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ABSTRACT

South Africa has eleven official languages, ten of which are considered “resource-scarce”. For these

languages, even basic linguistic resources required for the development of speech technology systems

can be difficult or impossible to obtain.

In this thesis, the process of developing Spoken Language Identification (S-LID) systems in

resource-scarce environments is investigated. A Parallel Phoneme Recognition followed by Lan-

guage Modeling (PPR-LM) architecture is utilized and three specific scenarios are investigated: (1)

incomplete resources, including the lack of audio transcriptions and/or pronunciation dictionaries;

(2) inconsistent resources, including the use of speech corpora that are unmatched with regard to

domain or channel characteristics; and (3) poor quality resources, such as wrongly labeled or poorly

transcribed data. Each situation is analysed, techniques defined to mitigate the effect of limited or

poor quality resources, and the effectiveness of these techniques evaluated experimentally.

Techniques evaluated include the development of orthographic tokenizers, bootstrapping of tran-

scriptions, filtering of low quality audio, diarization and channel normalization techniques, and the

human verification of miss-classified utterances.

The knowledge gained from this research is used to develop the first S-LID system able to distin-

guish between all South African languages. The system performs well, able to differentiate among the

eleven languages with an accuracy of above 67%, and among the six primary South African language

families with an accuracy of higher than 80%, on segments of speech of between 2s and 10s in length.

Key Terms: Human Language Technologies; Spoken Language Identification; Automatic Speech

Recognition; Parallel Phoneme Recognition followed by Language Modeling; Incomplete Resources;

Mismatched Resources; Suboptimal Resources.

 
 
 



ABSTRAK

Suid-Afrika het elf amptelike tale waarvan tien as hulpbron-skaars beskou word. Vir die tien tale

kan selfs die basiese hulpbronne wat benodig word om spraak tegnologie stelsels te ontwikkel moeilik

wees om te bekom.

Die proses om ‘n Gesproke Taal Identifisering stelsel vir hulpbron-skaars omgewings te ontwikkel,

word in hierdie tesis ondersoek. ‘n Parallelle Foneem Herkenning gevolg deur Taal Modellering

argitektuur word ingespan om drie spesifieke moontlikhede word ondersoek: (1) Onvolledige Hulp-

bronne, byvoorbeeld vermiste transkripsies en uitspraak woordeboeke; (2) Teenstrydige Hulpbronne,

byvoorbeeld die gebruik van spraak data-versamelings wat teenstrydig is in terme van kanaal ken-

merke; en (3) Hulpbronne van swak kwaliteit, byvoorbeeld foutief geklasifiseerde data en klank op-

names wat swak getranskribeer is. Elke situasie word geanaliseer, tegnieke om die negatiewe effekte

van min of swak hulpbronne te verminder word ontwikkel, en die bruikbaarheid van hierdie tegnieke

word deur middel van eksperimente bepaal.

Tegnieke wat ontwikkel word sluit die ontwikkeling van ortografiese ontleders, die outomatiese

ontwikkeling van nuwe transkripsies, die filtrering van swak kwaliteit klank-data, klank-verdeling en

kanaal normalisering tegnieke, en menslike verifikasie van verkeerd geklassifiseerde uitsprake in.

Die kennis wat deur hierdie navorsing bekom word, word gebruik om die eerste Gesproke Taal

Identifisering stelsel wat tussen al die tale van Suid-Afrika kan onderskei, te ontwikkel. Hierdie stelsel

vaar relatief goed, en kan die elf tale met ‘n akkuraatheid van meer as 67% identifiseer. Indien daar

op die ses taal families gefokus word, verbeter die persentasie tot meer as 80% vir segmente wat

tussen 2 en 10 sekondes lank.

Sleutel Terme: Menslike Taal Tegnologie; Gesproke Taal Identifisering; Outomatiese Spraak

Herkenning; Parallelle Foneem Herkenning gevolg deur Taal Modellering; Onvolledige Hulpbronne;

Teenstrydige Hulpbronne; Ondergeskikte Hulpbronne.
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CHAPTER ONE

INTRODUCTION

Human Language Technologies (HLT), such as Automatic Speech Recognition (ASR) and Text-to-

Speech (TTS) systems, are becoming more part of our daily lives. Such technologies can be found in

many computerized systems for various reasons that may range from more effective customer support

in telephonic systems to accessibility functions on a personal computer.

The ability to identify language automatically is of great importance in systems that offer func-

tionality in more than one language. For instance, a Textual Language Identification system can iden-

tify which set of pronunciation rules a polyglot Text-to-Speech (TTS) system has to use for any given

sample of text, and Spoken Language Identification is of great importance in an audio data manage-

ment system which has to handle massive amounts of data. We are specifically interested in Spoken

Language Identification, and the development of such systems in resource-scarce environments.

This chapter is structured as follows: A literature review in Section 1.1 provides an overview

of prior work related to this thesis. This is followed by a discussion of the problem statement in

Section 1.2 and research methodology in Section 1.3. The chapter concludes with a summary of the

contribution that is made through this research, in Section 1.4.

1.1 LITERATURE REVIEW

Prior work related to language identification is reviewed in this section. The language identification

task is defined in Section 1.1.1, before the possible sources of information that can be used to distin-

guish among languages are discussed in Section 1.1.2. An overview of common S-LID techniques is

provided in Section 1.1.3, with special attention paid to the Parallel Phoneme Recognition followed

by Language Modeling technique in Section 1.1.4, as this is the most suitable technique for our en-

visaged research. The different variables that influence the accuracy of the Language Identification

1

 
 
 



CHAPTER ONE INTRODUCTION

task are described in Section 1.1.5, before the current benchmark results obtained using state-of-the-

art systems are introduced in Section 1.1.6. The section concludes with a brief overview of South

Africa’s official languages in Section 1.1.7

1.1.1 THE LANGUAGE IDENTIFICATION TASK

Language Identification (LID) is the process whereby the most likely candidate language in which

some sample of speech is delivered is chosen from a set of possible target languages. The sample of

speech that is considered may be recorded either in textual format or may be an audio segment. This

difference therefore leads to two closely related yet sufficiently distinct branches of LID:

• Textual Language Identification (T-LID), and

• Spoken Language Identification (S-LID).

T-LID can be assumed to have been mostly solved, since n-gram techniques have yielded high

accuracies on fairly small test-sets, as reported by Cavnar and Trenkle [1] in 1994. Similar results

have been reported on a system built to distinguish between South African languages as well [2]. This

can be attributed to the properly defined and accurate tokens in the form of alphabetical letters that

T-LID utilizes as a source of information. S-LID, on the other hand, still presents a more complex

problem since the speech sample exists as an audio signal, and the process to extract phonetic tokens

from such audio is itself prone to errors.

1.1.2 INFORMATION SOURCES

When we consider a segment of audio speech, it is found that there are several features that differ

from language to language. These are utilized to perform S-LID, with varying results. Initial attempts

include focusing on prosodic [3] and spectral [4] information sources. Prosodic information involves

variances such as the rhythm and intonation of a language, whereas spectral resources define the level

of power used at different frequencies to produce speech. The proposition is that the same phonemes

are pronounced differently enough between languages for the system to identify.

Other previous approaches to S-LID focus their attention on other sources as well, including

reference sounds [5], pitch contours [6] and other raw waveform features [7]. However, these features

represent a low level of linguistic knowledge, and systems utilizing such features may barely perform

satisfactory.

Having said this, it has been hypothesized that the higher the level of knowledge presented within

the extracted features is, the better the results will be [8]. However, there is a clear trade-off between

complexity and performance. In other words, systems that depend on prosodic information do not

perform as well as a system utilizing phonotactic information, and systems that extract information

from the lexicon or even the syntax perform much better that their lower counterparts [9]. However,

such systems that focus on information sources with a higher linguistic knowledge representation have

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 2

 
 
 



CHAPTER ONE INTRODUCTION

proven to have a greater computational cost, as the design of the system itself is more complex and

they also require much more labeled training data. As an example, a syntax-based system must posses

the capability to identify not only the possible phonemes, but must have a dictionary to determine the

possible words spoken as well as a proper, high-level language model to determine the validity of the

resulting sentence.

A balance between the complexity and performance of a desired system has to be decided upon.

For this reason, most researchers prefer to utilize acoustic resources [3], especially in the field of

phonetic tokens as is the case with Parallel Phoneme Recognition followed by Language Modeling

(PPR-LM), which is discussed later.

Even though many S-LID systems focus on only one source of information, it has been shown

that results from more than one source can be combined and that such hybrid systems do show an

improved result [8, 10].

1.1.3 COMMON TECHNIQUES

Initial systems tried to model the complexities of prosodic information such as pitch and rhythm [3].

Though humans appear to display some success in this approach, it has proven difficult to extract

meaningful information from the audio signal and thus these approaches have not been very successful

to date [11].

Word-spotting is another technique widely used by humans which has proven difficult to im-

plement [12]. Word-spotting involves predefining key words that usually occur frequently within a

target language and then trying to identify these key words within the speech sample. However, such

an approach can easily fail when the required key words are not present.

Classification methods are also regularly considered as part of S-LID systems, and include ap-

proaches such as clustering algorithms [6], expert systems [13], Gaussian Mixture Models (GMM),

Hidden Markov Models (HMM) [14] and Artificial Neural Networks [7] that try to represent the en-

tire language. An entire language has proven to be too complex for these models [15], and it has

been found that combining techniques from T-LID and other speech processing techniques can yield

superior results. Usable tokens can be extracted from a sample of audio speech on a phonotactical,

lexical or syntactic level [3] and used to train a classifier.

Good results are obtained by using the Parallel Phoneme Recognition followed by Language

Modeling (PPR-LM) architecture [15], and systems that extract information from the lexicon or even

the syntax perform even better [3]. Since there exists a clear connection between performance on the

one hand and complexity on the other, the PPR-LM architecture has proven to be very popular within

the research community.

Many state-of-the-art systems today consist of hybrid systems that combine various approaches

(for example general and gender-specific acoustic models in PPR-LM or systems built using different

sources of information) [8, 10, 16, 17].

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 3
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1.1.4 PARALLEL PHONEME RECOGNITION FOLLOWED BY LANGUAGE
MODELING

Parallel Phoneme Recognition followed by Language Modeling (PPR-LM) utilizes Automatic Speech

Recognition (ASR) systems to extract tokens in the form of phonotactical information. Results from

this front-end are then passed to a back-end where the system uses any form of language modeling

(eg. n-grams) to determine the most probable language from the set of target languages [18].

Tokens are usually language-dependent phonemes. Though PPR-LM systems can function with

only one target language tokenizer to process the audio signal [4], it appears that language-dependent

phonemes in several of the target languages seem to work best [19]. In such a case, the typical PPR-

LM system usually requires a set of phoneme recognizers, one in each of the target languages. These

acoustic models then run in parallel to produce the tokens required by the back-end. However, to

create effective acoustic models, a large quantity of transcribed audio data as well as accurate pro-

nunciation dictionaries are required. The addition of a new language is more difficult [3], especially

for languages with insufficient resources. It is also logical to assume that any classifier used to score

the possible languages needs to be adjusted accordingly.

The better results achieved with more than one tokenizer may be because similar phonemes vary

from language to language, and performance should increase as more tokenizers are added to the

front-end [20]. Another suggestion to make the addition of languages to an existing system easier in-

volves the use of a multilingual tokenizer. Such a tokenizer involves the use of all language-dependent

and language-independent phones brought together into a super set [21, 22]. However, to create such

a phoneme set, a large and balanced set of transcribed data is needed to ensure that the multilingual

tokenizer does not favor one language’s phoneme set above the rest. Therefore rarely seen languages

remain difficult to add.

It has also been suggested to use phoneme-independent recognizers. Although such units can be

bootstrapped from phonetically similar tokens, it appears that many of these units are still required

to achieve similar results, thereby increasing the computational cost unnecessarily. It may also be

difficult to augment the token set for both the multilingual and the phoneme-independent sets [21].

In order to develop a phoneme recognizer for a PPR-LM system, the following resources are

typically required:

• Audio resources, labeled according to language.

• Written transcriptions of the audio resources.

• A pronunciation dictionary.

Once the front-end has processed the audio signal, the resulting token strings are scored by a

classifier in the back-end and the most probable language returned. Though language models are

usually employed to distinguish between languages, it has been shown that extracting the n-gram

frequencies from the phoneme strings as a vector and using a Support Vector Machine (SVM) [23] to

classify these vectors into groups representing the languages can prove to be more successful [19].
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Figure 1.1: Visual representation of the PPR-LM architecture.

Figure 1.1 provides a visual representation of the PPR-LM architecture. An utterance given as

input to the system is passed to three ASR systems (English, French and Portuguese phoneme rec-

ognizers in the image) that together form the front-end of the system. These ASR systems produce

phoneme strings which are then passed as a vector of biphone frequencies to the language model at the

back-end (an SVM classifier in the image) which then predicts the language spoken in the utterance.

1.1.5 VARIABLES THAT INFLUENCE THE ACCURACY OF THE S-LID TASK

It has been shown that for T-LID a number of factors play an important role in the accuracy of the

system as a whole. These include: size of the text-fragment, amount and variety of training data, and

classification algorithm. It also has been discovered that the composition of the target languages play

an important role in the overall accuracy. It is much harder to distinguish between similar languages

such as isiZulu and isiXhosa [24] than between unrelated languages. The same factors influence the

accuracy of S-LID systems as well, most notably the size of the audio segments and the composition

of the training sets [15].

The number of target languages known to the system also has an influence on the accuracy of the

system as a whole. Researchers have been able to achieve much higher accuracies using language-

pair recognition than trying to recognize ten languages at once [4]. In 1994, systems that tried to

distinguish between a large number of languages have proven unreliable [15], though such systems

have become much more accurate recently as more training data is becoming available.

In summary, S-LID results can only be compared accurately if the following variables are speci-

fied:

• The length of the audio segment used during testing.
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• The number of target languages the system has to distinguish between.

• The use of an open or closed set of languages during testing. Open sets refer to test sets which

contain unseen languages as well, which are unknown to the system.

• The specific languages distinguished amongst (specifically the extent to which these languages

are related).

1.1.6 CURRENT BENCHMARK RESULTS

The National Institute of Standards and Technology (NIST) Language Recognition Evaluation (LRE)

evaluates a series of experimental systems in order to establish the current baseline performance of

language recognition [25]. Though initially started in 1996, the next evaluation was only in 2003,

after which it has been repeated every two years. At the time of this thesis, the most recent results

were published in 2007, with another evaluation planned for later in 2009.

In the 2007 evaluation two sets of experiments were conducted: A closed set, which contained

only samples from predetermined languages; and an open set which also contained unknown (out-

of-set) languages for which there were no training data available. However, out-of-set languages fall

outside the scope of this thesis.

The General Language Recognition evaluation covered the following fourteen languages: Ara-

bic, Bengali, English, Farsi, German, Hindustani, Japanese, Korean, Russian, Spanish, Tamil, Thai,

Vietnamese and Chinese. In the cases of English, Chinese, Hindustani and Spanish, separate sys-

tems which determined the dialect were also evaluated. All audio data was part of the CallAFriend

telephonic corpora.

The NIST-LRE measures the system achievements based only on pair-wise language recognition

performance. Accuracy scores are calculated for each target language, based on the probability that

the system incorrectly classifies an audio segment. The following expression gives the accuracy score

for each target-non-target language-pair:

C (LT , LN ) =
CMissPTargetPMiss (LT )

+CFA (1− PTarget) PFA (LT , LN )
(1.1)

where LT and LN are the target and non-target languages respectively. CMiss and CFA, are the

weights (costs) for each miss-classifications (false reject and false accept respectively), which are set

to CMiss = CFA = 1 for the NIST evaluations. PTarget, is the probability of the audio segments be-

ing the target language and is set to PTarget = 0.5. PMiss and PFA are the system-specific measured

false reject (incorrectly rejecting a true statement as false) and false accept (incorrectly accepting a

false statement as true) values (expressed as probabilities).

An overall score is then computed for each system by adding together all these values for each

target-non-target language pair, which is calculated for each target language. The following is the

mathematical equation:
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Figure 1.2: Cavg scores for the 2007 NIST LRE systems when evaluated with the general language
closed set on 30, 10 and 3 second long test samples. Figures reproduced from [25].

Cavg =
1

NL

∑
LT


CMissPTargetPMiss (LT )

+
∑

LN
CFAPNon−TargetPFA (LT , LN )

+CFAPOut−of−SetPFA (LT , LO)

 (1.2)

where NL is the number of languages in the closed-set, and LO an out-of-set (or unknown) lan-

guage.

Twenty-one organizations or teams from around the world partook in the evaluation. As can be

seen in Figure 1.2, most of the systems that were tested on the general language recognition’s closed

set, achieved average costs of below 0.05 for the 30 sec segments. However, performance across the

board is poorer for the 3 sec segments, as most systems only achieve a score of below 0.25.

Many of these systems are propriety, therefore their implementation details are considered sensi-

tive. Figure 1.2 also shows that the system-specific performance during the NIST LRE is not made

public either. The best systems’ performance for the evaluations in both 2005 and 2007 are given in

Table 1.1 [26].

The systems presented for the NIST LRE utilize several pre-processing techniques, such as Voice

Activity Detection to remove any long silences or non-speech signals and Speaker Clustering which
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NIST LRE 3-sec 10-sec 30-sec
2005 0.1569 0.0715 0.0419
2007 0.1335 0.0363 0.0103

Table 1.1: The best Cavg scores for both NIST LRE05 and NIST LRE07 [26].

assumes that one speaker only speaks in one language, before detecting the language of the test seg-

ment. For instance, the systems built by the International Computer Science Institute in the USA, as

well as the Brno University of Technology in the Czech Republic, preprocessed the data by reducing

the amount of noise as well as removing all of the silences beforehand.

Another common technique is to combine several of the systems mentioned in Section 1.1.3 into

one. The language recognition of the ICSI system itself consisted of the common PPR approach,

combined with an SVM. However, their front-end utilizes four different phoneme recognizers, one

based on gender-specific HMMs and the other three language-specific Artificial Neural Networks

based on Multilayer perceptron (MLP) phone classifiers [16]. The MLP classifiers were trained on

English, Arabic and Mandarin. The ICSI system achieved an average cost of 0.076 for the 30-sec

samples, for the general language recognition task. The BUT system utilizes a combination of 4

HMM-based acoustic and 9 GMM-based phonetic systems, achieving an average cost of 0.075 on

30-sec long samples [17].

Figure 1.3: Historic Cavg scores for the 1996 - 2007 NIST LRE in the general language recognition
task, grouped according to test-segment lengths. Figure reproduced from [25].

As can be seen from Figure 1.3, the performance of the LRE systems keeps increasing over the

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 8

 
 
 



CHAPTER ONE INTRODUCTION

years. Also notice that the results clearly indicate that the length of the test segments influences the

accuracy, with both tests using 30-sec and 10-sec audio segments achieving Cavg scores of below

0.05 (5% as indicated in Figure 1.3, using percentages), and the test using 3-sec segments lagging

behind with a cost of just below 0.15 (15%, as indicated) during the 2007 NIST LRE.

1.1.7 OFFICIAL LANGUAGES OF SOUTH AFRICA

Since 1994, South Africa has eleven recognized official languages. These are listed in Table 1.2, along

with each language’s international ISO language code, the number of native speakers (in millions) and

the language family it is classified in. As can be seen from Table 1.2, several of South Africa’s official

languages do not have a large speaker population, which makes the gathering of audio resources

difficult.

Of particular importance is the language families. These families represent languages which

exhibit similarities with regard to grammar, vocabulary and pronunciation. Three major language

families are present in South Africa, namely the Germanic languages, the Nguni languages and the

Sotho-Tswana languages. Whereas the Germanic languages are of Indo-European origin, both the

Nguni and the Sotho-Tswana language families represent two of the major branches of the Southern

Bantu languages which originated in Central to Southern Africa. Tswa-Ronga and Venda are also

part of the Southern Bantu languages.

Language ISO Code Native Speakers Language Family
isiZulu zul 10.7 Nguni
isiXhosa xho 7.9 Nguni
Afrikaans afr 6.0 Germanic
Sepedi nso 4.2 Sotho-Tswana
Setswana tsn 3.7 Sotho-Tswana
Sesotho sot 3.6 Sotho-Tswana
SA English eng 3.6 Germanic
Xitsonga tso 2.0 Tswa-Ronga
siSwati ssw 1.2 Nguni
Tshivenda ven 1.0 Venda
isiNdebele nbl 0.7 Nguni

Table 1.2: A list of South Africa’s eleven official languages [27].

1.2 PROBLEM STATEMENT

This section describes the Research Questions addressed and lists the Motivations and Objectives of

this thesis.

1.2.1 RESEARCH QUESTION

In order to create a South African S-LID system, the following questions need to be explored first:
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• Is it possible to create a reliable S-LID system with limited resources?

• What techniques can be used to increase the effectiveness of limited input data?

• How does poor quality data such as incorrectly labeled, poorly transcribed or poor audio quality

data influence attempts to create such S-LID systems?

• What can be done to reduce the negative influence of poor quality data?

The hypothesis which will be tested is that it is indeed possible to create such an S-LID system,

provided that a significant portion of the available data is at least correctly labeled (with the correct

language identity) and that the poorly resourced languages can borrow tools and resources from better

studied languages, such as English.

1.2.2 MOTIVATION

South Africa has the challenge of having eleven official languages, ten of which have not been studied

from a language technology perspective in great detail. Demographically, several of these languages

are not widely spoken as well, even when compared to other South African languages (e.g. Tshivenda

is not as widely spoken as isiZulu). Thus resources are quite scarce and the electronic data that

is available may be incorrect (such as wrongly labeled data or poorly transcribed data), incomplete

(missing transcriptions or pronunciation dictionaries) or even inconsistent (audio files from one set of

data may be recorded under different conditions than another set).

Being able to develop accurate S-LID systems, even with such limited resources, may pave the

way towards incorporating additional languages in speech technology systems. S-LID systems in

particular are important as they can play a useful role in data collection, enabling additional applica-

tions to be developed later, including spoken dialog systems in domains such as government service

delivery or healthcare [28, 29].

1.2.3 OBJECTIVE

The objective of this research is to create a set of techniques for the development of an S-LID system

when limited linguistic resources are available. It determines how limited, poor quality or incomplete

audio data can be used best to improve S-LID accuracy or build completely new systems. Finally,

the information gained from this thesis is put to use and an S-LID system is developed which is,

to our knowledge, for the first time able to distinguish between all eleven of South Africa’s official

languages.

1.3 RESEARCH METHODOLOGY

This section provides an overview of the Data Corpora used in this thesis. It also explains the Experi-

mental Design, focusing especially on the tokenizer and classifier used for the experiments throughout
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this thesis, before ending off with an overview of the Research Focus, introducing the topics which

are covered in the rest of this thesis.

1.3.1 DATA CORPORA

The following corpora are used during this research:

• The GlobalPhone corpus [30]. Languages available include: French, Portuguese, and Japanese.

• The Wall Street Journal corpus provides American English [31]. The English from the Wall

Street Journal is used in conjunction with the GlobalPhone corpus, since the two corpora have

very similar acoustic characteristics.

• An in-house corpus (which is referred to as the African corpus) containing telephonic data

in English, French and Portuguese, as spoken throughout Africa. This data is of a very poor

quality and the corpus does not contain any written transcriptions.

• The Meraka Lwazi corpus [32]. Languages available are: Afrikaans, South African English,

isiNdebele, isiXhosa, isiZulu, Setswana, Sepedi, Sesotho, siSwati, Tshivenda, and Xitsonga.

This is a new corpus of telephonic data that is still under development.

1.3.2 EXPERIMENTAL DESIGN

The popular PPR-LM configuration, which is explained in Section 1.1.4 is used for all the experiments

throughout this thesis, since it is widely used in the literature. The configuration is also relatively easy

to develop, powerful enough to achieve satisfactory accuracies and does not require the development

of any high level linguistic tools or data. The latter is critical as the focus is on languages with little

resources. The following provides a brief overview of the system design. Further detail is provided

in the individual chapters.

1.3.2.1 ACOUSTIC RECOGNIZERS

The tokenizers which are used to convert the audio signal into usable tokens are phoneme recognizers

from ASR systems. These phoneme recognizers utilize Hidden Markov Models (HMM) which are

trained to recognize biphones or triphones from Mel Frequencies Cepstral Coefficients (MFCC). The

training of the HMMs as well as the extraction of the MFCCs from the audio signal, is performed by

the HMM Tool Kit (HTK) [33].

In most cases, recognizers for each of the target languages are utilized, and run in parallel with

one another, each yielding a phoneme string for a given speech sample.

1.3.2.2 LANGUAGE CLASSIFIER

Recently published results [19] indicate that the use of a Vector Space Model to distinguish between

the target languages currently yields the best results. Therefore this thesis makes use of a Support
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Vector Machine (SVM). Biphone frequencies are extracted from the phoneme strings which have

been recognized from the audio. The frequency of each unique biphone is represented as a term in a

vector, with the results of each phoneme recognizer concatenated one after the other to form a single

vector for each utterance. This vector is used as an input function to the back-end classifier.

A Gaussian kernel is employed as the kernel function of the SVM. A grid search is utilized to

determine the optimal values of the kernel width and the margin-accuracy trade-off parameter. Using

this design, several systems are developed and analyzed in order to address the questions described in

the next section.

1.3.3 RESEARCH FOCUS

During the course of this research, three key questions related to the resources required to develop

an S-LID system are examined. These three questions are expected to be typical problems faced by

developers who are trying to create S-LID systems in resource-scarce languages, especially when it

comes to acquiring the necessary resources to develop many HLT systems.

1.3.3.1 INCOMPLETE RESOURCES

The resources that are usually required to develop ASR systems, which are typically used as tokeniz-

ers in PPR-LM systems, include:

• Audio resources, accurately identified according to language.

• Written transcriptions of the audio resources.

• A pronunciation dictionary.

Though the audio resources remain critical for development, Chapter 2 determines if it is possible

to develop ASR systems without the use of transcriptions or a pronunciation dictionary. The first

experiment attempts to build an ASR system without a dictionary, using the individual letters as

possible tokens. The second experiment investigates the possibility to utilize an already existing ASR

system to bootstrap transcriptions for incomplete corpora.

The GlobalPhone corpus is used for this section. Japanese is artificially limited to represent a

poorly resourced language.

1.3.3.2 MISMATCHED RESOURCES

Another important problem faced by resource-scarce languages is that the different corpora which

contain the few resources available to build a system may be mismatched. Chapter 3 examines the

possible techniques which can be used to port a system from a resource rich environment to a poorly

resourced environment. Well-known tools such as diarization and channel normalization are investi-

gated.
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The African corpus is used in conjunction with the GlobalPhone corpus for this section. Since

the African corpus does not possess any transcriptions, new transcriptions are bootstrapped from

well-trained ASR systems used in the previous chapter.

1.3.3.3 POOR QUALITY RESOURCES

Another important challenge for languages in a limited-resource environment is the quality of the

available data. Chapter 4 investigates the effect of poor quality data on the overall performance of the

system. An experiment investigates the effect of poor transcriptions on the overall performance by

altering the amount and quality of training data independently.

The Meraka Lwazi corpus is used in this section. Data collected during different stages of the

quality verification process is used. The transcriptions, as well as some of the audio data in the

isiZulu corpus were originally of poor quality, and is therefor used to represent the language with

poor quality resources.

1.3.3.4 DEVELOPMENT OF A SOUTH AFRICAN S-LID SYSTEM

Chapter 5 utilizes the knowledge gained from the previous experiments in order to develop an S-LID

system specifically aimed at distinguishing between South African languages. Again, the PPR-LM

configuration is implemented and the Meraka Lwazi corpus is used for the development of the final

system.

1.4 CONTRIBUTION

Usually the answer to poorer-than-desired performance is to “throw more data at the system”. How-

ever, since this thesis is looking at languages that have very little data available, better alternatives

have to be found to create even a basically usable system.

This thesis aims to develop a set of techniques to aid in the development of an S-LID system

with limited linguistic resources or when the quality of available resources are questionable. Such

techniques include bootstrapping usable transcriptions, and automatically filtering data that restricts

system performance. This thesis determines how data of poor quality or even incomplete data affects

the overall system accuracy.

Finally, the information gained from this research is put to use and the first publicly released S-

LID system which is able to distinguish between all eleven of South Africa’s official languages, is

developed.
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CHAPTER TWO

INCOMPLETE RESOURCES

2.1 INTRODUCTION

Creating a phoneme recognizer in environments where languages have limited resources may prove

extremely difficult. Chapter 1 described the Spoken Language Identification (S-LID) task, and in-

troduced the concept of Parallel Phoneme Recognition (PPR). To create the necessary phoneme rec-

ognizers, properly transcribed audio data as well as a pronunciation dictionary are required. In this

chapter, the following two important issues will be addressed:

• The absence of any written transcriptions.

• The unavailability of a pronunciation dictionary.

Transcriptions record what is being said in the audio data, whereas the pronunciation dictionary

accurately determines which phonemes make up the words written down in the transcriptions. In

other words, both the transcriptions and a pronunciation dictionary are of vital importance to define

the actual phonemes, as well as their order within the audio data.

This chapter investigates an environment where only incomplete linguistic data is available. It

defines and examines techniques to create a phonotactic S-LID system when the transcriptions are

not trusted, if they are even available, and pronunciation dictionaries may be difficult to acquire.

Firstly the necessity of a tokenizer specific to the new target language is determined. As part of the

first experiment, the influence of multiple tokenizers on the overall performance of an S-LID system

is investigated. Secondly, techniques to create a phoneme recognizer for a language without complete

linguistic resources, as well as the influence of such tokenizers on the overall performance of the

system, is also determined.
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Language Set Speakers Utterances Hours
English Train 83 10 219 20.0

Test 19 2 555 4.9
French Train 80 8 380 21.6

Test 21 2 096 5.3
Portuguese Train 77 6 037 14.4

Test 25 1 511 3.5

Table 2.1: Statistics on the training and testing sets for each language in the baseline system.

The remainder of this chapter is structured as follows: An overview of the setup of the experiments

for the rest of the chapter is provided in Section 2.2. Section 2.3 describes the first set of experiments

where the effect of multiple recognizers is investigated, followed by experiments where a recognizer

for the new target language is created in Section 2.4. Section 2.5 discusses the results obtained.

2.2 EXPERIMENTAL SETUP

This section describes the design of the system used for the experiments in the rest of this chapter.

Firstly, it provides an overview of the corpora used to create the baseline system in Section 2.2.1.

Section 2.2.2 describes the general system design in more detail, before an overview of the perfor-

mance measurements used for the experiments is provided in Section 2.2.3. The performance of the

baseline system is described in Section 2.2.4.

2.2.1 CORPUS STATISTICS

Data from two acoustically similar corpora is used to create the baseline system. The GlobalPhone

corpus [30] provides data for the French and Portuguese recognizers, as well as Japanese which is

used to simulate a resource scarce language later in the chapter. Data for the English recognizer is

acquired from the Wall Street Journal corpus [31]. The audio segments in both corpora are on average

8 seconds in length. Table 2.1 provides statistics on the data used, specifically the number of speakers

within the corpus, as well as the combined amount of utterances for each language. The length of all

the audio data for each language is also given in hours.

Pronunciation dictionaries for French and Portuguese are also acquired from the GlobalPhone

corpus, and the publicly available Carnegie Mellon pronunciation dictionary version 0.7a is used for

the English data [34].

2.2.2 BASELINE SYSTEM DESIGN

The baseline system utilizes the popular Parallel Phoneme Recognition followed by Language Mod-

eling (PPR-LM) configuration [15]. The PPR-LM is used because it is also relatively easy to develop,
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powerful enough to achieve satisfactory accuracies and does not require the development of any high

level linguistic tools or data.

Phoneme recognizers, which utilize Hidden Markov Models (HMMs) are created for each of the

three target languages. The HMMs are trained to recognize biphones and use three emitting states.

Each state consists of a Gaussian Mixture Model (GMM) with four mixtures. The amount of states

and mixtures have been chosen based on experiments done prior to the start of this experiment [35].

The HMMs are trained on audio data which is encoded as Mel Frequency Cepstral Coefficients

(MFCCs). The MFCCs are extracted from the audio signal and consist of 36 values for each 10

microseconds. These values are 12 coefficients, which are derived from log spectra based on a fast

Fourier transform. For each coefficient, the difference between each two subsequent frames is also

calculated (12 delta coefficients) as well as the difference between each two subsequent delta coeffi-

cients (12 acceleration coefficients).

The actual recognition of the phonemes within the audio segments is done in conjunction with

a flat language model. Unlike a properly trained language model which stipulates which phoneme

may follow the previously recognized phoneme, a flat language model allows the recognizer complete

freedom to decide which phoneme is currently being uttered (in other words, any phoneme may follow

any other). Note that this language model forms part of the ASR system and should not be confused

with the Language Modeling that will classify the phoneme strings to determine the possible target

language.

The system utilizes a vector space to classify the different target languages, which is implemented

with a Support Vector Machine (SVM). Biphone frequencies are extracted from the phoneme strings

which have been recognized from the audio. The frequency of each unique biphone is represented as

a term in a vector, with the results of each phoneme recognizer concatenated one after the other to

form a single vector for each utterance. This utterance is then used as input to the SVM.

The SVM employes a Gaussian kernel as the kernel function to distinguish between the vectors.

During the training process, boundaries between the different classes of vectors are calculated. When

a new vector has to be classified, the SVM will determine on which side of the boundary it lies and

classify the sample accordingly. Note that a SVM is actually designed to distinguish only between

two classes, but can be expanded to a more complex problem by combining several classes into a

super class, therefore distinguishing between classes through several levels. Since a vector has to be

part of one of the two classes, an SVM alone cannot be used for open test sets as all samples will

automatically be classified as one of the known target languages.

2.2.3 PERFORMANCE MEASUREMENTS

The performance of the system as a whole is measured by evaluating both the front-end as well as

the back-end. The ASR systems in the front-end are evaluated using both the phoneme recognition

accuracy and phoneme correctness. Accuracy and Correctness can be defined as follows:
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% Correctness =
N −D − S

N
∗ 100% (2.1)

and

% Accuracy =
N −D − S − I

N
∗ 100% (2.2)

where N is the total number of labels, D is the number of deletion errors, S is the number of substi-

tution errors, and I is the number of insertion errors.

As for the SVM, the overall accuracy of the S-LID system, as well as the precision and recall for

each language is reported. The overall accuracy is simply the percentage of all utterances correctly

identified by the SVM. Precision and recall of a specific language (l), are defined as follows:

% Recall =
lcorrect

lcorrect + owrong
∗ 100% (2.3)

and

% Precision =
lcorrect

lcorrect + lwrong
∗ 100% (2.4)

where lcorrect is the number of utterances correctly classified as language l and lwrong is the

number of utterances incorrectly classified as language l. ocorrect is the number of utterances correctly

classified as the other language and owrong the number of utterances of the language l incorrectly

classified as the other language. lwrong can also be called false accepts, and owrong false rejects.

(ocorrect is not used directly in the calculations of precision and recall.) In other words, the precision

is the percentage of all test utterances which were classified as language l that are correctly predicted,

whereas the recall is the percentage of test utterances that are actually spoken in language l which are

predicted correctly.

When Equation 1.1 is considered:

PMiss = 1− recall
100

(2.5)

and

PFA = 1− precision
100

(2.6)

Note that the precision and recall are calculated on a language-specific basis. The equations 2.3

and 2.4 hold true for a language-pair evaluation, but can be extended to a more complex system by

assuming the language o to be a sum of all the incorrect languages in turn.

Since several factors can influence the performance of the ASR systems, such as the insertion

factor and the amount of mixtures present in the GMMs, a grid search is used to select the optimal

values. Similarly, the SVM results are also optimized using a grid search.
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2.2.4 BASELINE PERFORMANCE

The performance of the system as described in sections 2.2.1 to 2.2.2 is provided in Table 2.2. The

ASR systems are trained on the full training set as displayed in Table 2.1, whereas the SVM is trained

only on a portion of the training data to ensure that the training set is balanced for all languages

(approximately 2 500 utterances per language). It should be noted that the performance of the ASR

system as given in Table 2.2 can be increased if the HMMs are used in conjunction with a properly

generated language model, which is where much of the strength of current ASR systems lie. A flat

language model is used as this provides the most language neutral phoneme string for later S-LID

classification.

English French Portuguese
Front-end Performance

Correctness 68.67% 73.88% 52.98%
Accuracy 61.84% 65.90% 34.11%

Back-end Performance
Precision 99.70% 99.50% 99.80%
Recall 99.70% 100.00% 99.30%

Overall S-LID accuracy : 99.70%

Table 2.2: The performance of the ASR systems in the front-end as well as the SVM classifier in the
back-end of the baseline system.

It can also be seen in Table 2.2 that the SVM classifier is still capable of classifying the languages

with a high degree of accuracy, achieving an overall accuracy of 99.7% when classifying the 10

seconds long test utterances of GlobalPhone. Note that though the accuracy compares well with the

systems mentioned in Section 1.1.6, this system only distinguishes between three languages instead

of the thirteen of the NIST Language Recognition Evaluations of 2007.

2.3 THE EFFECT OF MULTIPLE PHONEME RECOGNIZERS

As stated in Section 1.1, the basic PPR-LM architecture uses a set of tokenizers (in this case phoneme

recognizers) to process the audio signal. It is not a requirement that there is a phoneme recognizer

for each of the target languages present, though more recognizers are believed to increase the overall

performance of a system [19].

This section investigates the effectiveness of a system, which is extended with a new, resource-

scarce target language, when only the original tokenizers are used. Attention is given to the influence

of an increasing number of tokenizers, therefore the available phoneme recognizers are artificially

restricted.
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CHAPTER TWO INCOMPLETE RESOURCES

2.3.1 EXPERIMENTAL DESIGN

Using the sufficient resources described in Section 2.2.1, an S-LID system is successfully created

to distinguish between English, French and Portuguese with an overall accuracy of 99.7%. This

represents our existing system, which is trained on clean and complete resources. For experimental

purposes, Japanese, also from the GlobalPhone Corpus, is added to the system. However, a phoneme

recognizer is not created for Japanese at this time.

In preparation for the experiment, the Japanese training data is divided into four sets of increasing

sizes, with each increased set containing the total previous set. These different sets of Japanese

training data is artificially limited to 500, 1 000, 1 500 and 2 500 utterances, each about 8 seconds

long. This is done in order to be able to analyze the trends observed when the available training data

increases. A test set of 500 utterances is kept aside.

The next step in the experiment involves creating three different environments by artificially re-

stricting the number of available phoneme recognizers. First only English is utilized, then a combina-

tion of English-French and finally all three existing recognizers are used. Each of the four Japanese

training sets is then combined with a similar amount of training data from the three ‘well-resourced’

languages, and recognized by all three environments. The classifier at the back-end of the system

is then retrained with the new training data set, thereby creating twelve different systems. (A dif-

ferent system is created for each combination of the three tokenizer configurations and four training

set sizes.) These twelve systems are then tested with a universal test set which incorporates all four

languages.

2.3.2 RESULTS

The initial system, utilizing only the English phoneme recognizer, reports an overall accuracy of

93.20% on the smallest training set defined for Japanese. As expected, the performance of the system

increases as more phoneme recognizers are added to the front-end, eventually reporting 98.28% for

the same training and test set.

Similarly, as more training data becomes available for Japanese, the system’s performance also

increases. For the system with only the English recognizer, the performance increases from an overall

accuracy of 93.20% to 96.45%, whereas the EFP system increases less dramatically from 98.28% to

99.17%.

Table 2.3 provides a confusion matrix that indicates the performance of all the target languages

for the best performing system. This is the EFP system trained on the full Japanese training set. The

columns represent the correct language of the utterances whereas the rows represent the language as

predicted by the system. The number of correctly classified utterances on the main diagonal of the

matrix is boldfaced for clarity.

Figure 2.1 represents the results of this experiment, with graph (a) showing the increase in ac-

curacy performance, and (c) the increase in recall performance. It is interesting to note that the
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English French Portuguese Japanese
English 99.47% 0.00% 0.20% 0.00%
French 0.00% 99.50% 0.10% 0.00%
Portuguese 0.53% 0.21% 98.50% 1.43%
Japanese 0.00% 0.29% 1.20% 98.57%

Table 2.3: A confusion matrix which summarizes the performance of the EFP system, when trained
on 2 500 utterances per language.

performance increases with smaller intervals as more recognizers are added, and as more Japanese

training data becomes available. This suggests that at some point the gain in performance will not be

worth the effort of creating another recognizer. Also interesting to note is that Figure 2.1 (b), which

plots the precision achieved by the systems, actually reports a decrease in performance.

2.4 CREATING A NEW PHONEME RECOGNIZER WITH INADEQUATE
RESOURCES

Now that the effect of an increasing number of tokenizers is better understood, it can be expected

that a tokenizer for the new target language will also improve the performance of the system in

general. However, the new target language does not have the resources to create an optimal phoneme

recognizer. This section investigates techniques to create a tokenizer, as well as the influence such

suboptimal tokenizers have upon the system as a whole.

2.4.1 EXPERIMENTAL DESIGN

The next set of experiments continues by adding a Japanese phoneme recognizer to the complete EFP

system. Two approaches to the creation of the phoneme recognizer for Japanese are investigated:

• A Japanese phoneme recognizer which is created orthographically (EFPJ-orth hereafter) from

the available transcriptions. In other words, instead of creating recognizers based on the native

phonemes of the new target language, the recognizers are based on the graphemes found in the

transcriptions. Therefore the pronunciation dictionary (which is typically required) is not used

in this experiment, as the transcriptions are assumed to be spelled phonetically.

• A Japanese phoneme recognizer which is created with transcriptions bootstrapped from one of

the original phoneme recognizers (EFPJ-boot hereafter). In other words, all the audio data

from the new language is recognized by an existing phoneme recognizer (English for this

experiment) and the resulting phoneme strings are then used as transcriptions. The existing

transcriptions are ignored and since the new transcriptions are already in phonetic format, the

pronunciation dictionary is also not required. (In principle, this process can be repeated with
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CHAPTER TWO INCOMPLETE RESOURCES

Figure 2.1: Overall Accuracy (a); Precision (b); and Recall (c) of the different S-LID systems when
the number of tokenizers are increased from English-Only (E), to English-French (EF) and finally
English-French-Portuguese (EFP).
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CHAPTER TWO INCOMPLETE RESOURCES

transcriptions repeatedly derived from the updated acoustic models. However for this experi-

ment only one iteration is used.)

These two newly created phoneme recognizers are then employed as tokenizers alongside the

existing recognizers. The training sets from the previous experiment as defined in Section 2.3 are

used again. Eight more systems (EFPJ-orth and EFP-boot for four training set sizes each), each of

which is compared to the best results from the original experiment, are created.

2.4.2 RESULTS

All the results from the new set of systems created for this experiment are compared with the re-

spective results from the best performing system from the initial experiment, namely the EFP system.

The results from the three systems, when trained on the smallest training set for Japanese, appear to

suggest that the addition of a weaker recognizer does more damage than good to the performance of

the system. The original EFP system reports an overall accuracy of 98.28%, whereas both the EFPJ-

orth system and the EFPJ-boot system report poorer results with accuracies of 98.25% and 98.09%

respectively.

As more data becomes available, the two new configurations finally do overtake the original in

performance. Where the EFP system achieves a final accuracy of 99.17% on the complete Japanese

training set, the EFPJ-orth system does slightly better with an accuracy of 99.20%. The EFPJ-boot

system, on the other hand, outperforms both systems with an accuracy of 99.37%.

Table 2.4 provides an overview of the performance of the Japanese testing set for all three exper-

imental systems. These systems are trained on the complete Japanese training set. Table 2.5 provides

a confusion matrix that stipulates the performance of all the target languages when classified with

the EFPJ-boot system, which is trained on the entire Japanese training set. The columns represent

the correct language of the utterances whereas the rows represent the language as predicted by the

system. The number of correctly classified utterances on the main diagonal of the matrix is boldfaced

for clarity.

Overall Japanese Japanese
System Accuracy Precision Recall
EFP 99.17% 98.57% 96.79%
J-orth 99.20% 99.38% 97.19%
J-boot 99.37% 99.39% 97.59%

Table 2.4: SVM performance for three of the systems, when 2 500 utterances per language are used
to train the system.

It is interesting to note that, whereas the EFPJ-boot system performs better than the EFP system

almost immediately, the EFPJ-orth system is only able to do so at the very end of the experiment.

Therefore, though the addition of the orthography-based Japanese recognizer does not seem to im-
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English French Portuguese Japanese
English 99.60% 0.10% 0.20% 0.20%
French 0.00% 99.50% 0.00% 0.20%
Portuguese 0.30% 0.40% 99.80% 2.10%
Japanese 0.10% 0.00% 0.10% 97.50%

Table 2.5: A confusion matrix which summarizes the performance of the EFPJ-boot system, when
trained on 2 500 utterances per language.

prove the performance of the system as a whole, the results from the second configuration indicate

that a bootstrapped acoustic model can in fact be used to increase the accuracy of an existing system.

Figure 2.2 represents the results of this experiment, comparing performance of the three different

configurations in terms of (a) overall accuracy, (b) precision and (c) recall.

2.5 CONCLUSION

The experiments in this chapter show that adding more tokenizers to the front-end of an existing

S-LID system does increase the performance of the specific system. Even phoneme recognizers for

languages with limited available resources can indeed be added successfully to a phonotactic S-LID

system with almost no loss in accuracy to the existing target languages with abundant resources.

The bootstrapping technique which is described in this section makes it possible to create

phoneme recognizers for languages for which neither transcriptions nor pronunciation dictionaries

can be acquired. Though the bootstrapping of new transcriptions works better than creating an ortho-

graphic system, it still proves only beneficial once the resources are above a certain threshold (more

than 1 000 utterances in this experiment), otherwise such tokenizers may actually be detrimental to

the system’s performance. Still, as the last experiment in this chapter shows, the addition of such

tokenizers when enough resources are available can be beneficial to the system as a whole, though

they are not as effective as when the same language is fully resourced.
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CHAPTER TWO INCOMPLETE RESOURCES

Figure 2.2: Overall Accuracy (a); Precision (b); and Recall (c) of S-LID systems when a Japanese
tokenizer is added Orthographically (J-orth) or with bootstrapped transcriptions (J-boot) when com-
pared to the English-French-Portuguese-Only (EFP) system.
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CHAPTER THREE

MISMATCHED RESOURCES

3.1 INTRODUCTION

In a resource-scarce environment, it is often required to use data from different sources in order to

develop a functional Spoken Language Identification (S-LID) system. An existing system, which is

trained on a corpus of carefully selected data, may also need to be ported to a different environment

for which data is more limited in quantity and may possibly be of poorer quality.

This chapter investigates the process of porting an existing S-LID system, which was developed

in a well-resourced environment, to a different, under-resourced environment. It describes methods

to prepare the system for more effective use with unmatched data, possibly of poorer quality.

This chapter is structured as follows: Various causes of data mismatch are explored in Section

3.2. An overview of the experimental design is provided in Section 3.3. A detailed discussion of the

various main steps then follow: Data preparation (Section 3.4), initial adaptation, including retraining

of the classifier at the back-end (Section 3.5) and the final retraining of the entire system in Section

3.6. Conclusions are summarized in Section 3.7.

3.2 CAUSES OF DATA MISMATCH

There is a variety of reasons why data can differ from one corpus to a next. These can be summarized

using the following categories:

Channel conditions. Channel conditions depend on the physical environment in which the audio

data is recorded. The recording medium has a major influence, for instance using a microphone

will produce clearer sounds than recording files over a telephone. Sound pollution, such as

background noise and other non-speech signals also play an important role in the quality of
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CHAPTER THREE MISMATCHED RESOURCES

the audio (consider studio conditions vs a public environment). The recording conditions, such

as sampling frequency, bandwidth and volume are also important to consider. The encoding

protocol (mono vs. stereo as an example) is also important, as the compression of the analog

signal into electronic data can change the acoustic characteristics of the speech sample.

Speaker conditions. The demographic variables are also important. Dialects, strong accents and

second-language speakers have a strong influence on the performance of the ASR systems as

the same words are pronounced with different phonemes. Speaker characteristics such as age

and gender also have an effect.

Domain conditions. The vocabulary can also be considered to be responsible for differences in cor-

pora, as different terminology is used in different domains. The speaking style is also important

as people’s continuous speech is spoken differently from speech produced by reading, for ex-

ample.

3.3 EXPERIMENTAL SETUP

This section examines the design of the system used for the experiments that are found in the rest

of this chapter. The same setup as described in Section 2.2 is also used for the experiments in this

chapter. A more complete discussion of the corpora used in this chapter is supplied in Sections 3.3.1.

After a brief overview of the system design in Section 3.3.2, the performance of the baseline system

for this Chapter is provided in 3.3.3.

3.3.1 CORPORA

The data from the GlobalPhone [30] as well as the Wall Street Journal [31] corpora is used to repre-

sent the cleaner, well-resourced environment from which an existing S-LID system is to be ported.

Alongside these two corpora, an in-house corpus (which will be referred to as the African corpus)

will be used to represent the under-resourced environment. However, all the audio data from the well-

resourced corpora is downsampled from 16kHz to 8kHz in order to make it comparable to the poorer

African corpus.

Since statistics of the cleaner corpora are listed in Table 2.1, only the statistics of the African

corpus are listed here in Table 3.1. The number of utterances is given, as well as the length of all the

audio data for each language. The difference between the training and test sets is also shown.

Unfortunately, the African corpus does not have any transcriptions. Therefore, the technique of

bootstrapping transcriptions, as defined in Chapter 2, is utilized in this chapter as well. Since the audio

data of the African corpus also does not have any speaker information, the assumption is made that

one channel corresponds to one unique speaker, and that one speaker is not shared between different

utterances. While these assumptions are valid for the majority of the utterances, a few individual

exceptions do occur. The utterances of the African corpus are split into different channels, in order to
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Language Set Utterances Hours
English Train 250 16.77

Test 25 4.30
French Train 109 8.25

Test 26 2.07
Portuguese Train 108 11.18

Test 28 2.84

Table 3.1: Statistics on the training and testing sets for each language in the African corpus.

English French Portuguese
Front-end Performance

Correctness 64.68% 74.09% 55.43%
Accuracy 52.81% 66.19% 48.10%

Back-end Performance
Precision 98.91% 94.87% 97.66%
Recall 99.26% 98.99% 90.60%
Overall S-LID accuracy 97.18%

Table 3.2: The performance of the ASR systems in the front-end as well as the SVM classifier in the
back-end of the baseline system, which is developed with the downsampled GlobalPhone corpus.

separate the different speakers from each other. These channels are then further separated into minute

long segments.

3.3.2 SYSTEM DESIGN

The system implements the popular Parallel Phoneme Recognition followed by Language Model-

ing (PPR-LM) architecture [15]. Phoneme recognizers for all three target languages are trained on

the cleaner GlobalPhone corpus. These phoneme recognizers utilize biphone-based Hidden Markov

Models (HMM) as in Chapter 2. The HMMs also consist of three emitting states, with Gaussian

Mixture Models (GMM) of four mixtures in each state. A Support Vector Machine (SVM) at the

back-end classifies the languages based on biphone frequencies.

For a more complete description, please refer to Section 2.2.2.

3.3.3 BASELINE PERFORMANCE

The performance of the baseline system for this chapter’s experiments is provided in Table 3.2, which

lists the performance measurements of the system which is developed with the downsampled Glob-

alPhone corpus. The results are comparable to that of the baseline system used in Chapter 2, though

the training and test sets are not exactly the same.
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3.4 DATA PREPARATION

Preprocessing of data from two completely different environments is a vital step which must be com-

pleted before any attempt to combine resources can even be considered. If this is not done, the

system may be biased towards the acoustic characteristics of the corpus with the most audio data. For

languages with limited resources, the available corpora may even be of such poor quality that it is

rendered useless unless some preprocessing steps are taken.

The audio data from the African corpus also contains not only speech, but telephonic signals and

in many cases long stretches of silence and background noise as well. The signal quality itself is also

much poorer than that of GlobalPhone, so it is critical that some preprocessing takes place.

The preprocessing process takes place as follows:

• Common diarization techniques are used to separate the different telephonic channels from

each other. The diarization also removes any non-speech signals and long sections of silence

from the audio.

• Amplitude normalization is also applied to the new data to diminish the effect of background

clicks and other channel related noises that the diarization is unable to remove.

• Channel normalization is applied to the GlobalPhone data in order to approximate the channel

conditions to the African corpus, now that the African corpus is prepared for use.

3.4.1 DIARIZATION OF AUDIO DATA

Diarization is a preprocessing step which can be applied to the audio data of a poor quality corpus. It

is used to separate the speech signals from any other competing noises that may be found in the sound

files, or the lack thereof in the case of silence removal. It is a very useful tool to improve the quality

of the audio data before any training or testing is performed.

A diarization module can be described as a series of units that process the sound files in a series

of steps. The first step is to remove any long silences and for the experiment in this chapter this is

accomplished with the “praat” toolkit [36]. The silence removal is followed by segmentation, during

which the stream of audio is segmented into different parts. Speech and non-speech segments are

most commonly used. This is done with the Bayesian Information Criterion (BIC). BIC simply looks

for differences in the covariance matrix and segments the audio on large changes. These segments are

then passed to the last step of the diarization process, where a classifier determines the type of each

segment based on the pitch information.

In this chapter, the different channels found in the sound files of the African corpus is separated

before the audio data is run through the diarization process. An SVM is used in the final classification

to distinguish between speech and non-speech segments.
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3.4.2 CHANNEL NORMALIZATION OF AUDIO DATA

When audio data is recorded under different channel conditions, it will lead to a mismatch between

the acoustic characteristics of the audio data. Therefore the technique of channel normalization can

be applied in order to minimize the spectral differences.

Channel normalization is performed by estimating the magnitude spectrum for each frame across

each data set. A map filter is then calculated which can be applied across each frame of the environ-

ment that has to be normalized in turn, so that the channel characteristics of the one channel is also

visible in the other.

Channel normalization can be applied in either direction. In this chapter, the cleaner GlobalPhone

data is channel normalized to the weaker African corpus. This is done because it is easier and more

effective to approximate the clean data to the corpus that is littered with noise, than to try and clear

the noise from the weaker corpus.

Amplitude normalization on the other hand, scales each utterance’s sample values so that the

absolute maximum value is one and thus is used to reduce the effect of any extreme spikes in the raw

wave-form. Unlike channel normalization it is performed on a per-file basis and utterances do not

influence each other, even within the corpus.

3.5 INITIAL PORTING OF THE S-LID SYSTEM

This section investigates the initial effects of adapting the system to the new environment. The overall

performance of the system, when only the original audio data is adapted to resemble the new envi-

ronment, is examined. The results achieved when audio data from the new environment is classified

with this new system is also reported on, both for the system as it is, as well as after the system has

been adapted initially.

3.5.1 ORIGINAL TRAINING DATA ADAPTATION

With the data from the new corpus preprocessed, the audio data from the original corpus is also

adapted to correlate more accurately with the channel conditions of the African corpus. As already

stated, the African corpus is used alongside the much cleaner GlobalPhone corpus. Therefore, all

the audio data from the cleaner corpora is downsampled from 16kHz to 8kHz in order to make it

comparable to the African corpus. The original data is also amplitude normalized and then channel

normalized in order to better match the new environment [37].

Verification reveals that the new system, which is retrained on the adapted GlobalPhone data,

performs relatively similar to the original downsampled system, when tested on the adapted Global-

Phone test data. However, as can be seen from Figure 3.1 the system performance drops considerably

when data from the adapted African corpus is used to test the system. This clearly shows that only

approximating the data used to train a system is not effective at all. The system itself must also be

adapted to the new corpus before it can be used in the new environment.
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English French Portuguese
Front-end Performance

Correctness 56.00% 62.06% 45.91%
Accuracy 45.52% 52.38% 38.95%

Back-end Performance
Precision 99.37% 95.06% 99.19%
Recall 99.64% 99.52% 94.50%

Overall system accuracy : 98.25%

Table 3.3: The performance of the ASR systems in the front-end as well as the SVM classifier in the
back-end of the system which is trained on the downsampled data, after channel normalization has
been applied.

A more detailed examination of the results follows in Section 3.5.3, after classifier adaptation is

also considered.

3.5.2 CLASSIFIER ADAPTATION

The first logical attempt to adapt the system for use in the new environment is to retrain the back-end.

Retraining of the classifier recalculates the boundaries of the target languages within the vector space,

according to the new set of audio data. The adaptation of the classifier is achieved by recognizing

the audio data from the African corpus with the latest phoneme recognizers which are trained on the

adapted audio data of the GlobalPhone corpus. The resulting phone strings are then used to retrain

and test the SVM. As can be seen in Figure 3.1, even the basic adaptation of the system achieves

improved results. A more detailed examination of the results now follows in Section 3.5.3.

3.5.3 ANALYSIS

Though the audio data from the GlobalPhone corpus is normalized to approximate the channel con-

ditions of the much poorer quality African corpus, the system’s performance is not greatly effected

when tested on data from the original environment. As can be seen from Table 3.3, the system as

a whole performs nearly on par with the original baseline system described in Section 3.3. While

ASR accuracy decreases, the performance of the system, which is now trained on the newly adapted

audio data, remains high, reporting an overall accuracy of 98.26%. Table 3.3 gives a more complete

overview of system performance, both for the front-end and the back-end.

Unfortunately, though the system is now trained on data which approximate the channel condi-

tions of the new environment, performance is still poor when test data from the African corpus is

used. A poor accuracy of 47.02% is reported when no additional adaptation is applied to the existing

system. Table 3.4 gives a more complete overview of the performance of the back-end after the initial

adaptation when tested with data from the African corpus.

When the back-end of the system is also adapted to the new environment (i.e after retraining the
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English French Portuguese
Precision 56.27% 42.20% 36.46%
Recall 57.14% 37.10% 38.82%

Overall system accuracy : 47.02%

Table 3.4: The performance of the SVM classifier at the back-end of the system when test data from
the African corpus is used using the same system as Table 3.3.

English French Portuguese
Precision 64.71% 62.38% 58.22%
Recall 76.45% 50.81% 50.00%

Overall system accuracy : 62.56%

Table 3.5: The performance of the SVM classifier at the back-end of the system when test data from
the African corpus is used after the SVM itself is retrained.

classifier with phone strings generated by the adapted back-end), the performance does increase again

to a accuracy of 62.57%. Though still quite low, it is a promising improvement when compared to

the initial attempt to identify the languages spoken in the African corpus. Table 3.5 gives a more

complete overview of the performance of the back-end after further adaptation.

Figure 3.1: SVM performance with different train and test sets when the phoneme recognizers are
trained only on the downsampled GlobalPhone corpus, and the SVM is trained and tested on sets
from the specified corpora.

Figure 3.1 depicts the overall performance of the SVM at the back-end in percentage accuracy for

the specified systems graphically.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 31

 
 
 



CHAPTER THREE MISMATCHED RESOURCES

3.6 FURTHER ADAPTION OF THE S-LID SYSTEM

With the promising improvement achieved by retraining the classifier, this section now explores a

more complete porting of the existing system to the new environment. Attention is given to the

adaptation of the ASR systems at the front-end of the system.

3.6.1 PHONEME RECOGNIZER ADAPTATION

In order to further improve the performance of the system, attention is given to the front-end, in

combination with the adaptation of the back-end. Though the current phoneme recognizers are trained

with data that is approximated to the new channel conditions, the data remained different from the

African corpus with regard to speaking style, domain and speaker conditions. Note that in Section

3.5.1, the system performed on par with the original. Therefore it is logical to assume that adapting

the recognizers to the new environment will improve system accuracy within this environment.

Adaption is performed by retraining the phoneme recognizers, using only audio data from the

African corpus. As there is no available transcriptions in the new environment, the bootstrapping

technique from Section 2.4.1 is implemented to generate new transcriptions for the audio data. After

the new phoneme recognizers are created, the classifier is retrained again, as is done in Section 3.5.2.

The results achieved by the new system are disappointing, as the accuracy falls slightly to 60.58%.

Even the phoneme recognizers at the front-end are struggling. This is believed to be caused by audio

data of much poorer quality found in the new environment, as some of the utterances appear to have

a very poor phoneme recognition. Table 3.6 gives a more complete overview of the performance for

both the front-end and the back-end.

English French Portuguese
Front-end Performance

Correctness 16.99% 23.75% 37.30%
Accuracy 11.04% 17.71% 28.07%

Back-end Performance
Precision 60.25% 69.23% 57.55%
Recall 91.89% 29.03% 35.88%

Overall system accuracy : 60.57%

Table 3.6: The performance of the ASR systems in the front-end as well as the SVM classifier in the
back-end of the system which is trained on data from the African Corpus.

3.6.2 ADAPTATION THROUGH FILTERING OF THE PHONEME STRINGS

A technique to automatically filter out these segments of poor quality audio is developed: All seg-

ments that recorded a small frequency of phonemes are removed from the train and test sets. As can

be seen from Table 3.7, this again improves the overall performance of the system as results peak at an
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English French Portuguese
All utterances < 0.5 phonemes/sec

Front-end Performance
Correctness 32.34% 32.20% 38.36%
Accuracy 25.76% 24.20% 30.73%

Back-end Performance
Precision 63.31% 58.51% 65.00%
Recall 79.70% 44.35% 56.52%

Overall system accuracy : 62.86%
All utterances < 1.0 phonemes/sec

Front-end Performance
Correctness 33.10% 32.69% 37.94%
Accuracy 26.77% 25.35% 31.18%

Back-end Performance
Precision 65.75% 68.97% 66.67%
Recall 86.75% 50.00% 57.34%

Overall system accuracy : 66.66%
All utterances < 1.5 phonemes/sec

Front-end Performance
Correctness 32.71% 31.79% 38.03%
Accuracy 26.59% 24.40% 31.49%

Back-end Performance
Precision 67.36% 73.75% 68.07%
Recall 83.87% 54.63% 62.79%

Overall system accuracy : 68.87%
All utterances < 2.0 phonemes/sec

Front-end Performance
Correctness 40.47% 40.02% 44.02%
Accuracy 34.15% 33.96% 36.53%

Back-end Performance
Precision 64.95% 77.78% 69.64%
Recall 85.71% 52.83% 62.4%

Overall system accuracy : 68.78%

Table 3.7: The performance of the ASR systems in the front-end as well as the SVM classifier in the
back-end. The system is trained on data from the African corpus, after all utterances with less than
the given amount of phonemes per second is removed from both the training and test sets.
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overall accuracy of 68.88%. Figure 3.2 depicts the overall performance of the SVM at the back-end

in percentage accuracy for the specified systems graphically.

Figure 3.2: Overall SVM performance when the phoneme recognizers is trained on the different
corpora.

3.6.3 DISCUSSION

Though increasing the accuracy from 47.02% to 68.88% is a great improvement, the current system

still does not perform sufficiently to suggest that it is ported to the new environment successfully.

Therefore further analysis of the new environment is required.

This is done by having human listeners systematically listen to random subsets of the African

corpus, focusing particularly on the segments which were classified incorrectly by the system. The

human verifiers identified the following problematic subsets within the corpus:

• Audio data labeled with the incorrect language.

• Audio data of such poor quality or with such a level of competing noise that the speech is barely

audible and is rendered unusable. This, together with the incorrectly labeled data is included in

the Unusable subset.

• Correctly labeled data, but spoken with a strong accent. This is included in the Accented subset.

Though not always as clean as the GlobalPhone corpus, all the usable segments are included in the

Correct subset. Table 3.9 gives a brief summary of the findings of the human verifiers, showing

the percentage of audio segments for each subset per language. The surprisingly high percentage

of Unusable data present within the subset given to the human verifiers may be the reason for the

initial fall in performance of the system when the phoneme recognizers are adapted, as well as be

responsible for the poorer than desired results in the end.
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Language Unusable Accented Correct
English 36.45% 24.08% 39.46%
French 40.29% 1.46% 58.24%
Portuguese 24.14% 0.68% 75.17%

Table 3.8: Percentage of samples per language in each category, as reported by human verifiers.

If the system is used as developed in Section 3.6.2 and only the “correctly” labeled utterances

are recognized, a different picture emerges, with an overall accuracy of 80.30% affirmed. The entire

adaptation process is summarized in Table 3.9, displaying results on the African test corpus.

Language GlobalPhone SVM Recognizer Recognizer Tested on
channel retrained adaptation adaptation correct subset

normalization after filtering
Phoneme English 45.52 = 11.04 26.59 =

Recognition French 52.38 = 211.71 24.40 =
Accuracy (in %) Portuguese 38.95 = 28.07 31.49 =

SVM English 56.27 64.71 60.25 67.36 71.43
Classification French 42.20 62.38 69.23 73.75 78.70

Precision (in %) Portuguese 36.46 58.22 57.55 68.07 78.06
SVM English 57.14 76.45 91.89 83.87 74.16

Classification French 37.10 50.81 29.03 54.63 76.53
Recall (in %) Portuguese 38.82 50.00 35.88 62.79 76.82

Overall
Accuracy(in %) 47.02 62.56 60.57 68.87 80.30

Table 3.9: The entire adaptation process.

3.7 CONCLUSION

This chapter demonstrates that an S-LID system cannot function properly outside its original envi-

ronment without some adaptation. Techniques to port an existing S-LID system to a much poorer

environment is described and the feasibility of these techniques are demonstrated.

The importance of verifying the quality of the data from the new environment before any adapta-

tion is attempted, is also emphasized. The quality of the audio data can be verified by examining the

phoneme strings that are produced by the front-end. Thereafter poorly performing training data can

be automatically filtered out before the adaption process continues. In theory, this can be improved

by iterating through the process, but for this experiment only one iteration was applied.

The preparation of the data is an important step before an S-LID system can be ported to a new

environment. Experiments also show in particular that though a great improvement in system perfor-

mance can be gained by retraining the classifier, the best result is still achieved by retraining both the
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tokenizers as well as the classifier.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 36

 
 
 



CHAPTER FOUR

SUBOPTIMAL RESOURCES

4.1 INTRODUCTION

When a Spoken Language Identification (S-LID) system needs to be created for a completely new

environment, new linguistic resources have to be gathered before speech processing tools can be

created. However, as was seen at the end of Chapter 3, it is often the case that during the initial stages

of this development, the available data in a new corpus may be of very poor quality.

This chapter investigates the effect that resources of suboptimal quality have on the overall perfor-

mance of an S-LID system. Specifically the effect of transcription errors is investigated. This chapter

is structured as follows: An overview of the setup of the experiments for the rest of the chapter is

provided in Section 4.2. Section 4.3 describes the experiment itself before a conclusion is provided

in Section 4.4.

4.2 EXPERIMENTAL SETUP

This section examines the design of the system used for the experiments in the rest of this chapter.

The setup used for these experiments is very similar to that of previous chapters. However, the ASR

systems at the front-end are implemented a bit differently than for previous experiments.

This section is structured as follows: The Meraka Lwazi corpus is discussed in Section 4.2.1, and

the difference between the two versions of the isiZulu corpora discussed in Section 4.2.2. Section

4.2.3 explains the setup of the experiment, and the performance of the baseline system is provided in

Section 4.2.4.
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4.2.1 CORPUS STATISTICS

This chapter uses the Meraka Lwazi corpus [32]. The Meraka Lwazi corpus was still under devel-

opment at the time of this research, but is earmarked for public release. It was jointly developed

by the Meraka Institute and by the North-West University for the Lwazi project, sponsored by the

Department of Arts and Culture of the Government of South Africa.

The Meraka Lwazi corpus consists of telephonic audio data, which is collected in all eleven of

South Africa’s official languages. Therefore, unlike the previous chapters, the target languages are

now South African languages. For this chapter specifically, Afrikaans, SA English, Setswana and

isiZulu are selected. Table 4.1 gives some statistics on the available data. The number of speakers per

language is given, as well as the combined number of utterances and the length of the audio data in

hours. The difference between the train and test set is also provided.

Language Set Speakers Utterances Hours
Afrikaans Train 170 4 383 3.32

Test 30 787 0.60
SA English Train 175 4 287 3.25

Test 30 728 0.55
Setswana Train 176 4 257 3.23

Test 30 686 0.52
isiZulu Train 170 4 091 3.10

Test 30 711 0.54

Table 4.1: Statistics on the training and testing sets for each of the languages used in this chapter.

Unlike the African corpus used in Chapter 3, the audio data from the Lwazi corpus is clearly

audible, and background and other non-speech noises have been kept to an absolute minimum.

4.2.2 DIFFERENCES IN ISIZULU CORPORA

After collection, audio data is curated and transcribed by human annotators, as described in more

detail in [27]. Annotation is not error-free, and the corpus undergoes a number of quality verification

cycles prior to completion. The results from two such cycles are selected - an initial version and a

later verified version - in order to compare the effect of the poorer transcriptions on system perfor-

mance. Table 4.2 gives a brief summary of the differences between the original and the refined isiZulu

corpora.

Table 4.2 describes the differences between the two versions of the isiZulu corpus. It lists the

number of files per category as a percentage of the refined isiZulu version. Different levels of al-

terations concerning the transcriptions are given attention to, namely minor changes (which mostly

concerns small changes such as correction of spelling errors and other changes of two or less char-

acters per sentence), noise-tag reduction (correction of previously erroneous noise-tag markings as

well as removal of markings referring to noise now removed from actual audio files during the latest
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Transcription Changes
Major Changes 16.91%
Noise-tag Reduction 16.45%
Minor Changes 35.16%
Unchanged 28.89%

Audio Changes
Major Changes 28.17%
Minor Changes 44.75%
Unchanged 24.48%

File Changes
Files Gained 2.59%
Files Lost 2.09%

Table 4.2: A brief summary of the differences between the original and the refined isiZulu corpora.

verification) and major changes (such as truncating words at the end of the utterance which are not

completely pronounced in the audio and other changes of three or more characters per sentence).

Major changes in the audio files include all files that have been altered to differ in size with more

than 10% (of the largest file between versions) and mostly consists of the removal of operator inter-

ruptions. Minor changes consists mostly of shifting utterance boundaries in order to complete final

words in utterances which had been cut off too soon. It should also be noted that about 2% of the files

do not have corresponding counterparts in the other version. Since both versions are available, isiZulu

will be used as the new target language which is being added to the system and the effects of better

and poorer transcriptions can be compared directly. Five isiZulu corpora are defined, with varying

percentages of the different versions of isiZulu data. These corpora are explained in Table 4.3. It

should be noted that the number of training utterances remains the same for each of the corpora, and

that speaker distribution remains constant across the artificial corpora.

isiZulu Corpus Original Version Refined Version
Corpus-A 0% 100%
Corpus-B 25% 75%
Corpus-C 50% 50%
Corpus-D 75% 25%
Corpus-E 100% 0%

Table 4.3: A number of artificial isiZulu corpora are created by combining different percentages from
the original (poor quality) and the refined (better quality) corpora.

As can be seen from table 4.3, corpus-A is by definition the refined version whereas corpus-E

remains the original version.
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4.2.3 BASELINE SYSTEM DESIGN

The system implements the popular Parallel Phoneme Recognition followed by Language Modeling

(PPR-LM) architecture [15]. Automatic Speech Recognition (ASR) systems for all target languages

are trained, and again utilizes biphone-based Hidden Markov Models (HMM) for acoustic models.

The HMMs consists of three emitting states as for the rest of the thesis, but the number of mixtures

of the GMMs in each state have been increased to seven mixtures. An SVM at the back-end classifies

the languages, as in the rest of the thesis.

For a more complete explanation of the rest of the system, please refer to section 2.2.2.

4.2.4 BASELINE PERFORMANCE

The baseline system for this chapter performs satisfactorily. As can be seen from Table 4.4, the ASR

systems perform on par and above with other phoneme recognizers in the rest of the thesis. The

SVM itself also performs well, achieving an overall accuracy of 85.13%. This is lower than any of

the baseline systems used in previous chapters because the Meraka Lwazi corpus consists of much

shorter audio segments, as can be seen in the figures of Appendix 1.

Afrikaans SA English Setswana
Front-end Performance

Correctness 70.03% 57.87% 66.89%
Accuracy 65.16% 52.76% 55.32%

Back-end Performance
Precision 81.79% 84.53% 89.07%
Recall 86.79% 81.04% 86.73%

Overall system accuracy : 84.87%

Table 4.4: The performance of the ASR systems in the front-end as well as the SVM classifier in the
back-end of the baseline system.

4.3 THE EFFECT OF SUBOPTIMAL TRANSCRIPTIONS

The purpose of this section is to examine the effect of suboptimal data on the performance of an S-

LID system. This is done by building different S-LID systems, each with a set of data that increases

in quality.

Details of the experiment are provided in Section 4.3.1. The results of both the ASR systems and

the SVM are examined separately in Section 4.3.2 and Section 4.3.3 respectively, and a discussion

then follows in Section 4.3.4.
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4.3.1 EXPERIMENTAL DESIGN

Section 4.2.2 defines five isiZulu corpora, with varying percentages of suboptimal and refined data.

The corpus which contains only data from the refined version is labeled as corpus-A. From corpus-A

the data is replaced with data from the original isiZulu version, 25% at a time until the entire original

version is defined as corpus-E.

Corpora A to E are further divided into three sets with increasing amounts of training data, with

each smaller set being a subset of the larger ones. The smallest set only contains 25% of the training

data, with the second set containing 50% of the training data, and the largest set containing the entire

training set. Therefore, a total of 15 S-LID systems are created.

The training sets which are used to train the ASR systems, are also artificially restricted to 1 020,

2 039 and 4 091 training utterances (numbers respectively equal to the different isiZulu training set

sizes) for the other three languages when used to train the SVM classifier. This ensures a balanced

classifier at the back-end. Each of these 15 S-LID systems is then tested using only one, predefined

test set from corpus-A. The test set remains the same for both the ASR systems and the SVM classifier.

4.3.2 ASR RESULTS

The isiZulu phoneme recognizers also perform on par with other phoneme recognizers used in the rest

of this thesis. The correctness of the recognizer achieves a percentage of 66.38%, and the accuracy a

percentage of 58.31%. Table 4.5 provides a more complete performance of the ASR systems in the

front-end of the S-LID systems, according to the training data used.

25% Training Data 50% Training Data 100% Training Data
isiZulu Corpus A

Correctness 60.43% 65.21% 66.38%
Accuracy 54.00% 57.02% 58.31%

isiZulu Corpus B
Correctness 62.08% 64.83% 66.37%
Accuracy 54.00% 56.99% 58.38%

isiZulu Corpus C
Correctness 61.57% 64.69% 66.00%
Accuracy 53.87% 55.78% 58.03%

isiZulu Corpus D
Correctness 58.87% 63.03% 65.40%
Accuracy 52.23% 55.72% 56.77%

isiZulu Corpus E
Correctness 59.23% 63.12% 63.71%
Accuracy 52.14% 55.93% 56.67%

Table 4.5: The performance of the ASR systems in the front-end of the S-LID systems, according to
the training data used.
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As can be seen from Table 4.5, the performance of the ASR systems continue to increase as

more data is added to the training set, regardless of which isiZulu corpus is used. Comparing the

performance based on the isiZulu corpora, it is also clear that corpus-A outperforms corpus-E on all

training set sizes. The isiZulu corpora B to D is a bit more ambiguous, though a clearly increasing

trend can still be seen in performance as the corpus used becomes more refined. In summary, while

the effects of the improvements to the corpus is visible, this is much less then initially anticipated.

4.3.3 SVM RESULTS

As mentioned in Section 1.1.5, the addition of isiZulu to the baseline system is expected to decrease

the performance of the SVM classifier. Though the S-LID systems with the smallest training sets

report an overall accuracy of between 68.37% and 69.09%, the systems with the full training sets still

manage to achieve an average overall accuracy of between 80.66% and 80.97%. Table 4.6 provides

a more complete overview of the performance of the ASR systems in the front-end of the S-LID

systems, according to the training data used. The precision as well as the recall for each language,

grouped according to both the training set size and the isiZulu corpus used to train the system, is

provided.

It should be noted in Table 4.6 that the performance of isiZulu remains on par with Afrikaans,

SA English and Setswana. Though all the S-LID systems appear to be unaffected by the different

corpora, the size of the training sets clearly influence the system as a whole.

Figure 4.1: Overall SVM accuracy when the phoneme recognizers are trained on the different corpora.

Figure 4.1 represents the overall performance of the S-LID systems individually. As can be seen

from Figure 4.1, the performance of the SVM classifiers also continue to increase as more data is

added to the training set, regardless of which isiZulu corpus is used. Though the performance of
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the corpus-A SVM still outperforms the corpus-E SVM, the results remain very similar across the

different isiZulu corpora.

4.3.4 DISCUSSION

The varying quality of the data has an effect on the ASR systems of the front-end, as Section 4.3.2

reveals but this effect is smaller than anticipated, given the large number of refinements implemented.

Fortunately, due to the strength of the SVM at the back-end the difference in ASR accuracy has limited

effect on the S-LID accuracy. It is clear that more data improves the performance of the system for

each of the corpora defined and that, while the refined corpus does perform better than the original

suboptimal data, this effect is minimal.

4.4 CONCLUSION

This chapter demonstrates that some transcriptions of suboptimal quality do not influence the overall

performance of an S-LID system greatly. Though the ASR systems at the front-end do report a

visible improvement in performance as the transcriptions are refined, the SVM classifier at the back-

end appears to be resilient enough to function properly with transcriptions of varying quality. In

particular, small decreases in performance suffered by the ASR systems are not carried through to

a decrease in performance of the system as a whole. This implies that the quantity of audio data is

more important than the quality of the transcriptions (a result that reinforces the conclusion reached

in Section 2.4).

It should be kept in mind that Chapter 3, on the other hand, reveals that quality of the audio data

and label accuracy have a more substantial effect on the system as a whole. It remains important

to verify the quality of the audio data before an S-LID system is created. Therefore in summary,

sufficient data, audio quality and label accuracy prove to be more important to an S-LID system than

perfect transcriptions.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 43

 
 
 



CHAPTER FOUR SUBOPTIMAL RESOURCES

25
%

Tr
ai

ni
ng

D
at

a
50

%
Tr

ai
ni

ng
D

at
a

10
0%

Tr
ai

ni
ng

D
at

a
af

r
en

g
ts

n
zu

l
af

r
en

g
ts

n
zu

l
af

r
en

g
ts

n
zu

l
is

iZ
ul

u
C

or
pu

sA
Pr

ec
is

io
n

68
.6

1%
69

.9
7%

73
.0

7%
65

.3
1%

71
.6

0%
72

.2
7%

75
.1

2%
68

.3
7%

80
.5

8%
79

.3
8%

81
.7

6%
82

.3
0%

R
ec

al
l

74
.7

1%
66

.8
9%

60
.9

3%
72

.2
9%

79
.7

9%
63

.7
3%

69
.0

9%
73

.2
7%

84
.3

7%
77

.7
5%

81
.0

5%
80

.4
5%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:6

8.
92

%
O

ve
ra

ll
sy

st
em

ac
cu

ra
cy

:7
1.

67
%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:8

0.
97

%
is

iZ
ul

u
C

or
pu

sB
Pr

ec
is

io
n

67
.8

8%
71

.4
6%

72
.4

2%
65

.7
1%

70
.8

1%
74

.9
1%

73
.5

1%
68

.2
2%

80
.8

8%
79

.3
1%

81
.3

5%
81

.1
5%

R
ec

al
l

75
.4

7%
68

.1
3%

60
.4

9%
71

.1
6%

81
.7

0%
61

.5
3%

68
.3

6%
73

.6
9%

83
.8

6%
78

.4
3%

80
.7

5%
79

.3
2%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:6

9.
05

%
O

ve
ra

ll
sy

st
em

ac
cu

ra
cy

:7
1.

56
%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:8

0.
67

%
is

iZ
ul

u
C

or
pu

sC
Pr

ec
is

io
n

68
.2

3%
69

.6
1%

72
.2

6%
64

.4
7%

69
.6

6%
71

.7
2%

73
.1

0%
67

.6
7%

80
.5

8%
79

.8
0%

80
.2

9%
82

.3
2%

R
ec

al
l

73
.6

9%
67

.0
3%

61
.5

1%
70

.4
6%

79
.6

6%
60

.9
8%

67
.3

4%
72

.4
3%

84
.3

7%
78

.1
5%

80
.1

7%
79

.8
8%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:6

8.
37

%
O

ve
ra

ll
sy

st
em

ac
cu

ra
cy

:7
0.

33
%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:8

0.
73

%
is

iZ
ul

u
C

or
pu

sD
Pr

ec
is

io
n

68
.1

2%
68

.5
6%

72
.9

7%
67

.4
8%

70
.6

9%
73

.1
2%

72
.8

4%
66

.4
9%

80
.1

7%
80

.5
8%

81
.1

4%
81

.8
8%

R
ec

al
l

74
.9

6%
67

.7
2%

62
.9

7%
69

.7
6%

81
.8

2%
61

.6
7%

66
.4

7%
71

.1
6%

83
.7

3%
79

.2
5%

80
.9

0%
79

.4
6%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:6

9.
09

%
O

ve
ra

ll
sy

st
em

ac
cu

ra
cy

:7
0.

57
%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:8

0.
91

%
is

iZ
ul

u
C

or
pu

sE
Pr

ec
is

io
n

67
.8

9%
70

.1
2%

71
.4

2%
66

.1
7%

70
.0

2%
71

.5
4%

73
.3

7%
67

.8
1%

80
.6

0%
80

.5
8%

80
.5

8%
82

.0
5%

R
ec

al
l

74
.7

1%
66

.0
7%

63
.4

1%
69

.9
0%

81
.3

2%
60

.4
3%

67
.4

9%
71

.7
2%

83
.9

8%
79

.2
5%

80
.4

6%
79

.7
4%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:6

8.
71

%
O

ve
ra

ll
sy

st
em

ac
cu

ra
cy

:7
0.

50
%

O
ve

ra
ll

sy
st

em
ac

cu
ra

cy
:8

0.
94

%

Ta
bl

e
4.

6:
T

he
pe

rf
or

m
an

ce
of

th
e

SV
M

cl
as

si
fie

ri
n

th
e

ba
ck

-e
nd

of
th

e
S-

L
ID

sy
st

em
s,

ac
co

rd
in

g
to

th
e

tr
ai

ni
ng

da
ta

us
ed

.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 44

 
 
 



CHAPTER FIVE

A SOUTH AFRICAN SPOKEN LANGUAGE

IDENTIFICATION SYSTEM

5.1 INTRODUCTION

Now that the research questions mentioned in Section 1.2.1 have all been explored, the development

of a South African Spoken Language Identification (S-LID) system can proceed. This chapter utilizes

the knowledge gained from the previous experiments in order to develop an S-LID system specifically

aimed at distinguishing between South African languages.

Again, the Parallel Phoneme Recognition followed by Language Modeling (PPR-LM) configura-

tion [15] is implemented and the Meraka Lwazi corpus is used for the development of the proposed

system.

This chapter is structured as follows: Section 5.2 provides a brief summary of the techniques

which were investigated throughout this thesis and may be used in the development of the South

African S-LID system. Section 5.3 explains the setup of the South African S-LID system in more

detail. The initial South African S-LID system is introduced in Section 5.4 and refined in Section

5.5. The focus shifts from all eleven languages to a simplified version in which only the language

families are focused upon in Section 5.6 before a final discussion of the South African S-LID system

concludes the chapter in Section 5.7.

5.2 SUMMARY OF TECHNIQUES

Throughout this thesis, several techniques were proposed to answer the challenge of limited or in-

complete resources. The effectiveness of these techniques were investigated, with varying results.

Though not all of these techniques will be needed for the development of the final South African

S-LID system, the most important techniques are listed here.
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5.2.1 ORTHOGRAPHIC TOKENIZERS

Orthographic recognizers are created by defining each letter within the available transcriptions as a

unique label. This is done with the assumption that the transcriptions are written phonetically (the

Japanese transcriptions used the Roman alphabet). This technique will not work well for a language

with a particularly irregular spelling system, that it, where many different graphemes can map to the

same phoneme (compare the f from ‘fish’ with gh from ‘enough’) or visa verse (compare both cs in

‘access’).

It was found that the use of an orthographic-based recognizer built using very small training

sets can be detrimental towards the overall performance of an S-LID system. When more training

utterances are used (more than 2 500 samples) performance increases, but remains inferior to the

use of the bootstrapped techniques (discussed next). It was decided that this method of creating a

tokenizer with inadequate resources is not optimal, especially in the light of the technique described

in Section 5.2.2.

5.2.2 BOOTSTRAPPED TRANSCRIPTIONS

Bootstrapped recognizers are developed with transcriptions created by another recognizer. The boot-

strapping process involves recognizing the audio data with another phoneme recognizer. The existing

recognizer can be one developed for a different language in the same environment, or one of the same

language but developed with a better corpus. Note that if the recognizer was developed for another

environment, the audio data should preferably be channel normalized (see Section 3.4.2) to the new

environment, before the recognizer which will be used to bootstrap the new transcriptions can be

used.

Such transcriptions, even when they are bootstrapped from audio data of very poor quality, can

be beneficial to an S-LID system. Though the recognizers appear to decrease the performance of the

S-LID system when trained using a very small training set, they augment the system positively very

quickly, surpassing the original system’s performance with a training set of only 1 000 utterances.

This technique has also proven invaluable in environments where transcriptions are not available.

5.2.3 ADAPTING AN EXISTING S-LID SYSTEM BEFORE USE IN A NEW
ENVIRONMENT

One of the important experiments during this research was to investigate the concept of porting an

existing S-LID system to a new environment. This is an important question regarding the re-usability

of existing tools in the creation of an S-LID system. The technique of bootstrapping new transcrip-

tions from existing ASR systems, as described in Section 5.2.2 has already proven useful. Therefore

the re-usability of the ASR systems and the SVM was investigated.

It is found that an S-LID system can typically not be used outside of its original environment

without adaptation. Creating phoneme strings with the adapted ASR systems before retraining the
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SVM proved an important step in the porting process. For this technique to be successful, ASR

system adaptation is required prior to phoneme string generation if channel conditions are mismatched

(otherwise bootstrapping may fail completely).

The best results are obtained by retraining the entire S-LID system from the transcriptions boot-

strapped from the original ASR systems. Therefore it is concluded that, if for whatever reason only

the classifier can be retrained, an S-LID system will be usable but it remains preferable to retrain both

tokenizers as well as the classifier.

5.2.4 DIARIZATION AND NORMALIZATION

Many of the systems presented to the NIST Language Recognition Evaluations (LRE) of 2007 utilized

a data-preprocessing step before even attempting to extract any linguistic information. In Chapter 3,

diarization, amplitude normalization and channel normalization were used as preprocessing steps in

order to refine the audio data and to adapt the one corpus in order to resemble the other more closely.

Diarization is the process whereby silences and other non-speech noises are removed from the

audio signal. Diarization is a very important technique that can be used to clean up a particularly

noisy corpus. Amplitude normalization scales each utterance’s sample values so that the absolute

maximum value is one. It is done on a per-file basis and is used to reduce the effect of any extreme

spikes in the raw wave-form of a scratchy corpus. Channel normalization reduces the difference

in acoustic characteristics between two corpora. This is of great importance in a resource-scarse

environment where data from different corpora have to be used in conjunction with one another.

5.2.5 QUANTITY OF DATA VS. QUALITY OF TRANSCRIPTIONS

The pattern recognition and classification algorithms implemented in the PPR-LM systems used for

the experiments throughout this research have proven to be quite resilient against corpora with subop-

timal (Chapter 4) or even completely missing (Chapter 2) transcriptions. Though the Hidden Markov

Models (HMMs) implemented in the phoneme recognizers have shown the detrimental effect of sub-

optimal transcriptions, these small decreases in performance are not carried through to a decrease in

performance of the system as a whole.

The quality of the audio data on the other hand, is shown in Chapter 3 to be more important, as

well as the accuracy of the labels used to train the system. Therefore it should be stressed that though

the quantity of data is clearly more important than the quality of the transcriptions, the quality of the

audio data and the accuracy of the labels remains critical to the improvement of the S-LID system.

5.2.6 HUMAN VERIFICATION OF MISS-CLASSIFIED UTTERANCES

As mentioned in Section 5.2.5, the quality of the audio data used to train the S-LID system plays an

important role in the eventual performance of the system. Therefore it may be of importance that at
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least a portion of the audio data that is to be used during the development of the system, for both

training and testing purposes, should be verified beforehand.

This is done for the African corpus in Section 3.6.3. Initially, a subset of suspicious audio seg-

ments were generated by having the system perform language identification on the entire corpus (both

training and testing data). Each verifier was then given a set of randomly selected audio segments that

were chosen at random from this suspicious subset.

The verifiers identified the following four subsets: Usable quality, unusable quality, heavily ac-

cented and incorrectly labeled. When both the incorrectly labeled and unusable quality subsets were

removed from the corpus, the performance of the system increased drastically. This suggests that

verification of the audio data, especially the data used during training, is an important step before the

development of an S-LID system can continue.

5.2.7 FILTERING LOW QUALITY AUDIO

A technique is developed to automatically filter out audio segments of low quality, based on the fre-

quency of phonemes within the output provided by the phoneme recognizers for each utterance. Any

segment that fails to achieve a phonemes-per-second count of higher than a predetermined threshold

is automatically removed from the training set.

This had an immediate and positive effect, even with a minimum phonemes-per-second count of

0.5 seconds. In the specific experiment, the ASR systems’ performance continued to increase for

higher phonemes-per-second values and the S-LID system as a whole reached a peak performance at

around 1.5 phonemes-per-second. This number may possibly be unique to the specific environment

in which the tests were conducted, but the process itself is data-neutral.

The systematic evaluation of the phoneme strings produced by the recognizers is definitely a

valuable technique, especially in an environment where the quality of the audio data is of a very poor

or unknown quality. Utterances with weak phoneme recognition can then be discarded to improve the

system’s performance.

5.3 EXPERIMENTAL SETUP

This section describes the design of the South African S-LID system that is presented in this chapter.

The setup used for the South African S-LID system developed in this chapter is very similar to that

used in the rest of the thesis. The acoustic models of the ASR systems at the front-end are imple-

mented a bit differently, as described in Section 5.3.2 and a more complete overview of the corpora is

provided in Section 5.3.1.

5.3.1 CORPUS STATISTICS

The South African S-LID system is trained and tested with the Meraka Lwazi corpus, which was

introduced in Section 4.2.1. For the development of the South African S-LID system, all eleven
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languages in the corpus are utilized. Table 5.1 provides some statistics on the available data. The

number of speakers per language is given, as well as the combined number of utterances and the

length of the audio data in hours. The differences between the train and test set is also provided.

Language Set Speakers Utterances Hours
Afrikaans Train 170 4382 3.32

Test 30 787 0.60
SA English Train 175 4287 3.25

Test 30 728 0.55
isiNdebele Train 170 4878 3.69

Test 30 846 0.64
isiZulu Train 171 4852 3.23

Test 29 685 0.52
isiXhosa Train 180 4458 3.38

Test 30 669 0.51
Sepedi Train 169 3674 2.78

Test 30 664 0.50
Sesotho Train 170 4642 3.52

Test 30 815 0.62
Setswana Train 176 4257 3.10

Test 30 686 0.54
siSwati Train 178 4778 3.62

Test 30 811 0.62
Tshivenda Train 171 4414 3.34

Test 30 770 0.58
Xitsonga Train 168 4230 3.21

Test 30 755 0.57

Table 5.1: Statistics on the training and testing sets for each of the South African official languages,
as used for the South African Spoken Language Identification system.

5.3.2 SYSTEM DESIGN

The South African S-LID system implements the popular Parallel Phoneme Recognition followed

by Language Modeling (PPR-LM) architecture, with the phoneme recognizers of Automatic Speech

Recognition (ASR) systems being used as tokenizers.

The phoneme recognizers utilize context-dependent Hidden Markov Models (HMMs). These

HMMs consist of three emitting states with seven mixtures per Gaussian Mixture Model (GMM)

within each state. The HMMs are trained using the HTK program [33] on Mel Frequencies Cepstral

Coefficients (MFCCs) which encode thirty nine features (13 MFCC, 13 delta costs and 13 acceleration

costs). Cepstral Mean Normalization (CMN) as well as Cepstral Variance Normalization (CVN) are

used as a feature-domain channel normalization technique. Semi-tied transforms are applied to the

HMMs and a flat phone-based language model is employed for phone recognition [27].
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A Support Vector Machine (SVM) at the back-end classifies the languages, based on biphone

frequencies which are extracted from the output of the phoneme recognizers in the form of a vector.

For a more complete description of the SVM, please refer to Section 2.2.2.

5.4 THE INITIAL SOUTH AFRICAN S-LID SYSTEM

In this section, the first attempt to develop a successful South African S-LID system is described. The

system is described in Section 5.4.1 and the results are provided in Section 5.4.2

5.4.1 SYSTEM DESCRIPTION

For the development of the South African S-LID system, three system designs are compared with

one another. Each design implements the PPR-LM architecture, but utilizes an increasing number of

phoneme recognizers, starting with only one language, then four and finally all eleven. The languages

chosen for the different designs are:

• SA English;

• Afrikaans, SA English, Setswana and isiZulu;

• All eleven languages.

Although Chapter 2 already confirms that an S-LID system’s performance will increase as more

tokenizers are added, the addition of each new tokenizer also increases the computational cost to

create the system. It is therefore necessary to determine a feasible number of phoneme recognizers

for the system design.

5.4.2 RESULTS

As expected, the overall performance of the system increases with the addition of more phoneme rec-

ognizers. The system with only one phoneme recognizer struggles as it achieves an overall accuracy

of just below 35%. Utilizing four recognizers, the system’s performance increases to just above 50%

and with all eleven tokenizers to just below 60%. Therefore, though requiring a significant amount

of computational effort to create, the system with all eleven recognizers is the preferred configuration

for the South African S-LID system.

It is also not surprising that the best performing South African S-LID system performs poorer than

the baseline system of Chapter 4 (please refer to Section 4.2.3) as the addition of new target languages

is expected to have a negative impact on the system’s overall performance. Table 5.6 at the end of

the chapter displays the performance of all three configurations of the South African S-LID system

in more detail. The accuracy and correctness of the phoneme recognizers as well as the precision and

recall for each language are given.
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Figure 5.1: Overall SVM performance of all three configurations for the South African S-LID sys-
tems.

Figure 5.1 represents the overall performance of the SVM at the back-end in percentage accuracy

for all three configurations for the South African S-LID systems visually. Table 5.2 displays the

confusion matrix for the best performing South African S-LID system. The columns represent the

correct language of the utterances whereas the rows represent the language as predicted by the system.

The number of correctly classified utterances on the main diagonal of the matrix are boldfaced for

clarity.

afr eng nbl nso sot tsn ssw ven xho tso zul
afr 646 92 38 50 44 42 29 31 51 58 31
eng 70 552 29 41 47 35 35 28 43 31 54
nbl 5 3 521 13 19 13 53 34 68 36 73
nso 4 3 8 295 58 39 7 18 5 22 12
sot 12 18 19 87 427 77 24 18 21 34 16
tsn 6 5 16 75 82 389 8 21 11 19 17
ssw 7 6 55 20 38 10 513 21 40 38 68
ven 18 4 24 33 23 25 26 520 16 63 11
xho 2 8 52 8 15 9 42 13 312 17 52
tso 6 11 26 16 21 16 18 35 22 399 19
zul 11 26 58 26 41 31 56 31 80 38 332

Table 5.2: The confusion matrix for the initial South African S-LID system.

As expected, the two Germanic languages are mostly classified correctly, as they are not part of

any of the family of Southern Bantu languages that make up the rest of the target languages. Instead
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these two appear to affect each other more severely, though the large number of Southern Bantu

utterances that are classified as either Afrikaans or English is quite surprising. This effect is analyzed

in the next section.

5.5 IMPROVING THE SOUTH AFRICAN S-LID SYSTEM

In this section, an attempt is made to improve the accuracy of the initial South African S-LID system

of Section 5.4. The corpus is examined more closely in Section 5.5.1 after which an additional

experiment is developed in Section 5.5.2. The results of the improved South African S-LID system

are provided in Section 5.5.3.

5.5.1 CORPUS EXAMINATION

In order to determine the cause of the unusually high difference between the precision and recall

percentages of the two Germanic languages, a more detailed investigation is made concerning the

audio data of the Meraka Lwazi corpus. As the images in Appendix 1 reveal, it is found that most of

the audio segments for both Germanic languages are shorter than 6 seconds. Therefore it is theorized

that the SVM is biased towards the Germanic languages, especially Afrikaans, when it comes the

such short segments.

The accuracy of the S-LID system is also analyzed according to utterance length (grouped to-

gether into time frames that increase with intervals of 3 seconds each) and language identity. Figures

5.2 and 5.3 both show these results, with the former displaying the accuracies calculated on language-

specific performance and the latter displaying the average accuracies across all languages. As can be

seen in Figure 5.2, the few values that relate to Afrikaans achieve accuracies of above 80%. From

Figure 5.2 it can be seen that the accuracies of each time frame (increasing with an interval of three

seconds each) are on average above that of the shorter utterances, except for the longest utterances

which appear to be struggling.

5.5.2 DATA FILTERING

In order to improve the South African S-LID system, the data used to train the SVM on is balanced

more equally across the different lengths of utterances for all eleven languages.

This is accomplished by removing all audio files that are shorter than 2 seconds and longer than

10 seconds from both the classifiers training and test sets. These boundaries are chosen to ensure

that a single language does not dominate the available amount of training samples within a specific

utterance length. (These files are removed from the test set as well, as we are not interested in S-LID

performance on ultra-short segments.) After examining the average phoneme recognition rates, it is

also decided to implement the technique of filtering all utterances with a phoneme recognition of less

than four phonemes-per-second, as is done in Section 3.6.2.
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Figure 5.2: The language specific performance of the initial South African S-LID system, considered
on different lengths of testing utterances.

Figure 5.3: The average performance of the initial South African S-LID system, considered on dif-
ferent lengths of testing utterances and calculated across all languages.
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The remaining audio files are restricted so that each language has 2 112 utterances in the training

set, and 361 utterances in the test set. This is merely done to ensure that one language does not have

more training data than another, as these values represents the smallest number of utterances any lan-

guage has for the two sets. These new training and test sets are then recognized by all eleven phoneme

recognizers before the resulting phoneme strings are used to retrain and test the SVM classifier at the

back-end.

5.5.3 RESULTS

The techniques described in Section 5.5.2 result in a clear improvement, as can be seen in Table

5.7 at the end of the chapter. The accuracy of the system improves from an overall accuracy of

59.71% to 66.73%. It should also be noted that the precision of the Germanic languages has improved

significantly, suggesting that the balancing of the training set has indeed created a better SVM.

Table 5.3 displays the confusion matrix for the improved South African S-LID system. The

columns represent the correct language of the utterances whereas the rows represent the language as

predicted by the system. The number of correctly classified utterances on the main diagonal of the

matrix is boldfaced for clarity.

afr eng nbl nso sot tsn ssw ven xho tso zul
afr 318 34 3 11 14 13 10 6 14 8 8
eng 16 302 1 9 5 0 2 4 11 11 12
nbl 0 0 258 10 4 6 24 13 26 14 31
nso 4 2 5 226 46 32 7 15 6 20 5
sot 5 6 2 28 197 28 9 9 17 19 6
tsn 3 2 4 38 42 244 8 7 3 9 6
ssw 1 1 23 9 11 6 247 10 26 14 43
ven 3 3 10 10 9 8 4 254 8 29 16
xho 2 5 28 7 7 3 18 8 207 9 38
tso 3 2 7 7 16 12 10 21 14 212 11
zul 6 4 20 6 10 9 22 14 29 16 185

Table 5.3: The confusion matrix for the improved South African S-LID system.

Figure 5.4 displays this improvement visually. The average accuracy percentages calculated

across all target languages and considered on the different lengths of testing utterances are provided.

5.6 IDENTIFYING LANGUAGE FAMILIES

When it is considered that the South African S-LID system has to distinguish between eleven, closely

related languages with test samples of between 2 and 10 seconds long, the system performs reasonably

well. This can be illustrated by combining the results according to language families, instead of

representing the languages individually. The languages can be combined as follows:
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Figure 5.4: The average performance of the initial South African S-LID system compared to the im-
proved SVM. Accuracy is considered on different lengths of testing utterances and calculated across
all languages.

Afrikaans Though part of the Germanic languages, Afrikaans can be classified further as “Low

Franconian”.

English Though part of the Germanic languages, English can be classified further as “AngloFrisian”.

Sotho-Tswana The languages classified into this group are Sepedi, Setswana and Sesotho.

Nguni The languages classified into this group are siSwati, isiNdebele, isiXhoza and isiZulu.

Tswa-Ronga Xitsonga is the only language within this family group.

Venda Tshivenda is the only language within this family group.

When the ambiguity of closely related target languages is removed, the system’s performance in-

creases significantly to an overall accuracy of 80.38%. Note that the results are still acquired from

the improved South African S-LID system of Section 5.5.2, and have not been generated by a newly

trained system. Table 5.4 displays the precision and recall for each language family.
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Afrikaans English Sotho-Tswana Nguni Tswa-Ronga Venda
Precision 72.43% 80.96% 83.11% 85.66% 67.30% 71.75%
Recall 88.08% 83.65% 81.34% 84.83% 58.72% 70.36%

Overall system accuracy : 80.38%

Table 5.4: The performance of the SVM classifier in the back-end of the South African system, when
only language families are considered.

Table 5.5 displays the confusion matrix for the best performing South African S-LID system. The

columns represent the correct language of the utterances whereas the rows represent the language as

predicted by the system. The number of correctly classified utterances on the main diagonal of the

matrix are boldfaced for clarity.

Afrikaans English Sotho-Tswana Nguni Tswa-Ronga Venda
Afrikaans 318 34 38 35 8 6
English 16 302 14 26 11 4
Sotho-Tswana 12 10 881 78 48 31
Nguni 9 10 88 1225 53 45
Tswa-Ronga 3 2 35 42 212 21
Venda 3 3 27 38 29 254

Table 5.5: The confusion matrix for the South African S-LID system with eleven phoneme recogniz-
ers when only language families are considered.

Figure 5.5 displays the average accuracies the improved South African S-LID system achieves on

the reduced test set (same set used to achieve the results as given in in Table 5.5).
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Figure 5.5: The average performance of the improved South African S-LID system, considered on
different lengths of testing utterances and calculated across the various language families.

5.7 CONCLUSION

This chapter reviewed a set of newly developed techniques for S-LID system development with lim-

ited resources and demonstrated that it is possible to successfully develop a South African S-LID

system, capable to distinguish between all of the country’s eleven languages on relatively short test

utterances. As expected, the languages within the different language families prove to influence each

other negatively.

However, a high degree of accuracy is achieved when only language families are considered,

resulting in around 81% classification accuracy for test samples between 4 and 6 seconds long when

compared to 67% for the same utterance lengths when the proper languages are considered. As

expected, the longer lengths of utterances achieves better results, with classification accuracies for

the 8 to 10 second long test samples of 71% and 88% for proper languages and language families

respectively.
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CHAPTER SIX

CONCLUSION

6.1 INTRODUCTION

The objective of this research was to create a set of techniques for the development of a Spoken

Language Identification (S-LID) system when limited linguistic resources are available, as is the case

with many South African languages. In order to achieve this, the effect of limited, poor quality or

incomplete data was investigated. Finally, the information gained from this thesis was put to use and

an S-LID system was developed which is able to distinguish between all eleven of South Africa’s

official languages.

6.2 SUMMARY OF CONTRIBUTION

Three key questions related to the resources required for the development of an S-LID system were

identified. These three questions are of specific importance to phoneme recognizers in the Parallel

Phoneme Recognition followed by Language Modeling (PPR-LM) architecture, and were examined

during the course of this research. The findings are listed below.

6.2.1 INCOMPLETE RESOURCES

Techniques to create phoneme recognizers with incomplete resources were proposed and the possi-

bility to implement such techniques investigated. A new language was added to an existing S-LID

system, at first with no native recognizer included in the front-end. The result from this system was

then compared to results from systems with phoneme recognizers created with incomplete resources.

It was found that adding more tokenizers to an existing S-LID system increases the performance in

accuracy of the S-LID system. The technique of bootstrapping new transcriptions was also described
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and shown to be effective when transcriptions cannot be acquired. (Some of these results were pub-

lished in [38].)

6.2.2 MISMATCHED RESOURCES

The use of corpora with mismatched audio to create an S-LID system was also investigated. Attention

was given to the porting of an existing system from a resource-rich environment to a poorly resourced

environment. It was found that an S-LID system may be unable to function properly outside its

original environment without the adaptation of at least the classifier to the conditions of the new

environment. Techniques such as diarization (which removes any non-speech noise, digital signals

and silences from the audio data) and channel normalization (which minimizes the differences of the

acoustic characteristics between different corpora) can be applied to the audio data as a preprocessing

step. The best result was still achieved by retraining both the tokenizers as well as the classifier. It

was also found that verifying the quality of the audio data from the new environment is important

and that filtering out utterances that record a poor frequency of phonemes can be beneficial to the

performance of the system. (Some of these results were published in [39].)

6.2.3 SUB-OPTIMAL RESOURCES

The effect of poor quality transcriptions on an S-LID system was investigated as well. Different

corpora containing increasingly accurate transcriptions were defined and added to an existing system.

It was found that, though the ASR systems appear to be sensitive to the quality of the corpora, the

classifier was robust enough to function equally well with any of the corpora evaluated. It should

be kept in mind that large changes in the audio data between corpora will still influence the S-LID

system as a whole, as is described in Section 6.2.2.

6.2.4 DEVELOPMENT OF A SOUTH AFRICAN S-LID SYSTEM

The knowledge gained from the above-mentioned research was reviewed and utilized in order to

develop an S-LID system that distinguishes between South African languages. The main techniques

identified and investigated during the course of this research were:

• Orthographic tokenizers

• Bootstrapped transcriptions

• Adapting an existing S-LID system before use in a new environment

• Diarization and channel normalization

• Utilizing poor-quality transcriptions

• Human verification of miss-classified utterances
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• Filtering low quality audio

These are all described in more detail in Section 5.2.

The South African S-LID system was implemented with the PPR-LM design and configured to

use phoneme recognizers for all eleven official languages. Some loss in overall accuracy was expected

as several, closely related languages were added to the system. However, a high degree of accuracy is

achieved when only language families are considered, resulting in above 80% classification accuracy

for test samples between 2 and 10 seconds long.

6.3 FUTURE WORK

This thesis successfully created an S-LID system, capable of distinguishing between all eleven of

South Africa’s official languages. This system, as described in Chapter 5, performs well, achieving

an overall accuracy of 80.38% when classifying between language families on short segments and

achieving 66.73% when all eleven languages are recognized individually. On audio segments of

between 2 and 10 seconds long, it is not yet effective enough to be used in a real world environment,

but on longer segments, the system becomes practically usable. Future work includes evaluating

performance on longer segments (which would include additional data collection) and investigating

other methods in order to increase on the effectiveness of the system.

Bootstrapping of new transcriptions, as well as filtering of low quality audio are techniques that

could have been implemented as an iterative process to refine results. However, for this thesis only

one iteration was implemented for each experiment. It may be interesting to see what the effect of

multiple iterations on the results will be and how many iterations will be required to result in a clear

improvement.

Though only the PPR-LM architecture have been used throughout this thesis, Section 1.1.3 states

that combining different S-LID techniques improves overall results. Therefore it may also be worth-

while expand on the South African S-LID system developed in Chapter 5 to include other S-LID

techniques that utilizes information sources of low linguistic knowledge. Of particular interest would

be to incorporate the acoustic scores a particular utterance achieves with each phoneme recognizer

into the language classification process, whether it is as part of the vector space, or in conjunction with

it. It would also be interesting to determine whether all eleven tokenizers are indeed required for the

optimal system, and whether family-specific tokenizers could possibly result in similar performance.

6.4 CONCLUSION

This thesis has investigated the effects of limited resources on the development of an S-LID sys-

tem and introduced several techniques to decrease the negative effects of suboptimal data. These

techniques were proven to be feasible and were successfully implemented to create a South African

S-LID system. It is believed that some of the lessons learned from this thesis, as well as the tech-
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niques developed during this research, can also be used for Automatic Speech Recognition systems

in environments with limited resources.
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APPENDIX A

MERAKA LWAZI CORPUS: DISTRIBUTION OF

UTTERANCE LENGTHS.

Here follows a set of graphs which illustrates the distribution of utterances within the Meraka Lwazi

corpus.

Figure A.1: Distribution of utterances of the specified lengths for Afrikaans. Both the training and
the test sets are displayed.
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APPENDIX A MERAKA LWAZI CORPUS: DISTRIBUTION OF UTTERANCE LENGTHS.

Figure A.2: Distribution of utterances of the specified lengths for English. Both the training and the
test sets are displayed.

Figure A.3: Distribution of utterances of the specified lengths for Sepedi. Both the training and the
test sets are displayed.
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APPENDIX A MERAKA LWAZI CORPUS: DISTRIBUTION OF UTTERANCE LENGTHS.

Figure A.4: Distribution of utterances of the specified lengths for Sesotho. Both the training and the
test sets are displayed.

Figure A.5: Distribution of utterances of the specified lengths for Setswana. Both the training and the
test sets are displayed.
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APPENDIX A MERAKA LWAZI CORPUS: DISTRIBUTION OF UTTERANCE LENGTHS.

Figure A.6: Distribution of utterances of the specified lengths for Tshivenda. Both the training and
the test sets are displayed.

Figure A.7: Distribution of utterances of the specified lengths for Xitsonga. Both the training and the
test sets are displayed.
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APPENDIX A MERAKA LWAZI CORPUS: DISTRIBUTION OF UTTERANCE LENGTHS.

Figure A.8: Distribution of utterances of the specified lengths for siStwati. Both the training and the
test sets are displayed.

Figure A.9: Distribution of utterances of the specified lengths for isiNdebele. Both the training and
the test sets are displayed.
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APPENDIX A MERAKA LWAZI CORPUS: DISTRIBUTION OF UTTERANCE LENGTHS.

Figure A.10: Distribution of utterances of the specified lengths for isiXhosa. Both the training and
the test sets are displayed.

Figure A.11: Distribution of utterances of the specified lengths for isiZulu. Both the training and the
test sets are displayed.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 69

 
 
 



APPENDIX A MERAKA LWAZI CORPUS: DISTRIBUTION OF UTTERANCE LENGTHS.

Figure A.12: Distribution of utterances of the specified lengths for all eleven languages combined.
Both the training and the test sets are displayed.
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APPENDIX B

CONTACT INFORMATION

Postal Address : 514 Banket Drive, Helderkruin, Roodepoort, 1724

E-mail : mpeche@csir.co.za

Tel Number : 012 841 4633

Fax Number : 012 841 4829

Cell Number : 072 172 4815
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[38] Marius Peché, Marelie Davel, and Etienne Barnard, “Phonotactic spoken language identication

with limited training data,” Annual Conference of the International Speech Communication

Association (Interspeech), pp. 1537 – 1540, 2007.
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