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CHAPTER 4

THE ITERATIVE BOOTSTRAP METHOD'

The determination of a smooth zero-coupon yield curve in a market where only coupon
bonds are traded can be a difficult and time-consuming process. When only a few data

points are available, it is especially difficult to obtain a smooth forward curve.

The standard bootstrap technique was evaluated empirically, using South African yield curve
data, which motivated the formulation of a more efficient technique. In this chapter, the
formulation of the iterative bootstrap method is discussed, and the convergence of theiterative

sequence is proved. Empirical results illustrate the use of the method.

'The results of the research discussed in this chapter were published in RISK ( Smit &
Van Niekerk, 1997).
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4.1 Disadvantages using the standard bootstrap method

The problem with the standard bootstrap procedure is that it is assumed that sufficient data
are available to determine the present value of all coupons. As such data are not available in
the South African market, interpolation techniques (such as the Newton Raphson technique)
must be used to find intermediate data points (for bootstrap purposes) before fitting the final
curve. There can be any number of intermediate data points, even twenty or more, depending
on the number of coupons between two data points. If the data points do not form a smooth
curve, itis possible that the curve from which coupons are discounted will differ from the final
fitted curve, causing a discrepancy. Another disadvantage is that the interpolation of data

points in the standard bootstrap technique is time-consuming.

Once the zero-coupon rates have been determined, the question arises as to which
approximation technique to use. Polynomial approximation and spline fitting are the most
commonly used techniques, but they are not always suitable for the South African yield curve,
due to structural inefficiencies in the fixed income market and the resultant dispersion of data

points.

A solution to these problems was developed in this study. This solution involves constructing
a zero-coupon curve using an iterative bootstrap method (IBS-method), where the entire curve
is simultaneously bootstrapped, starting with a first guess. Each iteration results in a sequence

of implied zero-coupon rates which are then fitted using least squares approximation, and

used again in the next iteration. This approach is described in the sections below.
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4.2 Iterative bootstrapping - introduction

A standard bootstrap procedure follows a process where the coupons of each individual bond
in the data set is bootstrapped to obtain a fixed zero-coupon rate for a specific term. This rate
is again used in the bootstrap process for the next bond. The method therefore progresses
along the time-axis to find the discrete zero-coupon rates, which are then approximated by a

curve. Interpolation methods are used to discount coupons at intermediate maturity dates.

In order to overcome problems with the standard bootstrap method, a method is suggested
that follows an iteration process. The entire data set is bootstrapped simultaneously, using
implied zero-coupon rates obtained in the previous iteration, by starting with a first guess for
the zero-coupon yield curve. For each iteration, this again results in a set of implied zero-
coupon rates (one data point for each coupon bond). A least squares approximation technique
is used to obtain a smooth curve which is employed to discount cashflows for the next
iteration. These iterations converge and ultimately yield a unique zero-coupon curve for the
particular approximation technique®. The iterative bootstrap method is a dynamic method

compared to the more static standard bootstrap method.

The advantage of bootstrapping the bonds simultaneously in the iteration process is that, for
each iteration, different cashflows are discounted from the same smooth curve to find the
implied zero-coupon rates for the nextiteration. The final fitted zero-coupon curve is therefore
obtained by bootstrapping from the same curve. Therefore, there is no discrepancy between
the curve that has been used for bootstrapping, and the final fitted zero-coupon yield curve.

The replacement of the interpolation of data points with a method where a fitted curve

“Different approximation techniques result in slight differences in the resultant term structure.
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determines the points speeds up the whole process. The use of numerical methods, such as

the Newton Raphson method, also becomes unnecessary.

4.3 The iterative bootstrap method

The following assumptions are made:

. It is possible for the yield curve z(t) to have any shape (positive, negative).
” All interest rates are positive.

. A bond pays a nominal value of 1 unit at the end of its term.

. The term-to-maturity, ¢, is given in years.

. Continuously compounded interest rates are used.

. Market participants take advantage of arbitrage opportunities as they occur.

If all fixed income securities meet the no-arbitrage principle, the price P, of an arbitrary
coupon-bearing bond, k, should equal the sum of the n cashflows, discounted at the particular

zero-coupon rate, z(t) :

n-1 ®_ 0 ®_, 0
=t z(E) =t 2E,")
P, = Y ve # (L+y)e "

i=1

(1)

where y, is the coupon payment. The price of the bond can also be determined using the

market yield-to-maturity, 1, for the bond k (as traded in the market), therefore

=1 -ty 1By
By Bedgeld ™ i e e ™ )
i=1
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Since the final zero-coupon yield curve, z(t) is not yet known and the IBS-method does not use
the interpolation of data points, a curve from which to bootstrap is needed. If it is assumed
that y.(f) is the j-th approximate fit for the zero-coupon yield curve (for the j-th iteration),
starting at y, (t) as a first guess, equation (1) can be reformulated as follows:

(k))

*)
it ~E

+ (1 +y)e

® (%)
-t w )

n-1 s
B = Zyke <A ©)
i=1

where P, is known from equation (2) (the market price) and yj* (t,fk)) is theimplied zero-coupon
yield for the term t,fk’ years and the only unknown parameter. Equation (3) holds at any time
throughout the iteration process. If the curve y;(t) is different from the correct zero-coupon

curve, the point yj' (t,(lk)) deviates from this curve, in order to give the correct price, P,.

Coupons are bootstrapped simultaneously using y}.(t) for each iteration j and all bonds k,

k=1,...,m, where m is the number of bonds. From equation (3), it is possible to solve y; {t,fk)) for

all bonds in the data set, to get an implied array of zero-coupon yields for each term t;k)in each
iteration:

n-1 ® 0

\ P, - :E y,e “EYET)

yf‘(t;gk)) = g tn =
# ) 1 + Y,

n

(4)

where it is assumed that t.,fl) # tf}.

To serve as input for the next iteration, the zero-coupon rates y}.*(t?g_k)) are approximated by a

fit Yin (trfk)). By repeating the process for j = 1,2,... a sequence of implied zero-coupon rates is

(k)

n !

found for each term, f,”, in the data set. The theorem discussed below states that these
implied zero-coupon curves converge to the zero-coupon curve implied by the coupon bond

market.
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4.4 Theorem

Given an arbitrary guess for the function, y,(t), the approximate linear interpolated fit y;()

will converge to the zero-coupon yield curve, z(t), on condition that

0<y<(E™-1)"
for any bond maturing at time t < t_, where ¢ _is the maximum range of the term structure,

and y (t) interpolates the implied zero-coupon rates y;(t), j>1, 0 <t <t .

4.4.1 Proof

If P is the price of a bond maturing at time ¢,, paying coupons, y, at time ¢, t, and t,, and at
time ¢, the zerorate z(t,) is known, it is possible to prove that the theorem holds for this bond.
If the theorem holds for time t,, it is possible to demonstrate that it will hold for any time

t, < t ,wheret isthe maximum term of the term structure.

i

Using the first guess y,(t) and assuming that y,(t,) > z(t,), it follows from equations (1) and

(3) that

z(t) > ¥ (t) (5)

If one assumes that y,(t,) < z(t,), it implies that

z(ty) < y;(ty) (6)

According to equations (1) and (3)

_tcy;(_rz)

ye ¥TF + (y + 1)e

~ty; (t3) - ve ~tyz(t,) " ('Y i 1)8 -ty z(ts) (7)

Therefore, forj=1,
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e fyalty) o i)

1+ 7y

. =tqyy (ty) i ~ty2(ts) Y

or

i - e—tzlz(fz)"yl('z)] 1 +y [e_"’az(ts) - t:y;(‘z)]

= ®
1 o= 3Ly (1) =2(13)] Y
Next, if one assumes that convergence does not occur, and
z2(t) - y,(t,) < y,'(t)-=(t) ©)
then, for £, < by
[2(t) - v, (&)1, < [y@y) - 2()18,
Since €™ is a decreasing function, it follows that
e 'ts[]h.(%) = z(tg)] <e ‘tQ[Z“z) = y;(fz)]
Therefore,
—tylz(ty) = yy(ty)]
1 -e¢ Falz(ty 1lta
< T (10)

7 8'13[.‘)'1.(‘3) - &(ty)]

If equation (10) holds, it follows from equation (8) that

1+ vy e—tsz(tg} + by (o) < 1
Y

Therefore,

~bz(t) + Lyt < m( : Zy)

>yt < tl [tBZ(tS) 4 ln[ - Z v]]
2

Since y,(t) > 0, ¥ t > 0, itfollows that




University of Pretoria etd — Smit, L (2005)

z(ty) > l1n[1 - Y]
t, Y

2y > (7 -

However, this violates the assumption that

Y < (etzit) L 1)-1

This implies that equation (9) does not hold, therefore
vt - z(t) < z(t) - y,(t) (11)

On the other hand, since y,(t,) < z(t,), and yl'(tB) > z(t,), itis possible to say

- (2(t) - y,(8)) < y,'(¢) - z(t) (12)
From equations (11} and (12), it follows that
Yy (ty) - 2(t) | < z(t,) - y,(t) (13)

Since the function y. ,(t)interpolates y;'(t), V j, one can substitute y,'(t) with y,(t), i =

1,2,3.... The iteration process therefore results in the following:

|z(t) - v, (&) | > |y, (&) - z(t,)]
(14)

= lyz(tg) - Z(t3)i
Although many sophisticated interpolation techniques can be used to interpolate the implied

zero-coupon yields yf'(t), it is possible to assume for the purposes of the proof that one

interpolates linearly between the points (,,z(t,)) and (t,,,(,)). Then

tt
Bt = L () - 26) + 2t (15)
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and
_ -t
2(t,) = s (2(t) - z(8)) + 2(t) (16)
Therefore,
(t,-t,)
|2(t;) -yt = (tz_ti) |2(ty) - ¥y(t)]

Since ¢, < t,, it follows from equation (14) that

ly, () - 2(8)| < |z(t;) - y,(2,) | (17)

Finally, it is important to show that

|_1j3(f3) - Z(i‘3)| < Jyz(t3) - z(tg)‘

Since yl'(tz) = Y,(t,)) > z(t,), it follows as in equation (5) that y;(tB) < z(t,). If one supposes

that

}/2(‘52) - Z(tz) s Z(t3) - yz*(tg)

then, as in equation (10), it follows that

1-¢ 'tz[yzﬁtz) - z(ty)]

— %1l (18)
i =g ~tylaty) - v, (45)]

Using equation (7) one can write:

=t ya(ty)-2(ty)] ;
1~ g e A 1 +¥ [e"sb':(‘a) *ﬁwz)]

I e"'3[3(‘3)‘y£(f3)] ¥

Therefore,
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1+y [e—tsyz‘(fs) + tzz(tz)] <1
)

" 1
=y (ty) > s [tzz(tz) = 1n[ VEIH

Since z(t;) > y, (t,), it follows that

1 v
(t — |t, z(t,) -
2(t) > t3[22(2) m[m)]

tyz(ty)
y +1 ik P

<
»Y e r,zz(tz)

Therefore,

Y S (ef3z(t3) _ 1)"1 (19)

Equation (19) again violates the assumption. Hence,

Z(t3) - yz*(tg) < yz(tp_) - z(tz)

Since y,(t,) > z(t,), ¥, (t,) < z(t,) and v, (t,) = y,(t,), it follows that

[Yy(ty) -~ z(t) | < [yy(ty) - z(t)| (20)
Linear interpolation between (t,,z(f;)) and (t,,,(t;)) gives equations (15) and (16) with y, instead

of y, . Therefore,

|y3(t3) - Z(t3)‘ < Iyz(tg) - Z(f3)| (21)

In general:

Y® - 2@ < 26) - y,6) VT<ib,jal

which proves that the sequence {| y}.(r) - z(1)|}converges to zero, which proves that
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lim y,(e) = z(2)
i

45 An illustration of the method

The following example illustrates the use of the iterative process to determine a zero-coupon
yield curve. One could suppose that the interest rates for three risk-free securities in the money
market are known (maturing in 1, 6 and 12 months):

y,(0.08) = 13.95%; ¥,(05) = 14.48%; y,(1.0) = 14.88%

Since the money market instruments are zero-coupon rates, it follows that

y() =zt v t<d (22)
If four different coupon-bearing bonds are traded in the market, maturing in 3, 5, 8 and 10
years respectively, and the bonds, with a nominal value of 1 unit, pay semi-annual coupons

of vy, units and are priced at present at P;;, then

P, = 09751097, y, = 0.075
P, = 0.9845960, 7y, = 0.08
P, = 0.8766290, Y, = 0.07

P, = 0.8080316, v, = 0.065

To start the iteration process, a continuous extrapolation is guessed for y;(t), 1<1 < 10, where

y.(3) = 153% and ¥,(5) = 15.6% and y,(8) = 15.9% and ¥,(10) = 16.1%.
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Each of the four bonds in the example implies a zero-coupon yield yj'(t“) ,where t =3,5,8and
10respectively for each iteration j. For example, the first bond (maturing in three years), gives,

forj=1,

| 09751097 - 0.075( £ 05209 4o H) 1 FHID L D), oS |
n
1.075

5 1
At (3) = -5

In the same way v, (5), y,(8) andy, (10) can be found. Using these results as well as the data
points y,(t,), t;, = 0.08,0.5, 1.0, a second approximate fit, y,() ,is found. Repeating this
process, results in a sequence yl.(t) as shown graphically in Figure 4.1 (overleaf). Table 4.1

shows the numerical results for eachiteration. The results show clearly that the sequence yf’( f)

converges.

Table 4.1: Implied zero-coupon yields for five iterations starting with a first guess y,

Term, ; ¥1 (%) yi (%) 2 (%) ys (%) Vi (%) s (%)
0.08 13.95 13.95 13.95 13.95 13.95 13.95
0.5 14.48 14.48 14.48 14.48 14.48 14.48
1 14.88 14.88 14.88 14.88 14.88 14.88
3 15.30 15.55 15.53 15.53 15.53 1553
5 15.60 16.07 15.97 15.98 15.98 15.98
8 15.90 16.79 16.42 16.51 16.50 16.50
10 16.10 17.30 16.62 16.85 16.79 16.80
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Figure 4.1: Results of the iterative process

4.6 Empirical results

The IBS-method developed in the previous sections was used to derive a zero-coupon yield
curve for the South African fixed income market empirically. Daily closing rates over a three-
year period were used to evaluate the method. Money marketinstruments were used to obtain
data points between ¢ = 0 and f = 1, while actively traded bonds were used to obtain

information for the remainder of the term structure.
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Tocompensate for market data that do not form a smooth curve, a least squares approximation
technique was used in order to obtain a reasonably accurate fit of the data points which then
served as input in order to interpolate for the next iteration. Appendix A sets out a discussion
of the least squares approximation technique. Itis important to realise that the success of the
iterative method depends on a reasonably accurate interpolation of data points for
bootstrapping purposes in each iteration. It is possible, for instance, to obtain an implied

negative interest rate if the curve fitting technique oscillates or diverges from the data points.*

The empirical results of the study show that the technique yields a smooth spot rate curve and
that the curve approximates the data points sufficiently well. The iterative method was
compared to the standard bootstrapping technique, usin galeast squares fit. Market data from
1996 were used, which resulted in similar results for both methods, as is shown in Figure4.2.

The iterative method, however, provides a more accurate result in the region where data
points do not form a smooth curve, due to interpolation discrepancies when the standard
bootstrap technique is used. The difference between the two curves in Figure 4.2 increases
when the data points are less smooth. Theiterative method also proved to be computationally

more efficient.

Figure 4.3 shows the results of a par-bond curve in November 1999, as derived from the zero-
coupon curve. The forward curves implied by the zero-coupon curve in the above examples
are sufficiently smooth. The implied forward swap curves for a 10-year and a 5-year swap are
shown in Figure 4.4. When the standard bootstrap method is used, these curves are usually

irregular with sudden changes in the slope of the curve.

“This is why the theorem assumes a linear interpolation.
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Figure 4.2: Comparison between standard bootstrap method and iterative bootstrap method
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Figure 4.3: Par-bond yield curve in November 1999
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Figure 4.4: Implied forward swap curves for the yield curve in Figure 4.3

The empirical results from the South African market show that the method performs
sufficiently well and yields better results than alternative techniques. Some of the advantages
of the method are that it produces a smooth term structure, a smooth forward curve and that
it is flexible and computationally efficient. It can therefore be applied in volatile and illiquid

emerging fixed income markets to identify mispricings and arbitrage opportunities.

In order to evaluate the accuracy of the approximation of the zero-coupon yield curve, the
zero-coupon yield curve obtained is used to calculate the implied yield-to-maturity, based on
this curve. The sum of the squares of the errors in these rates was in the order of 1.4 x 10, The
individual deviations from the actual market rates varied between zero basis points for the

more liquid bonds and 15 basis points for less liquid bonds containing a liquidity premium.
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4.7 Credit premium

For the valuation of most derivatives, it is usually assumed that there is no risk of counter-
party default. The no-default assumption does not, however, apply for bonds, and therefore
the risk of a default on the coupons and/or nominal must be accounted for. This is done by
adding basis points to the yield of the bond, in order to compensate for the credit risk. Bonds
that are less tradable, on the other hand, also trade at a liquidity spread to the more liquid

bonds.

The South African government bonds have the highest credit rating in the country. The
governmentbonds can therefore be used to give a homogeneous zero-coupon yield curve with
the same creditrating. All other bonds are priced from this curve to determine their yield (plus
the credit and /or liquidity premium). Non-government organisations, for example Transnet,
Eskom and Telkom, have a fairly big credit spread to the government curve, although some

have government guarantees (Brown, 1999).

One advantage of the zero-coupon yield curve is that any bond can be priced from the zero-
couponyield curve, as determined from governmentbonds. Animplied yield-to-maturity can
therefore be found for any other bond. The difference between this implied yield and the
market yield equals the credit spread added to compensate for the credit risk. (Itis assumed
that bonds with similar liquidity are compared in this example, in order to be able to ignore

the liquidity premium.)
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Theevolution of the credit spread was investigated for some non-governmentbonds over time.
Table 4.2 shows the credit spread over a 3-year period for three Transnet bonds, maturing in
2002, 2008 and 2010 respectively. The liquidity of these bonds is comparable to the smaller
RSA government issues, and one can therefore ignore the liquidity spread. Itis evident that
the credit spread increased over the last three years, and must be taken into account when
pricing these bonds. The 1998 emerging market crisis emphasised the importance of

appropriate credit spreads for non-government bonds.

Table 4.2: Credit spreads for Transnet bonds

Credit spread above government yield curve
Date (basis points)
T001 T004 T011
November 1996 11 10 4
October 1997 12 22 15
February 1998 10 20 20
November 1998 32 37 41
May 1999 32 32 43
November 1999 43 29 37
May 2000 21 23 36

4.8 Concluding Remarks

The standard bootstrap method displays some inefficiencies when it is applied to a yield curve

where there are only coupon bonds and irregular data points. An iterative method was

-67-




University of Pretoria etd — Smit, L (2005)

therefore developed, which starts with a first guess, and then converges to the actual zero-

coupon yield curve. This method is more efficient than the standard method.

The IBS-method developed in this chapter can be used to price all vanilla fixed income
instruments. It can also serve as input in pricing many derivative securities, for instance

options on fixed income vanilla products.

The next few chapters concentrate on the valuation of options on fixed income products,

where the zero-coupon yield curve is an important input for some models.
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