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CHAPTER 3

THE TERM STRUCTURE OF

INTEREST RATES

nterest rates play an important role in the economy, whether on the global or national level.
IIt is both a determinant and a result of economic growth. The interest rate term structure
is the most importantinputin pricing almost all fixed income instruments. The term structure,
or yield curve, provides a way of measuring the relationship between the rate of interest, or
yield and time to maturity. The interest rate associated with an investment gives the return on

that investment.

Fixed-incomeinvestors have several alternative securities toinvestin. In choosing the security

toinvestin, they consider the following three factors: return, risk and liquidity. Thelonger the
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term-to-maturity of the instrument, the larger the price risk. Unless there is a strong
expectation that interest rates are going to fall, investors would only invest in a longer-term

security if the return is higher. This usually leads to an upward-sloping yield curve.

There are three main theories that are used to explain the shape of the yield curve (Bodie, Kane

& Marcus, 1993), namely

. the expectations hypothesis;

. the liquidity preference theory; and

. the market segmentation and preferred habitat theories.

The expectations hypothesis states that the forward rate for a period in the future equals the
market consensus expectation of the future interest rate. Therefore, forexample, the six month
interest rate is determined by the current three month interest rate and the expectation of the
three month rate in three months time. The yield curve is therefore determined by expected

future changes in interest rates.

Theliquidity preference theory argues that there are more short-term investors than long-term
investors and therefore short-term investors require a premium to induce them to buy longer-
term securities. This implies that the forward rate should exceed the expected spot rate by the
liquidity premium. If the liquidity premium is, however, higher than investors feel is fair, they

would exploit the abnormal profit opportunities — bringing it back to normal.

The market segmentation theory argues that long- and short-term bonds are traded in
segmented markets. Borrowers and lenders tend to operate in different maturity ranges. The
interest rate for a particular maturity is therefore determined solely by supply and demand in

that area of the yield curve. The preferred habitat theory argues, however, that lenders would
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leave their preferred maturity area if there is significant inducement offered in another area,

thereby eliminating some of the inconsistencies in the yield curve.

3.1 The term structure and forward rates

One could assume that the current time is zero. The T,-year yield given by the term structure
is the interest rate y(T,) on an investment that is made today, lasting for T, years, also known
as the T,-year spot interest rate, or zero-coupon yield. The principal and interest are repaid to
the investor at the end of T, years. The forward interest rate f(T,,T,,) is the rate implied by

current spot rates for the period between year T, and year T, in the future.

It can be assumed that interest rates are compounded continuously. If investors invest1 unit

today, they will obtain a future value of

v = 1'3 ."'(Tr:)Tu

in T, years time.

If investors invest 1 unit today for a period of T, years atarate y(T,), and after T, years reinvest
the money for another (T,,-T,) years at a forward rate f(T,,T,,), the future value after T,, years
would be

v =1¢ y(Tn)TH.eﬂTn'Tm)'(Tm'Tn)
However, if investors invest the money for a period of T,, years at a rate y(T,,) instead, the

future value is

YT Ty
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For the no-arbitrage principle to hold, it follows that

e y(Tm) Tn: =e y(Tn) Tﬂ_eﬂTH’Tm)'(Tm-Tr:)

Therefore the forward rate for the period [T,,T,] is given by

L) y(T?‘H)Tlﬂ & y(TH)TII
Tm - Tﬂ

f(TJ:’Trﬂ)

or

y(T,) - ¥(T,)
Tl - Tﬂ

T

f(Tn’Tm) = y(Tm) ¥ Tn

If there is a continuous yield curve and limits are taken as T,, approaches T, it is clear that
y(T,,) approaches y(T,). The forward rate for a very short period of time, beginning in T, years,

(known as the instantaneous forward rate in T, years), can be expressed as

-~

ar

fUT) = y(@) + T, =

(1

where 7 is called the instantaneous interest rate or short-term spot rate. In the rest of thestudy

this rate will be referred to as the short-rate.

3.2 The term structure and the short-rate

If one assumes that the current time is denoted by #, and as explained in the previous section,
the short-rate, r, at time # is the interest rate for an infinitesimally short period of time At, then
the value of an interest-rate derivative that provides a payoff of h at time ¢, is determined by

the expected risk-free rate of return for the period T = 1, - &:
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Ele™"h] 2)
where 7 is the average value of 7 in the time interval between t and 1,, and E is the expected

value in a risk-neutral world. If P(t, t,) is the price at time ¢ of a discount bond that pays a

maturity value of 1 unit at time 7,, then equation (2) implies that

P(tt) = E[e™] 3)

If y(t,T) is the continuously compounded spot interest rate at time ¢ for a T- year investment,

then
P(ti) = eI (4)
or
1
y(trT) = _t_—f an(t,tn) (5)
From equation (3) it is clear that
1 -7t -t)
y(t,T) = _t - QnE[e ] (6)

n

This equation shows that the term structure of interest rates can be obtained from the initial
value of r at time ¢ and the risk-neutral process for r for t < t,. It is therefore clear that by
developing a model of the risk-neutral process for , the term structure of interest rates could

be modelled.
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3.3 The relation between the short-rate, bond prices and

forward rates

If one assumes that the price P(,t,) of a bond is determined by the market’s assessment, at time
t, of the behaviour of interest rates over the life of the bond, and the yield to maturity for the
period [t,t,] is equivalent to the average forward rate for the period, then it follows that the

instantaneous forward rate f|(t,t,) is defined by

.. 1 t:!
y(t,T) = T jt fi(t;v)de

Therefore,

Y
flet) = =[-8yl

n

If the short-rate is defined as the instantaneous interest rate, then

r(t) = y(t,0) = im y(t,T)

T-0

If one assumes that the short-rate is a continuous function of time and follows a Markov

process, then the spot interest rate r follows the following stochastic differential equation:
dr = p(tr)dt + o(t,r)dW (7)

where y(t,r) and oft,r) are the instantaneous drift and standard deviation respectively of the

process r(f).

If a financial instrument’s value P(t,r) is determined directly by the level of the spot interest

rate 7(t}, it follows from Ito’s lemma that

dP = M(t,dt + Z(t,r)dW (8)
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where

2
M(tr) = ll(t,r)z—P Loprd L . BF
T

2(r) - o(t) 2
ar
A locally riskless portfolio IT can be constructed by hedging a derivative P, with a A-amount

of another interest rate derivative P,:
O =Pty - AP, i1)

where P, and P, both follow stochastic processes as described above. The portfolio ITis a linear

combination of these processes:
dll = (M,(tr) - AMy(tr)dt + (Z,(t7) - AZ,(t,1)dW

If one chooses A=Y,/ I, , then the random component in dII is eliminated. Using arbitrage

arguments, the portfolio should earn a riskless return in a small period of time, leading to

dll = rIIdt

Using substitution, the following equation is obtained

M. (t —_El(t’r)M ¢, |dt P (t 2t P (t,1) | dt
= = Ty -
1(&) 0 C & e =, (1) oAé)

Algebraic manipulation gives

M,(t,r) - rP(t;r) ) M,y(t,r) - 1Py(t,r)
2,57 ) %, (1)

which should hold for any pair of derivatives P, and P,. The ratio (M - rP)/% must therefore
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be a function of r and ¢ only, which is denoted by A(r,t). For any derivative security P, it

follows that

aP P , &P
— + (p(t,n) - At a(tr +=0(t)— -1tP =0
5 (BED - AEnon)— + Sotr) - 9)

This equation describes the price of a security in a one-factor yield-curve model and is called

the term structure equation.

The parameters x and o of the short-rate process, and the market price of risk, 4, must be
determined from the market. The former two quantities can be obtained from the process r(#),
while 4 can be determined empirically (Vasicek, 1977) from the equation

g =

L
ot 2
=0

(n - od) (10)

The spot interest rate, 7, can be a function of time and some underlying process , for example
F(t,u). The process u has a normal distribution. This function can take various forms, for
instance, linear, quadratic, logarithmic or exponential. The choice of the function determines
whether the model has a normally distributed fundamental solution. Pelsser (1996) has
proven that the function F(t,u) must be either a linear or a quadratic function in u to give a

normally distributed fundamental solution.

If one assumes that instead of the short-rate, the price of the bond follows a Wiener process (as
described in Black’s model applied to bond options in Chapter 5), then the risk neutral process
for the price P of a zero-coupon bond can be described by the following stochastic differential

equation:

dP(tt) = (P )dE + o(tt )P(LE AW (11)
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The expected return, p, is given in this case by the risk-free rate for that period, since a zero-
coupon bond provides no income throughout the life of the bond. The pull-to-par
phenomenon states that, at the maturity date of the bond, the bond price must equal its face
value. Therefore, instead of constant price volatility, o(f), upon maturity of the bond, the price

volatility should equal zero and it can be assumed that:

t

o(tt) - 0 (12)

tﬂ

The forward rate at time ¢ for the period ¢, to ¢, can be written in the following form:

m[P(tt,)] - m[P(tt )]

ftt b ) = > (13)

Using equation (11) and Ito’s lemma, with g, = 41(P(t,t,)), g, = ®(P(t,t,)), it follows that

o(t,t )2
dg, = |r(t) - 2" dt + o(tt )dW
and
o(tt )
g, =|rt) - dt + o(t,t )dW

It follows that

a(tt ) -o(tt)? o(t,t ) -o(tt
r-eltt) i (t.t,) ") T
2, -t i =

m L

dfitt ) =

It becomes clear that the risk-neutral process for f depends only on the volatility o. If f, =s and
t,, =s+ At and At tends to zero, the forward rate, f(1,f,,t,) becomes the instantaneous forward

rate f{(t,s) and
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af (t5) = c(t,s}ao(t’s)dt _ ao(f,s)dw
as as

The sign of W can be changed without loss of generality, and therefore the equation can be

written as

dfft,s) = o(ts)o(ts)dt + a(t,s)dW (14)

where o denotes the first derivative. Equation (14) shows that the drift is given by
m(t,s) = o(t,s) o (t,5)
and therefore the instantaneous forward rate depends on its standard deviation v(t,s), where
v(t,s) = o (t.s5)

If one integrates o, between r=t and r=s, the result is

j‘ o (1) du

t

a(t,s) - o(tt)

o(t,s)

Therefore, it follows from equation (14) that the drift-term is given by

m(t,s) = o(ts)o(ts)

5

= o(t,5) f v(t,t)dr

f

Since the short-rate r is given by

r(t) = f{tt)

and
f’dﬁ(r,t) = f{tt) - FLO1)
0

-43-




University of Pretoria etd — Smit, L (2005)

it follows from equation (14) that
t

r(t) = f04) + [o(thio(tr)dt + [o(x)aW (16)
0 0

If one differentiates to ¢, the following process is obtained for r

t

dr(t) = [f10,)dt + f [o(t,t)o,(t,t) + ot,t)ldrpdt
0

(17)

+ fou(t,t)dw dt + [o(t,t)|__JdW
0

This equation gives the stochastic process for the short-rate where the terms containing dt give
the driftin 7, and the last term gives the standard deviation of 7. The first term is in fact the
initial slope of the forward rate curve. The above equation demonstrates the relation between
the stochastic process for the bond price and the process for the short-rate. This conceptis used

in various option pricing models.

3.4 The term structure - coupon vs zero-coupon

A discountbond is an instrument that provides a single cashflow at a time s in the future. The
price of the discount bond is determined by the s-term yield in the market at the time of
purchase. Coupon-bearing bonds pay a stream of certain payments at times (£}, called
coupons, as well as a notional payment at the end of the term of the bond. A coupon bond can
be seen as a combination of discount bonds. The relation between the yield-to-maturity and

the term-to-maturity of discount bonds describes the term structure of interest rates, which are
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used in the pricing of any fixed income instrument. The term structure implies the market

consensus of forward rates and forward curves, often used for hedging purposes.

In term structure analysis it is essential that each observation used as a data point produces a
yield with an unambiguous relationship with the term of the security. This is the case only
with pure discount securities such as zero-coupon bonds. A coupon bond, on the other hand,
can be seen as a composite of pure discount instruments - one for each of the bond’s
remaining cashflows — while an interest rate swap can be seen as a par yield bond.
Opportunities to restore equilibrium between the markets for coupon bonds, zero-coupon
bonds and swaps exist through arbitrage. The zero-coupon yield curve serves as the
instrument to discount the cashflows of any interest rate security, in order to obtain the fair

value of a security when selecting fixed income securities for an investment portfolio.

Consider, for example, a market in which zero-coupon bonds as well as coupon-bearing bonds
are traded. Depending on whether the coupons are worth more (or less) than the actual bond,
participants in the market will either strip the coupons (separate the coupons from the nominal
amount of a bond), or reconstitute the bonds (by re-bundling zero-coupon bonds). The value
of coupons and bonds should be determined from a single curve to ensure that no arbitrage

opportunities occur.

In South Africa the JSE Actuarial Yield curve is seen as the benchmark curve. This curveis a

fit through the yield-to-maturities of all government bonds. It therefore approximates a par-

bond curve. No official zero-coupon yield curve is available in South Africa.
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3.5 Constructing the initial term structure: the standard

bootstrap method

Inliquid fixed income markets, zero-coupon bonds and money market rates are typically used
to construct a zero-coupon yield curve. In markets where a limited number of zero-coupon
bonds are traded, usually, a sufficient number of coupon-bearing bonds are traded to apply
standard bootstrap procedures. In the South African fixed income market, however, only a

limited number of liquid instruments are available to construct a zero-coupon yield curve.

In the South African fixed income market, bonds are traded on a yield-to-maturity basis (Faure
etal., 1991). The yield-to-maturity of a bond can be defined as the internal rate of return of the
investment. When a particular bond is priced using its yield-to-maturity, it is assumed that

all cashflows are discounted at the same yield.

If P, denotes the price of a coupon bond (bond k), and if continuously compounded interest

rates are used, the price for a South African bond is calculated by discounting all cashflows at

the quoted yield-to-maturity:

n-1

P, = 151: Y8 O, 1+ vy)e e, (18)
where, for bond P,
. 1, is the continuously compounded yield to maturity;
. Y, is the periodic coupon paid;
3 tf(k)is the time to a coupon dat;,
. 1 is the number of coupons to be paid to maturity; and
. t,:k) is the term-to-maturity, and there is a repayment of 1 unit at this time.
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The term-to-maturity, t:!k), and yield-to-maturity rates, n,, give an array which serves as the
input for term structure analysis. The ambiguity in the relationship between the yield-to-
maturity and the term-to-maturity may berectified by determining the underlying zero-coupon

yields by sequentially stripping off coupons (Hull, 1997).

3.5.1 Example of bootstrapping

A practical example illustrates the process of bootstrapping. One can assume that the interest
rates for 3, 6 and 12 month periods are known, but after that one only has the yields for
coupon bonds maturing in 1.5 years, 2.0 years and 2.75 years, where coupons are paid every

six months, as shown in Table 3.1.

Table 3.1: Data for bootstrap method

Term-to-maturity Annual coupon Continuously
(years) (%) compounded yield
(%)
0.25 0 10.13
0.5 0 10.68
1.0 0 11.43
1.5 10 11.74
2.0 12 11.84
2,45 13 11.76
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In order to obtain the term structure for the period from 3 months to 2.75 years, it is necessary
to do bootstrapping. The price of the bond can be split up into the price of the 6-monthly
coupons, and then the price for the nominal plus the coupon at maturity. Since the interest
rates for the first two coupon periods are known, the 1.5 year zero-coupon rate, z(1.5), can be

determined from the price of the 1.5 year bond:

P, = cp H05X05 ., -2(10)x10 (N+c)e -z(1.5)x1.5

1.5

where c is the coupon-payment. Since z(1.5) is the only unknown, it can easily be calculated

as 11.8%. A similar calculation results in the 2-year rate, z(2), from the 2-year bond, as 11.90%.

Although z(2.75) is still unknown, one can use linear interpolation to find the z(2.25) in terms

of z(2.75) and z(2):

2(2.25) = %z(,?) . %2(2.75)

Using this equation in the pricing formula then gives

P = cp A0S | ., ~2OTEX0T5, ., -2(1.25)x1.25

275

2(2) + .;.2(2.75)):2.?_5

2
+ ce -2(1.75)x1.75 + ce _(3 4 (N"‘C)E -2(2.75)x2.75

The zero-coupon rates, z(0.25), z(0.75), z(1.25), z(1.75) and z(2), are known, or can be
interpolated from the rates already known. Numerical procedures such as the Newton-

Raphson method, can then be used to establish the 2.75 year rate, or z(2.75), for this bond,

which is 11.90%. Continuing this process results in the term structure of interest rates. The
process of calculating the spot interest rates by stripping off coupons is called bootstrapping.

The curve calculated in this example is shown in Figure 3.1 below.
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Figure 3.1: Zero-coupon yield curve

According to Vasicek and Fong (1982), the objective of the empirical estimation of the term
structure is to fit a zero-coupon curve (or spot rate curve) that both fits the data sufficiently

well and is a sufficiently smooth function.

The latter requirement is particularly important, as it will determine the smoothness of the
forward curve, derived from the spot rate curve. Because financial markets are dynamic and
volatile, the term structure changes periodically to comply with changing perspectives. The
objective is therefore to find a method of estimating a zero-coupon curve that both fulfils the
above requirements and can be easily adjusted to accommodate a volatile market. A method

that complies to these requirements is discussed in the next chapter.
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