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CHAPTER 1

INTRODUCTION

arings Bank, one of the oldest British banks, went bankrupt in February 1995. A sum
B twice as large as Barings’ capital was lost on the derivatives market by its futures trader,
Nick Leeson. A year later, Daiwa Bank lost $1 billion, and a few months later, Sumitomo
Corporation lost $1.7 billion in the copper market. In 1997, National Westminster Bank lost
£90 million on options trading. In 1998, Long-Term Capital Management had to be bailed out
due to its over-exposure in emerging markets. Several other companies worldwide have

suffered large losses over the past few years because of their speculative trading in derivatives.

Since most of the losses in these cases were incurred as a result of derivative positions, these

collapses caused great concern in financial markets over the world. Derivatives have now
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been recognized as dangerous instruments. Nevertheless, there has been explosive growth in
the derivatives market over the past 25 years. This growth is related to the fact that the trade
volume of derivatives is usually much higher than that of the underlying instruments.
Notwithstanding various losses by banks and funds which have failed to manage the financial
risk adequately, derivatives can be successfully used to hedge or reduce financial risk or to
create highly leveraged speculative positions in the market. According to the office of the
Controller of the Currency (OCC) (Dashtidar, 2000:11), in the third quarter of 1999, the
notional value of derivatives held in US commercial banks rose to a record high of $35.7
trillion. One of the most dominant forms of derivatives is interest rate contracts, representing

79% of all activity.

This study concentrates on the South African fixed income market, where the bond market
ranks as one of the most liquid emerging bond markets in the world, with a daily turnover in

excess of R40 billion ( www.bondex.co.za ). The South African fixed income market ranks in

size in the top 25 fixed income markets in the world and ranks second in terms of market

turnover related to market size (www.bondindex.co.za ).

1.1 Aim of the study

The enormous impact of derivatives in the financial world necessitates the use of accurate
valuation and risk-forecast models. The aim of this study is to focus on the South African fixed
income market and evaluate current models and procedures. In order to add value,

alternatives are proposed where necessary.

All valuation models depend on certain assumptions and therefore have certain limitations.
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However, many participants in the derivatives markets use a ‘black box” approach, without
realizing the consequences of applying an inappropriate model. Both the awareness of riskand
the challenge of making a profit encourage traders to take positions that correspond to their
appetites for risk. As a trader, one soon realises the benefit of having more accurate valuation
models which enable one to take on more risk with greater confidence. A better understanding
of the pricing model, the risk and variables involved gives traders more confidence which, in

turn, allows them to take bigger positions.

When one realises how imperfect models are, choosing a viable valuation method becomes
difficult. Itis for this reason that the study analyses the existing models and procedures used
in the South African fixed income market, and, where applicable, tries to find an alternative.
Throughout the study there is an attempt to reconcile the knowledge obtained by means of

theoretical research with the practical problems experienced in the market.

Although many academics and practitioners have developed methods for valuing and
managing interest rate instruments and derivatives, little work has been done with regard to
the specific characteristics of the South African fixed income market. The aim of this study is
to address certain inefficiencies experienced in the South African fixed income market in the

area of term structure analysis and bond option valuation.

1.2 The term structure of interest rates

Since the fixed income market is entirely based on the term structure of interest rates, it
remains the most important input in the pricing of any fixed income derivative security. (It
also influences other derivatives, as it determines the discount factor for discounting the

expected payoff.) Analysing the yield curve is thus a very important aspect of decision-

3.
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making for managers of fixed income portfolios and hedge funds. The yield curve contains
information about future market expectations of interest rates. An essential aspect for
managing or trading fixed income instruments is to understand the derivation of a zero-

coupon yield curve, a swap curve and a forward curve.

In South Africa, where only coupon bonds are traded, the Johannesburg Stock Exchange (JSE)
Actuarial Yield Curve has been conventionally accepted as the benchmark yield curve. This
curve is available on a daily basis and is seen as the South African yield curve. Itis, however,
merely a fit through the yield-to-maturities of South African government bonds. Itcan be seen
as an approximation to a par-bond curve, although the bonds are rot par-bonds. A zero-

coupon yield curve gives a homogeneous function of yield against term-to-maturity.

The South African bond market trades mainly in coupon bonds, and little or no data is
available for zero-coupon instruments. Thus it is necessary to do bootstrapping. This is,
however, a time-consuming process. When one uses this method every day, one becomes
convinced that there has to be a quicker and more efficient way to get the same, or even better
results. An iterative bootstrap method was therefore developed. It starts with a first guess for
the zero-coupon yield curve and then converges to the actual zero-coupon yield curve. Since
the publication of this method in RISK (Smit & Van Niekerk, 1997), the technique has been

used by several practitioners and academics both locally and internationally.

1.3 The bond option market

The South African bond options market is largely driven by the over-the-counter (OTC)
market. The options are mainly American options which can be early-exercised. The

importance of understanding the risk characteristics of an option and realizing their profit

4-
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potential serves as an incentive to search for alternative ways of valuing options in order to use
all opportunities to optimize profits. Using the Black model (Black, 1976), which was

developed for commodity futures, was clearly insufficient.

This study discusses the theory underlying the most popular bond option pricing models, and
concentrates on the Hull-White model (Hull & White, 1990). The numerical solution of the
Hull-White model applied to South African OTC bond options is discussed in depth. The

reasons for choosing the Hull-White model are the following:

e It incorporates mean reversion of interest rates.

. It determines the pull-to-par effect analytically.

. It is exactly consistent with the initial term structure of interest rates.
e [t incorporates the early-exercise value of American options.

. It addresses implicitly the risk of a change in the cost-of-carry.

The Hull-White model has had to be adjusted for its application to South African bond options,
as these options are traded on the yield-to-maturity of the bond, rather than the price. Because
the numerical solution to the Hull-White model uses the current term structure of interest rates
as an input, the zero-coupon curve is used as an input. Although the options are American,
holders of these options seldom early-exercise them, since it is generally believed that the time-
valueis lost if onedoes so. The conditions in which OTC bond options are early-exercised, are

therefore discussed in more detail.

The complexity of the Hull-White model encouraged the development of a simplified model
for exchange-traded options (see Chapter 7). The new model could also stimulate bond option
trade on the South African Futures Exchange (SAFEX), a market which is illiquid at present.

Anexchange-traded bond option has no short-term risk-free rate component, as the underlying
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instrumentis the bond future, and interestis earned on the margin account. Therefore, instead
of using the short-rate or the price of the bond as the stochastic variable, itis possible to assume
that the yield-to-maturity of the bond follows a Brownian motion. A pricing model for options
on the future yield of a bond is in many ways similar to the Black model (see Chapter 5).

However, the yield-based model addresses most of the disadvantages of the Black model.

1.4 Structure of the study

The study is structured as follows: Chapter 2 discusses the most important concepts of the
valuation of derivative securities. In order to understand the valuation of derivative securities
sufficiently, it is necessary also to have a good grasp of the concepts of arbitrage, martingales
and partial differential equations. The remainder of the study is divided into two fields of
research: first, the term structure of interest rates (Chapters 3 and 4) and, second, bond option

valuation models (Chapters 5, 6 and 7).

Chapter 4aims to develop animproved bootstrapping method in order to obtain a zero-coupon
yield curve. A yield curve gives the relation between the yield of a fixed income investment
and its term. The zero-coupon yield curve is the basis for pricing all vanilla products (bonds,
swaps, forward swaps, etc.) in the fixed income market and serves as an important input in

pricing bond options using a no-arbitrage model.

Chapter 5 then discusses several existing bond option valuation models. In Chapters 6 and 7
there is an attempt to improve on existing methods to value South African bond options. In

Chapter 8 there is a summary of the findings, followed by conclusions and recommendations.
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CHAPTER 2

DERIVATIVE SECURITIES - THE THEORY

he valuation of derivative securities has drawn the attention of mathematicians across
Tthe world and has become a field of research for many. In order to obtain the fair value
of any derivative security, it is important to understand the concepts of a stochastic process,
arbitrage, martingales and partial differential equations. In this chapter, the fundamentals of

option pricing theory are briefly set out.

Since 1973, the Black-Scholes model (Black & Scholes, 1973) has been the most popular option
pricing model. This model can be adjusted in order to price options on various underlying

instruments. The theory of option pricing can be applied to derive the two Black-Scholes
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option pricing formulas for call and put options, given by equations (19) and (20) (in this

chapter).

2.1 Basic theory

2.1.1 Introduction

One could consider a probability space (¥,.7,P), where ¥ is a sample space; .7 is a o-field on
¥, and .# consists of a collection of subsets of ¥, called events; and P denotes a probability
measure on (¥,.#). The measure P is a countable additive set function assigning a non-

negative number P(A) to each set A € V.

A random variable, called u, is a measurable mapping of ¥ into K. A sequence (i) of random
variables is called a discrete time stochastic process. Let.7, be the set of events known at time
t,. A filtration of the probability space is an increasing sequence of o-algebras F,c Foc ...c

F .7,

If each u, is measurable with regard to the corresponding member of 7, of the filtration, then
the stochastic process is said to be adapted. This means that u,,is measurable with regard to 5,
but not necessarily in respect of .#,.;. If an event %, is not known, then one can find a 5, ,
measurable approximation to 1,. This approximation is denoted by E(u1,| #,,,) and is called the

conditional expectation of u, in respect of 7, .

An adapted sequence (1,) of random variables is predictable if u, is 7, , measurable for all n >

1.
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Theintegrablerandom variables are the subset of random variables for which the integral with

regard to P exists, and

j‘udP < o

The integral of u is the unconditional expected value, denoted by E(x). For any event Q in &,
and By (the set of points in ¥ for which Q occurs), B, € 7. The expected value may be defined
as follows:

E(Q) = P(By)

Assume that the price S, of an asset is a stochastic variable and follows an Ito process described

by the following stochastic differential equation:

ds, = p(Sdt + o(S,HdW 1)

where W is a Wiener process with a drift rate of 0 and a variance rate of 1.0. A variance rate
of 1.0 means that the variance of the change in W in an interval of length T equals T. The
variable S, has an expected drift rate (average drift per unit time ) of # and a variance rate

(variance per unit of time) of ¢ and satisfies the equations

P}'p[dt<w =1

P[j odt < =| = 1

o

If N assets are traded in a market and the i-th asset is defined as a risky asset and priced at S ,f
attime t, the riskless asset can be defined as an investment at the risk-free rate, r, which gives

apriceof S’=e", attimet, where S,’=1. This is the ‘zero-th’ share. The market price of all

Eref
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assets is given by

5. = {8).8%. L8N

A trading strategy is a predictable N-dimensional stochastic process,
0 4 N
®, = @ g a0 )

denoting the holding or position in each asset at time . The value of a portfolio I at time ¢ is

given by the following equation:

N
0.0 Han
O = @):'St =4, 5 + Zﬁ;‘h S (2)

For two different periods in time, the strategic position of a portfolio is given by the equation

@0, 0<tc<

tTle, t<tst,

b
The change in value of the portfolio at time ¢, is therefore

©, - )5

b

If this product is zero, the portfolio is defined to be self-financing or is called a self-financing

trading strategy. The strategy is represented by the following equation

8,:(S, - S) = 8,'S, - 0,5

£ iy 00

or, generally

H’m - H‘x - ®‘£I(S‘m

- St‘-)
A self-financing trading strategy in continuous time is therefore a strategy where

-10-
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t

Ht - HU = f®tdsn (3)
0

A strategy @ is admissible if it is self-financing and if II,(®) > 0 for any t. An admissible
strategy with zero initial value and non-zero final value is called an arbitrage strategy. In such

a strategy a riskless profit can be made, without initially investing anything .

A derivative security is defined as an .#-measurable random variable u(T). The derivative is
attainable if there is a self-financing trading strategy ©, such that II(® ) = u(T) with a
probability of one. This self-financing trading strategy is then called a replicating strategy. If
all derivative securities in an economy are attainable, the economy is called complete. If there
are no arbitrage opportunities in an economy, the value of an attainable derivative u(T), is

given by the value of the unique replicating strategy.

Any tradable asset which has a strictly positive price (and pays no dividends) for all ¢ € [0,T]
is called a numeraire. Generally, the riskless money-market accountis the numeraire, although
the choice of numeraire is arbitrary. The price of any tradable asset (§) can be denominated

in terms of a numeraire, for example S°. The relative price is denoted by (S7)’ = §7/5°.

2.1.2 Markov chains

If 5, is an Ito process satisfying equation (1) and f(-) is any bounded function, and if the
information set .#, contains all information about S, until time ¢, then S, satisfies the Markov
property, provided that

E[f(S,..)| #,] = E[f(5,,)|S,], where i > 0

A Markov chain is a stochastic process where the only information useful for predicting future

J1-
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values is the current value. The stochastic process S, is a Markov chain if it satisfies the

Markov property.

2.1.3 Brownian motion

A Brownian motion is a real-valued continuous stochastic process, (5,), t € [0,T] (also called

a Wiener process) with independent increments, such that the increments

have a normal distribution with mean zero and variance |, - t|:

[2

5, = 5, = NO&,~t,)

with S, =0.

A Brownian motion is standard if

S,=0 E(S)=0 E(S}-=t

In this case, the density function of a variable x is given by

f@) = — exp[ —x—z]
2t 2t

2.1.4 Martingales

Consider a filtration {.#,},,,, where any information is generated by all observed events up to
time t. Assume that S is a stochastic process where S is adapted to the filtration {#},., and for

all f we have

E(|S®)]) < =

-12-
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A martingale is defined as a zero-drift stochastic process. Therefore, S(¢) is a martingale if

E(5(t)|.7)) is defined and for each ¢ and & > 0 the following relation holds

E(S(t+h)|.F) = S()
If

E(S(t+h)|.#) < S(t)
S(t) is called a super-martingale and if

E(S(t+)|.F) = S(t)
S(t) is called a sub-martingale.

Consider the set ® which contains all probability measures P* such that

° P"and P have the same null-sets and are therefore equivalent; and
. the relative price processes (S ')’ are martingales under P" for all i, therefore
E*ISH(D)|F] = (S)(1) fort < T (4)

The measures P’ € © are called equivalent martingale measures.

Derivative securities are defined as those securities for which the expectation of the payoff is
well-defined. A derivative security is therefore an .7 -measurable random variable, u(T), such

that

EP[[a(D)]] < =

A continuous trading economy is free of arbitrage opportunities and every derivative security
is attainable if ® contains only one equivalent martingale measure. This was proved by

Harrison and Pliska (1981).

18-
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For a given numeraire M with a unique equivalent martingale measure P,,, the value of a self-
financing trading strategy

II,(®,)

IL'e) - MO

is a Py, -martingale. For a replicating strategy @, that replicates the derivative security u(T),

it holds that
EPM{ u(T) 3_) ) EP-‘{ I,(®,) 9_]
Mm(Ty| ! MT) |
RUCH
- M
Therefore,
m@) = M) ™| 4D ‘F] 5
©) = Mo (XD |5, ®

2.2 Principles

2.2.1 Girsanov’s theorem

Girsanov’s theorem can be used to determine equivalent martingale measures by changing the

probability measure and therefore the drift of a Brownian motion.

Theorem: For any stochastic process w(f) such that with a probability of 1,

"w(s)%ds <
/

0

one can state that under the measure dP * = pdP the process

-14-
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t
W*(t) = W(t) - f w(s)ds
0
is also a Brownian motion, where the Radon-Nikodym derivative is given by

t t
p() = exp{ [o(E)dus) - % [o(syds
0 0

It therefore follows that

AW = dW™ + w(t)dt (6)

2.2.2 Ito’s lemma

Theorem: X, is an R-valued Ito process if the following relation holds for all £ > 0,

t t
X, =X, + fpds + fodWS (7)
0 0

where p and o are functions of X and . This stochastic integral is usually interpreted as the

stochastic differential equation

aX(t) = pH)dt + o(t)dW() )

Then, for a sufficiently differentiable function, (t,X(#)) - f(,X(#)) of the process X, for which the
partial derivatives are continuous with respect to (f,X(t)), the function f has a stochastic

differential given by the following equation ( Bjork, 1999)

= ..ai + g. + o Zd_zf + g
af(t,X(t)) UaxdW(f) [uax ~ 2 at]dt ©)

-15-
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The Ito-formula can also be written as follows:

AX) = %) + [+ 2[R AR, (10)
0 0

where, by definition

t
(X%, = fchfdu
0

2.2.3 The Feynman-Kac proposition

If one assumes that fis a solution to the boundary value problem

Frot v ot o Loz OF _ ,
5D AT SN = of . AT - o)

and one furthermore assumes that the process o(s,Xs);—F-(s,XS) is in &2, then f can be
X

represented as

fitay = e"TIE, L [O(X)] 11)

where X satisfies the stochastic differential equation
dX, = p(s,Xdt + o(s,X)dW,

X, =%

t

The process is fully described by Bjérk (1999). L
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2.2.4 The Ornstein-Uhlenbeck process

If X solves the stochastic differential equation

dX, = -1X,dt + dW,
2

then X is an Ornstein-Uhlenbeck process. Such a process has the normal distribution as its

invariant measure. =

2.3 The Black-Scholes model

2.3.1 An exact solution for European options

In the Black-Scholes economy itis assumed that there are two tradable instruments: the riskless
money market instrument M(t) (where M(0) = 1) and a stock S(f). The value of the money
market instrument is strictly positive and can therefore serve as a numeraire. Since the money
market instrument is assumed to be riskless if it has a constant risk-free interest rate and no

stochastic term, its price is described by

dM = rMdt (12)

One can assume that the stock price follows a geometric Brownian motion

dS = pSdt + oSdW (13)

with constant drift u and volatility o.

Since the stock price can be expressed in terms of the numeraire,

-17-
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5.5
M
it follows from Ito’s Lemma that:
MiS _ Mg
ds’ = M. “Sdf « Baw
M? M

== By usdt —dW
M

(n - r)S’dt + oS’'dW

For ¢ # 0 Girsanov’s theorem can be used to turn the relative stock price into a martingale.
Therefore a unique measure P is used, where 6P * = pdP with w(t) = -(p - 1)/0 , to

obtain

Therefore,
ds’ = aS"dw* (14)
The stochastic process S’ is therefore a martingale, and, consequently, this economy is

arbitrage-free and complete for o = 0. The original price process S follows, under the measure

P, the process

ds = pSdt + GS(dW‘ o =47 (15)

or

dS = rSdt + aSdW* (16)
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Equation (16) shows that under the equivalent martingale measure, the drift u is replaced by

the risk-free rate r. The equivalent form is

t t

S(t) = 5(0) + [rS(wdu + [oS@)AW" (17)
0 0

If

fS) = mn(S)

where §, is an Ito process and a solution of equation (17), and the Ito formula is applied to this

equation, the following equation results:

5

0 u 0

f.dSu ! 202
n(S,) = (S, + j— - —f — | 0*S, du

Using equation (16), it follows that

t t
n(Sy) + f(r - 02/2)du + fodW'
0

0

n(S))

]

n(Sy) + (r - %oz)t + oW"

Consequently,

S(t) = S(0) exp[(r - %oz)t + gW* (18)

is a solution of equation (17), and therefore a solution of equation (16). The random variable

W'(t) has a normal distribution with mean 0 and variance ¢.

If one defines a contingent claim of maturity T by giving its payoff # >0 , which is .7, -

-19-
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measurable, then a European call option on the underlying price of the stock, S, with strike K,

at the exercise time T has a payoff of
w(T) = max{S(T) - K,0}

In this case, u is a function of the underlying price at time T only. Some options depend on the
whole path of the underlying asset, for instance Asian options. From equation (5) it follows

that the price of a call option ¢, at time 0 is given by
¢ = E[max{S(T) - K,0}/M(T)]

If one uses the explicit solution of S(T ) given in equation (18), one gets

1s?

c= [e Tmax{S(0)e(r = o/2)T+ox _ K,O}j/_ dx
2xT

—co

The payout is non-zero if

S(O) e(r - 0%/2)T+ox _ K>0

L) r - =09T - ox
K 2

K
X > -

[ Qn(&) + {r - %oI)T

o

Therefore, it follows that
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1:2
e -rT (r-o¥2)Teox _ gy 2"
¢ f_ n(S(0)/K) + (r-0%/2)T e "{5(0)e K},/zﬂ" e
[+
S0) [* M
= g e x
f (SQ)/K) + (r-0%/AT
> 4
axt
_ T @ 1 xr
€ f w(S(O)/K) + (r-o¥/AT  por ¢ ax
a
=1 - I,
If one changes variables in I, and I,, this results in
(S0)/K) + (r+0%/2)T 12
-=p
I =1+ S(0) /T —e " dp
1 N V=
and
n(S(0)/K) + (r-0%/2T i i
R -—t)
I,=1+e K ovT e ! do
2 o n
Therefore,
¢ = S(O)N(d) - e ""KN(d - oy/T)
where

En(ﬂ] +(r + 09T
i} K :

d =
oyfT

(19)

which is the well-known Black-Scholes call option pricing formula. The price of a put option

is given by

p = e KN(-d + oT) - 5(0) N(-d)

Ha

(20)

b u 2o
WLiursyey
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2.3.2  The Black-Scholes partial differential equation

In the case of path-dependent options, one cannot use the exact solution, and therefore it is
necessary to use a numerical solution of the Black-Scholes partial differential equation. If one
assumes that a stock price, S, follows a Wiener process, where the drift and volatility are

dependent on the level of the stock price,

dS = pSdt + oSdW 1)

Then the variable S has a lognormal distribution, where (n S follows a generalized Wiener

process.

If fis the value of a derivative security dependent on S, it follows from Ito’s Lemma that

F . . 12028 of
g = |psL + &L 1228 |y L 05T aw 22
f [psas Yo 277 ) T %% =

The discrete versions of equations (21) and (22) for a small interval Af are

AS = pSAt + aSAW (23)
and
o . 1 202d% of
Af = —_— 4+ = + —0g°§°—= | At + 0S—=—AW 24
f [psas at 2 ds? as )

where AS and Af are the changes for a small time interval At. If one chooses a portfolio of the

stock and the derivative as follows:
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. short 1 derivative, and
o long K shares,

then the value of the portfolio, I, is

I =-f+KS

and the change in the value of the portfolio in time At is

ATl = -Af + KAS

Substituting equations (23) and (24) gives

2
All = - usif v il o lozszd—f Af - GSa—fAW + KpSAt + KoSAW
o5 ot 2 ds? oS

Choosing K = aié eliminates the Wiener process and results in

Z
ALl = | - & - 19F 262 4y
of 2582

(25)

(26)

(27)

(28)

The portfolio is therefore riskless for the short period of time At. In order to agree with the

principle of no-arbitrage, it follows that the portfolio should earn the risk-free rate, 7, in this

period:
ATl = rIIAt

Substituting for AII and II, gives

[if + lﬁgzsz}At = v[f - a—fS]At
ot 2552 as

-23-
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or

%r + rsai); + %ozs 2:%}; = #f (29)
Equation (29) is known as the Black-Scholes partial differential equation (Black & Scholes,
1973). When Black and Scholes published this equation in 1973, they made a major
breakthrough in the pricing of any derivative dependent on non-dividend paying stock.
Equation (29) can be solved using the Feynman-Ka¢ proposition, to give the exact solution in

Section 2.3.1.

2.3.2.1 Black’s model

In 1976, Black published a paper describing an adjustment to the Black-Scholes model in order
to price options on futures. Options on commodities, say beef, can be difficult to deliver at
expiry of the option, therefore it is easier to have an option on the future, and have cash
settlement at expiry. Since options on futures tend to be more attractive to investors than

options on spot prices, Black’s model became widely used in the option market.

If one assumes that the underlying instrument of the option is the future price, F, of the stock
on the expiry date of the option, and one assumes that the futures price, F, follows a geometric

Brownian motion, then

dF = pFdt + oEdW (30)

Since f is a function of F and ¢, it follows from Ito’s lemma that

-24-
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e 2
af = [ wrL + Lo 12p2 8 g 4 orSaw (31)
oF ot 2 dF? oF

Consider a portfolio consisting of
. short one option, and

. long K futures contracts.

Since it costs nothing to enter into a futures contract, the cash value of the portfolio at t = 0 is

given by the price of the option contract

The wealth of the portfolio can change in time At by the amount
AIl = KAF - Af

Using the discrete versions of equations (30) and (31), it follows that by choosing K = aii ,

~2
Al = [ - - 19L gp2| a (33)
ot 23F?

This change is riskless, therefore to ensure that the arbitrage-free assumption holds, the return

should be equal to the risk-free rate of interest

ATl = AIAt (34)

If one substitutes equations (32) and (33), this gives a partial differential equation for the price

-25-
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of an option on a futures price:

o , 1 2

= + —— = _g“F*“ =

at  25r? ! (35)
In the case of exchange traded options where a margin is paid, AII in equation (33) equals 0,

and

2
i + la_fozpz z i)

ot 232 &)

This equation can be solved analytically for European options and numerically for American

options.

2.4 Numerical methods

The exact solution of the Black-Scholes model gives the price of a European option, which can
only be exercised on the expiry date of the option. American options can be exercised at any
time before or on the expiry date of the option. This implies that whenever the intrinsic value
of the option is more than the value of the option, it would be profitable to exercise the option
early. The problem with the exact solution of the Black-Scholes model, as set out in section 2.3
above, is that it does not provide for American options with an early-exercise value. Two
numerical methods that solve the partial differential equations in Section 2.3 and which

support American options are the binomial method and the finite difference method.

-26-
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2.4.1 The binomial method

If S is the price of a non-dividend paying stock, and fis the value of an option on the stock, and
the life of the option is divided into intervals of length At, then in each time-interval the stock
price moves from its initial value of S to either Su or 54 with a probability of p and 1-p

respectively. This process is shown in Figure 2.1.

In a risk-neutral world, the expected rate of return from an investment should be the risk-free

rate, . Therefore

Se™ = pSu + (1-p)Sd

which gives

e™ = pu + (1-p)d (37)

Figure 2.1: The binomial tree for stock price movement

27.
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The variance of a parameter S is given by

Var(S) = E(S* - [E(S)]? (38)

where
Var(S) - SZleAt(eozAr = 1)
E(S) = Se™
E(S? = pS*u?* + (1-p)S%d*
or

leAr + oAt - puz + (1 _ p)dZ (39)

Equations (37) and (39) give two conditions for #, d, and p. Cox, Ross and Rubinstein (1979)

proposed a third condition:
1
= —
d
These conditions imply that:
p — a__d
u-d
u = eVM
d=eV™
where g = ™

A tree of stock prices can be constructed, starting at time zero, and calculating the possible

stock prices at time At, 2At and so on. In general, at time iAf, the i+1 stock prices are:
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SuldT =010

The value of the call option at time T is given by
max(S; - X, 0)
and for a put option by

max (X - 57, 0)

The value of the option is then calculated by working back through the tree. In a risk-neutral
world, the value of the option at time T - At can be calculated by discounting the value at time
T at the short term rate r. The same is done for the following time steps. For American options
one must check at each node that the early-exercise value is not bigger than the value of the

option.
2.4.2 The finite difference method

A finite difference method solves a partial differential equation by converting it into a set of
difference equations, which are then solved through an iterative process. Consider the

differential equation for the value of an option:

2
a_f + rs_aj.: + lo‘zsza_f = 7:f

ot as 2 as? A0

Since the time t and the stock price S are the two variables in equation (40), N equally spaced
time intervals can be chosen between zero and T, the expiry date of the option, and M price
intervals can be chosen between zero and S,,,,. This results in a finite difference grid of (M+1)
x (N+1) points. The (i,j) point corresponds to time iAt and stock price jAS and f;; is the value

of the option at the (i,f) point.

-29.
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2.4.2.1 The Implicit finite difference method

The value ofg—jsi at (i,j) is given by an average of the forward and backward differences:

of _ fi,j+1 —fi,j-l

S 41
as 2AS &1
The value of 2—{ at (i) is given by the forward difference approximation:
g = 'f_"‘Lf i f;}f (42)
ot At
The finite difference approximation for i{- at the (i,7) point is
és
a%f - f;',ja-l - f;; B fi,j-1 - f:; AS
852 AS AS
or
&f _ S = Zfi,f "'fi,,-'—l 43)

8s? AS?

Substituting equations (41), (42) and (43) into equation (40) gives, after some manipulation

Ailij1 * bjfi,j Gl T fr‘+1,j (44)

where

85
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o Ypiap - 1252
a, = Er;:ﬁ.t S At
b =1 + oj2At + rAt
¢; = ~—rjAt - %ozjzAt

The value of a put option at time T is max[X - S;, 0] or max[S; - X, 0] for a call option , therefore

fy; = max[k(X - jAS),0] j=01,.,M (45)

where k = 1 for a put and k = -1 for a call option.

2
a,
RV e ® ® . ° ®
o
2
)
[ ® L ] L ] [ ] L]
[ ] ® (i) . °
( © ° ° ® °
2AS ¢ ° ° ° ° ® °
AS ¢ ° ° ° ¢ ® ®
0 A-t 24 ) ) 1 Time

Figure 2.2: Finite difference grid
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When the stock price is zero or tends to infinity, the delta of the option tends to zero or 1
respectively. In order to find the value of the option at zero and infinity, one assumes
therefore that the second derivative at these points is approximately zero. Hence, when the

stock price is zero,

O o fatfo -2y
352 AS?

or

fi,ﬂ = 2fi,1 _ff,z t=0,1...,N (46)

In the same way, when the stock price tends to infinity:

fim = Yipr ~ fima t=01,...N (47)

Equations (45), (46) and (47) define the boundary conditions of either a put or a call option.
The boundary conditions together with equation (44) give (M - 1) equations which can be
solved for the (M - 1) unknown values for the (N - 1)-th time step. Ateach time step, the value
of f can be compared to the early-exercise value. Eventually, the value for fat time ¢ = 0 for the

particular spot rate is obtained.

In order to get an accurate approximation of the value of the option, a large number of time
steps should be used, which can be computationally time-consuming. The approximate value
for a very small time step can be obtained by solving the problem for two different time steps,

say At=0.1and At =0.01. These values are then linearly extrapolated to give an approximate

39,



University of Pretoria etd — Smit, L (2005)

value for At ~0.

The control variate technique can be used when there is an analytic solution to a similar
problem, as with a European option. The approximation error is therefore calculated and can
be used as a correction term to adjust the numerical value obtained for problems where there

is no analytical solution available, for instance, for American options.

An explicit finite difference method can also be used if the implicit scheme is found to be time-
consuming. The explicit method is similar to a trinomial tree approach. Unfortunately, often
one or more of the two probabilities are negative, which can result in instability and
inconsistencies in the solution. For the purposes of this study, an implicit finite difference

method which is unconditionally stable is used.

This chapter provides the basic theory for pricing derivative securities. It forms the basis for
pricing bond options in Chapters 5, 6 and 7. Before one can value options on interest rates
accurately, it is, however, necessary to understand the underlying instrument. Therefore,

Chapters 3 and 4 discuss the theory of the term structure of interest rates.
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CHAPTER 3

THE TERM STRUCTURE OF

INTEREST RATES

nterest rates play an important role in the economy, whether on the global or national level.
IIt is both a determinant and a result of economic growth. The interest rate term structure
is the most importantinputin pricing almost all fixed income instruments. The term structure,
or yield curve, provides a way of measuring the relationship between the rate of interest, or
yield and time to maturity. The interest rate associated with an investment gives the return on

that investment.

Fixed-incomeinvestors have several alternative securities toinvestin. In choosing the security

toinvestin, they consider the following three factors: return, risk and liquidity. Thelonger the

-34-
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term-to-maturity of the instrument, the larger the price risk. Unless there is a strong
expectation that interest rates are going to fall, investors would only invest in a longer-term

security if the return is higher. This usually leads to an upward-sloping yield curve.

There are three main theories that are used to explain the shape of the yield curve (Bodie, Kane

& Marcus, 1993), namely

. the expectations hypothesis;

. the liquidity preference theory; and

. the market segmentation and preferred habitat theories.

The expectations hypothesis states that the forward rate for a period in the future equals the
market consensus expectation of the future interest rate. Therefore, forexample, the six month
interest rate is determined by the current three month interest rate and the expectation of the
three month rate in three months time. The yield curve is therefore determined by expected

future changes in interest rates.

Theliquidity preference theory argues that there are more short-term investors than long-term
investors and therefore short-term investors require a premium to induce them to buy longer-
term securities. This implies that the forward rate should exceed the expected spot rate by the
liquidity premium. If the liquidity premium is, however, higher than investors feel is fair, they

would exploit the abnormal profit opportunities — bringing it back to normal.

The market segmentation theory argues that long- and short-term bonds are traded in
segmented markets. Borrowers and lenders tend to operate in different maturity ranges. The
interest rate for a particular maturity is therefore determined solely by supply and demand in

that area of the yield curve. The preferred habitat theory argues, however, that lenders would

-35-
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leave their preferred maturity area if there is significant inducement offered in another area,

thereby eliminating some of the inconsistencies in the yield curve.

3.1 The term structure and forward rates

One could assume that the current time is zero. The T,-year yield given by the term structure
is the interest rate y(T,) on an investment that is made today, lasting for T, years, also known
as the T,-year spot interest rate, or zero-coupon yield. The principal and interest are repaid to
the investor at the end of T, years. The forward interest rate f(T,,T,,) is the rate implied by

current spot rates for the period between year T, and year T, in the future.

It can be assumed that interest rates are compounded continuously. If investors invest1 unit

today, they will obtain a future value of

v = 1'3 ."'(Tr:)Tu

in T, years time.

If investors invest 1 unit today for a period of T, years atarate y(T,), and after T, years reinvest
the money for another (T,,-T,) years at a forward rate f(T,,T,,), the future value after T,, years
would be

v =1¢ y(Tn)TH.eﬂTn'Tm)'(Tm'Tn)
However, if investors invest the money for a period of T,, years at a rate y(T,,) instead, the

future value is

YT Ty
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For the no-arbitrage principle to hold, it follows that

e y(Tm) Tn: =e y(Tn) Tﬂ_eﬂTH’Tm)'(Tm-Tr:)

Therefore the forward rate for the period [T,,T,] is given by

L) y(T?‘H)Tlﬂ & y(TH)TII
Tm - Tﬂ

f(TJ:’Trﬂ)

or

y(T,) - ¥(T,)
Tl - Tﬂ

T

f(Tn’Tm) = y(Tm) ¥ Tn

If there is a continuous yield curve and limits are taken as T,, approaches T, it is clear that
y(T,,) approaches y(T,). The forward rate for a very short period of time, beginning in T, years,

(known as the instantaneous forward rate in T, years), can be expressed as

-~

ar

fUT) = y(@) + T, =

(1

where 7 is called the instantaneous interest rate or short-term spot rate. In the rest of thestudy

this rate will be referred to as the short-rate.

3.2 The term structure and the short-rate

If one assumes that the current time is denoted by #, and as explained in the previous section,
the short-rate, r, at time # is the interest rate for an infinitesimally short period of time At, then
the value of an interest-rate derivative that provides a payoff of h at time ¢, is determined by

the expected risk-free rate of return for the period T = 1, - &:
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Ele™"h] 2)
where 7 is the average value of 7 in the time interval between t and 1,, and E is the expected

value in a risk-neutral world. If P(t, t,) is the price at time ¢ of a discount bond that pays a

maturity value of 1 unit at time 7,, then equation (2) implies that

P(tt) = E[e™] 3)

If y(t,T) is the continuously compounded spot interest rate at time ¢ for a T- year investment,

then
P(ti) = eI (4)
or
1
y(trT) = _t_—f an(t,tn) (5)
From equation (3) it is clear that
1 -7t -t)
y(t,T) = _t - QnE[e ] (6)

n

This equation shows that the term structure of interest rates can be obtained from the initial
value of r at time ¢ and the risk-neutral process for r for t < t,. It is therefore clear that by
developing a model of the risk-neutral process for , the term structure of interest rates could

be modelled.

S
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3.3 The relation between the short-rate, bond prices and

forward rates

If one assumes that the price P(,t,) of a bond is determined by the market’s assessment, at time
t, of the behaviour of interest rates over the life of the bond, and the yield to maturity for the
period [t,t,] is equivalent to the average forward rate for the period, then it follows that the

instantaneous forward rate f|(t,t,) is defined by

.. 1 t:!
y(t,T) = T jt fi(t;v)de

Therefore,

Y
flet) = =[-8yl

n

If the short-rate is defined as the instantaneous interest rate, then

r(t) = y(t,0) = im y(t,T)

T-0

If one assumes that the short-rate is a continuous function of time and follows a Markov

process, then the spot interest rate r follows the following stochastic differential equation:
dr = p(tr)dt + o(t,r)dW (7)

where y(t,r) and oft,r) are the instantaneous drift and standard deviation respectively of the

process r(f).

If a financial instrument’s value P(t,r) is determined directly by the level of the spot interest

rate 7(t}, it follows from Ito’s lemma that

dP = M(t,dt + Z(t,r)dW (8)
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where

2
M(tr) = ll(t,r)z—P Loprd L . BF
T

2(r) - o(t) 2
ar
A locally riskless portfolio IT can be constructed by hedging a derivative P, with a A-amount

of another interest rate derivative P,:
O =Pty - AP, i1)

where P, and P, both follow stochastic processes as described above. The portfolio ITis a linear

combination of these processes:
dll = (M,(tr) - AMy(tr)dt + (Z,(t7) - AZ,(t,1)dW

If one chooses A=Y,/ I, , then the random component in dII is eliminated. Using arbitrage

arguments, the portfolio should earn a riskless return in a small period of time, leading to

dll = rIIdt

Using substitution, the following equation is obtained

M. (t —_El(t’r)M ¢, |dt P (t 2t P (t,1) | dt
= = Ty -
1(&) 0 C & e =, (1) oAé)

Algebraic manipulation gives

M,(t,r) - rP(t;r) ) M,y(t,r) - 1Py(t,r)
2,57 ) %, (1)

which should hold for any pair of derivatives P, and P,. The ratio (M - rP)/% must therefore
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be a function of r and ¢ only, which is denoted by A(r,t). For any derivative security P, it

follows that

aP P , &P
— + (p(t,n) - At a(tr +=0(t)— -1tP =0
5 (BED - AEnon)— + Sotr) - 9)

This equation describes the price of a security in a one-factor yield-curve model and is called

the term structure equation.

The parameters x and o of the short-rate process, and the market price of risk, 4, must be
determined from the market. The former two quantities can be obtained from the process r(#),
while 4 can be determined empirically (Vasicek, 1977) from the equation

g =

L
ot 2
=0

(n - od) (10)

The spot interest rate, 7, can be a function of time and some underlying process , for example
F(t,u). The process u has a normal distribution. This function can take various forms, for
instance, linear, quadratic, logarithmic or exponential. The choice of the function determines
whether the model has a normally distributed fundamental solution. Pelsser (1996) has
proven that the function F(t,u) must be either a linear or a quadratic function in u to give a

normally distributed fundamental solution.

If one assumes that instead of the short-rate, the price of the bond follows a Wiener process (as
described in Black’s model applied to bond options in Chapter 5), then the risk neutral process
for the price P of a zero-coupon bond can be described by the following stochastic differential

equation:

dP(tt) = (P )dE + o(tt )P(LE AW (11)
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The expected return, p, is given in this case by the risk-free rate for that period, since a zero-
coupon bond provides no income throughout the life of the bond. The pull-to-par
phenomenon states that, at the maturity date of the bond, the bond price must equal its face
value. Therefore, instead of constant price volatility, o(f), upon maturity of the bond, the price

volatility should equal zero and it can be assumed that:

t

o(tt) - 0 (12)

tﬂ

The forward rate at time ¢ for the period ¢, to ¢, can be written in the following form:

m[P(tt,)] - m[P(tt )]

ftt b ) = > (13)

Using equation (11) and Ito’s lemma, with g, = 41(P(t,t,)), g, = ®(P(t,t,)), it follows that

o(t,t )2
dg, = |r(t) - 2" dt + o(tt )dW
and
o(tt )
g, =|rt) - dt + o(t,t )dW

It follows that

a(tt ) -o(tt)? o(t,t ) -o(tt
r-eltt) i (t.t,) ") T
2, -t i =

m L

dfitt ) =

It becomes clear that the risk-neutral process for f depends only on the volatility o. If f, =s and
t,, =s+ At and At tends to zero, the forward rate, f(1,f,,t,) becomes the instantaneous forward

rate f{(t,s) and
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af (t5) = c(t,s}ao(t’s)dt _ ao(f,s)dw
as as

The sign of W can be changed without loss of generality, and therefore the equation can be

written as

dfft,s) = o(ts)o(ts)dt + a(t,s)dW (14)

where o denotes the first derivative. Equation (14) shows that the drift is given by
m(t,s) = o(t,s) o (t,5)
and therefore the instantaneous forward rate depends on its standard deviation v(t,s), where
v(t,s) = o (t.s5)

If one integrates o, between r=t and r=s, the result is

j‘ o (1) du

t

a(t,s) - o(tt)

o(t,s)

Therefore, it follows from equation (14) that the drift-term is given by

m(t,s) = o(ts)o(ts)

5

= o(t,5) f v(t,t)dr

f

Since the short-rate r is given by

r(t) = f{tt)

and
f’dﬁ(r,t) = f{tt) - FLO1)
0
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it follows from equation (14) that
t

r(t) = f04) + [o(thio(tr)dt + [o(x)aW (16)
0 0

If one differentiates to ¢, the following process is obtained for r

t

dr(t) = [f10,)dt + f [o(t,t)o,(t,t) + ot,t)ldrpdt
0

(17)

+ fou(t,t)dw dt + [o(t,t)|__JdW
0

This equation gives the stochastic process for the short-rate where the terms containing dt give
the driftin 7, and the last term gives the standard deviation of 7. The first term is in fact the
initial slope of the forward rate curve. The above equation demonstrates the relation between
the stochastic process for the bond price and the process for the short-rate. This conceptis used

in various option pricing models.

3.4 The term structure - coupon vs zero-coupon

A discountbond is an instrument that provides a single cashflow at a time s in the future. The
price of the discount bond is determined by the s-term yield in the market at the time of
purchase. Coupon-bearing bonds pay a stream of certain payments at times (£}, called
coupons, as well as a notional payment at the end of the term of the bond. A coupon bond can
be seen as a combination of discount bonds. The relation between the yield-to-maturity and

the term-to-maturity of discount bonds describes the term structure of interest rates, which are
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used in the pricing of any fixed income instrument. The term structure implies the market

consensus of forward rates and forward curves, often used for hedging purposes.

In term structure analysis it is essential that each observation used as a data point produces a
yield with an unambiguous relationship with the term of the security. This is the case only
with pure discount securities such as zero-coupon bonds. A coupon bond, on the other hand,
can be seen as a composite of pure discount instruments - one for each of the bond’s
remaining cashflows — while an interest rate swap can be seen as a par yield bond.
Opportunities to restore equilibrium between the markets for coupon bonds, zero-coupon
bonds and swaps exist through arbitrage. The zero-coupon yield curve serves as the
instrument to discount the cashflows of any interest rate security, in order to obtain the fair

value of a security when selecting fixed income securities for an investment portfolio.

Consider, for example, a market in which zero-coupon bonds as well as coupon-bearing bonds
are traded. Depending on whether the coupons are worth more (or less) than the actual bond,
participants in the market will either strip the coupons (separate the coupons from the nominal
amount of a bond), or reconstitute the bonds (by re-bundling zero-coupon bonds). The value
of coupons and bonds should be determined from a single curve to ensure that no arbitrage

opportunities occur.

In South Africa the JSE Actuarial Yield curve is seen as the benchmark curve. This curveis a

fit through the yield-to-maturities of all government bonds. It therefore approximates a par-

bond curve. No official zero-coupon yield curve is available in South Africa.
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3.5 Constructing the initial term structure: the standard

bootstrap method

Inliquid fixed income markets, zero-coupon bonds and money market rates are typically used
to construct a zero-coupon yield curve. In markets where a limited number of zero-coupon
bonds are traded, usually, a sufficient number of coupon-bearing bonds are traded to apply
standard bootstrap procedures. In the South African fixed income market, however, only a

limited number of liquid instruments are available to construct a zero-coupon yield curve.

In the South African fixed income market, bonds are traded on a yield-to-maturity basis (Faure
etal., 1991). The yield-to-maturity of a bond can be defined as the internal rate of return of the
investment. When a particular bond is priced using its yield-to-maturity, it is assumed that

all cashflows are discounted at the same yield.

If P, denotes the price of a coupon bond (bond k), and if continuously compounded interest

rates are used, the price for a South African bond is calculated by discounting all cashflows at

the quoted yield-to-maturity:

n-1

P, = 151: Y8 O, 1+ vy)e e, (18)
where, for bond P,
. 1, is the continuously compounded yield to maturity;
. Y, is the periodic coupon paid;
3 tf(k)is the time to a coupon dat;,
. 1 is the number of coupons to be paid to maturity; and
. t,:k) is the term-to-maturity, and there is a repayment of 1 unit at this time.
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The term-to-maturity, t:!k), and yield-to-maturity rates, n,, give an array which serves as the
input for term structure analysis. The ambiguity in the relationship between the yield-to-
maturity and the term-to-maturity may berectified by determining the underlying zero-coupon

yields by sequentially stripping off coupons (Hull, 1997).

3.5.1 Example of bootstrapping

A practical example illustrates the process of bootstrapping. One can assume that the interest
rates for 3, 6 and 12 month periods are known, but after that one only has the yields for
coupon bonds maturing in 1.5 years, 2.0 years and 2.75 years, where coupons are paid every

six months, as shown in Table 3.1.

Table 3.1: Data for bootstrap method

Term-to-maturity Annual coupon Continuously
(years) (%) compounded yield
(%)
0.25 0 10.13
0.5 0 10.68
1.0 0 11.43
1.5 10 11.74
2.0 12 11.84
2,45 13 11.76
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In order to obtain the term structure for the period from 3 months to 2.75 years, it is necessary
to do bootstrapping. The price of the bond can be split up into the price of the 6-monthly
coupons, and then the price for the nominal plus the coupon at maturity. Since the interest
rates for the first two coupon periods are known, the 1.5 year zero-coupon rate, z(1.5), can be

determined from the price of the 1.5 year bond:

P, = cp H05X05 ., -2(10)x10 (N+c)e -z(1.5)x1.5

1.5

where c is the coupon-payment. Since z(1.5) is the only unknown, it can easily be calculated

as 11.8%. A similar calculation results in the 2-year rate, z(2), from the 2-year bond, as 11.90%.

Although z(2.75) is still unknown, one can use linear interpolation to find the z(2.25) in terms

of z(2.75) and z(2):

2(2.25) = %z(,?) . %2(2.75)

Using this equation in the pricing formula then gives

P = cp A0S | ., ~2OTEX0T5, ., -2(1.25)x1.25

275

2(2) + .;.2(2.75)):2.?_5

2
+ ce -2(1.75)x1.75 + ce _(3 4 (N"‘C)E -2(2.75)x2.75

The zero-coupon rates, z(0.25), z(0.75), z(1.25), z(1.75) and z(2), are known, or can be
interpolated from the rates already known. Numerical procedures such as the Newton-

Raphson method, can then be used to establish the 2.75 year rate, or z(2.75), for this bond,

which is 11.90%. Continuing this process results in the term structure of interest rates. The
process of calculating the spot interest rates by stripping off coupons is called bootstrapping.

The curve calculated in this example is shown in Figure 3.1 below.



University of Pretoria etd — Smit, L (2005)

12%

11.6% —

11.2%

Yield

10.8% —

104% —

a

10% T 1 T T T
0 0.5 1 15 2 25 3

Term-to-maturity (years)

Figure 3.1: Zero-coupon yield curve

According to Vasicek and Fong (1982), the objective of the empirical estimation of the term
structure is to fit a zero-coupon curve (or spot rate curve) that both fits the data sufficiently

well and is a sufficiently smooth function.

The latter requirement is particularly important, as it will determine the smoothness of the
forward curve, derived from the spot rate curve. Because financial markets are dynamic and
volatile, the term structure changes periodically to comply with changing perspectives. The
objective is therefore to find a method of estimating a zero-coupon curve that both fulfils the
above requirements and can be easily adjusted to accommodate a volatile market. A method

that complies to these requirements is discussed in the next chapter.
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CHAPTER 4

THE ITERATIVE BOOTSTRAP METHOD'

The determination of a smooth zero-coupon yield curve in a market where only coupon
bonds are traded can be a difficult and time-consuming process. When only a few data

points are available, it is especially difficult to obtain a smooth forward curve.

The standard bootstrap technique was evaluated empirically, using South African yield curve
data, which motivated the formulation of a more efficient technique. In this chapter, the
formulation of the iterative bootstrap method is discussed, and the convergence of theiterative

sequence is proved. Empirical results illustrate the use of the method.

'The results of the research discussed in this chapter were published in RISK ( Smit &
Van Niekerk, 1997).
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4.1 Disadvantages using the standard bootstrap method

The problem with the standard bootstrap procedure is that it is assumed that sufficient data
are available to determine the present value of all coupons. As such data are not available in
the South African market, interpolation techniques (such as the Newton Raphson technique)
must be used to find intermediate data points (for bootstrap purposes) before fitting the final
curve. There can be any number of intermediate data points, even twenty or more, depending
on the number of coupons between two data points. If the data points do not form a smooth
curve, itis possible that the curve from which coupons are discounted will differ from the final
fitted curve, causing a discrepancy. Another disadvantage is that the interpolation of data

points in the standard bootstrap technique is time-consuming.

Once the zero-coupon rates have been determined, the question arises as to which
approximation technique to use. Polynomial approximation and spline fitting are the most
commonly used techniques, but they are not always suitable for the South African yield curve,
due to structural inefficiencies in the fixed income market and the resultant dispersion of data

points.

A solution to these problems was developed in this study. This solution involves constructing
a zero-coupon curve using an iterative bootstrap method (IBS-method), where the entire curve
is simultaneously bootstrapped, starting with a first guess. Each iteration results in a sequence

of implied zero-coupon rates which are then fitted using least squares approximation, and

used again in the next iteration. This approach is described in the sections below.
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4.2 Iterative bootstrapping - introduction

A standard bootstrap procedure follows a process where the coupons of each individual bond
in the data set is bootstrapped to obtain a fixed zero-coupon rate for a specific term. This rate
is again used in the bootstrap process for the next bond. The method therefore progresses
along the time-axis to find the discrete zero-coupon rates, which are then approximated by a

curve. Interpolation methods are used to discount coupons at intermediate maturity dates.

In order to overcome problems with the standard bootstrap method, a method is suggested
that follows an iteration process. The entire data set is bootstrapped simultaneously, using
implied zero-coupon rates obtained in the previous iteration, by starting with a first guess for
the zero-coupon yield curve. For each iteration, this again results in a set of implied zero-
coupon rates (one data point for each coupon bond). A least squares approximation technique
is used to obtain a smooth curve which is employed to discount cashflows for the next
iteration. These iterations converge and ultimately yield a unique zero-coupon curve for the
particular approximation technique®. The iterative bootstrap method is a dynamic method

compared to the more static standard bootstrap method.

The advantage of bootstrapping the bonds simultaneously in the iteration process is that, for
each iteration, different cashflows are discounted from the same smooth curve to find the
implied zero-coupon rates for the nextiteration. The final fitted zero-coupon curve is therefore
obtained by bootstrapping from the same curve. Therefore, there is no discrepancy between
the curve that has been used for bootstrapping, and the final fitted zero-coupon yield curve.

The replacement of the interpolation of data points with a method where a fitted curve

“Different approximation techniques result in slight differences in the resultant term structure.
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determines the points speeds up the whole process. The use of numerical methods, such as

the Newton Raphson method, also becomes unnecessary.

4.3 The iterative bootstrap method

The following assumptions are made:

. It is possible for the yield curve z(t) to have any shape (positive, negative).
” All interest rates are positive.

. A bond pays a nominal value of 1 unit at the end of its term.

. The term-to-maturity, ¢, is given in years.

. Continuously compounded interest rates are used.

. Market participants take advantage of arbitrage opportunities as they occur.

If all fixed income securities meet the no-arbitrage principle, the price P, of an arbitrary
coupon-bearing bond, k, should equal the sum of the n cashflows, discounted at the particular

zero-coupon rate, z(t) :

n-1 ®_ 0 ®_, 0
=t z(E) =t 2E,")
P, = Y ve # (L+y)e "

i=1

(1)

where y, is the coupon payment. The price of the bond can also be determined using the

market yield-to-maturity, 1, for the bond k (as traded in the market), therefore

=1 -ty 1By
By Bedgeld ™ i e e ™ )
i=1
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Since the final zero-coupon yield curve, z(t) is not yet known and the IBS-method does not use
the interpolation of data points, a curve from which to bootstrap is needed. If it is assumed
that y.(f) is the j-th approximate fit for the zero-coupon yield curve (for the j-th iteration),
starting at y, (t) as a first guess, equation (1) can be reformulated as follows:

(k))

*)
it ~E

+ (1 +y)e

® (%)
-t w )

n-1 s
B = Zyke <A ©)
i=1

where P, is known from equation (2) (the market price) and yj* (t,fk)) is theimplied zero-coupon
yield for the term t,fk’ years and the only unknown parameter. Equation (3) holds at any time
throughout the iteration process. If the curve y;(t) is different from the correct zero-coupon

curve, the point yj' (t,(lk)) deviates from this curve, in order to give the correct price, P,.

Coupons are bootstrapped simultaneously using y}.(t) for each iteration j and all bonds k,

k=1,...,m, where m is the number of bonds. From equation (3), it is possible to solve y; {t,fk)) for

all bonds in the data set, to get an implied array of zero-coupon yields for each term t;k)in each
iteration:

n-1 ® 0

\ P, - :E y,e “EYET)

yf‘(t;gk)) = g tn =
# ) 1 + Y,

n

(4)

where it is assumed that t.,fl) # tf}.

To serve as input for the next iteration, the zero-coupon rates y}.*(t?g_k)) are approximated by a

fit Yin (trfk)). By repeating the process for j = 1,2,... a sequence of implied zero-coupon rates is

(k)

n !

found for each term, f,”, in the data set. The theorem discussed below states that these
implied zero-coupon curves converge to the zero-coupon curve implied by the coupon bond

market.
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4.4 Theorem

Given an arbitrary guess for the function, y,(t), the approximate linear interpolated fit y;()

will converge to the zero-coupon yield curve, z(t), on condition that

0<y<(E™-1)"
for any bond maturing at time t < t_, where ¢ _is the maximum range of the term structure,

and y (t) interpolates the implied zero-coupon rates y;(t), j>1, 0 <t <t .

4.4.1 Proof

If P is the price of a bond maturing at time ¢,, paying coupons, y, at time ¢, t, and t,, and at
time ¢, the zerorate z(t,) is known, it is possible to prove that the theorem holds for this bond.
If the theorem holds for time t,, it is possible to demonstrate that it will hold for any time

t, < t ,wheret isthe maximum term of the term structure.

i

Using the first guess y,(t) and assuming that y,(t,) > z(t,), it follows from equations (1) and

(3) that

z(t) > ¥ (t) (5)

If one assumes that y,(t,) < z(t,), it implies that

z(ty) < y;(ty) (6)

According to equations (1) and (3)

_tcy;(_rz)

ye ¥TF + (y + 1)e

~ty; (t3) - ve ~tyz(t,) " ('Y i 1)8 -ty z(ts) (7)

Therefore, forj=1,
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e fyalty) o i)

1+ 7y

. =tqyy (ty) i ~ty2(ts) Y

or

i - e—tzlz(fz)"yl('z)] 1 +y [e_"’az(ts) - t:y;(‘z)]

= ®
1 o= 3Ly (1) =2(13)] Y
Next, if one assumes that convergence does not occur, and
z2(t) - y,(t,) < y,'(t)-=(t) ©)
then, for £, < by
[2(t) - v, (&)1, < [y@y) - 2()18,
Since €™ is a decreasing function, it follows that
e 'ts[]h.(%) = z(tg)] <e ‘tQ[Z“z) = y;(fz)]
Therefore,
—tylz(ty) = yy(ty)]
1 -e¢ Falz(ty 1lta
< T (10)

7 8'13[.‘)'1.(‘3) - &(ty)]

If equation (10) holds, it follows from equation (8) that

1+ vy e—tsz(tg} + by (o) < 1
Y

Therefore,

~bz(t) + Lyt < m( : Zy)

>yt < tl [tBZ(tS) 4 ln[ - Z v]]
2

Since y,(t) > 0, ¥ t > 0, itfollows that




University of Pretoria etd — Smit, L (2005)

z(ty) > l1n[1 - Y]
t, Y

2y > (7 -

However, this violates the assumption that

Y < (etzit) L 1)-1

This implies that equation (9) does not hold, therefore
vt - z(t) < z(t) - y,(t) (11)

On the other hand, since y,(t,) < z(t,), and yl'(tB) > z(t,), itis possible to say

- (2(t) - y,(8)) < y,'(¢) - z(t) (12)
From equations (11} and (12), it follows that
Yy (ty) - 2(t) | < z(t,) - y,(t) (13)

Since the function y. ,(t)interpolates y;'(t), V j, one can substitute y,'(t) with y,(t), i =

1,2,3.... The iteration process therefore results in the following:

|z(t) - v, (&) | > |y, (&) - z(t,)]
(14)

= lyz(tg) - Z(t3)i
Although many sophisticated interpolation techniques can be used to interpolate the implied

zero-coupon yields yf'(t), it is possible to assume for the purposes of the proof that one

interpolates linearly between the points (,,z(t,)) and (t,,,(,)). Then

tt
Bt = L () - 26) + 2t (15)
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and
_ -t
2(t,) = s (2(t) - z(8)) + 2(t) (16)
Therefore,
(t,-t,)
|2(t;) -yt = (tz_ti) |2(ty) - ¥y(t)]

Since ¢, < t,, it follows from equation (14) that

ly, () - 2(8)| < |z(t;) - y,(2,) | (17)

Finally, it is important to show that

|_1j3(f3) - Z(i‘3)| < Jyz(t3) - z(tg)‘

Since yl'(tz) = Y,(t,)) > z(t,), it follows as in equation (5) that y;(tB) < z(t,). If one supposes

that

}/2(‘52) - Z(tz) s Z(t3) - yz*(tg)

then, as in equation (10), it follows that

1-¢ 'tz[yzﬁtz) - z(ty)]

— %1l (18)
i =g ~tylaty) - v, (45)]

Using equation (7) one can write:

=t ya(ty)-2(ty)] ;
1~ g e A 1 +¥ [e"sb':(‘a) *ﬁwz)]

I e"'3[3(‘3)‘y£(f3)] ¥

Therefore,
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1+y [e—tsyz‘(fs) + tzz(tz)] <1
)

" 1
=y (ty) > s [tzz(tz) = 1n[ VEIH

Since z(t;) > y, (t,), it follows that

1 v
(t — |t, z(t,) -
2(t) > t3[22(2) m[m)]

tyz(ty)
y +1 ik P

<
»Y e r,zz(tz)

Therefore,

Y S (ef3z(t3) _ 1)"1 (19)

Equation (19) again violates the assumption. Hence,

Z(t3) - yz*(tg) < yz(tp_) - z(tz)

Since y,(t,) > z(t,), ¥, (t,) < z(t,) and v, (t,) = y,(t,), it follows that

[Yy(ty) -~ z(t) | < [yy(ty) - z(t)| (20)
Linear interpolation between (t,,z(f;)) and (t,,,(t;)) gives equations (15) and (16) with y, instead

of y, . Therefore,

|y3(t3) - Z(t3)‘ < Iyz(tg) - Z(f3)| (21)

In general:

Y® - 2@ < 26) - y,6) VT<ib,jal

which proves that the sequence {| y}.(r) - z(1)|}converges to zero, which proves that
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lim y,(e) = z(2)
i

45 An illustration of the method

The following example illustrates the use of the iterative process to determine a zero-coupon
yield curve. One could suppose that the interest rates for three risk-free securities in the money
market are known (maturing in 1, 6 and 12 months):

y,(0.08) = 13.95%; ¥,(05) = 14.48%; y,(1.0) = 14.88%

Since the money market instruments are zero-coupon rates, it follows that

y() =zt v t<d (22)
If four different coupon-bearing bonds are traded in the market, maturing in 3, 5, 8 and 10
years respectively, and the bonds, with a nominal value of 1 unit, pay semi-annual coupons

of vy, units and are priced at present at P;;, then

P, = 09751097, y, = 0.075
P, = 0.9845960, 7y, = 0.08
P, = 0.8766290, Y, = 0.07

P, = 0.8080316, v, = 0.065

To start the iteration process, a continuous extrapolation is guessed for y;(t), 1<1 < 10, where

y.(3) = 153% and ¥,(5) = 15.6% and y,(8) = 15.9% and ¥,(10) = 16.1%.
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Each of the four bonds in the example implies a zero-coupon yield yj'(t“) ,where t =3,5,8and
10respectively for each iteration j. For example, the first bond (maturing in three years), gives,

forj=1,

| 09751097 - 0.075( £ 05209 4o H) 1 FHID L D), oS |
n
1.075

5 1
At (3) = -5

In the same way v, (5), y,(8) andy, (10) can be found. Using these results as well as the data
points y,(t,), t;, = 0.08,0.5, 1.0, a second approximate fit, y,() ,is found. Repeating this
process, results in a sequence yl.(t) as shown graphically in Figure 4.1 (overleaf). Table 4.1

shows the numerical results for eachiteration. The results show clearly that the sequence yf’( f)

converges.

Table 4.1: Implied zero-coupon yields for five iterations starting with a first guess y,

Term, ; ¥1 (%) yi (%) 2 (%) ys (%) Vi (%) s (%)
0.08 13.95 13.95 13.95 13.95 13.95 13.95
0.5 14.48 14.48 14.48 14.48 14.48 14.48
1 14.88 14.88 14.88 14.88 14.88 14.88
3 15.30 15.55 15.53 15.53 15.53 1553
5 15.60 16.07 15.97 15.98 15.98 15.98
8 15.90 16.79 16.42 16.51 16.50 16.50
10 16.10 17.30 16.62 16.85 16.79 16.80
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Figure 4.1: Results of the iterative process

4.6 Empirical results

The IBS-method developed in the previous sections was used to derive a zero-coupon yield
curve for the South African fixed income market empirically. Daily closing rates over a three-
year period were used to evaluate the method. Money marketinstruments were used to obtain
data points between ¢ = 0 and f = 1, while actively traded bonds were used to obtain

information for the remainder of the term structure.
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Tocompensate for market data that do not form a smooth curve, a least squares approximation
technique was used in order to obtain a reasonably accurate fit of the data points which then
served as input in order to interpolate for the next iteration. Appendix A sets out a discussion
of the least squares approximation technique. Itis important to realise that the success of the
iterative method depends on a reasonably accurate interpolation of data points for
bootstrapping purposes in each iteration. It is possible, for instance, to obtain an implied

negative interest rate if the curve fitting technique oscillates or diverges from the data points.*

The empirical results of the study show that the technique yields a smooth spot rate curve and
that the curve approximates the data points sufficiently well. The iterative method was
compared to the standard bootstrapping technique, usin galeast squares fit. Market data from
1996 were used, which resulted in similar results for both methods, as is shown in Figure4.2.

The iterative method, however, provides a more accurate result in the region where data
points do not form a smooth curve, due to interpolation discrepancies when the standard
bootstrap technique is used. The difference between the two curves in Figure 4.2 increases
when the data points are less smooth. Theiterative method also proved to be computationally

more efficient.

Figure 4.3 shows the results of a par-bond curve in November 1999, as derived from the zero-
coupon curve. The forward curves implied by the zero-coupon curve in the above examples
are sufficiently smooth. The implied forward swap curves for a 10-year and a 5-year swap are
shown in Figure 4.4. When the standard bootstrap method is used, these curves are usually

irregular with sudden changes in the slope of the curve.

“This is why the theorem assumes a linear interpolation.
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Figure 4.2: Comparison between standard bootstrap method and iterative bootstrap method
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Figure 4.3: Par-bond yield curve in November 1999
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Figure 4.4: Implied forward swap curves for the yield curve in Figure 4.3

The empirical results from the South African market show that the method performs
sufficiently well and yields better results than alternative techniques. Some of the advantages
of the method are that it produces a smooth term structure, a smooth forward curve and that
it is flexible and computationally efficient. It can therefore be applied in volatile and illiquid

emerging fixed income markets to identify mispricings and arbitrage opportunities.

In order to evaluate the accuracy of the approximation of the zero-coupon yield curve, the
zero-coupon yield curve obtained is used to calculate the implied yield-to-maturity, based on
this curve. The sum of the squares of the errors in these rates was in the order of 1.4 x 10, The
individual deviations from the actual market rates varied between zero basis points for the

more liquid bonds and 15 basis points for less liquid bonds containing a liquidity premium.
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4.7 Credit premium

For the valuation of most derivatives, it is usually assumed that there is no risk of counter-
party default. The no-default assumption does not, however, apply for bonds, and therefore
the risk of a default on the coupons and/or nominal must be accounted for. This is done by
adding basis points to the yield of the bond, in order to compensate for the credit risk. Bonds
that are less tradable, on the other hand, also trade at a liquidity spread to the more liquid

bonds.

The South African government bonds have the highest credit rating in the country. The
governmentbonds can therefore be used to give a homogeneous zero-coupon yield curve with
the same creditrating. All other bonds are priced from this curve to determine their yield (plus
the credit and /or liquidity premium). Non-government organisations, for example Transnet,
Eskom and Telkom, have a fairly big credit spread to the government curve, although some

have government guarantees (Brown, 1999).

One advantage of the zero-coupon yield curve is that any bond can be priced from the zero-
couponyield curve, as determined from governmentbonds. Animplied yield-to-maturity can
therefore be found for any other bond. The difference between this implied yield and the
market yield equals the credit spread added to compensate for the credit risk. (Itis assumed
that bonds with similar liquidity are compared in this example, in order to be able to ignore

the liquidity premium.)
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Theevolution of the credit spread was investigated for some non-governmentbonds over time.
Table 4.2 shows the credit spread over a 3-year period for three Transnet bonds, maturing in
2002, 2008 and 2010 respectively. The liquidity of these bonds is comparable to the smaller
RSA government issues, and one can therefore ignore the liquidity spread. Itis evident that
the credit spread increased over the last three years, and must be taken into account when
pricing these bonds. The 1998 emerging market crisis emphasised the importance of

appropriate credit spreads for non-government bonds.

Table 4.2: Credit spreads for Transnet bonds

Credit spread above government yield curve
Date (basis points)
T001 T004 T011
November 1996 11 10 4
October 1997 12 22 15
February 1998 10 20 20
November 1998 32 37 41
May 1999 32 32 43
November 1999 43 29 37
May 2000 21 23 36

4.8 Concluding Remarks

The standard bootstrap method displays some inefficiencies when it is applied to a yield curve

where there are only coupon bonds and irregular data points. An iterative method was
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therefore developed, which starts with a first guess, and then converges to the actual zero-

coupon yield curve. This method is more efficient than the standard method.

The IBS-method developed in this chapter can be used to price all vanilla fixed income
instruments. It can also serve as input in pricing many derivative securities, for instance

options on fixed income vanilla products.

The next few chapters concentrate on the valuation of options on fixed income products,

where the zero-coupon yield curve is an important input for some models.
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CHAPTER 5

BOND OPTION PRICING MODELS

Options on long-term bonds are popular derivative instruments used to hedge a fixed
income portfolio against the movement of interest rates. An option on a long-term bond
gives the holder the right, but not the obligation, to buy or sell the bond ata certain future time at

a predetermined strike price or exercise price.

The valuation of options on interest rate instruments, such as bonds, is more complex than options
on stocks and commodities, since it involves not only one underlying instrument, butalso a subset

of instruments which relies on the term structure of interest rates. Several models have been
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developed over the years to price options on long-term bonds. They can be divided into the

following three categories:

° conventional models;
e equilibrium models; and
o no-arbitrage models.

The price of a bond is determined by several factors - its maturity date, coupon rate, ex- or cum-
status and yield-to-maturity. The yield-to-maturity is the interest rate or rate-of-return for the
bond, commonly referred to as the yield. For short-dated options, it is assumed that the price P
of the bond follows a Brownian motion. Conventional models use the stochastic process of the
particular underlying bond price to determine a fair value for the price of the option. The
behaviour of the remainder of the term structure is not taken into account. These models are

widely used in all markets.

An equilibrium model firstdefinesa process for the instantaneous short rate, r. It produces a term
structure of interest rates from the value of r at the current time ¢, and a risk-neutral process for
r. Equilibrium models produce a term structure of interest rates as an output, using the stochastic
process of the short rate 7. This does not necessarily fit today’s term structure. It can certainly fit
the term structure approximately, but in some cases an exact fit is not possible, resulting in

significant errors, which are discussed in Section 5.2.2.

Ano-arbitrage model, on the other hand, uses the initial term structure as an inputand is therefore

exactly consistent with today’s term structure.
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Some of the interest rate models in the above-mentioned three categories are discussed below, and

then the analytical solution of the Hull-White model is examined in more detail.

5.1 Conventional models

5.1.1 The Black-Scholes model

The Black-Scholes model is a popular tool to value almost any derivative security. It is easily
adjusted to price an option on a bond price. If P is the spot price of a discount bond, or zero-

coupon bond, the behaviour of the bond price, P, can be described by the stochastic process

dP = pPdt + o, PdW (1)

where pis the expected return, o; is the volatility of the bond price and W is a Wiener process.

If X is the exercise price, T the time to expiry of the option and R; the zero-coupon continuously
compounded risk-free interest rate for maturity T, and one uses the Black-Scholes model, then the
price ¢ of a European call and the price p of a European put option on a zero-coupon bond

(following the process in equation (1)) are given by:
¢ = PN(@,) - e """ XN(d,) )
and
p = e “TTXN(-d,) - PN(-d,) 3)

where

7=
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m(P/X) + (Rp+05/2)T
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For a coupon bond where coupons are payable during the life of the option, the coupons can be
treated as the dividends on a stock. The spot price of the bond should therefore exclude the
present value of the coupons. The volatility parameter, g5, should be the volatility of the bond

price without the present value of the applicable coupons.

5.1.2. The Black model

The Black version of the Black-Scholes model has proved to be more suitable for the valuation of
coupon-bearing bond options, because it uses the forward price. The forward price of the bond
already excludes any coupons paid during the life of the option. The Black model is the most

popular method for valuing ordinary options on coupon bonds.

The Black model assumes that the price of the underlying instrument is lognormally distributed
on the expiry date of the option. If F is the forward price of the underlying bond on the expiry

date of the option, the price of a call and put are then given by:

¢ = e [FN@,) - XN@]]
(4)
= e‘Rf'T[XN(-dz) - FN(-d,)]

=
I

where
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n(F/X) + %0‘2; T

4,
on/T

dy, = d; - UP\[T

For exchange traded options, where an interest-bearing margin is paid and the option is cash-

settled only on the expiry date, equation (4) still holds, but with R; set equal to zero'.

The disadvantages of the Black model are discussed in Chapter 7 and an alternative model is

proposed.

5.2 Equilibrium models

5.2.1 The Rendleman-Bartter model
Rendleman and Bartter (1980) developed a model where the short rate, 7, is described in a risk-
neutral world by an Ito process

dr = prdt + ordW (5)

where pis the driftand o is the volatility of the short rate. This model assumes that the short rate,

r, follows a geometric Brownian motion.

The process for r can be modelled by using a binomial tree, where the parameters are given by

'The interest paid on borrowed money is equal to the interest received on the margin account.
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u = eV
d=eV™
p-2t1d
#w-d
where
a = e

The short-term interest rate is chosen to be the rate for the length of the time-interval. Interest rate

movements in a risk-neutral world are given by the binomial tree:

Ty = Tolt I (6)

where 7, is the initial short-term interest rate. An interest rate tree (Rendleman and Bartter, 1979)
for the full term of the bond, until it matures, can be constructed using equation (6). The value of

the bond P; at each node is then given by

1At
P, =e Ty [ppm,pl + (L = PPy i c] (7)

where ¢ is the coupon paid at the end of each time-interval. At the maturity date of the bond, the

bond price equals the bond’s nominal value, which is then the boundary condition for equation

(7).

Once the bond price at each node is known, one can continue to determine the option value. In
order to calculate the value of an American call option at each node, one starts at the time-step, N,
which coincides with the expiry date of the option, and then calculates the intrinsic value of the

option:

A
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fN]. = max[PNI. - X,0]

where X is the exercise price of the option. Fori <N,

T,

fy = max[Py - X, e pf 0 + (0 - Py )]

where the first term in the equation tests for the early-exercise value at each node. By rolling back
through the tree, the value of the option at the first node is determined, which is the price of the

option.

Toillustrate the approach, suppose that At =1, 4 =0.08, o=0.2. One can suppose the initial value
of is 10% per annum and the aim is to value a 4 year American call option on a 5 year bond that

pays a 12% coupon at the end of each year and has a face value of R1000.00.
In order to determine the option price, one first determines the short rate tree, next, the bond price

tree and then works backward through the tree to obtain the option price. Figure 5.1 shows the

numerical results, giving an option price of R28.28.
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27.18
1000.0
Short rate 22.26
Bond price 896.5
Option value 0.00
18.22 18.22
866.7 1000.0
0.00
14.92 14.92
881.9 964.8
1.20 0.00
12.21 1221 12.21
927.3 974.8 1000.0
6.62 4.07
10.00 10.00 10.00
994.5 10155 10134
28.28 19.51 13.42
8.19 8.19 8.19
1078.4 1055.1 1000.0
78.44 55.05
8.70 6.70
1117.3 1047 .4
117.34 47.39
5.49 5.49
1112.6 1000.0
112.64
4.49
1070.8
70.79
3.68
1000.0

Figure 5.1: Example of a Rendleman-Bartter tree
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5.2.2 The Vasicek model

Vasicek’s model (1977) assumes that the short rate, r, follows a continuous Markov process. The

risk-neutral process for 7 is given by the stochastic differential equation

dr = firydt + odW (8)

where f{r) is the instantaneous drift and o is the standard deviation or volatility of the spot rate

process 7(t). The parameter f(r) can be expressed in such a form that it includes mean reversion:

fir) = a(b-r)

where the short rate, 7 is pulled to a level b at a rate a.

Vasicek obtained the following analytic formula for the price of a discount bond at time £, paying

1 unit at maturity time £,:

P(tt,) = Altt)e " ©)
where, fora = 0,
_u(tn_!}
B(tt,) = 1___ea__ "

and

S dr
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(B(tt,) - (t, - )@’ - 0*/2)  o*B(tt)

a? 4q

A(tt) = exp

(11)

From the above equations it is possible to obtain the whole term structure as a function of r, once
a, b and o have been chosen. The term structure can be upward-sloping, downward-sloping or
humped. The possible shape of the term structure is, however, limited, which causes the assumed
term structure to differ significantly from the actual term structure. Figure 5.2 shows an example

of a best fit for a term structure, using the Vasicek model. Itis clear that the method results in large

errors.
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Figure 5.2: Difference between the best fit using a Vasicek term structure and a 1997 South

African yield curve

T8




University of Pretoria etd — Smit, L (2005)

5.2.3 Jamshidian’s model

Jamshidian (1989) has demonstrated how to determine the value of an option on a discount bond
using the Vasicek model. The value of a European call option at time ¢, expiring at time T, on a

discount bond with a 1 unit principal maturing at time t,, is given by

¢ = P(tt,)N(h) - XP(tT)N(h - a,) (12)

where

1 P(tt) o,
= —In + —
P(t,T)X 2

0, = o(t,T)B(T;t)

0.2(1 _ e-Zﬂ(T—r))
2a

o(t, T)?

and o, is the price volatility and X is the strike price. The price of a European put option on the

bond is

p = XP(t,TIN(-h + a,) - P(tt )N(-h) (13)

The bond price, P, in the above equations, is given by Vasicek’s model.

Jamshidian also showed that a coupon-bearing bond can be regarded as a composite of discount
bonds, one for each cash flow. An option on a coupon-bearing bond can then be seen as a

combination of options on discount bonds, one for each remaining cash flow of the bond after the

-79-



University of Pretoria etd — Smit, L (2005)

option expires. If #is the particular short rate that causes the coupon-bearing bond price to equal
the strike price (which is found by using an iterative procedure, such as the Newton Raphson
method), and X;is the resultant strike price for each individual option, using 7', and if P(Tt)) is the

price at time T of a zero-coupon bond maturing at time t, then the payoff of a call option is given

by
"
Y ¢, max[0, P(T,t) - X] (14)
i=1
which is the sum of n options on the underlying discount bonds.

The Cox, Ingersoll and Ross model (1985) is similar to Vasicek’s model. The Cox, Ingersoll and

Ross model provides for non-negative interest rates, by adding a 4fr-factor to the second term in

equation (8).

5.3 No-arbitrage models

5.3.1 The Ho-Lee model

Ho and Lee (1986) proposed the first no-arbitrage Markov model by extending Vasicek’s model.
They showed how an interest rate model can be designed so that itis automatically consistent with

the initial term structure. The short rate r is described by the stochastic differential equation

dr = O(t)dt + adW (15)
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where s the constantinstantaneous standard deviation of the short rate, and the drift 6(t) defines

the average direction in which r moves and ensures that the model fits the initial term structure:

0(t) = F(0t) + o’ (16)

where F(0,t) is the forward rate at time t and F, denotes the first derivative. The advantage of the
Hoand Lee model is that the model is a Markov analytically tractable model. Itdoes not, however,
make provision for the mean reversion of interest rates. This, together with the assumption that
interest rates are normally distributed, leads to a relatively high probability thatinterest rates will

become negative.

The Ho-Lee model’s analytic expression for the price of a discount bond at time  in terms of the

short rate is
Pt = Attt )e ™ (17)

where

P(O,t)
P(0,t)

anPEOf _ 1
o 2

mA(E) = tn - (¢, - 1) o’r(t, - 1

The Ho-Lee analytical value at time zero for a European call option expiring at time T on a

discount bond maturing at time f,, with a face value of 1 unit, is given by

¢ = POt )N(h) - XP(O,T)N(h-0,) (18)

where
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While the Ho-Lee model is a Markov model, Heath, Jarrow and Morton (1992) developed a model
where the short rate, r, is non-Markov. In order to determine the stochastic process for r over a
short period of time, dt, one needs to know what the value of r was at the beginning of the period,
as well as the path it followed to reach this value, which makes the Heath, Jarrow and Morton
model anon-Markov model. The model specifies the volatilities of all instantaneous forward rates
atall future times, which is called a volatility structure. This method leads to a non-recombining
tree which is computationally extremely time-consuming since there are 2" nodes after n time

steps. The Hull-White model, by contrast, has a recombining tree that speeds up computer time.

5.3.2 The Hull-White model

The mean reversion of interest rates is a phenomenon that is not captured by the Ho-Lee model.
There are compelling arguments in favour of mean reversion. When interest rates are high,
investments decline and the economy slows down. The opposite occurs when interest rates are
low. The Ho and Lee model was extended by Hull and White (1990), who added mean-reversion

to the short-term interest rate, 7, in the stochastic process:

dr = (0(t) - ar)dt + adW (19)

where g and o, are constants and 0(t) is a function of time chosen in such a way that the model is
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consistent with the initial term structure. The coefficient of dt is approximately equal to the slope
of the forward rate curve at time zero. When the short-rate moves away from this curve, it reverts
back to the curve at a rate 2. The mean reversion component reduces the probability of negative

interest rates, compared to the Ho-Lee model.

The Hull-White model is exactly consistent with the latest term structure of interest rates, and is
therefore known as a no-arbitrage model. The spot rate in the Hull-White model is a linear
function of the underlying process. The value of an interest rate derivative, f (which depends on

the process in (19)) is given by the partial differential equation:

of & .1 2%
—_ 4+ ef = — = — =
= 0 ; w)= S50 57 (20)

In order to solve the above partial differential equation, one first has to simplify the stochastic
process. If the following transformation is considered in order to obtain the short rate change in

a stochastic world for a flat term structure,

x =71 - a() (21)

where (0) is chosen so that x(0) = 0 and x follows a process symmetrical around x = 0:

dx = -axdt + odW (22)

then, from equations (19) and (22), one can say that

do = [0() - ac(t)]dt

If one solves this differential equation with an integration factor, one gets
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t

a(t) = e ™r0) + fe“" 0(q) dg (23)
0

The price of an interest rate derivative security in terms of the new variable ¥ can be written as

g(t,x).
Therefore,
f(t/r) = g(t;x) = g(t.rr - (!(t))
Then,
dx
fi=8+ &(E)

=g, - (-aa(t) + 0(t) g,

where the subscripts denote the relevant derivatives. Similarly one gets

i=,
fo = 8
Substituting into equation (20) one gets
g, - axg, + -0, - (x + alt))g = 0 (24)

This partial differential corresponds to an economy where, under the equivalent martingale

measure (', the spot interest rate is generated by

dx = -axdt + adW (25)

and
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x() = nn) - off)
The stochastic process for x in equation (25) is therefore independent of the function a(%).

The process for x is assumed to follow an Ornstein-Uhlenbeck process. Therefore, given a value

x(t) atany point¢, the probability distribution for x(T ) for T > t, is a normal distribution with mean

e *Tx(t)

and variance

0_2{1 _ e-Za(T—f))

2a

Using the Feynman-Kac¢ formula (see Section 2.2.3) and the T-forward- risk-adjusted measure Qr,

the solution for equation (24) can be expressed as
g(tx) = P(t,T,%) E (T, «(T))|57) (26)

where i(T,x(T)) is the boundary condition at time T, and P(¢,T,x) is the price of a discount bond
with maturity T at time £.
In order to determine the price P(t,T,x) and the distribution of x under Qy, the Fourier transform
§ of the fundamental solution ¢°is used. Pelsser (1996) has shown that¢ must take the form

§txTY) = explA;TY) + BT P)x) (27)
where the boundary condition is given by

HTxTH) = ™
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Then, equation (24) becomes

XB, - aB - 1) + A, +~0’B? - at) = 0

which is solved if A and B satisfy the system

By=gB~1=0
A, + -;-O'ZBZ - a(f) = 0
subjectto A(T;T,¢) = 0 and B(T;T,¢) = iy.
Using an integration factor, one obtains
_ L, -a(T-t)
BETY) = e - L2 €
a

and by integration the result is

a2

AT ) = —
2q

(a(T = ) = P = g W %(1 _e-Za(T—t)))

i¢°_2(1 - g T2 -I-tlrzc—z(l . exp—Za(T—t))
2a* 2" 2

T

- f o(s)ds

t

Substituting A and B into equation (27) yields

FEATH) = explAtT) - BE,T)x + METY) - 2PT(E,T)) (28)

where
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02 -a(T-t)
AT = —{a(T -9 - 201 - ¢
2a°

T

1 _,-2aT-8) _

i 2(1 e ) fa(s)ds
t

- pa(T-t)
BT = A 29)
a
e
METn) =92 = =40 - g™t
= r 2a2

(1) = i(l ~ ¢ "24T-th
2a

Equation (28) can also be written as the product of the discount bond price and the characteristic

function of the probability density function under the T-forward-risk-adjusted measure:

gt T ) = P(t,Tx) {exp(yM(t T,x) - ~4*(t,T))) (30)

The probability density function has a mean M(t,T,x) and a variance Z(t,T).

Using the above results, one can determine the value of a European call option on a discount bond.

If c(t,T,s,X,x) is the value of a call option at time £, that gives the owner the right to buy a discount

bond with maturity s at time T, {<T<s, for a price X, then the payoff, k, of the option is given by

T, x(T)) = max{P(T,sx(T)) - X,0}

The expected payoff of the option can be expressed under the T-forward-risk-adjusted measure

Qr as follows:

s = E¥(max{P(T,s «(T)) - X,0)|.5)
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If the value of x(T) equals z, then the expectation is given by

@ 1 A(TS)-B(Ts)z _ {_1 (z—M(t,T,x))z}
f ————— max{e X,0} expy-——————pdz (31)
~y2nX(t,T) 2 X(tT)

The payoff is non-zero if

L ATy - mX
B(T,s)

Therefore,

AKX (T9)-B(T8)z _ _ 2
5 e X gyl MU,

- V2r2(,T) (T
At

= f B = ;( = exp{—;(z_ﬂg((;’gx))z + A(T,s)-B(T,s)z} dz (32)
- \/ m2(t, ’

il M(th }dz

_ B
f ~ ,lznz(t p{ 2(t,T)

If the first integral is called I, and the second integral is called L, then by completing the square,

it follows that

A(Ls)-inX

L=X [ *® exp[—%{(z—M)/\/E}Z] dz
It can easily be shown that
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A(Ts) - BTSM = [A(ts) - A(tD] - [B(ts) - Bty - 1B(Ts)E

Therefore, substituting and expressing the equation in terms of cumulative normal distribution

functions one gets
g
=X [ e ap
= XN(h,)

where

in(P(t,5,x)/ P(t,T,x)X) - B(T,s)*X(t,T)

h =
’ B(TsWEET)
Similarly, for I, the result is
A-InX 2
g, =B 1 lfz = M-BTAN) ", 4(T,s) - BT, )M + LB(T )25}z
~ D 21 S 2

== [z - (M-BTsD))

= B {A(t,s)-A(t,T) - [B(t, )-B(t,T)]x}dz
f_m ZEE(”_) ex [ 21 — } }exp S s x

_ exp[A(ts) - B(ts)x] f

|1z - M-BTHD)|* |
explA(t,T) - B(t,T)x]

\/271): ) exP{ Ay

which gives
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12

- s g,
P(tITIx) =

_ Plsx) N(kl)

P(t,T,x)
where
p = WPsx)/PETx)X) + B(T,s)’Z(t,T)
1 B(LsWEET)
Therefore,

_ Ptsx)
P(t,T,x)

N(h,) - XN(h,) (33)

Discounting the above expected value to the current date, , gives the price of a call option:

ge P(t,T,x)[;;((;’—;’r'gN(hl) - XN(hz)]

(34)
= P(t,s,x) N(h,} - P(t,T,x) XN(h,)
where
= WPEsx)/PETXX) o
1 o >
h, = b = o (35)
_ -2a(T-f)
0" = =1 - ¢ D) e
a 2a
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The price of a put option is given by

p = P(t,Tx)XN(-hy) - P(t;s,x) N(-h,) (36)

The equation for ¢” takes into account the pull-to-par effect of a bond. The analytical solution to
the Hull-White model overcomes the volatility problem of the Black model, discussed in Section
3.3, since it takes the pull-to-par effect into account. However, the solution does not hold for
American options. To address this problem, a numerical solution is necessary, as discussed in the

next chapter.

5.3.3 Other Markov models

The tree procedure used by Hull and White can also be used to construct other one-factor Markov
models. For example, a tree can be constructed in (n r rather thanr, as described by Black, Derman

and Toy (1990) or Black and Karasinski (1991) where

dinr = [6(f) - atnrldt + odz

The procedure suggested by Black, Derman and Toy (1990) matches the volatilities of all rates at
time zero. The trinomial tree procedure is explained by Hull and White (1993). Black and

Karasinski (1991) suggested a binomial tree procedure involving time steps of varying lengths.

The next chapter discusses the numerical solution of the Hull-White model applied to South

African bond options.
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CHAPTER 6

THE HULL-WHITE MODEL APPLIED TO

SOUTH AFRICAN OTC BOND OPTIONS

outh Africa has an actively traded bond market where options are traded on the most
Sliquid government bonds. Bond turnover in 1998 was $1.7 trillion equivalent in nominal
terms, according to the Bond Exchange of South Africa. A significant over-the-counter (OTC)
bond options market has established itself, although option liquidity is concentrated in current
government funding bonds. Both options and bonds are traded on yield-to-maturity (referred

to as yield). Almost all bond options that are traded are American options.

The effects of the 1998 emerging marketcrisis, which generated significantlosses forbanks and
hedge funds, again raised several questions concerning the accurate valuation of derivative
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instruments. The crisis emphasized the imperfections of the Black-Scholes model previously

identified by Black (1988).

The nature of American options necessitates the use of numerical models for valuation
purposes. The numerical solution of the Hull-White model (1990a) addresses most of the
disadvantages of other bond option pricing models and can be successfully applied to South
African bond options. Instead of using the bond price as the stochastic variable, the model
assumes that the short rate, r(t), follows a mean reverting stochastic process and has a

lognormal distribution:

dr = (B(t) - ar)dt + o dW (1)

It is further assumed that the term structure implies a certain expectation of future short rates,
and that the expected short rate process can therefore be used to determine any bond price.
Hull and White (1993) use a trinomial tree to model the short rate process and ensure that the

initial term structure is matched before the bond option is valued.

The key characteristics of the numerical solution of the Hull-White model are the following:

. It incorporates mean reversion of interest rates.

. The pull-to-par effect is determined analytically for both the exact solution and the
numerical solution.

. The model is consistent with the initial term structure of interest rates.

. It incorporates the early-exercise value of American options.
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6.1 Characteristics of South African bond options

The major difference between South African OTC bond options and options in other countries
is the fact that South African bonds are traded on the yield-to-maturity and settled on the
price! while most other bonds are traded on the price. The strike of a South African bond
option is, therefore, also given as a yield-to-maturity. Options on many different maturity

bonds are traded. Of these, the R153 government bond is the most liquid.

Since the Black model is generally used to price South African bond options, the implied
forward priceis used at the current forward yield. In practice, however, the delta hedgeis done
in the spot market. The forward price is calculated using the spot yield and the equivalent
risk-free rate. The strike price used in the Black pricing formula is the price on the expiry date

at the strike rate.

When an option is early-exercised, the actual strike price can be different from the price when
the option is exercised at a later stage or on the expiry date of the option. The actual maturity
date of the bond exercised stays the same, irrespective of the date when it is exercised. This
practice differs from that in countries where the bonds are traded on the price and options are
traded on a specific strike price. In such markets, the holder of an American option has the
right to buy a fixed term bond, say a 10 year bond, before or on expiry of the option at a certain
strike price. When a German bond option, for instance, is early-exercised, the strike price of
the original contract stays the same, for example at DM 90.00, while the maturity date of the
bond is adjusted in order for the term-to-maturity to stay the same as on the original negotiated

contract.

'This is also the case in some European countries, for instance, Finland.
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In this study, the pricing of bond options using the Hull and White (1990) analytical solution
discussed in the previous chapter is evaluated, as well as the numerical solution using a
trinomial tree. The analytical results are then compared to the numerical solution of the Hull
and White trinomial tree (1993) for European and American options. The difference between
pricing the option with a strike price versus pricing it with a strike yield is evaluated. Finally,

the influence of the term structure on the pricing of the options is shown.

6.2 The Hull-White trinomial tree

The analytical solution of the Hull-White model, as discussed in Chapter 5, gives suitable
results for European style options. For American style options, a trinomial tree, as constructed
by Hull and White, gives more accurate results than the analytical solution, due to the fact that

the numerical solution does provide for the early-exercise of options.

The trinomial tree uses discrete time steps to construct a tree of possible values for the short
rate, 7, in the future. (See also the Rendleman-Bartter model discussed in Chapter 5). Attime
t, the price of a bond maturing at time s can be determined in terms of the short rate r by using

the Hull and White analytical formula explained in Chapter 5:

P(ts,r) = A(t,s)e Bt 2)

where

i e—a(s—t)
B(ts) = ———

and
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P(0s)

2
nA(ts) = In—-— B(t,s)w - L(e s
P(0,t)

_ poatN2e 2ot
= e ™) A{e 1)

; t 4q

Using the short rate given at each node in the tree, the possibility of early exercising can be

evaluated for American options.

6.2.1 The procedure

The interest rate tree is constructed in two stages. First, one supposes that there is a variable

x which is initially zero and follows the process described in Chapter 5, Section 5.3.2:

dx = -axdt + odW (3)

which forms a tree which is symmetrical around the x = 0 line. The variable

x(t+Af) - x(t)

is normally distributed and, if terms of a higher order than At are ignored, the expected value
is
-ax(t)

and the variance is

oAt
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If the length of each time step, At, is known, the change of the variable x is normally set equal

to

Ax = oy3At

(@) () (©)

Figure 6.1: Possible movements for the short-term rate

Node (i,j) on a trinomial tree, is where t = iAt and x = j 4x. FOr j,;, < J < ju. , the standard
branching process (4) in Figure 6.1 is chosen. For a sufficiently large positive j, the branching
process in (c) is chosen, while (b) is chosen when j is sufficiently negative. Hull and White

show that j,., should be set equal to the smallest integer greater than

0.184 / (aAt)

and then

Jmin = = Jmax

If p,, p. and p, are defined as the probabilities of following the highest, middle and lowest
branches at each node, the probabilities should match the expected change and variance in x
over the next interval Af. The sum of the probabilities must also equal one. For node (i j) the

three necessary equations for p,, p,, and p, are
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1]
=

Pi *Pu P,

pk+1)Ax + p kAx + p(k-1)Ax = E(Ax) = -ajAxAt

p(k+1)?Ax? + p K2Ax? + p (k-1)%Ax? = E(Ax?) = 0?At + 022Ax2At>

These equations can be solved in order to obtain p,, p,, and p,, for each branching process.

The second stage involves converting the x-tree into a tree for r. It is important to recall the

following transformation in Chapter 5:

alt) = r(t) - x(t), x0) =0
and

da = [6(t) - ac(f)]dt

Using an integration factor and «(0) = r(0), it follows that

at) = e ™|r0) + f e“16(q) dg 4)
0

The 6(g) function in the above equation can be calculated from the initial term structure:
UZ
6(t) = FOt) + aF(0,t) + 2—(1 - e (5)
a
Integrating and substituting this equation into equation (4), this yields the following®

() = FQt) + & (1 _ gy
a(t) = F(0,f) -za—z( &) (6)

*Note that r, = F(0,0)
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If one defines «; as the value of r at time /At (on the r-tree) minus the corresponding value of
X at time /A7 on the x-tree, and one defines Q;; as the present value of a security that has a
payoff of 1 unit if node (i) is reached, and zero otherwise, then the value of Q;; would be

given as the discounted value of the expectation of reaching node (i,j).

The next step is to use a forward induction procedure which ensures that the initial term
structure is matched exactly. The ;- and Q;; - values should be calculated in such a way that

the initial term structure is matched exactly. This can be done by forward induction:

L —itrAt
my i, D PR p
0: =

" At

where P, is the price of a discount bond at time (m + 1)At and n,, is the number of nodes

below and above the centre. The value for Q, ;, with i = m + 1 can then be calculated:

Qm+1,j = EQ,n,kQ(k,)exp[-(am + kAr)At]
k

where g(k,j) is the probability of moving from node (m,k) to node (m+1,j) and the summation

is taken over all values of k for which this probability is non-zero.

The above Hull-White numerical procedure was programmed in a Fortran computer
programme and verified using the data givenin Hull (1997) and also the data in Pelsser (1996).
Since South African bond options are options to buy or sell bonds at a certain strike rate and
not price, allowance was made for this trading convention by adjusting the model. Therefore,

the study evaluated bond options for both a price strike and a yield strike. The results are

discussed in the sections below for both discount bonds and coupon bonds.
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6.3 Influence of the strike convention

There are two ways of expressing the strike of a bond option - either as a bond price, X, or as
abond yield, x%. The particular convention used does ot affect the price of European options,
butit does affect the price of American options. American options on zero-coupon bonds and

coupon-bearing bonds are compared for both conventions.

6.3.1 Options on zero-coupon bonds

6.3.1.1 Price strike

One can consider an option on a zero-coupon bond maturing attimess. If one assumes that the
option expires at time T and that the strike, X, is given in terms of the bond price, for a put

option, one gets the following payoff at expiry time T:
max[X - P(T,s,1),0] (7)

A T-term American put option on early exercise at time ¢ (where t < T) gives the holder the right
tosell a (s-T)-year zero-coupon bond (maturing at time f + s- T), for a price X, resulting a profit

of

X = Bltdxs=T1)

If f; denotes the value of the option at time #; < T at the j-th vertical point on the spot interest

rate tree, when the interest rate is r;, then

1
=ttt
fy=max| X - P (ti’ti+s_r’rij) , o “[ >, pi,j,q+6f;'+],j+q+6]] (8)

q=-1
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where p denotes the appropriate probability and 8 = -1, 0 or +1, according to the branching
process in the trinomial tree (see Figure 6.1). It is clear that the option should only be early-
exercised when the profit is greater than the intrinsic value of the option. The term-to-
maturity of the underlying bond being exercised is always (s-T), irrespective of the time # it is
exercised. This implies that the early-exercise value of an option with a price-based strike
depends only on the short-term interest rate 7, and is not directly dependent on the particular
time{. Figure 6.2 illustrates the payoff as a function of the short-term rate, which holds for any

t<T.

Pay off

10~

6% 8% 10% 12% 14% 16% 18% 20%
Short Rate

Figure 6.2: Payoff as a function of the short rate for a 5 year put option on a 9-

year bond with a strike price of 0.72 for any t<T

In order to compare the prices of European and American bond options, the same example is

used as that given by Pelsser (1996:70), but shorter dated options have been added. From Table
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6.1 itis evident that the prices of short dated European and American put options corresponds

to two decimal places. The error becomes significant only for longer-term options.

Table 6.1: Prices for put option on a 9-year zero-coupon bond (price strike) (using 50

time steps, a = 0.10, 0 = 0.01 and zero-curve given by z(t) = 0.08 - 0.05e")

Option Strike European option American Eur vs Amer
term price Analytical Numerical option difference(%)
0.25 0.54 81.01 80.74 80.74 0.00
0.50 0.54 ITT7 77.74 77.74 0.00
0.75 0.55 116.56 116.93 116.93 0.00
1.00 0.55 97.91 98.20 98.20 0.00
2.00 0.58 126.51 126.45 126.49 -0.03
3.00 0.63 192.97 192.99 194.00 -0.52
5.00 0.72 135.84 137.36 145.02 -5.58
7.00 0.85 97.34 97.89 114.11 -16.57

6.3.1.2 Yield strike

Next, one can consider a put option where the strike is givenin terms of the yield-to-maturity,
for example x%. The option gives the owner of a European-style option the right to sell a
discount bond (maturing at time s) at expiry of the option at a rate of ¥%. When American
style options are early- exercised at time ¢, the owner also has the right to sell a discount bond
with maturity s priced at a yield-to-maturity of x%. On the expiry date of a European or

American option, =T, the payoff is exactly the same as for the equivalent price-based option
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given in equation (7), where x was chosen so that

8 = e—z(s-T)

A European option price is therefore not affected by the yield-strike convention. On the other
hand, when early-exercising an American option, there is a difference in the payoff since the
yield-strike convention gives an additional advantage by adding a time-dimension to the early-
exercise value. The payoff at time £, <T, is given by:

e — Plts,r)
The payoff is therefore not only affected by the short rate, but it is also affected by the time ¢

when the option is early-exercised, as is illustrated in Figure 6.3.

25
*
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Short Rate

Figure 6.3: Payoff as a function of the short rate for a 5-year put option on a 9-year bond

with a strike yield of 8.21% for various t<T
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For the same short rate, the payoff for early-exercising the option is greater for smaller ¢. This

should influence the pricing of an American option significantly, as is shown in Table 6.2. The

yield-strike was chosen to give, at the expiry of the option, approximately the same price strike

as in Table 6.1.
Table 6.2: Prices for put option on a 9-year zero-coupon bond (yield strike) (using 50
time steps, a = 0.10, o = 0.01 and zero-curve given by z(t) = 0.08 - 0.05¢"*")
Option Strike European option American Eur vs Amer
term yield (%) | Analytical Numerical option difference(%)
0.25 7.042 81.05 80.78 80.78 0.00
0.50 7.249 77.82 77.79 77.79 0.00
0.75 7.247 116.44 116.81 116.81 0.00
1.00 7.473 97.90 - 98.20 98.20 0.00
2.00 7.782 126.47 126.42 126.89 -0.37
3.00 7.701 192.89 192.91 199.48 -3.41
5.00 8.213 135.80 137:32 169.80 -23.66
7.00 8.126 97.33 97.88 204.73 -109.16

6.3.2 Options on coupon-bearing bonds

6.3.2.1 Price strike

When pricing an option on a coupon-bearing bond, a slightly different approach than given

in Section 6.3.1 is followed. One can consider a T-term option on an s,-term coupon-bearing

bond, based on a strike price. A coupon bond can be seen as a portfolio of discount bonds, one
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discount bond for every coupon maturing at time s;, plus one discount bond for the principal
maturing at time s,. An European option on a coupon bond can therefore be treated as a
portfolio of options on the individual discount bonds in the portfolio as described by
Jamshidian (1989). Only cashflows that are due after the expiry of the option are considered

in the pricing of the option. In the example, a total of n cashflows is assumed.

Since the strike price is also equivalent to the sum of discounted cashflows, the original strike
price is used to solve for the ‘strike’ short-term interest rate, ', where the Hull-White analytical
formulas are used to price the individual discount bonds. One then uses " to obtain the
individual strike prices, X; for the underlying discount bonds maturing at time s; with a 1 unit
nominal. The individual options on the different cashflows are therefore separated in order
to price them independently according to the method used for discount (zero-coupon) bonds.
The individual option prices are then added to obtain a single price for the option on the
coupon-bearing bond. It follows that the payoff for a put-option at the expiry of the option

when the spot short-term interest rate equals 7 is

n
¥ c.max[X; - P(T,s,r), 0] 9)
i=1
where the i-th cash flow is given by ¢;. Therefore, the price of an option on a coupon-bearing
bond equals the sum of n options on the underlying discount bonds. The price of a put option

is then given by

p= Z P (10)

i=1

where p; denotes the price of the individual options. When American options are priced, the

individual options on discount bonds are priced using the trinomial tree approach and
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evaluating for the desirability of early exercising, using equation (8). Equation (10) therefore

holds for European and American options, where the strike is given in terms of the price.

The results in Table 6.3, for example, give the prices of a put option on an 8% coupon bond,
where coupons are paid semi-annually and the strike is given in terms of a bond price. When
one compares the difference between American and European option prices for acoupon bond
in Table 6.3 to the results for a zero-coupon bond in Table 6.1, one sees that there is an almost

insignificant change in the differences.

Table 6.3: Prices for put option on a 9-year, 8% coupon bond (price strike) (using 50

time steps, a = 0.10, 0 = 0.01 and zero-curve given by z(t) = 0.08 - 0.05¢ ")

Option Strike European option American Eur vs Amer
term price Analytical Numerical option difference (%)
0.25 1.084 81.52 81.78 81.78 0.00
0.50 1.045 78.05 78.38 78.38 0.00
0.75 1.060 116.34 116.84 116.84 0.00
1.00 1.023 97.33 97.93 97.93 0.00
2.00 0.997 125.16 124.76 124.79 -0.02
3.00 0.997 190.50 191.27 192.16 -0.47
5.00 0.980 134.50 134.93 142.59 -5.68
7.00 0.992 97.58 98.83 . 115.36 -16.73
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6.3.2.2 Yield strike

The strike convention has no influence on European options and equation (10) still holds for
coupon-bearing bonds using the yield strike. However, the pricing of an American option
should be treated in a different way. Since early-exercising an option on the yield of a bond
involves not only those coupons that are due after the expiry date of the option, but also those
due between the early-exercise date and the expiry date, it follows that equation (10) does not
hold for the price of an American option. The value of the option at time £.<T'in the trinomial

tree is therefore

m ) 1
f; = max kEck(e e P(ts,r)) , e *"[ Zl P,-,I-,Mﬁq,,-ﬂ,ﬂle (11)

=1 g=-
where m is the number of cashflows from time t; to the maturity of thebond. The option price
is therefore determined by a different process as followed by Jamshidian (1989), since the
number of coupons at different time-steps may differ. This adds to the bigger difference

already obtained for American yield-strike options on zero-coupon bonds shown in Table 6.2.

When one compares the results in Table 6.3 with similar options, but uses the yield-strike

convention, one obtains the results shown in Table 6.4 (overleaf).
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Table 6.4: Prices for put option on a 9-year, 8% coupon bond (yield strike) (using 50
time steps, a = 0.10, 0 = 0.01 and zero-curve given by z(t) = 0.08 - 0.05¢"*")
Option Strike European option American Eur vs Amer
term yield (%) Analytical Numerical option difference (%)
0.25 6.89 80.46 80.74 80.74 0.00
0.50 7.15 78.36 78.36 78.68 0.00
0.75 7.20 116.48 116.98 116.98 0.00
1.00 7.47 97.25 97.85 97.86 -0.01
2.00 7.89 126.89 126.61 127.27 -0.52
3.00 7.90 191.72 192.58 200.85 -4.29
5.00 8.42 134.71 135.11 174.26 -28.98
7.00 8.27 97.57 98.82 226.86 -129.57

6.3.2.3 Conclusion

The above tables indicate that there is an insignificant difference between short-dated (less

than 1 year) European and American put options. The results show clearly that short-dated

European and American put options in this example can be priced accurately using the

analytical Hull and White model. The Black model can therefore also be used accurately, by

adjusting the volatilities for different option terms. The early-exercise value of American

options becomes significant only for longer-dated options (more than 1 year). The pricing

difference (or early-exercise value) becomes even more significant for options based on the

yield-strike convention, but is still fairly priced for short-dated options. The shape of the term

structure, could, however, influence these results.
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6.4 Influence of the shape of the term structure

The term structure in the previous examples shows a sharply increasing shape. These results
can be compared to an example where a sharply decreasing term structure was used. Table 6.5
shows a significant increase in the early-exercise value of the put option (compared to Table
6.4). An obvious reason for this sudden increase in the price of an American option lies in the

shape of the term structure.

Table 6.5: Prices for put option on a 9-year, 8% coupon bond (yield strike) (using 50

time steps, a = 0.1, 0 = 0.01 and zero-curve given by z(t) = 0.03+0.05¢"*)

Option Strike European option American Eur vs Amer
Term Yield (%) Analytical Numerical option difference (%)

0.25 4.0 17193 172.21 221.15 -28

0.50 4.0 152.82 152.32 227.71 -50

0.75 40 138.57 138.88 232.83 -68

1.00 4.0 126.50 127.01 236.34 -86

2.00 3.8 130.89 13233 386.12 -192

3.00 3.5 149.99 150.15 640.20 -326

5.00 3.2 123.12 124.37 894.88 -620

7.00 25 107.64 108.98 1540.02 -1313

For an increasing term structure (where interest rates are expected to rise) early-exercising a
putoption is not optimal, since the profit is greatest when the interest rate is even higher. The

relatively inexpensive rate at which bonds can be carried (financed) makes it profitable to carry
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the bonds until the expiry date. A short-dated in-the-money put option will therefore not be

early-exercised.

A market involving a decreasing term structure (where interest rates are expected to decline)
gives the opposite effect. The high cost involved in carrying bonds causes lower future rates.
A putoption with a certain strike would be less expensive in this market than in a market with
an increasing term structure. However, an unexpected increase in interest rates would make
the option more likely to be early-exercised than previously. The reason for this is that the
holder of a covered (hedged) put option has a long position in bonds and higher rates would
therefore increase the cost-of-carry. The expectation of decreasing rates still holds, which
makes the profitability of early-exercising an in-the-money put option greater. It is thus
evident that, although the European option is cheaper in this market than in the increasing

market, the added value for an American option is greater.

It is obvious that the opposite holds for a call option, giving more early-exercise value for a
yield curve with a positive slope than with a negatively sloping yield curve. Using the same
example as that used in Table 6.4, but for a call option, one obtains the results set out in Table

6.6.

6.4.1 Conclusion

The results show that there is a small pricing difference between short-dated American and
European put options in a market with an increasing term structure (and call options in a
market with a decreasing term structure). However, for the opposite scenario, the pricing

difference becomes significant, as was shown above.
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Table 6.6 Prices for call option on a 9-year, 8% coupon bond (yield strike) (using 50

time steps, a = 0.10, 0 = 0.01 and zero-curve given by z(t) = 0.08 - 0.05e1Y)

Option Strike European option American Eur vs Amer
term yield (%) Analytical | Numerical option difference (%)
0.25 6.89 100.54 100.61 146.09 -45
0.50 7.15 191.09 191.42 305.92 -60
0.75 7.20 183.18 183.78 338.41 -84
1.00 747 253.07 253.72 520.93 -105
2.00 7.89 273.26 273.09 790.81 -190
3.00 7.90 192.66 193.69 787.72 -307
5.00 8.42 167.22 167.81 1099.08 -555
7.00 8.27 69.68 71.01 985.32 -1288

6.5 Calibration of the volatility parameters

The main problem in using more sophisticated models such as the Hull-White model is to
estimate the volatility parameters, g, and 4. In order to derive the full benefit of the more
accurate Hull-White model, one must calibrate the Hull-White model to liquid options traded

in the market.

Since the market uses the Black model, the Hull-White model should therefore be calibrated
to the Black model using short-dated options. In the case of options where the pricing
difference between European and American options is small (either put or call options,

depending on the market), the prices and implied volatilities of at-the-money options given
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by the Black model can be used to solve the volatility-parameters (o, and a) for the analytical
Hull-White model - which is similar to the Black model. These parameters can then be used
to price longer-dated options by using the Hull and White trinomial tree approach, thereby

reducing the pricing error.

6.5.1 Estimation of parameters for zero-coupon bonds

The results in the previous sections show that the pricing error is small when short-dated
American put options are priced using a European model in a market with an increasing
(positive sloping) yield curve (and call options in a market with a decreasing or negative
sloping yield curve). Therefore, since short-dated American bond options are priced in the
market using the Black model, these prices and implied volatilities can be used to imply the
volatility-parameters, g, and 4 in the analytical Hull-White model. Once the parameters have
been obtained, they can be used in the numerical solution to give the prices for American

options.

If one compares equations (4) and (34) in Chapter 5% it indicates that, when valuing the same

option with these two models, the option prices can only be equal if

Therefore,

g s 1_e—ZaT
Op(s) = —[L - e | ——
H) a[ ] 2aT

where ¢; (s) is derived from the market price of an option on a discount bond maturing at time

“The Black model and Hull-White model respectively.

-112-




University of Pretoria etd — Smit, L (2005)

$. One can solve the parameters o, and @ by obtaining a best fit for the function oy(s). This

gives a volatility curve that serves as an input for the Hull-White model.

Once the calibrated Hull-White volatility parameters are known, they can be used to obtain a
more accurate estimate of the price of American call options in a market with a positive-
sloping yield curve, or American put options in a market with a negative-sloping yield curve,
by using the Hull-White numerical method. Longer-dated options can also be priced this way,

although an estimate of future volatility is required to do so.

6.5.2 Estimation of parameters for coupon-bearing bonds

The volatility curve obtained in Section 6.5.1 indicates the volatility against the maturity date
of a zero-coupon bond. Since a coupon bond has several cashflows, it cannot give the same
result. If one has only option market data for coupon bonds, and no zero-coupon bond data,

one must approximate the volatility curve for zero-coupon bonds.

An option price is influenced by the market consensus of the bond price volatility for the
particular option term. If one assumes that a bond’s price volatility (as used in the Black
model) is acombination of the implied volatilities of theindividual cashflows, one can express
the volatility as a function of the average time of cashflows, or the duration of the bond. Using
this approximation, the volatilities as a function of duration give an implied volatility curve
for a certain option term T. This then implies that the volatility parameters, ¢, and 4, result in
a volatility curve against duration. Figure 6.4 shows an example of a volatility curve for an
option term of 6 months using data for November 1999. Fitting the curve through the data
points produces the following values: g = 0.055 and o, = 0.0295. The graph also shows the

implied curve for a 1-year option.
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Figure 6.4: A fitted volatility curve for an option term of 0.5 years, and an implied curve

for 1 year, using the same parameters

The above method gives a reasonable approximation of the volatility curve, but is not perfect,
since the volatility of one bond is influenced by the volatility of another bond used in the
construction of the curve. If there are any abnormalities in the implied volatilities of different

bonds, the fitted curve smoothes out these discrepancies, giving an approximated value.

6.6 Empirical study for South African OTC bond options

An empirical study was done for South African OTC bond options. It was assumed that the
most liquid at-the-money government R150 (12% coupon, maturing 28 February 2005) and

R153 (13% coupon, maturing 31 August 2010) options traded in the South African market are
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the benchmark options. The Hull-White model was then calibrated to these options. The yield

curve in November 1999 was used, as is shown in Figure 6.5.
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o

o
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|

Zero-coupon yield
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2
|
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Term-to-maturity (years)

Figure 6.5: South African zero-coupon yield curve in November 1999

The modified Hull-White numerical method was hence used to calculate option prices for the
R150 and R153, shownin Tables 6.7 and 6.8 respectively. The difference between the European
and American prices in Tables 6.7 and 6.8 is an indication of the early-exercise value, which
is larger for call options, due to the shape of the yield curve. Since the yield curveis relatively

flat compared to the previous examples, both call and putoption prices contain early-exercise

value.
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Table 6.7: Prices for R150 at-the-money-spot call and put options using the yield curve
in Figure 6.4
Option | European | American European/ European | American European/
term call price | call price American put price put price American
(years) difference (%) difference (%)
0.5 0.805 0.861 -7.0 4.752 4.816 -1.3
1.0 1:152 1.384 -20.1 5.641 5.885 -4.3
2.0 1.557 2.012 -29.3 4.887 6.692 -36.9
3.0 1.362 2.330 -71.0 3.704 6.993 -88.8
4.0 0.819 2.447 -198.9 2.336 7.125 -205.0
5.0 0.208 2.479 -1092.2 0.607 7.169 -1080.7
Table 6.8: Prices for R153 at-the-money-spot call and put options using the yield curve
in Figure 6.4
Option | European | American European/ European | American European/
term call price | call price American put price | put price American
(years) difference (%) difference(%)
0.5 2.650 2.845 -7.3 3.216 3.225 -0.3
1.0 3.125 3.648 -16.7 4.841 4.909 -1.4
2.0 3.757 4.613 -22.8 5.618 6.507 -15.8
3.0 3.687 5.167 -40.1 5.719 7.386 -29.2
4.0 3.283 5.469 -66.6 5.513 7.996 -45.0
5.0 2.856 5.643 -97.6 4.893 8.394 -71.5
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The longer options on the R150 bond show the effect when the term of the option becomes
comparable to the term-to-maturity of the bond. Figure 6.6 shows the effect of the strike yield
for a particular expiry date for 6 month options, as well as 1 year options, using the R153 bond

as the underlying instrument.
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-10%

Difference

-15%

-20%

=25%

-30%
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Oui-the-money At-the-money In-the-money
Figure 6.6: Price difference between European and American options on the R153 bond

for different yield strikes
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6.7 Concluding Remarks

Since the market convention is to use the Black model to price bond options, the Hull-White
analytical solution (which is similar to the Black model) was compared to the Hull-White
numerical solution, with specific reference to South African options. Results were compared
using different strike conventions and term structures. Both the strike convention, and the

term structure influence the price of American options.

The pricing difference between options on the bond price and options on the yield-to-maturity
of a bond becomes significant for longer-dated American options. These pricing differences
are also influenced by the term structure of interest rates. Pricing these options with the Black
model can therefore lead to significant errors. The results show, however, that the pricing
difference is usually small when a European model is used to price the following:

. short-dated American put options in a market with an increasing term structure; and
. short-dated American call options in a market with a decreasing term structure.

For the opposite situation, however, the error becomes significant, even for short-dated

American options.

Since short-dated American bond options in the market are usually priced using the Black
model, the market prices and implied volatilities for at-the-money options (put or call options,
depending on the yield curve) can be used to solve the volatility parameters o, and a in the
analytical Hull-White model. The parameters can then be used to pricelonger-dated American
options by using the Hull and White trinomial tree approach and therefore reducing the
pricingerror. Therefore, the use of the Hull-White model is strongly recommended for longer-

dated options, as well as in-the-money options, where there is a bigger early-exercise value.
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It can be concluded that the primary advantage of the Hull-White model is to value longer-
dated American options when using the yield-strike convention. The main advantage is
certainly the estimation of the early-exercise value for American options which becomes
significant for OTC call options when there is a positive-sloping yield curve, and for OTC put
options when there is a negative-sloping yield curve. The early-exercise value is mainly a
result of a move in the risk-free rate that affects the carry-cost of the hedge. Since OTC options

are hedged in the physical instrument (the bond), the carry-cost can have a big influence.

The main disadvantage of the Hull-White model is, however, the need to calibrate the
parameters and the estimation of the yield curve before one is able to price an option. By
contrast, the Black model is easy to use and one needs only the volatility and the equivalent
risk-free rate to price an option. This is one of the reasons why the Black model remains a

popular pricing tool, even though it has several disadvantages.

In addition to OTC bond options, there are also South African Futures Exchange (SAFEX)
bond options which are traded on the future yield of a bond. Since the largest volume options
are traded on the near contract, the Black model is usually sufficient to estimate a reasonably
accurate value, especially for at-the-money options. The biggest concern s out-the-money and
in-the-money options where there is uncertainty about the accuracy of the Black model.
Therefore, a pricing model that s as easy to use as the Black model, and can solve the problem
of valuing in-the-money and out-the-money SAFEX bond options is discussed in the next

chapter.
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CHAPTER 7

AN ALTERNATIVE PRICING MODEL FOR
SOUTH AFRICAN EXCHANGE TRADED

BOND OPTIONS'

ptions on South African government bond future rates are traded through SAFEX.
Although there used to be reasonable liquidity in the past, the trading volumes for
SAFEX bond options have declined significantly, in comparison with trading in the OTC

market.

'Results of work done in this chapter were published in RISK (Smit & Van Niekerk, 1999)
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Tradeis usually based on price-volatility which gives a certain option price as calculated using
the Black model (1976) where the strike is given as the exercise yield. Options are marked to
market daily to establish the margin payment. Hedging SAFEX options with OTC options,
where volatility smiles or skews are used, becomes a complex exercise. There was a need to
develop a model that prices SAFEX options more accurately and that can address the

disadvantages of the Black model, taking into account the simplified nature of SAFEX options.

Thestandard pricing models for South African bond options are the well-known Black-Scholes
model (1973) and Black model (1976). It is generally assumed that the Black model (discussed
in Chapter 5) is sufficiently accurate to value options with less than a year to expiry. However,
when the Black model is applied to SAFEX options, the pricing of in-the-money and out-the-
money options by the Black model, and the valuation of different maturity bonds using price-

volatility give rise to concern. These concerns are discussed in the next section.

Since the early-exercise value of SAFEX options is very small?, marginal benefits accrue from
using a no-arbitrage model such as the Hull-White model. It can be argued that the short-term
risk-free rate only plays an indirect role in option pricing®. Consequently the study propose

that the future rate, rather than the short-term risk-free rate is used as the stochastic variable.

Hedging is done in the future, and not in the physical instrument, and therefore does not
have any carry-cost.

The risk-free rate plays a role only in determining the future rate.

-121-



University of Pretoria etd — Smit, L (2005)

7.1 The Black model - a review

The popularity of the Black model can certainly be ascribed to its simplicity. The model is
computationally efficient, requiring only a few basic parameters to calculate a reasonably
accurate value for the option. Although there are several disadvantages, it is still, after 25
years, the most popular pricing model in most markets. Itis preferred to models that are more
accurate, but which are also much more complex and require the estimation of several
parameters in order to obtain a more accurate fair value for the option. The calibration of more
sophisticated models to the traded market value is a time-consuming process and therefore,
many believe that the Black model is sufficiently accurate, especially for short-dated options

(see Chapter 6).

In order to compete with the advantages of the Black model, any other model should, therefore,
have the same ease of implementation and simplicity of use. Most important, though, it
should give a more accurate estimation of the fair value of the option, especially of out-the-

money options.

When using Black’s model, it is necessary to calculate the forward bond price, the strike price

and the price-volatility, using the forward yield and the strike yield. Itis then assumed that

the forward price, F, follows a geometric Brownian motion:

dF= pFdt + o, FAW )

where y is the drift and o; is the volatility of the forward bond price.
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For the purposes of this chapter, a bond is discussed which pays a coupon m times a year at
time #; at a rate of ¢% and a nominal N at maturity time t,,. The forward bond price, F, in

equation (1) is given by the following non-linear function of the forward yield-to-maturity, Y:

N e vt =Yt
F(Y) = ?Ze ‘+Ne ™ @)

i=]
where all cash flows are discounted to the forward date.

The main disadvantages of the Black model and a motivation for the use of a yield-based

maodel are discussed below.

7.1.1 Distribution of yield and price

The first problem with Black’s model is the assumption that the underlying variable is
lognormally distributed. A variable has a lognormal distribution if the natural logarithm of
the variable is normally distributed. According to this assumption, the bond price can take
any value between zero and infinity. In practice, however, the price of a zero-coupon bond is
bounded and cannot have a value greater than its nominal value. Since the yield is non-negative
and unbounded from above, it is therefore more accurate to assume that the yield of the bond

has a lognormal distribution and follows a geometric Brownian motion.

In order to evaluate the lognormal distribution assumption empirically, an analysis was done
on closing prices for the last nine years (data source: INet Bridge). Figure 7.1 gives the
distribution of the logarithm of the R150 yield based on closing rates with 10-day intervals.

Figure 7.2 shows the distribution of the 10-day price-returns of the R150 over the same period.
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Figure 7.1: Distribution of 10-day yield returns for the R150 bond over a 9-year period
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Figure 7.2: Distribution of 10-day price returns of the R150 bond over a 9-year period
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A goodness-of-fit test, to test for normality, H g kL~ NI 1,0?%) for the two distributions, gave
the following results: for a significance level of 0.01 the hypothesis for the price-distribution
was rejected, and for the yield-distribution it was accepted. One can therefore assume that the
yield-distribution is closer to lognormal than the price-distribution. It would therefore be more

accurate to use the yield as the stochastic variable in a pricing model.

7.1.2 Yield-price correlation and the volatility skew

The Black model uses bond price-volatility which leads to a fundamental problem. Equation
(1) implies that the instantaneous variance rate of the forward bond price, F, is equal to (0:F)?,
and is therefore proportional to the bond price. Since the bond price has a negative relationship
with the yield (see equation (2)), the Black model therefore implies that the variance rate of the
bond price or price-volatility is negatively correlated with the yield. Empirical data show,
however, that the opposite is true. Correlation analysis of the daily volatility of the South
African government R150 bond was done for the last nine years (data Source: INet Bridge).

Figure 7.3 shows the results for the last three years, using 40-day price-volatility and daily

closing yields.

A positive correlation was found between the price-volatility and the yield of the bond. The
absolute value of the yield change over a 40-day period also showed a positive correlation, as
well as yield-volatility againstyield. The correlation coefficient, p, between the price-volatility

and yield data was equal to 0.7605.
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Figure 7.3: Correlation between price-volatility and yield-to-maturity

In order to estimate whether the correlation coefficient is significantly different from zero, a
t-test was done, which resulted in a t-value of 20.05 for the above data. For a sample out of a
population, a value of t = 2.576 (& = 0.005) would occur only once in 100 random samples when
drawn from a universe with a value of pequal to zero. The probability of a value of t equal to
20.05 is extremely small if the value of pis equal to zero. The conclusion is therefore that the

correlation coefficient (p) is positive in the universe from which the sample was taken.

Based on the empirical evidence, one can conclude that the Black model fails to give a true

reflection of the variance of the underlying instrument.

Using the price as the underlying variable in the Black model influences the valuation of out-
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the-money bond options. Participants in the market currently compensate for this mispricing
by using a volatility skew. There is, however, usually under- or over-compensation, due to the

uncertainty of where in- and out-the-money options should be trading.

7.1.3 Price-volatility

The Black model assumes a constant price-volatility for the life of the option. The price-
volatility, however, depends mainly on the yield, the time to maturity and the convexity of the
bond price curve. The pull-to-par-phenomenon of the bond price can have a big influence,
especially when the option term is a significant proportion of the term of the bond. For an
option on a future, the effect is insignificant, since the term-to-maturity from the future date

stays constant. When hedging is done in the spot-market, however, this becomes a problem.

Since price-volatility is used in the Black model, different volatilities are used to price options
on different bonds. One must therefore ensure that the volatility relations are always
consistent, for example with a parallel shift in the yield curve. Using a yield-based model
would solve this problem, since the same yield-volatility could be used for parallel shifts in

the yield curve.

7.1.4 Yield versus short-rate and price

The work done by Longstaff (1990) on caps, floors and T-bills, suggests that the yield can be
seen as the underlying variable that determines the price of a bond. Vasicek (1977) was the
first to develop a term structure model which assumes that the price of a discount bond is

determined by the assessment of the short-term rate process over the term of the bond. The
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bond price obtained in this way can then be converted to obtain the yield-to-maturity by goal-
seeking equation (2). This yield-to-maturity rate therefore implies a certain expectation of

future short- term rates.

Although term structure models use the short-rate, one can argue that it is better to model the
stochastic process of the instrument in which hedging is being done, in order to stay delta
neutral (Wilmott, 1998:441). One can therefore make the assumption that the yield-to-maturity
of abond contains all available information about the market expectation of the short-rate, and

can therefore be seen as the underlying variable determining the price of a bond.

The particular problem to solve here is the valuation of an exchange-traded American option
on the future yield of a long-term bond. A model is suggested where the value of the option
is derived from the stochastic process followed by the future yield, using a constant yield-

volatility. The model is solved numerically in order to provide for early-exercise.

7.2 The proposed yield-based model

A bond can be traded on its yield-to-maturity, instead of price, with a T-year option on the
future T-year yield of the bond. If one assumes that the T-term future yield, Y, of the bond

follows a stochastic process, then

dY = nYdt + oYdW (3)

where y is the drift and ois the volatility of the yield.

If F is the T-term future price of the bond, and since F depends only on the future yield, Y, on
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that date, it follows from Ito’s lemma (Bjork, 1999) that

dF

(PYpY + Lo2y2F, Yt + oYF AW

Il

« Fdt + o FAW

where

1 _2v.2
nYF, + EUY E

4 F

UYFY
F E

(4)

©)

and where F, denotes the first derivative and F,, denotes the second derivative to Y. If one

defines V' as the value of a contingent claim dependent on the level of the future yield of the

bond, since V is a function of Y and ¢, it also follows from Ito’s lemma that

av = (VY + v, + %UZYZVYY)dt + oYV AW

]

ocVth + UVVdW

where

pYv, + V+ %UZYZVW
v

oYV

One can set up a portfolio, I, consisting of two assets:
e the contingent claim, V; and

. the underlying bond future, with a price F at the future yield Y.
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The relative portfolio can be denoted by (i, 1, ). The bond future and the derivative are
exchange-traded and interest is paid on the margin account (which is seen as a security for the
contracts entered into). It initially costs nothing to enter into an exchange-traded option or

future contract, therefore the initial investment is zero, while the portfolio value is given by

2 =0 @)

Animmediate change in the value of the underlying instrument (the future yield) would result

in a change in the value of the derivative and the future price of the bond. Therefore:

4z Z][uF(ocPdt + 0 dW) + uy (e df + GVdVV)]

= 2[(“1:% + w0 )dt + (U0, + uvov)dW]
For the relative portfolio,
Pty =1 (9)

For the dW-term to vanish, the following condition can be introduced:
UGy + U0, =0 (10)
Therefore,

dz = E[upocp + uvocv]dt (11)

which is a linear riskless portfolio. Since there is no initial investment, the principle of no-

arbitrage states that

4z = 0 (12)
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Therefore,

uge, + w0, =0 (13)

From equations (9) and (10) it is clear that

g,
)
u, =
0y = Oy
U, = v
.=
Op = Oy

Using equations (5) and (7), one can then write the following:

F,V

uV E —

E,V - FV,
“FV,

uF S —

F,V - FV,

Substituting in equation (13), one gets

FV, (pYPY + -:IZGZY ZFW

RV -EV, | F
. EV 'PYVY ¥ Vs “;TUZYZVW .
FV - FV, | v
Therefore,
v, + %ozyl[vw - —%VY =0 (14)

This gives a partial differential equation for the value of a derivative security dependent on the
future yield of a bond. In order to provide for the early-exercise value for American options,
one can therefore solve the above differential equation with an implicit finite difference

method. Inorder to evaluate the results, the results are compared with that of the Black model.
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7.3 Numerical solution

In order to solve equation (14), an implicit finite difference method was used, with

v _ Vi+1,j - Vi

ot At
oV _ Vz‘,j+1 - Vi,j—]
aYy 2AY
oF _ F,;fq B Fi,j-l
oY 24X
*V ; Vgl * Vi = 2V,
ay? AY?
FF _ By v Fyy - 2F,
ay* Rane

Substituting these equations into equation (14), results in the implicit scheme

a; V.j,1 + b[. Vf,,-' # CVooa = (15)

i, 7 i+l i+l,j

where

=
I
|
Q
~
)
[
4

Vi V072V, 1
Vi =V..

i+l Vij-1

o
I
—
+
a
<P
]
[
~

¢, = ~o%2At
1 2

Vi Ve 22V
i+ 1j-1 ij Y 1
1% V.

ij+l” V-1
Since the value of the option at the expiry date is just the payoff of the option, the problem can
be solved backwards. The value of the option at the expiry date is determined by the payoff

given by a difference in price of max[F(X) - F(Y,) , 0] for a call option, and max[F(Y;) - F(X) , 0]

-132-



University of Pretoria etd — Smit, L (2005)

for a put option, where Y is the yield at time T and X the strike rate. To obtain the value of the
option at the boundaries of the finite difference grid, where Y reaches its minimum and
maximum, it can be assumed that the gamma of the option at these points should be zero (see
also Chapter 2, Section 2.4.2.1). Since the implicit scheme results in a tri-diagonal system, the
procedure of LU decomposition (Wilmott, Dewynne & Howison, 1993) was used to solve the
system. For the longer-dated options, 1000 time steps were used, with fewer for the shorter-

dated options.

7.4 Empirical results

A comparison between the Black model and the yield-based model was done for the
government R150 bond, maturing in February 2005 with a coupon of 12%, as well as the
governmentR153 bond, maturing in August 2010 with a coupon of 13%. In-the-money, as well
as out-the-money options were compared for different expiry dates. The same yield-volatility

was used for both bonds.

7.4.1 Price differences

Figures 7.4 and 7.5 show the results of the R150 and R153 bonds respectively, using a yield-
volatility of 20%. The data for these examples are set out in Tables 7.1 and 7.2. The results
show clearly that, compared to the yield-based model, out-the-money call options are

overvalued by the Black model, while out-the-money put options are undervalued.
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Figure 7.4: Pricing differences for R150 bond with a yield-volatility of 20%
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Figure 7.5: Pricing differences for R153 bond with a yield-volatility of 20%
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Table 7.1: Results for R150 option prices with a yield-volatility of 20%

Put option price Call option price
Term Strike
Black Yield Difference Black Yield Difference
Gears) ) model model (%) model model (%)

12 7.19 7.14 0.6 0.16 0.12 249

13 4.09 4.05 1.1 0.66 0.62 6.8

0.25 14 1.87 1.87 0.0 1.87 1.87 0.0
15 0.65 0.69 -6.6 3.92 3.96 -1.1

16 0.16 0.20 -25.6 6.56 6.60 -0.6

12 7.31 7.22 1.3 0.53 0.43 18.0

13 459 452 1.5 1.27 1.20 5.6

0.5 14 2.56 2.56 0.0 2.56 2.56 0.0
15 1.24 1.31 5.2 441 4.48 -1.5

16 0.52 0.61 -17.2 6.72 6.81 -1.3

12 7.04 6.80 3.4 1.95 1.71 12:2

13 5:31 5.18 25 2.81 2.68 48

2 14 3.89 3.87 0.3 3.89 3.87 0.3
15 2.75 2.85 -3.8 517 5.27 -2.0

16 1.88 2.07 -10.4 6.64 6.84 2.9
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Results for R153 option prices with a yield-volatility of 20%

Put option orice Call option price
Term Strike
Black Yield Difference Black Yield Difference
(years) | (%)
model | model (%) model | model (%)
12 11.54 11.49 04 0.24 0.20 19.8
13 6.44 6.39 0.8 1.03 0.97 5.2
0.25 14 2.90 2.90 -0.0 2.90 2.90 -0.0
15 1.00 1.05 -4.9 6.00 6.05 -0.8
16 0.26 0.30 -17.9 9.86 9.91 -0.5
12 12.01 11.89 1.0 0.83 0.72 14.1
13 7.39 7.31 1.2 2.03 1.94 4.2
0.5 14 4.06 4.06 0.0 4.06 4.06 0.0
15 1.97 2.04 -3.7 6.92 6.99 -1.1
16 0.83 0.93 -11.9 10.36 10.46 -1.0
12 14.12 13.74 257 3.83 3.45 9.9
13 10.47 10.25 2.0 551 5.29 39
2 14 ¥.55 7.52 0.3 7,55 7.52 0.3
15 5.29 5.43 -2.7 9.91 10.05 -1.4
16 3.60 3.87 -7.5 12.52 12.79 -21
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The oppositeis true for in-the-money options, as expected. The relative difference is bigger for
the short-term R150-bond than for the longer-term R153 bond. The early-exercise value of
American options was found to be very small, as can be expected from short-term options on
the future yield. Since the yield-model has been calibrated to the Black model, the small

difference for at-the-money options is the early-exercise value.

Bonds with other maturity dates and coupons were also evaluated and similar results were
obtained. These include the R162 maturing on 15 January 2002 (12.5% coupon), the R184
maturing on 21 December 2006 (12.5% coupon), the R157 maturing on 15 September 2015
(13.5% coupon) and the R186 maturing on 21 December 2026 (10.5% coupon). One big
advantage of the yield-based model is that a constant yield-volatility can be used for different
maturity bonds, while the price-volatility for the Black model must be manually adjusted to

compensate for bonds with different maturity dates and coupons.

7.4.2 Delta differences

Since the delta of an option plays as important a role as the option itself (being the hedge), the
yield-based model’s delta was also compared with the delta given by the Black model. The
results showed a relatively big difference between the two models, as displayed in Table 7.3.
The delta given by the Black model is larger than the delta given by the yield-based model for

call options, and smaller for put options.

The results for the delta indicate that a position will be under-hedged for put options, which
is problematic when rates spike up. Call-options, on the other hand, will be over-hedged. The

relative difference is larger for short-dated call options and longer-dated put options.
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Table 7.3: Delta difference for R153 options with a yield-volatility of 10%

Put option delta Call option delta
Term Strike
Black Yield Difference Black Yield Difference
(years) | (%)
model | model (%) model model (%)
12 -0.92 -0.94 -2.2 0.08 0.06 25.0
13 -0.76 -0.78 -2.6 0.24 0.22 8.3
0.25 14 -0.49 -0.51 -4.1 0.51 0.49 3.9
15 -0.23 -0.25 -8.7 0.77 0.75 2.6
16 -0.08 -0.09 -12.5 0.92 0.91 1.1
12 -0.84 -0.87 -3.6 0.16 0.13 18.8
13 -0.68 -0.71 -4.4 0.32 0.29 9.4
0.5 14 -0.49 -0.51 4.1 0.51 0.49 3.9
15 -0.3 -0.32 -6.7 0.7 0.68 29
16 -0.15 -0.18 -20.0 0.85 0.82 3:5
12 -0.68 -0.73 -7.4 0.32 0.27 15.6
13 -0.58 -0.63 -8.6 0.42 0.37 11.9
2 14 -0.48 -0.53 -10.4 0.52 0.47 9.6
18 -0.38 -0.43 -13.2 0.62 0.57 8.1
16 -0.29 -0.34 -17.2 0.71 0.66 7.0
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7.5 Summary

The valuation of options on the forward yield of abond using a model based on the stochastic

behaviour of the yield, rather than the price, has several advantages.

Firstly, when the model proposed here is compared with that of Black, the numerical results

show that:

the two models price at-the-money options similarly;
the Black model overvalues out-the-money call options and undervalues out-the-
money put options; and

a small price difference occurs for in-the-money options.

Secondly, the yield-based model addresses most of the disadvantages of the Black model:

The yield-based model uses the yield as the underlying instrument, which is closer to
a lognormal distribution than the price of the bond.

The same yield-volatility can be used for any maturity bond and the option price is
automatically adjusted for the duration-difference. With the Black-model an
independent price-volatility has to be estimated first, and recalculated every time the
yield or volatility changes.

The yield-based model provides for the pull-to-par effect of bonds when pricing long-
term options. The Black model does not provide for this and the decline in volatility
for longer options has to be adjusted by adjusting the price-volatility.

The yield-based model can also value options on swaps (swaptions) in a similar way,
makingarbitrage between bond options and swaptions easier. (See Appendix B for the
usual pricing convention of swaptions.) The yield-based model is consistent with the

pricing of swaptions using the Black model.
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The main disadvantage of this model is that it assumes that hedging will be done using the
future yield. The model thus neglects movement in the short-rate for over-the-counter spot
hedges. When hedging is donein the spotmarket, the early-exercise value increases for certain
options as described in Chapter 6, since it is dependent on a certain carry or repo rate. The
yield-based model is therefore well-suited for options on the SAFEX future. For OTC options,

it is important to compensate for the early-exercise value.
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CHAPTER 8

CONCLUSIONS

Ithough a large body of research already exists in the area of derivative securities, the
Acharacteristics of the South African fixed income market pose particular challenges for
researchers in this market. This study has set out to add value to a specific area where little
work has been done up till now, building on the theoretical work of other practitioners and

scientists.
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8.1 Summary

The aim of this study was to add value to the South African fixed income market by analysing
the existing procedures and models that are being used and, where necessary, to make a

contribution by recommending alternatives.

Chapter 2 introduced the basic theory of pricing derivative securities. If a unique probability
measure could be found so that the relative prices in an economy become martingales, then
a continuous economy would be complete and free of arbitrage opportunities. The no-
arbitrage assumption plays an important role in many pricing models. The concepts of no-
arbitrage, martingales and partial differential equations serve as the basis for the valuation of

derivative securities.

Chapters 3 and 4 were concerned with the term structure of interest rates. The short-term risk-
free rate of interest (or spot rate) is the cornerstone of the fixed income market. The short-term
risk-free rate and the market consensus on the future change in this rate form the term
structure of interest rates. The term structure of interest rates determines the price of fixed

deposits, bonds, swaps and other derivative securities in the fixed income market.

The zero-coupon yield curve can serve as the basis for estimating all other fixed income
instruments. The estimation of the zero-coupon yield curveis, therefore, fundamental in order
to price all other derivatives accurately, including bond options. The standard bootstrap
method is cumbersome and the procedure of estimating the zero-coupon rates causes
discrepancies. For these reasons, Chapter 4 introduced an iterative bootstrap method. This

method starts with a first guess for the zero curve and then uses an iterative procedure which
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converges to the actual zero-coupon curve. Convergence to the actual yield curve following
this method is proved. This method generates a zero-coupon curve in a much smoother and
manageable way, without having to use other time-consuming numerical methods such as the

Newton Raphson technique.

Chapter 5 discussed relevant bond option pricing models and focussed on the most
appropriate model, the Hull-White model. The Hull-White model is based on the stochastic
behaviour of the short-term rate and prices European options using the exact solution for the
partial differential equation obtained. Hull and White further introduced a trinomial tree
numerical approach to obtain a fair value for an American option, as discussed in Chapter 6.
In order to use the Hull-White model for South African OTC bond options, the model was
adjusted to make provision for a yield-strike convention, rather than a price-strike. The
influence of the different strike conventions was shown for both coupon and zero-coupon
bonds. The influence of the shape of the term structure became clear when the results of both
a sharply increasing and decreasing term structure were compared. The successful use of the
Hull-White model in practice depends largely on the estimation of the volatility parameters
o, and a. The calibration of these parameters was discussed for zero-coupon and coupon

bonds.

Since the convention in South Africa is to use a European model for the pricing of American
options, the difference between European and American options was determined according
to the Hull and White model, in order to establish an error-factor. Empirical results for South

African options show a significant difference between the European and American prices.

SAFEX-traded bond options are options on the future yield of a bond, with an initial margin

and a margin account on which interest is earned. Since the short-term risk-free rate does not
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influence these options directly, amodel based on the stochastic behaviour of the future yield-
to-maturity is more suitable. Chapter 7 discussed an option pricing model for SAFEX-traded
bond options. The simplicity of this model makes it comparable to the Black model, which
prices bond options using the stochastic behaviour of the price of the bond. A specific benefit

of the yield-based model is that it addresses the disadvantages of the Black model.

8.2 Conclusions

This study adds value to several areas in the fixed income market, with specific reference to
the South African market. The impact of the results is significant. The areas of contribution

can be divided into three categories:

s construction of a zero-coupon yield curve using a new method, called the iterative
bootstrap method;
e pricing and calibrating longer dated American OTC bond options with the yield-strike

convention, using a modified Hull-White model; and

. pricing SAFEX options on the future yield of a bond, using a new methodology.

The development of an iterative bootstrap technique benefits the estimation of a zero-coupon
yield curve, first for trading purposes and, secondly, as input to obtain bond option prices

using the Hull-White numerical solution.

The Hull-White numerical solution was modified in order to price options on the yield-to-
maturity of a bond. The influence of the strike-convention, as well as the shape of the yield
curve, is shown. The early-exercise value for American options becomes significant in some

cases. The results illustrate theimpact of using a European model to price American over-the-
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counter options. A convenient way of calibrating the Hull-White model to market data is

suggested.

The characteristics of exchange-traded bond options made it feasible to develop a simplified
model for SAFEX options. Empirical evidence of the correlation between price-volatility and
the yield of the bond indicates a fundamental problem in applying the Black model to South
African futures options. Since the yield-based method addresses all the major disadvantages
of the Black model, it can be used with much more confidence to price future options,
especially out-the-money options. More efficient hedging is also possible when one uses the

delta of the yield-based model.

8.3 Recommendations

The fixed income market remains an area that requires further research and refinement,
especially in South Africa. Historically, the South African yield curve has been one of the most
interesting yield curves in emerging markets, because it has many different, and, sometimes
unusual shapes. Generally this causes a problem, since it complicates the fit of data points.
The success of the iterative bootstrap method is largely due to the approximation technique
used to fit the data points. Although success has been achieved in this study in using different
combinations of linear functions, these functions require further adjustments, particularly
when there is a large change in the shape of the yield curve. The development of a fitting
procedure that adjusts automatically to the shape of the yield curve would add more value to

the iterative bootstrap technique.

Vanilla European and American options on coupon bonds, which simultaneously address
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options on swaps, have been considered in this study. Other options on fixed rate instruments,
as well as exotic options are, however, areas of research which have drawn little attention so

far. Future research in these areas is recommended.

Volatility remains the most important input parameter in any option pricing model. The
longer the option term, the bigger the influence of the expected volatility on the option price.
Accurate estimation of the volatility parameters used in the Hull-White model numerical
method becomes more crucial when there is no benchmark. Intensive research in this area will
benefit practical users of the Hull-White model for South African options and will make the

model more accessible to practitioners at large.

The distribution of the yield-to-maturity of bonds, as shown in this study, remains an
interesting problem. Empirical research in this area to find an improved fit to the distribution
of data, and a model to approximate the valuation of an option that satisfies this distribution

can add more value.
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APPENDICES
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APPENDIX A

The least squares approximation technique

Imprecisions in the financial market may result in prices and /or rates that do not always form
a smooth curve. When determining an approximate fit to the term structure of interest rates,
it is evident that all data points are not in perfect relation to each other. The data set can be

approximated in several ways. However, the approximated curve should:

. be a smooth and continuous function of time; and

. have a smooth and continuous first derivative.

An approximation method that is commonly used to find the maximum likelihood estimate of the

model parameters, is least squares approximation (Burden & Faires, 1989:425-451). Thesetofdata
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points is fitted to a model which is a linear combination of specified functions of the term, t. The

general form for this model is
M
y(f) = E a, Ek(t)
k=1

where E,(t) arbitrary fixed functions of t.

a, = M adjustable coefficients, M < number of data points

The coefficients a are determined by minimizing the function:

. 2
N (¥ - Xa gt
xz —& E __1—

k
=1 g;

where y, discrete data points, each with a term to maturity of ¢, years,

g, = standard deviation of data point i.

Since the standard deviation serves as a weighting factor, it can be replaced by a weighting factor
in order to give a bigger weighting to more tradable bonds. Different functions for  can be used
in order to accommodate the particular shape of the curve being fitted. The least squares
approximation technique works sufficiently well for many curve shapes, especially when more

than one function is used.
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APPENDIX B

The pricing of swap options

The price of a coupon bond is a non-linear function of the yield-to-maturity, given by

-1 )
- fg

n
R = EYke

i=

&
U l( ]']f.-

+ (1 =p)e™

In order to price a European option on a bond yield, it is usually treated as an option on the bond
price, using price-volatility in the Black model. The price of swaps, on the other hand, is a linear
function of the fixed rate. Options on swaps (swaptions) are also valued by using the Black

model, but using the yield-volatility.
European swaptions are an example of options that can be priced by an exact solution, since the

price is a linear function of the fixed rate (Jamshidian, 1996). The value of an n-year swap paying

a fixed rate of R%, making m payments per year, is given by
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mn
SR) = RN o 4 N Twim - N
M =1

which is a linear function of the swap rate R. The rates {r,} are the zero-coupon rates for each

payment period. At expiry, the payoff, h, of a swaption is therefore a linear function of the

difference in two interest payments:

h = max{S(R) - S(R,),0}

LION -1,
Y} —e “max{(R - R,)0}

i=1 M

where Ry is the strike rate. The coefficient of max{(R - Ry),0} is therefore the value of the payoff
per 1% gain in the swap rate. The price of an option to receive a fixed rate can therefore be
calculated by using the Black exact solution and calculating the expected payoff in percentage

terms, and multiplying with the payoff per 1%:

“ N
Y —e “(ReN(@,) - RyN(dy)

i=1

where R; is the forward swap rate and
2
a nR./ Rx) + 0*T/2
T

d2=d]—oﬁ

This is the same as using the swap price and price volatility to calculate the option price.
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In order to compare the above with a bond, it is necessary to explain the fundamental difference
between a bond and a swap. For a swap, the change in price for a 1 point change in the swap rate
is constant. Due to the convexity of the bond price, the change in price for a 1 point move in the
yield, changes, depending on the particular base yield. The difference in value per point for an
out-the-money strike can be very different from the at-the-money value per point. Itis clear that
the described method to price a swap option cannot be directly applied to an option on a coupon

bond.
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Opsomming

‘n Analise van die

termynstruktuur van rentekoerse
en opsies op effekte in die
Suid-Afrikaanse kapitaalmark
deur
Linda Smit

Studieleier : Prof. FD van Niekerk
Departement : Wiskunde en Toegepaste Wiskunde
Graad : Ph.D.

Afgeleide instrumente vorm ‘n integrerende deel van handel in die finansiéle wéreld en maak
die gebruik van akkurate waarderingsmodelle en risiko-modelle noodsaaklik. Hierdie studie
fokus op die Suid-Afrikaanse vasterentedraende mark, en evalueer bestaande modelle en
prosedures. Alle waarderingsmodelle maak staat op sekere aannames en het gevolglik
beperkings. Tekortkominge in die Suid-Afrikaanse vasterentedraende mark word derhalwe
aangespreek, eerstens die termynstruktuur van rentekoerse en tweedens, die waardering van

opsies op effekte.

Aangesien die vasterentedraende mark ten volle afhanklik is van die termynstruktuur van

rentekoerse, is dit die belangrikste faktor in die prysberekening van enige vasterentedraende
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afgeleide instrument. Die Suid-Afrikaanse effektemark verhandel hoofsaaklik in

koepondraende effekte en bykans geen inligting is beskikbaar vir nulkoeponeffekte (wat die
termynstruktuur bepaal) nie. ‘n Verbeterde weergawe van die optrek-metode (bootstrap-
method) vir die bepaling van ‘n nulkoepon opbrengskurwe word derhalwe voorgestel. Die
nulkoepon opbrengskurwe vorm die fondament vir die prysberekening van enige
vanieljeproduk in die vasterentedraende mark en dien as inset vir die prysberekening van

opsies op effekte wanneer ‘n geen-arbitrage model gebruik word.

Die studie poog vervolgens om te verbeter op bestaande metodes om die waarde van Suid-
Afrikaanse opsies op effekte te bepaal. ‘n Studie na die eienskappe van die Hull-White model
(1990) het gedien as motivering om die model toe te pas op Suid-Afrikaanse opsies, wat
Amerikaans van aard is. Die Hull-White model moes egter aangepas word alvorens dit
toegepas kon word op Suid-Afrikaanse opsies, omdat laasgenoemde in plaas van die prys van
die effek, die opbrengskoers as trefprys gebruik. Aangesien die numeriese oplossing van die
model die huidige termynstruktuur van rentekoerse as inset gebruik, is die nulkoepon
opbrengskurwe weereens hier aangewend. Optimale omstandighede waaronder opsies op

effekte vroeg uitgeoefen word, is bespreek.

Die gekompliseerde aard van die Hull-White model het die ontwikkeling van ‘n
vereenvoudigde model vir beurs-verhandelde opsies op die South African Futures Exchange
(SAFEX), geregverdig. ‘n Beurs-verhandelde opsie word nie beinvloed deur die korttermyn
risikovrye rentekoers-veranderlike nie, aangesien die onderliggende instrument die effek se
termynkontrak-koers is.  Daar kan dus aanvaar word dat, in plaas van die
korttermynrentekoers of die prys, die effek se opbrengskoers vir die ooreenstemmende
termynkontrak gebruik kan word as die stogastiese veranderlike. ‘n Model wat hierdie proses
as uitgangspunt gebruik, is soortgelyk aan die Black-model (1976), maar spreek egter meeste

van laasgenoemde se nadele aan.
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Summary
An analysis of the
term structure of interest rates
and bond options in the
South African capital market
by
Linda Smit

Supervisor : Prof. FD van Niekerk
Department : Mathematics and Applied Mathematics
Degree : Ph.D.

The enormous impact of derivatives in the financial world necessitates the use of accurate
valuation and risk-forecast models. This study focuses on the South African fixed income
marketand evaluates current models and procedures. All valuation models depend on certain
assumptions and therefore have limitations. Certain inefficiencies experienced in the South
African fixed income market are addressed, firstly, term structure analysis, and, secondly,

bond option valuation.

Since the fixed income market is entirely based on the term structure of interest rates, it
remains the most important input in the pricing of any fixed income derivative security. The

South African bond market trades mainly in coupon bonds, and little or no data is available
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for zero-coupon instruments. (The term structure of interest rates is determined by the zero
coupon rates.) Animproved bootstrap method for the derivation of a zero-coupon yield curve
is proposed. The zero-coupon yield curve is the basis for pricing all vanilla products in the
fixed income market and serves as an important input in pricing bond options using a no-

arbitrage model.

The study hence attempts to improve on existing methods to value South African bond
options. An analysis of the characteristics of the Hull-White model (1990) served as motivation
to apply the model to South African over-the-counter bond options, which are American
options. The Hull-White model has had to be adjusted for its application to South African
bond options, as these options are traded on the yield-to-maturity of the bond, rather than the
price. Since the numerical solution to the Hull-White model uses the current term structure
of interest rates as an input, the zero-coupon curveis used. Optimum conditions for the early

exercise of over the counter bond options are discussed.

The complexity of the Hull-White model encouraged the development of a simplified model
for exchange-traded options on the South African Futures Exchange (SAFEX). An exchange-
traded bond option has no short-term risk-free rate component, as the underlying instrument
is the bond future and the only payment is being made to a margin account where interest is
earned. Therefore, instead of using the risk-free rate as the stochastic variable, itis possible to
assume that the yield-to-maturity of the bond, and not the price, follows a Brownian motion.
A pricing model for options on the future yield of a bond is in many ways similar to the Black
model (1976). However, the yield-based model addresses most of the disadvantages of the

Black model.
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