
 

 

 

A SECURE CLIENT / SERVER INTERFACE PROTOCOL FOR THE 

ELECTRICITY PREPAYMENT VENDING INDUSTRY 

 

 

by 

Kennedy Pregarsen Subramoney 

 

Submitted in partial fulfilment of the requirements for the degree 

Master of Science (Electronics) 

in the 

Faculty of Engineering, Department of Electrical, Electronic and Computer Engineering 

 

UNIVERSITY OF PRETORIA 

 

August 2009 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

Summary 

Keywords: Electricity, Prepayment, Vending, Standard Transfer Specification (STS), 

Protocol, Specification, Web Services, Unified Model Language (UML). 

Electricity prepayment systems have been successfully implemented by South Africa’s 

national electricity utility (Eskom) and local municipalities for more than 17 years. The 

prepayment vending sub-system is a critical component of prepayment systems. It provides 

convenient locations for customers to purchase electricity. It predominantly operates in an 

“offline” mode, however, electricity utilities are now opting for systems that operate in an 

“online” mode.  

“Online” mode of operation or online vending is when a prepayment token is requested 

from a centralised server that is remote from the client at the actual point of sale (POS). 

The token is only generated by the server and transferred to the POS client, once the 

transaction, the POS client and the payment mechanism has been authenticated and 

authorised. The connection between the POS client and the server is a standard computer 

network channel (like Internet, direct dial-up link, X.25, GPRS, etc) 

The lack of online vending system standardisation was a concern and significant risk for 

utilities, as they faced the problem of being locked into proprietary online vending systems. 

Thus the South African prepayment industry, lead by Eskom, initiated a project to develop 

an industry specification for online vending systems.  

The first critical project task was a current state analysis of the South African prepayment 

industry, technology and specifications. The prepayment industry is built around the 

Standard Transfer Specification (STS). STS has become the de-facto industry standard to 

securely transfer electricity credit from a Point of Sale (POS) to the prepaid meter. STS is 

supported by several “offline” vending system specifications. 

The current state analysis was followed by the requirements analysis phase. The 

requirements analysis confirmed the need for a standard interface protocol specification 

rather than a full systems specification. The interface specification focuses on the protocol 

between a vending client and vending server and does not specify the client and server 

 
 
 



 

application layer functionality and performance requirements. This approach encourages 

innovation and competitiveness amongst client and server suppliers while ensuring 

interoperability between these systems.  

The online vending protocol design was implemented using the web services framework 

and therefore appropriately named, XMLVend. The protocol development phase was an 

iterative process with two major releases, XMLVend 1.22 and XMLVend 2.1. XMLVend 

2.1 is the current version of the protocol. XMLVend 2.1 addressed the shortcomings 

identified in XMLVend 1.22, updated the existing use cases and added several new use 

cases. It was also modelled as a unified modelling language (UML) interface or contract 

for prepayment vending services. Therefore, clients using the XMLVend interface are able 

to request services from any service provider (server) that implements the XMLVend 

interface. The UML modelled interface and use case message pairs were mapped to Web 

Service Definition Language (WSDL) and schema (XSD) definitions respectively. 

XMLVend 2.1 is a secure and open web service based protocol that facilitates prepayment 

vending functionality between a single logical vending server and ‘n’ number of clients. It 

has become a key enabler for utilities to implement standardised, secure, interoperable and 

flexible online vending systems. 

 
 
 



 

Opsomming 

Sleutelwoorde: Elektrisiteit, Voorafbetaalde, Verkoopstele, Standaard Oordrag 

Spesifikasie (STS), Protokol, Spesifikasie, Webdienste, Verenigde Modelleringtaal (UML) 

Voorafbetaalde elektrisiteitstelsels is suksesvol deur Suid-Afrika se nasionale 

elektrisiteitsverskaffer (Eskom) en plaaslike munisipaliteite geïmplementeer vir meer as 17 

jaar. Die Voorafbetaal verkoop-subsisteem is 'n esensiële komponent van voorafbetaal 

elektrisiteitstelsels. Dit laat gebruikers toe om elektrisiteit te koop by ‘n verskeidenheid 

van verkooppunte. In die verlede het hierdie stelsels meestal bestaan as alleenstaande 

verkooppunte maar elektrisiteitsverskaffers is besig om hulle stelsels te verander om in n 

aanlyn modus te werk.  

Aanlyn verkoop is wanneer 'n voorafbetaalkoepon versoek word vanaf ‘n sentrale bediener 

wat vêr verwydered is van die kliënt se verkooppunt. Die koepon word slegs gegenereer 

deur die bediener en gestuur aan die kliënt nadat die transaksie, die kliënt self, en die 

betaling meganisme, gemagtig is. Die koppeling tussen verkooppuntkliënt en die bediener 

is ‘n standaard kommunikasie kanaal, (byvoorbeeld; Internettoegang, direkte inbel skakel, 

X.25 en “GPRS”)  

Die gebrek aan 'n standaard vir aanlynverkoopstelsels was 'n bekommernis en beduidende 

risiko vir elektrisiteitsverskaffers, aangesien hulle ‘n probleem ondervind dat hulle 

ingeperk sal word tot ‘n eksklusiewe ontwerp vir so ‘n aanlynverkoopstelsel. Dus het die 

Suid Afrikaanse voorafbetaal industrie, gelei deur Eskom, 'n projek begin om 'n 

industriespesifikasie te ontwikkel vir aanlyn verkoopstelsels.  

Die eerste kritiese projek taak was 'n analise van die huidige stand van die Suid-Afrikaanse 

vooruitbetaling industrie, die tegnologie en spesifikasies. Die voorafbetaal sektor is gebou 

rondom die Standaard Oordrag Spesifikasie, bekend as “Standard Transfer Specification” 

 
 
 



 

(STS). STS word algemeen aanvaar as die industrie standaard vir die oordrag van 

elektrisiteit krediet vanaf 'n Verkooppunt na die voorafbetaalmeter. STS word ondersteun 

deur verskeie alleenstaande verkoopstelsel spesifikasies.  

Die analise vir die huidige status was opgevolg deur ‘n studie van die vereistes vir so ‘n 

stelsel. Die vereistes analise het die behoefte bevestig vir 'n standaard koppelvlak protokol 

spesifikasie, eerder as 'n nuwe spesifikasie vir ‘n volledige voorafbetaalstelsel. Dit bepaal 

alleenlik die protokol koppelvlak tussen 'n voorafbetaalkliënt en die bediener. Dit 

spesifiseer nie die program vlak funksionaliteit of prestasie vereistes, vir die kliënt en 

bediener nie. Hierdie benadering bevorder innovasie en mededingendheid onder kliënt- en 

bediener-verskaffers, terwyl dit nog steeds verseker dat die stelsels wedersyds aanpasbaar 

bly.  

Die aanlyn verkoopprotokol ontwerp is geïmplementeer met die webdienste raamwerk en 

staan bekend as XMLVend. Die protokol vir die ontwikkeling fase was 'n iteratiewe proses 

met die twee groot weergawes, XMLVend 1.22 en XMLVend 2.1. Die huidige weergawe 

van die protokol - XMLVend 2.1, adresseer die tekortkominge wat geïdentifiseer is met 

XMLVend 1.22, terwyl dit ook die bestaande gebruiksgevalle opdatteer en verskeie nuwe 

gebruiksgevalle byvoeg. Dit was ook geskoei as 'n verenigde modelleringtaal (UML) 

koppelvlak, of 'n kontrak, vir die voorafbetaal verkoopsdienste. Kliënte is daarom in staat 

om, met behulp van die XMLVend koppelvlak, dienste te versoek van enige 

diensverskaffer wat die XMLVend koppelvlak ondersteun. Die UML gemodelleerde 

koppelvlak- en gebruiksgevalle- boodskappare was gemodeleer in die Web Dienste 

Definisie Taal (WSDL) en skema (XSD) definisies onderskeidelik.  

XMLVend 2.1 is 'n sekure en oop webdienste-gebaseerde protokol wat dit moontlik maak 

om voorafbetaalfunksies te fasilliteer tussen 'n enkele logiese verkoopbediener en 'x' aantal 

kliënte. Dit het 'n sleutelrol aangeneem vir verskaffers om ‘n gestandaardiseerde, veilige, 

wedersyds-aanpasbare en buigsame aanlyn verkoopstelsels moontlik te maak.  

 
 
 



 

Acknowledgments 

I would like to take this opportunity to thank the following people and organisations (in no 

specific order) for their support and participation in the successful completion of this 

project and my dissertation. 

• My sincere thanks and wishes are extended to members of the XMLVend working 

group for their contributions and commitment to the XMLVend specification. 

• I would like to thank my family, wife (Nelliandrie), twins (Dasendhran and Divashen) 

and baby Kanthum for your understanding, encouragement and support through the 

project and the dissertation compilation. You guys rock! 

• I would like to thank my parents, Mr and Mrs Subramoney, whom have been my 

motivation and support, to always to “do and be good”. My sincere thanks are also 

extended to my mother in-law for all her support. Thanks and love you Mum, Dad and 

Umma. 

• I would like to thank Eskom, all my colleagues and the Eskom Online Vending project 

team for their support and contributions. A special word of thanks to Mr. Jimmy ‘O 

Kennedy for his assistance with the Afrikaans translations and his on-going mentorship. 

Thanks guys! 

• I would like to thank my supervisors at the University of Pretoria for their support, 

guidance and invaluable input. 

• Finally, I would like to thank the prepaid customers and vendors that I have met while 

developing and implementing this specification. Thanks for your support, humility and 

reminding me why I love my work so much. Aluta continua! 

 
 
 



 

List of Abbreviation 

ACB   Automatic Clearing Bureau 

 

AMEU   Association of Municipal Electrical Undertakens 

 

AT   Algorithm Type 

 

ATM   Automatic Teller Machine 

 

BP   Basic Profile 

 

CA   Certificate Authority 

 

CDU   Credit Dispensing Unit 

 

CORBA  Component Object Request Broker Architecture 

 

CPU   Central Processing Unit 

 

CTMS   Credit and Tariff Management System 

 

CVS   Common Vending System 

 

DCOM  Distributed Component Object Model 

 

DES   Data Encryption Standard 

 

Dk   Meter key 

 

DOS   Denial of Service 

 

EBSST Electricity Basic Support Service Tariff 

 

ECT Electronic Communications and Transactions 

 

EDI Electricity Distributor Industry 

 

EFT Electronic Funds Transfer 

 

EKE Encrypted Key Exchange 

 

ERP Enterprise Resource Planning 

 

ESLC Electricity Supply Liaison Committee 

 

FBE   Free Basic Electricity i.e. EBSST 

 

GPRS   General Packet Radio Service 

 
 
 



 

 

HTTP   Hyper-text Markup Protocol 

 

HTTPS  Hyper-text Markup Protocol Secured 

 

IEC   International Electrotechnical Commission 

 

IEP   Integrated Electrification Programme 

 

IETF   Internet Engineering Task Force 

 

IT   Information Technology 

 

IVR   Interactive Voice Response 

 

Kek   Key Exchange Key 

 

KLF   Key Load File 

 

KMC   Key Management Centre 

 

KRN   Key Revision Number 

 

kWh   kilo watt hour 

 

LDAP   Lightweight Directory Access Protocol 

 

MAC   Message Authentication Code 

 

MIG   Manufacturers Interest Group 

 

MIS   Management Information System 

 

MSF   Microsoft Solution Framework 

 

MSNO   Meter Serial Number 

 

NERSA  National Electricity Regulator of South Africa  

 

NRS   National Rationalised Specification 

 

OSI   Open Systems Interconnect 

 

OVC   Online Vending Client 

 

OVS   Online Vending Server 

 

PAS   Publically Available Standard 

 

PC   Personal Computer 

 

 
 
 



 

PKC   Public key Certificate 

 

PKI   Public Key Infrastructure 

 

POTS   Plain old telephone service 

 

POS   Point of Sale 

 

RFC   Request for Comments 

 

RMI   Remote Method Invocation 

 

RPC   Remote Procedure Call 

 

SA   South Africa 

 

SABS   South African Bureau of Standards 

 

SET   Secure Electronic Transactions 

 

SGC   Supply Group Code 

 

SM   Security Module 

 

SMS   Short Message Service 

 

SOA   Service Orientated Architecture 

 

SOAP   Simple Object Access Protocol 

 

SSL   Secure Socket Layer 

 

STS   Standard Transfer Specification 

 

STSA   Standard Transfer Specification Association 

 

STT   Standard Token Translator 

 

TC   Technical Committee 

 

TCP/IP  Transmission Control Protocol over Internet Protocol 

 

TI   Tariff Index 

 

TID   Token Identifier 

 

TLS   Transport Layer Security 

 

TT   Token Technology (Token Type) 

 

UDDI   Universal Description Discovery Interface 

 
 
 



 

 

UML   Unified Modelling Language 

 

URDAD  Use-case Requirements Driven Application Development 

 

Vk   Vending key 

 

VPN   Virtual Private Network. 

 

WWW   World Wide Web 

W3C   WWW Consortium 

 

WSDL   Web  Service Definition Language 

 

XMLVend Common name for the NRS Standard that defines secure 

communication between the Vending Server and Vending Clients 

 

XML eXtensible Markup Language 

 

XSD XML Schema Document 

 

XSL eXtensible Style Sheet Language 

 

 
 
 



 

TABLE OF CONTENTS 

CHAPTER 1 : INTRODUCTION......................................................................................... 2 

1.1 BACKGROUND................................................................................................... 2 

1.2 PROBLEM STATEMENT.................................................................................... 3 

1.3 OBJECTIVES........................................................................................................ 4 

1.4 SCOPE OF WORK ............................................................................................... 4 

1.5 METHODOLOGY ................................................................................................ 4 

1.6 OUTLINE.............................................................................................................. 5 

1.7 CONTRIBUTION ................................................................................................. 5 

CHAPTER 2 : CURRENT STATE ANALYSIS.................................................................. 7 

2.1 INTRODUCTION................................................................................................. 7 

2.2 BASIC DESCRIPTION OF ELECTRICITY PREPAYMENT............................ 7 

2.3 DRIVERS FOR PREPAYMENT IN SOUTH AFRICA ...................................... 9 

2.4 KEY PREPAYMENT STAKEHOLDERS......................................................... 11 

2.4.1 Electricity Supply Liaison Committee (ESLC)............................................... 11 

2.4.2 Standard Transfer Specification Association .................................................. 12 

2.5 PREPAYMENT TECHNOLOGY AND STANDARDISATION...................... 13 

2.5.1 Overview of Standard Transfer Specification (STS)....................................... 14 

2.5.1.1 Background.................................................................................................. 14 

2.5.1.2 How does STS work? .................................................................................. 15 

2.5.2 Overview of Offline Vending Systems ........................................................... 22 

2.5.2.1 Background.................................................................................................. 22 

2.5.2.2 Credit Dispensing Units (CDUs)................................................................. 23 

2.5.2.3 System Master Stations (SMSs) .................................................................. 25 

2.5.2.4 Vending Information Management ............................................................. 25 

2.5.2.5 Offline Vendor Management....................................................................... 27 

2.6 SUMMARY ........................................................................................................ 27 

CHAPTER 3 : REQUIREMENTS ANALYSIS – THE FUTURE STATE ....................... 29 

3.1 INTRODUCTION............................................................................................... 29 

3.2 THE PROJECT WORKING GROUP................................................................. 29 

3.3 UTILITY REQUIREMENTS ............................................................................. 31 

3.3.1 Drivers for online vending............................................................................... 33 

3.3.2 Online vending challenges............................................................................... 33 

3.3.3 Online vending models.................................................................................... 34 

3.3.4 Online vending system requirements .............................................................. 35 

3.3.4.1 Functional requirements .............................................................................. 36 

3.3.4.2 Technical requirements................................................................................ 37 

3.4 SUPPLIER REQUIREMENTS........................................................................... 39 

3.4.1 Online vending system requirements .............................................................. 39 

3.4.2 Online vending specification requirements ..................................................... 40 

3.5 ANALYSIS OF ONLINE VENDING SPECIFICATION REQUIREMENTS.. 41 

3.5.1 Offline vending................................................................................................ 41 

3.5.2 Online vending  - or is it? ................................................................................ 42 

3.5.3 Online vending ................................................................................................ 42 

3.5.4 Online vending specification scope................................................................. 44 

3.5.5 Supplier proposals ........................................................................................... 46 

3.6 SUMMARY ........................................................................................................ 47 

CHAPTER 4 : DEVELOPMENT OF XMLVEND VERSION 1....................................... 48 

 
 
 



 

4.1 INTRODUCTION............................................................................................... 48 

4.2 WORKING GROUP DESIGN REVIEW SESSIONS........................................ 48 

4.3 THE PROTOCOL DESIGN PROCESS ............................................................. 49 

4.3.1 Use case definitions ......................................................................................... 50 

4.3.2 Use case message exchange pattern ................................................................ 54 

4.3.3 Use case request and response message definitions ........................................ 55 

4.3.4 Fault condition support.................................................................................... 57 

4.3.5 Message delivery reliability ............................................................................ 58 

4.3.6 Protocol security .............................................................................................. 59 

4.3.6.1 XMLVend security requirements ................................................................ 59 

4.3.6.2 XMLVend security options ......................................................................... 62 

4.3.6.3 SSL / TLS overview .................................................................................... 63 

4.3.6.4 XMLVend SSL / TLS recommendations .................................................... 68 

4.4 XMLVEND AND WEB SERVICES.................................................................. 69 

4.4.1 Web services overview.................................................................................... 70 

4.4.1.1 eXtensible Markup Laguage (XML) ........................................................... 71 

4.4.1.2 XML Schema............................................................................................... 72 

4.4.1.3 Simple Object Access Protocol (SOAP) ..................................................... 73 

4.4.1.4 Web Services Description Language (WSDL)............................................ 75 

4.4.1.5 Hyper-text Transport Protocol (HTTP) ....................................................... 77 

4.4.1.6 Web service – Interoperability (WS-I) compliance..................................... 82 

4.4.1.7 Putting it all together ................................................................................... 84 

4.4.2 Defining XMLVend as a web service ............................................................. 86 

4.4.2.1 The XMLVend web service protocol stack................................................. 86 

4.4.2.2 XMLVend web services process flow......................................................... 87 

4.4.2.3 XMLVend fault messages ........................................................................... 88 

4.4.2.4 Defining the XMLVend Specification ........................................................ 89 

4.4.2.5 Message compression .................................................................................. 90 

4.4.2.6 XMLVend 1 release and piloting ................................................................ 93 

4.5 SUMMARY ........................................................................................................ 96 

CHAPTER 5 : DEVELOPMENT OF XMLVEND VERSION 2....................................... 98 

5.1 INTRODUCTION............................................................................................... 98 

5.2 XMLVEND 2 REQUIREMENTS ...................................................................... 98 

5.2.1 Use cases ......................................................................................................... 98 

5.2.1.1 New use cases.............................................................................................. 98 

5.2.1.2 Enhancement to existing use cases............................................................ 100 

5.2.2 Design requirements ...................................................................................... 100 

5.3 DESIGNING THE XMLVEND 2 PROTOCOL .............................................. 102 

5.3.1 Modelling the XMLVend protocol................................................................ 103 

5.3.1.1 Unified Modelling Language (UML) Interfaces ....................................... 103 

5.3.1.2 Modelling the XMLVend interface ........................................................... 104 

5.3.1.3 Modelling the generic input and output parameters .................................. 105 

5.3.1.4 Modelling the concrete XMLVend operations.......................................... 109 

5.3.1.5 Modelling the XMLVend use case message pairs .................................... 114 

5.3.1.6 Interpreting optional message parameters ................................................. 117 

5.3.1.7 Message delivery failure scenarios............................................................ 118 

5.3.1.8 Fault condition support.............................................................................. 120 

5.4 XMLVEND 2 AS A WEB SERVICE............................................................... 121 

5.4.1 Use case domain mapping to WSDL and Schema ........................................ 122 

5.4.2 Mapping the UML designs to Schema and WSDL....................................... 124 

5.4.2.1 The contract-first development approach .................................................. 124 

 
 
 



 

5.4.2.2 Mapping the Message Design to XMLVend Schema ............................... 126 

5.4.2.3 Mapping interface models to WSDLs ....................................................... 129 

5.4.3 Utility specific extensions ............................................................................. 132 

5.4.4 XMLVend 2 Stabilisation.............................................................................. 134 

5.5 SUMMARY ...................................................................................................... 134 

CHAPTER 6 : XMLVEND COMPLIANCE TESTING .................................................. 136 

6.1 INTRODUCTION............................................................................................. 136 

6.2 THE XMLVEND TEST SUITE........................................................................ 136 

6.3 XMLVEND TEST SUITE – WALK THROUGH............................................ 138 

6.4 CUSTOMISING AND ENHANCING THE TEST SUITE.............................. 142 

6.5 SUMMARY ...................................................................................................... 142 

CHAPTER 7 : CONCLUSIONS AND RECOMMENDATIONS ................................... 143 

7.1 CONCLUSIONS ............................................................................................... 143 

7.2 RECOMMENDATIONS .................................................................................. 145 

REFERENCES .................................................................................................................. 146 

ADDENDUM A. : THE ONLINE VENDING SPECIFICATION (NRS009-6-10)...... 150 

ADDENDUM B. : WORKING GROUP PARTICIPANT LIST................................... 151 

 

 
 
 



 

LIST OF FIGURES 

Figure 2.1 – Generic Electricity Prepayment System............................................................ 8 

Figure 2.2 – Sample prepayment electricity receipt .............................................................. 9 

Figure 2.3 – Typical Prepayment Customers ...................................................................... 11 

Figure 2.4 – STS Entity Relationships [16]......................................................................... 18 

Figure 2.5 – TSM210 – Security Module............................................................................ 20 

Figure 2.6 – TSM410 – High-Speed Security Module (HSM) ........................................... 21 

Figure 2.7 –Offline Electricity Sales System (NRS 009) Context Diagram ....................... 23 

Figure 2.8 – Specialised CDU ............................................................................................. 24 

Figure 2.9 –Typical PC based CDU Installation ................................................................. 24 

Figure 3.1 – Normal Vendor Model .................................................................................... 34 

Figure 3.2 – Client Server / Gateway Model....................................................................... 35 

Figure 3.3 – Offline Vending .............................................................................................. 41 

Figure 3.4 – Database Vending ........................................................................................... 42 

Figure 3.5 – Online Vending ............................................................................................... 43 

Figure 3.6 – Online vending context diagram ..................................................................... 44 

Figure 3.7 – Online Specification Context Diagram ........................................................... 45 

Figure 4.1 – XMLVend 1.0 Use Cases................................................................................ 52 

Figure 4.2 – Synchronous Request/Response Sequence Diagram ...................................... 54 

Figure 4.3 – Example spreadsheet format XMLVend 1 message definition ...................... 56 

Figure 4.4 – Online Vending Security Context ................................................................... 60 

Figure 4.5 – SSL / TLS over TCP /IP ................................................................................. 65 

Figure 4.6 – SSL Protocol Stack [57].................................................................................. 65 

Figure 4.7 – SSL Handshake Messages .............................................................................. 67 

Figure 4.8 – SSL record operation protocol ........................................................................ 68 

Figure 4.9 – XMLVend SSL certificate profile................................................................... 69 

Figure 4.10 – HTTP Traffic - XMLVend Request / Response ........................................... 78 

Figure 4.11 – HTTP request message format ...................................................................... 79 

Figure 4.12 – HTTP response message format ................................................................... 81 

Figure 4.13 – Web services stack ........................................................................................ 85 

Figure 4.14 – XMLVend Web services Protocol Stack ...................................................... 87 

Figure 4.15 – Synchronous Request/Response Sequence Diagram .................................... 87 

Figure 4.16 – Compressed versus Uncompressed XMLVend 1.22 Messages.................... 92 

Figure 4.17 – Vend Message Overhead 1.22 Protocols ...................................................... 92 

Figure 4.18 – Eskom Western region pilot site ................................................................... 94 

Figure 4.19 – Connectivity problems cause long queues .................................................... 96 

Figure 5.1 – Generic XMLVend UML Interface Diagram ............................................... 104 

Figure 5.2 – Class diagram template ................................................................................. 106 

Figure 5.3 – BaseReq Class Diagram ............................................................................. 107 

Figure 5.4 – BaseResp Class Diagram........................................................................... 107 

Figure 5.5 – XMLVend 2 Use Cases................................................................................. 109 

Figure 5.6 – XMLVend Revenue Interface ....................................................................... 112 

Figure 5.7 – XMLVend Meter Interface ........................................................................... 112 

Figure 5.8 – Purchase Credit Token Sequence  Diagram.................................................. 114 

Figure 5.9 – Purchase Credit Token Request Message Model.......................................... 115 

Figure 5.10 – Purchase Credit Token Response Message Model ..................................... 116 

Figure 5.11 – Issue Advice Request Message ................................................................... 119 

Figure 5.12 – Issue Advice Response Message................................................................. 119 

 
 
 



 

Figure 5.13 – XMLVend Fault Response Message........................................................... 121 

Figure 5.14 – Schema and WSDL for each Domain ......................................................... 122 

Figure 5.15 – Schema and WSDL Development Approach.............................................. 125 

Figure 5.16 – Eskom specialisation of BusinessRuleEx ................................................... 133 

Figure 6.1 – XMLVend Test Suite Components............................................................... 137 

Figure 6.2 – XMLVend reference Client - Default User Interface(UI)............................. 138 

Figure 6.3 – Purchase Credit Token Use Case Client UI .................................................. 139 

Figure 6.4 – Reference Client Response UI ...................................................................... 139 

Figure 6.5 – Message Interceptor ...................................................................................... 140 

Figure 6.6 – XMLVend Compliance Report ..................................................................... 141 

Figure 6.7 – XMLVend Compliance Report with failures................................................ 141 

Figure 6.8 – Eskom Customised XMLVend Client .......................................................... 142 

Figure 7.1 – Specification roadmap................................................................................... 143 

Figure 7.2 – 2006 African Utility Week – Eskom XMLVend stand................................. 144 

 

LIST OF TABLES 

 

Table 2-1 – STS System Entities [16] ................................................................................. 17 

Table 2-2 – STS Identifiers [16].......................................................................................... 17 

Table 3-1 – Visited Suppliers .............................................................................................. 39 

Table 4-1 – Use Case Actors and Responsibilities.............................................................. 51 

Table 4-2 – XMLVend 1 use case descriptions................................................................... 54 

Table 4-3 – Example XMLVend 1 Faults ........................................................................... 58 

Table 4-4 – Activities grouped by Web services stack layer .............................................. 85 

Table 4-5 – XMLVend Version 1 Updates ......................................................................... 94 

Table 5-1 – Purchase Credit Token Use Case Definition.................................................. 114 

 

CODE LISTINGS 

 

Listing 4.1 – XMLVend 1 data model notation................................................................... 56 

Listing 4.2 – XMLVend 1 data model - Login Request / Response messages ................... 57 

Listing 4.3 – XMLVend 1 data model - Fault response message........................................ 58 

Listing 4.4 – An XML representation of an FBE token issue ............................................. 72 

Listing 4.5 – FBE token issue - XSD .................................................................................. 73 

Listing 4.6 – FBE token issue - SOAP ................................................................................ 75 

Listing 4.7 - HTTP Request - XMLVend Request.............................................................. 80 

Listing 4.8 – HTTP Response - XMLVend Response ........................................................ 81 

Listing 4.9 – XMLVend fault message ............................................................................... 89 

Listing 5.1 – CreditVend Req complex type ..................................................................... 126 

Listing 5.2 – CreditVendReq instance ........................................................................ 126 

Listing 5.3 – AbstractCreditVendReq is a specialisation of BaseVendReq ...... 127 

Listing 5.4 – PurchaseValue complex type ................................................................ 128 

Listing 5.5 – PurchaseValueCurrency is a specialisation of PurchaseValue.. 128 

Listing 5.6 – Currency complex type ............................................................................ 129 

Listing 5.7 – CurrencySymbol simple type with restriction ....................................... 129 

Listing 5.8 – portType Mapping ................................................................................... 130 

Listing 5.9 – operation name mapping........................................................................ 130 

Listing 5.10 – mesage part mapping .......................................................................... 131 

Listing 5.11 – The type element specifies XSD location ............................................... 131 

Listing 5.12 – WSDL concrete elements........................................................................... 132 

Listing 5.13 – Utility specific exceptions.......................................................................... 133 

 
 
 



 

 

CHAPTER 1  : INTRODUCTION 

1.1 BACKGROUND 

South African electricity utilities, led by Eskom
1

, have successfully implemented 

electricity prepayment systems for the past 17 years. Prepayment has proven to be a 

sustainable option for the distribution of electricity to domestic customers. South Africa’s 

current install base of prepayment meters is approximately four million and growing by 

approximately 100 000 per annum. South Africa is therefore acknowledged as a world 

leader in the development and deployment electricity prepayment technology. 

Prepayment systems consist of three main components: 

• The vending system that dispenses the prepayment tokens; 

• The token transfer technology that securely transfers credit dispensed from the vending 

system to the prepaid meter; and 

• The prepaid meter that securely connects and disconnects the prepaid meter to the 

electricity network based on the token value entered. 

The prepayment vending system is a critical component of electricity prepayment 

infrastructure. It provides convenient point of sales (POSs) for customers to purchase 

electricity tokens. Most point of sale (POS) devices operated in an “offline” mode, referred 

to as offline vending. Offline POS devices generate the prepaid token using locally hosted 

security modules (SMs), without the need for communication with a higher-level 

management system [3]. SM’s are the secure cryptographic devices used to generate the 

credit transfer tokens. 

In 2001, South African electricity distribution utilities started acknowledging the benefits 

of online vending over offline vending. Online vending centralises the token generation 

and vending business logic on a central vending server. The online POS device 

communicates with the vending server over a network link to request a token. Some 

benefits of online vending are [6][7][8][9][10]: 

                                                 
1

 Eskom is South Africa’s state-owned national electricity utility that provides electricity 

generation, transmission and distribution services to South Africa and the southern African region. 

 
 
 



CHAPTER 1  INTRODUCTION 

Electrical, Electronic and Computer Engineering 3 

• It improves customer service through the introduction of new vending channels, for 

example, Internet Web sites, Interactive Voice Response (IVR) and Short Message 

System (SMS), chain store outlets and many other potential channels. 

• It provides access to real-time vending data that assists utilities with credit control, 

customer and system data management. 

• It improves data integrity and data management since data is centrally located. 

• It improves system security, especially since the security modules (SM) are hosted 

centrally in a secure server environment. Securing the SMs provides improved 

protection against system fraud and a major benefit of online vending. 

1.2 PROBLEM STATEMENT 

Online vending is a significant improvement in the provision and management of 

prepayment vending services. However, the lack of an industry specification exposed 

utilities to significant risk. Some of the risks were: 

• Being locked into a single vending system supplier for both the vending server and the 

POS devices. 

• Being locked into supplier controlled proprietary technology. 

• Vending system supplier controlling the utilities vending POS channels and more 

concerning the expansion of these channels. 

• Suppliers controlling the cryptographic security of the system, which could result in 

inconsistent and possibly insecure security across implementations. 

• Integration with utility backend systems could be restricted and costly. 

• Finally, the proliferation of proprietary online vending systems could have a 

detrimental impact on the already standardised prepayment industry. 

Under the auspices of the Electricity Supply Liaison Committee (ESLC), the online 

vending specification project was initiated. The project was mandated with the challenge 

of developing an industry specification for online vending [1]. The project was led by 

Eskom and local municipalities, supported by vending equipment suppliers and a group of 

technical specialists. 

 
 
 



CHAPTER 1  INTRODUCTION 

Electrical, Electronic and Computer Engineering 4 

1.3 OBJECTIVES 

The ultimate project objective was to develop an industry specification for online vending. 

1.4 SCOPE OF WORK 

The key project activities were: 

• Analyse the current state of prepayment metering and vending technology. 

• Elicit and consolidate stakeholder requirements for the online vending specification. 

• Design, develop, test and publish an industry acceptable specification. 

1.5 METHODOLOGY 

The specification development methodology was based on the Microsoft Solutions 

Framework (MSF) iterative approach to application development. The MSF approach was 

chosen for the following reasons: 

• The framework is not prescriptive but adaptable to plan, develop and deploy any 

information technology (IT) related project. 

• The framework provides guidance on both the technology development and people 

related challengers. It recognises the fact that experience has shown that a successful 

project outcome is related more to the stakeholders and processes rather than the 

technology itself. 

• It is based on industry best practice and incorporates Micosoft’s experiences and 

lessons learnt in the high-tech IT industry. 

• The author has had significant experience and success with the methodology on 

previous projects. 

The project adopted MSF recommendation of a version release strategy. Core functionality 

is built first and more features are added in subsequent releases. This strategy has been 

shown to improve the team’s relationship with the customer and ensures that the best ideas 

are reflected in the solution [4]. Using this strategy customers also become more receptive 

 
 
 



CHAPTER 1  INTRODUCTION 

Electrical, Electronic and Computer Engineering 5 

to deferring features until later releases once they trust the team’s ability to deliver. The 

first release is usually a pilot version, which allows it to be field tested. It is then enhanced 

and stabilised based on pilot feedback and then released as a production release. 

1.6 OUTLINE 

• CHAPTER 2 discusses the current state of prepayment in South Africa. It focuses on 

the credit transfer specification and offline vending systems. 

• CHAPTER 3 discusses the requirements of online vending systems and how these 

translated to the online vending specification requirements and scope. 

• CHAPTER 4 discusses the development of version 1 of the online vending protocol 

(XMLVend). It also analyses the design processes and the realisation of the protocol as 

a web service. 

• CHAPTER 5 discusses the development of version 2 of the online vending protocol. It 

analyses the new functionality, the object orientated design process and the realisation 

of the protocol as a web service, using the contract first methodology. 

• CHAPTER 6 discusses the development and use of the XMLVend test suite. 

• CHAPTER 7 is the final chapter which provides conclusions and recommendations. 

1.7 CONTRIBUTION 

The following are the author’s contributions to the design, development and publication of 

the Online Vending protocol and associated specification.  

• As project leader and lead technical architect, the author developed and fostered a 

favourable environment of trust and mutual respect amongst all project stakeholders, 

with the common goal of producing an industry acceptable specification. 

• Undertook a detailed survey of the current prepayment landscape including the 

stakeholders, technology and current challenges. This key activity was essential for the 

author to develop domain knowledge and an understanding of the problem domain. 

This survey represents a consolidation of more than 15 years of technology 

development and field experience in the prepayment domain. 

 
 
 



CHAPTER 1  INTRODUCTION 

Electrical, Electronic and Computer Engineering 6 

• Undertook a detailed study into the future state requirements of the all the stakeholders. 

Analysed the requirements and motivated that specification be limited to an interface 

protocol between online client and server rather than a complete system functional 

specification. 

• Reviewed several approaches and technologies to implement the online vending 

interface protocol. Using current industry trends and support from industry experts 

motivated that the protocol be implemented using the web services framework. 

• Reviewed several approaches and technologies to secure the online vending interface 

protocol. Using current industry trends and support from industry experts motivated 

that the protocol be secured using the industry standard secure socket layer (SSL) 

protocol. 

• Analysed and defined all the protocols use cases and use case scenarios with support 

from the project working group. 

• Developed and modelled all the use case message pairs using unified modelling 

language (UML) interfaces an associated class diagrams. This was done with the 

guidance of UML modelling experts. 

• Manually mapped the UML modelled interface and use case message pairs to Web 

Service Definition Language (WSDL) and schema (XSD) definitions respectively using 

the “contract first” approach. Ensured that the WSDL and XSD were created to be fully 

WS-I basic profile compliant. 

• Specified the requirements of the protocol’s reference implementations and test suite 

and assisted with its development. The author has been responsible for continued 

maintenance and upgrades of the reference implementations and test suite since it 

initial development. 

• All diagrams have been illustrated by the author, unless otherwise indicated. All 

photographs were taken by the author unless otherwise indicated. 

• Authored the protocol’s specification document. The specification is currently in the 

process of being published as a national specification of the ESLC, specification 

document number, NRS009-6-10. 

 

 
 
 



 

 

CHAPTER 2  : CURRENT STATE ANALYSIS 

2.1 INTRODUCTION 

This chapter provides a current state analysis of prepayment vending systems. This 

analysis provides an understanding on the current prepayment environment, its 

stakeholders, technologies and specifications. It also provides the background and 

foundation from which the online vending specification could be designed and developed. 

The current state analysis was undertaken by the author using extensive literature reviews, 

formal and informal discussions with industry and technology experts. 

2.2 BASIC DESCRIPTION OF ELECTRICITY PREPAYMENT  

Electricity prepayment operates conceptually, in a similar manner to popular prepaid 

cellular services. It essentially means that customers must pay upfront for electricity before 

it can be consumed. Electricity consumption is controlled at the customer’s home through a 

prepaid meter. The meter must have credit loaded before electricity can be consumed and 

interrupts the electricity consumption once the credit is depleted. 

A generic prepayment system consists of the following components (Figure 2.1): 

• Credit Dispensing Unit (CDU); 

• The encrypted credit transfer token; 

• The prepaid meter; and 

• An optional management information system (MIS) 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 8 

 
$

 
$

 $

1. Customer purchases credit 

at Vendor  or POS

2. Customer receives 

a credit token 

3. Customer enters token 

in prepaid meter.

Electricity may now be consumed.

Prepaid Meter

MIS

4. Periodic Updates

Vendor

 
 

Figure 2.1 – Generic Electricity Prepayment System 

A customer purchases electricity credit at the nearest electricity vendor. The vendor uses 

an electricity POS device, referred to as a credit dispensing unit (CDU), to generate the 

credit transfer token for the sale. The information carried between the CDU and the meter 

is usually encrypted into a fixed length value commonly referred to as a token. The token 

is usually printed on a receipt or encoded on a magnetic card for input into the meter. 

Figure 2.2, illustrates a typical receipt, the 20 digit token to be entered into the meter is 

indicated by the red block. The meter’s credit is updated once the token is accepted. 

Electricity credit is usually transferred as a kilowatt hour (kWh) value to the meter. The 

vendor’s transactions are optionally uploaded to the utilities (MIS). 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 9 

 
 

Figure 2.2 – Sample prepayment electricity receipt 

2.3 DRIVERS FOR PREPAYMENT IN SOUTH AFRICA 

The “Electricity for All” programme started in 1989 and was driven by social, political and 

economic pressures [3]. It required mass electrification of previously underdeveloped and 

rural areas of South Africa. The lack of telecommunications and postal infrastructure, 

combined with the informal nature of many of the areas to be electrified, meant that the 

delivery of conventional bills was impractical. Prepayment metering systems did not rely 

on such prerequisites and became a viable alternative for electrification. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 10 

Prepayment metering systems addressed the following electrification issues [1][2]:  

• Many customers had to be supported by the smallest amount of Eskom personnel. The 

system therefore had to operate with a low level of management and maintenance. The 

standard billed system required a lot of day-to-day management to process accounts 

and maintain connections and disconnections. 

• Many of the areas where typical electrification customers reside had almost no 

infrastructure. There were no formal addresses for customers, many did not have 

permanent jobs or bank accounts and there were no or limited postal services in those 

areas (Figure 2.3). These were significant limitations that prevented a typical utility 

billed system to operate effectively. 

• Many customers were illiterate and did not understand (or had the budget) to pay for 

the fixed charges or bills that arrive only after the electricity had been consumed. 

• Difficulties experienced with customers withholding payment for electricity. 

• Difficult or very remote access to meters for meter reading. 

• Deposit management problems. 

• Customers do not understand, trust or could always afford the fixed monthly portion of 

a conventional account. 

• The need to charge large up-front connection fees. 

South African utilities have learnt that prepayment systems must be installed only after 

consultation with and agreement by the community to be electrified. Experience has also 

shown that prepayment enjoys better customer acceptance if it is not promoted as a 

solution for theft or to punish customers. Rather customer benefits of prepayment systems 

must be promoted. Some customer benefits are: 

• There are no fixed monthly charges or reconnection fees.  

• There is a continuous display of the available credit which allows the customer to 

budget and it eliminates surprises like a large account at the end of the month.  

• Usually money tendered for the electricity purchases is not used to also pay for other 

services like refuse removal. 

• The customer has control over electricity expenses and is therefore able to budget and 

control consumption. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 11 

  

Figure 2.3 – Typical Prepayment Customers 

As customers become more sophisticated in their electricity use, their focus turns toward 

its availability. Therefore, the availability and convenient access to prepayment electricity 

POS’s become very important to the customer.  

The current government’s vision is to provide all South Africans access to electricity by 

2012. This is being achieved through the Integrated Electrification Programme (IEP) under 

the auspices of the Department of Minerals and Energy. By mid-2007, since the inception 

of the electrification programme in 1991, 3 469 650 homes have been electrified [58].  

Prepayment was initially perceived as a low maintenance technical solution in an era of 

widespread non-payment for services. However, life-cycle costing studies have proven that 

prepayment is a more cost effective option of system operation than billed systems [2]. It is 

now seen as a sustainable technology option to achieve the 2012 vision. 

2.4 KEY PREPAYMENT STAKEHOLDERS 

2.4.1 Electricity Supply Liaison Committee (ESLC) 

The ESLC comprises South African supply authorities and related stakeholders. It 

comprises members from the Association of Electrical Municipal Undertakings (AMEU), 

Eskom divisions (Distribution, Transmission and Resources and Strategy), larger 

municipal electricity distribution utilities and Standards SA. The National Electricity 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 12 

Regulator of South Africa (NERSA) and the Electricity Distribution Industry (EDI) 

Holdings Company observe the activities of the ESLC [18]. 

The Electricity Supply Liaison Committee (ESLC) has been directing the National 

Rationalised Specifications (NRS) programme for over 16 years. The NRS programme 

produces rationalised user specifications that allow member organisations to define 

common performance, interface, security and quality requirements for electricity supply 

related equipment and systems. That is, NRS specifications are a set of industry 

specifications
2
 for use by the South African electricity supply authorities.  

The NRS009 series is a set of specifications for South African electricity sales systems. 

They specify standardised offline vending devices and interfaces. They are prepared on 

behalf of the Electricity Supply Liaison Committee (ESLC) and managed by Eskom. 

2.4.2 Standard Transfer Specification Association  

Standard Transfer Specification (STS) defines the credit transfer specification between the 

vending system and the prepaid meter. STS is managed and maintained by the Standard 

Transfer Specification Association (STSA). The STSA was formed in 1997 to maintain the 

necessary infrastructure, promote the technology and further develop the standard to meet 

emerging international demands for additional functionality. It is a non- profit association, 

comprising members from meter and vending system manufacturers, as well as utilities. 

STSA objectives include: 

• STS standardisation and enhancement; 

• Develop technical guides; 

• Provide accreditation testing; 

• Maintain an approved accreditors register; 

• Maintain an approved list of STS-compliant equipment; and 

• Provide key management and key security and certification.  

                                                 
2
 NRS specifications are however not a standard as contemplated in the Standards Act, 1993 (Act 

29 of 1993). 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 13 

2.5 PREPAYMENT TECHNOLOGY AND STANDARDISATION 

The initial prepayment systems utilised proprietary technology. However, by 1991 utilities 

started experiencing significant problems with proprietary prepayments systems, such as 

[3]: 

• Complex logistics and management of holding spares for several proprietary systems; 

• Locked into single supplier’s equipment; 

• Difficulties with the management of points-of-sale and customer databases; 

• Manufacturers adopted different operating philosophies, making the training of staff 

difficult and complex; and 

• The key realisation was that the systems security was in the hands of suppliers. In other 

words the suppliers literally controlled the cash registers of the utilities. Security audits 

also identified that the degree of security provided by each system varied. 

The first step was to develop an industry specification for the prepaid meter that addressed 

functional, performance and reliability requirements. These were initially published as 

NRS009 part 1, 2 and 3 documents and later replaced by a national standard, SABS 1524-1. 

The meter standard, SABS 1524-1:1993, does not impact the online vending specification 

and will not be discussed any further. 

Thereafter, utilities turned their priority to developing a viable, secure standard token 

transfer interface from CDUs to meters. The main requirement was to standardise the data 

format of the instructions (token) to the meter and the encryption algorithm. This would 

enable a token produced by a standard CDU to work in any standard meter. The 

standardisation of the token between the CDU and meter heralded a new era for 

prepayment. The additional requirement for “proprietary compatibility” option was 

included to allow continued support for already installed proprietary meters. 

In 1993, Conlog, a major prepayment system supplier, was contracted by Eskom to 

develop such an industry specification. This contract resulted in the first version of the 

Standard Transfer Specification (STS). The STS protocol was released into the public 

domain as part of the NRS 009 series of specifications. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 14 

In conjunction with the STS development, Eskom further defined and developed the 

Common Vending System (CVS) to provide a total electricity system capable of 

supporting a widespread deployment of vending systems and meters sourced from a 

number of different manufacturers. The CVS was also later adopted, with minimal changes, 

as part of NRS 009 series. 

2.5.1 Overview of Standard Transfer Specification (STS) 

2.5.1.1 Background 

STS is an open system for one-way prepayment meters. Although several proprietary 

transfer technologies exist, STS has become the de-facto industry specification for one-

way prepayment electricity token transfer technology. To enhance its credibility 

internationally, STS has been offered, through IEC TC13 for publication as a publicly 

available specification (PAS). Publication as an IEC PAS is a mechanism for standards that 

already have a level of acceptance in a significant segment of industry to be endorsed by 

the IEC. 

To date there are more than 4 million STS meters installed in the field. The specification 

has been stable for 10 years and has adopted by approximately 400 utilities in 25 countries.  

Some of the key security requirements of STS were to prevent: 

• Fraudulent generation of tokens from ‘hit and miss’ attempts at entering the correct 

number; 

• Fraudulent generation of tokens from legitimate vending stations outside of the utility's 

area; 

• Fraudulent use of tokens which have already been used; and 

• Tampering of legitimate tokens, for example, to change the encoded value. 

In order to achieve the above, the standard defines the following mechanisms: 

• The use of advanced encryption techniques, which are at all times hidden from the 

customer; 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 15 

• The use of very secure key management procedures, including the manner in which 

keys are generated and transported; and 

• The required functionality at both the vending station and the meter is tested and 

verified by a rigorous compliance process.  

It was critical that the key management be provided by a trusted, neutral third party. 

Eskom, supported by the broader industry, has built and still manages the first STS 

prepayment key management centre (KMC) on behalf of the STSA. This KMC is currently 

the only approved STS KMC and services all the current users and suppliers of STS 

compliant systems both local and international. 

2.5.1.2 How does STS work? 

This section provides a high level analysis of key STS concepts and processes. This 

analysis assists in understanding the relationship between STS and the online vending 

specification.  

STS defines a secure message protocol that allows information to be carried between the 

CDU and meter. The information carried between the CDU and the meter is encrypted by 

the protocol into a fixed length value commonly referred to as a token. More than one 

token may be created depending on the amount of information being carried between the 

CDU and meter. STS caters for several message types such as credit, configuration, display 

and test instructions. It further specifies devices and codes of practice that allows for the 

secure management (generation, storage, retrieval and transportation) of cryptographic 

keys used within the system. 

STS compliant prepayment systems consist of the following devices, entities and concepts 

(Table 2-1). 

Entity Description 

Key management centre 

(KMC) 

A trusted and physically secure domain that generates and 

manages the storage and distribution of cryptographic keys.  

Secure module (SM) A device which is physically secure from tampering, into 

which cryptographic keys emanating from the KMC are 

stored. The SM is installed in CDUs and used to generate 

tokens. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 16 

Meter The prepayment meter consists of the following basic 

components, token reader, accounting register, measurement 

element and load switch. 

Credit dispensing unit 

(CDU) 

The CDU is a point of sale device that is used in conjunction 

with the SM to generate and dispense STS tokens. It also 

stores transactions, maintains customer data and tariff 

information. 

System master station 

(SMS) 

The equipment where all relevant system information is 

maintained. It is a higher level management information 

system (MIS) that consolidates all transactions from CDUs 

that it manages. 

Meter token or token An encrypted fixed length value used to transport messages 

from the CDU to the meter. Currently STS defines two 

token technologies as carriers of the token, that is, a 

magnetic card and a printed numeric receipt [21][22]. 

Meter card A standard format magnetic card that carries all relevant 

customer and meter information for a CDU to generate a 

token, namely meter and tariff data. The customer uses the 

meter card to identify his meter details to a CDU. The meter 

card specification is defined in [27]. 

Meter communications 

port 

A serial port accessible on the rear of the meter. It uses the 

IEC1107 protocol and supports all token transfer functions.  

Standard Token Translator 

(STT) 

A device that is able to accept an STS token via an RS232 

port and translate it into a proprietary format. It is used 

where backward compatibility with legacy systems is 

required. The STT is defined in [30]. 

Utility The utility supply company that contracts with the customer 

to supply a utility like electricity. 

Supply groups Sub groups within the domain of the utility supply 

company’s supply or distribution networks. Grouping may 

be based on geography, tariff, load, etc. Generally used to 

confine consumers to purchase tokens within the group or to 

confine vendors to vend only within a certain group. In a 

scenario, where a vendor may vend to multiple utility 

customers, the supply group can be used to determine which 

utility should receive the revenue for sales. 

Key Load File (KLF) This is file used to transport vending keys from the KMC to 

a SM. 

Key exchange key (KEK) A secret 112 bit Data Encryption Standard (DES) cipher key 

shared between the KMC and the SM. It is used to encrypt 

vending keys for transportation via the KLF and used to 

decrypt the vending keys when loading them into the SM. 

Vending key (Vk) A secret 56 bit single DES cipher key that is linked to a 

supply group of a utility. It is generated in the KMC. The 

vending key is stored in SM’s that are authorised to vend to 

the SGC. It is also used to generate meter keys. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 17 

Meter key (Dk) The meter key is generated from the appropriate vending 

key. It is a secret 64 bit DES based cipher key shared 

between the SM and the meter. It is used to encrypt and 

decrypt messages exchanged between the SM and meter. 

The meter key is used to generate the fixed length transfer 

tokens. 

Customer The legal entity that contracts with the utility supply 

company for the supply and delivery of a utility like 

electricity. 

Vendor An agent or employee of the utility supply company that 

sells prepaid tokens to customers on its behalf. 

Table 2-1 – STS System Entities [16] 

The following identifiers are used to identify the entities within an STS prepayment system 

(Table 2-2). 

Identifier Description 

Supply Group Code 

(SGC) 

A number allocated to a utilities supply group and registered with 

the KMC. It identifies a sub group within the supply or 

distribution domain of the utility supply company. Generally a 

large utility may have several SGCs. It is managed by the KMC. 

Meter number 

(MSNO) 

A unique number comprising a manufacturer number and a meter 

serial number that identifies a particular device within the entire 

STS system internationally. It is managed by the meter 

manufacturer. 

Manufacturer number A unique number allocated to a manufacturer of meters or secure 

modules. It is managed by the STSA. 

Token Identifier 

(TID) 

A 24 bit number that represents the number of minutes that have 

elapsed since midnight 1
st
 January 1993 to the actual time of 

token generation. It is thus time sequenced and is coded onto the 

token. It is used by the meter to prevent the re-use of previously 

used tokens.  

Tariff index (TI) A number associated with a particular tariff allocated to a 

particular customer. The maintenance and content of the tariff 

tables is loaded into the CDUs. They are the responsibility of the 

utility and not covered in the STS. 

Key revision number 

(KRN) 

A number associated with a particular revision of vending key 

(Vk) and therefore meter key (Dk). 

Key type A number associated with a vending key and meter key that 

depicts the type of key. STS defines four types: 

• manufacturer unique 

• manufacturer default 

• supplier unique 

• supplier common 

Table 2-2 – STS Identifiers [16] 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 18 

Kek

Kek

Vk

Vk

Dk

"Credit"

Accounting

Register
Meas

Switch

ISO BIN

SGC

Tariff Index

KRN
KT

Meter No

Credit

Dispensing

Unit
(CDU)

Consumer

Payment

Supply
Group

Utility

Supplier
ISO BIN

Country Code

KRN

KT

SGC

Tariff Index

Key Load File

Token

Key
Management
Centre
(KMC)

Secure Module
(SM)

Meter

(ED)

EA3

DA3

EA1

DA1

EA2

debit credit

disconnect
TID

TID

Dk

 

Figure 2.4 – STS Entity Relationships [16] 

Figure 2.4 illustrates the relationship between the devices, entities and identifiers in an STS 

prepayment system. 

• A utility may divide its distribution area into one or more sub areas, commonly referred 

to as supply groups. The supply groups may be geographically or commercially based. 

In each supply group prepayment meters are installed.  

• The utility requests the KMC to allocate a supply group code (SGC) for each of its 

supply groups. The KMC also generates a vending key (Vk) for each of its supply 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 19 

groups. The vending keys are generated and stored within the secure environment of 

the KMC. 

• The utility supplies its SM’s to the KMC for registration and initialisation. All SM’s 

must be registered and initialised in the KMC. The SM provides secure storage for 

utilities vending keys and the key exchange key (KEK). The SM also provides a secure 

environment in which all encryption and decryption functions are executed during the 

process of key loading and token generation. 

• The KMC generates key load files (KLF’s) for each SM. The KLF securely transports 

the utilities vending keys (Vk) from the KMC to a specific SM. The contents of the 

KLF is first encrypted using encryption algorithm (EA3) with the secret key exchange 

key (KEK) shared by the KMC and the SM. The KLF is decrypted using decryption 

algorithm (DA3). The vending keys are then loaded into the SM. 

• The SM and the prepayment meter share a secret meter key (Dk), which is stored in the 

meter during a special initialisation process during manufacture and subsequently in the 

field. Dk is generated within the SM using encryption algorithm (EA2) with the utilities 

Vk and the following meter configuration identifiers, SGC, KRN, TI, MSNO and some 

other data parameters. A change to any of the meter configuration identifiers will 

require a new Dk to be transferred to the meter. This is achieved by means of a special 

token pair, called key change tokens. Key change tokens are generated by CDUs using 

the meter’s current configuration identifiers and the meter’s new identifiers. 

• Meter manufacturers supply meters to the utility in two configurations based on the 

utilities requirements. In the first configuration, the meters are initialised to the default 

SGC. Default supply group is allocated to meters whose eventual supply code is 

unknown at the time of manufacture. The utility would then have key change the meter 

from the default SGC to the utilities SGC before installing the meter in the field. In the 

second configuration, the meters are shipped pre-initialised with the utilities specified 

SGC’s. These meters can be installed directly in the field. 

• SM’s are now able to send encrypted messages to the meter using encryption algorithm 

(EA1) with Dk and the meter is able to receive and decrypt these messages using 

decryption algorithm (DA1) with Dk. 

• The information required for a customer to purchase tokens at a CDU are obtained 

from one of three sources, namely from the customer’s meter card, from an old token 

and finally from the customer / meter database maintained on the CDU. The tendered 

amount is translated to a kWh value using the tariff function and used to create a 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 20 

“credit” message. The “credit” message is encrypted using EA1 with Dk and encoded 

onto a magnetic card or printed on a receipt depending on the meter’s token technology. 

At the meter, the customer inserts the magnetic token into the reader or enters the 

numeric number by means of a key pad. The meter decrypts the token using DA1 with 

Dk. If the token is valid, the meter reads the “credit” message and adds the message’s 

kWh value to the meter’s accounting register. 

• To prevent a token from being used more than once on the same meter, a token 

identifier (TID) code is added to the “credit” message on the token prior to encryption 

in the SM. STS defines this TID to be a number representing the number of minutes 

that have elapsed since midnight 1st January 1993 based on the actual time of token 

generation at the CDU. In this way TID codes are sequenced in time. The meter stores 

the TIDs of the “youngest” 50 valid tokens that it had accepted and compares these to 

any token being presented to the meter. The meter is therefore able to discern whether 

the token had already been used or not. In addition the magnetic card tokens are also 

magnetically erased.  

Figure 2.5 is a SM implementation named TSM210. The TSM210 has undergone stringent 

security and vulnerability testing and is currently only STS approved SM implementation. 

The TSM210 stores a maximum of 79 vending keys. The TSM210 is a low speed device 

and can achieve a maximum of 2 transactions a second. It is suited for a low transaction 

volume environment such as offline CDU. 

 

Figure 2.5 – TSM210 – Security Module 

Figure 2.6 is the next generation SM implementation named TSM410. The TSM410 has 

undergone stringent security and vulnerability testing and is in the process of being 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 21 

approved by the STSA. The TSM410 is a high speed device capable of achieving 50 

transactions per second. It is more suited to a high transaction volume environment such as 

an online vending server. The TSM410 is also able to store a maximum of 999 vending 

keys. 

 

Figure 2.6 – TSM410 – High-Speed Security Module (HSM) 

The security of a utilities prepayment system is largely determined by the secure 

generation, storage and distribution of its vending keys. These services are provided and 

maintained by the KMC. The SMs ultimately securely store the vending keys, which are 

used for token generation in CDUs. Therefore, the system’s security is also determined by 

the utilities capability to manage and control its SM’s since [17]: 

• Vk authorises credit transfer to customer; 

• Anyone in possession of Vk can transfer credit; 

• A loaded SM is a credit transfer machine; and 

• A “lost” or “unused” SM is a money printer. 

The absence of strict SM controls by utilities, specifically for SMs that have been loaded 

with vending keys, places the utilities prepayments system and therefore its revenue at 

significant risk of abuse. The risks associated with uncontrolled SMs loaded with vending 

keys are similar to risks associated with an automated teller machine (ATM) bank card 

with its personal identification number (PIN) written on the card. That is, anyone with 

access to your card can make withdrawals from your account without your knowledge. 

Further, by the time you discover it, there is nothing you can do to get your money back. 

Similarly, once there is unauthorised access to loaded SMs, criminals with access to CDU 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 22 

software can generate and sell tokens without the knowledge of the utility. The abuse can 

only be stopped once the abused SMs are brought back under the utilities control. 

2.5.2 Overview of Offline Vending Systems 

2.5.2.1 Background 

Eskom defined and developed the Common Vending System (CVS) to provide a total 

prepayment electricity system capable of supporting a widespread deployment of vending 

systems and meters. The main aim of the standardised system was to source system 

components from different manufacturers while ensuring interoperability.  

The system functionality provides utilities with capabilities of controlling electricity sales 

to its customers. The system enables customers to purchase electricity from places and 

times convenient to both the customer and the utility. The system also provides for 

accounting, data collection and processing to aid administration and provides safeguards 

against fraud. 

A typical electricity sales system (Figure 2.7) consists of CDUs linked to one or more 

System Master Stations (SMS) and an optional link to higher level computer system. In 

most utilities such a higher computer system is usually the utilities customer and billing 

system.  

The system operates in an offline mode since tokens are vended and transaction concluded 

at the CDU. There is no need for the CDU to communicate with any higher level 

management system at the time of the transaction. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 23 

CDU (1)

CDU (n)

SMS (1)

CDU (1)

CDU (n)

SMS (n)

Utility

Customer and 

Billing MIS

Customers

Customers

Customers

Customers

SM

SM

SM

SM

 

Figure 2.7 –Offline Electricity Sales System (NRS 009) Context Diagram 

Although most supply authorities have standardised on STS meters, some authorities still 

have a significant historic install base of proprietary meters. Therefore, most CDU’s are 

also configured to vend both STS and proprietary tokens. 

2.5.2.2 Credit Dispensing Units (CDUs) 

Figure 2.8 shows a typical first generation CDU, which was developed to the functional 

and performance requirements defined in [25]. These devices were built as specialised, 

self-contained devices for prepayment vending that could be securely mounted on a wall or 

counter. They include a card reader for reading customer meter cards and capabilities to 

vend magnetic and numeric tokens. Their design also assumed a low operator skill and 

education level; therefore a specialised touch screen user interface was developed. This 

very user friendly interface supported repetitive tasks in a high transaction volume 

environment. 

The operating environments of these devices were sometimes very harsh such as, the 

living-room floor in a vendor’s hut in a remote area. Therefore, it was designed to 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 24 

withstand high levels of dust, static electricity, power surges, vibration, insects and 

operator abuse.  

 

Figure 2.8 – Specialised CDU
3
 

The newer second generation CDUs (Figure 2.9) are no longer built as specialised devices. 

They make use of a standard personal computer (PC) form factors and peripherals like, PC 

mice and keyboards. This has resulted in price reductions of CDUs. Operators are however 

required to have some minimal PC skills training. The benefit of such training is that 

operators are now empowered to apply their PC skills to more general computer use.  

 

Figure 2.9 –Typical PC based CDU Installation 

                                                 
3
 Photogragh courtesy of  Eskom’s photo archive. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 25 

2.5.2.3 System Master Stations (SMSs) 

SMS functional and performance requirements are specified in [24]. The SMS application 

is installed on a standard personal computer (PC) and operated at the utilities offices. 

Typical SMS functions include managing vending transactions, customer and meter 

management, tariff management, vendor credit and CDU configuration management. The 

SMS acts like a data concentrator for transaction data, which consolidates transaction 

information from all linked CDUs. The consolidated transaction data is then optionally 

uploaded to a higher-level management information system. Data transfer between the 

SMS and CDUs is accomplished in two ways: 

• Modem transfer as specified in [32]. 

• Disk transfer as specified in [33]. 

Although the interface between the CDU and SMS has been specified in [32], most 

suppliers have implemented their own customisations to this interface in an attempt to 

provide additional functionality. This has resulted in incompatibilities between CDUs and 

SMSs supplied by different manufacturers. 

Most SMS’s connect to a higher-level information management system which is 

responsible for managing the customer database and the database for transactions. 

Annexure A of [24] provides a file based interface to transfer customer and transaction 

data between the SMS and information management system. An enhanced SMS can also 

function independently from a higher-level information management system and therefore 

operates in a standalone mode. In this mode the SMS is responsible for the management of 

the customer and transaction databases. 

2.5.2.4 Vending Information Management 

Offline vending enables customers to purchase electricity using information from three 

sources: 

• A customer meter card; 

• A previous token; and 

• A customer / meter database record maintained at the CDU.  

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 26 

This means that offline vending can provide close to 100% system availability and is 

therefore well suited to rural applications. However, the distributed nature of CDUs results 

in utilities sometimes allowing updates to CDU customer / meter records independent of 

their customer management systems in favour of customer service. 

As the number of CDU’s and SMS’s increase, maintenance becomes more costly and 

complex to manage. The following key issues are encountered: 

• Unable to perform customer and vendor reconciliations based on transaction 

information from CDUs; 

• Unable to timeously update tariff information on CDUs, which ensures customers 

purchase on the latest tariffs; and 

• Unable to timeously update a customer’s meter information should a customer move to 

another tariff, move to another location with a new meter, or have his existing meter 

replaced. 

This results in CDUs controlling and managing customer and tariff information rather than 

the utility’s management system. Therefore, utilities find it difficult to maintain and control 

customer information and tariffs. In some instances customers purchase electricity but the 

utility had no record of these customers. These customers are referred to as “unallocated” 

customers since the utility is unable allocate such transactions to customer accounts in their 

customer database. Unallocated transactions pose a major management and financial 

control issue for utilities. 

Therefore, more offline vending systems are providing at least periodic communications 

between the utility management systems, the SMS and CDUs. Such communication links 

ensure that CDU transactions are uploaded to the SMS and customer, meter and tariff 

information is downloaded to the CDU. Where such communication links are reliable and 

cost-effective enough, CDU’s are even “locked down” to only vend from the customer 

information downloaded from the SMS. Although such functionality addresses the 

unallocated transaction issues it can have a negative impact on a customer’s ability to 

purchase electricity. That is, the customer must be registered on the utility’s management 

system, downloaded to the SMS and then to the CDU before being allowed to purchase 

electricity. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 27 

2.5.2.5 Offline Vendor Management 

The utility typically manages vendors using one of two business models [11]: 

• Credit business model: The credit business model requires vendors to pay a deposit 

with the utility before being enabled to vend electricity. The vendor periodically 

deposits the sales into the utility’s bank account. The vendor is paid commission on the 

deposited sales. This model requires trust since there is no guarantee that the vendor 

will deposit the sales into the utilities account. Experience has shown that this model 

requires close vendor management. 

• Upfront business model: The upfront business model requires vendors to make a 

payment upfront before being allowed to vend electricity. The upfront payment 

becomes the vendor’s credit with the utility to sell electricity. The vendor’s credit is 

reduced after every prepayment sale. Once the vendor’s credit reaches zero, vending is 

disenabled. The vendor’s credit is updated when the vendor deposits money into the 

utility’s bank account. This option requires a secure mechanism to deduct and update 

vendor credit at the CDU. 

In both models the utility most often also supplies the CDU and required stationery due to 

the specialised nature of the CDUs. Further, utilities also like to maintain control over the 

CDU functionality for fraud prevention and investigation purposes. Therefore offline 

CDUs require close monitoring and control incurring significant costs for utilities. 

2.6 SUMMARY 

In this chapter, the author performed a detailed current state analysis of the electricity 

prepayment environment. The history, technology and drivers for prepayment were 

reviewed.  

Prepayment technology has matured into a standardised industry in all three key 

components of the prepayment systems, namely, the meter (SAB1524), the credit transfer 

(STS) and the vending systems (NRS009 series). STS has been proven as stable and secure 

transfer technology for prepayment and enjoys significant support and install base. The 

standardisation efforts also enjoy significant participation from users and suppliers. 

 
 
 



CHAPTER 2                                                                           CURRENT STATE ANALYSIS 

Electrical, Electronic and Computer Engineering 28 

Prepayment technology has emerged as sustainable option for electrification with benefits 

for both utility and customer. 

Although offline vending systems have to been successfully implemented the following 

shortcomings were identified: 

• Limited control over the CDU which could lead to abuse; 

• Limited control over the CDU / SMS synchronisation which could lead to data 

management problems; 

• Limited control over the SMs can lead to abuse and fraud if the CDU is stolen [17]; 

• Maintenance technicians to have access to the SM’s for the purposes of spares. Such a 

situation has the potential to be abused and is open to fraud, if not properly controlled 

and managed [17]; 

• In some cases an inability to effectively support and manage new tariffs, such as free 

basic electricity (FBE); and 

• There is not a standardised mechanism for vendor credit management. 

 
 
 



 

 

CHAPTER 3  : REQUIREMENTS ANALYSIS – THE FUTURE STATE 

3.1 INTRODUCTION 

The previous chapter provided an understanding of the current prepayment environment, 

the key technologies, specifications and challengers. This chapter looks at next generation 

prepaid electricity vending systems, that is, online vending systems. It also documents the 

online vending specification requirements. 

The requirements analysis was undertaken by author using formal working group meetings, 

interviews with individual stakeholders, focus group discussions and informal discussions 

with industry and technology experts. 

3.2 THE PROJECT WORKING GROUP 

The online vending specification project was initiated under the auspices of the ESLC and 

led by Eskom, NRS 009 working group, industry technical specialists, equipment suppliers 

and manufacturers – in association with the STSA. The author was seconded from Eskom 

and appointed as the project leader. The project leader’s ultimate responsibility was to lead 

the specification development and release an industry specification for online vending.  

 

The project success depended on the support, commitment and more importantly 

participation of all stakeholders. This meant that stakeholders needed to be identified, their 

role, influence and level of involvement defined. The key stakeholders identified were the 

utilities. It was critical that the differing functional requirements of the various utilities be 

adequately addressed. This approach supported the assertion that “Standards are a 

consensual activity” [13].  

The commitment of the utilities as the users of the specification was essential as described 

[13]: 

• Commitment to the problem: The user community must recognise the problem and 

must recognise the need for a standard as the solution. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 30 

• Commitment to the solution: The user community must seek to incorporate divergent 

viewpoints and seek consensus. The “rules of engagement” must be defined upfront 

and maintained. The community must identify contributors and commit resources to the 

problem. 

• Commitment to implementation: The user community must commit to the 

implementation of the standard. 

• Commitment to support: The user community must commit to supporting the 

improvement of the specification between versions. They must also continuously 

promote interest, de-mystification, training and best practices of the standard and its 

implementation. 

Further, utilities acknowledged that input and technical support from the competing 

proprietary online vending system and offline vending equipment suppliers would be 

essential. Supplier support and contribution was essential to ensure that lessons learnt from 

proprietary protocols and other online vending best practises could be incorporated into the 

specification development process. This would be an extremely difficult task since it 

required participation and sharing amongst competing vending equipment suppliers that 

had vested interests and possibly driven by “hidden” agendas. 

An industry working group was constituted to monitor and guide the protocol development 

process. The working group was mandated to review, moderate and approve all 

specification proposals. Members of NRS 009 Manufacturers Interest Group (MIG) and 

the NRS 009 working group were the first participants invited to join the working group. 

The working group was also opened to any other interested parties. ADDENDUM B 

provides a full list of working group participants. 

The author chaired and managed the working group. It was imperative that an appropriate 

working environment was fostered to facilitate the development of the specification 

amongst competing organisations. Therefore, a participatory approach was employed, 

which fostered an open, inclusive and transparent environment. The environment enabled 

participants to develop mutual “trust” and trust in the process and its objectives. The 

participatory approach also promoted collective ownership and a vision for the common 

good. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 31 

Working group meetings were kept to a minimum since participation was voluntary and all 

participation costs were borne by the participant or participating organisation. Therefore, 

working group meetings were only organised when key deliverables needed ratification or 

urgent issues needed resolution. Between workgroup meetings participation was 

encouraged through an open mailing list, which proved to be a cost-effective mechanism to 

discuss and reach consensus. Several issues were discussed and resolved using the mailing 

list. 

At the requirements analysis phase working group meeting the participating utilities 

communicated their intention to develop an industry specification for online vending. The 

utilities also requested the vending system supplier’s support and assistance in 

specification development process. The meeting concluded with the following guidelines 

for the specification development: 

• Utilise or specify existing internationally accepted standards were appropriate; 

• The protocol must focus on defining the application layer of the Open System 

Interconnect (OSI) model. The rest of the layers should be based on existing standards; 

• The message exchange formats would form the core of the protocol, but their exact 

definition would be defined in the detailed design. eXtensible Markup Language 

(XML) was recommended as the preferred message format; 

• The protocol should cater for cross distributor vending; and 

• The protocol should define an open interface specification between the Point of Sale 

(POS) and Security Module (SM). 

3.3 UTILITY REQUIREMENTS 

The key beneficiaries and end users of the online vending specification are electricity 

distribution utilities. In South Africa the licensed utilities are Eskom and some local 

municipalities. It was therefore critical to understand the varied utility drivers, challengers, 

functional and technical requirements of online vending systems. This would enable the 

project to capture these requirements in the specification design. 

All utilities approached were supportive and committed to an industry specification for 

online vending. The utilities also acknowledged that while open standards can sometimes 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 32 

suffer from an overly bureaucratic process they can carry tremendous weight as stated by 

[12]: 

• The user community feels comfortable knowing that one vendor is not trying to lock 

them out of another vendor’s products; 

• If a new standard is developed to supersede an existing one, there is a strong likelihood 

that the controlling body will propose a migration path wherever possible; 

• Costs can remain competitive because competing vendors comply with the same 

standard; 

• The standardisation process adopted by the controlling body is normally (more) 

transparent and open to scrutiny; and 

• The user community gets some level of comfort knowing that the technical integrity of 

the standard has not been subjugated by commercial expediencies.  

However, utilities did differ considerably on the scope of the specification. Some utilities 

requested that the specification address a complete online vending system, which included 

specifications for the online vending sever, the online vending client devices, the client / 

server messaging and communications protocol. Other utilities however requested that the 

specification focus only on the client / server messaging protocol and leave the server and 

client development to supplier innovation. 

A few municipalities could not wait for an industry specification before deploying their 

online vending systems. Although these municipalities implemented proprietary systems, 

their feedback, experience and contribution to the development of the online vending 

specification proved invaluable. Their participation in the project demonstrated that they 

were fully committed to an industry specification. In some instances these municipalities 

contractually bound their online vending system supplier to upgrade to the industry 

specification once released. Municipalities that pioneered Online Vending systems in the 

absence of an industry specification were: 

• Manguang Municipality; 

• Nelson Mandela Municipality; and  

• Buffalo City Municipality. 

Eskom has the largest footprint of prepaid metering and vending systems, with more than 

3.5 million installed meters and 1500 offline vending points of sale. It also committed to 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 33 

only implementing an online vending system that complied with the industry specification. 

Eskom maintained that a standardised online vending system was a prerequisite to the long 

term sustainability of such a solution. This view was based on Eskom’s successful 

deployment of prepayment metering and offline systems, which was largely as a result of 

their commitment and support of prepayment standards.  

3.3.1 Drivers for online vending 

Online vending systems promise several benefits to utilities. The following key utility 

drivers for deploying online vending systems were identified [6]: 

• Current offline vending systems reaching the end of their life cycle; 

• To streamline and improve the management of prepayment meters, vendors, customers 

and transactions; 

• To integrate vending systems with other business systems, such as the utility Enterprise 

Resource and Planning (ERP) systems; 

• To improve customer service by increasing vending footprints, i.e. providing the 

customer with convenient access to POSs; 

• To efficiently offer “Free Basic Electricity” within the prepayment domain; and 

• Reducing prepayment vending system fraud. 

3.3.2 Online vending challenges 

Online vending systems also introduce new challenges and risks that utilities had to 

acknowledge and implement appropriate mitigation strategies. The following challenges 

and risks were identified [9][10]. 

• The relatively high cost start-up costs of online vending systems; 

• Vending server downtime means that no vending can take place. Therefore, sufficient 

backup and business continuity systems are required to minimise server downtime; 

• Online vending requires real-time network connectivity between the server and the 

POS devices. This would be a serious challenge in some rural and outlying areas were 

network connectivity was limited or non-existent; 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 34 

• Network connectivity (especially a public network like the Internet) opens the vending 

systems to attack from malicious sources; 

• No industry standards exist for online vending. Therefore current systems are 

proprietary and could lock the distributor into a single supplier and technology; 

• Online vending systems are dependent on reliable communications links; and 

• Online vending systems are far more complex than current offline systems. They 

implement multi-disciplinary technologies such as vending, prepayment metering, 

systems engineering (information technology), computer networks, business continuity 

and computer / network security. Therefore, highly skilled personnel are required to 

implement, maintain and administer such systems. 

3.3.3 Online vending models 

Utilities identified the following online vending models, Normal Vendor or Gateway 

Vendor. 

Figure 3.1 illustrates the “Normal Vendor” model. This model operates very similarly to 

current offline vendors. The vendor operates an online POS client device where customers 

purchase electricity tokens. The online POS client communicates with the online vending 

server to generate and return the requested tokens. 

Online Vending Server

SM’s

Communication Channels

(possibly unreliable, low 

bandwidth)

POS Client 

POS Client 

POS Client (n)

Customers

Utility

Customer and 

Billing MIS

 

Figure 3.1 – Normal Vendor Model 

Figure 3.2 illustrates the gateway vendor model. In this model, customers purchase 

electricity at vendor terminals. The terminals communicate customer requests to a vendor 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 35 

gateway server. The gateway server communicates with the online vending server to 

generate and return the requested tokens. The gateway model applies to vendors who 

currently have a footprint of terminals and would like to add prepayment electricity 

vending capabilities to their footprint. 

Online Vending Server

SM’s

Communication Channels

(possibly unreliable, low 

bandwidth)

Terminal

Customers
Gateway client (1)

Terminal

Terminal

Terminal

Customers

Gateway client (n)
Terminal

Terminal

Utility

Customer and 

Billing MIS

 

Figure 3.2 – Gateway Vendor Model 

Utilities also indicated that online vending had to support both upfront and credit vending 

business models (see section 2.5.2.5). Utilities also indicated that they would prefer a 

model where the vendors provide the vending client and required stationary. A well 

defined online vending interface specification between client and server would be required 

to support this requirement. 

3.3.4 Online vending system requirements 

The discussions and interviews elicited the following generic online vending system 

functional and technical requirements. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 36 

3.3.4.1 Functional requirements 

• Free Basic Electricity (FBE): The system must be able to support the issue of FBE 

tokens. The FBE token is a special type of electricity credit token, designed to issue a 

pre-programmed credit amount to each meter once per month, free of payment. FBE 

has been successfully implemented in South Africa as a poverty alleviation intervention 

[10]. Support for FBE was one of the main business drivers for utilities considering the 

implementation of online vending systems. Especially municipalities which still had 

large install bases of proprietary meters. 

• Debt Recovery and Account Payments: The system must be able to support the 

following debt recovery an account payment functionality: 

o Support payment of other municipal accounts such as municipal services, 

rates, etc. 

o Implement blocking of electricity purchases until the debt is settled or 

arrangements have been made to settle the debt. 

o Recovering a fixed amount to settle part of a debt from a customer before an 

electricity purchase is allowed. 

o Recovering a percentage of each electricity purchase towards settlement of 

the debt. 

o Recover a fixed amount per time period, such as a fixed monthly charge on 

the first purchase of the month. 

o The system must allow for the recording and allocation of individual 

customer agreements. 

• Multiple Supply Group Vending: The system must be able to support vending to 

more than one supply group. The addition and removal of supply groups must be easily 

configurable. There should be no limit to the number of configurable supply groups. 

• Algorithm Technology: The server must provide for generations of STS and 

proprietary tokens. 

• Vending Database: All data capturing, e.g. purchase transactions, customer 

information, etc. must be stored in a secure central database. The system should be able 

to archive selectable record sets. The system must also allow for archived records to be 

restored and queried without affecting the normal operation of the system. 

• Offline Vending Support: Offline vending must be possible at a specially selected 

subset of vending stations under special circumstances. For example, when the 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 37 

communication link with the vending server is not available. A requirement for a 

specially developed online / offline CDU was expressed. Such a CDU should operate 

by default in an online mode, however when communications with the server is 

unavailable it should automatically continue operating in an offline mode. It should 

automatically switched back to the online mode when communications with the server 

is restored. At this point the all offline processed transactions must be replicated to the 

server.  

• Vendor Management: The system should support the following vendor management 

functions: 

o Operator shift management and security. 

o Banking, sales and shift batches. 

o Setting up credit limits for individual vendors. 

o Up-front vending. 

o Electronic banking reconciliation and credit replenishment. 

o Blocking of a vendor or terminal. 

• Reporting: The system should provide the following generic reports and provide for 

user defined reports: 

o Electricity purchased by cash, cheque, credit card, debit card and electronic 

funds transfer (EFT). 

o Recovery of arrears. 

o Customer purchase history. 

o Vendor purchase history. 

• Prepayment specification support: The system must support existing prepayment 

specifications were applicable. 

3.3.4.2 Technical requirements 

• Transactional Support: The server requests must be encapsulated within a transaction. 

That is, if part of transaction fails then entire transaction should fail. This improves the 

reliability of token requests and database integrity. 

• Capacity and Performance: The system should be scalable to process 60 or more 

standard vending requests per second. A standard token request from start to end 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 38 

should not exceed 5 seconds. The system should be able to handle 120 million 

transaction records. 

• System Integration: The system will have to provide integration capabilities with 

existing and future systems. Examples of such systems are Financial Systems, Web 

Servers, SMS gateways, Billing Systems, Customer Relationship Management Systems 

and other systems.  

• Online Vending channels: The system should be able to process token requests 

through a variety of channels. Examples of such channels are: 

o The world wide web (WWW), using the Internet. 

o An interactive voice response (IVR) system, using the telephone network. 

o Short Message System (SMS) using the cell phone network. 

o Using a private network, such as an organisation’s Intranet. 

• Vending POS: The system should support the following list of possible POS devices: 

o Fat or thin client application. 

o A CDU that that has been updated to operate in an online mode. 

o A POS banking terminal. 

o Automatic Teller Machines (ATMs). 

o Cellular telephone. 

o Transaction switching servers. 

• Communication Protocols: Utilise standard network communication protocols. 

Further, such communication should be kept to minimum to reduce system 

communication costs. 

• Disaster recovery and business continuity: Backup and business continuity needs to 

be integrated into designed of the system. This applies to both the system hardware, 

databases and communications network. The disaster recovery plan must consider all 

possible scenarios so that the downtime is kept to an absolute minimum.  

• System administration: The system should provide the facilities for remote 

administration. 

• Auditing: An audit log of all transactions processed by the system must be kept so that 

transaction records can be traced in the case of disputes.  

• System Security: The areas where system security needs to be addressed are: 

o The Vending Server: The SMs used to generate the tokens would be installed 

in the vending server therefore it would need to be hosted in a secure 

environment with strict physical and remote access control. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 39 

o The POS or CDU: The removal of the SMs from the POS device significantly 

reduces utility risks. However, the POS should implement security measures 

limit vendor risk if stolen. 

o Communications between POS and Server: The communication must ensure 

data confidentiality, data integrity and authentication of the communicating 

parties. 

3.4 SUPPLIER REQUIREMENTS 

The following vending equipment suppliers were approached to elicit their input and 

participation in the specification development process. 

No Supplier name 

1.  Landis and Gyr 

2.  Conlog 

3.  Contour 

4.  CBI 

5.  PN Energy 

6.  Actaris 

7.  Prism (EasyPay) 

8.  Syntell 

Table 3-1 – Visited Suppliers 

All the suppliers were frank and open about their views on developing a specification for 

online vending. All the manufacturers supported the need for an open specification. They 

also expressed similar views as the utilities with regard to the specification scope. All 

suppliers indicated their willingness to participate in the specification development process.  

Suppliers of proprietary “online” vending systems also revealed that their current “online” 

vending product offerings were seen as their competitive edge and were not willing to 

disclose much in this regard. However, most of the suppliers provided useful insights on 

issues that would have to be addressed by an industry specification. 

3.4.1 Online vending system requirements 

Suppliers expressed the following online vending system requirements: 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 40 

• Network and database redundancy. 

• Support for both offline and online vending infrastructure, with at least offline credit 

token vending at limited sites. 

• Support for both STS and proprietary tokens. The vending of proprietary tokens by all 

suppliers is problematic since suppliers are not always amicable to sharing or licensing 

proprietary token transfer technologies.  

• The token generation times, client device response times and transaction processing 

capacity should be specified. 

• Support for vendor credit management on the server. 

• Support for cross utility vending. 

• Support for utility specific business and system management processes. 

• Compliance with the electronic communications and transaction (ECT) bill. 

3.4.2 Online vending specification requirements 

Suppliers expressed the following comments with respect to the online vending 

specification development: 

• The specification should be an interface specification and not a system specification. 

The application level specification should be private to each supplier but comply with 

the interface specification. 

• The interface specification should specify a basic set of processes and leave room for 

supplier specific additions and enhancements. It should not define protocols / formats/ 

etc, but merely define the high level processes that must be supported. 

• The specification should be written for both international and South African users. 

• The specification should support various methods of payments, e.g. cash, credit card, 

cheque, debit card. 

• Transaction support must be an integral part of the specification. 

• The testing methodology for conformance and adherence to the specification must be 

specified and centrally managed by a third party. 

• The specification would need to specify whether server or client formatted receipts are 

supported. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 41 

3.5 ANALYSIS OF ONLINE VENDING SPECIFICATION REQUIREMENTS 

This section summarises and analyses the requirements documented in the previous 

sections. It aims to provide a common understanding of online vending and the scope of 

the online vending specification. 

3.5.1 Offline vending 

Currently most electricity prepayment vending is done in an offline mode. In this mode the 

client application provides the following services locally (Figure 3.3):  

• STS token generation. 

• Business logic processing. 

• Local customer and transaction database. 

The local database is periodically synchronised with a master station. The periodic 

synchronisation is achieved through floppy disk or modem communication. 

Client Application

Business Logic

Slave Database

SMS Application

Business Logic

Master Database

Periodic Communication

Security 
Module

 

Figure 3.3 – Offline Vending 

In offline vending systems, the POS device is defined as a credit dispensing unit (CDU). A 

CDU has a client application, business logic and slave database. The CDU hosts SMs that 

generate prepaid tokens. The higher-level system is represented by a SMS. The SMS has a 

SMS application, business logic and master database. The SMS manages several slave 

CDUs. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 42 

3.5.2 Online vending  - or is it? 

Figure 3.4 illustrates the database services being accessed from a central location. However, 

the following key services are still provided locally: 

• STS token generation; and 

• Business logic processing. 

The difference between this configuration and that in Figure 3.3 is that now the database 

transactions are executed on a single master database through a permanent 

communications link. Figure 3.4 is referred to as a database vending. 

Client Application

Business Logic

Slave Database

SMS Application

Business Logic

Master Database

Permanent Connection 

Security 
Module

 

Figure 3.4 – Database Vending 

In this configuration a permanent network connection is setup to facilitate the use of a 

multi-user master database. This configuration is not considered a “fully-fledged” online 

vending system since the token generation and encryption services are still provided by the 

CDU. Such a configuration may however be useful in a “trusted” environment and could 

be used to support both database and offline vending. 

3.5.3 Online vending 

Online vending is achieved once all of the services are accessed from a centralised “server” 

(Figure 3.5). These services are: 

 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 43 

• Prepaid token generation and encryption; 

• Key business logic processing; and 

• Single multi-user master database. 

Client Application

Business Logic

Slave Database

SMS Server 
Application

Business Logic

Master Database

Permanent Connection 

Security 
Module

 

Figure 3.5 – Online Vending 

This configuration is referred to as a client / server architecture. Further, if an appropriate 

interface protocol is implemented between the client and server, the presentation layer 

details can be separated from the vending business logic. For example, the client 

application could be hosted on a Web Server, an IVR Server or a Short Message System 

Server, each supporting various presentation layer formats, while the backend 

communications with the vending server uses a standardised interface protocol. 

Based on the analysis in section 3.5, a common and easily understandable definition for 

online vending was compiled. Online vending is defined as [5]: 

A prepayment token is requested from a Server that is remote from the actual point of sale 

client device. The token is only generated on the Server and transferred to the POS client, 

once the transaction, the POS client and the payment mechanism has been authenticated 

and authorised. The connection between the POS client and the Server is a standard 

computer network channel, such as telephone, Internet, direct dial-up link and general 

packet radio service (GPRS). 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 44 

Communication 

Channels

(possibly unreliable, 

low bandwidth)

POS Client 

POS Client 

POS Client (n)

Customers

Customers

Customers

Customers

Gateway client (n)

Online Vending Server

SM’s

 

Figure 3.6 – Online vending context diagram 

In other words, a POS client must communicate with a higher level management system 

(Online Vending Server) to complete a prepaid vending transaction (Figure 3.6). Without 

such a communication link no prepaid transactions are possible. The most important 

difference between offline and online POS devices is that online POS client devices have 

no built-in token generating capabilities. This service is now provided by the vending 

server. 

3.5.4 Online vending specification scope 

As discussed earlier the scope of the online vending specification was not initially very 

clear and stakeholders had varying views in this regard. However, the working group 

finally agreed on the following: 

• The online vending specification should specify the interface protocol between the 

vendor server and the vending client; 

• Web service technology should be used as the basis for messaging specification; and 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 45 

• The specification should allow for protocol adapters / bridges as a gateway to support 

of legacy and proprietary protocols. 

 

The scope of the online vending specification was therefore defined and illustrated (Figure 

3.7) as follows: 

The online vending specification defines a secure and open web service based interface 

protocol that facilitates prepayment vending functionality between a single logical vending 

server and n number of clients. 

Communication 

Channels

(possibly unreliable, 

low bandwidth)

POS Client 

POS Client 

POS Client (n)

Customers

Customers

Customers

Customers

Online Vending Interface 

Specification

Gateway client

Online Vending Server

SM’s

 

Figure 3.7 – Online Specification Context Diagram 

The online vending interface protocol empowers utilities to source online POS client 

devices and servers from different suppliers. It protects utilities from being locked into a 

single supplier. Utilities also have greater freedom to substantially expand their vending 

footprint through various established channels using a single interface protocol. It also 

encourages innovation and competitiveness amongst client and server suppliers while 

ensuring interoperability between their systems. It also results in the widest possible choice 

of price and performance to the user.  

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 46 

An interface specification therefore assists to prevent supplier and technology lock-in. It 

provides for supplier choice and competition, while ensuring all implementations meet an 

acceptable level of performance, integration and security standards. 

The online vending interface protocol and specification was appropriately named, 

XMLVend. XMLVend is essentially a vertical industry vocabulary, aimed at the 

prepayment vending industry. XMLVend is just one of many vertical industry vocabularies 

that have been developed, such as XMLPay [46]. The decision to implement the message 

design using the web services framework was based on current industry trends. Web 

services and related technologies have been accepted as the preferred framework to 

integrate systems across boundaries such as operating systems, languages and platforms 

[14]. 

3.5.5 Supplier proposals 

Suppliers on the working group were requested to make their protocols available to the 

industry for review and consideration as an industry specification. Suppliers were initially 

nervous and suspicious of this process. They also viewed their protocols as a product 

differentiator and competitive advantage. However, the following suppliers did make their 

XML based protocols available review: 

• Actaris, 

• Syntell; and  

• Landis and Gyr 

Actaris was the first company to make the protocol available for review. The client / server 

based protocol made use of direct TCP/IP socket connections to transfer their XML 

messages between client and server. The protocol was a full production version and was 

used in their online vending system. The protocol was therefore well tested and stable. 

The Syntell XML protocol was a full web services implementation. Therefore it exchanged 

SOAP messages over Hyper Text Transport Protocol (HTTP) connections between the 

client and server. This protocol was however conceptual and not field tested. 

 
 
 



CHAPTER 3                                       REQUIREMENTS ANALYSIS – THE FUTURE STATE 

Electrical, Electronic and Computer Engineering 47 

The Landis and Gyr protocol was a simple XML protocol and made use of HTTP to 

communicate messages between client and server. This protocol was a production version 

and therefore field tested and stable. The protocol also used SSL with client and server 

certificates for mutual authentication. 

The protocol proposals were reviewed and it was decided to use all the proposals as 

building blocks for the new XMLVend protocol. XMLVend would also include additional 

functionality and be fully web service enabled. This decision was supported by the 

working group. 

3.6 SUMMARY 

Utility and supplier requirements were analysed and the author succeeded in obtaining a 

common understanding of online vending among all stakeholders. Further the scope of the 

online vending specification was restricted to the interface protocol between the client and 

server. The working group also supported the use of web services framework as the basis 

of the interface protocol. 

The server business logic, online vending system infrastructure requirements and client 

hardware and presentation requirements were excluded from the specification. This crucial 

decision enabled the protocol development to focus on the message design and definition. 

This drastically simplified a potentially very complex specification design.  

Restricting the online specification to an interface protocol also encourages innovation and 

competitiveness amongst client and server suppliers while ensuring interoperability 

between their systems. This results in the widest possible choice of functionality, reliability, 

performance and price to the user, which meets the user’s requirement for an industry 

specification. 

It was decided to develop the industry protocol for online vending, XMLVend, based on 

the three supplier proposals. XMLVend would also be enhanced to provide additional 

functionality and be fully web services enabled. 

 
 
 



 

 

CHAPTER 4  : DEVELOPMENT OF XMLVEND VERSION 1 

4.1 INTRODUCTION 

This chapter focuses on XMLVend version 1 development. To facilitate a faster 

development process, it was decided to develop two versions of the specification, that is, a 

pilot version (XMLVend 1) and a subsequent “production” version (XMLVend 2). The 

pilot version would support a limited number of use cases to speed-up the specification 

development process and making it available to utilities for pilot use. This approach suited 

the iterative design methodology and the pilots would be able to test, verify and improve 

the core aspects of the specification. XMLVend 2 would be an enhancement of XMLVend 

1 based on lessons learnt and also support additional use cases. 

The author managed the entire XMLVend version 1 development process and was the 

main contributor to the development. A key goal of the author was to develop a solid 

technical base for XMLVend version 1. This would support the protocols upgrade to 

XMLVend version 2 without fundamentally impacting the underlying design. The author 

had to also ensure that version 1 met the critical business and technical requirements 

defined in CHAPTER 3  

Although the current version of protocol is XMLVend version 2.1, this important chapter 

documents the foundation on which the XMLVend protocol was developed. It also 

highlights XMLVend 1 shortcomings. 

4.2 WORKING GROUP DESIGN REVIEW SESSIONS 

Three working group meetings were convened during the development phase. The 

meetings were convened to discuss, review and approve protocol proposals and monitor 

progress. It was essential that working group consensus was reached on each critical issue 

raised before it could be accepted.  

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 49 

The meetings were attended by highly technically competent participants from competing 

companies. Chairing and facilitating the meetings were not an easy task. However, the 

following basic elements contributed to their success: 

• Proposals, meeting discussion documents and the meeting agenda were circulated well 

in advance on the meeting. 

• Critical issues were discussed and lobbied well ahead of the meeting. 

• The meeting always started with: 

o A summary of key decisions taken the previous meeting. 

o Feedback on outstanding issues. 

• Open and frank debates were always encouraged. 

• Participants were frequently reminded of the main objective of the working group 

meeting and the project’s desired outcome since discussions frequently went off the 

topic and did not add significant value to the issue at hand. 

• Smaller task teams were constituted and mandated to resolve particular issues that 

could not be resolved, or consensus could not be reached at the meeting. 

• Accurate meeting minutes were kept and circulated shortly after the meeting. 

4.3 THE PROTOCOL DESIGN PROCESS 

The protocol design was undertaken considering the following design criteria and 

guidelines: 

• Utilise existing industry accepted protocols were possible. 

• Specify minimum security, communication, and interoperability standards. 

• It should be platform independent, extensible and adaptable. 

• It should support existing prepayment standards, STS and CVS (NRS009 series).  

• It should utilise existing open industry technology standards and protocols. New or 

proprietary protocols should be avoided. 

• Ensure that widely available development tool sets support the chosen technology and 

protocols. 

• Ensure that the chosen technology and protocols make use of existing developer skills. 

The working group also supported the author’s proposals that the protocol should not 

address the following: 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 50 

• It would not address the scenario where a vendor uses his client to communicate with 

more than one utility server.  

• It would not specify the transaction reconciliation process between the utility and 

vendor. 

• It would not specify the business rules applied to a particular use case. Utilities would 

have to define their own use case business rules. 

• It would not support electronics payments directly. The protocol could however capture 

the payment information (credit card, debit card, cash, etc) as part of the token request. 

Electronic payments for electricity tokens could use existing banking payment 

terminals and then process the token request using the online vending client.  

Using the above design criteria and constraints the author approached the protocol design 

using the following high-level design steps: 

• Step 1: Verify the business requirements. 

• Step 2: Compile and define the use cases and use case scenarios. 

• Step 3: Define the request and response message pairs. This included defining the each 

message element, its data type and constraint. 

• Step 4: Define a fault handling mechanism. 

• Step 5: Define a message delivery reliability mechanism. 

• Step 6: Ensure that the protocol design was secure. 

4.3.1 Use case definitions 

Use cases define services offered by a system as perceived by external objects that interact 

with the system. Use cases were used to define the “services” or outcomes that could be 

achieved using the XMLVend protocol.  

The use case actors and their responsibilities (Table 4-1) were defined as follows: 

Actor Responsibilities Collaborators 

Customer • Initiate customer use cases. 

• Provide identification information. 

• Tender payment. 

Operator 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 51 

• Receive requested token / receipt. 

Operator • Open and close vending batches. 

• Verify customer identification. 

• Submit appropriate customer requests. 

• Present tokens / receipts to customers. 

• Handle customer queries. 

XMLVend Client or 

Terminal. 

XMLVend Client • Send request messages to the online 

vending server. 

• Receive and appropriately process 

responses messages. 

• Initiate the “Issue Advice” use case for 

use cases that may require this service. 

Terminal and Vending 

Server 

XMLVend Server • Authenticate vending clients / operators. 

• Produce appropriate response messages. 

Vending Client 

Table 4-1 – Use Case Actors and Responsibilities 

After reviewing an extensive list of use cases, the use cases were short listed to those 

illustrated in Figure 4.1. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 52 

Receive (Collect) EBSST
Token (UC103)

Purchase Credit Token
(UC102)

Reprint Token (UC104)

Check Batch Totals (UC505)

End Batch (UC504)

Start Batch (UC503)

Logout Operator (UC502)

Login Operator (UC501)

Confirm Customer / Meter
Details (UC101)

Consumer

Vending Server

Cancel Token (UC105)

Vend Trial Token (UC106)

Last Updated: 9 Sep, 2004

Vend Replacement Token
(UC107)

Issue Advice (UC1001)

Vending Client

Vending Client Operator

Issue Fault (UC2001)

Update Meter Key Data (UC506)

 

Figure 4.1 – XMLVend 1.0 Use Cases 

Table 4-2 provides a description of each use case. 

No Use case Description 

1.  Issue Advice Issue Advice is used to advise receipt of another use 

case’s server response. Two use case scenarios were 

defined: 

• advice(reversal): The advice(reversal) message 

indicates to the server that the client has not received 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 53 

an expected response message and the server should 

roll-back the transaction if completed. 

• advice(confirmation): The advice(confirmation) 

indicates to the server that client has received the 

response message and the transaction can be 

committed. 

2.  Confirm Customer / 

Meter Details 

This use case returns the customer and meter information 

stored on the vending server. It is usually used to confirm 

supplied customer identification details before proceeding 

with use cases that create tokens such as Purchase Credit 

Token. This reduces the risk of generating incorrect 

tokens for the customer’s meter. 

3.  Purchase Credit Token This use case is used to purchase credit tokens for a 

customer’s meter. The value purchased may be expressed 

as currency or in kilowatt-hours. The server may also 

supply an EBSST
4
 token (if applicable) with the receipt.  

4.  Receive EBSST Token This use case is used to obtain a customer’s monthly 

allocation of “free” electricity through an EBSST token. 

5.  Reprint token This use case reprints a customers last purchased credit 

token. 

6.  Cancel token This use case cancels a customer’s purchased token. It 

only applies tokens encoded on magnetic cards. 

7.  Vend trial token This use case simulates a purchase credit token use case 

but does not generate a token. It is used to check if a 

customer can afford the requested token when the token is 

requested as a kWh value. 

8.  Vend replacement token This use case is used to issue a replacement token for 

credit left in a replaced or faulty customer’s meter. 

9.  Log in It is used to start an operator session with the server. 

10.  Log out It is used to end an operator session with the server. 

11.  Check batch totals It is used to check the status of current batch totals. 

12.  Update Meter Key Data It is used to request key change tokens for a customer’s 

                                                 
4
 The term EBSST has been replaced by term FBE in XMLVend 2.1. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 54 

meter, which when entered into meter updates the meter 

key. 

13.  Start batch It is used to start a banking, sales or shift batch for an 

operator.  

14.  End batch It is used to end a banking, sales or shift batch for an 

operator.  

Table 4-2 – XMLVend 1 use case descriptions 

The fault response is not strictly a use case. It is used to return a fault message to the client 

when any of the use cases can not be successfully completed on the server. 

4.3.2 Use case message exchange pattern 

A synchronous request / response message exchange pattern between XMLVend client and 

server was required to realise the use case outcomes. The XMLVend client invokes an 

XMLVend use case by sending an appropriate XMLVend request message to the 

XMLVend Server. The XMLVend server executes the required service, and responds with 

the appropriate XMLVend response message. Figure 4.2 illustrates the synchronous 

request/response message exchange pattern. 

customer /

Operator

XMLVend

Client

XMLVend

Server

XMLVend_Request

XMLVend_Response

Result Data

Result message

XMLVend use case

 

Figure 4.2 – Synchronous Request/Response Sequence Diagram 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 55 

4.3.3 Use case request and response message definitions 

The message pair definitions were guided by the following design considerations: 

• The messaging would be stateless, that is, the server should not maintain client state at 

the messaging layer. 

• Each request message should contain a unique message identifier. It was recommended 

that message identifier be a combination of the client timestamp and a unique number. 

• It should specify the minimum message parameters to achieve the desired outcome of 

use cases. 

• Use case messages pairs should comply with the basic data and functional constraints 

of STS and related NRS 009 specifications. 

• It should provide a unique client identifier in all request messages. Servers should use 

this identifier to authenticate and authorised clients. The globally unique EAN 

numbering system was recommended for this purpose. The utility would usually be 

responsible for issuing the client identifier as part of the client registration process on 

the vending server.  

• It should also provide for a terminal identifier to identify the terminals that initiated a 

request in gateway vendor scenario. 

The initial request / response message pair parameter definitions were documented in a 

spreadsheet format (Figure 4.3) by the author. The spreadsheet defined the name, 

description and source of each message parameter on a per use case basis. The author 

circulated the spreadsheet to the working group where it was extensively reviewed, 

discussed and amended. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 56 

 

Figure 4.3 – Example spreadsheet format XMLVend 1 message definition 

The message definitions were then converted from the spreadsheet format to the data 

model format used by the XMPay specification [46][6]. The XMLPay format was used to 

define the XMLVend 1 message data models. The XMLPay format was more intuitive and 

easier to understand, using the following conventions (Listing 4.1): 

<Example> 

(element) 

(optional element)? 

(alternate element1 | alternate element2) 

(element)+ 

(element)* 

</Example> 

Element Indicates the occurrence of a (possibly complex) XML element 

(for example, <element>…..</element> 

? Indicates an optional element 

| Separates alternative elements, any of which is allowed. 

+ Indicates that one or more occurrence of an element is allowed. 

* Indicates that zero or more occurrences of an element is allowed. 

Listing 4.1 – XMLVend 1 data model notation 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 57 

Listing 4.2 illustrates the XMLVend Login Request / Response message data models. 

<Login_Request> 

(ClientID) 

(TerminalID) 

(MsgID) 

(OpName) ? 

(Password) ? 

(Custom) ? 

</Login_Request> 

 

<Login_Response> 

(TerminalID) 

(MsgID) 

(CurrentVendorCredit) 

(OperatorMsg) ? 

(Custom) ? 

</Login_Response> 

Listing 4.2 – XMLVend 1 data model - Login Request / Response messages 

Although the XMLPay format was an improvement on the spreadsheet format it did suffer 

some shortcomings, such as: 

• It was difficult to maintain; 

• It did not support data constraint definitions; 

• It was not widely understood by the industry; and 

• It was not supported by data modelling software tools. 

4.3.4 Fault condition support 

The protocol design needed a standard mechanism to communicate application faults to the 

client. Application faults are raised by the server while processing a request and the desired 

outcome can not be achieved. 

Therefore, an XMLVend message called the “XMLVend fault response message” was 

defined to communicate fault information to the client. The XMLVend fault response 

message provides specific operator and customer fault information that could be used to 

resolve the fault condition. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 58 

The XMLVend fault response message was defined as follows (Listing 4.3): 

<NRSFault_Response> 

(TerminalID) 

(MsgID) 

(NRSFaultGroup) 

(NRSFaultCode) 

(FaultDescription) 

(MessageVendor) 

(MessageCustomer) 

(Custom) ? 

</NRSFault_Response> 

Listing 4.3 – XMLVend 1 data model - Fault response message 

A default list of fault scenarios was compiled as part of XMLVend 1. The list defined fault 

scenario codes, fault descriptions and scenario appropriate vendor and customer messages. 

Examples of these faults are given in Table 4-3. The complete list is given in appendix A 

of [51]. 

NRSFault

Group 

NRSFault

Code 

FaultDescription Operator Message Consumer 

Message 

000 - General Fault Scenarios – Applies to all Use Cases 

000 001 Operator (x) Session has 

timed-out. X = Operator 

Name 

Re-login. To be defined in 

next version 

000 002 A server error occurred 

processing request (x). 

X=MsgID and error message 

describing specific error. 

Re-try. If error persists 

contact service 

provider. 

To be defined in 

next version 

UC102 – Purchase Credit Token – Fault Scenarios 

102 009 Unable to process 'Purchase 

Credit Token' due to business 

rule: (x). X= the business rule 

being violated + ref number. 

Retry request without 

breaking the described 

business rule or contact 

service provider.  

To be defined in 

next version 

Table 4-3 – Example XMLVend 1 Faults 

4.3.5 Message delivery reliability 

In some scenarios, a client sends a request message but does not receive a response 

message. The client is now an uncertain of the outcome of the requested use case. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 59 

Therefore, the protocol design had to provide a mechanism to ensure message delivery or a 

mechanism to inform the client or server that a message was not successfully delivered.  

The working group supported the inclusion of an additional use case, “Issue Advice” use 

case to enable message delivery reliability. The “Issue Advice” use case placed the 

responsibility and control of the resolving message delivery fault scenarios with the client 

application. XMLVend 1 defined two types of advice messages: reversals and 

confirmations. An implementation could implement reversals only or a combination of 

reversals and confirmations. 

• Negative Confirmation: When a client issues a request and receives a valid response, 

then the client continues operating as normal. However, if the client does not receive a 

valid response, it can send a system reversal message to the server. The reversal advice 

message indicates to the server that the client has not received the response message 

and that the associated transaction must be rolled-back. In this implementation, 

confirmations are implied. 

• Positive Confirmation: For all valid responses received by the client, a confirmation 

advice message to the server. However, if the client does not receive a valid response, it 

can send a system reversal message to the server. The reversal advice message 

indicates to the server that the client has not received the response message and that the 

associated transaction must be rolled-back. In this implementation confirmations are 

explicit. 

4.3.6 Protocol security 

This section discusses the XMLVend security framework requirements and the selection 

process. 

4.3.6.1 XMLVend security requirements 

Figure 4.4 illustrates the security context of Online Vending. It was assumed that the 

protocol would be implemented over an un-trusted and insecure network. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 60 

Untrusted, 

Insecure Network

(Internet)

Online Vending Gateway

Online Vending Server

Normal Client

Normal Client
XMLVend Security Context

 

Figure 4.4 – Online Vending Security Context 

The security requirements of the online vending protocol were analysed and presented in a 

working group discussion document [37]. It was essential that the protocol’s security 

services protected the transacting parties from each other and attacks from malicious third 

parties. The online vending security requirements were: 

• Authentication: Authentication is the process of confirming the claimed identity of an 

entity. Client authentication is necessary to ensure that only legitimate vending clients 

use the service. Once a vending client has been authenticated, the service can give the 

client access to authorised vending services. While the server would be reluctant to 

allow any client to connect and make requests, vending clients also need to be sure they 

are communicating with legitimate server. Therefore mutual-way authentication was 

essential. 

• Authorisation: This ensures that vending client has the required rights for the services 

being requested. For example, a client may not be authorised to perform a Cancel 

transaction function, but may be authorised to perform a Purchase Credit token 

transaction function. 

• Confidentiality: The token information need not be encrypted since it was already 

encrypted using the STS protocol. However, customer information should be kept 

confidential. 

• Integrity: Modification of request and response messages in its path from client to 

server and back can significantly impact the reliability and trust worthiness of the 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 61 

system. Therefore such modifications should be prevented and if it should occur it 

should be detectable so that the appropriate action can be taken. 

• Non-repudiation: The transacting parties should be protected from either party 

repudiating a transaction. Non-repudiation guarantees that both the server and client are 

protected against claims from either party that the transaction did or did not occur at a 

later point in time.  

• Accessibility / Availability: The success of an online vending system depends mainly 

on its high availability. Therefore, mechanisms need to be provided to prevent attacks, 

like denial-of-service (DoS), from outside or inside of the system hosting the service.  

• Audit: A record of successful and unsuccessful service requests needs to be kept in 

order to: 

o Detect unauthorised access attempts; 

o To identify individuals attempting to access resources without proper 

authorisation; and 

o As evidence in cases of disputes. 

The analysis however revealed that the following minimum security services would be 

acceptable: 

• Authenticate the origin of messages (the source of a message must be proven); 

• Guarantee the integrity of messages (contents of messages cannot be changed without 

being detected by the receiver); and 

• Securing the message transmission was not essential. 

In terms of communication and performance requirements, the XMLVend security 

protocol had to also consider the following: 

• Communication bandwidth required must be kept as low as possible; 

• Number of messages passed to achieve a part of communication must be minimized in 

order to maximize the responsiveness of the system; and 

• The number of resources required to communicate to achieve a secure communications 

must be minimized. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 62 

4.3.6.2 XMLVend security options 

The author, supported by the working group, commissioned Professor Walter Penzhorn, 

formerly of the University of Pretoria, to review the following security systems and 

protocols: 

• Kerberos; 

• Secure European System for Applications in a Multi-vendor Environment (SESAME); 

• Secure Electronic Transaction (SET); 

• Password Encryption and Authentication Routine Library (PEARL); and 

• Secure Sockets Layer (SSL). 

The conclusions and recommendations of the review were [42]: 

• Kerberos would be suitable option for securing XMLVend, since it provides all the 

necessary security services. Furthermore, since the source code is freely available, it 

can be easily adapted to the requirements of the proposed system. 

• SESAME is based on the Kerberos protocol, and in a certain sense it may be regarded 

as a derivative of Kerberos. SESAME also makes use of a trusted third party, though 

the security architecture is more complex than that of Kerberos and was therefore not a 

recommended option. 

• The secure electronic transaction (SET) standard is prohibitively complex, and 

extremely difficult to implement and maintain. Consequently, to date no vendor has 

implemented SET, and it seems highly unlikely that SET will ever become operational. 

Therefore, SET would not be feasible option for securing XMLVend. 

• The PEARL protocol may be too time-consuming for clients with limited 

computational capability, such as a smart card or similar device, and may pose a 

serious bottleneck in the execution of the protocol in such environments. Furthermore, 

although PEARL was based open Encrypted Key Exchange (A-EKE) protocol, it was a 

PRISM
5
 proprietary implementation. 

• SSL provides all the necessary security services required by XMLVend. SSL is also 

well established, widely used, easy to deploy and a trusted protocol to secure Internet 

connections. It does however have some disadvantages, such as being tightly coupled 

to transport layer protocol (TCP), does not support message level non-repudiation and 

                                                 
5
 PRISM is a South African company and major player in the prepayment electricity vending 

industry. They provide outsourced vending solutions to serveral utilities, including Eskom. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 63 

has significant central processing unit (CPU) resource requirements. Despite these 

shortcomings, SSL would be a recommended option for securing XMLVend. 

The author motivated and recommended that SSL / TLS would be the most appropriate 

security protocol for XMLVend to initially implement. This decision was motivated by: 

• The recommendation of industry expert, Professor Walter Penzhorn and 

• Recommendations of the WS-I Basic Profile [40]. See also section 4.4.1.6. 

The working group supported the author’s recommendation and SSL / TLS was adopted as 

the security protocol for XMLVend. The author then undertook an analysis of the SSL / 

TLS and its application to web services. This analysis was used to determine how best to 

specify the implementation of SSL / TLS to meet the requirements of XMLVend. 

4.3.6.3 SSL / TLS overview  

SSL is specified in an expired Internet Draft working document of the Internet Engineering 

Task Force (IETF). Transport Layer Security Version 1 (TLS 1.0) specification is an 

Internet Request for Comments specification (RFC 2246). TLS 1.0 is based on SSL 3.0 

and the differences are not major. The differences are however significant enough that TLS 

1.0 and SSL 3.0 do not interoperate. XMLVend supports both protocols, therefore the 

terms SSL and TLS are used interchangeable in this document. 

SSL provides point-to-point security between a client and a server, connected over an 

insecure network. The security services offered by SSL include authentication of servers 

(always) and clients (optional) and message confidentiality and integrity (always).  

SSL depends on public key cryptography to securely exchange secret keys. Public key 

cryptography uses two separated but mathematically related keys, a public key and a 

private key. Although both keys are related it is not possible by knowing one of the pair to 

discover or calculate the other. For example, a server would freely distribute its public key 

and keeps the private key secret. Clients wishing to communicate securely with the server 

encrypt data with the server’s public key and only the server will be able to decrypt the 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 64 

data using its private key. This provides a secure and powerful mechanism for secret key 

exchange for web based applications.  

Public key cryptography also provides a mechanism for authentication. A server wishing to 

prove its identity to a client encrypts some known data with its private key. The client 

decrypts the data with the server’s public key and compares it to the known data. If the 

data match then the client is confident the data was received from the server since only the 

server has the private key that encrypted the known data. 

The client however has one problem - how can the client be certain that public key really 

belongs to the server and not an entity pretending to be the server? This problem is solved 

using trusted digital certificates. A digital certificate is an electronic document in an 

X509v3 format [60] that contains the server’s public key. The certificate is electronically 

signed by a third party. The third party guarantees that the certificate holder (server) is the 

owner of the corresponding private key. This mutually trusted third party is referred to as a 

certificate authority (CA). 

Public key cryptography however has one major disadvantage. It is computationally 

intensive and therefore “slow” to process public key operations. SSL therefore takes a 

middle of the road approach. It makes use of public key cryptography for authentication 

and to exchange traditional share secret keys. The shared secret keys are then used to 

create a secure connection using symmetric cryptography. 

SSL operates between the transport layer and the application layer. It provides security 

services to layer 5 protocols and associated applications (Figure 4.5). It is predominantly 

used by web based applications using hyper-text transfer protocol (HTTP). HTTPS is the 

acronym that identifies HTTP secured with SSL. This means that application level 

protocols requiring secure communications can operate as usual with the assumption the 

SSL layer will provide the required security services. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 65 

Application

Presentation

Physical

Data Link

Network (IP)

Session

TLS

TCP
TRANSPORT

Application

Presentation

Physical

Data Link

Network (IP)

Session

TLS

TCP
TRANSPORT

The Network 
Cloud

Client Server

 

Figure 4.5 – SSL / TLS over TCP /IP 

SSL makes use of a TCP connection to provide a reliable end-to-end network connection 

between client and server. A transport connection secured with SSL is referred to as a SSL 

connection. An SSL connection is characterised by security parameters like encryption 

keys, message authentication code (MAC) keys and cryptographic algorithms. The 

algorithms used are referred to as the ciphersuite. Multiple SSL connections can be part of 

SSL session. The SSL session is characterised by security parameters like ciphersuite and 

master key. All SSL connections belonging to a SSL session derive their security 

parameters from the session master key. 

Figure 4.6 illustrates SSL consisting of two layers of protocols. The SSL record protocol 

provides basic security services to the three higher layer protocols. The three higher-layer 

protocols are:  

• The handshake protocol; 

• The Change Cipher Spec Protocol; and  

• The Alert Protocol.  

 

Figure 4.6 – SSL Protocol Stack [57] 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 66 

Figure 4.7 shows the full exchange needed to establish a logical connection between client 

and server. 

• Client Hello (unencrypted): The client sends a hello message to the server. The 

message defines the SSL version supported by the client, a random number use to seed 

the cryptographic computations, session-id, a list of ciphers and compression 

algorithms the client supports. 

• Server Hello (unencrypted): The server responds with the protocol version, a random 

number to seed cryptographic computation, a session-id, a cipher and compression 

algorithm.  

• Server Certificate (unencrypted): The server sends its certificate in a standard 

X509v3 format. The client uses the certificate to authenticate the server’s identity. 

• Client certificate request (unencrypted) (optional): The server sends the certificate 

request message to request the client present its certificate to the server. 

• Server Done (unencrypted): The server done message indicates to the client that the 

server has completed its part of the initial SSL negotiation. 

• Client certificate (unencrypted) (optional): The client then presents its certificate to 

the server. 

• Certificate verify (unencrypted) (optional): This message is used by the server to 

authenticate the client. 

• Client key exchange (unencrypted): This message provides the client shared secret 

keys to the server encrypted using the server’s public key. 

• Client change cipher spec (unencrypted): This message indicates to the server that 

all subsequent communication will be encrypted. 

• Client finished (encrypted): This client message is encrypted using the agreed 

security parameters. The server must be able to successfully decrypt this message to 

continue with the communication. 

• Server change cipher spec (unencrypted): This message indicates to the client that 

all subsequent communication will be encrypted. 

• Server finished (encrypted): This server message is encrypted using the agreed 

security parameters. The client must be able to successfully decrypt this message to 

continue with the communication. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 67 

Client Server

ClientHello

ServerHello

Server Certificate

Client Certificate Request

ServerHelloDone

Client Certificate

Certificate Verify

ChangeCipherSpec

Client Finished

ChangeCipherSpec

Server Finished

Establish protocol version, session 
identifier, cipher suite, compression 
method, exchange random values 

Send server certificate, optionally 
request certificate.

Send client certificate.

Change cipher suite and finish 
handshake.

Client Server

 

Figure 4.7 – SSL Handshake Messages 

Once the parties are authenticated, the SSL secure record protocol ensures the 

confidentiality and integrity of application layer data being transmitted. The secure record 

protocol operates as follows (Figure 4.8): 

• The applications layer data is fragmented into manageable blocks. 

• The first fragment is optionally compressed. 

• To ensure integrity of the fragment, a message authentication code (MAC) is computed 

using the negotiated algorithm and cryptographic keys. The MAC is then attached to 

the fragment. 

• To ensure confidentiality of the data (fragment + MAC) it is encrypted using the 

negotiated encryption algorithm and cryptographic keys. 

• The SSL record header is attached to encrypted data, and transmits the resulting unit in 

a TCP segment. 

• The process is repeated for all remaining fragments. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 68 

Application Data

Record Protocol Units

Compressed Units

MAC

Encrypt

TCP Stream

abcdefghi

abc def ghi

 

Figure 4.8 – SSL record operation protocol 

4.3.6.4 XMLVend SSL / TLS recommendations 

The analysis of SSL / TLS and its application to web services resulted in the following 

recommendations being specified in XMLVend. XMLVend would support the use of 

either TLS 1.0 or SSL 3.0 and adhere to the HTTPS constraints specified for the 

Synchronous Request / Response usage scenario in WS-I Usage Scenarios specification 

[40]. 

XMLVend would also mandate client authentication and recommends implementations 

utilise the certificate profile illustrated in Figure 4.9. Client applications should ensure that 

the client certificate common name (CN) field contains the same value as the client 

identifier parameter in their XMLVend request messages. If they do not contain the same 

value, the server should raise an exception and suspect possible malicious activity. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 69 

 

CN Server or client identifier 

O Utility Commercial Name 

OU Utility Department 

L City 

S Province 

C Country (ZA) 

altName Address 

Figure 4.9 – XMLVend SSL certificate profile 

It is also recommended that private keys are stored in a secure location, such as a dedicated 

hardware storage device. Clients should make use of portable removable hardware storage 

devices, such as a smart card or similar device. Servers should make use of hardware 

security modules (HSMs) that offloads the SSL processing from the server. 

The quality of SSL/TLS protection depends on an adequate SSL/TLS ciphersuite and key 

length being selected. Care must be taken in selection of ciphersuites and key lengths to 

prevent downgrade attacks. Ciphersuite options that have inadequate security should not be 

offered by client or server. It was recommended that XMLVend implementations only use 

ciphersuites recommended by [61]. 

4.4 XMLVEND AND WEB SERVICES 

The XMLVend protocol design was realised within the web services framework. The web 

services framework was selected to meet the interoperability requirement between client 

and server implementations. Especially, since client and server implementations may use 

differing, platforms, operating systems, programming languages and be developed by 

different suppliers. However, to ensure maximum interoperability between client and 

server implementations it was important the XMLVend protocol define exactly how web 

service implementations should operate. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 70 

This section provides an overview of web services and related technologies. It then 

discusses XMLVend specific implementation details. 

4.4.1 Web services overview 

This section provides an overview of the web service framework technology suite. The 

literature review revealed several definitions for Web services but the definition that 

captures the essence of Web service is: 

Web services are a standard platform for building interoperable distributed applications 

using open Internet based transport and messaging protocols. 

A more technical definition by the World Wide Web Consortium (W3C) is [39]: 

A Web service is a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine-processable format 

(specifically WSDL). Other systems interact with the Web service in a manner prescribed 

by its description using SOAP messages, typically conveyed using HTTP with an XML 

serialization in conjunction with other Web-related standards.  

Web services combine the best aspects of component-based development and Web 

technologies. Web services represent black box functionality that can be used without 

worrying about how the service is implemented. Unlike current component technologies, 

Web services are not accessed through object-model-specific protocols such as, Common 

Object Request Broker Architecture (CORBA), Distributed Component Object Model 

(DCOM) and Remote Method Invocation (RMI) [64]. Instead, Web services are accessed 

through ubiquitous Internet protocols and data formats, such as HTTP, SOAP and XML. 

Web Services are therefore realised using the following web based technologies: 

• Platform-independent format language for structured data exchange. This is achieved 

through the use of eXtensible mark-up language (XML). 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 71 

• A way of describing the structure of the data being exchange. This is achieved through 

the use of XML Schema. 

• A standard method of packaging the data for transmission over the communications 

network. This is achieved through the use of SOAP. 

• A way for the Web services to describe their public interface to clients. This is 

achieved through the use of web services description language (WSDL) [63]. 

• A standard method of transporting the data across the network. This is achieved 

through the use of hypertext transport protocol (HTTP) and TCP/IP. 

The following sections discuss each of these technologies in more detail. 

4.4.1.1 eXtensible Markup Laguage (XML) 

XML is a standard for describing data with a system of tags. XML defines the rules for 

constructing XML documents, defining and using tags, elements and attributes. XML is 

very simple yet powerful since the tags used to describe data, are user defined and not 

predefined as with mark-up languages like Hypertext Markup Language (HTML).  

Therefore, XML empowers individuals, communities and industries to develop their own 

mark-up languages (vocabularies) that define their own specific domain or industry [62]. 

For example, MathML
6
, which is a mark-up language that is to represent mathematical 

formulae using XML tags.  

XML is an effective mechanism to separate the data and the presentation layers, which 

allows data to be manipulated without the need to consider presentation layer issues. XML 

is platform independent which makes it easier for applications running on differing 

platforms to not only share data but also processes. In additional to being simple to create 

and parse, XML is platform and programming language independent. This characteristic of 

                                                 

6
 MathML is intended to facilitate the use and re-use of mathematical and scientific content 

on the Web and for other applications such as computer algebra systems, print typesetting, 

and voice synthesis. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 72 

XML is the reason XML has been adopted as the de-facto data format for data sharing 

between disparate systems. 

Listing 4.4 illustrates an XML representation of an FBE token issue. 

<creditTokenIssue type="FBECredTokenIssue"> 

 <desc>FBE Token</desc> 

 <meterDetail ti="07" krn="1" sgc="100611" 

msno="06686069342"> 

  <meterType tt="02" at="07"/> 

 <meterDetail> 

 <token xsi:type="STS1Token"> 

  <stsCipher>12342345345645675678</stsCipher> 

 <token> 

 <units siUnit="kWh" value="50"/> 

 <resource xsi:type="Electricity"/> 

<creditTokenIssue> 

Listing 4.4 – An XML representation of an FBE token issue 

4.4.1.2 XML Schema 

XML provides a simple way of representing data but it does not define the data types and 

how to validate the data. Web services is about data exchange between heterogeneous 

applications, however data exchange cannot be accomplished without a common, agree-

upon type system that provides standard types and enables users to define their own types 

[53]. The W3C XML Schema or XML Schema Definition (XSD) is the standard that 

specifies built-in types and a language to define user specific types.  

XSD is used to describe the structure of an XML document and is the type system of Web 

services. XSD defines a type of XML document in terms of constraints upon what 

elements and attributes appear in the XML instance document. It also describes the 

relationships of elements and attributes, their data types and possible constraints of the data.  

XSD makes it possible for software to validate XML documents in order to ascertain 

whether it is a valid instance of that XSD. When services are developed in a development 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 73 

language for example C#, VB.NET or Java, the data types used must be translated to XSD 

types to conform to Web Services standards. 

Listing 4.5
7
 illustrates XSD for XML data in Listing 4.4. 

<complexType name="MeterSpecificTokenIssue" abstract="true"> 

 <sequence> 

  <element minOccurs="1" maxOccurs="1" name="desc" 

type="Msg"/> 

  <element minOccurs="1" maxOccurs="1" name="meterDetail" 

type="MeterDetail"/> 

  <element minOccurs="1" maxOccurs="1" name="token" 

type="Token"/> 

 </sequence> 

</complexType> 

 

<complexType name="CreditTokenIssue"> 

 <complexContent> 

  <extension base="MeterSpecificTokenIssue"> 

   <sequence> 

    <element minOccurs="1" maxOccurs="1" name="units" 

type="Units"/> 

    <element minOccurs="1" maxOccurs="1" name="resource" 

type="Resource"/> 

   </sequence> 

  </extension> 

 </complexContent> 

</complexType> 

Listing 4.5 – FBE token issue - XSD 

4.4.1.3 Simple Object Access Protocol (SOAP) 

SOAP provides a standard mechanism to invoke services within the Web services 

framework. SOAP can be described as the protocol that facilitates process sharing between 

disparate systems. Similar to how XML facilitates data sharing between disparate systems. 

The SOAP specification provides defines the XML format for a SOAP message and how 

to communicate SOAP over HTTP.  

                                                 
7
 Not all data definations and are shown for simplicity purposes. The complete listing can retrieved 

from http://nrs.eskom.co.za/xmlvend. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 74 

SOAP is actually a bit of misnomer as it implies that Web services representation is an 

object when in fact it does not have to be an object. A Web service can written as a series 

of C functions and still be invoked using SOAP [53].  

A SOAP message is a XML document consisting of the three main elements. 

• The <Envelope> element is the top-level element of a SOAP message and wraps the 

actual contents of the message. 

• The optional <Header> element contains information that does not form part of the 

message itself. Routing and security information as examples of information usually 

communicated in the <Header> element. 

• The <Body> element contains the actual request or response message the client or 

server respectively. It may also contain a SOAP <Fault> message. 

The benefits of using SOAP are: 

• It is becoming the standard for business to business integration. 

• SOAP supports the packaging of auxiliary information with a service request. This 

could be auxiliary security or transactional information or additional information, 

which is relevant to some role players. 

• It supports publication of services in registries (UDDI and ebXML registries) for 

lookup by clients. 

• There are a number of frameworks, which automate the mapping from normal 

programming languages to SOAP. These include JAX_RPC from Sun, Axis from 

Apache, .Net from Microsoft and others. 

Listing 4.6 illustrates XML data being transported in an SOAP message. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 75 

<?xml version="1.0"?> 

<Envelope> 

 <Body> 

  <creditVendResp> 

   . 

   <creditTokenIssue type="FBECredTokenIssue"> 

     <desc>FBE Token</desc> 

     <meterDetail ti="07" krn="1" sgc="100611"    

msno="06686069342"> 

      <meterType tt="02" at="07"/> 

     <meterDetail> 

    <creditTokenIssue> 

   . 

  </r0:creditVendResp> 

 </Body> 

</Envelope> 

Listing 4.6 – FBE token issue - SOAP 

4.4.1.4 Web Services Description Language (WSDL) 

WSDL is a syntax and vocabulary for creating an XML-based interface to an application. 

WSDL specifies a standard format for specifying messages and data passed between a 

Web services client and server, and describes the semantics for these messages (that is, 

unidirectional or bi-directional, asynchronous or synchronous). It also includes directions 

for accessing a Web service using one or more transport protocols. 

A WSDL document includes nine basic XML elements, which define and describe a Web 

service and how to implement or use it. Five elements are abstract in that they provide 

general information about what the Web service does and three are concrete, which means 

they format this information for a specific network protocol and address. The final element 

provides definitions relating to the service.  

The definitions element is the first element in a WSDL document. It identifies 

namespaces and schemas used by Web services included in the document. A single WSDL 

document can define any number of Web services, although most documents cover only 

one service. The definitions element also specifies a “target” namespace to prevent name 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 76 

collisions when one WSDL file imports information from other, physically separate WSDL 

files. 

WSDL documents may include an import element. This optional element references 

information located in physically separate files. It is usually used to identify the location of 

an external schema. 

The five abstract elements, portType, operation, message, part and type 

provide implementation independent information about what a Web service does. These 

elements function like abstract classes in an object diagram describe functionality but are 

never instantiated. The abstract elements are general descriptions of a Web service’s 

functions. The abstract elements will be described from the largest to the smallest grained. 

However, the WSDL document defines the elements in the opposite direction, starting with 

Type and ending with PortType. 

• portType: The portType element specifies a name and a set of operations or 

services associated with a specific Web service. As such, the port type is an interface 

that describes the Web service’s operations or services, independently of any network 

protocols or physical locations. The idea is first to define what the Web service does 

and then provide specific access information such as protocols, bindings and addresses 

for locating and using the Web service. 

• operation: Each operation element is an actual service offered by the 

portType. Like operations described with programming languages, port type 

operations have inputs, outputs and optional faults. WSDL uses four types of 

operations: 

o One-way, where the client sends a request to the server but does not receive 

a response. 

o Notification, where the server sends a request to the client and does not 

receive a response. 

o Request/Response, where the client sends a request to the server and the 

server returns a response to the client. 

o Solicit/Response, where the server sends a request to the client and the 

client returns a response to the server. WSDL 1.1 has no protocol binding 

for Solicit/Response. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 77 

• message: Operations use message elements to communicate information, such as 

inputs, outputs and faults. Each message element includes the name of the message 

and at least one part. Each input, output and fault has a corresponding XML element 

within the message. 

• part: The part element separates the message content into logically separate data. 

Each part refers to an element of a specific data type. 

• type: The type element identifies the data types such as strings, floats, structs or 

integers used by the operations and identify the address of the documents that define 

these datatypes. Datatypes can be simple or complex. By default, WSDL documents 

use standard W3C XML Schema (XSD) datatypes, but types defined in document type 

definitions (DTDs) or other schemas are also acceptable. 

The three concrete elements, service, port and binding format information for use 

with network protocols and provide the address where this instance of the service exists. 

Concrete elements are described from the largest to the smallest but are also specified in 

WSDL document in the opposite order. 

• service: The service element names the service and defines it as a collection of 

ports and bindings. 

• port: Each port element identifies the name of the port, its address and its binding. 

The address format depends on the transport protocol specified by the binding; in most 

cases, it appears as a uniform resource location (URL). 

• binding: The binding element connects, or binds, the Web service’s operations to a 

specific transport protocol. The WSDL 1.1 specification provides pre-built bindings for 

SOAP 1.1, HTTP GET/POST and MIME protocols. 

4.4.1.5 Hyper-text Transport Protocol (HTTP) 

HTTP is an open standard that is administered by the World Wide Web Consortium (W3C) 

to transfer data between a client and a server. Although HTTP is widely implemented by 

web browsers to request hyper text mark-up language (HTML) pages from web servers, 

HTTP is not limited to browser applications. HTTP is also widely utilised to transport 

XML messages between web applications. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 78 

HTTP is a request / response application layer protocol and makes use of a transport 

control protocol (TCP) layer connection between client and server. The client is 

responsible for setting up the TCP connection. After the initial TCP exchange, the client 

sends it HTTP request and the server responds with the requested data. The server is then 

responsible for closing the TCP connection. 

The first versions of HTTP required clients to establish separate TCP connections for each 

new HTTP request. For a client issuing high-volume HTTP requests such as an XMLVend 

gateway, this would create a significant performance bottle neck. That is, separate TCP 

connection must be created for each XMLVend request / response message pair. 

HTTP version 1.1 eliminated the problem of multiple TCP connections by introducing 

connection persistence as a default mechanism. Connection persistence allows a client to 

use same TCP connection for all HTTP requests. Persistence requires the co-operation of 

client and server. The client must indicate that it supports persistence and the server must 

not close the TCP connection after the first client request. Persistence was also supported 

in HTTP version 1.0 but was not a default setting and was therefore not support by several 

implementations. Figure 4.10, illustrates the setup of a TCP connection, exchange of HTTP 

request and response messages and then closing of the TCP connection. 

 

Figure 4.10 – HTTP Traffic - XMLVend Request / Response 

HTTP defines one message format for request messages and one for responses. Figure 4.11 

illustrates the HTTP request message format.  

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 79 

Request-Line

Message Headers

(optional)

Blank Line

Message Body 

(optional)

 

Figure 4.11 – HTTP request message format 

It starts with the request line, which indicates the method, the resource being requested and 

the HTTP version the client supports. Each separated by one or more spaces. 

HTTP defines four basic methods: 

• GET 

• POST 

• PUT and 

• DELETE. 

GET is the simplest HTTP operation and used to request a resource from the server, 

identified by a uniform resource identifier (URI). This is usually a uniform resource 

location (URL) of the web page being requested. The POST method allows the client to 

submit information to the server. This method is used by SOAP to submit request to the 

server. The PUT method is used to transfer objects to the server, its most common purpose 

is to upload files to the server. The DELETE method is used to delete objects from the 

server. 

After the request-line, the request may include one or more lines of message headers. 

Three headers types are defined: 

• General headers apply to HTTP communications in general. 

• Request headers apply to the specific request and 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 80 

• Entity headers apply to the message body. 

A blank link follows the headers. If the request contains a message body, it follows directly 

after the blank line. The blank line identifies the end the request message headers.  

Listing 4.7 is an example of HTTP POST request containing an XMLVend request 

message. 

POST /xmlvend-server/service/ HTTP/1.1 

SOAPAction:  

User-Agent: Jakarta Commons-HttpClient/3.0 

Host: 172.24.41.32:8080 

Content-Length: 905 

Content-Type: text/xml 

 

<?xml version="1.0"?> 

<Envelope> 

 <Body> 

   <creditVendReq>  

 . 

 . 

 . 

   </creditVendReq> 

 </Body> 

</Envelope> 

Listing 4.7 - HTTP Request - XMLVend Request 

HTTP responses look like HTTP requests (Figure 4.12). 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 81 

Status-Line

Message Headers

(optional)

Blank Line

Message Body 

(optional)

 

Figure 4.12 – HTTP response message format 

The only difference is the request-line is replaced by a status-line. The status-line indicates 

the highest HTTP version supported by the server, the status code and the reason phrase. 

The status code is a three digit number that indicates the result of the request. The reason 

phrase is a human readable phrase describing the status code. The status-line is then 

followed by the message headers and then the message body. Listing 4.8 shows a HTTP 

response containing an XMLVend response message. 

HTTP/1.1 200 OK 

Content-Type: text/xml 

Transfer-Encoding: chunked 

Date: Thu, 02 Nov 2006 14:07:04 GMT 

Server: Apache-Coyote/1.1 

 

<?xml version="1.0"?> 

<Envelope> 

<Body> 

   <creditVendResp>  

 . 

 . 

 . 

   </creditVendResp> 

</Body></Envelope> 

Listing 4.8 – HTTP Response - XMLVend Response 

HTTP is also a very attractive protocol since most firewalls allow traffic through the HTTP 

port, 80. Therefore, Web services do not need special firewall configurations to make use 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 82 

of Web services that are hosted on the other side of firewalls. Such firewall “support” is 

particularly useful in business to business applications. 

4.4.1.6 Web service – Interoperability (WS-I) compliance 

The primary challenge to widespread Web service adoption has been lack of interoperable 

web service implementations. There are three main reasons for these interoperability 

problems: 

• Ambiguity among the interpretations of the existing web service standards; 

• Differences among specifications that have yet to gain widespread adoption; and 

• Insufficient understanding of the interactions among specifications. 

Information Technology (IT) leaders behind the web service specifications realised that 

interoperability is in the best interest of all industry participants. In early 2002, key 

industry leaders created the Web Services Interoperability Organisation (WS-I), an 

industry organisation focused on promoting Web Services Interoperability across platforms, 

operating systems and programming languages. 

WS-I is dedicated to accelerating the adoption of Web services by assisting in the selection 

and interpretation of Web services specifications. It also develops common best practices 

for web service development, deployment, and integration of business applications.  

Rather than creating new specifications, WS-I aims to meet its interoperability goals 

through the following deliverables: 

• Web Services Profiles that specify collections of specifications, along with 

clarifications of the ambiguities, so that they can be adopted in an interoperable fashion. 

• Web Services testing and implementation guidance to accelerate deployments. 

• Developments and encouragement of web services best practices, usage scenarios, use 

case and sample implementations that illustrate how web services profiles can be 

applied to solve interoperability challenges. 

• Creation of self-administered and self-validating test suites for conformance testing to 

WS-I profiles. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 83 

The WS-I profile, called Basic Profile (BP) version 1.0, was completed in April 2004. The 

BP states that conforming Web services must use the following web service specifications 

SOAP 1.1, Web Services Description Language (WSDL) 1.1 and Universal Description 

Discovery and Integration (UDDI) 2.0. The BP provides valuable clarifications, 

refinements, interpretations and amplifications of those specifications to promote 

interoperability.  

In conjunction with the Basic Profile guidance, the WS-I has also released the WS-I Usage 

Scenarios [41]. Scenarios are independent of any application domain. They describe 

fundamental web service design patterns that can be combined and built upon like building 

blocks. The Synchronous Request/Response scenario is of particular interest to XMLVend 

as it supports the protocol’s message exchange pattern (see section 4.3.2). 

A complete sample application based on a supply-chain management scenario (complete 

with use cases, design, and implementation files) has also been made available by WS-I. In 

addition, the WS-I has provided a suite of testing tools for verifying BP conformance in 

user applications. The tools developed monitor the interactions with a web service, record 

those interactions and analyze them to detect implementation errors. The web service itself 

is treated as a “black box”. The testing tools do not interact with the web services, nor do 

they have any view of the supporting code or infrastructure. 

The guidance provided by the BP is organized into four categories: messaging, service 

description, service publication and discovery, and security. However, the bulk of the 

guidance is focused on the proper design of WSDL definitions as most web service toolkits 

map between WSDL definitions and programming language methods. It is 

incompatibilities at this level that usually cause significant interoperability problems. 

The BP states that WSDL must be used to describe web services. The WSDL specification 

was originally designed to accommodate a wide variety of scenarios and development 

styles. WSDL was intentionally designed to be open and flexible with numerous options 

and choices available to developers. The WS-I BP has addressed this situation by removing 

many of the choices. For example, it clarifies many of the ambiguities revolving around the 

proper use of WSDL and XML Schema "import" elements and "targetNamespace" 

attributes. It clarifies how to deal with such things as parameter order, one-way operations, 

response message wrapper elements, fault descriptions, and message validation [54]. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 84 

The BP also imposes several restrictions on the WSDL specification. The BP disallows: 

• The use of type systems other than XML Schema.  

• Solicit-response and notification operations  

• Operation name overloading.  

• MIME and HTTP GET/POST bindings 

• Transports other than HTTP. 

• Encodings, including the SOAP encoding. 

• Mixing styles within a single binding and  

• Requiring custom WSDL extensions.  

The clarifications and restrictions of WSDL, supports the WSDL-first development 

approach [35] since it gives the developer complete control over WSDL design. Starting 

development with the WSDL ensures the WSDL is WS-I compliant before coding the 

solution. This prevents expensive changes later in the development cycle to ensure 

interoperability. 

Also the restriction to document type encoding supported the notion that most messaging 

systems are loosely coupled using document exchange. A messaging client thinks in terms 

of sending a message (documents) to the server and receiving a response message 

(document). Messaging is focused on the format of the documents exchanged rather than 

remote objects interface. Focusing only on the message formats and by designing 

extensible messages, the client and server are less tightly coupled than in the case with 

RPC [53]. 

The BP also adopts, but does not mandate use of web services secured with either TLS 1.0 

or SSL 3.0 (HTTPS). That is, conformant Web services may use HTTPS; they may also 

use other countermeasure technologies or none at all. 

4.4.1.7 Putting it all together 

A Web service application may include several logical layers incorporating functions such 

as the Web service instance and application business logic. This section discusses the 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 85 

interaction of each layer of the web service stack (Figure 4.13). Each layer of the Web 

services stack represents one of the fundamental functional areas of a Web service instance. 

Data

SOAP Message

Transport

Data

SOAP Message

Transport

Client
Web Service

Server
Web Service

Message

 

Figure 4.13 – Web services stack  

A set of activities is defined for each layer of the Web service stack (Table 4-4). Activities 

are the fundamental operations that comprise a Web service. A single activity has several 

constraints applied to it from the Basic Profile [40]. For example, the “Send HTTP” 

activity is constrained by the guidelines specified in the SOAP 1.1 and HTTP sections of 

the Basic Profile.  

Layer Activity 

Data Layer Write XML 

Process XML 

SOAP Message Layer Write SOAP envelope  

Process SOAP envelope 

Write SOAP body 

Process SOAP body 

Write SOAP header 

Process SOAP header 

Transport Layer Send HTTP 

Receive HTTP 

Table 4-4 – Activities grouped by Web services stack layer 

 

• Data Layer: The data layer translates the application specific data into the model 

chosen for the specific Web service. The data layer includes the functions necessary to 

support flexible data typing. This layer maps to the wsdl:types and 

wsdl:message definitions within a WSDL, which in turn map to the types and 

elements defined the schema documents. The data layer is the most important layer 

with respect XMLVend protocol because the data layer describes the XMLVend 

messages pairs. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 86 

• SOAP Message Layer: The SOAP message layer is the infrastructure that processes 

SOAP messages, dispatches them, and may optionally fulfil quality of service 

requirements. On the sending side the message layer writes SOAP messages, based on 

the data model defined in wsdl:portTypes and wsdl:message definitions with 

the WSDL document. On the receiving side the message layer processes the SOAP 

messages and dispatches requests to the correct application or method. 

• Transport Layer: The transport layer sends and receives messages. For the BP, this 

includes only HTTP client and server platforms. This layer maps to the 

wsdl:binding and wsdl:port definitions with the WSDL document. 

4.4.2 Defining XMLVend as a web service 

This section discusses the key aspects required to define XMLVend within the web service 

framework for maximum interoperability. It discusses where and how the protocol will 

operate within web services framework. Support for message compression is also 

discussed. 

4.4.2.1 The XMLVend web service protocol stack 

Figure 4.14 illustrates the XMLVend Web Services Protocol Stack. XMLVend utilises all 

protocols as specified WS-I with the addition of GZIP (section 4.4.2.5).  

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 87 

XMLVend

XML Schema 1.0

WSDL 1.1

SOAP 1.1

HTTP 1.1

XML 1.0 (second edition)

WS-I Basic Profile 1.0a
WS-I Usage Scenarios 1.01

Use Case Message Pair Data Model 
(UML)

SSL / TLS

TCP / IP

GZIP

 

Figure 4.14 – XMLVend Web services Protocol Stack 

4.4.2.2 XMLVend web services process flow 

The XMLVend message pairs exchanged between XMLVend Client and Server are 

implemented using Synchronous Request / Response as described in WS-I Usage Scenario 

[41]. 

Figure 4.15 illustrates the high-level interactions between an XMLVend Client and Server 

using Synchronous Request/Response Usage Scenario: 

• The XMLVend Client invokes an XMLVend use case by sending an appropriate 

XMLVend request SOAP message bound to an HTTP request to the XMLVend Server. 

• The XMLVend Server executes the service and sends an appropriate XMLVend 

response SOAP message bound to an HTTP response to the XMLVend Client. 

Consumer /
Operator

Vending
Client

Vending
Server

XMLVend_Request

XMLVend_Response

Result Data

Result message

XMLVend use case

Synchronous Request / 
Response Message pair 
(SOAP message bound 
to HTTP)  

 

Figure 4.15 – Synchronous Request/Response Sequence Diagram 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 88 

Figure 4.15 illustrates the XMLVend request follow. Each bulleted item represents the 

activities performed within one layer of the XMLVend Web service stack required to 

complete the flow. The client activities are: 

• Data Layer: 

o Write XML. 

• SOAP Message Layer: 

o Write SOAP envelope 

o Write SOAP body 

• Transport Layer: 

o Optional Compress HTTP Body Message 

o Send HTTP 

The server activities are: 

• Transport Layer: 

o Receive HTTP 

o Uncompress HTTP Body Message (if required) 

• SOAP Message Layer: 

o Process SOAP envelope 

o Process SOAP body 

• Data Layer: 

o Process XML. The data payload is processed according to the data model 

and dispatched to the server application. 

• Application Layer: 

o Process Security Credentials. 

o Process business rules. 

4.4.2.3 XMLVend fault messages 

As described in section 4.4.2.2, a standard XMLVend fault response message is defined to 

communicate application layer errors to the client. This section describes implementation 

of the XMLVend fault response message as a standard SOAP fault message. SOAP faults 

must adhere to constraints and behaviour as prescribed by [41]. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 89 

The specific application error information will be compiled into the XMLVend Fault 

Response message (section 4.4.2.2) and included into the <detail> element of a 

standard SOAP <fault> element.  

Listing 4.9 is an example of an XMLVend SOAP fault. The standard SOAP fault is shown 

in bold font and the XMLVend specific fault message is shown in italic font as a child 

element <detail>. 

<?xml version="1.0"?> 

<Envelope> 

 <Body> 

  <soap:Fault> 

   <faultcode xmlns="">soap:Server</faultcode> 

   <faultstring xmlns="">Technical: Duplicate message ID 

detected.</faultstring> 

<detail xmlns=""> 

  <b0:xmlvendFaultResp> 

   <b0:clientID ean="6004708001" xsi:type="b0:EANDeviceID" /> 

   <b0:serverID ean="3210987651" xsi:type="b0:EANDeviceID" /> 

   <b0:terminalID ean="00000001" xsi:type="b0:EANDeviceID" />  

   <b0:reqMsgID uniqueNumber="2" dateTime="20061014225101" /> 

   <b0:respDateTime>2006-10-15T12:08:01</b0:respDateTime> 

   <b0:dispHeader>ONLINE VENDING ERROR</b0:dispHeader> 

   <b0:operatorMsg>Duplicate Msg detected.</b0:operatorMsg> 

   <b0:fault xsi:type="b0:BusinessRuleEx"> 

    <b0:desc>Duplicate message ID detected.</b0:desc> 

  </b0:fault> 

   </b0:xmlvendFaultResp> 

</detail> 

 </soap:Fault> 

 </Body> 

</Envelope> 

Listing 4.9 – XMLVend fault message 

4.4.2.4 Defining the XMLVend Specification  

The XMLVend specification was defined in three related documents, that is, WSDL, 

schema and specification document. The first draft WSDL was created with the assistance 

of Actaris. The process used was: 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 90 

• Microsoft .Net classes were created based on the XMLVend message designs.  

• The WSDL was auto-generate using a .Net framework utility. 

• The WSDL was then manually edited by Syntell to be WS-I compliant. 

• It was then edited by the author to include the fault response message. 

From this point forward the WSDL was manually edited. The manual editing had the 

following advantages: 

• They were not dependant of a particular toolset. 

• They did not include parameters that were particular to a specific toolset or platform. 

• The message formats were controlled and predictable. 

• They were always WS-I compliant. 

The WSDL was circulated to the working group and web service consultants, Solms 

Training and Consulting (STC) for review. STC made the following recommendations 

[44]: 

• Data validation constraints should be applied to schema elements. That is, appropriate 

data type, data ranges and regular expression patterns could be applied at the message 

layer data elements to improve data integrity before being processed at an application 

layer. 

• Ordering of the elements in WSDL file should match the message design. This would 

ensure consistency between the message design and messages realised in web services. 

• The Cancel Token web service was not implemented. 

The author then updated the WSDL, incorporating the STC comments. 

4.4.2.5 Message compression 

The verbose nature of XML and therefore the XMLVend messages lead some working 

group members to challenge the use of XML for the online vending protocol. Sighting 

significantly higher costs for data processing, data storage and data transmission [67]. A 

message compression strategy was therefore pursued to counter this challenge. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 91 

Initially the working group debated whether the message compression should be 

implemented at the SOAP or HTTP layers. Implementing compression at the SOAP level 

would mean the XMLVend would need to define the compression implementation details 

since SOAP did not support compression natively. HTTP on the other hand provided a 

built-in mechanism to support HTTP body compression. The working group agreed to 

utilise HTTP since it was a proven, simple and widely supported message compression 

technique.  

The working group also defined GZIP as the supported compression algorithm. GZIP was 

selected since it was natively support by HTTP and it was also well supported by popular 

development environments such as, Java and the Microsoft Dot Net. GZIP has been proven 

to be an acceptable general purpose compression algorithm for XML data and web service 

implementations [65][66]. 

HTTP messages will optionally be compressed (in both directions) by making use of the 

standard HTTP content encoding mechanism [58]. This is achieved by the client setting the 

appropriate HTTP request headers e.g.: 

• Content-Encoding: gzip 

• Accept-Encoding: gzip 

The vending server should respond with a 415 (Unsupported Media Type) message if it 

does not understand the encoding indicated by the Content-Encoding request header. The 

client may then retry sending the message without applying compression. 

The Accept-Encoding request header indicates that the client will accept "gzip", encoded 

data; otherwise the data will not be compressed by the server. Note: This compression 

occurs at an HTTP layer, and is not analogous to compressing the SOAP body within the 

SOAP envelope. 

Using the XMLVend 1.22 client and server reference implementations the impact of GZIP 

message compression was analysed. Figure 4.16 illustrates the comparison of compressed 

versus uncompressed messages for the various use cases.  

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 92 

0

1000

2000

3000

4000

5000

6000

Lo
gi
n

S
ta

rt_
Bat

ch ID
KC

T
V
en

d

Tria
l V

en
d

EBS
ST

R
ep

la
ce

m
en

t

R
ep

rin
t

Tot
al

ise
_B

at
ch

Lo
go

ut

XMLVend Messages

B
y
te

s

Total Message Size -
Compressed

Total Message Size - No
Compression

 

Figure 4.16 – Compressed versus Uncompressed XMLVend 1.22 Messages 

The average size of uncompressed and compressed XMLVend 1.22 request / response 

messages was 3167 bytes and 1975 bytes respectively. GZIP produced an average saving 

1192 bytes or 38%. This analysis revealed that GZIP significantly reduced the size of the 

request / response messages pairs. 

Figure 4.17 illustrates that XMLVend messages consist of 47% overhead introduced by 

HTTP and SSL. The average overhead across all XMLVend request / response messages 

was 53%. The analysis of the protocol overheads illustrated that the HTTP headers 

contributed significantly to the overall size of XMLVend messages. 

XMLVend Vend Message Stack

52.21

35.33

12.46

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Vend

P
e
rc

e
n

ta
g

e

%SSL Overhead

% HTTP Header

% Soap Body

 

Figure 4.17 – Vend Message Overhead 1.22 Protocols 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 93 

4.4.2.6 XMLVend 1 release and piloting 

The XMLVend 1.0 release included the specification document (NRS 009-6-10) and 

XMLVend test suite. The test suite consisted of a reference client and server 

implementation and a test tool to validate XMLVend message compliance. 

XMLVend 1.0 was updated 3 times and finally stabilised at version 1.22. Table 4-5, lists 

the XMLVend 1.0 updates. 

Version Updates 

1.0 First release. 

1.1 • Moved all message type definitions from the WSDL 

file into a separate schema file. 

• Corrected naming inconsistency of MsgID element. 

• The constraint of the NRSTrack2DataT data type was 

updated to be strict as specified in [29]. 

• Support was added for other resource types other than 

electricity. 

• A currency symbol was added to currency values. 

• The presence of appropriate elements were used 

determine the mechanism was used to identify a 

customer or meter. 

• The Trial vend and Key change token use cases were 

added. 

• All element and attribute multiplicities in schema were 

updated to be consistent with the message design. 

1.21 • A customer address element was added to applicable 

response messages. 

• A specialised key change token was created to better 

model a key change token pair. 

1.22 • The currency symbol attribute was removed and 

replaced with currency symbol element. 

• The “New” key change data was made optional in the 

key change request message.  

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 94 

• The schema “Qualification” attribute was set to 

"qualified" for elements and attributes to ensure correct 

validations. 

Table 4-5 – XMLVend Version 1 Updates 

XMLVend 1.1 was implemented by Actaris and Contour and tested as part of Eskom’s 

online vending project tender evaluation process. It was also implemented by Actaris as a 

live pilot in Eskom’s Western region. 

XMLVend 1.22 was implemented by Actaris as part of the Eskom’s national pilot project 

at 6 sites across South Africa [47]. The XMLVend test tools and reference 

implementations proved invaluable during the Actaris system development and testing. 

Figure 4.18, shows the Eskom Western region pilot site.  

 

Figure 4.18 – Eskom Western region pilot site 

The pilot installations fully tested and exercised the XMLVend compliant vending system. 

Although some minor XMLVend issues were identified it was acceptable for piloting 

purposes.  

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 95 

The Eskom pilot made use of the reversal advice message to “reverse” transactions that 

were not completed by the client. The pilot identified that advice reversals may open the 

utility to abuse for the following reasons: 

• It is the responsibility of vending clients to issue advice(reversal) requests. It is 

therefore impossible for the utility to distinguish between advice(reversal) requests that 

are genuine and those that are fraudulent.  

• The server depends on decisions made by the client to issue reverse transactions. 

The pilot also emphasised the need for accurate meter configuration identifiers (SGC, 

KRN and TI) on the vending server database. That is, the meter data stored on the server 

database needs to be the same as the meters configuration in the customer’s premise. 

However, since the server’s meter data did not always match the meter’s actual 

configuration this resulted in a significant number of tokens not working in customer’s 

meters. The problem was further exacerbated since pilot customers only required their 

meter serial numbers to purchase tokens and the rest of the meter data was obtained from 

the server database to generate the tokens. 

The only way to get the problematic token to work in the customers meter was to update 

the customer’s meter to match the server meter data. This required customers to be issued 

with key change tokens for entry into their meters before getting the problematic tokens to 

work in their meter. This caused major confusion and frustration to customers. Especially 

since customers had to be return to the vending point for the key change token to be issued. 

The pilot also highlighted the need for vending clients to use reliable communications 

infrastructure when communicating with the vending server. If the communication 

infrastructure fails vending stops and this results in long queues and very unhappy 

customers (Figure 4.19). 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 96 

 

Figure 4.19 – Connectivity problems cause long queues 

The working group recommended the release of XMLVend 1.22 as a “trial use” 

specification and to continue working towards XMLVend 2. XMLVend 2 would 

incorporate the lessons learnt from XMLVend 1.22 and include the additional functionality. 

4.5 SUMMARY 

In this chapter the XMLVend version 1 analysis, design and development was discussed. 

The following key protocol design outcomes were achieved by the author: 

• 15 use cases were defined. 

• The design of the use case request and response message pairs was defined using the 

XMLPay notion for data models. 

• A standard fault message was defined to communicate fault scenarios to the client. 

• The Issue advice use case message pair was defined to address message delivery 

reliability. 

• The synchronous request / response message exchange pattern was used to realise the 

use cases. 

• The use of SSL / TLS with mutual client and server authentication to secure the 

protocol communication. 

 
 
 



CHAPTER 4                                               DEVELOPMENT OF XMLVEND VERSION 1 

Electrical, Electronic and Computer Engineering 97 

• The protocol design was realised as a web service implementation. This resulted in the 

development the XMLVend WSDL and schema. 

• GZIP was also defined as an optional compression algorithm for XMLVend message 

pairs. 

The protocol stabilised at XMLVend 1.22 after three iterations. It was extensively piloted 

and tested. It proved functionally sound and was approved for “trial use” by the working 

group. However, the XMLVend 1.22 design and web service implementation was not 

object oriented. The design did not promote reusability, flexibility, extensibility and 

sustainability. This key design issue would have to be addressed in XMLVend 2 to ensure 

its migration beyond a “trial use” protocol. The working group therefore decided to 

continue working towards XMLVend 2 incorporating the lessons learnt and functionality 

omitted from XMLVend 1.22. 

 

 
 
 



 

 

CHAPTER 5  : DEVELOPMENT OF XMLVEND VERSION 2 

5.1 INTRODUCTION 

After the stabilisation of XMLVend 1.22 the author started work on the XMLVend 2. The 

focus of the XMLVend 2 development was: 

• Add new use cases. 

• Update and correct errors existing use cases and message pairs. 

• Redesign the XMLVend interface and message structures to promote “good design”, 

reusability and interoperability. 

• Improve understanding and maintenance of the specification. 

• Realise the XMLVend web service based on the “contract first” methodology.  

This chapter discusses the XMLVend 2 requirements. It is followed by the interface design 

analysis, message design process, exception handling and message reliability mechanism. 

Finally the implementation of the message design as web service is discussed. 

5.2 XMLVEND 2 REQUIREMENTS 

5.2.1 Use cases 

XMLVend 2 would include all XMLVend 1.22 use cases with the exception of the 

redundant Login and Logout use cases. This section discusses the new use cases and the 

enhancements to existing use cases. 

5.2.1.1 New use cases 

The new use cases were: 

• Create Deposit Slip Use Case: This use case generates (prints) a Vendor deposit slip 

with a server recommended deposit amount. It is implemented by online systems that 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 99 

operate in an upfront vending mode and therefore do not require vendor credit 

management through batches. 

• Account Payments Use Case: This use case enables customers to make account 

payments at vending points, such as debt recovery payments or service charges (but not 

limited to).  

• Vendor Credit Statement Use Case: This use case displays (prints) the vendor’s 

credit updates and current available credit. A server configuration determines the 

number or period of entries to be displayed. This function empowers the vendor to 

reconcile his deposits with those that have been processed on the online server, without 

the need to contact the utility. 

• Customer Fault Reporting Use Case: This use case enables the customer to report 

meter faults or customer queries at an online vending point. This function empowers 

customer’s that may not be able to travel to a utility walk-in centre or telephone the 

utility call centre. Further, it ensures that relevant information is captured from the 

customer at the vending point, such as meter details and customer details.  

• Update Meter Key Data Use Case: This use case only allows a key change to the 

meter configuration stored on the online vending database. This ensures that a risk free 

key change token is always issued. This use case is a more controlled version of the 

XMLVend 1.22 “Key Change Token” use case. Further, it is enhanced to allow for a 

matching power limit token to be issued with the key change token if required. 

• Meter Specific Engineering Token Use Case: This use case is aimed at the utility 

technician and is used to request meter maintenance tokens called , meter specific STS 

engineering tokens, as defined in NRS009-6-7 [20]. Generating the meter specific 

engineering tokens from the vending server ensures that meters are maintained and 

configured from a single data source, that is, the online vending database. This prevents 

the need for independent and possibly erroneous data sources being used to configure 

and setup meters. 

• Non-Meter Specific Engineering Token Use Case: This use case is aimed at the 

utility technician and is used to request meter maintenance tokens called, non-meter 

specific STS engineering tokens, as defined in NRS009-6-7 [20]. These tokens are not 

meter specific and can be used in any meter since they do not change the meters 

configuration but displays the meters configuration parameters. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 100 

5.2.1.2 Enhancement to existing use cases 

Enhancements to existing use cases were: 

• Reprint Transactions Use Case: This use case was named “Reprint token” in 

XMLVend 1.22 and only allowed the reprint of prepaid token transactions. 

However with the introduction of account payments use case, the reprint use case 

would need to support prepaid token transactions and account payment transaction. 

Therefore in XMLVend 2.1 it has been enhanced to reprint both prepaid token 

transactions and account payment transactions like debt recovery.  

• Purchase Credit Token Use Case: This use case has been enhanced to allow 

multiple transactions to be returned as part its response message. This enhancement 

was specifically aimed at supporting debt recovery as part of normal purchase 

credit token request. 

• Key Change Token Use Cases: Use cases returning key change tokens have been 

enhanced to allow for a matching power limit token to be issued (if required). 

• Issue Advice Use Case: XMLVend 1.22 specified the following advice message 

types: 

o Reversal and 

o Confirmation 

In order to avoid the potential issues discussed in section 4.4.2.6, a new use case 

scenario has been added, “Advice Last Response”. The advice last response request 

is used to automatically request a reprint of a transaction, when a response message 

is not received by the client. The advice last response confirms if the transaction 

was completed on the server or not before attempting a new transaction. It also 

prevents clients from just reversing transactions. 

5.2.2 Design requirements 

The key design requirement pursued by the author for XMLVend 2 was to implement 

“good design” principles throughout the development process. “Good design” is defined as 

follows [34]: 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 101 

• Responsibility localisation: A design with good responsibility localisation is often 

referred to as a design with a high level of cohesion. In such a design each component 

adheres to the single responsibility principle; each component thus has only a single 

responsibility at some level of granularity and all its attributes and services are 

narrowly aligned with its responsibility. 

• Clean layers of granularity: This very important aspect of good design enables one to 

work effectively at various levels of granularity. The layers should adhere to the 

dependency inversion principle, that is, components in a lower level of granularity 

should not have any dependency on higher-level components. Also, one should be able 

to understand a higher-level workflow without having to understand the finer details. 

At any level of granularity the responsibilities should be well defined and the workflow 

should be self-contained and comprehensible. 

• Decoupling: Decoupling provides a high level of flexibility and improves 

maintainability. If one component uses another component we effectively have a client-

server relationship. Generally clients would not want to lock into a particular service 

provider. Instead, the client defines the requirements in a contract. The contract 

specifies the services which service providers need to provide (the interface), the pre- 

and post-conditions for those services and the non-functional requirements. 

• Simplicity: Always keep it simple. Complexity results in increased development costs, 

risk and maintenance costs. A design which is understandable and conceptually 

intuitive is preferable above one which is difficult to explain and non-intuitive. 

• Architecture and technology neutral: The design should remain valuable over a long 

period. To this end the design should be able to survive technologies, changes in access 

mechanisms and architectural changes. This is usually achieved by following the 

guidelines of Object Management Group’s (OMG) Model Driven Architecture (MDA), 

which suggests that the core design should be technology and architecture neutral. It 

should be possible to map the design onto various technologies and architectures. 

Adhering to the above design principles provides the following benefits [34] to the 

XMLVend protocol: 

• Improved Understanding: Understanding is promoted by simplicity, good 

responsibility localization, intuitive naming, and the ability to view workflows at 

various levels of granularity.  

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 102 

• Reusability: Reusability is really a direct consequence of good responsibility 

localisation, together with a component based approach, where components realize well 

defined contracts. Classes which address a particular combination of responsibilities 

relevant for a particular problem are not generally re-usable. On the other hand, classes 

whose services address only a single domain of responsibility and whose behaviour are 

well defined in a contract are generally much more likely to be re-usable.  

• Testability: Testability is facilitated through specifying a contract for each component 

at any level of granularity. 

• Maintainability: Simplicity, responsibility localisation which results in localised 

maintenance, the ability to effectively work at different levels of granularity, 

decoupling, testability and reusability, all contribute to making a system maintainable.  

• Longevity: A design which is architecture and technology neutral can survive changes 

in technologies and architecture. Furthermore, all the design principles which assist 

maintainability contribute also significantly to the longevity of the design.  

5.3 DESIGNING THE XMLVEND 2 PROTOCOL  

Although web service standards specify how to reveal the interfaces and the syntax of 

message definitions for the XML documents that they send and receive, they do not 

specify the conceptual design of those services and their enabling documents. Therefore, it 

is essential that conceptual design of the messages be complete before the messages 

realised in a specific technology like web services. This supports the approach of using 

documents as loosely coupled interfaces and hiding implementation details, underlies the 

idea of service-oriented architectures (SOA) as a way to create new applications as 

services by integrating or combining components of others.  

The XMLVend 2 message design process was based on the URDAD system design 

methodology for service provider contracts [34]. URDAD is an iterative design 

methodology which designs the realisation of a use case across layers of finer and finer 

granularity, each layer with well defined responsibilities. URDAD requires that for each 

responsibility there should be a contract against which all service providers (components) 

which realise the responsibility can be tested.  

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 103 

5.3.1 Modelling the XMLVend protocol 

5.3.1.1 Unified Modelling Language (UML) Interfaces  

UML interfaces define: 

• A mechanism for decoupling from any particular service provider implementation. 

• It specifies the services or operations provided by the interface and the messages that 

are exchanged for each operation. 

UML interfaces can be thought of as contracts developed from the client perspective. The 

contract may have functional and non-functional requirements. The non-functional 

requirements include scalability, usability, reliability, security, performance and other non-

functional features. These are typically specified as quality of service requirements. The 

functional aspects are defined for each operation using a design-by-contract framework 

with: 

• Pre-Conditions: The service provider is entitled to refuse the service without breaking 

the contract if any of the pre-conditions is not met. However, if all the pre-conditions 

are met, the service provider is obligated to provide the requested service. Otherwise it 

is a breach of the contract. For example, a purchase credit token service may have a 

pre-condition that the supplied meter serial number must be valid. If the meter number 

is invalid the service can refuse to process the request without breaking the contract. 

• Post-Conditions: The post-conditions are deliverables of the service provider. These 

include the return value or values, but may also include service provider state 

information. For example, the post-condition of the purchase credit token will include 

the requirement to debit the vendor’s available balance and return a token to the client. 

• Invariance constraints (if required): These are symmetry rules around the service 

provider’s state. That is, if at any stage the invariance constraints are not met, then the 

service provider is in an invalid state. For example, for the vendor account, the 

invariance constraint could be that sum of the credits minus the debits must always 

produce the current available balance. If this does not hold true, then the service 

provider is in an invalid state. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 104 

Implementations of an interface are service providers or servers. Users of an interface or 

components that invoke an interface are referred to as clients. Therefore a client may use 

any server that implements the interface, decoupling the client from implementations of the 

interface and hence preventing service provider locking. 

5.3.1.2 Modelling the XMLVend interface 

The XMLVend protocol can be naturally modelled as a UML interface or contract for 

prepayment vending services. Therefore XMLVend clients that use the XMLVend 

interface would be able to request services from all service providers (servers) that 

implement the XMLVend interface. It also decouples the service provider from specific 

client realisations as long the clients use the XMLVend interface. That is, the server will 

service requests from any client that uses the XMLVend interface as long as the interface 

constraints are met. 

Figure 5.1 illustrates the XMLVend protocol at the highest-level modelled as a UML 

interface. The XMLVend client uses the XMLVend interface to invoke XMLVend 

operations from a server that implements the interface. The XMLVendOperation 

represents the generic XMLVend operation. In practice only specialisations of 

XMLVendOperation will be invoked. 

XMLVendClient XMLVendServer

+XMLVendOperation(in baseReq : BaseReq) : BaseResp

«interface»XMLVend«uses»

«implements»

 

Figure 5.1 – Generic XMLVend UML Interface Diagram 

At this level of abstraction the XMLVend interface is defined as follows: 

• Pre-Conditions: 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 105 

o The client input parameters adhere to interface specified input parameters 

format and data constraints. 

o The client device must be uniquely identified and legitimate. 

o Individual messages must be unique. 

o The request message has met service provider specific business rules. 

• Post-Conditions:  

o The operation has been processed successfully. 

o The response message adheres to the interface response message format and 

data constraints. 

o Or an exception message has been sent to the client, indicating the cause of 

the exception. 

• Invariance constraints: None identified. 

At this level of abstraction, the XMLVend client and server are only responsible for 

sending and returning parameters that are generic to all requests and response messages. 

This is also referred to as the base request and response messages. The client’s 

responsibilities are: 

• Compile the base request message. 

• Send the request message to the server. 

• Receive the server response message. 

• Process the base server response message. 

The server’s responsibilities are: 

• Receive and validate the base client request message. 

• Process the client request message. 

• Compile the base response message. 

• Send the response message to the client. 

5.3.1.3 Modelling the generic input and output parameters 

UML class diagrams are a natural and platform neutral mechanism to model input 

(request) and output (response) parameters. Figure 5.2, shows a class diagram template 

used to model input (request) and output (response) parameters. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 106 

+noOperations()

+attribute1[1] : DataType

Domain::ClassName

 

Figure 5.2 – Class diagram template 

The class name is shown in the top rectangle. It is prefix with a use case domain separated 

by double colons (“::”). The next rectangle contains the attributes of the class. Attributes 

represent the parameters being communicated. The plus sign (“+”) prefix the attribute 

name and depicts the visibility of the attributed, that is, public (“+”) or private (“-“). All 

attributes are defined as public since they are communicated between client and server and 

therefore visible to both client and server. The attribute name appends multiplicity value in 

square brackets (“[]”). The multiplicity value depicts the cardinality of the attribute. The 

multiplicity value is post-fixed with data type of the attribute separated by a single colon 

(“:”). The next rectangle contains operations of the class. The class diagram models input 

and output messages and since messages communicate only data (attributes) no operations 

are defined. 

The naming convention adopted by the XMLVend 2 protocol is the Camel convention. 

Camel convention is the standard object-oriented naming convention for UML as well as 

many object-oriented programming languages like Java and SmallTalk.  

The rules for Camel convention are: 

• Class Names start with capital letters. 

• Everything else, including object and method names start with lower case. 

• Word boundaries are capitalised for all scenarios.  

Modelling the XMLVendOperation generic input (request) and output (response) 

parameters as UML class diagrams, produces the Base::BaseReq and 

Base::BaseResp classes illustrated in Figure 5.3 and Figure 5.4 respectively. Similar 

to the XMLVendOperation the BaseReq and BaseResp classes will never 

instantiated without being specialised. Therefore these classes are defined as abstract. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 107 

Base::BaseReq

+opName : OpName
+password : Password
+newPassword : Password

Base::AuthCred

1

+authCred

0..1

+ean : EAN

Base::EANDeviceID

Base::DeviceID
1

+terminalID

1

1

+clientID

1

+id : Msg

Base::GenericDeviceID

+dateTime : MsgIDDateTime
+uniqueNumber : MsgIDUniqueNumber

Base::MsgID

1

+msgID1

 

Figure 5.3 – BaseReq Class Diagram 

+serverID[1] : DeviceID
+clientID[1] : DeviceID
+terminalID[1] : DeviceID
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

Base::BaseResp

 

Figure 5.4 – BaseResp Class Diagram 

Figure 5.3, illustrates that the BaseReq has clientID, terminalID, msgID and 

authCred (optional) as parameters. clientID is the client identifier that identifies the 

client device requesting a service from the server. The server uses the clientID value to 

authenticate the device and determine whether the client is authorised to invoke the service. 

The clientID would also map to the entity (person or organisation) that is contracted by 

the utility to sell electricity. Such entities are referred to as vendors. 

clientID is specified as an abstract type, DeviceID. Two specialisations of 

DeviceID are specified, EANDeviceID or GenericDeviceID. The implementing 

utility is expected to decide on the most appropriate format. It is however recommended 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 108 

that clientID be defined as EANDeviceID types as EAN numbers have several 

benefits, such as being globally unique.  

The terminalID identifies the device that initiated the request in a gateway 

implementation model. However XMLVend only provides the terminalID for 

information purposes and is not dependant on this data to service the request. In the normal 

vendor implementation model the terminalID defaults to “1”. 

MsgID is used to uniquely identify the request message. It is the client’s responsibility to 

generate a unique MsgID and a pre-condition of the server. The MsgID is composed of 

two attributes, a dateTime and a uniqueNumber, to ensure uniqueness. 

authCred is an optional parameter. That is, it is not a pre-condition to be present in the 

message for the server to process the request. However, authCred supports 

implementations that may require individual client operators to be identified or 

authenticated by the server. Such a pre-condition is not handled by the interface but rather 

as an implementation specific business rule. 

Figure 5.4 illustrates that the BaseResp returns the following fields: serverID, 

clientID, terminalID, reqMsgID, respDateTime, dispHeader, 

operatorMsg and custMsg. The serverID identifies the specific server that 

serviced the request. This supports a load balancing architecture where it may be useful to 

identify the actual server that serviced the request. The clientID, terminalID, and 

reqMsgID provide the request message context information. The respDateTime is the 

server date time stamp of when the response message was created.  

The dispHeader is an optional field. It is usually used returned to values that must be 

printed at the top of a receipt or displayed at the top of a user interface. It is the 

responsibility of the implementing utility to specify the contents of the dispHeader.  

The operatorMsg and custMsg are also optional fields. The operatorMsg and 

custMsg fields are returned when the utility would like to communicate specific 

messages to the client operator and customer respectively. These fields are predominantly 

used for communicating exception information. It is the utility’s responsibility to define 

specific operator and customer messages for its specific business rules. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 109 

5.3.1.4 Modelling the concrete XMLVend operations 

The first step in modelling the concrete XMLVend operations is to list and define the 

supported use cases. Figure 5.5 illustrates the complete list of XMLVend 2 use cases, 

categorised by the user initiating the use case. 

 

Figure 5.5 – XMLVend 2 Use Cases 

Confirm Customer 
 

Purchase Credit 
 

   Collect FBE Token   

   Reprint Transaction   

    Cancel Token    

Credit Transfer 
 

Vend Trial 
 

   Pay Account   

Report Customer 
 

   Verify Token   

Free Issue 
 

          Confirm Meter Details           

Start 

End 
 

Check Batch 
 

             Update Meter Key             

Create Bank Deposit 
 

    Reprint Deposit Slip    

Request Vendor Statement 

Reprint End 
 

Request Meter Specific Eng 
 

Request Non-Meter Specific Eng 
 

             Issue Fault (Response)             

         Issue Advice                    

Customer 

Vendor / 
Operator 

Technician 

Vending Client 

Server 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 110 

It is also proved useful to categorise the use cases three implementation domains. The 

grouping of the use cases into implementation domains reduced complexity and improved 

understanding. It also eased implementation and maintenance of the protocol. The 

implementation domains are: 

• Revenue Management; 

• Meter Management; and 

• Base. 

The revenue management domain use cases are concerned with credit vending, revenue 

collection and management. The 17 use cases associated with this domain are: 

• Confirm Customer Details; 

• Purchase Credit Token; 

• Collect FBE Token; 

• Reprint Token; 

• Cancel Token; 

• Trial Purchase Credit Token; 

• Meter Credit Transfer; 

• Pay Account; 

• Verify Token; 

• Free Issue Token; 

• Start Batch; 

• End Batch; 

• Reprint Batch; 

• Check Batch Totals; 

• Create Deposit Slip; 

• Reprint Deposit Slip; and 

• Issue Vendor Statement. 

The meter domain use cases are concerned with meter management functions. The 5 use 

cases associated with this domain are: 

• Confirm Meter Details; 

• Report Customer Fault; 

• Update Meter Key Data; 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 111 

• Non-Meter Specific Engineering Tokens; and 

• Meter Specific Engineering Tokens; 

Use cases in the base domain are used to support use cases in the revenue and meter 

management domains. The only use case defined in the base domain is the Issue Advice 

Use Case. Further, the issue fault response is not strictly a use case. It is used to return fault 

information to the client when any of the use cases can not be successfully completed on 

the server. 

The use cases map to interface operations, which are as concrete specialisations of the 

abstract XMLVend interface operation (see section 5.3.1.2). Therefore, 3 XMLVend 

interfaces are defined based on the XMLVend use case domains. 

• XMLVendBaseService is an abstract interface that specifies the AdviceRequest 

operation only. This interface is parent interface of the revenue and meter interfaces. 

• XMLVendRevenueService is the revenue interface that specifies the revenue 

domain use case operations (Figure 5.6) and is public interface. 

• XMLMeterService is the meter interface that specifies the meter domain operations 

(Figure 5.7) and is a public interface. 

+ConfirmCustomerRequest(in confirmCustomerReq : ConfirmCustomerReq) : ConfirmCustomerResp

+CreditVendRequest(in creditVendReq : CreditVendReq) : CreditVendResp

+FBERequest(in fbeReq : FBEReq) : FBEResp

+ReprintRequest(in reprintReq : ReprintReq) : ReprintResp

+CancelVendRequest(in cancelVendReq : CancelVendReq) : CancelVendResp

+TrialCreditVendRequest(in trialCreditVendReq : TrialCreditVendReq) : TrialCreditVendResp

+MeterCreditTransferRequest(in meterCreditTransfer : MeterCreditTransferReq) : MeterCreditTransferResp

+VerifyRequest(in verfiyReq : VerifyReq) : VerifyResp

+FreeIssueRequest(in freeIssueReq : FreeIssueReq) : FreeIssueResp

+PayAccountRequest(in payAccount : PayAccReq) : PayAccResp

+StartBatchRequest(in startBatchReq : StartBatchReq) : StartBatchResp

+EndBatchRequest(in endBatchReq : EndBatchReq) : EndBatchResp

+TotalBatchRequest(in totalBatchReq : TotalBatchReq) : TotalBatchResp

+VendorStatementRequest(in vendorStatement : VendorStatementReq) : VendorStatementResp

+DepositSlipRequest(in depositReq : DepositReq) : DepositResp

+ReprintDepositSlipRequest(in reprintDepositReq : ReprintDepositReq) : ReprintDepositResp

+ReprintEndBatchRequest(in reprintEndBatchReq : ReprintEndBatchReq) : ReprintEndBatchResp

«interface»

Revenue::XMLVendRevenueService

+AdviceRequest(in adviceReq : AdviceReq) : AdviceResp

«interface»

Base::XMLVendBaseService

 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 112 

Figure 5.6 – XMLVend Revenue Interface 

+ConfirmMeterRequest(in confirmMeterReq : ConfirmMeterReq) : ConfirmMeterResp

+CustReportFaultRequest(in custReportFaultReq : CustReportFaultReq) : CustReportFaultResp

+UpdateMeterKeyRequest(in updateMeterKeyReq : UpdateMeterKeyResp) : UpdateMeterKeyResp

+NonMeterSpecificEngRequest(in nonMeterSpecificEngReq : NonMeterSpecificEngReq) : NonMeterSpecificEngResp

+MeterSpecificEngRequest(in meterSpecificEngReq : MeterSpecificEngReq) : MeterSpecificEngResp

«interface»

Meter Management::XMLVendMeterInterface

+AdviceRequest(in adviceReq : AdviceReq) : AdviceResp

«interface»Base::XMLVendBaseService

 

Figure 5.7 – XMLVend Meter Interface 

Each use case was analysed and expanded at the interface level of abstraction. That is, the 

pre-conditions, post-conditions and invariance constraints (if any) were defined. Table 5-1 

illustrates this process for the Purchase Credit Token use case. Refer to [52] for all the use 

case definitions. 

Description This use case is used to purchase prepaid credit tokens. The value of 

the credit tokens may be expressed as currency value or in kilowatt-

hours or kiloliters (as applicable). 

This use case corresponds to the “Prepayment sale” transaction (type 

000) described in [28]. 

Desired Outcome The customer pays for and receives the purchased credit token. 

Dependencies • Follows: - 

• Includes: Issue Advice, Issue Fault (if required) 

• Followed by: - 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 113 

Pre-conditions 

 

• The XMLVend server supports this use case. 

• The server business rules are met. 

• An identification parameter supported by the server for this use 

case must be supplied, such as: 

o Meter card (track 2 data), 

o Meter serial number or, 

o Meter configuration data, usually from an old token. 

• The request token value in currency or number units must be 

specified. 

• The resource required must be specified. 

Post-conditions • The server security module (SM) generates the requested credit 

token. 

• A “Prepayment sale” transaction is recorded on the server. 

• The customer obtains the requested credit token. 

• Note: The server may also return an FBE token, Free Issue and / 

or a Pay Account Transaction together with a credit token (if so 

configured). 

• A valid post-condition is also the return of an exception response 

message. 

Invariance 

Constraints 

• None. 

Participants 

 

• Customer 

• Vending Operator 

• XMLVend Client 

• XMLVend Server 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 114 

Happy Path 

 

The happy path scenario is illustrated below. 

 

Customer
XMLVend

Client

XMLVend

Server

Purchase Credit  Token

creditVendReq

creditVendResp

Message pairs

Tokens + Receipt
done Operator / customer 

messages

abort

 

Figure 5.8 – Purchase Credit Token Sequence  Diagram 

Implementation 

 

The server may also be configured to return more than one token with 

the requested credit token under certain circumstances, for example, 

an FBE token, Free Issue Token and / or Pay Account Transaction. 

 

It is recommended that this use case utilise the Issue Advice use case 

if the an exception occurs, to ensure that client and sever have the 

same understanding of the use case’s outcome on both server and 

client. 

Table 5-1 – Purchase Credit Token Use Case Definition 

5.3.1.5 Modelling the XMLVend use case message pairs 

The XMLVend 1.22 use case definitions and message pair data models were used as a 

starting point to model the XMLVend 2 use case message pairs as UML class diagrams. 

The use case definition, the use case sequence and activity diagrams were critical activities 

in analysing and understanding the domain and requirements of the use case message pairs. 

An iterative design process was used with regular reviews and verification with 

prepayment vending domain experts until a draft design was produced. The draft designs 

were reviewed and updated by object-orientated design experts, to ensure “good design”. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 115 

This process was used to analyse all the use cases and model their respective request and 

response message pairs. 

The rest of this section illustrates the modelling process using the Purchase credit token use 

case message pair as an example. Figure 5.9 illustrates the Purchase credit token request 

message. The shaded class represents the root class of the diagram. The diagrams can be 

read in top-down fashion, except where the complexity of the diagram prevented this 

layout.  

Revenue::CreditVendReq

Base::BaseVendReq

Base::Resource

1
+resource

1

Base::Water Base::Electricity

Base::VendIDMethod
1

+idMethod

1

Revenue::PurchaseValue

Revenue::PurchaseValueCurrency Revenue::PurchaseValueUnits

+tenderAmt[1] : Currency

Base::Cash

+chequeAmt[1] : Currency
+accHolderName[1] : PersonName
+accHolderIDNo[1] : IDNo
+accNo[1] : AccountNo
+bankName[1] : OrganisationName
+branchCode[1] : BranchCode
+cheqNo[1] : ChequeNo
+cheqType[1] : ChequeType
+micr[0..1] : MICR

Base::Cheque

+cardAmt[1] : Currency
+accHolderName[1] : PersonName
+pan[1] : AccountNo
+clearingHouse[1] : OrganisationName
+expiryDate[1] : BankCardExpiry
+cvNum[1] : BankCardCVNum

Base::Card+value[1] : decimal
+symbol[1] : CurrencySymbol

Base::Currency

Base::PayType

Base::Unknown

Base::DebitCard
Base::CreditCard

Base::Gas

Base::BaseReq

Base::ConnectionTime Base::CurrencyResource

1

+amt1

Revenue::AbstractCreditVendReq

1

+purchaseValue1
1

+payType0..1

+value[1] : decimal
+siUnit[1] : ResourceSIUnit

Base::Units

1

+units1

Base::DeviceID

1

+terminalID

1

1

+clientID

1

+ean[1] : EAN

Base::EANDeviceID

+id[1] : Msg

Base::GenericDeviceID

+opName[1] : OpName
+password[0..1] : Password
+newPassword[0..1] : Password

Base::AuthCred

1

+authCred

0..1

+dateTime[1] : MsgIDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

Base::MsgID1
+msgID

1

 

Figure 5.9 – Purchase Credit Token Request Message Model 

The root class is CreditVendReq which is a specialisation of the following abstract 

classes AbstractCreditVend, BaseVendReq and BaseReq classes. This also 

means that CreditVendReq inherits all the parameters contained in these abstract classes.  

idMethod, captures the mechanism used to identify the meter. resource, specifies the 

type of resource requested for example, electricity. The idMethod and resource are 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 116 

encapsulated in the BaseVendReq abstract class. BaseVendReq is a useful class since 

all use case requests that vend tokens will automatically inherit the idMethod and 

resource parameters. 

The AbstractCreditVend abstract class contains the purchaseValue (currency or 

units) and payType parameters. payType is optional parameter, which captures the 

payment mechanism used by the customer. 

AbstractCreditVend is a useful class since vend requests that require a 

purchaseValue (currency or units) can specialised from this class. Vend requests that 

do not require payment are specialised from BaseVendReq, for example the Free Basic 

Electricity (FBE) request message. 

Figure 5.10 illustrates the Purchase Credit Token use case response message. 

CreditVendResp is a specialisation of BaseVendResp and BaseResp.  

Revenue::CreditVendResp

+serverID[1] : DeviceID
+clientID[1] : DeviceID
+terminalID[1] : DeviceID
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

Base::BaseResp

Revenue::CreditVendReceipt

1

+creditVendReceipt1

1

+meterDetail1

+name[1] : OrganisationName
+address[1] : Address
+taxRef[1] : TaxRef

Base::UtilityDetail

1

+utility1
+lessRound[0..1] : Currency
+tenderAmt[0..1] : Currency
+change[0..1] : Currency

Revenue::Transactions

+amt[1] : Currency

Base::Tax

+amt[1] : Currency
+receiptNo[0..1] : ReceiptNo

Revenue::Tx

1
+tx1..*

Revenue::CreditVendTx

+resource[1] : Resource

Base::CreditTokenIssue
+name[1] : Msg
+desc[0..1] : Msg

Base::Tariff

1

+tariff0..1

+accDesc[1] : Msg
+accNo[0..1] : AccountNo

Revenue::PayAccTx

1
+tariff0..1

+tax

1

0..*

Base::BaseVendResp

+name[1] : OrganisationName
+address[1] : Address

Base::VendorDetail

1

+vendor0..1

+desc[1] : Msg

Base::MeterSpecificTokenIssue

1

+creditTokenIssue1

Base::Token

1
+token1

+stsCipher[1] : STSCipherText

Base::STS1Token

+msno[1] : MSNO
+sgc[1] : STSSupplyGroupCode
+krn[1] : STSKeyRevNo
+ti[1] : STSTariffIndex

Base::MeterDetail

+rate[1] : Percentage

Base::VAT

+receiptNo[1] : ReceiptNo

Revenue::Receipt

1

+transactions1

+daysLastPurchase[0..1] : int

Base::CustVendDetail

1

+custVendDetail

0..1

+availCredit[1] : Currency

Base::ClientStatus

1

+clientStatus1

+banking[1] : BatchStatusType
+sales[1] : BatchStatusType
+shift[1] : BatchStatusType

Base::BatchStatus

1

+batchStatus0..1

Base::FBECredTokenIssue Base::MCTCredTokenIssueBase::FreeCredTokenIssueBase::SaleCredTokenIssue

+balance[0..1] : Currency

Revenue::DebtRecoveryTx Revenue::ServiceChrgTx

+value[1] : decimal
+siUnit[1] : ResourceSIUnit

Base::Units
1

+units1

 

Figure 5.10 – Purchase Credit Token Response Message Model 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 117 

BaseVendResp contains information that must be returned in all response messages that 

vend a token. clientStatus contains the availCredit and optional 

batchStatus. availCredit contains the available credit balance of the vendor. 

batchStatus indicates the current status of batches (if supported). utility contains 

the details of the utility vending the token. vendorDetail is an optional parameter that 

contains the vendor details that initiated the request. custVendDetail is also an 

optional parameter that contains the details of the customer linked to the meter contained in 

meterDetail. 

CreditVendResp has a creditVendReceipt which is the ultimate outcome of the 

purchase credit token use case. creditVendReceipt is a specialisation of Receipt. 

Receipt contains the transactions that were generated when processing the request. This 

includes CreditVendTx and optionally PayAccTx transactions. There will always be a 

CreditVendTx containing a creditTokenIssue of type SaleCredTokenIssue 

with and an associated token. The Receipt design also allows for additional 

CreditVendTx transactions that may be automatically generated as part of request, such 

as a creditTokenIssue of type FBECredTokenIssue. PayAccTx is included to 

support payment transactions that may be automatically generated as part of request, such 

as a debt recovery. 

The rest of the use case request / response messages pairs are modelled in a similar manner. 

Specialisation is used extensively in the message design to provide an extensible object 

oriented mechanism to choose between parameter alternatives. This approach enables easy 

extensibility of a type to new types, when the defined types do not meet requirements. 

Specialisation was also used to embed lookup lists in the protocol message design. Lookup 

lists specify possible values where only one value must be selected, such as resource. 

XMLVend 1.22 specified these lists in external lookup tables which had to be maintained 

independently from the message design making maintenance complex and erroneous. 

5.3.1.6 Interpreting optional message parameters 

The class diagrams specify both mandatory (“[1]”) and optional (“[0]”) attributes. 

Mandatory request attributes are the contract pre-conditions that must be met for the 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 118 

service provider to successfully process the request at the interface layer. Mandatory 

response attributes represent post-conditions of the service provider that must be provided 

by the service provide at the outcome of a use case. They are also the minimum parameters 

required by the client to process the response message.  

Optional request attributes provide additional data to the server, and the server can choose 

to process or not to process the optional fields. Optional response fields provide additional 

data to the client, and the client can choose to process or not to process the optional fields. 

However, some specific implementation business logic may require optional request fields 

to be presented to the server. Such a pre-condition is not handled by the interface but rather 

as an implementation specific business rule. Utilities would have to review their use case 

business rules to identify optional fields that may need to be required. 

Optional response attributes may also be required by specific implementations that require 

optional response attributes to be processed by the client. Utilities should review their 

current prepayment receipts formats to identify optional fields that may b required. The 

redefinition of optional fields as mandatory would be specified by each utility in their 

implementation specific use case descriptions document. Such a change would need to be 

communicated to the utility server supplier and client suppliers in order to be correctly 

implemented. 

5.3.1.7 Message delivery failure scenarios 

It is important that request / response messages are reliably delivered. However message 

delivery failures are inevitable and unpredictable due to possible network, system and 

software failures. 

The “Issue Advice” use case assists with message delivery fault scenarios. For example, 

the client does not receive a response message and is uncertain if the request was processed 

by the server. Three advice use case scenarios are provided to assist in resolving this fault 

scenario (Figure 5.11): 

• Advice (Reversal); 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 119 

• Advice (Confirmation); and  

• Advice (Last Response). 

Base::AdviceReq

Base::BaseReq

1

+adviceReqMsgID

1

Base::ReversalAdviceReq Base::LastRespAdviceReqBase::ConfirmationAdviceReq

Base::DeviceID

+ean[1] : EAN

Base::EANDeviceID

+id[1] : Msg

Base::GenericDeviceID

1

+clientID

1

1

+terminalID

1

+dateTime[1] : MsgIDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

Base::MsgID

1

+msgID1

Base::PayType

1

+payType0..1

+opName : OpName
+password : Password
+newPassword : Password

Base::AuthCred

1

+authCred

0..1

 

Figure 5.11 – Issue Advice Request Message 

Base::AdviceResp

+serverID[1] : DeviceID
+clientID[1] : DeviceID
+terminalID[1] : DeviceID
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

Base::BaseResp

+txConfirmed[1] : bool

Base::ConfirmationAdviceResp

+txReversed[1] : bool

Base::ReversalAdviceResp Base::LastRespAdviceResp

1

+lastResponse

1

+dateTime[1] : MsgIDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

Base::MsgID

1

+reqMsgID1

1

+adviceReqMsgID1

 

Figure 5.12 – Issue Advice Response Message 

The Advice (Reversal) reverses the transaction on the server. This use case scenario 

however has the following risks: 

• The client can issue fraudulent reversal requests; and 

• The server depends on decisions made by the client. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 120 

This implies that the server would have to “trust” the client to implement the Advice 

(Reversal) scenario, which may not acceptable to the utility. 

The Advice (Last Response) scenario was added to XMLVend 2 in response to the risks 

highlighted above. Invoking the Advice (Last Response) use case scenario requests that the 

server resend a specific response message. The response message to be resent is identified 

by its message identifier specified in the adviceReqMsgID parameter. The resent 

message can then be printed and handed to the customer. If the request was not processed, 

an XMLVend fault response message returned of type LastResponseEx. The Advice 

(Last Response) mechanism offers the least risk to the utility since the server does not 

depend on client decisions. 

5.3.1.8 Fault condition support 

Exceptions that occur while processing a request need to be communicated to the client. 

XMLVend 2 implements the same fault condition design as XMLVend 1.22, except the 

message design updated to the message XMLVend 2 message design principles. The 

“XMLVend Fault Response Message” (Figure 5.13) is defined to communicate fault 

descriptions to the client.  

The fault response message is a specialisation of BaseReq and therefore also enables 

operator and customer specific fault messages to be returned to the client. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 121 

Base::XMLVendFaultResp

+serverID : DeviceID
+clientID : DeviceID
+terminalID : DeviceID
+reqMsgID : MsgID
+respDateTime : dateTime
+dispHeader : Msg
+operatorMsg : Msg
+custMsg : Msg

Base::BaseResp

Base::UseCaseSupportEx

Base::ClientIDSSLEx

Base::XMLVendSchemaEx

Base::XMLVendFaultEx

+desc : Msg

Base::Fault

1 +fault1

Base::BusinessRuleEx

Base::SystemEx

Base::LastResponseEx

Base::ConfirmationEx

Base::ReversalEx

 

Figure 5.13 – XMLVend Fault Response Message 

Figure 5.13 also illustrates the three high-level fault specialisations: 

• XMLVendFaultEx – These are XMLVend interface related exceptions, such as 

“XMLVend Schema validation exception”. 

• SystemEx – These implementation specific system failure exceptions, such as, 

“Security Module Server not responding”. It is the responsibility of the utility or server 

supplier to define these, as a specialisation of SystemEx. 

• BusinessRuleEx – These are business rule exceptions, such as, 

UnknownMeterEx. The XMLVend specification document defines several generic 

business rule exceptions and provides suggested customer and operator messages [52]. 

Implementation specific business rule exceptions should be defined by the utility or 

server supplier (or both) as specialisations of BusinessRuleEx. The exceptions 

must be specified as part of a utility’s specific vending use case descriptions and 

vending processing flow. 

5.4 XMLVEND 2 AS A WEB SERVICE 

This section discusses the process used to map the XMLVend 2 interface and message pair 

designs from UML (see section 5.3) to web service implementation files (WSDL and 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 122 

Schema). This mapping process was manual from the start and not like XMLVend 1.0 

where the initial files were auto-generated through a toolset. 

The confidence to map the Schema and WSDL files resulted from the experience gained 

developing the XMLVend 1.22 implementation files, the best practice support provide by 

the WS-I use scenarios [41]. This resulted in a simple mapping process between UML 

models and Schema and WSDL that will be presented in this section. 

5.4.1 Use case domain mapping to WSDL and Schema 

The first task was to decide whether to map the use case domains into respective web 

service packages or a single package. After significant investigation and analysis by 

working group members it was decided to create three implementation packages: 

• A revenue package that maps to the revenue domain use cases; 

• A meter package that maps to the meter domain use cases; and 

• A full package that maps both revenue and meter domain use cases. 

Figure 5.14 illustrates how the schemas and WSDL’s were mapped to each domain. The 

diagram also shows how the core schemas can be extended to support user specific 

requirements. The mechanism to extend the core XMLVend schema is described in section 

5.4.3. 

xmlvend-base-

X.xsd

xmlvend-full-X.wsdl

Revenue Extensions.xsd

xmlvend-revenue-X.xsd

xmlvend-revenue-X.wsdl

1

1

Meter Extensions.xsd

xmlvend-meter-X.xsd

xmlvend-meter-X.wsdl

1

1

1

1

1

1

Revenue Full Meter

 

Figure 5.14 – Schema and WSDL for each Domain 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 123 

Three schemas are defined: 

• Base schema – The base schema contains common types, constraints and message 

pairs that are used by both the revenue and meter schemas. 

• Revenue schema – The revenue schema contains all message pairs and types that are 

specific to the revenue management domain. 

• Meter schema – The meter schema contains all message pairs and types that are 

specific to the meter management domain. 

The naming convention used the for the schema files is xmlvend-“domain”-

“version”.xsd and the naming convention for the schema targetNamespace is 

http://www.nrs.eskom.co.za/xmlvend/“domain”/“version”/schema.  

The XML Schema namespaces serve two purposes: 

• Ensure uniqueness of XML element and attribute names (eliminate name collisions); 

and 

• Provide a URI to specify the domain associated with a give XML element or attribute. 

Three WSDLs are defined: 

• Full – The full WSDL includes all operations (use cases). This WSDL would usually 

be used by suppliers that implement use cases from both the revenue and meter 

management domains. 

• Revenue – The revenue WSDL contains the revenue management specific operations 

(use cases). This WSDL would be used by suppliers that implement revenue 

management operations only. 

• Meter – The meter WSDL contains the meter management specific operations (use 

cases). This WSDL would be used by suppliers that implement meter management 

operations only. 

The WSDL naming convention is, xmlvend-“domain”-“version”.wsdl. The WSDL 

targetNamespace naming convention is, 

http://www.nrs.eskom.co.za/xmlvend/service/“version”/”domain” 

The specification version is embedded into the namespaces. Therefore, the specification 

version is controlled through the schema and WSDL namespaces. If a new XMLVend 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 124 

version is released then the applicable namespaces will change. The namespaces of the 

individual schemas can change independent of each other. The “full” WSDL namespace, 

which includes the meter and revenue domain services, does not specify a “domain”. 

5.4.2 Mapping the UML designs to Schema and WSDL 

The XMLVend schema and WSDL forms the web service interface contract and therefore 

the deliverable to ensure interoperability. Therefore, the approach used to realise the 

schema and WSDL had to support interoperability. In this section the contract-first 

development approached is reviewed, followed by the message model to schema and 

interface model to WSDL mapping processes. 

5.4.2.1 The contract-first development approach 

The “Contract-First Development approach [35] promotes the definition and development 

of interoperable web services. The process is illustrated in Figure 5.15. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 125 

Request 

Message

Response 

Message

Code Generator e.g. C# / Java

Implement the methods in the language of 

choice

Author message definition 

using schema (xsd) from 

class diagrams

1

Request 

Message

Response 

Message

CreditVend Operation

Input Output

E.g. CreditVend Operation, etc.

Author operations using 

WSDL
2 2

3

4

5

Iterate

Generate Code from 

WSDL

Implement methods

 

Figure 5.15 – Schema and WSDL Development Approach 

Steps 1, 2 and 5 relate to the XMLVend protocol development process. Steps 3 and 4 are 

used by suppliers to implement an XMLVend compliant server or client. 

• Step 1 is used to author the request / response messages using schema based on the 

class diagrams described in section 5.3.1.5. Step 1 focuses on naming and structuring 

the data messages that are exchanged between client and server and will be discussed in 

detail in section 5.4.2.2. 

• Step 2 specifies the interface specification service operations and transport bindings 

using WSDL. It is discussed in detail in section 5.4.2.3.  

• Step 5 provides feedback from the implementations to update and enhance the 

specification. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 126 

5.4.2.2 Mapping the Message Design to XMLVend Schema 

The schema defines the message contract that governs the XMLVend client and server 

interactions and therefore was the most critical process in realising XMLVend as a web 

service. The difficult task of designing the messages was completed in section 5.3.1.5 with 

the design of the class models for the messages. The aim of this process was to map the 

message pairs to schema realisations. The process of defining XML vocabularies from 

UML models is well documented by several industry experts [55][56].  

To describe this process, consider the CredVendReq request message class diagram 

(Figure 5.9). A class in UML defines a complex data structure that maps to 

complexType in schema. Therefore, starting at the root class, CredVendReq, the 

schema definition is represented in Listing 4.9: 

<complexType name="CreditVendReq"> 

 <complexContent> 

  <extension base="AbstractCreditVendReq" /> 

 </complexContent> 

</complexType> 

Listing 5.1 – CreditVend Req complex type 

The above definition illustrates how a key object orientated concept of specialisation is 

mapped to schema. That is CredVendReq is a specialisation of 

AbstractCreditVendReq and this relationship is mapped in schema using the 

following syntax, <extension base="AbstractCreditVendReq" />. 

Listing 5.2 shows the instance of CredVendReq. The name attribute value starts with a 

lower case letter (credVendReq), which is the camel notation for instance. 

<element name="credVendReq" type="CredVendReq"/> 

Listing 5.2 – CreditVendReq instance 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 127 

AbstractCreditVendReq is also a specialisation of BaseVendReq, as illustrated 

in Listing 5.3. 

<complexType name="AbstractCreditVendReq" abstract="true"> 

 <complexContent> 

  <extension base="BaseVendReq"> 

   <sequence> 

    <element minOccurs="1" maxOccurs="1" 

name="purchaseValue" type="PurchaseValue"/> 

    <element minOccurs="0" maxOccurs="1" 

name="payType" type="PayType"/> 

   </sequence> 

  </extension> 

 </complexContent> 

</complexType> 

Listing 5.3 – AbstractCreditVendReq is a specialisation of BaseVendReq 

The AbstractCreditVendReq, schema definition also illustrates object orientated 

concept of composition. Composition defines a “has a” relationship. Composition is the 

relationship is designated by a diamond at root class and a navigation arrow at the target 

class. The composition has a role name on the relationship line and multiplicity that 

specifies how the target is related. The fact that the role name starts in small letters, 

indicates that it is an instance of the target class. Therefore, AbstractCreditVendReq 

has two element fields, purchaseValue and payType, of type PurchaseValue 

and PayType respectively. The multiplicity is represented using minOccurs and 

maxOccurs attributes. purchaseValue has a multiplicity of [1] (required field), 

therefore has minOccurs="1" and maxOccurs="1". payType has a multiplicity 

of [0..1] (optional field), therefore has minOccurs="0" and maxOccurs="1".  

XMLVend also adds an additional constraint on the representation of optional fields. That 

is, XML instance documents that specify <payType xsi:nil=”true”/> or 

<payType/> for an omitted optional element is not valid. Optional elements must either 

be present or totally omitted. Optional attributes should also be treated similarly. This was 

done keep the messages sizes as small as possible. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 128 

The <sequence> tag indicates that order of the fields between the <sequence> tags 

must be maintained in XML instance documents, otherwise the instance will be invalid. 

Further, since BaseVendReq is the super class of CredVendReq, its fields must appear 

before any other fields. 

Listing 5.4 shows the PurchaseValue class represented in schema. 

<complexType name="PurchaseValue" abstract="true"/> 

Listing 5.4 – PurchaseValue complex type 

The abstract attribute set to “true” indicates that it is only intended to represent 

specialised classes of itself. Therefore, an XML instance cannot contain a type, 

PurchaseValue, but only specialisations of PurchaseValue. 

Listing 5.5 shows the schema representation of PurchaseValueCurrency, which is a 

specialisation of PurchaseValue. 

<complexType name="PurchaseValueCurrency"> 

  <complexContent> 

   <extension base="i0:PurchaseValue"> 

    <sequence> 

     <element minOccurs="1" maxOccurs="1" 

name="amt" type="b0:Currency"/> 

    </sequence> 

   </extension> 

  </complexContent> 

 </complexType> 

Listing 5.5 – PurchaseValueCurrency is a specialisation of PurchaseValue 

Listing 5.6 shows PurchaseValueCurrency, which has an amt field of type Currency.  

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 129 

<complexType name="Currency"> 

<attribute use="required" name="value" type="decimal"/> 

<attribute use="required" name="symbol" 

type="i0:CurrencySymbol"/> 

</complexType> 

Listing 5.6 – Currency complex type 

The Currency fields have been represented as <attribute> tags. Schema 

attributes are used to define fields whose values are of simple XSD type. Therefore, using 

the previous example, value is of type decimal, a simple type. symbol is of type 

CurrencySymbol. Listing 5.7 shows the CurrencySymbol type definition which is 

based on simple type, string and restricted with a regular expression. 

 <simpleType name="CurrencySymbol"> 

  <restriction base="string"> 

   <pattern value="(\S){1,3}"/> 

  </restriction> 

 </simpleType> 

Listing 5.7 – CurrencySymbol simple type with restriction 

The type CurrencySymbol is restricted to only contain values that are characters and 

digits whose length is limited to between 1 and 3 characters. This mechanism to restrict 

data values is very powerful and has been used extensively in the XMLVend schema to 

ensure that data is contained to domain specific constraints. For example, a supply group 

code can only have 6 decimal numbers. 

Using the above UML to schema mapping techniques, all the request and response 

messages pairs were mapped to their respective schema documents [52]. 

5.4.2.3 Mapping interface models to WSDLs 

Section 5.3.1.2, modelled the three XMLVend interfaces: XMLVendBaseService, 

XMLVendRevenueService and XMLVendMeterService. This section describes 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 130 

the process used to map the interface models to XMLVend Web Service interface 

descriptions using WSDL. 

The XMLVendMeterService interface model (Figure 5.7) will be used to illustrate the 

process. The interface model artefacts map to the abstract elements: portType, 

operation, message, part and type. The WSDL portType element is 

similar to the UML interface. portType is a collection of operations with inputs, outputs 

and faults. The name attribute of portType maps to the interface name (Listing 5.8) 

<portType name="XMLVendMeterServiceSoap"> 

  …… 

</portType> 

Listing 5.8 – portType Mapping 

The name attribute of the operation element maps to the interface method name 

(Listing 5.9). 

<portType name="XMLVendMeterServiceSoap"> 

 <operation name="ConfirmMeterRequest"> 

 <input message="ConfirmMeterRequestSoapIn" /> 

 <output message="ConfirmMeterRequestSoapOut" /> 

 <fault name="genFault" message="NRSFaultResponseSoapOut" 

/> 

 </operation> 

</portType> 

Listing 5.9 – operation name mapping 

The input and output elements map to the interface input and output parameters. 

The fault element maps to the standard XMLVend fault response messages. However, a 

direct mapping can not be done as WSDL specifies an additional message layer. 

Therefore, message elements are first created (Listing 5.10) that will contain a part 

element that will map to the input, output and fault parameters as per the interface model. 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 131 

<message name="ConfirmMeterRequestSoapIn"> 

   <part name="messagePart" element="confirmMeterReq" /> 

</message> 

<message name="ConfirmMeterRequestSoapOut"> 

   <part name="messagePart" element="confirmMeterResp" /> 

</message> 

<message name="NRSFaultResponseSoapOut"> 

   <part name="messagePart" element="xmlvendFaultResp" /> 

</message> 

Listing 5.10 – mesage part mapping 

The element attribute of part maps to the request and response message pairs defined 

in the XMLVend schema. Specifying the element attribute instead of the type attribute 

also specifies that document style messaging should be used instead of RPC style 

messaging. The same process is repeated for each interface operation until the meter 

WSDL was compiled. 

Listing 5.11 shows the type element, specifying the location where the XMLVend meter 

schema that needs to be imported into WSDL.  

<types> 

  <s:schema> 

    <s:import schemaLocation="xmlvend-meter-2.1.xsd" 

namespace="http://www.nrs.eskom.co.za/xmlvend/meter/2.1/schem

a" /> 

  </s:schema> 

</types> 

Listing 5.11 – The type element specifies XSD location 

The concrete WSDL elements service, port and binding are specified (Listing 

5.12) as per the WS-I Synchronous Request/Response scenario constraints guidelines [41].  

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 132 

<binding name="XMLVendMeterServiceSoap" 

type="s0:XMLVendMeterServiceSoap"> 

 <binding transport="http://schemas.xmlsoap.org/soap/http" 

style="document" /> 

  <operation name="ConfirmMeterRequest"> 

    <operation soapAction="" style="document" /> 

  <input> 

   <body use="literal" /> 

  </input> 

  <output> 

   <body use="literal" /> 

  </output> 

  <fault name="genFault"> 

   <fault name="genFault" use="literal" /> 

  </fault> 

  </operation> 

</binding> 

<service name="XMLVendMeterService2.1"> 

 <port name="XMLVendMeterServiceSoap" 

binding="s0:XMLVendMeterServiceSoap"> 

  <soap:address location="http://manufacturer-webservice-

address" /> 

 </port> 

</service> 

Listing 5.12 – WSDL concrete elements 

The soapAction attribute was also specified as an empty string. This removes the close 

coupling between the protocol and HTTP, allowing other transports to be utilised in the 

future [53]. It is also significantly reduces the HTTP header sizes. 

5.4.3 Utility specific extensions 

The message design provides support for utility extensions. Eskom has used this 

mechanism to support additionally functionality not found in the core XMLVend message 

design. For example, Eskom has specialised the generic BusinessRuleEx class to 

create several Eskom specific business rule exceptions (Figure 5.16).  

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 133 

Base::BusinessRuleEx

EskomBase::EngParameterEx

EskomBase::UnkownMeterFBEEx

EskomBase::MeterDataMisMatchEx

EskomBase::GracePurchaseEx

EskomBase::AccNumEx

EskomBase::AccTypeEx

EskomBase::AccNumMeterLinkEx

Refer XMLVend Fault 
Class Diagram

EskomBase::OtherDataEx

EskomBase::IndeterminateLastResponseEx EskomBase::DuplicateMsgIDEx

 

Figure 5.16 – Eskom specialisation of BusinessRuleEx 

The new exceptions are then mapped to an Eskom schema (Listing 5.13). The text in bold 

font highlights how XMLVend base schema is imported and referenced by the Eskom 

schema. The BusinessRuleEx is defined in the XMLVend base schema. 

<schema 

xmlns:b0="http://www.nrs.eskom.co.za/xmlvend/base/2.1/schema"  

<import schemaLocation="xmlvend-base-2.1.xsd" 

namespace="http://www.nrs.eskom.co.za/xmlvend/base/2.1/schema

"/> 

 <complexType name="AccNumEx"> 

  <complexContent> 

  <extension base="b0:BusinessRuleEx" /> 

  </complexContent> 

 </complexType> 

 …… 

</schema> 

Listing 5.13 – Utility specific exceptions 

Utility specifications extensions should be compiled into a separate schema file. The 

recommended naming convention for this file is “utility”-xmlvend-“domain”-

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 134 

“version”.xsd. In this example the schema file will be named, eskom-xmlvend-base-

2.1.xsd.  

5.4.4 XMLVend 2 Stabilisation 

Shortly after the release of XMLVend 2.0, several issues were discovered with mapping of 

the message designs from UML to schema. This necessitated the release of XMLVend 2.1, 

which corrected the mapping errors and added support for the reprint of payment 

transactions. XMLVend 2.1 has been extensively tested as part of the Eskom online 

vending pilot project. It is now being used by Eskom in its national rollout of online 

vending. 

5.5 SUMMARY  

This chapter discussed the development of XMLVend 2. XMLVend updated and added 

several use cases to the protocol. The author focused on redesigning all the use case 

messages using an object orientated methodology that promoted “good” design. 

The web service implementation was divided into three implementation packages: 

• A revenue package that maps to the revenue domain use cases; 

• A meter package that maps to the meter domain use cases; and 

• A full package that maps both revenue and meter domain use cases. 

The schema and WSDL was mapped using a simple, easy to follow process to map the 

interface and message models from the UML message design models to create the three 

web service packages. The process was based on the industry best practice approach of 

Contract First Web Service development. 

The process provides a generic approach to define service specifications with the following 

benefits: 

 
 
 



CHAPTER 5                                              DEVELOPMENT OF XMLVEND VERSION 2 

Electrical, Electronic and Computer Engineering 135 

• Simple to define and maintain; 

• Removes inconsistencies and interpretation; 

• Implements open, proven and widely supported technologies; and 

• Maximises interoperability. 

The following lessons were learnt with respect to web service realisations: 

• The manual definition of schema and WSDL is very powerful as total control of the 

exchanged message formats is maintained. However it does have the following 

disadvantages: 

o Skilled resources are required to undertake such a task with significant skill 

and expertise in XML and schema; and 

o All updates need to be checked and verified by another resource before 

finalising the implementation files WSDL and Schema as typographical 

errors will creep in. 

• All implementations files must be tested and validated for WS-I compliance. It should 

also be tested for compatibility with at least two widely used web services frameworks 

such as Microsoft .Net and Axis. 

• The test suite reference implementations must be developed in conjunction with WSDL 

and schema development. This will ensure that message pair instances are realised as 

expected and any implementation issues are identified early in the process. 

 

 
 
 



 

 

CHAPTER 6  : XMLVEND COMPLIANCE TESTING  

6.1 INTRODUCTION 

XMLVend is a client / server interface specification that is platform, operating system and 

programming language independent. Therefore XMLVend client and server suppliers are 

able to develop using platforms and technologies of their choice while ensuring that 

implementations easily interoperate. A simple testing mechanism was therefore essential 

for clients and servers to determine if their implementations are XMLVend compliant. 

That is, the client and server must meet the pre-conditions and post-conditions of the 

interface as specified in the interface design and XMLVend schema.  

This section provides an overview of the XMLVend test suite and how it should be used to 

check XMLVend compliance. 

6.2 THE XMLVEND TEST SUITE 

The benefits of the XMLVend test suite are: 

• Accelerates development of XMLVend compliant systems; 

• Provides a common base for testing and compliance validation; and 

• Ensures that all implementations meet a basic set of functional requirements. 

The author specified the following design requirements of XMLVend test suite. The 

XMLVend test suite should consist of the following components (Figure 6.1): 

• Reference Server. A reference server implementation of an XMLVend interface 

specification. The reference server simulates the actual token vending functionality but 

adheres strictly to the XMLVend protocol. The server also implements supports the 

following functional requirements: 

o Supports both HTTP and HTTPS connections with support for mutual 

authentication. 

o Supports GZIP. 

 
 
 



CHAPTER 6  XMLVEND COMPLIANCE TESTING 

Electrical, Electronic and Computer Engineering 137 

o Implements functionality to support Issue Advice (reversal) and Issue 

Advice (last Response) use cases. 

o Returns XMLVend compliant messages. 

• Reference Client: A web browser based reference client implementation of the 

XMLVend protocol. 

• Message Interceptor: A message interceptor to intercept and capture client and server 

messages. 

• Message Validator: The message validator analyses the captured messages and 

validates them against the XMLVend schemas. The Message Validator is also able to 

validate messages against utility specific extensions. 

XMLVend Reference 

Client 
Message Interceptor

XMLVend Reference 

Server

Request

Response

Request

Response

Message 

Validator

XMLVend 2.1 

Schemas and Utility 

specific Schema 

Extensions

XMLVend 2.1 Message 

Compliance Report  

Figure 6.1 – XMLVend Test Suite Components 

To test a client implementation, the reference client is replaced with the specific client 

implementation in Figure 6.1. Similarly, to test a server implementation, the reference 

server is replaced by the specific server implementation. 

STC was contracted to develop the initial XMLVend test suite framework. The author was 

responsible for expanding the test suite framework to support all the XMLVend use cases. 

 
 
 



CHAPTER 6  XMLVEND COMPLIANCE TESTING 

Electrical, Electronic and Computer Engineering 138 

6.3 XMLVEND TEST SUITE – WALK THROUGH 

The reference client is a Java web application that can be accessed using any XForms, 

compliant Web browser. Figure 6.2, is screen shot of the default user interface (UI) of the 

XMLVend Client. 

 

Figure 6.2 – XMLVend reference Client - Default User Interface(UI) 

The Purchase Credit Token use case client user interface was developed using XForms 

(Figure 6.3). The user completes the form and submits the form to the client web 

application. The data submitted is formatted as a valid creditVendReq XML request 

message. The client web application then wraps the creditVendReq in SOAP tags and 

makes a web service request to the configured XMLVend server.  

 
 
 



CHAPTER 6  XMLVEND COMPLIANCE TESTING 

Electrical, Electronic and Computer Engineering 139 

 

Figure 6.3 – Purchase Credit Token Use Case Client UI 

The server receives the SOAP creditVendReq request and using an appropriate XML 

style sheet (XSL) transforms the request message into a creditVendResp response 

message. The creditVendResp response message is then wrapped in SOAP tags and 

returned to the client web application. The client web application then transforms the 

creditVendResp response message to HTML and returns it to the client user interface 

(Figure 6.4). 

 

Figure 6.4 – Reference Client Response UI 

 
 
 



CHAPTER 6  XMLVEND COMPLIANCE TESTING 

Electrical, Electronic and Computer Engineering 140 

Figure 6.5 illustrates the Message Interceptor application capturing messages exchanged 

between client and server. The WS-I message interceptor is used to provide this 

functionality, which basically acts like a proxy between the client and server. 

 

Figure 6.5 – Message Interceptor 

The Message Interceptor logs the request and response messages to a log file. The log file 

is analysed by the Message Validator application, which produces an XMLVend 

compliance report (Figure 6.6).  

 
 
 



CHAPTER 6  XMLVEND COMPLIANCE TESTING 

Electrical, Electronic and Computer Engineering 141 

 

Figure 6.6 – XMLVend Compliance Report 

Figure 6.7 illustrates an XMLVend compliance report that has server response message 

validation failures. 

 

Figure 6.7 – XMLVend Compliance Report with failures 

An XMLVend compliance test template and procedure has also been developed to assist 

with the testing and validating of XMLVend implementations by the author. 

 
 
 



CHAPTER 6  XMLVEND COMPLIANCE TESTING 

Electrical, Electronic and Computer Engineering 142 

6.4 CUSTOMISING AND ENHANCING THE TEST SUITE 

The test suite is completely open source, which enables customisation of the reference 

client and server responses to support utility specific extensions and constraints. The 

author has customised the test suite to support Eskom’s custom vending processes (Figure 

6.8). 

 

Figure 6.8 – Eskom Customised XMLVend Client 

The test suite has also been enhanced by the author to support: 

• Client certificate common name validation on the test server; and  

• Simulate server timeout scenarios. 

6.5 SUMMARY 

The XMLVend test suite has proven to be a simple yet powerful tool that supports 

development and testing of XMLVend implementations. The test suite and reference 

implementations have provided invaluable support for suppliers to rapidly comply with the 

XMLVend protocol. 

 
 
 



 

 

CHAPTER 7  : CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

XMLVend 2.1 has matured into a robust and stable open industry specification through an 

iterative development process (Figure 7.1).  

 

 

Figure 7.1 – Specification roadmap 

An important task of the specification development was build awareness of the 

specification, to increase its adoption and implementation. XMLVend 2.1 has therefore 

been widely published and presented at several local and international electricity industry 

conferences.  

A detailed paper entitled, Development of a prepaid Online Vending Interface 

Specification (Another world first for the South African Prepayment Industry) was 

published in the “Energise” journal in March 2004 [6]. It was very well received with 

positive comments from several working group members and the magazine editors. Papers 

were also presented at the 2004 and 2005 Prepayment Week Conference in Johannesburg 

and Cape Town respectively, where it was also very well received [48][49]. 

XMLVend posters were exhibited at the Eskom conference stand at 2005 Prepayment 

Week Conference, which received significant interest and questions from conference 

delegates. 

 

 

1.0 

  

 

1.1 

•1.22 
•Live 
Pilots 

 

 
•2.1 
•Object 
Orientated 

•Production 
Version 
 

 
 
 



CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

Electrical, Electronic and Computer Engineering 144 

At the 2006 African Utility Week, XMLVend 2.1 was one of the key exhibitions at the 

Eskom stand. The following XMLVend exhibits were developed for the stand: 

• An automated electronic wall presentation. 

• An XMLVend client and server test suite demonstration and  

• XMLVend posters (Figure 7.2). 

 

 

Figure 7.2 – 2006 African Utility Week – Eskom XMLVend stand
8
 

A paper entitled, A Secure Web Service for Prepayment Electricity Vending in South Africa 

(A case study and industry specification), was presented at Second International 

Conference on Internet and Web Applications and Services, in Mauritius [59]. This paper 

was published in an effort to get international review and recognition of the XMLVend 

development. The paper was very well received and several delegates commented that they 

were impressed to see that web services were also being used in applications that improve 

the quality of people’s lives. 

XMVend has become a key enabler for utilities to implement standardised, secure, 

interoperable and flexible online vending systems. XMLVend has also succeeded in 

addressing the online vending risks: 

• Being locked into a single vending system supplier for both the vending server and the 

POS devices; 

• Being locked into supplier controlled proprietary technology; 

                                                 
8
 Kennedy P Subramoney (author) at the Eskom XMLVend stand. 

 
 
 



CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

Electrical, Electronic and Computer Engineering 145 

• Vending system suppliers controlling the utility’s vending POS channels and more 

concerning the expansion of these channels; 

• Suppliers controlling the cryptographic security of the system, which could result in 

inconsistent and possibly insecure security across implementations; 

• Integration with utility backend systems could be restricted and costly; and 

• Finally, the proliferation of proprietary online vending systems could have a 

detrimental impact on the already standardised prepayment industry. 

The XMLVend specification has been an innovative development with buy-in from 

utilities, suppliers, industry experts and other interested parties working together for the 

common interest of the industry. It also confirms South Africa as prepayment industry 

leader in the development and implementation of innovative and sustainable prepayment 

solutions.  

7.2 RECOMMENDATIONS 

The following recommendations are made: 

• XMLVend 2.1 has been stable for more than two years. However to ensure continued 

interest, support and implementation, it is important to continue promoting and 

supporting the specification. 

• Studies evaluating XMLVend’s performance, security and scalability on a variety of 

platforms and architectures will provide immense value to the protocol and its 

implementation. 

• Studies on online vending system implementation best practices using XMLVend will 

also provide immense value to utilities wanting to implement an online vending system. 

 

 
 
 



 

 

REFERENCES 

 

[1] K. van den Berg, “Development of on-line vending standards,” South African 

Prepayment Week, Johannesburg, South Africa, 2003. 

[2] “Prepayment Frequently Asked Questions,” Eskom, 

http://www.eskom.co.za/live/content.php?Item_ID=591. Last accessed on 21 

September 2006. 

[3] P. Johnson, “The Standard Transfer Specification – Past, Present and Future,” 

Eskom, Internal Document, 2002. 

[4] “MSF Process Model v.3.1,” Microsoft, http://www.microsoft.com/msf. Last 

accessed on 20 September 2006. 

[5] K.P. Subramoney, Online Vending - Industry trends towards an industry 

specification, Eskom Resources and Strategy, Research Report, 

RES/RR/01/15519, 2002. 

[6] K.P. Subramoney, Development of a prepaid Online Vending Interface 

Specification (Another world first for the South African Prepayment Industry), 

Energise (Power Journal of the South African Institute of Electrical Engineers), 

March 2004. 

[7] B. Meyer, S. Moodley, Prepayment Evolution – Key Features of a Proven 

Revenue Management System, ESI Africa (The Power Journal of Africa), Issue 1, 

2005, pp. 12-13. 

[8] Discussions with Jan Westenraad and team, at Tswane Metropolitan Municipality. 

[9] Discussions with Dave Michie (Nelson Mandela Metropolitan Municipality) and 

Dale Liebenberg (Ballenden & Robb Consulting Engineers). 

[10] K. van den Berg, Can current vending systems be used to implement EBSST, 

Vending Options, Johannesburg, South Africa, 2001. 

[11] M.E. Makwarela, Analysis of Prepayment System within Eskom, Management 

Report, University of Pretoria, 2003. 

[12] J.E. Cohen, Plant Data Systems: Facilitating integration through open interfaces, 

Eskom Resources and Strategy, Research Report, Eskom, RES/RR/01/15519, 

2001. 

[13] A. Phillips, How standards happen, Conference on Language Standards for 

Global Business, Barcelona, May 2006. 

[14] “Cutting out the middle-tier costs”, eSecure, August 2003, pp 14-16. 

[15] R. Kaplan, Standard Transfer Specification (STS) Guide, Eskom (Transmission 

Group), 1995. 

[16] D. Taylor, Standard Transfer Specification – Synopsis, STS Association, August 

2002. 

[17] D. Taylor, STS, Key Management and Revenue Protection, African Utility Week, 

Cape Town, South Africa, May 2005. 

[18] F. Mabuza and M. van Rensburg, Rationalisation of Maintenance Standards, ESI 

Africa (The Power Journal of Africa), Issue 2, 2006, pp. 66-67. 

 
 
 



 

Electrical, Electronic and Computer Engineering 147 

[19] National Rationalised Specification, Interface Standards: Standard Transfer 

Specification /Credit dispensing unit–Electricity dispenser – Categories of tokens 

and transaction data fields, NRS 009-6-6. 

[20] National Rationalised Specification, Interface Standards: Standard Transfer 

Specification /Credit dispensing unit–Electricity dispenser – Token encoding and 

data encryption and encryption, NRS 009-6-7. 

[21] National Rationalised Specification, Interface Standards: Standard Transfer 

Specification /Disposable magnetic token technology-Token encoding format and 

physical token definition, NRS 009-6-8. 

[22] National Rationalised Specification, Interface Standards. Standard Transfer 

Specification /Numeric token technology–Token encoding format and physical 

token definition, NRS 009-6-9. 

[23] National Rationalised Specification, Key management: Standard transfer 

specification/The management of cryptographic keys, NRS 009-7. 

[24] National Rationalised Specification, Functional and performance requirements: 

System master stations, NRS 009-2-1. 

[25] National Rationalised Specification, Functional and performance requirements: 

Credit dispensing units, NRS 009-2-2. 

[26] National Rationalised Specification, Functional and performance requirements: 

Security modules, NRS 009-2-3. 

[27] National Rationalised Specification, Functional and performance requirements: 

Standard token translators, NRS 009-2-4. 

[28] National Rationalised Specification, Database Format, NRS 009-3. 

[29] National Rationalised Specification, Electricity meter cards and associated 

numbering standards: National electricity meter cards, NRS 009-4-1. 

[30] National Rationalised Specification, Electricity meter cards and associated 

numbering standards: National electricity meter numbers, NRS 009-4-2. 

[31] National Rationalised Specification, Interface Standards: Credit dispensing unit – 

Standard token translator interface, NRS 009-6-1. 

[32] National Rationalised Specification, Interface Standards: System Master Station - 

Credit dispensing unit, NRS 009-6-3. 

[33] National Rationalised Specification, Interface Standards: Data Transfer by 

physical media - System Master Station - Credit dispensing unit, NRS 009-6-4. 

[34] F. Solms, “Use-Case Responsibility Driven Analysis and Design (URDAD) for 

System Design,” Solms Training, Consulting and Development, 

http://ww.solms.co.za/, Last accessed on 24 June 2005. 

[35] A. Skonnard, “Techniques for Contract-First Development,” Microsft, MSDN 

Magazine, http://msdn.microsoft.com/msdnmag/issues/05/06/ServiceStation, Last 

accessed on 20 June 2005. 

[36] U. Gopalakrishnan, K.R. Rajesh, “Securing Web Services”, IBM, http://www-

106.ibm.com, Last accessed on 20 April 2004. 

[37] K.P. Subramoney, Online Vending Specification – Security Requirements, Eskom 

Resources and Strategy, Online Vending Project Discussion Document, June 2003. 

 
 
 



 

Electrical, Electronic and Computer Engineering 148 

[38] Web Services Architecture Requirements, D. Austin, W. W. Grainger, A. Barbir, 

C. Ferris, S. Garg, W3C Working Group Note 11 February 2004, 

http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211, Last accessed on 19 

October 2006. 

[39] Web Services Architecture, D. Austin, W. W. Grainger, A. Barbir, C. Ferris, S. 

Garg, W3C Working Group Note 11 February 2004, http://www.w3.org/TR/ws-

arch/, Last accessed on 19 October 2006. 

[40] WS-I Basic Profile, Version 1.0a, http://www.ws-i.org/ 

[41] WS-I Use Scenario, Version 1.01, http://www.ws-i.org/ 

[42] W. Penzhorn, G.B. Hearn, “Investigation of security protocols for Online vending 

systems for STS,” Eskom Resources and Strategy Online Vending Project 

Document, 8 October 2002. 

[43] W. Penzhorn, “Evaluation of the PEARL Protocol,” Eskom Resources and 

Strategy, Online Vending Project Document, 16 September 2003. 

[44] F. Solms, “Verification of XML Vend 1.0 WSDL against Protocol 

Requirements,” Eskom Resources and Strategy, Online Vending Project 

Document, 17 October 2003. 

[45] C. Smith, P. Garvey, R. Glushko, “Developing XML Vocabularies for Web 

Services,” University of Califonia (Berkley), Center for Document Engineering, 

Technical Report 2003-1, 4 January 2003. 

[46] XMLPay Specification, Verisign, 

http://www.verisign.com/developer/xml/xmlpay.html. 

[47] K. Venketiah, B. Mokgele, “Eskom Online Vending Pilot – Lessons Learnt,” 

South African Prepayment Week, Cape Town, South Africa, 2005. 

[48] K. P. Subramoney, “South Africa’s new Online Vending Interface Specification 

(NRS 009-6-10 / XMLVend 1.0),” South African Prepayment Week, 

Joahnnesburg, South Africa, 2004. 

[49] K. P. Subramoney, “XMLVend – Towards and Industry Specification,” South 

African Prepayment Week, Cape Town, South Africa, 2005. 

[50] K.P. Subramoney, Online Vending Prepayment Interface Specification 

(XMLVend – NRS009-6-10) - Update, Energise (Power Journal of the South 

African Institute of Electrical Engineers), April 2006. 

[51] National Rationalised Specification, Interface Standards: On-line Vending Server 

– Vending Clients, NRS 009-6-10, Trial-Use release, Version 1.22, December 

2004. 

[52] National Rationalised Specification, Interface Standards: On-line Vending Server 

– Vending Clients, NRS 009-6-10, Interim release, Version 2.1, February 2006. 

[53] Y. Shohoud, Real World XML Web Services – For VB and VB.NET Developers,  

1st ed. Boston, USA: Pearson Education, 2002. 

[54] A. Skonnard, “Improving Web Service Interoperability,” Microsft, MSDN 

Magazine, 

http://msdn.microsoft.com/webservices/webservices/building/interop/default.aspx

?pull=/msdnmag/issues/04/11/servicestation/default.aspx, Last accessed on 20 

June 20 

 
 
 



 

Electrical, Electronic and Computer Engineering 149 

[55] F. Solms, “Object Oriented Analysis and Design (OOAD),” Solms Training, 

Consulting and Development, Course Notes, http://ww.solms.co.za/, Last 

accessed on 24 June 2005. 

[56] D. Carlson, “Modelling XML Vocabularies with UML: Part 1-3,” 

http://www.xml.com, Last accessed on 24 August 2006. 

[57] W. Stallings, Cryptography and Network Security: Principles and Practice (3rd 

Edition), Prentice Hall 2002. 

[58] “South Africa Yearbook 2007 / 08”, Government Communication and 

Information System, 

http://www.gcis.gov.za/docs/publications/yearbook/index.html, Last accessed 25 

June 2008. 

[59] K.P. Subramoney, G.P. Hancke, “A Secure Web Service for Electricity 

Prepayment Vending in South Africa: A Case Study and Industry Specification,” 

iciw,pp.66, Second International Conference on Internet and Web Applications 

and Services (ICIW'07), 2007. 

[60] R Housley, W. Ford, W Polk, D Solo, “Internet X.509 Public Key Infrastructure 

Certificate and CRL Profile,” RFC 2459, January 1999. 

[61] C.M. Chernick, C. Edington III, M.J. Fanto, R. Rosenthal, “Guidelines for 

Selection and Use of Transport Layer Security (TLS) Implementations,” National 

Institute of Standards and Technology, U.S. Department of Commerce, NIST 

Special Publication 800-52, June 2005. 

[62] S.J Vaughan-Nichols, “XML Raises Concerns as It Gains Prominence,” Computer, 

May 2003, pp 14 - 16. 

[63] M Milenkovic, et al., “Toward Internet Distributed Computing,” Computer, May 

2003, pp 38 – 25. 

[64] C Shirky, “Web Services and Context Horizons,” Computer, September 2002, pp 

98 – 99. 

[65] C.J Augeri, D.A Bulutoglu, B.E Mullins, R.O Baldwin, L.C Baird, “An Analysis 

of XML Compression Efficiency,” Workshop On Experimental Computer 

Science, San Diego, California, 2007. 

[66] B. Goodman, “Squeezing SOAP, GZIP enabling Apache Axis,” 

http://www.ibm.com/developerworks/webservices/library/ws-sqzsoap.html, Last 

accessed on 28 January 2010. 

[67] W. Ng, W. Lam, and J. Cheng, “Comparative analysis of XML compression 

technologies,” World Wide Web, 9(1):5–33, Kluwer Academic Publishers, March 

2006. 

 
 
 



 

Electrical, Electronic and Computer Engineering 150 

ADDENDUM A. : THE ONLINE VENDING SPECIFICATION (NRS009-6-10) 

The XMLVend 2.1 specification document compiled by the author has not been attached 

due to its large size but is accessible on the specification website: 

http://www.nrs.eskom.co.za/xmlvend. The accompanying XMLVend 2.1 schemas and 

WSDL documents and test suite are also downloadable from the same website address. 

 
 
 



 

Electrical, Electronic and Computer Engineering 151 

ADDENDUM B. : WORKING GROUP PARTICIPANT LIST 

 

No Name Company 

1 Sue Temple ABSA 

2 Aldo Kriel Actaris 

3 Don Taylor Actaris 

4 Johann Groenewald Actaris 

5 Hendrik vd Bijl ADO 

6 Jarred Bonert Altivex 

7 Brent Jacobs Application Frameworks 

8 Richard Stone Application Frameworks 

9 Bruce Barker Arivia 

10 Terence Venadu Autopage 

11 Gustav Vermass BlueLable 

12 Orry Melissakis BlueLable 

13 Neil Ballantyne Cape Town Electricity 

14 Roland Hill CBI 

15 Teddy Naidoo City Power 

16 Franco Pucci Conlog 

17 Lance Hawkins-Dady  Conlog 

18 Poobalan Naidoo Conlog 

19 Mark Simon Contour 

20 Steve Leigh Contour  

21 Dave Semmelink Contour Technology (Pty) Ltd 

22 Christo van der Merve Eason Electronic 

23  Hassen Sheik eCentric Switch 

24 Rob de Vries eCentric Switch 

25 Robin Golden eCentric Switch 

26 Warren Mathers Ekurleni Municipality 

27 Fred Classens Ennertec 

28 Robert Wilson Ennertec 

29 Cleo Zulu ESEC Energy 

30 Deon Botes ESEC Energy 

31 Ron Pienaar ESEC Energy 

32 Sham Dhrampal Eskom 

33 Vusi Moyeni Eskom 

34 William Mype Eskom 

35 Deon Van Rooi Eskom (Distribution) 

36 Jimmy O'Kennedy Eskom (Distribution) 

37 Ken Myburgh Eskom (Distribution) 

38 Kevin Ventekiah Eskom (Distribution) 

39 

Kennedy P 

Subramoney Eskom (Eskom Enterprises - TSI) 

40 Paul Johnson Eskom (Standardistaion) 

 
 
 



 

Electrical, Electronic and Computer Engineering 152 

41 Philip Watkins Ethekwini Electricity 

42 Rajesh Devparsad Ethekwini Electricity 

43 Shadrack Palmer FNB - Scion - Prepaid 

44 James H Muller Holistic 

45 Ari Geva Intelligent Metering Systems (IMS) 

46 T Synman Intelligent Metering Systems (IMS) 

47 Henty Waker iPay 

48 Joel C iPay 

49 Mohamed Ebrahim Itron Africa 

50 Wayne Berkinshaw Kwikpay 

51 Alex Braude Landis & Gyr 

52 Jannie Vermeulen Landis & Gyr 

53 Kobus van den Berg Mangaung Local Municipality 

54 Nigel R ebdon Meterteq 

55 Kudzai Dana Microsoft 

56 Victor Ds Neves Microsolve 

57 Leon de Lange MobilePay 

58 Adrian Vermooten MTN 

59 Hitesh Morar MTN 

60 Israel Davimes  MTN 

61 Clive Handley namITech Limited 

62 Johan van Vuuren Nelson Mandela Metropolitan Municipality 

63 Abrie Marais Novitium 

64 Jacques Kruger Novitium 

65 Philip Helberg Novitium 

66 Philip Lavers OAS 

67 

Stephen van Der 

Mervwe OAS 

68 Ian Steyn  Pism TranSwitch Services 

69 Colin Deirino PN Energy 

70 Domingos Dias Post Office 

71 Domingos Dias Post Office 

72 Velasen Naidoo Post Office 

73 Gareth Moore Power Vend 

74 Kevin Roberts Power Vend 

75 Richard Makhafola  Qhakaza Amps 

76 Raino Botha Qmuzik 

77 Charl Mostert Sage 

78 Raghu Kalakonda Sage 

79 Busisiwe Mbuyisa SAPO 

80 Carl Du Plessis SAPO 

81 Dan Mbatha SAPO 

82 Johnny Mothoa Savaya Telecoms 

83 Martin Deufel Smartec Technologies (Pty) Ltd 

 
 
 



 

Electrical, Electronic and Computer Engineering 153 

84 Martin Goldblatt Smartec Technologies (Pty) Ltd 

85 Dawid Loubser Solms Training & Consulting 

86 Dr. Fritz Solms Solms Training & Consulting 

87 CT Arul SRV Telecom Private Limited 

88 Ivor Chalton Syntell (Tellumat) 

89 Mark Linley Syntell (Tellumat) 

90 Deon Botha Talknet 

91 Johan Prinsloo Talknet 

92 Richard Schubert Talknet 

93 Werner van Ghent The Linkafrica Network 

94 Patience Mlengana  Tshahani Resources (Pty) Ltd  

95 Dirk Pieterse Tshwane Electricity 

96 Jan Westenraad Tshwane Electricity 

97 Gcobane Quvile Ukukhanya Resources CC 

98 Taliesin Sisson University Of Kwa-Zulu Natal 

99 Prof W T Penzhorn University of Pretoria 

100 Kenny Setzin 

V60 (Pty) Ltd (Trading as Sediba 

Corporation) 

101 Chris Slater Jones VCA 

102 Gordon Ashby VCA 

103 Phillip Scheel VCA 

 

 
 
 




