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CHAPTER 5

BOND OPTION PRICING MODELS

Options on long-term bonds are popular derivative instruments used to hedge a fixed
income portfolio against the movement of interest rates. An option on a long-term bond
gives the holder the right, but not the obligation, to buy or sell the bond ata certain future time at

a predetermined strike price or exercise price.

The valuation of options on interest rate instruments, such as bonds, is more complex than options
on stocks and commodities, since it involves not only one underlying instrument, butalso a subset

of instruments which relies on the term structure of interest rates. Several models have been
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developed over the years to price options on long-term bonds. They can be divided into the

following three categories:

° conventional models;
e equilibrium models; and
o no-arbitrage models.

The price of a bond is determined by several factors - its maturity date, coupon rate, ex- or cum-
status and yield-to-maturity. The yield-to-maturity is the interest rate or rate-of-return for the
bond, commonly referred to as the yield. For short-dated options, it is assumed that the price P
of the bond follows a Brownian motion. Conventional models use the stochastic process of the
particular underlying bond price to determine a fair value for the price of the option. The
behaviour of the remainder of the term structure is not taken into account. These models are

widely used in all markets.

An equilibrium model firstdefinesa process for the instantaneous short rate, r. It produces a term
structure of interest rates from the value of r at the current time ¢, and a risk-neutral process for
r. Equilibrium models produce a term structure of interest rates as an output, using the stochastic
process of the short rate 7. This does not necessarily fit today’s term structure. It can certainly fit
the term structure approximately, but in some cases an exact fit is not possible, resulting in

significant errors, which are discussed in Section 5.2.2.

Ano-arbitrage model, on the other hand, uses the initial term structure as an inputand is therefore

exactly consistent with today’s term structure.
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Some of the interest rate models in the above-mentioned three categories are discussed below, and

then the analytical solution of the Hull-White model is examined in more detail.

5.1 Conventional models

5.1.1 The Black-Scholes model

The Black-Scholes model is a popular tool to value almost any derivative security. It is easily
adjusted to price an option on a bond price. If P is the spot price of a discount bond, or zero-

coupon bond, the behaviour of the bond price, P, can be described by the stochastic process

dP = pPdt + o, PdW (1)

where pis the expected return, o; is the volatility of the bond price and W is a Wiener process.

If X is the exercise price, T the time to expiry of the option and R; the zero-coupon continuously
compounded risk-free interest rate for maturity T, and one uses the Black-Scholes model, then the
price ¢ of a European call and the price p of a European put option on a zero-coupon bond

(following the process in equation (1)) are given by:
¢ = PN(@,) - e """ XN(d,) )
and
p = e “TTXN(-d,) - PN(-d,) 3)

where
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For a coupon bond where coupons are payable during the life of the option, the coupons can be
treated as the dividends on a stock. The spot price of the bond should therefore exclude the
present value of the coupons. The volatility parameter, g5, should be the volatility of the bond

price without the present value of the applicable coupons.

5.1.2. The Black model

The Black version of the Black-Scholes model has proved to be more suitable for the valuation of
coupon-bearing bond options, because it uses the forward price. The forward price of the bond
already excludes any coupons paid during the life of the option. The Black model is the most

popular method for valuing ordinary options on coupon bonds.

The Black model assumes that the price of the underlying instrument is lognormally distributed
on the expiry date of the option. If F is the forward price of the underlying bond on the expiry

date of the option, the price of a call and put are then given by:

¢ = e [FN@,) - XN@]]
(4)
= e‘Rf'T[XN(-dz) - FN(-d,)]

=
I

where
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n(F/X) + %0‘2; T

4,
on/T

dy, = d; - UP\[T

For exchange traded options, where an interest-bearing margin is paid and the option is cash-

settled only on the expiry date, equation (4) still holds, but with R; set equal to zero'.

The disadvantages of the Black model are discussed in Chapter 7 and an alternative model is

proposed.

5.2 Equilibrium models

5.2.1 The Rendleman-Bartter model
Rendleman and Bartter (1980) developed a model where the short rate, 7, is described in a risk-
neutral world by an Ito process

dr = prdt + ordW (5)

where pis the driftand o is the volatility of the short rate. This model assumes that the short rate,

r, follows a geometric Brownian motion.

The process for r can be modelled by using a binomial tree, where the parameters are given by

'The interest paid on borrowed money is equal to the interest received on the margin account.
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u = eV
d=eV™
p-2t1d
#w-d
where
a = e

The short-term interest rate is chosen to be the rate for the length of the time-interval. Interest rate

movements in a risk-neutral world are given by the binomial tree:

Ty = Tolt I (6)

where 7, is the initial short-term interest rate. An interest rate tree (Rendleman and Bartter, 1979)
for the full term of the bond, until it matures, can be constructed using equation (6). The value of

the bond P; at each node is then given by

1At
P, =e Ty [ppm,pl + (L = PPy i c] (7)

where ¢ is the coupon paid at the end of each time-interval. At the maturity date of the bond, the

bond price equals the bond’s nominal value, which is then the boundary condition for equation

(7).

Once the bond price at each node is known, one can continue to determine the option value. In
order to calculate the value of an American call option at each node, one starts at the time-step, N,
which coincides with the expiry date of the option, and then calculates the intrinsic value of the

option:

A




University of Pretoria etd — Smit, L (2005)

fN]. = max[PNI. - X,0]

where X is the exercise price of the option. Fori <N,

T,

fy = max[Py - X, e pf 0 + (0 - Py )]

where the first term in the equation tests for the early-exercise value at each node. By rolling back
through the tree, the value of the option at the first node is determined, which is the price of the

option.

Toillustrate the approach, suppose that At =1, 4 =0.08, o=0.2. One can suppose the initial value
of is 10% per annum and the aim is to value a 4 year American call option on a 5 year bond that

pays a 12% coupon at the end of each year and has a face value of R1000.00.
In order to determine the option price, one first determines the short rate tree, next, the bond price

tree and then works backward through the tree to obtain the option price. Figure 5.1 shows the

numerical results, giving an option price of R28.28.
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27.18
1000.0
Short rate 22.26
Bond price 896.5
Option value 0.00
18.22 18.22
866.7 1000.0
0.00
14.92 14.92
881.9 964.8
1.20 0.00
12.21 1221 12.21
927.3 974.8 1000.0
6.62 4.07
10.00 10.00 10.00
994.5 10155 10134
28.28 19.51 13.42
8.19 8.19 8.19
1078.4 1055.1 1000.0
78.44 55.05
8.70 6.70
1117.3 1047 .4
117.34 47.39
5.49 5.49
1112.6 1000.0
112.64
4.49
1070.8
70.79
3.68
1000.0

Figure 5.1: Example of a Rendleman-Bartter tree
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5.2.2 The Vasicek model

Vasicek’s model (1977) assumes that the short rate, r, follows a continuous Markov process. The

risk-neutral process for 7 is given by the stochastic differential equation

dr = firydt + odW (8)

where f{r) is the instantaneous drift and o is the standard deviation or volatility of the spot rate

process 7(t). The parameter f(r) can be expressed in such a form that it includes mean reversion:

fir) = a(b-r)

where the short rate, 7 is pulled to a level b at a rate a.

Vasicek obtained the following analytic formula for the price of a discount bond at time £, paying

1 unit at maturity time £,:

P(tt,) = Altt)e " ©)
where, fora = 0,
_u(tn_!}
B(tt,) = 1___ea__ "

and

S dr
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(B(tt,) - (t, - )@’ - 0*/2)  o*B(tt)

a? 4q

A(tt) = exp

(11)

From the above equations it is possible to obtain the whole term structure as a function of r, once
a, b and o have been chosen. The term structure can be upward-sloping, downward-sloping or
humped. The possible shape of the term structure is, however, limited, which causes the assumed
term structure to differ significantly from the actual term structure. Figure 5.2 shows an example

of a best fit for a term structure, using the Vasicek model. Itis clear that the method results in large

errors.
18%
175%
m|
"
3 \
§165% \
g —
Bhi 16% - \ ~ il
/
e
15% SHEE o
\ i
/
“"'\. ey | —— ——
15% T I | I
0 5 10 bl 20 2
Term-to-maturity (years)

Figure 5.2: Difference between the best fit using a Vasicek term structure and a 1997 South

African yield curve
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5.2.3 Jamshidian’s model

Jamshidian (1989) has demonstrated how to determine the value of an option on a discount bond
using the Vasicek model. The value of a European call option at time ¢, expiring at time T, on a

discount bond with a 1 unit principal maturing at time t,, is given by

¢ = P(tt,)N(h) - XP(tT)N(h - a,) (12)

where

1 P(tt) o,
= —In + —
P(t,T)X 2

0, = o(t,T)B(T;t)

0.2(1 _ e-Zﬂ(T—r))
2a

o(t, T)?

and o, is the price volatility and X is the strike price. The price of a European put option on the

bond is

p = XP(t,TIN(-h + a,) - P(tt )N(-h) (13)

The bond price, P, in the above equations, is given by Vasicek’s model.

Jamshidian also showed that a coupon-bearing bond can be regarded as a composite of discount
bonds, one for each cash flow. An option on a coupon-bearing bond can then be seen as a

combination of options on discount bonds, one for each remaining cash flow of the bond after the
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option expires. If #is the particular short rate that causes the coupon-bearing bond price to equal
the strike price (which is found by using an iterative procedure, such as the Newton Raphson
method), and X;is the resultant strike price for each individual option, using 7', and if P(Tt)) is the

price at time T of a zero-coupon bond maturing at time t, then the payoff of a call option is given

by
"
Y ¢, max[0, P(T,t) - X] (14)
i=1
which is the sum of n options on the underlying discount bonds.

The Cox, Ingersoll and Ross model (1985) is similar to Vasicek’s model. The Cox, Ingersoll and

Ross model provides for non-negative interest rates, by adding a 4fr-factor to the second term in

equation (8).

5.3 No-arbitrage models

5.3.1 The Ho-Lee model

Ho and Lee (1986) proposed the first no-arbitrage Markov model by extending Vasicek’s model.
They showed how an interest rate model can be designed so that itis automatically consistent with

the initial term structure. The short rate r is described by the stochastic differential equation

dr = O(t)dt + adW (15)
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where s the constantinstantaneous standard deviation of the short rate, and the drift 6(t) defines

the average direction in which r moves and ensures that the model fits the initial term structure:

0(t) = F(0t) + o’ (16)

where F(0,t) is the forward rate at time t and F, denotes the first derivative. The advantage of the
Hoand Lee model is that the model is a Markov analytically tractable model. Itdoes not, however,
make provision for the mean reversion of interest rates. This, together with the assumption that
interest rates are normally distributed, leads to a relatively high probability thatinterest rates will

become negative.

The Ho-Lee model’s analytic expression for the price of a discount bond at time  in terms of the

short rate is
Pt = Attt )e ™ (17)

where

P(O,t)
P(0,t)

anPEOf _ 1
o 2

mA(E) = tn - (¢, - 1) o’r(t, - 1

The Ho-Lee analytical value at time zero for a European call option expiring at time T on a

discount bond maturing at time f,, with a face value of 1 unit, is given by

¢ = POt )N(h) - XP(O,T)N(h-0,) (18)

where
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While the Ho-Lee model is a Markov model, Heath, Jarrow and Morton (1992) developed a model
where the short rate, r, is non-Markov. In order to determine the stochastic process for r over a
short period of time, dt, one needs to know what the value of r was at the beginning of the period,
as well as the path it followed to reach this value, which makes the Heath, Jarrow and Morton
model anon-Markov model. The model specifies the volatilities of all instantaneous forward rates
atall future times, which is called a volatility structure. This method leads to a non-recombining
tree which is computationally extremely time-consuming since there are 2" nodes after n time

steps. The Hull-White model, by contrast, has a recombining tree that speeds up computer time.

5.3.2 The Hull-White model

The mean reversion of interest rates is a phenomenon that is not captured by the Ho-Lee model.
There are compelling arguments in favour of mean reversion. When interest rates are high,
investments decline and the economy slows down. The opposite occurs when interest rates are
low. The Ho and Lee model was extended by Hull and White (1990), who added mean-reversion

to the short-term interest rate, 7, in the stochastic process:

dr = (0(t) - ar)dt + adW (19)

where g and o, are constants and 0(t) is a function of time chosen in such a way that the model is
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consistent with the initial term structure. The coefficient of dt is approximately equal to the slope
of the forward rate curve at time zero. When the short-rate moves away from this curve, it reverts
back to the curve at a rate 2. The mean reversion component reduces the probability of negative

interest rates, compared to the Ho-Lee model.

The Hull-White model is exactly consistent with the latest term structure of interest rates, and is
therefore known as a no-arbitrage model. The spot rate in the Hull-White model is a linear
function of the underlying process. The value of an interest rate derivative, f (which depends on

the process in (19)) is given by the partial differential equation:

of & .1 2%
—_ 4+ ef = — = — =
= 0 ; w)= S50 57 (20)

In order to solve the above partial differential equation, one first has to simplify the stochastic
process. If the following transformation is considered in order to obtain the short rate change in

a stochastic world for a flat term structure,

x =71 - a() (21)

where (0) is chosen so that x(0) = 0 and x follows a process symmetrical around x = 0:

dx = -axdt + odW (22)

then, from equations (19) and (22), one can say that

do = [0() - ac(t)]dt

If one solves this differential equation with an integration factor, one gets
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t

a(t) = e ™r0) + fe“" 0(q) dg (23)
0

The price of an interest rate derivative security in terms of the new variable ¥ can be written as

g(t,x).
Therefore,
f(t/r) = g(t;x) = g(t.rr - (!(t))
Then,
dx
fi=8+ &(E)

=g, - (-aa(t) + 0(t) g,

where the subscripts denote the relevant derivatives. Similarly one gets

i=,
fo = 8
Substituting into equation (20) one gets
g, - axg, + -0, - (x + alt))g = 0 (24)

This partial differential corresponds to an economy where, under the equivalent martingale

measure (', the spot interest rate is generated by

dx = -axdt + adW (25)

and
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x() = nn) - off)
The stochastic process for x in equation (25) is therefore independent of the function a(%).

The process for x is assumed to follow an Ornstein-Uhlenbeck process. Therefore, given a value

x(t) atany point¢, the probability distribution for x(T ) for T > t, is a normal distribution with mean

e *Tx(t)

and variance

0_2{1 _ e-Za(T—f))

2a

Using the Feynman-Kac¢ formula (see Section 2.2.3) and the T-forward- risk-adjusted measure Qr,

the solution for equation (24) can be expressed as
g(tx) = P(t,T,%) E (T, «(T))|57) (26)

where i(T,x(T)) is the boundary condition at time T, and P(¢,T,x) is the price of a discount bond
with maturity T at time £.
In order to determine the price P(t,T,x) and the distribution of x under Qy, the Fourier transform
§ of the fundamental solution ¢°is used. Pelsser (1996) has shown that¢ must take the form

§txTY) = explA;TY) + BT P)x) (27)
where the boundary condition is given by

HTxTH) = ™
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Then, equation (24) becomes

XB, - aB - 1) + A, +~0’B? - at) = 0

which is solved if A and B satisfy the system

By=gB~1=0
A, + -;-O'ZBZ - a(f) = 0
subjectto A(T;T,¢) = 0 and B(T;T,¢) = iy.
Using an integration factor, one obtains
_ L, -a(T-t)
BETY) = e - L2 €
a

and by integration the result is

a2

AT ) = —
2q

(a(T = ) = P = g W %(1 _e-Za(T—t)))

i¢°_2(1 - g T2 -I-tlrzc—z(l . exp—Za(T—t))
2a* 2" 2

T

- f o(s)ds

t

Substituting A and B into equation (27) yields

FEATH) = explAtT) - BE,T)x + METY) - 2PT(E,T)) (28)

where
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02 -a(T-t)
AT = —{a(T -9 - 201 - ¢
2a°

T

1 _,-2aT-8) _

i 2(1 e ) fa(s)ds
t

- pa(T-t)
BT = A 29)
a
e
METn) =92 = =40 - g™t
= r 2a2

(1) = i(l ~ ¢ "24T-th
2a

Equation (28) can also be written as the product of the discount bond price and the characteristic

function of the probability density function under the T-forward-risk-adjusted measure:

gt T ) = P(t,Tx) {exp(yM(t T,x) - ~4*(t,T))) (30)

The probability density function has a mean M(t,T,x) and a variance Z(t,T).

Using the above results, one can determine the value of a European call option on a discount bond.

If c(t,T,s,X,x) is the value of a call option at time £, that gives the owner the right to buy a discount

bond with maturity s at time T, {<T<s, for a price X, then the payoff, k, of the option is given by

T, x(T)) = max{P(T,sx(T)) - X,0}

The expected payoff of the option can be expressed under the T-forward-risk-adjusted measure

Qr as follows:

s = E¥(max{P(T,s «(T)) - X,0)|.5)
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If the value of x(T) equals z, then the expectation is given by

@ 1 A(TS)-B(Ts)z _ {_1 (z—M(t,T,x))z}
f ————— max{e X,0} expy-——————pdz (31)
~y2nX(t,T) 2 X(tT)

The payoff is non-zero if

L ATy - mX
B(T,s)

Therefore,

AKX (T9)-B(T8)z _ _ 2
5 e X gyl MU,

- V2r2(,T) (T
At

= f B = ;( = exp{—;(z_ﬂg((;’gx))z + A(T,s)-B(T,s)z} dz (32)
- \/ m2(t, ’

il M(th }dz

_ B
f ~ ,lznz(t p{ 2(t,T)

If the first integral is called I, and the second integral is called L, then by completing the square,

it follows that

A(Ls)-inX

L=X [ *® exp[—%{(z—M)/\/E}Z] dz
It can easily be shown that
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A(Ts) - BTSM = [A(ts) - A(tD] - [B(ts) - Bty - 1B(Ts)E

Therefore, substituting and expressing the equation in terms of cumulative normal distribution

functions one gets
g
=X [ e ap
= XN(h,)

where

in(P(t,5,x)/ P(t,T,x)X) - B(T,s)*X(t,T)

h =
’ B(TsWEET)
Similarly, for I, the result is
A-InX 2
g, =B 1 lfz = M-BTAN) ", 4(T,s) - BT, )M + LB(T )25}z
~ D 21 S 2

== [z - (M-BTsD))

= B {A(t,s)-A(t,T) - [B(t, )-B(t,T)]x}dz
f_m ZEE(”_) ex [ 21 — } }exp S s x

_ exp[A(ts) - B(ts)x] f

|1z - M-BTHD)|* |
explA(t,T) - B(t,T)x]

\/271): ) exP{ Ay

which gives
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12

- s g,
P(tITIx) =

_ Plsx) N(kl)

P(t,T,x)
where
p = WPsx)/PETx)X) + B(T,s)’Z(t,T)
1 B(LsWEET)
Therefore,

_ Ptsx)
P(t,T,x)

N(h,) - XN(h,) (33)

Discounting the above expected value to the current date, , gives the price of a call option:

ge P(t,T,x)[;;((;’—;’r'gN(hl) - XN(hz)]

(34)
= P(t,s,x) N(h,} - P(t,T,x) XN(h,)
where
= WPEsx)/PETXX) o
1 o >
h, = b = o (35)
_ -2a(T-f)
0" = =1 - ¢ D) e
a 2a
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The price of a put option is given by

p = P(t,Tx)XN(-hy) - P(t;s,x) N(-h,) (36)

The equation for ¢” takes into account the pull-to-par effect of a bond. The analytical solution to
the Hull-White model overcomes the volatility problem of the Black model, discussed in Section
3.3, since it takes the pull-to-par effect into account. However, the solution does not hold for
American options. To address this problem, a numerical solution is necessary, as discussed in the

next chapter.

5.3.3 Other Markov models

The tree procedure used by Hull and White can also be used to construct other one-factor Markov
models. For example, a tree can be constructed in (n r rather thanr, as described by Black, Derman

and Toy (1990) or Black and Karasinski (1991) where

dinr = [6(f) - atnrldt + odz

The procedure suggested by Black, Derman and Toy (1990) matches the volatilities of all rates at
time zero. The trinomial tree procedure is explained by Hull and White (1993). Black and

Karasinski (1991) suggested a binomial tree procedure involving time steps of varying lengths.

The next chapter discusses the numerical solution of the Hull-White model applied to South

African bond options.

91-



	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	CHAPTER 5
	5.1 Conventional models
	5.2 Equilibrium models
	5.3 No-arbitrage models

	Chapter 6
	Chapter 7
	Chapter 8
	Back

