Chapter 4

Model definition

The purpose of the chapter is to depart on the first leg of the jour-
ney towards obtaining an initial solution to the extended vehicle routing
problem, currently referred to as the Vehicle Routing Problem with Multiple
Constraints (VRPMC). The model development process used to develop the
model is taken from Taniguchi et al. [57] and is presented in figure 4.1.

Problem definition — The conceptual problem is defined in chapter 1.

Objective — As the model is concerned with determining an initial solu-
tion to a routing and scheduling problem, the result produced by the
algorithm becomes the objective of the model. The choice of solution
candidates are influenced by the mathematical objective function of
the problem model.

Criteria — To elaborate on the criteria, a comprehensive mathematical
model of the VRPMC is presented in section 4.1. The criteria de-
fine the solution space through multiple mathematical constraints.

System analysis — The analysis process involves identifying the essen-
tial components and interaction within the solution algorithm. Sec-
tion 4.2.1 describe the interaction of the algorithm’s logical processes
at a high level.

System synthesis — Although Taniguchi et al. [57] specify that this in-
volves expressing the model in mathematical terms, it was already
formulated in chapter 2, and presented in its entirety in section 4.1.
Synthesis, in this dissertation, is the process of constructing and docu-
menting a robust algorithm that will serve as direct input to the coding
stage .

Software development — A computer based procedure will be developed
in MATLAB. This will allow the mathematical and logical procedures,
developed during the synthesis stage, to be used to produce actual

47

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Problem
Definition

System
Analysis

Data
Collection

Software
Development

Verification

Validation

Application

Figure 4.1: A model development process

quantitative results. The software development is further discussed in
chapter 5.

Verification — Procedures are tested and checked for correct logical struc-
ture. This iterative process makes use of manually simulated and
calculated instances, and compares the algorithm’s output with its
anticipated behavior.

Validation — At this stage the algorithm’s output is compared with pub-
lished results. The objective of validation is to determine if the initial
solution created by the algorithm is comparable with those generated
by accepted algorithms, as the result should only be marginally better,
or worse, than previously published results.

Application — The algorithm will be tested in parallel with current schedul-
ing applications. Given the nature of the algorithm, and the fact that

48

the output is only an initial solution, and will act as an input to an
optimization algorithm, the quality of the algorithm’s output can not
be compared with that of the final algorithm.

4.1 The mathematical model definition

All variables and concepts are defined in chapter 2, and the mathe-
matical model is therefor presented without any declaration of variable or
explanation of constraint.

N N K K N
minz = Z Z Z CijTijk + Z Z frzojn

i=0 j=0,j#1i k=1 k=1 j=1
N
+ Y ai x max{0, L;} (4.1)
i=1
subject to
N N
S zo = zjor =1 Vk={1,2,...,K} (4.2
j=1 j=1
N K
D>z <K (4.3)
J=1 k=1
N K
Y. Domgrst Vie{l,2,...,N} (44)
i=1:i#] k=1
N K
Yo D o mg=1 Vie{1,2,...,N} (4.5)
J=Lj#Fi k=1
N N
ZQ{ Z Tijk < Dk Vk={1,2,...,K} (4.6)
i=1 =0
ag = wg = Sg = 0 (4.7)
K N
SN wyulai+wi+si+ty) < o vie{L,2,....,N} (48)
k=1i=0;i#j
ei < (a; +w;) <l; Vie{1,2,...,N} (4.9)
zijx € {0,1} (4.10)

49

&
UNIVERSIT
UNIVERSI
s

Qe YUNIBE

4.2 System analysis

It is the objective of this dissertation to promote the use of a systematic
approach to model development, as opposed to the rapid-prototyping ap-
proach often experienced in practise. To ensure that the algorithm acts in
a coherent and logical manner, the algorithm is modelled at various levels
prior to being coded.

4.2.1 Overview

A graphical overview of the algorithm is presented in figure 4.2. The

Capture input
information

I

Initialize
algorithm

Are
there vehicles
available?

Define
orphans

Yes

v

Initialize new
tour

h 4

Are there
any unrouted
ustomers

Report initial
solution

Yes

Isa
multi-route tour
feasible?

Initialize route
with seed l4—Yes
customer 4

Are there
any unrouted
ustomers

Expand partial
route

T

Yes

feasible to expand

Figure 4.2: Overview of initial solution algorithm

number in the lower right-hand corner of a procedure, or decision in the

o0

P
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
@ YUNIBESITHI YA PRETORIA

flowchart, refers to the sequence of discussions in the following subsection
with regards to specific algorithimn detail that are highlighted.

4.2.2 Algorithm detail

Sections of the overview model is represented using Structured English —a
language and syntax, based on the relative strengths of structured program-
ming, and natural English [64]. Structured English is not pseudocode, as it
does not concern itself with the declaration and initialization of variables,
linking, and other technical issues. The Structured English sections aims to
communicate unambiguous logic about the algorithm which is easy to un-
derstand, yet not open to misinterpretation [3]. Readability takes preference
over programming preferences. It is a strict and logical form of English, and
the following constructs reflect structured programming:

e Sequencing shows the order of processing a group of instructions — sim-
ple, declarative sentences, following one another — without repetition
and branching. Compound sentences are avoided, as they create ambi-
guity. Strong action verbs, such as GET, FIND, CALCULATE, UPDATE,
SORT, etc. are used.

e Selection or decision structure facilitates the choice of actions under
well-specified conditions. Variations of sequencing include:

— the IF-THEN-ELSE construct specifies the actions that must be
taken if a specific condition, or set of conditions, are all true.

— The CASE construct is an elegant substitute for multiple IP-THEN-
ELSE statements. The CASE construct is used where there are
more than two sets of actions, based on well-specified conditions,
to choose from.

e Jteration or repetition facilitates the same action, or set of actions, to
be carried out a number of times. Two variations are

— The REPEAT-UNTIL construct indicates that certain actions are
repeated one or more times, based on the value of a stated con-
dition.

— The DO-WHILE construct indicates that certain actions are to be
repeated zero, one, or more times, based on the value of a stated
condition. Note that this construct need not be executed, as
opposed to the REPEAT-UNTIL construct that will execute the set
of actions at least once.

Blocking and indentation are used to indicate the beginning and end
of constructs, as opposed to terms such as ENDIF, ENDCASE, ENDDO and
ENDREPEAT, as these give the algorithm too much of a programming look

51

&+
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

and feel. Uppercase terms in the algorithm with italicized bold typeface in-
dicate a variable set that is used in the coding of the algorithm. These sets
are treated in square brackets in the document text, for example [VEHICLE]
indicates the set of vehicles. The row numbers on the left indicate the line
number in the complete algorithm. The algorithm presented in the disser-
tation is aggregated to eliminate unnecessary technical information helpful
during the programming of the algorithm, hence the irregular numbering.

Figure 4.3 describes the capturing of input information. A list of all the
technical field names appear in Appendix A.

1 Capture input information

2 Capture vehicle information in VEHICLES

10 Set average speed as 55 km/h

1 Sort available vehicles

12 Clear and set VEHAVAIL as an available vehicle matrix

13 for all available vehicles in VEHICLES

4 Add vehide to VEHAVAIL

15 Sort VEHAVAIL in ascending order on <volumetric capacity>

16

7 Capture general CUSTOMER information

18 Capture customer information in CUSTOMER

2 for each entry, /7, in CUSTOMER

30 if CUSTOMER has multiple time windows

3 Split customer into customer(i).tw artificial customers

2 Add artificial customer to ARTIF

3 Capture the time window information for each ARTIFicial customer
34 else

35 Add the CUSTOMER as a single ARTIFIcial customer

* Capture the time window information for the single ARTIFicial customer
37 Calculate the DISTance matrix between all the AR7IFicial nodes

Figure 4.3: Capture input information

The depot is captured as the first customer. If a customer specifies more
than one time window, the customer is artificially split into n customers,
each with a single time window, where n indicate the number of time win-
dows specified. Once the customers are split artificially, reference will only
be made to nodes — with each node indicating an artificial customer in the
[ARTIF| set. Figure 4.4 describes the initialization process.

3 Initialise algorithm

0 Set the ROUTED matrix as empty
41 for all the ARTIFicial nodes, except the depot (node 1)
a2 Add the ARTIFicial node to the UNROUTED matrix

Figure 4.4: Initialize algorithm

52

&
UNIVERSIT
UNIVERSI
s

If there are vehicles available, a new tour is created. A tour can be made
up of one or more routes. The initialization of a tour involves assigning the
smallest available vehicle to the tour, and matching the tour capacity to
that of the vehicle. This is indicated in figure 4.5.

« Initialise TOUR

4 Set the TOUR index (¢) to 1

L Establish the starting time for the TOUR

a7 Starting time for the current TOUR is &5 + 5,

48 (It is assumed that vehicles are not loaded at the beginning of the depot's time window)
L Assign vehicle to TOUR

50 Set the first vehicle in VEHAVAIL as the current vehicle for the TOUR

5L Update vehicle availability

52 Locate the current vehicle in VEHICLE

53 Set vehicle(k).availability = 0

5 Recalculate VEHAVAIL

Figure 4.5: Initialize new tour

Once a tour has been created, one or more routes are established to make
up the route. The iterative route creation process starts with the initializa-
tion of a new route. This entails assigning the route to the current tour,
adding the depot as first and last node on the route, and identifying and
inserting the seed customer: the first customer, other that the depot, to be
added onto the route. The theory behind determining the seed customer
has been elaborated upon in section 3.3. The algorithmic procedure for
route initialization is indicated in figure 4.6. Nodes in the [UNROUTED] set
are evaluated for insertion on the partially constructed route. The iterative
route-building procedure is indicated in figure 4.7.

The concept of scheduling a vehicle to complete multiple routes (referred
to as double scheduling), is difficult to implement in solution algorithms. The
procedure followed in this dissertation to determine multi-route feasibility
in a tour, is indicated in figure 4.8. When a vehicle returns to the depot at
the end of a route, the multi-route feasibility check procedure determines if
the depot’s time window is still open after the vehicle’s capacity has been
replenished /renewed. It might be realistic to add some time to the potential
route to allow the vehicle to at least service one node. The additional time
added, conveniently referred to as minimum route time parameter, is differ-
ent for each environment, and has been set to one hour in this dissertation.
The effect will be that an empty route may be assigned to a number of
tours when the initial solution is presented. To overcome the effect of empty
routes, the final reporting procedure have been adapted to check for empty
routes prior to reporting the initial solution. The procedure in indicated in
figure 4.9.

33

59
60
61
62
63

65

Initialise ROUTE with seed customer
Set ROUTE index (r)to 1
Assign current ROUTE to current TOUR
Establish the starting time for the TOUR
Set ROUTE load to zero

Assign the depot as starting and ending node for the current ROUTE
Select a seed customer from the UNROUTED nodes
Calculate the time window compatibility matrix (TWCM) for all UNROUTED nodes
for each node combination (g,6) where node & is serviced after node a
Calculate the earliest possible arrival at & as arrival_earfiest
Calculate the latest possible arrival at & as arrival_latest
if the earliest possible arrival at 4 is before the latest allowed arrival at &
Calculate time window compatibility (TWC)
TWCy, = min {arrival_latest, 1, } - max {arrival_earfiest, e, }
else
TWC is negative infinity

Calculate the number of infeasible time windows for each UNROUTED node
for each UNROUTED node (/)
Determine how many times in row 7 of TWCM is TWC negative infinity
Determine how many times in column 7 of TWCM is TWC negative infinity
Calculate the total number of infeasibilities by adding row and column count

if there are infeasible time windows for any UNROUTED node
The seed customer is the node with the most number of infeasible time windows
else
Calculate the COMPATIBILITY vector
for each UNROUTED node (a) in the TWCM
row = TWCM(a,:)
column = TWCM(.,a)
compatibility(a) = sum(row) + sum(column) - TWCM(3,a)
The seed customer is the nede with the lowest COMPATIBILITY

Insert seed customer
Insert seed customer on current ROUTE
Update UNROUTED customers
Remove seed customer from UNROUTED
Remove any other artificial nodes related to seed customer from UNROUTED
Update ROUTE load

Figure 4.6: Initialize new route

o4

111
1z
113
114
115
116
uz7
18
119
170

mn

UNIVERSITEIT VAN PRETOR
UNIVERSITY OF PRETOR
Yu R

1
|
NIBESITHI YA PRETORI

A
A
A

Expand partial ROUTE
while UNROUTED is not empty and there are customers that fit into the current ROUTE
Clear the node selection matrix €2
for each UNROUTED node (u)
Clear the node insertion matrix €1
Select the best position to insert node v on the current ROUTE
for each edge (/) on the current ROUTE
Determine feasibility to add node &
Infeasible if either TWC,, or TWC,; is unfeasible
Infeasible if TOUR capacity is exceeded by v
if it is feasibile to evaluate node v between / and j
Update the €1 vector for the insertion positions
Calculate ¢, (fu.j)
Add the ¢, (;u,j) value to CI(m).value
else
Check next edge on current ROUTE
Select the best edge (/%/*) based on the lowest €1 matrix value

Update the €2 matrix for the insertion position
Calculate (7 u,j*)
Add the c2(7% u,j*) value to the €2 matrix

Sort €2 in ascending order
Find first time-feasible node (v*), starting at the beginning of €2
While no u* has been found, and end of €2 has not been reached
Check for time feasibility
if feasible
Identify applicable node as u*
else
Check next element of €2

if a unique &* node has been identified
Insert node u*
Update UYNROUTED customers
Remove u* from UNROUTED
Remove any other artificial nodes related to u* from UNROUTED
Update ROUTE
Update ROUTE load
if new vehicle has been indicated
0% >0
Find the smallest available vehicle to service Q™"
Update VEHAVAIL
Change the availability status of the current vehicle to available
Change the availability status of the new vehicle to unavailable
Assign new vehicle to current TOUR
Recalculate VEHAVAIL

Recalculate ROUTE schedule for nodes
Actual start-time at origin (2,) is the start-time indicated for the current route
for each node (/) on the current ROUTE, except the depot at both ends
a; =max{e;,a. +5u *lig}
W, =max {0, e,y -(a; +5; + by)}

Calculate actual arrival at the depot (7 node) at the end of the current ROUTE

8q =dpg *S5ps *lagal
else
Initialize new ROUTE

Figure 4.7: Expand partially constructed route
55

240
241
242
243
244
245
246

247

&

3

A 4

UNIVERSITEIT VAN PRETOR
UNIVERSITY OF PRETOR
Yu R

1
|
NIBESITHI YA PRETORI

A
A
A

Expand TOUR
Determine multi-route feasibility

Check the actual arrival time at the depot of the previous ROUTE of the current TOUR (a,)

if @, +5, +1 hour <1,™
then feasible
else
infeasible
if feasible
Initialize new ROUTE
else
if the last ROUTE of the TOUR has no nodes other than the depot
Eliminate ROUTE from TOUR
Initialize new TOUR

Figure 4.8: Checking for multi-route feasibility

Define ORPHANs
if UNROUTED is not empty
Assign all elements in UNROUTED to ORPHANS
Clear UNROUTED

Report initial solution
Calculate the OBJective function value for the initial solution
Report initial solution
for each TOUR
Report all TOUR and ROUTE information

Figure 4.9: Report initial solution

56

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

3

A 4

4.3 Conclusion

The chapter introduced the model development process. The objectives
and criteria are stipulated in the mathematical definition of the problem.
This chapter elaborates on the system analysis and synthesis. The proposed
initial solution algorithm is presented at a high level, with selective detail
given in Structured English. The complete algorithm is presented in Ap-
pendix B. Chapter 5 discusses the implementation, and the results, of the
proposed algorithm as coded in MATLAB.

57

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Binder1.pdf
	Scan0001

