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Abstract

The traditional study of dynamical systems places cause and effect in the same
descriptive framework. However, situations occur in science where the observ-
able effects are less complex or different from the events that cause them. For
such situations cause and effect should be described in different frameworks.
The appropriate causal relationship was discovered and first investigated by
N. Sauer. It was termed the empathy relation, given by S(t + s) = S(¢t)E(s),
where (S, E) is a double family of evolution operators. This equation is an
extension of the familiar semigroup relation. In analogy to the concept of inte-
grated semigroups, a more complex integrated form of the empathy causality is
introduced and studied in this work, given by the integrated empathy relation,

SWEE) = [ 156+ 0) =50 do.

Presently the focus of our scientific investigation into evolution equations is in
the study of a systems of partial differential equations in the form of an implicit
Cauchy problem,

% [Bu(t)] = Au(t), t£%1+ Bu(t)=y; A,B:X =Y.
Here X and Y are Banach spaces, and A and B are unbounded linear operators.
The solution is given by u(t) = S(t)y, where S satisfies the empathy relation,
while the integrated empathy solves an integrated form of this Cauchy problem.
Our double family approach does not depend on the closability of B which is
very desirable in practice.
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The basic tool is the Laplace transform, first used to the define the generator
(A, B) of the integrated empathy in terms of resolvents, the Laplace transforms
of the double family (S, E).

The approach is from a dynamic systems viewpoint, and assumptions on the tra-
jectories are added only as needed. They range from assuming initial continuity
of S, and then strong continuity of S(-)y and E(-)y to the Lipschitz continuity
of S(-) and E(-) in the operator norm. A Hille-Yosida type characterization is
obtained for Lipschitz continuous integrated empathies, where the integrated
form of Widder’s theorem (due to W. Arendt) is employed. It is not possible to
use Widder’s theorem because it requires the Radon-Nikodym property, which
we do not assume.

Implicit Cauchy problems often arise in the mathematical study of problems
in physics involving partial differential equations satisfying dynamic boundary
conditions. Two worked applications are given, involving the heat equation and
the wave equation. They are analysed in a continuous function setting where the
Radon-Nikodym property does not hold, (also the domains of A and B are not
dense in X). This demonstrates the need to introduce the integrated empathy.
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Chapter 1

Introduction

1.1 Semigroups, integrated semigroups, and the

Laplace transform

1.1.1 Linear evolution equations

The law of cause and effect observed in nature can be summarized in the concept
that the complete state of a closed system at any given moment determines all
subsequent states. This is the case if the laws which govern the dynamics are
unchanging with time. Any moment in the evolution of such a natural process
can thus be taken to be an initial state from which all subsequent states evolve.
This idea can be formulated very simply in mathematical terms in a linear
operator setting. Let X be a Banach space and E = {E(t) | X — X:t > 0}
a family of bounded linear operators. The defining property of a semigroup E
is given by the causal relation E(t 4+ s) = E(t)E(s) where t and s are positive
numbers signifying moments in time and E(t)xq is a curve (trajectory) in the

Banach space X giving the state of a system at time ¢, with initial state zq.
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Yo = £y,

Figure 1.1: A trajectory of a semigroup, E(p + q)y = E(p)E(q)y

The notion of a semigroup is closely related to the study of evolution equations,

notably the classical Cauchy problem

pr u(t) = Au(t); (1.1)
t1i151+u(t) =g (1.2)

with g € X and A: Dy C X — X a linear operator.

Remark 1.1 All derivatives will be in the norm topology.

The laws that govern the evolution in time of an initial state zo are contained

in the operator A, its domain D4, and the choice of the Banach space X.

In fact, if A is closed and the domain of A, D4 is dense in X with zg € D4, and
A is the so-called infinitesimal generator of E, then u(t) = E(t)z¢ is a solution of
(1.1-1.2). In this case E has the additional property that lim; o4+ E(¢)z exists

in the norm for each z € X, or E is a Cy-semigroup.
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The usual approach to semigroup theory is of an operator theoretic nature
and involves the study of difference quotients of E, leading to the Hille-Yosida
characterization of the infinitesimal generator ([HP], [Y2]). This is a condition
on the resolvent of A, R(\, A) = (AI—A) ™!, stating that A generates a uniformly
bounded Cy-semigroup E with [|E(t)|| < M for an M > 0 if and only if Dy is

dense in X, (0, 00) is in the resolvent set of A and

[[A"R™ (A, A)|| < M for each A > 0. (1.3)

The present chapter introduces the reader to the methods of studying evolution
equations by means of the concepts of semigroups, integrated semigroups and

empathies. The discussion is informal.

1.1.2 The role of the Laplace transform

Another way of dealing with semigroups is via the vector-valued Laplace trans-
form of E, defined by R(A)z = [ e * E(t)z dt, with the integral in the sense of
Bochner. Now it turns out that the Laplace transform of E is a pseudo-resolvent
given by R(\, A), ([HP], [Y2]), see Appendix B, Section 6.2. In the traditional
approach the Laplace transform is used only in a very restricted manner, (to
show that the operator A is closed), but in [HP] it is used somewhat more

extensively.

However the theorem of Widder, with the Laplace transform given by a Lebesgue
integral, characterizing the transforms of real-valued functions holds if and only
if X has the Radon-Nikodym property. For Banach spaces in general there is an
integrated version due to Wolfgang Arendt, (see Appendix B, Section 6.4 and

[A]), which characterizes functions F' such that $F () is a transform.

For F()\) = )\fo e~ ME(t)dt to be a pseudo-resolvent, [A], E must have the

integrated semigroup property

t+s t
BB = [ B o= | B dp (1.4)

8
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(the special case n = 1 of the n-times integrated semigroup [A] is taken). But
this corresponds to the derivative of E being a semigroup, should it exist. This

is to be expected and can be verified easily. We have also found the form

BOE() = [ B+ - Bp)] do. (1.5)

of (1.4) very handy for calculations. The systematic study of integrated semi-

Figure 1.2: A trajectory of a semigroup, E(t)y and of the associated integrated
semigroup, F(t)y = fot E(t)ydt

groups with the aid of the Laplace transform turns out to be very useful in
understanding evolution equations, and is a worthwhile pursuit on it’s own [A],

[ABHN].

The power of this approach is that the hard analysis was really done in the vari-
ety of existence and inversion theorems, [ABHN], (some are quoted in
Sections 6.1-6.4). Many of the results for integrated empathies follow by apply-

ing the known operational properties given in Section 6.5.
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1.2 The dynamical systems approach

We are also interested in the study of different types of trajectories under evo-
lution families and call this the dynamical systems approach. Properties that
may for instance be investigated and give rise to different families, are strong
continuity and differentiability of the trajectories. It has been preferred not
to assume that the families are defined for ¢ = 0 since this is a subtle but
strong condition on the behaviour of E that is often not warranted in physical

situations.

In the study of semigroups and integrated semigroups the focus should not
only be the solutions of the evolution equations, but also the structure of the
families of evolution operators. This aspect is often neglected in mainstream
research, but many results follow in the absence of continuity assumptions, or
with only a few. For instance, provided ¢ — E(t)z for each z € X is mea-
surable, the semigroup property alone guarantees strong continuity on (0, co).
However, this is not the case for the integrated counterpart. On the other hand
the Cy-property has far-reaching consequences for a semigroup. The approach
we give is reminiscent of the treatment by Hille and Phillips of semigroups

([HP], Chapter 10, Section 10.6, pp.323-356).

The following system, a hierarchy of assumptions (compare with Section 2.2), is
given regarding behaviour at zero for a semigroup E with minimal assumptions
being the semigroup property and measurability of the function ¢ — E(t)x for

each z € X.

The strongest is the Cy class, where E(t) — I in the strong operator topology as

t — 0+4. Then there is a classification in terms of the existence of the integrals:

(0) Jy IIB(T)z|| dr < oo, for all z € X

@) fy IE(T)]|dr < oo,
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and regarding the type of continuity at zero: The semigroup is

C-summable if lim;_,o4 C(t)x = lim;_,04 % fot E(r)zdr =z and

A-summable if limy_,oo AR(AN)z = z, for all z € X.

With the self-explanatory notation the different combinations of these assump-

tions then give rise to the class inclusions
Co C (1,C1) C (0,C1) C (0,4) C A,

CoC(1,C1) Cc(1,A) C (0,4) C A.

(The subscript “1” in C} indicates that the semigroup is strongly measurable.)
There is a similarity between the C-condition for a semigroup and the initial

continuity assumption given in Section 2.2.

1.3 Dynamic boundary conditions and implicit

evolution equations

The physical evolution in a closed system is usually described by a partial differ-
ential equation involving the value of a variable and its derivatives on the domain
together with given values on the boundary. In many practical situations the
boundary values are in flux, and change in some way “in empathy” with val-
ues of the variable in the domain (the term was first used in [SS2], and then
[S1] in the present context). A treatment of this kind of modelling as it relates
to physical science can be found in the doctoral thesis of Wessel Rossouw, [R].

The resulting mathematical model is in the form of an implicit Cauchy problem,

d

ZBu®] = Au); (L6)
Jim Bu(t) = 1, (L.7)

with A, B: X — Y linear operators and X,Y Banach spaces.

10



University of Pretoria etd — Brown, T J (2006)

Now the study of solutions to an implicit Cauchy problem can be tackled di-
rectly, with existing methods, as by Favini and others, [AF], [FY], [N]. Those
results presently all rely on A and B being closed operators. This is however

often not the case in practice especially not for B. See [SvdM] for examples.

Usually though, it is found that (4,B): X D D — Y x Y is closed, which is
equivalent to A — AB being closed for any A € R greater than a fixed a, [vdM].
This in turn only requires verification for two distinct values of A. Our approach

is ideal for this situation.

1.4 Empathy and the Radon-Nikodym property

Niko Sauer discovered the analogy of the semigroup causality for double families
which is applicable to evolution problems of the type (1.6-1.7), [S2]. In this
theory X and Y are Banach spaces and the double family (S, E) is a pair of

families of bounded linear operators with
E={E{)|Y ->Y:t>0}, S={S#)|Y —- X:t> 0}
that satisfies the empathy relation
S(t+s)=S(t)E(s). (1.8)

The way we think of this, is that “cause” lies in the space X and “effect” in Y,
E is suggestive of “evolution” or “exponential” while S could be thought of as
the “solution” family. The family E is thought of as describing the evolution of
the state of the boundary.

In this context the generator turns out to be the pair of operators (A, B) that
occur in (1.6-1.7).

The idea in this formulation is that u(t) = S(t)yo would satisfy (1.6-1.7). The

relation is studied as it stands in [S2] and [S3], the biggest shortcoming being

11
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\Q Ve, //
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Figure 1.3: An empathy, S(p + q)y = S(p)E(q)y

that Y must have the Radon-Nikodym property which is very restrictive on the

result characterizing the generator, (Theorem 8.2, [S2]).

These results have been used with success in applications of the type in the

previous section [GvD].

In order to find a more general result an approach similar to that of Arendt, [A],
was followed, naturally giving rise to the concept of an integrated empathy. The
causality (1.8) is replaced by
t+s t
SWEW = [ Swido— [ Sw)ap (19)

This method allows us to harness the powerful existence theorem of Arendt

12
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(Theorem 1.1, [A]). See Appendix B regarding the exact formulation of Arendt’s

theorem.

This approach allows one to study the evolution operators in a much more
general setting, albeit at the cost of the implicit Cauchy problem having a
weaker integrated form (2.29).

1.5 Conventions and notation

IfF={F(t)|Y - X:té€ (—o00,+00)} where X and Y are Banach spaces is a
family of bounded linear operators we shall adopt the following convention: The
operator f; F(1)dr is defined pointwise by (f; F(r)dr)y = f; F(r)ydr for
y € Y, provided the integral converges in the norm topology of X as a Bochner
integral (Lebesgue integral, [DS], Chapter 3, pp.95-232). The linearity of the
integral ensures that linearity is preserved. The integral operator thus defined

is not necessarily bounded.

We will freely make use of the fact that if F' and G are such families, equalities
(whenever the expressions are defined) such as G(t) [ F(r)dr = [ G(t)F(r)dr
hold (the result of G(t) being a bounded operator).

We observe that from the definition of the integral of a family of operators we
also have fot F(r = [T F(r)E(t)dr, (which means [, F(r)dr E(t)y =
f F(r ydr for each y € Y) Similar use is made of these facts when

Laplace transforms are taken.
The Laplace transform of F is defined pointwise (if it exists) as the integral,
oo
LA{F(t)}y: = / e~ME(1)y dt (1.10)
0

The notation Lx¢{F(t,s)}y:= [y~ e F(t,s)ydt is used when there are more

variables, and we say the transform is taken with respect to t at A.

This requires that the function ¢ — =M F(t)y € L'((0,00), X). It follows imme-

13
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diately that the restriction to a bounded interval of the function ¢ — e~ M F(t)y
is integrable and an application of the dominated convergence theorem gives

t — F(t)y is integrable on bounded intervals.

Our definition is slightly different from the literature ([HP], [ABHN]) that uses
the improper Bochner integral.We have preferred the Bochner integral on (0, o)
because it enables one to use Fubini’s theorem to prove the more general form

of the convolution theorem that is given in Section 6.5.

For the convolution of two functions the notation

(f * 9)(t): = / F($)g(t — 5) ds

is used and f, will be the shift of f by a units, i.e. f,(t):= f(t + a) with a a

real constant.

1.6 Outlay of the thesis

Chapter 2 is a systematic treatment of the integrated empathy, written in such
a way that a given continuity assumption is made only when really needed. This
chapter forms the core of the work. The main result is the characterization of
Lipschitz continuous empathies. A result of Sauer, (Theorem 8.2, [S2]), now
follows readily, using a method of proof analogous to (Theorem 6.2, [A]). This
relates to the differentiability of the integrated family, given the Radon Nikodym
property for Y. It is important to note that in these results denseness of the

domain of the generator is not assumed.

It is shown in Chapter 3 that the theory may easily be extended to cover the
“more-than-once” integrated case. This is not done from the start in order to
emphasise the dynamical systems concepts which may be obscured by technical

detail.

The only important difference is that the characterization inequalities are now

14
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not quite so simple, and the implicit Cauchy problem has more restricted initial

conditions.

A discussion of attempted scientific applications is given in Chapter 4, where
the examples of [S2] are reworked in a space of continuous functions setting. We
have also looked at a few of the many future areas of research suggested by the

work.

Finally, in an attempt to make the work self-contained, results on the Laplace
transform which are used in the main text are collected in Appendix B, to be
referred to as needed. Of special note is the vector-valued versions of inversion
and existence theorems: the Post-Widder and Widder theorems; and a theorem

on the convolution of a family of operators with a vector-valued function.

It should be noted that the basis of the work is a joint paper of Niko Sauer and
Thomas Brown, [BS], and references to it will mostly be omitted. This paper
contains all the main results of Chapter 2 and the basic ideas in Chapter 3 are
outlined there. The worked examples of Chapter 4 are also given. However,

much more complete discussions are to be found in the present work.

15
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Chapter 2

The integrated empathy

The results in [BS] were mostly obtained in combining the ideas of [S2] with
those of [A]. A major difficulty in this process was in obtaining the correct
vantage points, i.e. definitions and assumptions. A substantial part of the
theory does not depend on strong continuity, which is assumed from the outset

in [A] and [ABHN].

2.1 Definitions and basic identities

Let X and Y be Banach spaces over the real or complex field. We consider
two families of bounded linear operators E = {E(t) | Y — Y:¢ > 0} and
S={S(t)|Y — X:t>0}. The operators E(t) and S(t) are not defined for
t = 0, corresponding to the fact that in general evolution equations are defined
for ¢ > 0 and initial conditions are in the form of limits as t — 0+. We assume
throughout that the Laplace transforms as defined in (1.10), of S and E exist

on Y for every A > 0, and use the notation

p(A): Y = X, p(N) :=Lx{S}; (2.1)

16
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r(\): Y =Y, r(\) = LA{E}. (2.2)

The functions ¢ — S(t)y and t — E(t)y are integrable on bounded intervals, see

Section 1.5. It will prove very useful to use the notation

In Section 2.8 it is described how a more general theory, with p and r defined

only for A > a > 0 can be obtained from this.

Remark 2.1 In other texts assumptions are usually made to ensure that the
Lapace transforms above exist (e.g. exponential boundedness) [A] . Instead, we

assume that the transforms exist [S2].

An integrated empathy is defined as a double family, (S, E) as above, that sat-

isfies the causality condition
t
= [15(+5) - 51 dp (2.3)
0
or, equivalently
t+s
S(t)E(s) = S(p)dp — / S(p)dp — / S(p) dp, (2.4)
0
which implies the identity S(t)E(s) = S(s)E(t).

Elementary properties of the integral imply that formulae (2.3) and (2.4) are
indeed the same as (1.9).

The following examples are apparent and both are suggestive of the terminology:

Example 2.1 Let (S',E') be an empathy, (1.8). If S(t) := fo S'(p)dp and
fo E'(p) dp then (S, E) is an integrated empathy

An elementary calculation shows that the statement of Example 2.1 is true:

We note that S'(t + s) = S'(t)E’(s) means that

f/ﬁ@ﬂww@=:wW@
0 0

17
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- /Ot/035'<o+p>dadp - /Ot[s<p+s>—s<p>]dp.

The next example is also easy to verify.

Example 2.2 Suppose that E is an integrated semigroup onY and C: Y — X
is a bounded linear operator. If S(t): = CE(t), then (S, E) is an integrated

empathy.
We give an identity for compositions that follows using only (2.3).

Theorem 2.1 Let (S, E) be an integrated empathy, then, with & = p1+- -+ pn,

S1 Sn
S E(s1) ... B(sn) = / / [S(t+ ) = SE)]dpn-..dpr.  (25)
0 0
Proof. The proof of the theorem is by induction, and the basis step, (n = 1),
is simply the definition.
For the induction step we need an identity, (2.7) below.
First observe that

/0 S(p+s+a)—S(p+a)dp

t+s

~ [ serad- [ Serad- [ st ad

/OSS(p+t+a)—S(p+a)dp (2.6)

for any positive number a. Then
/ S(t+a+p) —S(a+p)dpE(r)
0

= [ st+atnEE) - St pEC) o

/Os [/Ot+a+pS(r+a) —S(o)do — /0a+p5(r+o) —S(o)do| dp

18
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r rttatp
/ S(r+0)—S(0)dU] dp
L/ a+p

Il
S—

-t
/ S(r+a+p+o)—5(a+p+0)da} dp
L/o

S~ s~

—/TS(t+a+p+0)—S(a+p+a)d0] dp (2.7

where (2.6

=

was used in the last step.

We assume the statement (2.5) is true for n = k, and use (2.7) to prove it for

n =k + 1 as follows
[SA)E(s1) - .. E(si)|E(sk41)

/ok [S(t+€)) — S(€)]dpy - .. dpr E(spi1)
.. /)Sk-l L/(:k [S(t + f)) - S(f)] dpk E(Sk+1):| dpk,1 e dp1

= /081 [/:k skJrl[S(7f+§+ﬂk+1)) — S(§+ pr+1)] dﬂk+1dpk} .-.dpr.

0
O

2.2 The hierarchy of assumptions

The assumptions we have made so far, i.e. the existence of the Laplace trans-
forms of the operator-valued functions S and F, and the integrated empathy
relation, will be referred to as the minimal assumptions. These conditions are
embodied in (2.1), (2.2) and (2.3). They will be used throughout. Note that

Theorem 2.1 requires only these minimal assumptions.

In the systematic study of the double families of evolution operators additional
conditions must be satisfied in order to obtain progressively stronger results.

They will be added only as necessary in the sequel. These are:

INVERTIBILITY. There is at least one & > 0 for which the inverse of the linear

operator p(¢) is defined on the range of p(§), i.e. p(€) is injective.

19
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INITIAL CONTINUITY. For every y € Y, lim; o4 S(t)y = 0.

STRONG CONTINUITY. For every y € Y the mappings ¢ — S(t)y and ¢t — E(t)y

are norm continuous on (0,0c) in X and Y respectively.

LIPSCHITZ CONTINUITY. There exist positive constants M and N such that

for all t,h > 0:

ISt +h)=SHI < Mb;

IE(t+h) ~E@| < Nb.

Remark 2.2 The Lipschitz continuity condition implies both strong continuity
and initial continuity, (Section 2.8). In other cases it appears to be that the
conditions are independent, but the natural development of the theory requires

that they be added one by one.

2.3 Resolvent relations and invertibility

As for semigroups (and integrated semigroups) the technique of Laplace trans-
forms allowed one to characterize the empathy relation in terms of pseudo-

resolvents [S2]. We will do this for an integrated empathy in the same way.
The following relations are obtained only from the definitions and are of impor-

tance.

Theorem 2.2 Under the minimal assumptions the following identities hold for

all positive r, s, t and A

S(H)E(s) = S(s)E(1); (2.8)
S(t)E(r)E(s) is invariant under permutations of r, s and t; (2.9)
S(t)R(N) = P(A\)E(t). (2.10)
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Proof.  The first identity, (2.8) is a consequence of (2.4). To prove (2.9) we
note that Theorem 2.1 gives
T ops
S(t)E(r)E(s) = /0 [/0 S(lo+p+1t)—S(oc+p)do| dp.
Fubini’s theorem shows that r and s may be interchanged. The claim now
follows from the first identity, and (2.10) is obtained from (2.8) by taking Laplace

transforms at A with respect to s.

In the demonstration of the following theorem we freely make use of the convo-
lution theorem and operational properties as set out in Section 6.5. The proof

turns out to be an easy calculation.

Theorem 2.3 If (S, E) is an integrated empathy, then the pseudo-resolvent
equation

PA) = P(p) = (0= NP R(p) = (n = A P(u)R(N) (2.11)
holds under the minimal assumptions. As a partial converse, if the strong con-
tinuity assumption is added for (S, E) then (2.11) implies that (S, E) satisfies
the integrated empathy relation (2.3).

Proof. If we take Laplace transforms on both sides of (2.3) at A with respect

to t we obtain
S(s)r(A) = La{(1 % Ss)(t) — (1 x8)(1)},

(for the notation see Section 1.5). The convolution theorem gives
SE)r() = +La(S) - 320, (212
S()R(A) = La{Ss} —p(\)
= p(A) — (e %5)(s) — p(N). (2.13)

When taking transforms again, this time at p with respect to s,

PIRW) = () = () = 2. or

PUORO) = 25 Ip) = p()] = 5N,
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and when simplifying we obtain

P(A) = P(p) = (b = ) P(n)R(X).
By interchanging the role of A and u and then rewriting we have

P(p)R(A) = P(A)R(p).- (2.14)

When retracing our steps and employing the uniqueness theorem, Section 6.1,
we obtain the partial converse, with (2.3) holding for almost every s and ¢t.

Strong continuity ensures that the relation holds for all s, ¢t € RT. O

Remark 2.3 It would be tempting to derive (2.14) from (2.10) as can be done
formally in the same manner as in Theorem 2.2, but this can only be justified

if P(\) is a bounded operator and we do not assume this here.

Corollary 2.1 The domain Dg := P(A)[Y] C X does not depend on the choice
of \.

Proof. Let x = P(u)y, then z = P(\)[1 — (A — p)R(p)]y. O

When we add the invertibility assumption more results follow.

An essential property for the development of a theory in the case of an empathy
is that under the invertibility condition E is a semigroup. This has the analogy

which one would expect:

Theorem 2.4 Under the invertibility condition E has the integrated semigroup

property (1.4).

Proof.
SOEOIEE = [ [S(+nBE - SpEW]

= [ 5@ B+ - S@EE) o
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= S [ [Blo+n) - B dp
= 50 [ [Blo+) - B()] dp

where we used the permutation identity (2.9) in the last step. If we take the

Laplace transform at £ with respect to t,

and the invertibility of P(¢) yields (1.5). O

Remark 2.4 From here onwards we always assume invertibility of P(§) for at

least one €.

Results obtained for S so far all have analogies for E, if we think of E as a
special integrated empathy. While keeping in mind Theorem 2.4 it has been

known [A] that R satisfies the pseudo-resolvent equation
R(A) = B(p) = (p = MR R(p) = (n = M R(p)R(N), (2.15)

but it may also be seen from Theorem 2.3 by letting X =Y and S = E, for
then P = R. Corresponding to (2.13) we have for integrated semigroups

E(s)R(\) = e*r(\) — (e x E)(s) — p(\). (2.16)
E(t)R(X) = R(M\)E(t), (2.17)

R(p)R(A) = R(A)R(p). (2.18)

It is also true that Dg := R(A)[Y] C Y is independent of A (as per Corollary
2.1). We also see, from R(u)y = 0 implies R(A\)y = (u— A)R(N)R(u)y = 0, that
the null space Ng := KerR()\) does not depend on the choice of A\. These two
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facts are quite well known, see e.g. ([Y2], Chapter 8, Proposition, p.215). For
P() there is a more intricate property which is also a direct consequence of the
pseudo-resolvent equations. The proofs for the following two results were first

given in [S2].

Lemma 2.1 Under the minimal and invertibility assumptions, NgpNKerP(\) =

Npg N KerP(u) for every positive A\ and p.

Proof. If y € Np NKerP(p) then by (2.11) P(A\)y = (u — N)P(A)R(p)y = 0.
Hence y € KerP()). O

The invertibility assumption has strong implications.

Theorem 2.5 The invertibility of P(£) for one £ implies that the linear oper-

ators P(X\) are all invertible.

Proof. Suppose that P(A)y = 0. By (2.11) we have P(£)y = (A—&)P(§) R(\)y.
The invertibility of P(£) now gives y = (A — §)R(\)y and hence R(§)y =
(A= YR(E)R(N)y. Comparison with (2.15) shows that R(\)y = 0. By
Lemma 2.1, y € Ng N KerP(A\) = NgNKerP({) and y = 0. This means
that P()) is invertible. O

In the same manner as in the original empathy theory, we have the corresponding
representation equations which facilitate many of the proofs in the sequel (note

that (2.19) is not dependent on invertibility while (2.20) is).

Theorem 2.6 (Representation equations) Let y = R(A\)yx € Dg. Then

Sty = €M [%(1 — e MYP(\)y\ —/0 e MS(s)ya dS] ; (2.19)
Et)y = M [%(1 —e M)y —/0 e ME(s)ya ds] . (2.20)

Proof. Note that (2.13) may be rewritten to obtain the expressions (2.19) and
(2.20) respectively. O
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Remark 2.5 The equation (2.19) does not depend on the invertibility assump-
tion. Moreover we do not necessarily have that yy is unique, which would be the

case if R()\) were invertible.

Theorem 2.7 S(t)[Dg] C Ds and E(t)[Dg] C Dg, and for y € Dg the map-
pings t — S(t)y and t — E(t)y are continuous.

Proof.  Suppose y € Dg then S(t)y = P(A)E(t)yx by (2.10). The inclusion
E(t)Dg C Dg follows from (2.17). The continuity follows from the continuity

in ¢t of the Bochner integral and Theorem 2.6 where S and F map from Dg. O

Remark 2.6 The trajectory of S, defined by y € Y, is the ‘curve’ Ts, :=
{S(@)y |t >0} C X and the trajectories of E are defined analogously. Another
way of stating Theorem 2.7 would then be to say that {Ts, | y € Dg} C Dg

and that these trajectories are all continuous curves.

2.4 Initial continuity and invertibility

The assumption of initial continuity (of S) added to the minimal and invert-
ibility conditions has far reaching consequences. It will be understood that this

condition is assumed from here onwards.

Firstly it enables us to have a “right-hand derivative” of S(t)y for all y € Dg at
t = 0, and secondly the surprising fact that initial continuity for S only, gives
the invertibility of every R(A). This demonstrates a subtle interdependence of
the properties of E and that of S, which is related to the integrated empathy

relation.

The initial continuity condition for E is a separate assumption, and will always
be explicitly stated. The consequences of initial continuity for S has analogies

for E, when initial continuity of F is assumed instead.
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Theorem 2.8 IfS satisfies the initial continuity condition the following is true:
(a) Coy :=lim;_,o4 t1S(t)y exists for y € Dg;

(b) The operators R(\) are all invertible;

(c) Co = P(A\)R™Y(X) is invertible and Co[Dg| = Ds;

(d) For y € D Coy = limy_,00 AP(N)y.

Proof. Statement (a) follows from (2.19) after division by ¢ and letting ¢t — 0+.
The assumption that S(t) — 0 as ¢ — 0+ lets the integral term fall away.
So Coy = PNy, if y = R(AN)ya. For (b), suppose y € Dy has the two
representations y = R(A\)yx = R()\)zy, then Coy = P(\)yn = P()\)zy hence by
Theorem 2.5, yx = z) which gives the result. The validity of (c) follows because

of the invertibility of P(\) and R(\).

In order to prove, (d) we first note that the condition of initial continuity implies
that limy_, . P(A) = 0 after the dominated convergence theorem is applied in

the definition of P. From (2.11), (acting on y,,)
APNR(p)yu = P(n)yu = nPN) Ry — P(A)yu,
then we set y = R(p)y, to obtain
AP(N)y — Coy = P(N) [y — ]

and the statement follows when A — oo. O
The analogies for E are seen to be

Theorem 2.9 If E satisfies an initial continuity condition the following is true

for ally € Dg,
(a) limt*}0+ tilE(t)y =y,
(b) imy_,00 AR(AN)y = y.
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2.5 The generator and implicit Cauchy problem

The assumptions we have made thus far, (the invertibility assumption and the
initial continuity assumption), enable us, similar to the theory of integrated
semigroups and using identical formulae and arguments to [S2], to define the
concept of the generator of an integrated empathy (S, E). This will be a pair
of operators (A4, B) with common domain Dg each mapping into Y, chosen in

such a manner that

P()\) = (AB—A)"L. (2.21)

The operators A and B are defined as follows

B := Byx=Cy '=RONP'(\); (2.22)

A = Ay=[AR\\) -Iy]P'()N), (2.23)
with Iy the identity on Y.
It is straightforward to check that (2.21) is satisfied. Indeed,

(AB — A)~! = (AR(A)P‘l(A) — [ARNVPTIN) = PN ) Py,

However we still need to know that A and B do not depend on A for this

definition to be meaningful.

Proposition 2.1 The operators A and B as defined in (2.22-2.23) do not de-
pend on the choice of A.

Proof. Tt can be seen from Theorem 2.8(a) and (c), and the definition of the
operator that the claim holds for B. Formal inversion of the resolvent equation
gives

P (N =P (1) = (A~ WRNP (N) = (A — p)B.
Now
Ax =4, = PROPTIN) = PTION] - [pR() P (w) + P ()]

= (A=wB— (PN P () =0
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which implies that A, is independent of A and A is well-defined. O

We will need some identities and results which involve the generator (A, B).
To obtain these we apply (2.10) and (2.17) to the definition. The subdomains
Dhik =1,2,... are defined recursively by D}, := Dp, Dk = R(\) [D5']. For
consistency we take D% := Y. It is seen that the sequence {D%} of subspaces

of Y are decreasing.

Theorem 2.10 Let x € Dg and y = Bx = R(\)yx € Dg. Then
(a) Az = ACoy = (A\y — yr);

(b) E(t)y = BS(t)y;

(c) AS(t)y = E(t)ACoy = E(t)Ax;

Fory € D%H, k>1,

(d) ACoy € D and S(t)ACoy = CoAS(t)y.

Proof. 'To obtain these identities is a matter of applying the definitions of A
and B and using simple algebra. O

Remark 2.7 The present assumptions allow us to write (2.19) in a more fa-
miliar form, cf. ([ABHN], Lemma 3.2.2(d), p.125), as follows: Lety = Buz;
x € Dg then
t
Sty = ~(eM—1)Coy— e)‘t/o e S(s)yx ds
(M — 1)z —eM /Ot e S(s)P7 (N ds

t
(M — 1)z — e’\t/ e**S(s)(AB — A)z ds
0

N R e e

t t
(M — 1)z — NeM / e S(s)Bx — eAt/ e S(s)Ax ds
0 0
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by letting A — 0+,
t
S(t)y = tx +/ S(s)Ax ds. (2.24)
0

Theorem 2.11 Ify € Dg, the functions t — v(t) :== S(t)y and t — w(t) =

E(t)y are differentiable in X and Y respectively, and

u(t) :=v'(t) = S@)ACoy + Coy = Cy [AS(t)y +y]; (2.25)
w'(t) = E(#)ACyy +y. (2.26)

Moreover
tlirél+ Bu(t) = y. (2.27)

Proof. The differentiability can be seen from Theorem 2.6. The expressions
for v' and w' are obtained from (2.19) and (2.20), as well as Theorem 2.10(d).
To prove (2.27) we notice that(2.25) combined with Theorem 2.10(b) gives the
identity

Bu(t) = E(t)ACoy +y (2.28)

and since ACpy € Dg it follows from (2.20) that E(t)ACoy — 0 ast — 0+. O

Remark 2.8 Since Dﬁ;ﬂ is a nested sequence, Theorem 2.11 also holds if y €
DL k> 0.

We introduce the notion of a tangent trajectory whereby Theorem 2.11 may be

interpreted in a dynamic systems framework.

Remark 2.9 If the function t — S(t)y is differentiable in X the curve Tg , =
{%S(t)y |t >0} is called the tangent trajectory of S determined by y. If

z = limy01 £5(t)y exists, then we say Tg, emanates from z.

The subdomains of Dg are defined recursively by D&t := P(\)[DE] € D for
k=1,2,... and DY := X.
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The equation (2.29) is the integrated equivalent of (1.6). Further differentiability
of E(t) will ensure that (1.6) is satisfied.

Theorem 2.12 Ify € D%H for k > 1, then Tg , exists, Tg, C Dk and em-
anates from Coy. The tangent trajectory is an affine transformation of the
trajectory, (see Remark 2.6 and Remark 2.9), and is generated by the solution

of the implicit integral equation

Bu(t)y =y + A/O u(s) ds. (2.29)

If k > 2 the tangent trajectory is generated by the solution of the implicit Cauchy
problem (1.6-1.7).

Proof. The first statement is an interpretation of Theorem 2.11 on noticing
that Tg , = {u(t) | t > 0}. It is also seen from Theorem 2.7 that the function
t — v'(t) is continuous and hence v(t) = fot v'(s) ds = fg u(s) ds. The identity
(2.29) now follows from (2.25).

Finally, if & > 2 let 2 = ACoy and w(t) := E(t)z. Theorem 2.10(d) implies
that z € Df;‘l for ¥ > 1 and hence that w is differentiable. According to
(2.26) we have w'(t) = E(t)ACoz + z = BS(t)ACoz + 2z = AS(t)z + z =
A[S(t)ACoy + Coy] = Au(t), by (2.28). But by (2.25) and Theorem 2.10(d)
Bu(t) = AS(t)y + y = E(t)ACoy +y = w(t) + y, so that 4 Bu(t)y = w'(t) =
Au(t). O

2.6 Strong continuity and implications of the
Post-Widder inversion theorem
We will add the strong continuity assumption in this section, with the surprising

result that it ensures that E(t) maps Y into the closure of Dg and S(t) maps into

the closure of Dg for each ¢. Initial continuity of S will be assumed throughout.
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Theorem 2.13 Suppose that S is strongly continuous. If y € D% for k > 1,
thenTg , ewists, Tg, C DE! and emanates from Coy. Ify € DE for k > 1 the
tangent trajectory is an affine transformation of the trajectory and is generated
by a solution of the implicit integral equation (2.29). If E is also strongly con-
tinuous, the tangent trajectory is generated by a solution of the implicit Cauchy

problem (1.6-1.7).

Proof. When the proof of Theorem 2.12 is retraced it is seen that less regularity

of the initial value y is required under strong continuity. O

The condition of strong continuity also has the consequences mentioned in the
first paragraph of this section, i.e. E(t)Y C Cl[Dg] and S(t)Y C Cl[Dg] for ev-
ery t > 0. For the description we define the closed subspaces Yg := Cl[Dg] CY
and Ys := Cl[Ds] € X. We will need expressions for the Widder operators
associated with r(A) and p()), in terms of the operators R(\) and P(\). For
f € C>{(0,00): X or Y} these operators are defined by
(Lif)(N) == [(_k—l')k] ML FRY(\) for k=1,2,. ..

with f(*) the k’th derivative of f. The Post Widder inversion Theorem, (Ap-
pendix B, Section 6.3), states that if f is the Laplace transform of a function
g then (Lif)(k/t) — g(t) as k — oc for all ¢ in the Lebesgue set of g. If g is

continuous the convergence is uniform over compact subintervals of (0, c0).

In the evaluation of the Widder operators the expressions
R™MO) = (=1)"n!R"(\); (2.30)
PM(\) = (=1)"n!P(\)R"()\) (2.31)

are employed. These expressions are obtained by using the resolvent equations

(2.11) and (2.15) to differentiate R and P.

Lemma 2.2

.
(Ler)(N) = R(A)D_A"R"(N); (2.32)
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k
(Lep)(N) = P(X) Y A"R"(). (2.33)

n=0

Proof. 'We prove (2.33) with the aid of the Leibnitz rule and (2.31). The proof
of (2.32) is similar.

@y = Slawm0)

(k)
_ (—1)k>\k+1 lpo\)]

k! A

—1)* u —n)!
_ & kl!) ALY [(i)(—nkn (A’“k_n +)1' (—1)"n!P(\)R"™())
n=0

k
= P(A)D_A'R"(N.

O

Note that (Lg7)(A): Y — Dg and (Lgp)(A): Y — Dg. Therefore by an applica-

tion of the Post-Widder theorem we obtain

Theorem 2.14 If S and E are strongly continuous, then E(t)[Y] C Yg and
S@)|Y] € Xs. In addition (Lyp)(k/t) — S(t) and (Lgr)(k/t) — E(t) in the
strong operator topology. The convergence is uniform on compact subintervals

of (0, 00).

2.7 Bounded resolvents

The boundedness of the resolvent operators P(A) or R(A) has not been a pre-
requisite for any of the results obtained thus far, and no conditions have been
imposed on S or E implying the boundedness of these resolvents. Indeed theo-

rems with far-reaching consequences may be proved in making such assumptions.

In this section we investigate consequences of adding boundedness of some or

all of the resolvent operators. These results involve:
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(a) The behaviour of the family E at t = 0;
(b) The properties of the operator Co;

(c) Closedness of the generator (A, B).

Note that we do not make the strong continuity assumption in this section nor
is initial continuity of E assumed. The ancestral space of the family E is defined
as

Anc(E) := {y €Y | tl—i}(?-i- %E(t)y exists}.
From (2.20) it is seen that D%, C Anc(E) and for y € D%, limy_o4 1E(t)y = y.
In order to extend this result we need representations similar to (2.19-2.20)

which will now be obtained, (note that we have initial continuity of S which

gave the invertibility of the respective resolvents).

Proposition 2.2 For arbitraryy € Y, t >0 and A > 0, fg e~ S(s)yds € Ds.
Also,

E(t)yy = H(l —e My — P*1(>\)/0 e S(s)y ds] . (2.34)

Proof. The equation follows from:

PONE(t)y = e [%(1 M) Py — /0 e_)‘sS(s)yds} , (2.35)

after noting that (2.35) implies that the integral on the right is in Dg.
To derive (2.35) the calculation is similar to that of obtaining (2.19) from the

integrated empathy relation but now we set S(t)R(\) = P(A\)E(¢) in (2.13). O

Theorem 2.15 Suppose that the operator P()) is bounded for at least one value
of \. Ify € Anc(E) then limy_o4 $+E(t)y = y.

Proof. The boundedness of P(\) means that P~1()) is closed. The claim then
follows from the initial continuity of .S and (2.34). O

33



University of Pretoria etd — Brown, T J (2006)

Notice that properties of S once again have consequences for E. When E has

continuity properties of its own there is much more that can be said:
Theorem 2.16 If E is initially continuous, then
(a) Dg C Anc(E);

(b) If R(X) is bounded for a single X then lim;_,o4 tE(t)y =y
for all y € Anc(E).

When the strong continuity of E is assumed as well, Anc(E) C Yg.

Proof. Part (a) is implied by Theorem 2.9(a). In the proof of (b) the formula

1
Bty = e | (1—e )y - R™'(N) / e M E(s yds} (2.36)
0
may be used, or it may be observed that both this formula and (b) is true if we

consider that F is an integrated empathy with S = E. For then (b) is the same
as Theorem 2.15. The last statement follows from Theorem 2.14. O

The boundedness of P()) for each A\ has even more implications, specifically

regarding the operator Cy.

Theorem 2.17 If every P(X), A > 0 is bounded, and there exists a real number
K such that M||P(N)|| < K for all A > 0, then the operator Cy is bounded and
the continuous extension of Coy to Yy, which we call C, has the property that
Cy =limy_,0o AP(N)y for all y € Yg. If both S and E are strongly continuous,
S(t) = CE(t).

Proof.  The result follows by applying the Uniform Boundedness Principle
to Theorem 2.8(d). The second statement follows from Theorem 2.14 and the
identity (2.10). O

In the theory of semigroups and integrated semigroups a pertinent feature is

that the generator is closed (or closable). The situation in empathy theory is
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not different, but the corresponding property that the pair (4, B) mapping into

the product space is closed, is nevertheless surprising.

A number of results may be proved regarding the closedness of the generator,

all of which involve boundedness conditions on either or both P(\) and R(\).

Theorem 2.18 The operator (A,B): © € Ds C X = Y XY is closed provided
that P(X) is bounded for at least two values of .

Proof. Let P(\) and P(u) be bounded for A\ # u. Suppose z, — z and

(Az,, Bx,) = (y1,¥y2) as n — oo where z,, € Dg. Then
ABz, + Az, — A1 + yo,
uBx, + Az, — py1 + Y2, as n — 0o.
The closedness of P~1()\) and P~!(x) now implies that = € Ds and that
ABx + Az = \y1 + yo,

uBx + Ax = py1 + ys.

On solving for Az and Bx we obtain (Az, Bx) = (y1,Y2). O

This result is in contrast to other works in implicit Cauchy problems where it
is often assumed that both of the operators A and B are closed (e.g. [AF],
[CS], [FY]). Much of the present significance of our work regarding applica-
tions depends on Theorem 2.18. This is because applications in boundary value
problems do exist where the operator B is not closable. The case where B is

closable is summarized in the following theorem. This theorem is quoted from

[S1] and [S2].
Theorem 2.19 The operator B is closable if and only if C is invertible.

Proof. If C is invertible then the inverse is closed and B = C, * is the restriction

of a closed operator and is therefore closable.
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For the converse suppose that C’U_1 is closable and Cy = 0. Let {y,} C Dg be
such that y, — y. Then z,, = Cy, = Coy, — 0 and y,, = Cox,, > y as n — 0

and hence y = 0. O

When the generator (A, B) is closed we may say more about the implicit Cauchy

problem, indeed, of the solutions to some implicit integral equations.

Proposition 2.3 Suppose the generator (A, B) of an integrated empathy is
closed. Then, for y € Dg, fot S(s)yds € Dg and Afot S(s)yds = fot AS(s)yds.

Furthermore

E(t)y =ty + /0 AS(s)y ds. (2.37)

Proof.  From Theorem 2.10(b) and (c) we see that AS(s)y = E(s)Az and
BS(s)y = E(s)y are integrable (with y = Bz). Since (4,B): Ds C X - Y xY
is closed, it follows that fot S(s)yds € Dg and that both A and B commute with
the integral. Therefore P~1()\) = AB — A will also commute. Thus (2.34) may

in this case be written in the form

Emy:w“Kl%%f>y—&[E@w@+Aiw@M¢}

By letting A — 0+ in this expression we obtain the final statement. O

Corollary 2.2 Suppose the generator (A, B) of an integrated empathy is closed
and S is strongly continuous. For y € Dg let v(t) := S(t)y. Then v satisfies

the implicit integral equation

t
an:w+A/v@m& (2.38)

0
Proof. The last statement in Theorem 2.17 is applied to (2.37). O

Remark 2.10 The form of equation (2.38) is apparently unavoidable. It would
be preferable to have a direct analogy of (2.29) similar to that for integrated
semigroups ([ABHN], p.130) but the commutation relation Theorem 2.10(d)
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does not make sense for y € Dg. Also, operator B does not have to possess

all the agreeable properties of the identity operator.

2.8 Lipschitz continuity

In [S2] uniformly bounded empathies are considered and appropriate necessary
and sufficient conditions are imposed on the resolvents. The corresponding
property for an integrated empathy turns out to be stronger, the families should
be Lipschitz continuous. The conditions in the form of inequalities are very
similar to the Hille-Yosida condition. Note that in the proof of this result the

form of the convolution theorem given in Section 6.5 is crucial.

Theorem 2.20 A necessary and sufficient condition for an integrated empathy

to be Lipschitz continuous with Lipschitz constants M and N is that for all
A>0and k=0,1,2,...

[IAP()IAR)I|

AR

IA

M; (2.39)

A

N. (2.40)

Lipschitz continuous empathies are also initially continuous.

Proof.  Assume the uniform Lipschitz continuity of S. Denote by E** the
k-fold convolution of E with itself.

To find an estimate for ||(S* E**)(t)|| we evaluate the convolutions (S*E**)(t) =
fot Osl Os’“ S(t — s1)E(s1 — s2)E(sy — 83) ... E(sp_1 — s)E(sg)dsy, - . . dsq.

By using (2.5) we may evaluate the integrand

S(t — Sl)E(Sl — SQ) . ..E(Sk_l — Sk)E(Sk)
_ / / k/k[S(t—sl+£)—S(£) dpx . -dpy (2.41)
0 0 0

where £ = p1 + ... + pg. Because of the Lipschitz condition

[[S(t—s14&) = SE)]|| < M(t— s1).
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When calculating the integral we obtain

t S1 Sk
H&WWSM//.U/uﬂmWﬁmr@“@Mﬁmmwwum
0 Jo 0
and after inspection ||S * E**)|| < M[t]**+D*, where [t]: t — t.

It also follows from the convolution theorem (Appendix B, Section 6.6) that
p(N)r*(X) = £,{S * E¥*}, and therefore we have

1 1

Xpu)kRuﬂk M.

> —As k+1)= _

Inequality (2.39) follows. The proof of (2.39) is essentially the same.

To prove the converse observe that the Widder operators defined in (6.1) satisfy
the following;:

Ck+1

%(L’“p)(/\) —— [(Zxp) = (Liyap)] = -

k+1
A?

APOV)ARNE,  (2.42)

where (2.31) is used. When integrating (2.42) we find that

(Lip)N) — (Lep) (1) = —(k + 1) / PRI L. (243)

From (2.39) and (2.43) it now follows that

X dp 1 1
(L)) = (e < e+ 1) [~ =+ [F =53]
With A = k/t and p = k/(t + h) this becomes
| (Lkp) (k/t) — (Lip) (k/(t + R))|| < M (1 + %) h. (2.45)

It follows from this and the Post-Widder theorem that

IS(t+h) = S| < lim |[(Lep) (k/t) = (Lip) (k/ (¢ + W) || < Mh.

Remark 2.11 Note that this theorem gives exact bounds M and N, namely the
constants in the Lipschitz continuity inequalities and the characterizing inequal-

ities (2.89-2.40) are identical.
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It is fortunate that a much larger class of integrated empathies and correspond-
ing Cauchy problems are covered by this theory. An integrated empathy is

called exponentially Lipschitz continuous if there are constants M and a such

that
|S(t+h) = S(t)|] < Me*h and (2.46)
|E(t+h) — E(t)]| < Me*h. (2.47)
The transformations
Stay(t) == e “S(t) + a/ot e *S(s)ds; (2.48)
Ep(®) = e ®B(f)+a /0 oo B (s) ds (2.49)

gives an integrated empathy (Sy,}, Eq}) that is (uniformly) Lipshitz continuous

with Lipschitz constants M and N as may be confirmed with a direct calculation.

The transformations are valid for both positive and negative a and are conse-

quently invertible.

Furthermore Pg,3(\) = P(\ — a) and Ry4)(A) = R(\ — a), which means that
an exponentially Lipschitz continuous integrated empathy may always be trans-
formed into an integrated empathy with the resolvents defined for any positive
argument \. It also follows that the corresponding generator is (A + aB, B)

with the implicit differential equation

d
o [Bu(t)] = [A + aB]u(t).
The simplest way to confirm all the above claims is to take Laplace transforms
on both sides of (2.48-2.49), cf. ([ABHN], Proposition 3.2.6, p.128). The notion

discussed here corresponds to that of an exponentially bounded empathy covered

in [S3].
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2.9 Characterization of the generator

In line with Theorem 6.4 the generator of a Lipschitz continuous integrated em-
pathy is characterized. This is in contrast to the case of an empathy where only
exponential boundedness is assumed. However, the space Y must then have the
Radon-Nikodym property [S2] and in the present setting this is not necessary.
The development is parallel to that of Arendt for integrated semigroups, ([A],
Theorem 4.1; [ABHN], Theorem 3.3.1, Chapter 3, p.135-136).

Let A,B: D C X =Y be given linear operators. We formally define for A > 0,
PO\ {(A,B)) = (AB—A)"'; (2.50)
R()\,(A,B)) := BP(\). (2.51)

The following is the promised characterization of the generator in terms of the
Hille-Yosida type inequalities given in the previous section. With the theory we

have developed it is a straightforward consequence of Arendt’s theorem.

Theorem 2.21 The pair (A, B) is the generator of a Lipschitz continuous in-
tegrated empathy (S, E) with P(\) = P(X\, (A, B)) and R(\) = R(\, (A, B))
if and only if AB — A:D — Y is bijective, the operators P(X,(A, B)) and
R(\, (A, B)) are bounded for all X > 0 and satisfy the inequalities (2.39-2.40)
fork=20,1,2,....

Proof.

P(/\a <A7-B)) - P(,uv <AaB>) = (/\B - A)il - (IUB - A)il
= (B —A) (4B — A4) — (AB — A)) (uB — A) !
= (u—ANP()\{A,B))R() (4, B)), (2.52)

and hence, by letting B act on both sides of (2.52),
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Since P(A, (A, B)) and R(\, (A, B)) satisfy the resolvent equations (2.52-2.53)
it may be verified that both are infinitely differentiable when considered as

functions of the parameter A and in fact,
P®(X\(A,B)) = (—1)*k'P(X, (4, B))R* () (A, B)); (2.54)
R® (X (A,B)) = (-=1)*k'RF'(), (A, B)). (2.55)

By using the formulae (2.54) and (2.55) and the inequalities (2.39-2.40) it is
seen that (A"*!/nl)P*)(X (4, B)) and (A"t /n!)R¥) (X, (A, B)) are bounded
uniformly in A and n. Arendt’s theorem, (Appendix B, Theorem 6.4), im-
plies that there exists a Lipschitz continuous double family (S, E) such that
P(X\ (A,B)) = MLx{S} and R(\, (A, B)) = AL {E}. Because P and R satisfy
the resolvent equations (2.52-2.53) and (S, E) is strongly continuous, it follows
from Theorem 2.3 that (S, E) is an integrated empathy. O

Remark 2.12 The condition of Lipschitz continuity falls just short of assum-
ing that (S, E) is differentiable, and if Y has the Radon-Nikodym property the

notions coincide, as we shall see in the next section.

2.10 Differentiability and the Radon-Nikodym

property

Corresponding to the property of (uniform) Lipschitz continuity of an inte-
grated empathy is the uniform boundedness of an empathy, i.e. [|S(?)]] < M
and ||E(t)|] < N. In fact Theorem 2.20 holds verbatim with this change and
“integrated empathy” substituted by “empathy”.

The characterization result for an empathy follows much easier in this context
than the original of Sauer, ([S2], Theorem 8.2). It is well known that a Lipschitz
continuous function on a space that has the Radon-Nikodym property is differen-

tiable almost everywhere. This is extended to the whole of RT for an integrated
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semigroup by using the semigroup property, by Arendt ([A], Theorem 6.2).
He makes use of a set-theoretic argument to show that the set of points where
FE is not differentiable is empty. By using this result and some of our previous

theorems, we are able to prove (in analogy to Arendt):

Theorem 2.22 Suppose that the space Y has the Radon-Nikodym property and
let (S, E) be a Lipschitz continuous integrated empathy with generator (A, B).
Then there exists a uniformly bounded empathy (S', E') with generator (A, B)
such that P(\) and R()\) are the Laplace transforms of S and E respectively,

and

S() = /0 ' §'(0) dor (2.56)

&=
—~
=

I

/t E'(0) do. (2.57)

Proof.  Of course E is an integrated semigroup. As proved by Arendt, the
resolvent equation (2.11) and the Hille-Yosida inequality (2.40) implies that
R()) is the Laplace transform of a semigroup E' on Y (on recalling that ¥ has
the Radon-Nikodym property), see Section 6.2. By using Theorem 2.17 with
(2.39) for the case k = 0 it is clear that the operator C: Yg — X is a bounded
extension of the operator Cp. Let S’(t) = CE'(t). One may easily see that
(S', E') is indeed an empathy, (see Example 2.1) with the desired properties:

The uniform boundedness is established by the analogy of Theorem 2.20 for
empathies ([S2], Theorem 8.2). Observe that { [, §'(c)do, [, E'(c)do) is an
integrated empathy (Example 2.2). We see that this is exactly (S, E) as follows:
The resolvents P(A) and R(\) are the same for both. The uniqueness theorem
for the Laplace transform (Section 6.1) and the strong continuity of S and E

now implies the equality. O
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Chapter 3

The n-times integrated

empathy

In the same spirit as [A] a general theory of more-than-once integrated empathies
may be developed, and we give an outline here. The results obtained are often
identical to those of Chapter 2 and clues as to where the results differ may be

obtained from Arendt.

3.1 More-than-once integrated semigroups

For a general positive integer n Arendt [A] gives the n-times integrated semi-

group relation as

s+t s
EOEG) = ey | [ G+ t= 0" B o= [(+t- B dp).
"L 0
(3.1)
Clearly the case n = 1 corresponds to (1.4). It is assumed in [A] that lim; o4 E(t)z

=0 for every z € X.
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Suppose that T is a Cy-semigroup. With

E(t) = t... tT(t)(dt)": t(t—s)"_lT(s)ds
/- J

it may be verified with a calculation that (3.1) holds. Thus we see that this
notion is indeed a generalization of an n-times integrated semigroup. The reason

behind the form of R that follows, also becomes clear.
With R given by R(\) = A\"r(X) = A"Ly{E} the pseudo-resolvent equation

R(A) = R(p) = (= N RA) R ()

is equivalent to the relation (3.1), provided E is strongly continuous ([A], The-
orem 3.1). If R is the resolvent of the linear operator A, then A is called the

generator of E, as for semigroups.

The characterizing inequalities corresponding to (1.3) have a different form in

the more-than-once integrated case, ([A], Theorem 4.1):

Theorem 3.1 A linear operator A is the generator of an (n+1)-times integrated

semigroup E satisfying
|E(t+h)—E(t)|| < Mh for all h >0
if and only if

)\k+1 dk 1
H—m Yy [FRW]

(assuming that R(\) exists for all X > 0).

‘SMforall/\>0,k:0,1,2,..., (3.2)

([ABHN], Proposition 3.2.4, Theorem 3.3.1) may also be referred to regarding

these results.

Furthermore the Cauchy problem has the integrated form:

Theorem 3.2 If A is the generator of an n-times integrated semigroup then
for all x € Dy,
t
S(t)z = (t" /n))z + / S(p) Az dp (3.3)
0
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and

A / S(p)zdp = S(t)z — (t" /n))z. (3.4)
0

3.2 Corresponding definitions and assumptions

The correct definition of an n-times integrated empathy is not unexpected. Let
(S, E) be a family of bounded linear operators with S(t): X = Y, E(t): Y =Y

where X, Y are Banach spaces and the operators are defined for all ¢ > 0.

(S, E) is an n-times integrated empathy if it satisfies

1

SOEG) = o=y

s+t s
|t S = [ e= S dp)
(3.5)

However we have found the following notation which we introduce for this chap-

ter very helpful.

If f:t — f(t); t > 0 then the shifted function is defined as fi,(t) = f(t + s) for
s > 0. In addition let f,(t) =t""!/(n—1)! forn > 1.

It may be verified with a routine calculation that the definition (3.5) is equivalent

to

S@)E(s) = (fn * Si)(8) = (fa.fs) * S)(H)- (3.6)

It should be noted that we use the same notation but definitions of the resolvent

operators are extended,
P(\) = A"p(A) = AL, {S}

and

R(\) = A"r(\) = \"LA{E}.
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The initial continuity condition is an extension of that of Section 2.2. It is given
by

lim
t—0 tn—1

S(t)y =0 for every y € Y. (3.7)
Note that this gives lim;_,q t%S(t)y =0 for each r =0,1,...,n — 1.

The other assumptions are identical to those given in Section 2.2 except for the

minimal assumption (1.9) which is extended to (3.5).

3.3 Resolvent relations and consequences

The general form of Theorem 2.3 may be proved in essentially the same way

(with P()\) and R()) as in the above).

Theorem 3.3 If (S, E) is an n-times integrated empathy, then the pseudo-

resolvent equation

PA) = P(p) = (0= PN R(p) = (n = A P(u)R(N) (3-8)

holds under the minimal assumptions. As a partial converse, if the strong conti-
nuity assumption is added for (S, E) then (3.8) implies that (S, E) satisfies the
n-times integrated empathy relation (3.6).

Proof. If we take Laplace transforms on both sides of (3.6) at A with respect

to t we obtain

S(s)r(N) = La{(Fn * S ) } = La{ (fn,(s1 * S)(B) }-

The convolution theorem gives

S = 3 adSia) — (X5 — (€ % £2)(9))p)
SEIRO) = () — (€ $)(s) — (376 — (€ % f)()) PV
(3.9)
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When taking transforms again, this time at p with respect to s,

PURO) = ——p(0) = —p() = —~ (3 = =) POV

p=A p=A p=A 7
which simplifies to
P()R(\) = ——P(\) — ——P(n). (3.10)
n—=2A n—A
The converse is obtained in the same way as in Theorem 2.3. O

The following theorem corresponds to Theorem 2.4. To prove it in the same
way seems to be a daunting task, so we shall use the resolvent characterization

of the n-times integrated empathy and semigroup instead.

Theorem 3.4 If (S, E) is an n-times integrated empathy and P(§) is invertible

for some & then R satisfies the pseudo-resolvent equation
R(p) = R(A) = (A = p)R(N) R(p).- (3.11)

If in addition E is strongly continuous, then it is an n-times integrated semi-

group.

Proof. Through applying (3.8),

and

p
= ¢ [PORG) - POORG)]
A= 1 1
= T g (PO = POV) = 5= (PG) ~ PO
— e [ (PO - POV) — 5= 9(Pl) - POY)]
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which simplifies to (3.12). Therefore

PE)R(n) — P R(A) = (A = ) P(E)R(N) R(p).-
By using the invertibility assumption (3.11) is obtained. The rest of the state-

ment of the theorem is clear from Theorem 3.3, (see also the first section of this

chapter). O

As before all P(\) are invertible under the invertibility condition and further
the correct form of the representation equation (2.19) may be found from (3.9)
and it is, with y € Dg, y = R(A)ya,
n—1
_ (A
stow =5 |- £ 5

k=0

t
P(A)yx — e*t/ e S(s)y ds. (3.13)
0

Given initial continuity it is possible to define the operator Cy that plays the
same role as in the once integrated empathy. It is seen from (3.7) and (3.13)

that the limit exists and we may define Cy: D — X as

. n!
Coy := tk)%:“ [t_”} S(t)y-

3.4 The Cauchy problem

The generator (A4, B) is defined with the exact formulae of Section 2.5:
B = Co~' =RMNP'(N);

A = [AR(\) - Iy]P7'(N).

The “unintegrated” form of the implicit Cauchy problem, i.e.

d
a[Bu(t)] = Au(t)
A B0 =

(with (A, B) the generator of the n-times integrated empathy (S, E)) is solved
for y € DM, For this we let v(t) := S(t)y and u(t) = v(")(t) after careful

inspection of (3.13) implies that the n-th derivative of v exists.
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3.5 Lipschitz continuity and characterization

The characterizing inequalities corresponding to (1.3) have a different form in

the more-than-once integrated case.

Theorem 3.5 The pair (A, B) is the generator of an n-times integrated empa-

thy (S, E) satisfying the Lipschitz continuity condition
ISt +h) = SE)|| < Mh and ||E(t + h) — E(t)|| < Nh for all h > 0

if and only if

)\k+1 dk 1
H K daF [WP(A)} H =M foraltA =0 .
and
ML gk T
H i [FR(A)} H <N forallA>0,k=0,1,2,....  (3.15)

Proof. The proof is almost identical to that of Theorem 2.21. Note that for S

and E to be Lipschitz continuous )\le [Ap(\)] (*) N | nd ‘ )‘k+1 H
must be uniformly bounded by Theorem 6.4, and furthermore p(/\) = P(
r(A) = &= R(N). O

49



University of Pretoria etd — Brown, T J (2006)

Chapter 4

Applications and possible

extensions

4.1 Examples in physics: dynamic boundary con-

ditions

Two worked out examples are given, both of which involve partial differential
equations with dynamic boundary conditions, on the space C(0,1) with the
supremum norm. Some of the significance of the examples lie in the following

remarks:

We shall discover that in both the examples neither is the domain of the gen-
erator pair dense, nor does X or Y have the Radon-Nikodym property. This
means that the theory in [S2] is not applicable. Furthermore it is not necessary
to verify the closedness of A or B, since we have that (A, B) is closed once we

have established the uniform boundedness of P()).

The first example consists of the heat/diffusion equation and the second the
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wave equation rewritten as a symmetric hyperbolic system of first order equa-
tions. In both cases all constants have been removed, so that the results are
simply mathematical illustrations, which can be adapted for situations such as

described in Appendix A.

4.1.1 The heat equation in one spatial dimension

We consider the following system of equations:

ve(2,t) — vga(z,t) = 05 0<z<1;t>0 (4.1)
%v(l,t) +u.(1,8) = 0 (4.2)

subject to the boundary and initial conditions

v(0,t) = O0; (4.3)
v(z,0) = wo(x); (4.4)
v(1,0) = wp. (4.5)

This system is now written as an implicit evolution equation in the space
X = (0, 1] of continuous functions. Let D = {v € X | v € C*(0,1); v(0) = 0}
and let Y = X x R!. The operators A,B: D — Y are defined as follows:
Av = (44, —v,(1)); Bv = (v,0(1)). The implicit equation is then <4[Bu(t)] =
Av(t) with initial condition lim; ,oy Bv(t) = y € Y. To apply the theory in
Chapter 2 it is first necessary to find estimates for || AP(A)|| and [|[\*R™(\)||. This
in turn involves the explicit solution of (AB — A)v = (f,g) € Y for A = w? > 0,

which leads to the boundary value problem:

w(z) —v"(z) = f(z); 0<z<T; (4.6)
v0) = 0 (4.7)
W) +4'(1) = g. (4.8)

Demonstrating the existence and uniqueness of a solution to this problem can

be done with standard techniques. See e.g. [Y1].

o1



University of Pretoria etd — Brown, T J (2006)

In order to find suitable norm estimates for the solution it is expedient to repre-
sent it in terms of Green’s function. One may solve for v by standard methods,
using an integrating factor, but the form of solution is such that it is difficult

to find suitable bounds.

For this purpose the solution is represented in the form v = u+w by adding the
solution of the homogeneous problem (f = 0 in (4.6-4.8)), u, and the solution

with homogeneous boundary conditions (g = 0), w.

Setting
I'w) := coshw + wsinhw (4.9)

we may verify by direct substitution that

u(z) = [wf‘g(w)] sinhwz (4.10)

solves the homogeneous problem (including boundary conditions).
The component w will be represented by means of Green’s function. For the con-
struction of Green’s function we firstly need two linearly independent solutions

to the differential equation (4.6), one satisfying the left boundary condition,
(4.7), and the other the right (4.8). We identify suitable candidates, namely

p(z) = sinhwz; (4.11)

g(z) = coshw(l—xz)+ wsinhw(l —z). (4.12)

It is readily verified that both satisfy (4.6) and that p(0) = 0 and ¢'(1) +
w?q(1) = 0. To find Green’s function it is necessary to calculate the Wronskian
determinant of p and ¢. This is a tedious process, but after many cancellations
the simple form

Wr:=pq —p'qg=—wl'(w) <0

is obtained, which shows that p and ¢ are linearly independent for each w > 0.
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Green’s function, G ([Y1], Chapter 2, p.64) may now be defined as

1} p&qg(z) for <<z,

Glond) = CWr p(z)q(§) forz < £ < 1.

(4.13)

It follows that .
- / Gz, )1(€) de. (4.14)

To verify that w indeed solves the given system we may note that it is given by

1 1

- o (q(m / " DO F(€) de + pla) /

and that p and ¢ solve (4.6) and satisfy their respective boundary conditions.

w(z) 2O (©) d&)

Substituting w and using the product rule for differentiation, (4.6) is verified.

In order to find a bound for |w| in terms of the maximum value of |f]|, the
integral in (4.14) is calculated for the constant function f(z) = 1. Again, after
some rather tedious calculations and bearing in mind the definition of Wr we

obtain

/ G(z,€)d oﬂIl‘( )[ q(z) + wp(z)].

Next the solution v = P(\)(f,g) is estimated in the obvious norm, namely

lfllx = supg<,<; [f(x)]. We do this by handling the terms u and w separately.

It is readily seen that Si;’?f)‘)") = Coth(i))w < L. and it follows from (4.10) that
lu(z)| < wI|‘g(LJ) sinhw < (|j| (4.15)

We observe from the formulas for p, ¢ and the Green’s function G that G is

non-negative. By (4.14) we see W (x) > 0. Therefore

' [FAIB
o< [ Godfls W@l < L. o)
0 w
Combining (4.15) and (4.16) gives the desired estimate:
AP 9)llx <IIfllx +1gl. (4.17)

The final task is to obtain the bounds for ||A” R™||. This will be done by choosing
a norm on Y which makes AR(\) = BP()) a contraction. For the space YV
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let [[{(£,9)lly == 2(|Ifllx + g]). We have that BP(X)(f,9) = Bv = (v,v(1)).
Thus, [|RA{f, ¢)ly = ||Bv|ly < 2||v||x. This combined with (4.17) gives the

estimates:

AP

IN

(4.18)

=N =

AR

IN

(4.19)

Consequently, the inequalities (2.39-2.40) are satisfied with M = % and N = 1.
By Theorem 2.21 the operator pair (A, B) is the generator of a Lipschitz con-
tinuous integrated empathy (S, E). Thus Theorem 2.13 is applicable, and the
implicit Cauchy problem

d

a[Bv(t)] = Av(t);
A B =

associated with the dynamic boundary value problem (4.1-4.5) can be solved

forye D3 CY.

In retracing the construction of the function w above, it is found that D% =
B[D N C*(0,1)]. The initial states for the system (4.6-4.8) seem to be very
restricted. Indeed in an L? setting (where the Radon-Nikodym property holds),
the semigroup E is holomorphic even in higher spatial dimensions ([S1], [vdM]).
It is suspected that the holomorhic property can also be found in the background

in the present setting, cf. ([ABHN], Section 6.1, p.395 ff.).

In this example we could obtain the estimates because we could construct ex-
plicit solutions and the underlying Green’s function was explicitly known. The
extension to higher spatial dimensions in which the dynamic boundary condi-

tions can be much more complex ([S3], [vdM]), presents a greater challenge.
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4.1.2 The wave equation

1
Let u(z,t) := (u1(z,t),uz(z,t)) for 0 <z <1landt>0. Let L:=
1 0
We consider the evolution equation
ug(z,t) — Lug(z,t) =0; z€(0,1),t>0 (4.20)
subject to the boundary conditions
u1(0) = 0 (4.21)
d
—Ul(l, t) + Ug(l, t) = 0. (422)

dt

The system (4.21-4.22), represents the wave equation written as a symmetric
positive system, see Appendix B, (Friedrichs, [F2]), with a dynamic boundary
condition. The form (4.20) is closer to the conservation law and constitutive
equation from which the wave equation is derived. In the present formulation wu
represents the velocity field and wus the internal force. The dynamic boundary
condition (4.22) represents the interaction between the medium and a mass

attached to the endpoint z =1 [S4].

To write this as an implicit evolution equation, let X := C10,1] x C[0, 1], Dg :=
{veCl0,1]nC'(0,1) | v(0) =0}, Dy :=C[0,1]NC1(0,1), D:=Dy x D; C X
and Y := X x R.

The norm for C[0,1] is ||| := sup,¢jg 1] [2(z)| and the norms in X and Y are
defined as [[v]|x := max{[jv1[|, [lv2ll} and [[{f, fs)lly := 2[lIfllx + |fs]] respec-

tively.
The operators A, B: D — Y are Au(-,t) := (Lu(-,t),u2(1,t)) and Bu(-,t) :=
(u(-,t),u1(1,t)). The equation (4.20) and the boundary conditions (4.21-4.22)

with “natural” initial conditions may then be written in the form

d
a[Bu(t)] = Au(t); (4.23)
tlir(r)lJr Bu(t) = yeVY. (4.24)
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Resolvents are once again investigated by considering the system of first order

differential equations A\Bu — Au = (f, f3) written in the form
u@) - Lu'(@) = f@) = (ie) (@) v € (0.1)  (425)
u1(0) = 0; (4.26)
)\’U,l(l) + UQ(I) = f3, (427)

for A > 0. We shall represent the solution of (4.25 — 4.27) in the form v = v+ w
with v the solution of the homogeneous equation (f = 0) and w the solution of

(4.25 — 4.27) with f3 = 0. A direct verification shows that
L .
v(z) = | ==~ | (sinh Az, cosh Az)
with T'(A) as defined in (4.9).

The component w of the solution will be represented by a Green’s matrix func-
tion, which we shall construct with the aid of two solutions of the homogeneous

equation, namely

@(xz) = (sinhAz,coshAz), (4.28)
and ¥(z) = < — [cosh A(1 — z) + Asinh A(1 — z)],
sinh \(1 — 2) + A cosh A\(1 — a:)>. (4.29)

It is seen that ¢ satisfies the boundary condition (4.26) and 1 satisfies (4.27)
with f3 = 0. The two solutions (4.28) and (4.29) are linearly independent vector

functions. Indeed,
Pa(2)pr(z) = @2(x)ihr () = T(N),
with T'()) as is defined in the previous section.

The Green’s matrix function is defined by

)@ Jp(§) for 0 <<,
Y@ Jp((€) forz<E<1

&

1 [

GwO=5579

(4.30)

—~~
8
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where the symbol ® denotes the tensor product and J the diagonal matrix

diag(—1,1). The solution w is then represented in the form

w(x)

/0 G(2.€)f(¢) de

x 1
[ [ e 560 df} @)+ [ JREZCRIG df] o(z) (431)
as is seen from (4.30). This can be verified by substitution in (4.25-4.27) with
f3=0.

We proceed from here to estimate the solution u = P(M)(f, f3). In the first
place — after some elementary, but nontrivial considerations — it is seen from

(4.1.2) that

Mol < [%] sl < 1fal (432)

The second step is to estimate w(x). This is done by estimating the terms
which constitute the representation (4.31) in a manner similar to the estimates
obtained in Example 4.1.1. The estimates are more delicate, but we finally

obtain

Mlwllx < [[f]lx- (4.33)

Combining (4.32) and (4.33) yields

1
INPOVII < 5. (4.34)
Once again, as in Example 4.1.1, we obtain (by letting R(\) = BP()\))
INROVI| < 1. (4.35)

Combination of the estimates (4.34) and (4.35) leads to conclusions similar to
that of Example 4.1.1 with the exception that D% = B[Dy N C%(0,1) x Dy N
C?(0,1)].

4.1.3 Remarks concerning the examples

It was noted in Example 4.1.2 that the representation of the wave equation as

a positive symmetric system of first order differential equations is, in a sense,
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closer to the mathematical modelling of the wave phenomenon. It is also true
that the dynamic boundary condition in question is more naturally formulated

in such a framework [S4].

For the heat equation the same is true. By not eliminating the flux from the

model equations the system of differential equations is of the form

Ul — Uz, = 05 (4.36)

3 )

U2 — Utz = 0. (437)

)

The dynamic boundary condition is, in this formulation,

d
aul(lat) - u2(17t) =0,

which once again, does not contain spatial derivatives at the boundary point
z = 1. It would be interesting to study the heat transfer problem from this
perspective. Example 4.1.2 gives us an indication that Green’s functions for
symmetric positive systems of first order equations may systematically be con-
structed with the aid of tensor products of linearly independent solutions of

associated homogeneous problems.

4.2 Some areas for further research

Empathy theory is a relatively new development in mathematics ([S2], 1997;
[S3] in preparation). In a way it runs along lines parallel to semigroup theory,
which is a lot older ([HP], 1958). It seems to be promising for applications,
and we believe the purely mathematical study is a worthwile pursuit in its own

right.

There are many new areas of research that open up, including applications, only
two of which are discussed below. Another possibility not discussed here is the

study of the empathy relation without the requirement that S and E are linear
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operators, cf. [T]. More complete discussions of present applications are given

by Sauer [S3].

4.2.1 Empathies involving multiple spaces

It would theoretically be possible to construct evolution operator relations like
the empathy and integrated empathy relations between any number of spaces.
The question one would ask here is whether there is any application for this,
and indeed, what would the associated implicit Cauchy problems look like and
what physical situation they might describe. It is even conceivable that such

relations could be constructed and studied among an infinite sequence of spaces.

One could most probably use the methods we have developed to define genera-

tors and to find conditions similar to (2.39-2.40) for resolvents.
We illustrate with two examples involving three Banach spaces.
The following possibility readily springs to mind:

Let X, Y and Z Banach spaces, and Si(-): Z — Y, S2(-): Y — X and

E(-): Z = Z be families of linear operators.

Then Sy (t+s) = S1(t)E(s) and Sy (t+s) = Sa(t)S1(s) define “multiple empathy”
relations between the three spaces. This could quite feasibly represent a physical

situation with a compound, “double layer” boundary.

On the other hand consider three Banach spaces X, Y7 and Y, with a bijection
B:Y; — Y5 and families Sl() Y: — X, 52() Yo - X and El() Y, — Yi,
Es(-): Yy — Y5 satisfying the following:

S1 (t+8) =5 (t)El (S) and Ss (t+S) = SQ(t)EQ(S) coupled by S (t)yl = Sg(t)Byl
for all y; € Y7, y2 € Y5. This system could perhaps model a system with two

distinct boundaries.

Note that any examples of the foregoing kind may also be formulated for inte-
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grated empathies. We hope that this kind of modelling could handle problems

involving more than one dynamic boundary value condition.

4.2.2 Construction of more examples

Examples, especially purely theoretical examples are still relatively scarce. Con-
sider our hierarchy of assumptions. Are there nontrivial examples of integrated
semigroups or integrated empathies that do not satisfy strong continuity? Or
that are strongly continuous without the Lipschitz condition? These questions

beg attention.

Then, more specific to integrated empathies it should be mentioned that most
examples at our disposal at this moment are based on those in Section 2.1. It

would be good to have a few others as well.

60



University of Pretoria etd — Brown, T J (2006)

Chapter 5

Appendix A: Models with

dynamic boundary values

Two models from physics are discussed. Their mathematical treatment is given

in Chapter 4.

5.1 The heat equation model

x
|
o

Figure 5.1: A heat conduction problem
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The situation that the sketch illustrates is as follows:

A thin rod, which is thermally isolated along its length, is kept at a constant
temperature of Ty Kelvin at the endpoint z = 0, and an isolated container
of fluid is attached to the other endpoint at z = I. The fluid is vigorously
stirred so that the temperature may be assumed homogeneous and equal to the
temperature of the rod at I. The temperature at position z and at time ¢ is
denoted by v(z,t), and the temperature in the container at time ¢ by V'(¢), so

that v(0,t) = Ty and v(l,t) = V().

We say the present situation is modelled with a dynamic boundary value con-
dition, since at the boundary = = [ the boundary value is not a known function

of time.

The partial differential equation in the rod will be discussed first, and then the

equation that describes the dynamic boundary condition will be derived.

The following physical constants will be needed:

(a) p, the linear density of the rod in kgm™1;
(b) ¢, the specific heat of the rod in Jkg=!K~1;

(¢) &, the conductivity of the rod in WmK 1,

and the constant C, the amount of heat needed to raise the temperature of the

fluid by 1 Kelvin, is the heat capacity of the mass of gas, in JK 1.

The derivation of the heat equation (Fourier, 1822), may be found in standard
texts on linear partial differential equations, see for example [S4], and also in

physics texts.

The concept of the flux ¢(z,t), at position z and time ¢ is essential in the
derivation. The flux gives the rate of heat flow in Watt passing the point z in
the positive direction at time ¢. The heat equation is obtained by combining

the law of conservation of energy and the constitutive equation.
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The equations simplify to the system

cpvg(x,t) = —pu(x,t); (5.1)

p(x,t) = —kvg(z,t). (5.2)
Provided v(-,t) € C?(0,1), the heat equation,
K
1) = —vgu(z,t
w(o,0) = oo,
may be obtained, by the elimination of ¢.

We turn to the derivation of the equation that describes the boundary condition

at x = 1.

The law of the conservation of energy implies that the rate of heat flow from the
endpoint z = [ (the flux ¢(I,t)) equals the rate of increase of the total thermal
energy in the fluid. Thus

S1evE) =)

or, using (5.2) and the assumption that V' (t) = v(l,t),
4 [Cu(l,t)] = —kv. (I, 1)
dt ) - T ) .
The system of equations with which we model the physical situation is therefore:
K
ve(x,t) — ;vm(w,t) =0, (5.3)
satisfying the boundary conditions

v(0,) = To; (5.4)

d K
% [’U(l,t)] + va(lat) =0. (55)

Remark 5.1 The first term in (5.5) is an ordinary derivative, which follows
from the fact that V is a function of t only. Note that %[v(l,t)] is not the same
as v(L,t).
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5.2 The wave equation model

The figure shows an elastic rod of length [ which is kept fixed on one end,
with a mass attached to the other end. The rod is free to vibrate only in the
longitudinal direction. The linear density of the rod is p and Hooke’s constant A.
The attached mass will give rise to a dynamic boundary value condition as we

shall show.

- F(l,Y) ma

Figure 5.2: A problem involving longitudinal vibrations

The rod is modelled as a line segment of length [ in the reference state (which
we shall take as the initial state for convenience). The position of a point on the
rod in the reference state is denoted by z. The mapping y(-,t):z — X = y(z,t)
signifies that a particle which is at position z in the reference state will be at
position X = y(x,t) at time ¢, see Figure 5.3. The function y is called the

motion of the rod.

We discuss the evolution equation which describes the motion of the rod first,

and then the boundary conditions.

The following variables are introduced:
v(z,t) = %y(w.t) is the velocity at X (t) = y(z,1)
and F(z,t) is the internal force at position X at time ¢, with a tensile force

taken as positive.

The derivation of the wave equation may now be found in a standard physics

text. We only give an outline.

64



University of Pretoria etd — Brown, T J (2006)

Al X(t) = y(x.1) B(t)

At timet

©

|
a X b Reference

Figure 5.3: Modelling a vibrating rod

The law of the conservation of linear momentum reduces to
pur — Fp =0, (5.6)

while the constitutive equation for the rod, the infinitesimal version of Hooke’s
law, is

If these are combined, the wave equation

PYst — Ayza =0 (58)
is obtained. This can be written in the more familiar form by letting ¢> = A/p.

The wave equation may be written as a system of first order equations in some
obvious ways, but writing it as a symmetric hyperbolic system in the sense of
Friedrichs [F1], is natural and seems to be the most advantageous. This we do
by differentiating (5.7) with respect to time, to obtain:

v 0o -1

v 0
O + Oz = ) (5.9)
F -A 0 F 0

The boundary conditions are discussed next.
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Suppose the object attached to the free end has mass m. The internal force
F at x = [ has the effect of moving the body. Newton’s second law of motion

gives: m[v(l,t] + F(l,t) = 0.

Note, once again, that it is assumed that the velocity of the attached particle is

the same as the velocity of the endpoint of the rod. Therefore a = <£[v(l, t)].

The following boundary conditions are sufficient for the uniqueness of a solution
to (5.9):
v(0,%) = 0;
d
mav(l,t) + F(z,1) =0; (5.10)
v(z,0) = a(z);
F(z,0) = b(z),

implying v(l,0) = a = a(l) and F(I,0) = 8 = b(l). The dynamic boundary
condition is (5.10).
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Chapter 6

Appendix B: The Laplace

transform in Banach spaces

6.1 The existence and uniqueness of the Laplace

transform

Asin Section 1.5, the Laplace transform of a measurable function g: (0,00) — X

where X is a Banach space is defined by the Bochner integral

orla)i= [ Mg

The usual approach in the literature defines £y first as an improper integral and

then works with absolutely convergent integrals. We do this from the outset.

If the Laplace transform of g exists for a given A = a then it also exists for all

A>a.

The following result is well known, see for instance ([ABHN], Chapter 1, p.41)

where stronger forms are also given.
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Theorem 6.1 (Uniqueness) Suppose La{g} = Lr{h} for all X > a where a

is any real number. Then g = h a.e.

6.2 The transform as a pseudo-resolvent

The power of the Laplace transform in the study of the Cauchy problem orig-
inates in the fact that it transforms the evolution operator equations into re-
solvent relations, with the resolvent being the resolvent of the generator. For

instance, for a semigroup we have the following ([A], Proposition 2.2):

Proposition 6.1 E is an exponentially bounded semigroup if and only if the

pseudo-resolvent equation

R(A) = R(p) = (= M R(p)R(A)

holds for R(X\) :== LA{E} and all X\, pn > 0.

Proof. By taking transforms we obtain (with the help of the operational rule,

Proposition (6.2), and the convolution theorem):

E(s)R(\) = LxHAE(s)E(t)}
= La{E(t+3s)}
_ 6)\3 _ ° e—)\t
= (RO /0 E(t) dt)
= eAsR(A) - (6)\. * E)(s),

1

RWRN) = —— (RO~ R(W)

The converse follows from the uniqueness theorem as well as the strong conti-

nuity of E. O

Remark 6.1 The details of the proof are very similar to that of Theorem 2.3.
Strong continuity is in this case a consequence of the semigroup property and

the measurability condition. This method of proof originates from [BS].
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6.3 The Post-Widder inversion theorem

Originally given by David Widder ([W], Chapter 7, Theorem 6a, p.289), the
version of the theorem for Banach spaces we use is from Hille & Phillips ([HP],
Chapter 6, Theorem 6.3.5, p.224). It gives an inversion formula for a vector-
valued function f known to be a Laplace transform. From it the originating
function g such that f(\) = £,{g} may be recovered. The Widder operators
associated with a function f € C*{(0,00) : X} whith X a Banach space, are
defined by

(Lef)(N) = [ﬁg—?"] NEFLFO () for k= 1,2,... (6.1

with f(¥) the k’th derivative of f.

Theorem 6.2 If f is the Laplace transform of a function g then (Lyf) (%) —
g(t) as k — oo for all t in the Lebesgue set of g. If g is continuous in some

open interval the convergence is uniform over each compact subinterval.

The theorem has been formulated in terms of the Laplace-Stieltjes transform
([ABHN], Chapter 2, p.75), where other results concerning inversion are also

given.

6.4 Arendt’s extension of Widder’s theorem

Whereas the Post-Widder theorem gives an inversion formula when the function
f is known to be a Laplace transform, Widder’s theorem characterizes those
functions that are Laplace transforms ([W], Theorem 16a, p.315; Theorem 16b,
p-316). The theorem of Widder extended to a Banach space X holds only
when the space has the Radon-Nikodym property. In fact it characterizes this

property.

69



University of Pretoria etd — Brown, T J (2006)

Theorem 6.3 A Banach space X has the Radon-Nikodjm property if and only
if Widder’s theorem holds for X, i.e. every f € C*°{[0,00), X} satisfying

1
sup{Hm)\”Hf(”)()\)H A>0,n= 1,2,...} < 00
n,A .

is a Laplace transform, f(\) = Lx{g} where g : [0,00) — X.

Remark 6.2 The original proof is in ([A], Theorem 1.4) and makes use of the
following characterization:

A space X has the Radon-Nikodym property if and only if every Lipschitz con-
tinuous map f: [0,1] = X is differentiable a.e. See also ([ABHN], Chapter 2,
p.74 and p.81).

The following integrated version of Widder’s theorem which was also proved by

Arendt, ([A], Theorem 1.1), holds in an arbitrary Banach space X.
Theorem 6.4 Let f: [0,00) = X and M > 0. The following are equivalent:

(a) f € C{[0,00) : X} and

1
sup{HmA"Hf(")()\)H tA>0,n= 1,2,...} < M;
n,A .

(b) There exists a function g: [0,00) — X such that f(A) = ALx{g} for A >0
and g is Lipschitz continuous with Lipschitz constant M, i.e. ||g(t+h)—g(t)|] <
Mh for all non-negative t and h.

6.5 Operational properties

The following rules carry over from the real-valued transform, and the proofs

are almost identical [ABHN].

Proposition 6.2 Let g € L}, .{(0,00), X}, p € C and s € R" and let g5(t) :=

loc

g(t+s), fort >0 while g_s(t) := g(t — s) fort > s, and 0 otherwise.
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Let A\ € C then

(a) Lx{e "g(t)} emists if and only if Lry,{g(t)} exists and then they are equal;
(b) L2{g—s} emists if and only if L{g} ewists and then Lr{g_s} = e Lr{g};

(c) La{gs} exists if and only if L){g} exists and then

Lo{gs) = et (Ex{g} - /0 e Mg(t) dt). (6.2)

6.6 The convolution theorem

The well-known convolution theorem asserts that the Laplace transform of the
convolution (f * g)(t) = f(ff(t — 8)g(s) ds = fot f(s)g(t — s) ds equals the
product of the Laplace transforms of f and g (provided that they exist). When
we deal with the Laplace transform of vector-valued functions, the result makes
sense if f is scalar and g is vector-valued. When we deal with families of linear
operators, such as semi-groups, there is a meaningful analogue of the convolution
theorem. The result Lemma 6.1 is given in [BS]. It was probably known but

does not seem to have been recorded before. It has been used extensively in

52].

Let X and Y be complex Banach spaces and let F' = {F(t): t > 0} be a family
of closed linear operators with a common domain Dr C Y which map into X.

For A > 0 we formally define the Laplace transform of F' at A\ as the operator
(ee]
Ly{F}y := / e MF(t)y dt; y € Dp.
0

We shall say that L£y{F} ezists at ) if the function ¢t — e MF(t)y is in
L'((0,00), X).

Let us also consider a function v: t € (0,00) — v(t) € Dr. We shall say that

the Laplace transform

Lafo} = /0 T Nyt dr
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exists at A > 0 if the function ¢ — e *v(¢) is in L*((0, 00),Y).

We formally define the convolution F' x v by

(F *v)(t) := /0 F(t—s)v(s)ds = /0 F(s)v(t — s) ds. (6.3)

Lemma 6.1 Suppose there is a A > 0 such that the Laplace transforms L {F'},
Ly{v} and, for everyt > 0, the Laplace transform of the function s — F(t)v(s),

exist at \.

Then L {v} € Dg. If, in addition, the convolution F x v exists, its Laplace

transform exists at \ and

LA{(F x0)} = LA{F} - La{v}

Proof. If the integral [~ e **F(t)v(s) ds exists for at > 0, the existence of the
Laplace transform £y{v} and the closedness of F'(t) implies that £ {v} € Dp
and that

/000 e MF(t)u(s) ds = F(t) /000 e Mu(s) ds = F(t) La{v}.
Hence,

[,)\{F} . ,C)\{’U}

/ e_AtF(t)/ e~ u(s) ds dt
0 0

/ / e~ M) B(u(s) ds dt.
0o Jo

The change of variables s — 0 = s+ ¢, t = 7 = t and reversal of the order of

integration yields

[ee] o
LA{FY} - Lafo} = / A7 / F()u(o — 1) dr do (6.4)
0 0
and the formula is proved. Reversal of the order of integration is possible because

of the assumption that the convolution exists. O

Remark 6.3 If F is a family of bounded linear operators defined on the whole
space, the requirement that the Laplace transform of s — F(t)v(s) exists, is

superfluous.
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Remark 6.4 When X and Y are the same, it is a simple matter to see that
integer powers of the “transformed” operator correspond to multiple convolutions

of the family of operators.
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