 Hz are illustrated by Figure 4-1. The desired interval
should be as close to 20 ms (20000 ? s) as possible. The figure shows the
performance over a period of approximately 15 seconds, although the experiment
was conducted over the course of a minute.

Figure 4-5: Sleep Timer (Multimedia) (50 Hz)

Over a period 60 seconds, the maximum interval recorded was 21.906 ms (21906
? s) and the minimum interval 20.059 ms (20059 ? s). The timer therefore provides for
a resolution of 20 ms ± 1.906 ms at a frequency of 50 Hz. As was the case with the 1
kHz sleep timer in section 4.2.2.2.1, the maximum deviation exceeds 500 ? s, which
is outside the range of specified by the requirements in section 2.6.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 48 of 111

4.2.2.2.3 1 second interval (1Hz)

Figure 4-1 illustrates the results for the multimedia sleep timer at a frequency of 1 Hz
and accordingly the desired interval duration is one second (1000000 ? s). Results
shown in the figure spans a period of 60 second.

Figure 4-6: Sleep Timer (Multimedia) (1 Hz)

The maximum interval recorded over the period under scope was 0.999956s
(999956? s) and the minimum interval 0.983568s (983568? s). The timer therefore
provides for a resolution of 1 s ± 16.432 ms at a frequency of 1 Hz.
Strangely enough, where the 1 Hz interval yielded the best performance from the
sleep timer in section 4.2.1, the worst performance is exhibited in the case of the
multimedia sleep timer under discussion in this sub-paragraph.

4.2.2.3 CPU usage
The resource consumption recorded in sections 4.2.2.2.1 to 4.2.2.2.3 was basically
the same and is represented by Figure 4-7. The maximum usage recorded at any
given time was 1% and the minimum 0%. The average usage was 0.768%.
The multimedia sleep timer therefore consumes very little in terms of CPU resources
and actually surpasses the performance of the multimedia timer recorded in section
2.3.2.4.

Figure 4-7: Sleep Timer (Multimedia) CPU usage

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 49 of 111

4.2.2.4 Conclusion
Although the multimedia sleep timer’s performance is a considerable improvement
over the sleep timer without the multimedia subsystem enabled, it still fails to meet
the requirement of a margin of error less than 500 ? s. Again minimal resources are
consumed (less than 1%) and an event is fired at the conclusion of each interval.
However, as was the case with the normal sleep timer, this is insufficient to qualify it
as suitable soft real-time timer as per the definition in section 2.6.
It is clear from the results that the smallest interval of time that a running process can
be suspended is in the order of 1 – 2 ms. This is derived from the resolutions of the
POSIX timer (section 2.4.1.1), the multimedia timer (section 2.3.2.1) and the
multimedia sleep timer (section 4.2.2.2.1) at a frequency of 1 kHz.
Up to this point in the dissertation, the timer with the best resolution is the loop timer
(section 2.2.2). The sleep timers were an attempt to introduce a waiting period into
the loop timer to prevent it from consuming all available CPU resources. However, it
is clear from the sleep timers’ performance that to implement a timer with a maximum
deviation of 500 ? s, it is necessary to find a mechanism to induce a waiting period of
less than one millisecond to prevent it from consuming all available CPU resources.

4.2.3 Critical Section Timer
[Manko 2002] proposed a solution that uses critical sections that can be entered as
soon as they become available. The development of this timer is an attempt to
incorporate a waiting period in the timer to prevent it from consuming all available
CPU resources, without inhibiting the generation of reliable intervals.
Two threads are created, each attempting to enter a critical section shared between
them. When this is accomplished, the thread measures the required interval in the
same way that the loop timer would (Refer to section 2.2.2). Subsequently the thread
relinquishes the critical section to be entered by the second thread that in turn would
follow the same process. And so it would continue. This is depicted in Figure 4-9.
The assumption was that forcing the threads to wait for the ownership of a critical
section would induce sufficient idle time to allow the CPU to award its resources to
other processes. This assumption proved to be incorrect and yet again no waiting
period is induced and the timer consumes nearly all available processor resources.
The average usage was 83.201% depicted in Figure 4-8.

Figure 4-8: Critical Section Timer CPU usage

However, it exhibits the same accuracy as the loop timer, providing a margin of error
less than 500 ? s (refer to section 2.2.2). The timer may be implemented to fire an

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 50 of 111

event at the conclusion of each interval. However, since it consumes most of the
available CPU resources, it is not suitable for the soft real-time implementation
defined in section 2.6.

Figure 4-9: Critical Section Timer

4.3 Thread Induced Waitable Timer
As stated in section 2.2, high-resolution hardware counters are supported in modern
hardware and provide a mechanism to compute accurate timestamps as discussed in
section 4.1. The loop timer discussed in section 2.2.2 can be used to accurately
measure a specified interval by reading one of these counters, but consumes all
available CPU time in the process.
A mechanism needs to be found where these high-resolution hardware counters may
be polled to determine timestamps without using all available processing time. The
critical section timer (in section 4.2.3) attempts to solve this problem through the use
of the concurrent process concept of critical sections, but as stated gives
unsatisfactory results.
According to the empirical evidence of section 4.2.2.2.1, if the multimedia timer is
initialised and the sleep function instructs a thread to sleep for an interval of
approximately 1ms, then the thread sleeps for an average of 1.95ms instead.
Therefore the inadequacies of these solutions are known. To achieve a solution,
these inadequacies have to be taken into account and remedied in the
implementation.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 51 of 111

Firstly a waiting period has to be enforced to prevent the timer from taking up all the
available CPU processing time, in contrast to the loop timer and critical section timer.
The waiting period has to be small enough for a 1 ms interval timer to be derived that
has a maximum deviation of 500? s, unlike the sleep timers. A solution to this
seemingly contradictory set of objectives presented itself, based on the use of
multiple threads, inspired by the critical section timer. In fact, it turns out that two
threads suffice to build the required timer.
This observation suggests a way of improving the margin of error of 1 ms, without
making excessive demands on the CPU.
As stated, two threads are necessary which we will refer to as thread A and thread B.
Both threads use the timestamp calculator to determine how much time has elapsed.
Only one of these threads are active at any given time, accomplished through the
use of a common critical section, as is the case with the critical section timer. Both
threads are started at the same time and both will try to enter the critical section. The
timing between the two threads is shown in Figure 4-10. The thread that enters the
critical section first is referred to as thread A in the rest of this section.
Initially, thread A will wait in a loop polling the high-resolution hardware counters until
an interval of 1 ms has elapsed after which the timer event is issued followed
immediately by the 2 ms sleep instruction. At this point thread B is made active and
waits in a loop polling the high-resolution hardware counters for an interval of 1 ms,
followed by the timer event and 2 ms sleep instruction as was the case with thread A.
Since thread A would only have been sleeping for 1 ms by this time, 1 ms from the
timer event issued by thread B has to elapse before thread A resumes. In this time,
neither thread is executing. This process induces the required waiting period.
By the time that thread B has waited in the loop for 1 ms, thread A has approximately
1 ms of sleeping time left. Therefore when thread A completes its 2 ms sleeping time,
approximately 0.95 ms (1.95 ms – 1 ms) has elapsed since the timer event issued by
thread B. When thread A resumes, it waits in a loop polling the high-resolution
hardware counters for on average approximately 50 ? s (950 ? s – 1000 ? s) until 1 ms
has elapsed since thread B started its 2 ms sleep interval. This period is the ? ?period
in Figure 4-10.
Therefore, from this point, thread B will resume execution after a period of on
average 0.95ms, resulting in another ? ?period, processed by thread B in this case.
After another approximate 0.95ms thread A resumes and so on.

Figure 4-10: Thread Induced Waitable Timer Timing diagram

Our prior results already suggest that this wait in a loop where high-resolution
hardware counters are polled, will endure on average for about 50? s, which does not
seem too severe on the CPU. Furthermore, the data in Figure 4-4 suggests that there
will occasionally be intervals that last for slightly longer than the required 2 ms. In the
experiment in section 4.2.2.2.1, the interval duration was more than 2 ms 119 times
over a period of 60 seconds. Therefore, over a period of 60 seconds, 0.198% of the

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 52 of 111

intervals were 2 ms and longer. However, they are well within the allowed tolerance
of 500 ? s. Should this be the case, the active thread at this point will issue the timer
event immediately and enter the 2 ms sleep interval. In order to compensate for the
resulting drift, the following timer event will occur 1 ms from the time the previous one
should have been issued (refer to 4.3.2).
The top-level algorithm of the timer is given in Algorithm 4.

Algorithm 4 - Normal Timer Algorithm

The first timestamp is taken from the high-resolution hardware counters and saved
as ? previous. Thread A is started first and will start measuring the initial 1 ms interval
immediately. Thread B will be started as well, but will wait for thread A to finish the
initial 1 ms interval before commencing its execution. While these two threads are
executing the main application thread will wait in a loop while the timer is active. The
body of the loop consists of a single statement that suspends the main application
thread for on average 1.95 ms (refer to section 4.2.2.2.1). This ensures that the main
application thread does not consume all available processing resources and will
continue until the timer is terminated. This loop is necessary to ensure that the main
thread does not exit until the timer is terminated. When the timer is terminated,
threads A and B have to be terminated as well.
However, such a configuration – i.e. where each thread operates entirely
independently of the other – would be subject to more time drift in addition to the drift
caused when the sleep instruction sleeps more than 2 ms. Instead of such
independent functioning, the readings taken from the high-resolution hardware
counters using the timestamp calculator should be stored in variables that are
globally available to both threads. (Reads and writes to these variables should of
course be in critical sections of code, protected by mutual exclusion mechanisms that
prevent simultaneous access.) Call these variables ? previous and ? current.
The timers implemented according to the discussed concepts, may be regarded as
thread-induced waitable timers. For the remainder of this text, such a timer will be
referred to as a TIW timer. The variables and their role in the algorithm of the TIW
timer are presented in section 4.3.2.

4.3.1 Design
In accordance with the design decisions made in section 3 the design relies on object
orientation. The design is simple and structured in such the way that the architecture
is modular. However, the extent of object orientation is simple as no inheritance is
used – for example.
Throughout the code snippets that will be presented in this section, the statements
#ifdef __WIN32__ and #ifdef __POSIX__ often occur. This is to ensure the
portability of the code, since the APIs for the different operating system vary. The
statement instructs the compiler to include only the code that is relevant to a specific
operating system.

Initialize thread A
Initialize thread B
? previous := getTimestamp()
Start thread A
Start thread B
While the timer is running
 Sleep for 1ms
Stop thread A
Stop thread B

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 53 of 111

The timer itself consisting of the following classes:
? Thread Class

This class encapsulates a mechanism to create a thread, providing it with a
function to execute, initiate and terminate it.

Thread Class
The C++ definition of the thread class is as follows:
class ThreadClass
{
 public:
 ThreadClass ();
 ~ThreadClass ();

 void initialise(void (*func)(),
 CRITICAL_SECTION *criticalSection
);
 void start();
 void stop();
 void setInterval(unsigned short sleepInt);
 protected:
 private:
 void (*fire)();
 bool threadRunning ;
 unsigned short sleepInt;
 CRITICAL_SECTION *criticalSection ;
 THREAD_HANDLE threadHandle ;
 friend
#ifdef __WIN32__
 unsigned long CALLBACK
#else
 #ifdef __POSIX__
 void*
 #endif
#endif
 callback(void* argument);
};
Class Constructor and Destructor (ThreadClass();~ThreadClass();)
No significant operations are performed in these methods and they serve purely
as class construction/destruction methods.
Initialisation function (void initialise(…);)
This function is used to initialise the class. The following are the parameters:
“func” – a pointer the function that contains the logic that the thread should
execute

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 54 of 111

“critical_section” – a pointer to the critical section that will be shared among the
threads
Start Function (void start();)
Starts the thread
Stop Function (void stop();)
Stops the thread
Set Interval (void setInterval(unsigned short sleepInt);)
Sets the interval for which the thread should sleep. Referring to the description
of the TIW timer in the previous section, this interval would be set to 1 ms.
CALLBACK Function (callback(void* argument);)
Both the WIN32 and POSIX APIs require a callback of which the pointer has to
be passed to the API function call that creates the threads. This function
provides this pointer. The function pointed to by “fire” is called within this
callback. The significance of this function is explained below.
Private Variables
“fire” – the pointer to the function that is specified to the thread class at
initialisation and executed within the callback function.
“threadRunning” – a flag that keeps track of whether the thread is running
“sleepInt” – the interval specified by the setInterval operation
“criticalSection” – the critical section
“threadHandle” – a handle to the thread created using API funcion calls

? Timestamp Calculator Class

This class provides the capability to determine the current timestamp based on
the high-precision counters discussed in section 2.2. The calculator was
discussed in detail in section 4.1.

? Multimedia Subsystem Class
This class provides the capability of setting the operating system in the high-
resolution clock interrupt mode that is provided by the multimedia subsystem,
as discussed in section 2.3.2. As the following description will show, the class is
simple, and serves only to activate/deactivate the multimedia subsystem.

Multimedia Subsystem Class
class MMSubsystem
{
 public:
 MMSubsystem (void);
 ~ MMSubsystem (void);
 bool initialise(unsigned int targetResolution);
 void close(void);
 protected:
 private:
 unsigned int timerResolution ;
};

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 55 of 111

Class Constructor and Destructor (MMSubsystem();~MMSubsystem();)
No significant operations are performed in these methods and they serve purely
as class construction/destruction methods.
Initialisation function (void initialise(…);)

This function is used to initialise the WIN32 Multimedia subsystem.
Close Function (void close();)

? TIW timer Class
This class provides the interface between the user application and the TIW
timer classes. It is therefore the only class visible to the user application.

TIW timer Class
class TIWTimerClass
{
 public:
 TIWTimerClass ();
 ~TIWTimerClass ();
 void initialise(
 void (*func)(void * args),
 unsigned long interval,
 unsigned long sleepInterval,
 unsigned long noOfThreads,
 unsigned long mod
);
 void start ();
 void stop ();
 bool isRunning ();
 protected:
 private:
 void (*timerCallback)(void* args);
 unsigned long sleepInterval;
 unsigned long interval;
 unsigned long noOfThreads;
 unsigned long mod;
 CRITICAL_SECTION criticalSection ;
 vector <ThreadClass *> threads;
 unsigned long recordCounter;
 TimestampCalculator * timestampTimer;
 unsigned long long oldTime;
 HANDLE timerEvent;
 bool threadRunning ;
#ifdef __WIN32__
 friend void

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 56 of 111

#else
 #ifdef __POSIX__
 void*
 #endif
#endif
 tiwTimerCallback (void* argument);
};
Class Constructor and Destructor (TIWTimerClass();
~TIWTimerClass();)
No significant operations are performed in these methods and they serve purely
as class construction/destruction methods.
Initialisation function (void initialise(…);)

This function is used to initialise the TIW timer.
“func” – This function encapsulates the functionality that has to be executed at
each timer event. This pointer is saved in the private variable timerCallback.
“interval” – This parameter represents the desired interval duration. This is
saved in the private variable “interval”
“sleepInterval” – The sleeping interval that is passed to the Sleep instruction in
the case of the WIN32 operating system (“nanosleep” under POSIX). Therefore
it represents the number of ms for which each thread will be suspended when
the instruction is issued. This is saved in the private variable “sleepInterval”
“noOfThreads” – The number of threads that the timer should used. This is
saved in the private variable “noOfThreads”
“mod “ – The thread measures an interval specified by the “interval” parameter.
However, the timer event need not be issued immediately after each interval.
The number of intervals that has elapsed (see recordCounter below) is divided
by mod. If the number of intervals is divisible by mod, the timer event is issued.
This is saved in the private variable “mod”.
Start Function (void start();)

Starts the TIW timer
Stop Function (void stop();)
Stops the TIW timer
Is Running Function (void isRunning();)
This function is an indication of whether the TIW timer is currently running. This
is done via the Boolean private variable, threadRunning.

Private Parameters
“criticalSection” – This represents the critical section that is shared between the
threads, as a single object.
“threads” – This is a link list that holds the pointers to all the threads currently in
use.
 “recordCounter” – The parameter keeps track of the number of intervals that
have elapsed since the timer was started.
“timestampTimer” – This variable points to an instance of the timestamp
calculator.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 57 of 111

“oldTime” – this parameter is used to keep track of the previous timestamp
(? previous in section 4.3.2)
“timerEvent” – This is a pointer to the timer event that issued at the appropriate
times.

An user application can instantiate the TIW timer Class and provide it with the
information necessary to initialise and run it. The information it has to provide to the
timer is the following:
? The number of threads the TIW timer should use
? The required interval to measure
? The time period until the timer expires
? The sleep interval of the threads
? The modulo factor. This factor determines the number of intervals that has to

pass before the timer event is fired.
Such an user application was developed, and was designed to “host” a TIW timer
instance – with the following classes encapsulated:
? The User Application itself. This is the main application class for the user

application, responsible for the initialisation of the remaining user application
classes, discussed shortly, as well as TIW timer class. The user application
basically acts as a host to the timer.

? The Command Line Class. This class enables the user application to be
configured via the command line, with the same options as those taken by the
TIW timer class. The command line options are primarily to configure the TIW
timer. Should the command line options provided be incorrect, the following
message will be displayed by the user application:

Usage : msc_timer <options>
Options:
--timestamps <no of timestamps>
--interval <interval size>
--threads <no of threads>

? The CPU Load class. For the sake of the analysis in this dissertation (refer to
section 1.5), a mechanism is required to determine the CPU usage of the timer.
The CPU Load class provides this capability.

Figure 4-11 presents the relationships between these classes in the form of a class
diagram. The figure is divided into two sections. The top half represents the classes
that are encapsulated in the TIW timer implementation, whereas the bottom half
represents the user application.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 58 of 111

Figure 4-11: TIW timer Class Diagram

The sequence of operations of the system presented in Figure 4-11 is as follows:
? The user application reads the options from the command line using the

command line class. There is therefore a one-to-one relationship between the
user application and the command line class. The command line class will
determine whether the command line options are valid or not.

? If the command line options specified are valid, the user application initialises
the CPU Load class. Again, there exists a one-to-one relationship between the
user application and the CPU load class.

? The user application initialises the TIW timer class, passing to it the options
from the command line. The TIW timer uses this information to configure itself
correctly.

? The TIW timer in turn initialises the operation parameters (from the command
line). At this point, the TIW timer initialises the number of threads that were
specified on the command line. These threads are subsequently started when
the user application “starts” the TIW timer.

? At this point the user application enters a loop to keep it active, sleeping for
intervals of 1 ms, taking the CPU load at the conclusion of each waiting period
utilising the CPU load class. For the purposes of the TIW timer testing, this loop
will terminate when the required number of timestamps was recorded. This
number of timestamps is equivalent to the number of intervals that elapsed
during the timer’s execution.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 59 of 111

? The “function” that contains the logical operations that the timer has to execute
each interval, in this case is a routine that records the current timestamp. In
other words, the current timestamp should differ from the previous one by the
amount of time equivalent to the size of the interval duration.

? At the conclusion of the loop, the recorded timestamps are written to a comma-
delimited file for analysis.

4.3.2 Algorithm
The first timestamp in Algorithm 5 is saved as ? previous. The interval at any point in
time is given by ? current-? previous. A thread induced waitable timer for a 1 ms interval
can thus be built by starting off a thread (thread A), waiting for 1 ms, recording the
high-resolution hardware counters value as ? previous, and starting off a second
thread (thread B). When each thread is started, both will execute the algorithm given
in Algorithm 5.

Algorithm 5 - Normal Timer Algorithm

It should be noted that ? previous is incremented by the interval size just before the
timer event is issued. Therefore ? current - ? previous represents time elapsed since
the previous 1 ms interval should have ended. This compensates to an extent for the
drift induced when the sleep instruction sleeps more than 2 ms. Therefore, when the
sleep instruction suspends a thread longer than 2 ms, it results in a longer interval
greater than 1 ms followed by a shorter interval less than 1 ms to compensate for the
drift.

4.3.3 Results
This section is focused on the results recorded in terms of the performance of the
TIW timer. In each case, a figure is presented depicting the recorded interval sizes
generated by the TIW timer; over a fixed period of time. In addition, a figure is shown
displaying the amount of CPU resources consumed during the period for which the
timer was running.

While the timer is running
 Wait to enter the critical section

// Initial value of ? previous read just before
// thread 2 starts
// Both threads execute the algorithm below
For (duration of the test)

 ? current := getTimestamp();
While (? current - ? previous <1000? s)

? current := getTimestamp();
? previous := ? previous + 1000? s
Fire the timer event
Sleep for 2ms

 End for
 Leave the critical section

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 60 of 111

4.3.3.1 TIW timer (1kHz Interval)
The results of the algorithm in section 4.3.2 for a frequency of 1kHz, is illustrated in
Figure 4-12 and shows the performance over a period of 30 seconds. The command
line parameters specified to the TIW timer are as follows:
Number of timestamps – 60000

Interval Duration – 1000 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 2
The “mod” – 1
Over a period of 60 seconds the maximum interval recorded was 1.036 ms and the
minimum interval recorded 0.964 ms. Therefore an interval with a maximum deviation
of approximately 50 ? s is achieved. Also as is clear from the figure, an interval with
duration more than the desired 1010 ? s seconds is the exception and not the rule.

Figure 4-12: TIW timer (1 kHz Interval)

Accordingly the TIW timer exhibits excellent performance when configured to
generate 1 kHz intervals. However, this would be in vain if the CPU was too
intensively utilized. It turns out that the processor usage varied between 0% and
14.833%. This is illustrated in Figure 4-13, in which CPU utilization is plotted against
sample number (oldest first). The reason for the difference in processing is due to the
fact that the amount of work done by the threads in the ? ?period varies due to the
performance of the Sleep instruction (refer to 4.2.2). Therefore the interval ? ’s size
varies depending on the duration of the Sleep interval.
However on average, processor utilization was 4.661%. The result is that the
routines that use the TIW timer at a frequency of 1 kHz have on average ± 95.339%
of the CPU to its disposal. It is clear from this result that that a waiting period was
successfully induced and that an accurate 1 ms interval could still be generated.
Therefore the timer exhibits a resolution of 1ms ± 50? s with an average CPU load
requirement of 4.661%. The CPU usage for the entire period the timer was running is
depicted in Figure 4-13. However, this is a best-case scenario, as was determined
after exhaustive testing. The deviation from the actual interval of 1000 ? s that is
required never exceeded 500 ? s – never reaching this number in actual fact. This is
illustrated in Figure 4-14. Section 5.4 discusses a further study in which the TIW
timer was able to retain its accuracy over a period of one hour.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 61 of 111

Figure 4-13: 1 kHz TIW timer CPU usage

Figure 4-14: TIW timer 1 kHz Worst Case

Figure 4-14 illustrates the worst case recorded during the investigation of the TIW
timer. The maximum interval in this case was 1.437ms (1437? s) with a minimum of
0.563ms (563? s). However, as is clear from the figure, an interval duration greater
than 1.2 ms is an isolated event.

4.3.3.2 TIW timer (50 Hz Interval)
The results of this algorithm for a frequency of 50 Hz, is illustrated in Figure 4-15 and
shows the performance over a period of 60 seconds. One would expect that if the
TIW timer exhibits satisfactory results as in 4.3.3.1 – for larger intervals the
performance should be better. The command line options are:
Number of timestamps – 3000

Interval Duration – 1000 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 2
The “mod” – 20
Note that with such a configuration, the TIW timer operates in exactly the same
fashion as in the case of the TIW timer in the 1 kHz case in that each thread
measures 1000 ? s intervals. However, the timer event is issued after every 20th

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 62 of 111

interval (in accordance with the “mod” command line option), instead of after each 1
ms interval.
Over a period of 60 seconds the maximum interval recorded was 20.018 ms and the
minimum interval recorded 19.982 ms. Therefore an interval with a maximum
deviation of approximately 18 ? s is achieved.

Figure 4-15: TIW timer (50 Hz Interval)

The processor usage varies between 0% and 14.833%, as was the case with the 1
kHz timer. The average processor utilization was 4.553%, again leaving the routines
using the timer with around 95.447% of CPU resources on average. The CPU usage
is plotted against sample number (oldest first) in Figure 4-16.

Figure 4-16: 50 Hz TIW timer CPU usage

Therefore the timer exhibits a resolution of 20 ms ± 18 ? s with an average CPU load
requirement of 4.553%. This conforms to the requirement of a soft real-time timer in
section 2.6.

4.3.3.3 TIW timer (1Hz Interval)
The results of this algorithm for a frequency of 1Hz, is illustrated in Figure 4-15 and
shows the performance over a period of 65 seconds. Over this period, the maximum
interval recorded was 1.000006 seconds and the minimum interval recorded
0.999994 seconds. Therefore an interval with a maximum deviation of approximately
6 ? s is achieved.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 63 of 111

This was accomplished with the TIW timer configured as follows:
Number of timest amps – 65

Interval Duration – 1000 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 2
The “mod” – 1000

Figure 4-17: TIW timer (1 Hz Interval)

The processor usage varies between 0% and 14.833%. The average processor
utilization was 4.902%. The CPU usage is therefore more or less consistent,
regardless of interval that the timer is measuring. This is illustrated plotted against
sample number (oldest first) in Figure 4-18.

Figure 4-18: 1 Hz TIW timer CPU usage

4.3.4 An alternative TIW timer
The WIN32 Sleep Timer has the tendency to sleep for a little longer than required – 1
ms longer in the case discussed for a frequency of 1 kHz (see 4.2.2 where both the
maximum and minimum intervals recorded were greater than 1 ms by ± 1 ms). The
TIW timer was designed to use two overlapping threads that operate in tandem, thus
compensating for the sleep timer’s inaccuracy at high frequencies. The idea arose of
basing a timer on one execution thread only, instead of two. The sleep interval is

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 64 of 111

chosen close to the desired interval and the impact on the performance of the TIW
timer is investigated.
The design of the alternative method fits in with that of the TIW timer. In fact, the
ability to configure the timer allows it to be set up in such a way that only one
execution thread is used. This thread is requested to sleep for an interval of 1 ms
less than the required interval. For example, in the case of the 20 ms interval (50 Hz
frequency), the timer is configured to use one thread and its sleep interval is set to 19
ms.
This renders the operation of the TIW timer similar to that of the sleep timers in
section 4.2. The results are to follow in the subsequent sections.

4.3.4.1 TIW timer Alternative (50 Hz Frequency)
As was stated before, the TIW timer did not need to be modified for this investigation.
To achieve the required interval the TIW timer could be configured via its command
line options detailed in section 4.3.1 to run with only one thread.
This configuration is as follows:
Number of timestamps – 3000

Interval Duration – 20000 ? s
Requested Sleep Interval – 19 ms
Number of threads to use – 1
The “mod” – 1
The results of the alternative algorithm for a frequency of 50 Hz, is illustrated in
Figure 4-19 and shows the performance over a period of 60 seconds. Over this
period, the maximum interval recorded was 20.005 ms and the minimum interval
recorded – 19.995 ms. Therefore an interval with a maximum deviation of
approximately 5 ? s is achieved. Immediately it is clear that in terms of accuracy,
configuring the TIW timer this way results in the same performance as when multiple
execution threads are used.

Figure 4-19: TIW timer Alternative (50 Hz Interval)

The processor usage varies between 0% and 16.5%. The average processor
utilization was 2.990%. Therefore, in terms of processor usage, there is not too much
of an improvement but an improvement none the less. This is illustrated plotted
against sample number (oldest first) in Figure 4-20.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 65 of 111

Figure 4-20: 50 Hz TIW timer Alternative CPU usage

Although its accuracy is the same and its average processor usage is slightly less
than the “normal” TIW timer at 50 Hz (refer to 4.2.2.2.2), the overhead of
continuously switching between multiple threads is eliminated in this alternative
configuration. Where the normal TIW timer would be switching between two threads
for the duration of the 20 ms interval, the TIW timer in this alternative configuration
would be suspended for the better part of the interval.

4.3.4.2 TIW timer Alternative (1Hz Frequency)
The alternative solution was applied to the 1 Hz frequency timer as well.
The achieve the one second interval, the TIW timer was configured as follows:
Number of timestamps – 60

Interval Duration – 1000000 ? s
Requested Sleep Interval – 999 ms
Number of threads to use – 1
The “mod” – 1

Figure 4-21: TIW timer Alternative (1 Hz Interval)

The results of the alternative algorithm at a frequency of 1 Hz, is illustrated in Figure
4-21 and shows the performance over a period of 60 seconds. Over this period, the
maximum interval recorded was 1.000001 seconds and the minimum interval

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 66 of 111

recorded 0.999999 seconds. Therefore an interval with a maximum deviation of
approximately 1 ? s is achieved.
The processor usage varies between 0% and 84.333%. The average processor
utilization was 2.446%. This is illustrated plotted against sample number (oldest first)
in Figure 4-22. As is clear from the figure is that the usage seems to spike initially to
the maximum usage followed by a drop to below 2% for the remainder of the timer’s
operation.

Figure 4-22: 1 Hz TIW timer Alternative CPU usage

The reason for this initial spike is due to the design of the TIW timer (refer to section
4.3.1. According to Algorithm 5, thread A will enter the loop and measure the
required interval, which in this case is ± 999 ms. The first sleep instruction is only
issued after thread A has measured the first interval, therefore, for the first 999 ms,
the TIW timer consumes all available CPU resources. However, the TIW timer in this
alternative configuration uses significantly fewer resources after this initial interval
than its “normal” counterpart.

4.3.4.3 TIW timer vs TIW timer Alternative
In the previous sections it was shown that the TIW timer alternative solution based on
one execution thread only, outperforms the two execution thread configuration for
frequencies 50Hz and 1Hz in terms of CPU usage and thread switching overhead.
Clearly, since it is impossible to generate a reliable 1 kHz frequency with a single
thread (see section 4.2.2), the TIW alternative timer cannot be constructed to run at
this frequency. However, it remains to be determined whether its better resolution
would be retained across a range of frequencies lower that 1 kHz. This is the next
matter to be explored, starting with a 500 Hz timer (2 ms intervals).
The first interval that is compared between the two versions of the timer has duration
of 2 ms. To achieve the interval using the normal version of the timer, the
configuration was as follows:
Number of timestamps – 30000

Interval Duration – 1000 ? s
Requested Sleep In terval – 1 ms
Number of threads to use – 2
The “mod” – 2
To achieve the same results using the alternative method, the configuration is altered
slightly, with the resulting configuration as follows:

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 67 of 111

Number of timestamps – 30000

Interval Duration – 2000 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 1
The “mod” – 1
The performance of the normal TIW timer is shown in Figure 4-23. The performance
is shown over a period of 60 seconds.

Figure 4-23: Normal TIW timer 500 Hz

A maximum of 2.001 ms (2128 ? s) and a minimum of 1.999 ms (1999 ? s) were
recorded. Therefore, the resolution in this case is 2 ms ± 1 ? s is achieved. The
average CPU usage was 4.873%, as illustrated in Figure 4-24.

Figure 4-24: 500 Hz Normal TIW timer CPU Usage

Using the alternative version of the timer is presented in Figure 4-25. The period
show in the figure is 60 seconds. A maximum of 2.015 ms (2015 ? s) and a minimum
of 1.985ms (1985? s) were recorded. Therefore, the resolution in this case is 2ms ±
15? s is achieved. T
Therefore the normal TIW timer yielded a marginally better performance. However,
as is clear from Figure 4-25, the 15 ? s spike in the alternative version’s results
occurred once. For the rest of the alternative timer’s operation, the interval deviation

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 68 of 111

remained below 5 ? s. The conclusion therefore is that the performance of the two
timers in this case is essentially the same in terms of accuracy.
However, the average CPU usage was 2.925% as apposed to the 4.873% of the
normal solution. As is clear from Figure 4-24 and Figure 4-26, the alternative solution
consumes a smaller percentage of the CPU.

Figure 4-25: Alternative TIW timer (500 Hz)

Figure 4-26: 500 Hz Alternative TIW timer CPU usage

For a interval of 3 ms, the configuration of the two timers were as follows:
? The normal TIW timer –

Number of timestamps – 20000

Interval Duration – 1000 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 2
The “mod” – 3

? The alternative TIW timer –
Number of timestamps – 20000

Interval Duration – 3000 ? s
Requested Sleep Interval – 2 ms
Number of threads to use – 1

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 69 of 111

The “mod” – 1
The normal TIW timer achieved a maximum of 3.232 ms and a minimum of 2.768 ms
(refer to Figure 4-27). The average CPU usage was 4.826% illustrated in Figure
4-28. Again the experiment was conducted over a period of 60 seconds.

Figure 4-27: 333.33 Hz Normal TIW timer

Figure 4-28: 333.33 Hz Normal TIW timer CPU usage

Figure 4-29: 333.33 Hz Alternative TIW timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 70 of 111

On the other hand, the alternative TIW timer achieved a maximum of 3.207 ms and a
minimum of 2.793 ms (Figure 4-29). The average CPU usage was 2.915% as shown
in Figure 4-30. These results yields resolutions of 3 ms ± 273 ? s and 3 ms ± 232 ? s –
in other words, the performance is essentially identical in terms of accuracy.

Figure 4-30: 333.33 Hz Alternative TIW timer CPU usage

The next interval under investigation was a 4 ms interval (250 Hz frequency). To
achieve this interval, the timers were configured as follows:
? The normal TIW timer –

Number of timestamps – 15000

Interval Duration – 1000 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 2
The “mod” – 4

? The alternative TIW timer –
Number of timestamps – 15000

Interval Duration – 4000 ? s
Requested Sleep Interval – 3 ms
Number of threads to use – 1
The “mod” – 1

The normal TIW timer achieved a maximum of 4.360 ms and a minimum of 3.640
ms. The results for the normal TIW timer are illustrated in Figure 4-31. The average
CPU usage was 4.841% (Figure 4-32).
The alternative TIW timer achieved a maximum of 4.234 ms and a minimum of 3.766
ms. Figure 4-33 illustrates the results of the alternative TIW timer. The CPU usage is
shown in Figure 4-34. The average usage was 3.078%. These results yield
resolutions of 4 ms ± 360 ? s and 4 ms ± 234 ? s in the two respective cases. Once
more the results are essentially the same.
The conclusion therefore is that the normal TIW timer and its alternative configuration
yield essentially the same performance in terms of accuracy. However, on the
evidence at hand, the alternative configuration to the TIW timer yields better
performance when it comes to CPU usage.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 71 of 111

Figure 4-31: Normal TIW timer (250 Hz)

Figure 4-32: Normal TIW timer (250 Hz)

Figure 4-33: Alternative TIW timer (250 Hz)

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 72 of 111

Figure 4-34: Alternative TIW timer (250 Hz) CPU usage

4.4 Comparison
This section compares the results from the TIW timer with current timers under the
WIN32 and UNIX operating systems discussed in section 2.3 and 2.4. This serves to
indicate whether the TIW timer’s performance justifies it as an improvement over
these timers. Since section 4.3.4 indicates that the performance of the alternative
and normal configurations of the TIW timer are essentially the same in terms of
accuracy, only the alternative solution is used for frequencies less than 1 kHz in the
comparisons in section. This is due to the fact that it is less resource intensive.
Note that in each case, the maximum and minimum recorded intervals are presented
in tabular form to ease the comparison. The values supplied are in the units noted in
the column headings. The results for corresponding frequencies are tabulated in
adjacent columns.
The results presented are also the “best” case scenario measured in section 4.3, as
far as the TIW timer is concerned. Should the “worst” case scenario render
performance below that of the existing timer under investigation, its results will be
provided.

4.4.1 WIN32 Timers
The WIN32 API provides both the system timer (refer to section 2.3.1) and the
multimedia timer (refer to 2.3.2). The performance of these timers is plotted against
that of the TIW timer. These results are presented in subsections 4.4.1.1 and 4.4.1.2
of this section respectively.

4.4.1.1 System Timer
This section investigates the performance of the System timer versus the TIW timer.
The result presented here is taken from the investigations in sections 2.3.1 and 4.3.
The maximum and minimum intervals of each implementation are tabulated in Table
4-2.
The comparison in the table clearly indicates that the TIW timer is superior in every
instance.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 73 of 111

Table 4-2: System Timer vs. TIW timer

Interval 1kHz TIW
timer (ms)

1kHz System
Timer (ms)

50Hz TIW
timer Alt.

(ms)

50Hz System
Timer (ms)

1Hz TIW
timer Alt.

(ms)

1Hz System
Timer (s)

Maximum 1.036 25.431 20.018 36.151 1.000001 1.011667

Minimum 0.964 5.881 19.982 27.291 0.999999 0.988237
The following sections provide graphical representations of the results in Table 4-2.

4.4.1.1.1 1 kHz System Timer Comparison

Figure 4-35 Illustrates the difference between the minimum and maximum intervals
produce by the System timer and TIW timer respectively.

Figure 4-35: System Timer vs. TIW timer (1 kHz)

Since the desired interval size is 1 ms (1000 ? s), the TIW timer clearly outperforms
the system timer with a maximum deviation in this case of 36 ? s as opposed to the
±25 ms deviation that the system timer shows. Not even the minimum interval
recorded (5.881 ms) is close to the desired 1 ms interval.
Since the TIW timer was established to exhibit a maximum deviation of less than 500
? s for the 1 kHz timer, the TIW timer clearly out performs the system timer.

4.4.1.1.2 50 Hz System Timer Comparison

Figure 4-35 illustrates the difference between the minimum and maximum intervals
produced by the system timer and TIW timer respectively, for a frequency of 50 Hz.
As was the case with the 1 kHz frequency (section 4.4.1.1.1), the TIW timer clearly
outperforms the system timer, achieving the desired 20 ms (20000 ? s) within 500 ? s,
as apposed to the 16.151 ms deviation in the case of the system timer. To add insult
to injury, the TIW timer achieves this interval with a margin of error of 18 ? s in this
case.
It is clear that the TIW achieves higher accuracy and is therefore shown to be
superior yet again.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 74 of 111

Figure 4-36: System Timer vs. TIW timer and TIW timer Alternative (50 Hz)

4.4.1.1.3 1 Hz System Timer Comparison

For a frequency of 1 Hz, the TIW timer achieves the required interval within 1 ? s,
outperforming the system timer that suffers from a 11.667 ms maximum deviation.
Therefore in the case of the 1 Hz frequency, the TIW timer outperforms the system
timer.
This is illustrated in Figure 4-37.

Figure 4-37: System Timer vs. TIW timer and TIW timer Alternative (1 Hz)

4.4.1.2 Multimedia Timer
This section investigates the performance of the multimedia versus the TIW timer.
The maximum and minimum intervals of each implementation are tabulated in Table
4-3.
The result is a mixed bag since the multimedia timer provides good results for the 1
second (1 Hz frequency) and 20 ms (50 Hz frequency) intervals.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 75 of 111

Table 4-3: Multimedia Timer vs. TIW timer

Interval 1KHz TIW
timer (ms)

1KHz
Multimedia
Timer (ms)

50Hz TIW
timer Alt.

(ms)

50Hz
Multimedia
Timer (ms)

1Hz TIW
timer Alt.

(s)

1Hz
Multimedia
Timer (s)

Maximum 1.036 1.981 20.018 20.52 1.000001 0.999953

Minimum 0.964 0.545 19.982 19.516 0.999999 0.999941

4.4.1.2.1 1 kHz Multimedia Timer Comparison

Figure 4-38 illustrates the difference between the minimum and maximum intervals
produced by the Multimedia timer and TIW timer respectively. As is indicated in the
figure, the TIW timer provides better performance for a frequency of 1 kHz. The
maximum deviation of the multimedia timer is clearly more than the 500 ? s that is a
requirement of the TIW timer (refer to section 2.6) – clocking in at 981 ? s.
It is interesting to not that the multimedia timer generated an interval of less than 1
ms, and that it did so with a deviation of 455 ? s. It does not generate such an interval
reliably though since the maximum interval was 1.981 ms
Therefore, the TIW timer is able to measure the interval with a smaller margin of error
than the multimedia timer when a 1 kHz frequency is required.

Figure 4-38: Multimedia Timer vs. TIW timer (1kHz)

4.4.1.2.2 50 Hz Multimedia Timer Comparison

The minimum and maximum intervals produced by the multimedia timer and TIW
timer are depicted in Figure 4-39. As is clear from the figure, the maximums differ by
a spread of ± 502 ? s and the minimum intervals by ± 466 ? s.
At first glance it seems as if the multimedia timer might conform the requirement that
the maximum deviation should not be more than 500 ? s. However, if we take the
results in sections 4.3.3.1 and 4.3.4.1 into account, the TIW timer outperforms the
multimedia timer again with a maximum deviation of 18 ? s as opposed to the 520 ? s
exhibited by the multimedia timer. Therefore, as was the case in with the 1 kHz
timers in section 4.4.1.2.1, the TIW timer is justified as a replacement for the
multimedia timer.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 76 of 111

Figure 4-39: Multimedia Timer vs. TIW timer (50Hz)

4.4.1.2.3 1 Hz Multimedia Timer Comparison

As was the case in the previous sections, Figure 4-40 illustrates the difference
between the minimum and maximum intervals recorded by the multimedia timer and
TIW timer respectively. The results are even closer together than that of the 50 Hz
TIW timer and 50 Hz multimedia timer.

Figure 4-40: Multimedia Timer vs. TIW timer (1Hz)

Again the TIW timer outperforms the multimedia timer exhibiting a maximum
deviation of 1 ? s. The multimedia timer on the other hand never recorded an interval
duration closer than 47 ? s to the target of 1 second. The multimedia timer exhibits a
maximum deviation of 59 ? s although it should be noted that in this specific case, the
result is satisfactory for the soft real-time timer specified in section 3.
Therefore, either the multimedia timer or the TIW timer is suitable for this interval.
However, since the TIW timer outperforms the multimedia timer on the other two
intervals, its development is justified.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 77 of 111

4.4.2 POSIX Timer
This section compares the performance of the TIW timer against that of the POSIX
timer. It also compares the TIW timer under the UNIX and WIN32 environments. The
first investigation, which is a comparison between the WIN32 TIW timer and the timer
provided by the POSIX API, serves to illustrate why the soft real-time may not be
realised under a normal distribution of the Linux platform. Remember that this text
does not take real-time extensions like Real-Time Linux into account, as the goal of
this dissertation was the development of a soft real-time timer without such
assistance.
The second investigation aims to show whether the TIW timer implementation is
viable on the Linux platform. The TIW timer has been implemented to be portable to
the POSIX environment, as was illustrated by its design in section 4.3.1.
Firstly, a direct comparison is made between an implementation of the POSIX timer
under the Linux environment using a 2.6.x kernel and the WIN32 TIW timer. This is
tabulated in Table 4-4.

Table 4-4: POSIX Timer vs TIW timer

Interval 1KHz TIW
timer (ms)

1KHz POSIX
Timer (ms)

50Hz TIW
timer Alt.

(ms)

50Hz POSIX
Timer (ms)

1Hz TIW
timer Alt.

(s)

1Hz POSIX
Timer (s)

Maximum 1.036 7.976 20.018 28.014 1.000001 1.011517

Minimum 0.964 1.07 19.982 20.885 0.999999 1.000083

4.4.2.1 WIN32 TIW timer vs. POSIX Timer.
As is observed in Figure 4-41 the interval recorded with the POSIX timer deviates
from the required interval of 1 ms by up to ± 7 ms. The WIN32 TIW timer is able to
measure the 1 ms interval within a maximum deviation of 500 ? s. Figure 4-42
represents the performance of the TIW timer versus the POSIX timer at a frequency
of 50 Hz. The latter exhibits an eight ms deviation against the maximum deviation of
±5 ? s exhibited by the TIW timer (refer to section 4.3.4.1).

Figure 4-41: 1kHz TIW timer vs POSIX Timer

Figure 4-43 reinforces the fact that the POSIX timer is not reliable. It has a deviation
of ± 12 ms for a required interval of 1 second (1 Hz frequency). Again the TIW timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 78 of 111

outperformed the POSIX timer with a maximum deviation of 1 ? s (refer to section
4.3.4.2).

Figure 4-42: 50Hz TIW timer vs. External Timer

Figure 4-43: 1Hz TIW timer vs. External Timer

The reason for this problem under the Linux platform is similar to that of the WIN32
platform as the Linux timer objects are serviced at each system timer interrupt that
occur at a rate of 100Hz [Yoav et al. 2003]. Another reason is the ability for a user
process to pre-empt a kernel level process. In section 3.4 it was stated that certain
kernel level processes are not preemptable.
Various extensions to the Linux operating system exist that address these issues.
An example of this is the Kansas University RT Linux (or KURT) that claim to provide
“Microsecond timing resolution and event-driven real-time scheduling”
[Atlas et al. 1998] as well as the real-time Linux foundation that endeavours to
provide a common real-time platform based on Linux [Wurmsdobler 2002].
However, as was stated in section 3.3, extensions such as these were not taken into
account since the goal was to achieve the solution without them. The bottom line is
that the WIN32 TIW timer outperforms the Linux POSIX timer.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 79 of 111

4.4.2.2 WIN32 TIW timer vs. POSIX TIW timer.
The logical next step is to implement the TIW timer under Linux and measure its
results. Obviously the architecture and performance of the operating systems differ
and therefore the performance of the TIW timer may not be necessarily the same on
both platforms.
With minor modifications, the TIW timer was successfully implemented under the
Linux operating system. Figure 4-44 illustrates the timestamps generated by the TIW
timer on the Linux platform for a 1 ms interval timer. The maximum interval recorded
was 5.001 ms (5001 ? s) and a minimum of 1.001 ms (1001 ? s). This results in a
resolution of 1 ms ± 4.001 ms. This is a far cry from the excellent performance of the
TIW timer under the WIN32 operating system for this interval which meets the
requirement of the resolution of 1 ms ? 500 ? s.
Therefore the WIN32 TIW timer outperforms the POSIX TIW timer when a frequency
of 1 kHz is required.

Figure 4-44: 1 kHz POSIX TIW timer

Figure 4-45 show the intervals generated by the POSIX TIW timer at 50 Hz. Once
again the performance of the WIN32 TIW timer could not be matched with a
maximum of 40.019 ms and a minimum of 29.871 ms. Therefore the resolution in this
instance is 20 ms ± 20.019 ms, which is not comparable to the excellent resolution of
the alternative WIN32 TIW timer – 20 ms ± 18 ? s.

Figure 4-45: 50Hz POSIX TIW timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 80 of 111

The same is true of the 1 Hz POSIX TIW timer in Figure 4-46. The maximum
recorded in this instance was 1.573653 seconds and a minimum of 1.499666
seconds. Therefore the resolution in this case is a staggering 1 second ± 574 ms.
There is a vast difference between this resolution and the 1 second ± 1 ? s resolution
of the 1Hz alternative WIN32 Timer.

Figure 4-46: 1 Hz POSIX TIW timer

The TIW timer is heavily dependant on the amount of time that the “sleep” instruction
suspends the execution threads. This interval of time was more or less consistent
under the WIN32 platform (section 4.3). The main reason for the TIW timer
ineffectiveness is the WIN32 “Sleep” instruction’s replacement under the POSIX
platform – “nanosleep”. This instruction may also be instructed to suspend an
execution thread for an elapsed time of 1 ms. However, the amount that the
instruction sleeps is not consistent, rendering the design of the TIW timer ineffective
in the POSIX environment [Locke 2005].

4.5 Benchmark (External Timer)
In this section, the TIW timer is compared to a true real-time timing source: the
external timer discussed in section 2.5. These results are a testament to the true
performance capabilities of the TIW timer, since these external timers are examples
of hard real-time timing mechanisms.
The maximum and minimum interval of each implementation is tabulated in Table
4-5. Unlike the previous results, in this section, the timer with which the TIW timer is
compared actually outperforms the TIW timer – hence the external timer’s use as a
benchmark.

Table 4-5: External Timer vs. TIW timer

Interval 1kHz TIW
timer (ms)

1kHz External
Timer (ms)

50Hz TIW
timer Alt.

(ms)

50Hz External
Timer (ms)

1Hz TIW
timer Alt.

(s)

1Hz External
Timer (s)

Maximum 1.036 1.047 20.018 20.094 1.000001 1.000017

Minimum 0.964 0.953 19.982 19.906 0.999999 0.999983

4.5.1 1 kHz TIW timer vs. External Timer.
Figure 4-47 depicts the difference between the minimum and maximum intervals
produce by the external timer and TIW timer respectively. Unlike previous results, the
external timer and TIW timer are almost identical when the best case performance of

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 81 of 111

the TIW timer is taken into account. The difference between the 1 ms intervals
recorded for the timers are within 50 ? s with resolutions of 1 ms ± 36 ? s and 1 ms ±
47 ? s for the TIW and external timers respectively.
Likewise, the resolutions of the TIW and external timers for an interval 20 ms (50 Hz
Frequency) are 20 ms ± 18 ? s and 20 m ± 94 ? s (Figure 4-48). The resolutions for
the 1 Hz timer is 1s ± 1? s for the TIW timer and 1 second ± 17 ? s for the external
timer (Figure 4-49).
The trend of these resolutions seems to suggest that the TIW timer outperforms the
external timer. However, the TIW timer only stays within 500 ? s of the target interval,
whereas the external timer stays within 100 ? s (refer to section 4.3.3.1).

Figure 4-47: 1 kHz TIW timer vs. External Timer

Figure 4-48: 50 Hz TIW timer vs. External Timer

As the external timer is based on an oscillating crystal, one would expect the external
timer not to exhibit any deviation from the desired interval. However a discrepancy is
detected (also mentioned in section 2.5.1). This discrepancy may be attributed to
operating system, being induced by the time that elapses between the arrival of the
signal at the serial port to the arrival of the signal at the application that is expecting
it. Another contributing factor is the amount of time required for the Timestamp

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 82 of 111

calculator (see section 4.1) to read the high-precision counter and calculate the
timestamp.
Since the performance accuracy of the external timer is closely tied with the
performance of the operating system, the TIW timer may be concluded to merely
circumvent operating system deficiency.

Figure 4-49: 1 Hz TIW timer vs. External Timer

The bottom line of this comparison is that the TIW timer is able to reliably generate
intervals within 500 ? s of the interval duration that the hard real-time external timer is
able to generate.

4.6 Timer Performance
This chapter presented both rejected and final solutions to the problem of developing
a soft real-time timer that fits the description in section 2.6.
? The TIW timer was shown be exhibit a margin of error of 500 ? s or less (section

4.3.3)
? The TIW timer was shown to use minimal system resources. The average usage

was quantified to remain below 5 % (section 4.3.3)
? The TIW timer was designed to fire a timer event at the conclusion of each

interval (section 4.3.1)
Therefore, the TIW timer meets the requirement of a soft real-time timer discussed in
section 2.6. The TIW timer was also shown to outperform the existing timers
discussed in section 2 in terms of accuracy. Of the timers discussed, the loop timer
was found to be the most accurate, measuring a one millisecond interval with a
maximum deviation of 167 ? s (refer to section 2.2.2). The TIW timer is able to do so
reliably with a margin of error less than 500 ? s. This margin of error is half that of the
multimedia timer which can only produce 1 ms intervals with one millisecond of the
desired interval (refer to section 2.3.2.1).
When the issue of CPU consumption is investigated, the TIW timer performs very
well. The main drawback of an implementation such as the loop timer is that it put
considerable strain on the processor. The consumption of the TIW timer remains on
average below 5 %, as was shown in section 4.3.3. When the alternative
configuration of the TIW timer is used for frequencies lower than 1 kHz, the average
usage remains below 3 % (section 4.3.4). It is true that the multimedia timer is
superior in this area, consuming an average of 0.9957% of the available resources

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 83 of 111

(section 2.3.2.4). However, as stated, the TIW timer cuts the margin of error exhibited
by the multimedia timer by half. These may be summarised as the benefits of the
TIW timer, as well as being a justification for its development.
The TIW timer does have one significant disadvantage however – the solution is
ineffective under POSIX based platforms such as Linux.
This section was restricted to testing the timer’s accuracy. However, further testing is
required to attest to primarily the stability of the TIW timer. This is the subject of the
next chapter.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 84 of 111

Chapter 5
Further Testing

This chapter presents further testing of the TIW timer, since chapter 4 only covered
the accuracy of the timer. It also aims to answer the question as to whether there is
more to the TIW timer than just being able to generate a reliable 1ms interval.
Section 5.2 looks into this question. But before that, section 5.1 investigates the
effects of load on the TIW timer, whether it be load on a single timer, multiple timers
on a single machine or the effects of running the timer along with other multimedia
applications. Section 5.3 investigates the effect on the timer when the number of
execution threads are varied, and finally section 5.4 investigates the performance of
the TIW timer in a real-world application.

5.1 Load Testing
A timer with accurate time measurement is desirable, and the TIW timer has
demonstrated this capability in section 4.3.3. However, a timer is of little value if it
cannot be used in practical applications. Therefore, in addition to providing accuracy,
it must demonstrate the same desirable performance when placed under strain. This
section investigates the viability of the timer in terms of load – in other words if the
timer can maintain its accuracy.

5.1.1 Load on a single timer
In this investigation, a single timer is placed under load. The timer is tested under
both reasonable and unreasonable load (overload). Section 5.1.1.1 investigates the
TIW timer’s performance under reasonable load. The timer fires a timer event for a
task that will consume all available CPU resources for a time period fractionally
smaller than the interval measured by the timer.
Section 5.1.1.2 investigates the TIW timer’s performance under overload, in other
words the timer fires a timer event for a task that will consume 100% of the CPU
resources for a time period equal or greater than the desired interval measured by
the timer. In this case, the timer will be in a position where it has to “share” CPU
resources with the application using it.

5.1.1.1 Reasonable Load
Figure 5-1 presents the results for the TIW timer under reasonable load. The timer is
configured to measure an interval of 1 ms. The load consists of a function that
measures an interval of 700 ? s using the loop timer algorithm discussed in section
2.2.2. Since the loop timer consumes all available CPU’s resources, 100% of the
processor is unavailable for a period of 700 ? s in each 1000 ? s interval measured by
the TIW timer.
The maximum interval recorded was 1.402 ms and the minimum 0.598 ms.
Therefore, under reasonable load a single timer demonstrates a resolution of 1 ms ?
402 ? s. The deviation is within 500 ? s. Therefore the TIW timer is still accurate and
still maintains the required resolution of 1 ms ± 500 ? s.
The maximum percentage of CPU resources consumed at a given time was 80%.
Note that this includes the resource usage introduced by the load as well. This is
shown in Figure 5-2.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 85 of 111

Figure 5-1: 1kHz Reasonable Load

Figure 5-2: TIW timer Reasonable Load CPU usage

5.1.1.2 Overload
Figure 5-3 presents the results for the TIW timer under an overload. Again the TIW
timer is configured to measure an interval of 1 ms, as was the case in the previous
section. This time the load consists of a function that measures an interval of ? 1000
? s using the loop timer algorithm discussed in section 2.2.2. Therefore, the CPU will
be kept occupied for the entire interval duration that it is required to measure.
Referring back to the TIW timer investigation in section 4.3.2, it is expected that this
will have an adverse affect on the TIW timer, since it leaves no time for the TIW timer
to record the interval.
The maximum interval recorded was 1.951 ms and a minimum of 0.525ms.
Therefore, under overload a single TIW timer exhibits a resolution of 1ms ? 951? s
which is essentially the same as the 1 kHz multimedia timer (refer to section 2.3.2.1).
This is a situation in which the task to be executed in during every interval takes the
same amount of time or more time to execute as the interval duration measured by
the timer.
Therefore, the TIW timer does not hold its own when required to measure time for
unreasonable load. However, since the load is unreasonable, the TIW timer (or any
other timer for that matter) could not be reasonably expected to measure such an
interval.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 86 of 111

Such a scenario constitutes poor design of the application using the timer. It is
therefore safe to assume that the timer will be accurate under normal operational
environments where a single timer is used. This is deduced from the results in
section 5.1.1.1.

Figure 5-3: 1kHz Overload

The total processor usage was quantified. The maximum amount of CPU resources
consumed at a given time is 100%, as expected. However, the average CPU
resources consumed over the measured period are 90.916%. Note that these figures
are an indication of the CPU usage of both the TIW timer and the load. This is shown
in Figure 5-4.

Figure 5-4: 1kHz Overload CPU Usage

5.1.1.3 Conclusion
This investigation illustrates that the TIW timer retains its accuracy with minimal
adverse affect on its resource consumption when tasked to measure time for a
routine that places reasonable load on the timer.
On the other hand, the timer exhibits a similar resolution to the WIN32 multimedia
timer when the routine it is measures time for, is “unreasonable” in that it consumes
the same amount of time or more time than the interval duration measured by the
TIW timer.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 87 of 111

5.1.2 Multiple Timers
In this experiment, the number of timers that can be executed on a single system is
investigated. Real-time systems commonly need to employ more than one timer and
therefore the TIW timer’s performance in this regard deserves to be quantified. Since
the performance of a single timer is known (section 4.3), this investigation firstly
focuses on the performance of the TIW timer when of two instances are running
simultaneously. This will be followed by the estimation of the maximum number of
timers that may be running on a single system at the same time.

5.1.2.1 1 kHz, Two TIW timers running
For the purpose of this investigation, the timers will be referred to as Timer A and
Timer B. These two timers were spawned within the same user application and
tasked to provide timer events at a frequency of 1 kHz.
Figure 5-5 depicts the results from the Timer A. A maximum of 1.309 ms and
minimum 0.691 ms was recorded. Therefore the timer exhibits a resolution of 1ms ±
309? s.

Figure 5-5: Timer A 1 kHz Test

As is clear from Figure 5-5 Timer A provides an interval accurate within 500 ? s. The
figure also indicates that this deviation appeared irregularly. The rest of the time the
interval remains below 1.100 ms. Therefore the TIW timer in the case of timer A
exhibits the required resolution of 1ms ± 500? s or better.
The maximum amount of CPU resources consumed at any moment was 66% with an
average of 5.077%. It is clear from Figure 5-6 that this is only an initial spike and that
the rest of the time Timer A’s performance is comparable to the single TIW timer in
section 4.3.3. The CPU usage of Timer A is presented in Figure 5-6. The conclusion
that applies to Timer A is that its performance is the same as if it was running on its
own.
Figure 5-7 depicts the results from the Timer B. A maximum of 1.100 ms and
minimum 0.9 ms was recorded. Therefore, timer B exhibits a resolution of 1ms ± 100
? s. Timer B, like timer A, exhibits the required resolution of 1 ms ± 500 ? s or better.
Timer B consumed a maximum of 14.883% of the available CPU resources and a
minimum of 0%. The average CPU usage was 4.885% as can be seen from Figure
5-8. Like timer A, timer B’s performance is analoguous to the single TIW timer. Again
it may be concluded that timer B performs the same, as it would have if it was
running alone.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 88 of 111

Figure 5-6: Timer A CPU Usage

Figure 5-7: Timer B 1 kHz Test

Figure 5-8: Timer B CPU usage

5.1.2.2 1 kHz six TIW timers running
From the previous section, it is known that two TIW timer’s can be run together on a
single machine. The following investigation endeavours to determine by how much

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 89 of 111

the number of TIW timers may be increased before the timer’s performance starts to
degrade significantly.
Six TIW timers were initialised and started – configured to fire timer events at a
frequency of 1 kHz. Accordingly, the accuracy of all six timers was recorded. The
timer that presented the best result had the following behaviour:

? The maximum interval recorded – 1.191ms
? The minimum interval recorded – 0.809ms
Therefore this particular timer’s resolution is 1ms ± 191? s, thus conforming to the
required resolution of 1 ms ± 500 ? s. This is shown in Figure 5-9.

Figure 5-9: Best Timer with 6 Timers Running

The timer with the worst performance, however, exhibited the following behaviour:
? The maximum interval recorded – 1.993ms
? The minimum interval recorded – 0.007ms
With a resolution of 1 ms ± 0.993 ms (1.993ms – 1ms), the TIW timer’s performance
is considerably worse than that of a TIW timer that is running on its own (although
still analogues to the multimedia timer). This is shown in Figure 5-9.

Figure 5-10: Worst Timer with 6 Timers Running

Although the “best” timer did indeed provide satisfactory performance results, it is not
predictable which of the TIW timers among the six running concurrently will exhibit
acceptable results, and which will not. Therefore, six TIW timers cannot be run

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 90 of 111

continuously on a single machine and be expected the generate 100% of their
interval within a maximum deviation of 500 ? s.
This leads to the investigation described in the following section, where the test is
repeated with five TIW timers at 1 kHz.

5.1.2.3 1 kHz Five TIW timers Running
Five TIW timers were initialised and started, with a configuration that will allow them
to fire timer events at a frequency of 1 kHz, as was the case in the previous section.
Again, the accuracy of the timers was calculated. Subsequently, the performance of
the “best” and “worst” timer was used to quantify the results of the investigation.
The TIW timer with the best performance recorded a maximum interval of 1.034 ms
and a minimum interval of 0.966 ms. Thus a resolution of 1 ms ± 34 ? s was achieved
– well within the requirement of a soft real-time timer in section 2.6. This is shown in
Figure 5-11.

Figure 5-11: Best Timer with 5 Timers Running

Figure 5-12: Worst Timer with 5 Timers Running

On the other hand, the timer with the worst performance exhibited the following
behaviour:
? The maximum interval recorded – 1.375 ms
? The minimum interval recorded – 0.625 ms

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 91 of 111

The resolution is therefore 1 ms ± 375 ? s. As was the case with the “best” TIW timer,
the resolution is within the required value of 1 ms ± 500 ? s.
This is shown in Figure 5-12. The figure indicates that the spike in interval occurred
only once over a period of 30 seconds – the rest of the intervals were below
1.100ms. Therefore, 5 timers can be run concurrently on a single system and will still
generate its intervals within a maximum deviation of 500 ? s.

5.1.2.4 Conclusion
When multiple TIW timers on a single machine are configured to generate timer
events at a frequency of 1 kHz, the following is concluded:
? From section 5.1.2.1 it is obvious that two TIW timers can run concurrently on a

single machine without notable degradation in performance.
? It is apparent from the performance of the worst timer in section 5.1.2.2 that six

TIW timers may not be run reliably in a concurrent fashion at a frequency of 1
kHz. (Although the performance is analogues to that of the multimedia timer
(refer to section 2.3.2.1))

? Section 5.1.2.3 shows that it is possible to run 5 TIW timers concurrently at a
frequency of 1 kHz and thus the maximum number of TIW timers that may be
running concurrently with reliability equates to 5 when a frequency of 1 kHz is
used.

The test was repeated for the 50 Hz timer. However, the performance of TIW timer
did not degrade significantly, even when a significant number of timers (20 in total)
were executed. It was not possible to determine a maximum number of timers for this
interval. However, since the 1 kHz frequency may be seen as the most “difficult” to
achieve for the TIW timer (without considering section 5.2) and it is possible to run 5
of them concurrently at 1 kHz, the TIW timer’s performance in this regard will be
construed to be at most 5 timers at 1 kHz. This implies however that more timers
may be run concurrently at lower frequencies.

5.1.3 Other Multimedia Applications running with the TIW timer
This section investigates the performance of the TIW timer whilst another multimedia
application is running. When the multimedia subsystem is activated, the entire
operating system is put into the high performance state [MSDN 2005]. Should
another application be using the default WIN32 timers and another application
initialises the multimedia subsystem, the first application will benefit from it.
As the name implies, the multimedia subsystem is used by multimedia applications
such as the Windows Media Player. The purpose of this section is therefore to
determine the TIW timer’s performance while another multimedia application, such as
the Windows Media Player, is running.

5.1.3.1 1 kHz TIW timer with other Multimedia Application
Figure 5-13 illustrates the performance of the timer with a frequency of 1 kHz
required. At the time the TIW timer was started, an instance of the Windows Media
Player is already running and is in the midst of video playback. Accordingly the
multimedia subsystem is already activated by the TIW timer starts.
The maximum interval recorded was 1.866 ms and the minimum 0.133 ms over a
period of 60 seconds (although only the first 30 seconds are depicted in the figure).
The resulting resolution of the TIW timer in this case is 1 ms ? 866 ? s and therefore
outside of the required resolution for a soft real-time timer defined in section 2.6. (It is

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 92 of 111

interesting to note again that this performance is on par with the multimedia timer
(refer to section 2.3.2.1).

Figure 5-13: 1 kHz other Multimedia Application

Figure 5-14: 1 kHz TIW timer with other Multimedia application CPU Usage

Furthermore, the CPU consumption is not completely consistent with instances
where the TIW timer is running without interference from another application that
uses the multimedia subsystem. The maximum amount of CPU resources consumed
at a given time was 100%, an initial spike. However the average was 4.835%.

5.1.3.2 50 Hz TIW timer with other Multimedia Application
Figure 5-15 illustrates the performance of the timer with a frequency of 50 Hz
required, again with the Windows Media Player presented the contents of a video
recording in the background. Again the player was started up first with the TIW timer
in tow.
The maximum interval recorded on this occasion was 20.636 ms and the minimum
19.364 ms. Therefore the timer exhibits a resolution of 20 ms ? 636 ? s, very similar
to that of the multimedia timer with the same frequency (refer to section 2.3.2.2).
The maximum amount of CPU resources consumed at a given time was 16.5%. The
average was 3.001%, a result consistent with that of a single TIW timer running
without the added load of another multimedia application on the same machine.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 93 of 111

Figure 5-15: 50 Hz other Multimedia Application

5.1.3.3 1 Hz TIW timer with other Multimedia Application
Figure 5-16 illustrates the performance of the TIW timer configured to generate timer
events every second – a rate of 1 Hz.

Figure 5-16: 1 Hz other Multimedia Application

As before, the Windows Media Player application is started before the TIW timer. The
maximum and the minimum intervals recorded were both 1.0 second. Therefore the
timer exhibits a resolution of 1 second ? 0 ? s. Comparing this resolution to that
recorded for the single TIW timer with an alternative configuration in section 4.3.4.2,
it is clear that the accuracy of the TIW timer is retained in this instance. The
resolution on that occasion was 1 second ? 1 ? s.
The maximum amount of CPU resources consumed at a given time was 84.333%, an
initial spike like that of the TIW timer with an alternative configuration in section
4.3.4.2. The average was 2.452% and when this is compared to the results in section
4.3.4.2, it can be surmised that the performance the TIW timer is not adversely
affected by another multimedia application in this case.

5.1.3.4 Conclusion
Running a multimedia application concurrently with the TIW timer has notable effects
on the performance of the timer – especially at higher frequencies. The TIW timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 94 of 111

displays the same performance as the multimedia timer at certain frequencies (in this
case 50 Hz and 1 kHz, refer to sections 5.1.3.1 and 5.1.3.2).
However, at lower frequencies such 1 Hz (in section 5.1.3.3), the TIW timer retains
its performance. Therefore, it is possible to run the TIW timer reliably alongside
another multimedia application at lower frequencies – which may not be adequate for
all soft real-time implementations although that TIW timer performs on par with the
multimedia timer in terms of accuaracy.

5.2 Period Adjustment
In section 4.3, it was shown that the TIW timer is able to generate an interval of 1000
? s (1 ms) utilising 2 threads. This section investigates whether it is possible to
measure smaller intervals than 1 ms by varying the number of execution threads that
the TIW timer is using.
The investigation shows that it is indeed possible to do so, given that the choice of
thread numbers is made correctly. This section will only present the results of the
TIW timer at higher frequencies than 1 kHz, showing that it is possible with the
number of threads chosen wisely. Section 5.3, however, serves as an explanation of
how the correct number of threads is chosen.

5.2.1 4 Threads, 500 ? s Interval (2 kHz)
In this first experiment, the objective was to double the highest frequency of the TIW
timer; namely 1 kHz. Therefore the TIW timer is required to generate timer events at
2 kHz. To achieve this, the number of threads was increased to four, and the
required interval set to 500 ? s. The complete configuration follows:
Number of timestamps – 120000

Interval Duration – 500 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 4
The “mod” – 1
The results are shown in Figure 5-17.

Figure 5-17: 2 kHz TIW timer

A maximum interval of 591 ? s was recorded and a minimum of 409 ? s over a period
of 60 seconds with the first 16 seconds shown in the figure. Therefore, the timer
exhibits a resolution of 500 ? s ? 91 ? s in this case. The worst resolution recorded for

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 95 of 111

the timer with this frequency is 500 ? s ? 250 ? s – 200 ? s being within the 500 ? s
maximum deviation specified in section 2.6.
However, 500 ? s doesn’t seem like an acceptable deviation for a timer with an
interval size of 500 ? s. Since a resolution of 1 ms ± 500 ? s is acceptable for a 1 kHz
with the maximum deviation fixed at half the interval size, it is reasonable to expect
that the TIW timer at 2 kHz exhibits a maximum deviation of half its interval size, in
this case 250 ? s. Figure 5-18 depicts the worst case recorded for the 2 kHz timer and
shows that the maximum deviation is less than or equal to 250 ? s. The maximum
interval recorded was 682 ? s and as the figure shows, it was an isolated incident.

Figure 5-18: 2 kHz TIW timer – Worst Case

Since the 2 kHz TIW timer utilises more threads than the 1 kHz TIW timer, it is to be
expected that there will be an increase in resource consumption. The maximum slice
of CPU resources consumed by the timer shows an initial spike of 66% where after
the usage remains below 30%. However, the average usage was 8.885% leaving
whatever application requiring 500 ? s interval measurements with on average ?
91.115% of the CPU to its disposal.
This is depicted in Figure 5-19.

Figure 5-19: TIW timer 2 kHz CPU usage

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 96 of 111

5.2.2 8 Threads, 250 ? s Interval (4 kHz)
Since the TIW timer successfully doubled the 1 kHz frequency to 2 kHz, the next
obvious step is to determine whether the frequency may be doubled again to 4 kHz.
Therefore the number of threads was increased to 8, and the required interval set to
250 ? s. Figure 5-20 illustrates the results recorded with the TIW timer configured as
follows:
Number of timestamps – 240000

Interval Duration – 250 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 8
The “mod” – 1

Figure 5-20: 4 kHz TIW timer

A maximum interval of 347 ? s was recorded, however, over a period of 60 seconds
this only occurred once; in fact, Figure 5-20 illustrates the period of 8 seconds in
which the maximum interval was recorded. The interval stays below 350 ? s save for
the solitary maximum and spike. The minimum recorded interval was 153 ? s. The
resolution is therefore 250? s ? 100? s. Again the maximum deviation is less than half
the length of the interval and obviously within 500 ? s of the target interval duration.

Figure 5-21: TIW timer 4 kHz CPU usage

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 97 of 111

Again the number of threads were doubled from the previous experiment in section
5.2.1 and accordingly and increase in resource consumption is to be expected. As
Figure 5-21 illustrates, the CPU usage varies between 0% and 45.167% with an
average of 16.594%.

5.2.3 16 Threads, 125 ? s Interval (8 kHz)
In this experiment, the goal was yet again to attempt to double the previous
frequency (in this case from 4 kHz to 8 kHz). To achieve this, the number of threads
was increased to 16, and the required interval set to 125 ? s. The full configuration of
the timer is as follows:
Number of timestamps – 480000

Interval Duration – 125 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 16
The “mod” – 1
The results are shown in Figure 5-22 illustrates the results from this experiment over
a period of 4 seconds. A maximum interval of 347 ? s was recorded, however, as
shown in Figure 5-22, deviations greater than 75 ? s occur sporadically. The minimum
recorded was 4? s and therefore the resolution in this case is 125? s ? 222? s.
Therefore, the TIW timer does not measure the interval reliably for all the intervals
generated and the maximum deviation is greater than the interval size. However,
Figure 5-22 shows that the interval measured is always within 500 ? s of the desired
interval duration. Since 75 ? s is half the length of the required interval of 125 ? s, it is
concluded that the TIW timer’s acceptable performance at 1 kHz and 2 kHz cannot
be extrapolated to a frequency of 8 kHz.
With the increase of the number of threads to 16, the CPU usage is once again
expected to increase and that is exactly what the timer demonstrated. The maximum
% CPU resources consumed were 84.333% and the average CPU usage was
32.063% (refer to Figure 5-23).
Therefore, should an application require the TIW timer to measure 125 ? s intervals,
the estimated interval will be accurate within 222 ? s and the application itself will
have on average ? 77.937% of the CPU at its disposal.

Figure 5-22: 8 kHz TIW timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 98 of 111

Figure 5-23: TIW timer 8 kHz CPU usage

5.2.4 5 Threads, 400? s Interval (2.5 kHz)
Up to this point, the intervals recorded were all divisors of 1000 ? s:
? 1000 ? s/2 = 500? s

? 500 ? s/2 = 250? s

? 250 ? s/ 2 = 125? s
Therefore in this experiment, the idea was to generate an interval less than 1000 ? s
that is not a factor of 1000 ? s. The interval chosen was 400 ? s.
The results for this interval are presented in Figure 5-24. The maximum interval
recorded was 600 ? s and a minimum of 200 ? s. Again the maximum deviation is half
of the length of the required interval culminating in a resolution of 400 ? s ? 200 ? s.
The CPU usage is presented in Figure 5-25. The average usage was 10.766%.
The TIW timer was tested at his frequency several times and the maximum deviation
of up to 300 ? s was recorded. However, it was always an isolated incident with the
rest of the timestamps recorded within 200 ? s of the required interval. However, as
was the case with the 8 kHz TIW timer in section 5.2.3, the TIW timer is able to
generate the required interval within 500 ? s, but fails produce intervals that do not
exceed the required interval by more than half.

Figure 5-24: 2.5kHz TIW timer

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 99 of 111

Figure 5-25: TIW timer 2.5kHz CPU usage

5.2.5 Conclusion
The definition of the soft real-time timer in section 2.6 specified a required resolution
of 1 ms ? 500 ? s for the soft real-time timer. Therefore, the maximum deviation
equates to half the duration of the required interval. The TIW timer achieved this for
the 1 kHz frequency, as seen in section 4.3.3.1.
In section 5.2.1, the resolution exhibited was 500 ? s ? 200 ? s for a 2 kHz timer. Note
that, not only is the maximum deviation less than 500? s; it is also less than half of the
required interval, namely less than half of 500 ? s. In this sense, the 2 kHz TIW
timer’s performance is the same, relatively speaking, as the 1 kHz timer. This
unfortunately does not apply to the 2.5 kHz timer in discussed in section 5.2.4. It was
seen there that this timer had a resolution of 400 ? s ? 200 ? s in general, although an
occasional interval may exceed 400 ? s by as much as 300 ? s.
However, it does apply to the 4 kHz timer discussed in section 5.2.2 where the
resolution was 250 ? s ? 100 ? s. Although the maximum deviation is less than half of
the interval size, it would compel the timer to generate intervals of ±150 ? s to
compensate when the maximum deviation occurs. The resolution thus complies with
the original timer specifications that were enunciated in section 2.6, but would
probably be unacceptable for an application that really needed a 4 kHz timer.
The same is true of the 8 kHz timer in section 5.2.3. It has a resolution of 125 ? s ?
222 ? s – in other words the deviation is more than half the interval size. The
maximum deviation is in fact greater than the interval size, which is probably not
desirable for a real application that needed an 8 kHz timer, although these deviations
are irregular and sporadic.
Taking these results into consideration it is clear that the TIW timer is capable of
generating intervals smaller than 1000 ? s with a maximum deviation that was
considered acceptable for the 1 kHz timer, namely 500 ? s. In fact, for timers with a
frequency lower than 2.5 kHz (i.e. a required interval higher than 400 ? s), the
maximum deviation was less than or equal to the duration of half the required
interval, although the 2.5 kHz timer only exhibited occasional deviations that
exceeded half the interval size.
Therefore, for timers with frequency of 2.5 kHz and higher, the maximum deviation
will be less than 500 ? s, but it may also be greater than half the interval duration.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 100 of 111

5.3 Number of Threads
The choice of number of threads is crucial to the TIW timer’s operation, especially
when generating intervals smaller that 1000 ? s (refer to section 5.2), as will be
shown in this section. Refer back to the TIW timer timing diagram in Figure 4-10 for
the 1 kHz timer using two threads. In the startup phase of the timer which precedes
the first event that is fired, three intervals may be identified. The first two intervals
occur successively, each enduring for 1000 ? s, and each being generated via the
loop timer method. The third interval endures for another ? 1000 ? s, being the period
during which both threads are “sleeping”.
Now consider Figure 5-26 that represents the timing of the TIW Timer with a required
interval of 500 ? s. Four threads (A, B, C and D) are initialized, each successively
measuring out 500 ? s intervals, using the loop timer mechanism. After thread D has
measured its interval, a fifth interval ensues during which all threads are sleeping. At
the start of this fifth interval, thread A will have roughly 500 ? s of sleeping time left
before it fires the first timer event.

Figure 5-26: 2 kHz TIW timer Timing Diagram

Figure 5-27 represents the timing diagram for the 2.5 kHz timer and shows that the
five threads (A through E) will each measure an initial 400 ? s interval using the loop
timer mechanism. When thread E is done with this initial interval measurement, a
sixth interval ensues during which all threads are sleeping. At the start of this sixth
interval, thread A has roughly 400 ? s of sleeping time left.

Figure 5-27: 2.5 kHz TIW timer Timing Diagram

The same is true of Figure 5-28, which represents the timing diagram for the 4 kHz
timer. The eight threads (A through H) will start by measuring an interval of 250 ? s

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 101 of 111

each. When thread H has measured its interval, a ninth interval ensues during which
all threads are sleeping. At the start of this ninth interval, thread A will have roughly
250 ? s left to sleep.
Therefore, in all cases, the first interval during which all threads are sleeping is
approximately the same length as the timer’s interval duration.

Figure 5-28: 4kHz TIW timer Timing Diagram

Now, consider all these timing diagrams (Figure 4-10, Figure 5-26, Figure 5-27 and
Figure 5-28). In each of these diagrams, the time elapsed since the end of timer A’s
interval calculation and the firing of the first timer event (in other words the time
elapsed since the end of timer A’s interval calculation and the end of the first ?
period), is 2 ms2. Within the 2 ms there is one period with a duration equal to that of
the interval size during which all of the threads are asleep.
Let N denote the number of threads for a TIW timer that is to measure an interval of t
milliseconds. In all the figures, N threads each measure one t-millisecond interval
within this 2 ms period. Therefore, including the interval during which all threads are
asleep, N intervals of t-milliseconds have been measured with an interval of t-
milliseconds to come before thread A has completed its 2 ms suspension. In other
words, the relationship: 2 = N X t holds in all theses cases, or N = 2/t.
Now consider Figure 5-29, which depicts the situation where the TIW timer is
configured to use five threads to measure a 500 ? s interval (in other words, a number
that is not equal to 2 ms divided by the interval size). The configuration of the TIW
timer is accordingly as follows:
Number of timestamps – 120000

Interval Duration – 500 ? s
Requested Sleep Interval – 1 ms
Number of threads to use – 5
The “mod” – 1
It is clear that the interval during which all threads are sleeping is replaced by the fifth
thread (thread E) running a loop timer during that time to measure an interval of 500

2 For the purposes of this discussion, assume that there is no overshoot, i.e. that a = 0

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 102 of 111

? s. The resulting TIW timer will constantly consume 100% of the available CPU
resources.

Figure 5-29: 2kHz TIW timer Timing Diagram – Wrong number of threads

Figure 5-30 shows the CPU usage for a TIW timer set up to measure a 500 ? s
utilizing 5 threads. The average usage was 83.22%.

Figure 5-30: 2 kHz TIW timer, 5 threads CPU usage

However, the sleep instruction may suspend a thread for more than 2 ms, which
does occur as shown in section 4.2.2.2.1. If for example, thread A sleeps for 2.100
ms after its initial interval in the figure, a period of 200 ? s exist after thread E has
entered the sleep cycle for the first time where no thread will be running. However,
the sleep instruction does not overshoot every time and the intervals where no thread
is running is so small that it fails to induce a sufficient wait period that would prevent
the TIW timer from using an unacceptable amount of CPU resources.
Figure 5-31 shows the TIW timer configured to generate timer intervals at 2 kHz
using three threads (again a number that is not equal to 2 ms divided by the interval
size). As is clear from the figure, when the third thread (thread C) finishes its interval
calculation, a period of ± 1000 ? s ensues during which all threads sleep before
thread A goes into a running state and measures out the first a interval. In fact, this
same “hiccup” occurs so that every third timer event is cumulatively delayed by
0.5ms.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 103 of 111

Figure 5-31: 2kHz TIW timer Timing Diagram – Wrong number of threads

Therefore, the number of threads is should be equal to the 2 ms divided by the
interval size or either the situation depicted in Figure 5-29 and Figure 5-31 is the
result. Since it is impossible to have a fraction of a thread, the intervals that can be
generated are dependent on factors of 2000 ? s. For example, an interval of 300 ? s or
800 ? s can not be generated reliably since 2000 ? s is not divisible by these values. It
is impossible to have 2.5 threads (2000/800 = 2.5). However, an interval of 333.33 ? s
(3 kHz TIW timer) is possible since the result of the division of 2000 ? s by this
number is 6 – a number of threads that the TIW timer is able use.
This is depicted in Figure 5-32. The maximum interval recorded was 365 ? s – a
maximum deviation of 32 ? s in this case.

Figure 5-32: 3 kHz TIW timer

In the present study, the TIW timer with the largest number of threads had 16. To test
larger factors is beyond the scope of the present study. The evidence gathered thus
far suggests that intervals of, for example, 40 ? s could be generated using 50
threads, but that the resolution and CPU utilization would degenerate.
Note that this is only applicable to intervals of 1000 ? s or less. As was shown in
section 4.3.4, the alternative TIW timer is able to generate reliable interval larger than
1000 ? s with the use of one thread.

5.4 A real world application
The inclusion of this sections stems from experienced gained by the author in the
defense industry – specifically involvement in the development of a ground station for
fighter aircraft. The basic idea of this system is that vast amounts of data are
imported for analysis from data recorders on the aircraft. During this import process,

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 104 of 111

the data is converted into a format that eases the analysis process. These recorders
record the data relative to time, and therefore every piece of data has a timestamp
attached to it.
Therefore the data imported from the aircraft has timestamps connected to each
parameter encapsulated in the data. However, the data is imported from two different
sources on the aircraft. The first source is an embedded platform that uses a hard
real-time timer to calculate the timestamps for the data. The second source is a
commercial computer with the Windows XP operating system installed on it. The data
is assigned timestamps on this second machine calculated using the system timer
(see section 2.3.1) provided by the WIN32 API. When the timestamps were
compared, the time measured from the WIN32 machine was greater than the
corresponding timestamp from the hard real-time source (after ± one hour of data) by
as much as 9 minutes.
This caused severe problem since the data from these two sources had to be
matched according to timestamp. This led to the question of whether the TIW timer
would still generate a reliable interval after an hour. Accordingly an application was
developed that configured a TIW timer to fire timer events at a frequency of 1 kHz.
An example of such a setup is given in section 4.3.3.1 with the exception that the
number of timestamps was set to 3600000 (the number of one millisecond intervals
in one hour). Therefore, the final timer event should fire after ± 3600000 ms have
passed.

Figure 5-33: TIW Timer 1 hour: Final Timestamp

Figure 5-33 shows two bars representing timestamps in milliseconds relative to the
moment that the timer was started. The first bar represents the time elapsed at the
moment the TIW timer fires its final event after on 1 hour. The second bar represents
the amount of time that should have elapsed. As is clear from the figure, the TIW
fired its final event 1 ? s short of the time that it should have – in other words, within
500 ? s retaining the target deviation specified in section 2.6.
Another interesting note is that the maximum interval over this period was 1.111 ms.
The 20 second period in which this maximum interval occurred is depicted in Figure
5-34. The yellow line represents what the interval size should be – 1 ms. It is clear
that the interval durations of the TIW timer remain within close vicinity of this required
interval length as the maximum deviation was 111 ? s.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 105 of 111

Figure 5-34: TIW Timer 1 kHz: One Hour

Since the TIW timer fired its final event 1 ? s before it was supposed to after running
for an hour and this timer event was used to measure a duration of one hour, the
measurement would be inaccurate by a margin of 1 ? s. As stated, this deviation is
within 500 ? s and therefore very accurate. A further point of interest is that the TIW
timer maintains accurate one millisecond intervals over the period of an hour.
Therefore this particular experiment shows that the TIW timer would be able to solve
the problem in the real world situation described in the beginning of this section. If the
system timer is replaced with the TIW timer to measure the timestamps, the
discrepancy of 9 minutes could be reduced to 1 ? s.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 106 of 111

Chapter 6
Conclusion

The goal of this chapter is to serve as conclusion to the research presented in this
text. The chapter first focuses on how future trends in technology are likely to
influence the TIW timer. It also presents a summary and a conclusion to this text.
Chapter 1 served as introduction and some general background to the subject matter
discussed in this text. The definition of a timer was formalised along with the
explanation of timer resolution and real-time. These concepts are important and
serve to provide a better understanding of the problem statement that was given in
section 2.6 in which certain requirements are placed on real-time timers, whether in a
soft or hard real-time environment.
After providing some background on existing timers, chapter 2 shows that neither the
Win32 nor standard POSIX timers are able to provide constant intervals that comply
with a maximum deviation requirement of 500 ? s or less and that this failure may be
attributed to the rate at which the operating systems service their timers. Another
example from the defence industry illustrates this deficiency, specifically under the
WIN32 operating system in section 5.4.
However, a workaround was found. Chapter 3 is a brief introduction to the design
and implementation decisions that were used in implementing the workaround.
The workaround is in the form of the thread induced waitable timer (TIW timer)
discussed in section 4.3. Within this section, the design and results for this timer
were presented. The final solution went through a couple of rejected solutions before
being formalised into the TIW timer. These solutions were presented in section 4.2.
The TIW timer is capable of providing a constant interval with a maximum deviation
recorded on a 1 ms interval of 500 ? s while consuming on average less than 5% of
the available processing power (refer to section 4.3). The TIW timer is waitable and
periodically fires an event when the specified interval elapses. Thus the TIW timer
conforms to our requirements for a soft real-time timer given in section 2.6.
The TIW timer was shown to outperform the current WIN32 and standard POSIX
timers. This was the subject of section 4.4. In that section, the TIW timer was also
compared to an external hard real-time timer – the benchmark for the accuracy of the
TIW timer. The comparison yielded satisfactory results for the TIW timer.
Further studies on the TIW timer were also presented, and these are summarised as
follows:
? The performance of the TIW timer on the Win32 platform and under a UNIX

platform was compared in section 4.4.2.2. Since the TIW timer’s performance
under the WIN32 operating system is superior to that of the standard POSIX
timers, the logical next step was to implement the TIW timer under the Linux
operating system. However, it was found that due to architectural and operational
differences, the TIW timer is not a viable solution under the Linux environment.

? The effect of load on the TIW timer was investigated in section 5.1. The TIW
timer was shown to retain its accuracy when measuring time for routines that
placed a reasonable amount of load on the timer.
The research done in section 5.1 specifically focused on the performance of the
TIW timer when placed under load. The whole idea behind the development of a
timer is to trigger the operations that have to be completed at periodic intervals.
The triggered operations have priority when it comes to processor usage.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 107 of 111

Untimely scheduling of the concurrent threads of the TIW timer may hamper the
real-time accuracy of the solution [Chu 1997]. However, the fact that the timer is
a multi-threaded application means that its design is well positioned to take
advantage of impending hardware technology improvements to better support
threads.
Intel recently introduced such improvements in the form of hyper-threading
technology on their Pentium 4 processor. This technology enables multi-threaded
applications to execute threads in parallel. In the past, threads were split into
multiple streams in order to enable multiple physical processors to execute them.
This technology basically enables multi-threaded software to simultaneously
execute its threads [Intel 2004]. In a hyper-threading enabled processor, certain
sections outside of the main execution resources are duplicated; typically the
sections that store the architectural state of the processor. This allows the
processor to be seen as two logical processors by the host operating system.
This allows the operating system to schedule two threads or processes
simultaneously. A thread executing on a processor does not necessarily use all of
the execution resources available on the processor. Hyper-Threading allows the
processor to use these unused resources to execute a second thread [Wikipedia
2005].
Since the TIW timer threads are mutually exclusive, only one will occupy the CPU
at any time. This will allow another thread to be scheduled using idle CPU
resources. Therefore, this thread may be spawned within the timer, and may be
given the responsibility for the execution of the desired operations.
When one of the timer threads wants to execute, and the thread executing the
desired operations is still running, the TIW timer threads may be executed at the
same time thanks to hyper-threading, boosting the viability of the TIW timer.
The TIW timer provides a mechanism to implement a timer using software,
without being too concerned about the underlying hardware. This suggests that
the mechanism will be easily portable to processors that might be developed in
the near future.
With demands on new hardware developments as they are at the moment, it
seems as if multi-threaded applications could benefit even more. The following
are some of the demands on new hardware systems:
- Greater business productivity
- Increase in the number of transactions processed
- Larger workloads [Intel 2004].
To achieve the above, the processors will have to continue supporting the
execution of multiple concurrent processes at once. In other words, multi-
threaded applications will be used more and more and the TIW timer will still be a
viable solution with new processor developments.
Microsoft and Intel have jointly developed a new timer called the High
Performance Event Timer (HPET). This timer was designed specifically to
measure 1 ms intervals, without excessive deviation. Tests on the HPET by
Microsoft engineers have determined that the HPET improves accuracy and
system performance [Peng 2002]. When the HPET becomes widely available, all
Win32 APIs will be ported and the underlying Windows code extended to take
advantage of the new timer.
In future, the TIW timer may be extended to read the timestamp from the HPET
rather than the high-resolution hardware counters, for greater accuracy.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 108 of 111

? The number of TIW timer instances that can be run reliably together on a single
computer was discussed in section 5.1.2. The maximum number of timers that
may be run reliably together on a single machine at a frequency of 1 kHz was
found to be five in total. However, it may be possible to execute more timers
concurrently at lower frequencies.

? Determining the effects of other multimedia applications that are running on the
same machine as the TIW timer was the focus of section 5.1.3. It was shown that
the TIW timer is vulnerable to interference from other multimedia applications. It
only retains is accuracy at lower frequencies such as 1 Hz. However, when the
TIW timer is executed concurrently with a multimedia application, its performance
is still comparable to that of the multimedia timer.

? Section 5.2 quantified the performance of the TIW timer at frequencies greater
than 1 kHz. Since the TIW timer was successful in generating a relatively small
interval of 1000 ? s, it was decided to investigate whether it would be possible to
measure even smaller intervals. It was determined that the TIW timer is indeed
able to measure intervals smaller than 1000 ? s, with maximum deviations within
500 ? s and with reasonable processor consumption (although the processor
consumption increases as the frequency rises). This is accomplished through
configuration of the TIW timer to use more than two threads.

 However, only for frequencies of 2 kHz and lower, does the maximum deviation
of the timer not exceed half the duration of the required interval reliably. For
frequency greater than 2 kHz, the TIW timer does succeed in generating intervals
within deviations within half the interval size. However it is not guaranteed that
the interval will not exceed that required duration by more than half.

? Ever since the initial design of the TIW timer was laid down (the final design was
presented in section 4.3.1) it was clear that the number of threads that the TIW
timer uses in a specific configuration impacts the accuracy of the timer
significantly. In section 5.3, the goal was to quantify the effect of the number of
threads. It was determined that for the TIW timer to generate a reliable interval
two conditions have to be met: The number of threads should represent a whole
number that is a factor of 2000.

? Finally the TIW timer’s performance when required to solve a real world problem
was tested in section 5.4. It was determined that the TIW timer is able to maintain
its accuracy over a period of one hour. The TIW timer fired the timer event that
indicated that an hour had passed only 1 ? s short of 60 minutes. Furthermore,
the maximum deviation produced by the TIW timer over this period was 111 ? s.

The TIW timer is thus a flexible algorithm that conforms to the definition of a soft real-
time timer and provides a timer event at the specified frequency that can be used by
an application to measure time and schedule events. However, the TIW timer was
found to be an effective solution under the WIN32 platform only and is unfortunately
not as accurate under an operating system that uses the POSIX standard.
In addition to being an effective workaround for the inadequacies of timers currently
available under the WIN32 operating system, the TIW timer is also positioned to take
advantage of new processor technologies such as hyper-threading and the high
performance event timer.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 109 of 111

References
[Abeni et al. 2002] Abeni L, Goel A, Krasic C, Snow J, and Walpole J, 2002. In Proceedings of

the 8th IEEE Real-Time and Embedded Technology and Applications
Symposium, San Jose, CA, USA, September , 2002, IEEE Computer Society
2002, ISBN 0-7695-1739-0.

[Atlas et al. 1998] Atlas A, Bestavros A, 1998. Design and Implementation of SRMS in Kurt
Linux. Computer Science Department, Boston University. September 1998.

[Austin Group 2004] Austin Group, 2004. The Single UNIX Specification. The Open Group
Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.
http://www.unix.org/version3

[Barabanov 1997] Barabanov, M, 1997. A Linux-based Real-Time Operating System. MS
thesis, New Mexico Institute of Mining and Technology, Socorro, New
Mexico.

[Barr 1999] Barr M, 1999. Programming Embedded Systems with C and C++. O'Reilly
Media, Inc. January 1999.

[Beal et al. 2003] Beal D, Ripoll I, Pisa P, Abeni L, Gai P, and Lanusse A, 2003. Linux as a
Real-Time Operating System. Metrowerks Corporation – A Motorola
Company, OCERA, May, 2003.

[Bulka et al. 1999] Bulka D, Mayhew D., 1999. Efficient C++: Performance Programming
Techniques. Addison Wesley Professional. November 1999.

[Dongarra et al. 2001] Dongarra, J, London, K, Moore, S, Mucci, P, Terpstra, D, 2001. Using PAPI
for Hardware Performance Monitoring on Linux Systems. In Conference on
Linux Clusters: The HPC Revolution, Urbana, Illinois, June, 2001.

[Friesen 2001] Friesen J, 2001. Java 2 by Example, 2nd Edition. Que Publishing. December
2001.

[Gill et al. 2001] Gill D, Levine D, and Schmidt D, 1998. The Design and Performance of a
Real-Time CORBA Scheduling Service. Real-Time Systems Volume 20,
117-154.

[Gopalan 2001] Gopalan K, 2001. Real-Time Support in General Purpose Operating
Systems. Research Proficiency Exam Report, Dept. of Computer Science,
State University of New York, Stony Brook, NY, January 2001.

[Hardeski 2001] Hordeski M, 2001. HVAC Control in the New Millennium. Marcel Dekker.
January 2001.

[Henderson 2003] Henderson K, 2003. The Guru's Guide to SQL Server Architecture and
Internals. Addison Wesley Professional. October 2003.

[Intel 1993] Intel, 1993. 8254 Programmable Interval Timer Datasheet. Order Number
231164-005.

[Intel 1995] Intel, 1995. Intel I/O Controller HUB 7 (ICH7) Family Datasheet.
Document Number 307013-O01.

[Intel 1997] Intel, 1997. MultiProcessor Specification. Intel, May 1997.

[Intel 1999] Intel, 1999. Advanced Configuration and Power Interface Specification.
Intel, Microsoft, Toshiba, February, 1999.

[Johnson et al. 2001] Johnson A.P, Macauley M.W.S, 2001. High Precision timing within
Microsoft Windows: threads, scheduling and system interrupts. Elsevier
Science B.V. July 2001.

[Klein et al. 1994] Klein M, Ralya T, Pollak B, Obenza R., Harbour M.G, 1994. A
Practitioner's Handbook for Real-Time Analysis. Springer. Part of Springer
Science &Business Media. ISBN: 0-7923-9361-9.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 110 of 111

[Lamie 2003] Lamie E, 2005. Real-Time Embedded Multithreading: Using ThreadX and
ARM. CMP Books. January 2003.

[Li et al. 2003] Li Q, Yao C, 2003. Real-Time Concepts for Embedded Systems. CMP
Books. April 2003.

[Lischner 2003] Lischner R, 2003. C++ In a Nutshell: A Desktop Quick Reference. O'Reilly
Media, Inc. May 2003.

[Locke 2005] Locke D. L, 2005. POSIX and Linux Application Compatibility Design
Rules. http://www.douglocke.com

[Manko 2002] Manko E, 2002. Creating a High-Precision, High-Resolution, and Highly
Reliable Timer, Utilising Minimal CPU Resources. Codeguru.
http://www.codeguru.com

[MSDN 2003] MICROSOFT DEVELOPERS NETWORK (MSDN) April 2005. What is a
Timer? http://msdn.microsoft.com

[Newcomer 2000] Newcomer Joseph M. 2000. THE CODE PROJECT. Time, the simplest
thing. http://www.codeproject.com/system/simpletime.asp

[Palmer 2002] Palmer N, 2002. Getting a Handle on the Win32 API. Tufts University.
March 2002.

[Peng 2002] Peng J.T, 2002. WINDOWS HARDWARE AND DRIVERS CENTER.
Guidelines For Providing Multimedia Timer Support.
http://www.microsoft.com/whdc/system/CEC/mm-timer.mspx

[Perkins 2003] Perkins C, 2003. RTP: Audio and Video for the Internet. Addison Wesley
Professional. June 2003.

[Peterson et al. 1998] Peterson P, Schotland T., 1998. Win32: A Suitable Standard for Real-Time
Embedded Systems? Real-Time Magazine 3Q98, p64 – 68, 1998.

[Rieker 2004] Rieker R, 2004. Advanced Programmable Interrupt Controller.

[Santhanam 2003] Santhanam A, 2003. IBM developerWorks. Towards Linux 2.6. http://www-
128.ibm.com/developerworks/linux/library/l-inside.html

[Sridhar 2003] Sridhar T, 2003. Designing Embedded Communications Software. CMP
Books. June 2003.

[Timmerman et al. 2002] Timmerman M, Monfret J-C, 2002. DEDICATED SYSTEMS MAGAZINE
1997. Windows NT a Real Time OS?
http://www.omimo.be/magazine/97q2/winntasrtos.htm

[Webopedia 2003] Webopedia, August 2003. API Term definition. http://www.webopedia.com

[WIKIPEDIA 2006 ref. 1] WIKIPEDIA: The Free Encyclopedia January 2006. Intel APIC
Architecture. http://www.wikipedia.org

[WIKIPEDIA 2006 ref. 2] WIKIPEDIA 2006: The Free Encyclopedia January 2006. Application
programming interface. http://www.wikipedia.org

[WIKIPEDIA 2005] WIKIPEDIA: The Free Encyclopedia January 2005. Hyper-Threading.
http://www.wikipedia.org

[Wurmsdobler 2002] Wurmsdobler P, 2002. What is the Real Time Linux Foundation? Real Time
Linux Foundation, Inc. September 2002.

[Yoav et al. 2003] Yoav E, Tsafrir D, and Feitelson D, 2003. Effects of Clock Resolution on
the Scheduling of Interactive and Soft Real-Time Processes. In Proceedings
of the 2003 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, San Diego, California, USA, June, 2003,
ACM Press, New York, NY, 172-183.

Janno Grobler
jannogrobler@gmail.com
M.Sc Computer Science
University of Pretoria

Page 111 of 111

[Grobler et al. 2005] Grobler J.P, Kourie D.G, 2005. Design of a High Resolution Soft Real-Time
Timer under a Win32 Operating System. In Proceedings of the 2005
SAICSIT conference on Research for a changing world,. White River, South
Africa, September 2005, 226 – 235.

	FRONT
	Title page
	Table of contents
	List of figures
	List of tables
	Abstract

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	REFERENCES

