
MODELLING, VALIDATION, AND CONTROL OF AN INDUSTRIAL FUEL GAS

BLENDING SYSTEM

by

Cornelius Jacobus Muller

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic)

in the

Faculty of Engineering, Built Environment and Information Technology

Department of Electrical, Electronic and Computer Engineering

UNIVERSITY OF PRETORIA

April 2011

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

MODELLING, VALIDATION, AND CONTROL OF AN INDUSTRIAL FUEL GAS

BLENDING SYSTEM

by

Cornelius Jacobus Muller

Promoter: Prof. Ian K. Craig

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: dynamic model, model predictive control, state-space model,

validation, real-time optimisation

In industrial fuel gas preparation, there are several compositional properties that must be

controlled within specified limits. This allows client plants to use the fuel gas mixture

safely without having to adjust and control the composition themselves. The variables to be

controlled are the Higher Heating Value (HHV), Wobbe Index (WI), Flame Speed Index

(FSI), and Pressure (P). These variables are controlled by adjusting the volumetric flow

rates of several inlet gas streams of which some are makeup streams (always available) and

some are wild streams that vary in composition and availability (by-products of plants).

The inlet streams need to be adjusted in the correct ratios to keep all the controlled

variables (CVs) within limits while minimising the cost of the gas blend. Furthermore, the

controller needs to compensate for fluctuations in inlet stream compositions and total fuel

gas demand (the total discharge from the header). This dissertation describes the modelling

and model validation of an industrial fuel gas header as well as a simulation study of three

different Model Predictive Control (MPC) strategies for controlling the system while

minimising the overall operating cost.

OPSOMMING

MODELLERING, VALIDASIE EN BEHEER VAN 'N INDUSTRIËLE

BRANDSTOFGASVERMENGINGSTELSEL

deur

Cornelius Jacobus Muller

Promotor: Prof. Ian K. Craig

Departement: Elektriese, Elektroniese en Rekenaaringenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektroniese Ingenieurswese)

Sleutelwoorde: dinamiese model, model voorspellende beheer, toestand-ruimte

model, validasie, regte-tyd optimering

By die voorbereiding van industriële brandstofgas is daar verskeie samestellingseienskappe

wat binne bepaalde beperkings beheer moet word. Dié beheer verseker veilige gebruik van

die brandstofgasmengsel deur kliëntaanlegte sonder om self die samestelling te beheer of

aan te pas. Die veranderlikes wat beheer moet word, is die hoër hittewaarde, die Wobbe-

indeks, die vlamspoedindeks, en die druk. Hierdie veranderlikes word beheer deur

aanpassing van die volumetriese vloeitempo’s van verskeie inlaatgasstrome, waarvan

sommige aanvulstrome is (altyd beskikbaar) en ander wilde strome is wat wissel in

beskikbaarheid en samestelling (byprodukte van aanlegte). Die inlaatstrome moet aangepas

word om die regte verhoudings te lewer sodat al die beheerde veranderlikes binne die

vasgestelde perke bly, terwyl die koste van die gasmengsel tot 'n minimum beperk word.

Die beheerder moet terselfdetyd kompenseer vir fluksuasies in die inlaatstroom-

samestelling en die totale gasaanvraag (die totale vloeitempo uit die vermengingsaanleg).

Hierdie verhandeling beskryf die modellering en model-validering van 'n industriële

brandstofgasaanleg, sowel as 'n simulasiestudie van drie model-voorspellende

beheertoepassings vir die beheer van die stelsel wat die totale bedryfskoste van die aanleg

tot 'n minimum beperk.

ACKNOWLEDGEMENTS

Thanks to Adolf Wolmarans from Sasol Infrachem for giving permission to use the plant

data and to Paul Hughes from Sasol Technology for his advice and guidance (especially

with regard to the iterative linearisation). Special thanks to Professor Larry Ricker from the

University of Washington, Seattle for all his help and advice (especially regarding the

derivation of the first principle model), and finally, thanks to Professor Ian Craig from the

University of Pretoria for his supervision and valuable input for this work.

LIST OF ABBREVIATIONS

ARX Auto Regression with eXogenous inputs

ARMA Auto Regressive Moving Average

ARMAX Auto Regressive Moving Average with eXogenous inputs

CV Controlled Variable

DAE Differential Algebraic Equation

DMC Dynamic Matrix Control

DV Disturbance Variable

ECR Equal Concern for Relaxation

FF Feed-Forward

FIC Flow Indicator Controller

FIR Finite Impulse Response

FSI Flame Speed Index

GA Genetic Algorithm

GNN Grouped Neural Network

GUI Graphical User Interface

HHV Higher Heating Value

IAE Integral Absolute Error

IIR Infinite Impulse Response

LP Linear Programming

LTI Linear Time-Invariant

MIMO Multiple Inputs, Multiple Outputs

MPC Model Predictive Control

MV Manipulated Variable

NARIMAX Nonlinear Auto Regressive Integrated Moving Average with eXogenous

inputs

NLP NonLinear Programming

NMPC Nonlinear MPC

ODE Ordinary Differential Equation

PID Proportional, Integral, Derivative

QP Quadratic Programming

RGA Relative Gain Array

RTO Real-Time Optimisation

SA Simulated Annealing

SG Specific Gravity

SID System Identification

SISO Single Input, Single Output

SQP Sequential Quadratic Programming

SVA Singular Value Analysis

SVD Singular Value Decomposition

TFM Transfer Function Matrix

WI Wobbe Index

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 PROBLEM STATEMENT .. 1

1.2 OBJECTIVES .. 2

1.3 CONTRIBUTION OF THIS RESEARCH PROJECT ... 3

1.4 ORGANISATION OF DISSERTATION ... 4

CHAPTER 2 PROCESS OVERVIEW .. 5

2.1 BACKGROUND .. 5

2.2 FUEL GAS PROCESS DESCRIPTION ... 6

2.3 CONCLUSION .. 9

CHAPTER 3 DYNAMIC MODELLING .. 10

3.1 INTRODUCTION ... 10

3.2 MODEL TYPES ... 11

3.2.1 Linear versus nonlinear ... 11

3.2.2 Steady-state versus dynamic ... 11

3.2.3 Regression ... 12

3.2.4 State-space .. 12

3.2.5 Transfer function ... 13

3.2.6 Step response ... 14

3.2.7 Impulse response ... 14

3.3 FIRST PRINCIPLE MODEL OF FUEL GAS SYSTEM .. 15

3.3.1 Model validation ... 17

3.4 EMPIRICAL MODEL OF FUEL GAS SYSTEM .. 20

3.4.1 Steps in system identification .. 21

3.4.2 Final LTI model .. 22

3.5 CONCLUSION .. 31

CHAPTER 4 SIMULATION ENVIRONMENT .. 32

4.1 INTRODUCTION ... 32

4.2 SIMULINK MODEL DESCRIPTION ... 33

4.3 CONCLUSION .. 40

CHAPTER 5 CONTROL .. 41

5.1 MPC OVERVIEW ... 41

5.1.1 Process model .. 43

5.1.2 Choosing system variables .. 43

5.1.3 System identification ... 45

5.1.4 Constraints and performance index ... 47

5.1.5 Controller parameters .. 50

5.1.6 Solving the optimisation problem ... 52

5.2 MPC DESIGN FOR FUEL GAS CONTROL ... 55

5.3 ITERATIVE LINEARISATION ... 60

5.3.1 Heating value .. 61

5.3.2 Wobbe index ... 61

5.3.3 Flame speed index ... 62

5.4 REAL-TIME OPTIMISATION (RTO) .. 63

5.4.1 Literature review ... 63

5.4.2 Implementation ... 64

5.5 CONCLUSION .. 64

CHAPTER 6 SIMULATION AND RESULTS ... 66

6.1 INTRODUCTION ... 66

6.2 BASE CASE MPC VERSUS MPC WITH ITERATIVE LINEARISATION 66

6.3 REAL-TIME OPTIMISATION RESULTS... 75

6.4 CONCLUSION .. 80

CHAPTER 7 CONCLUSION ... 81

7.1 RESULTS AND DISCUSSION ... 81

7.2 RECOMMENDATION FOR FUTURE WORK .. 81

REFERENCES .. 83

ADDENDUM A: MATLAB CODE ... 87

A.1 SYSTEM IDENTIFICATION (HEADERCONTROL.M) .. 87

A.2 GAIN CALCULATIONS (HEADERCONTROL.M) ... 90

A.3 CONTROL AND OPTIMISATION (HEADERCONTROL.M) .. 90

A.4 COST CALCULATIONS (HEADERCONTROL.M) ... 96

A.5 PLOT RESULTS (HEADERCONTROL.M) .. 96

A.6 CALCULATE STEADY-STATE OPTIMUM (GETSSOPT.M) ... 101

A.7 PLOT VALIDATION RESULTS (VALIDATIONDATA.M) ... 102

ADDENDUM B: MATLAB SCREENSHOTS ... 104

B.1 SIMULINK ENVIRONMENT ... 104

B.2 MPC TOOLBOX GUI ... 106

Department of Electrical, Electronic and Computer Engineering 1

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

Fuel gas is an important utility in industrial processes. It is used in furnaces, catalytic

crackers, and other combustion units. The end user’s equipment is designed according to

certain specifications with regard to the composition of the fuel gas. The specifications

may include (as is the case for this study) the higher heating value (HHV or gross calorific

value) [1], the Wobbe index (WI), and the flame speed index (FSI, using Weaver's flame

speed factor) [2]. Apart from these compositional properties, the fuel gas must be supplied

at a prescribed pressure (P). All of these requirements need to be addressed in the

preparation of the gas in the fuel gas blending header.

Typically, the header consists of a vessel or piping network which is fed by several inlet

streams and discharges from a single outlet point. In the system considered for this study,

six feed streams enter the header. Of these six streams, four are makeup streams (always

available but often costly) and two are wild streams (tail gasses which are by-products of

plants and vary considerably in availability and composition). The feed gas streams need to

be mixed in the correct quantities and ratios to ensure that the compositional properties are

kept within specified limits while ensuring that the outlet pressure of the header does not

fluctuate beyond predetermined bounds.

The header is susceptible to disturbances in the form of load fluctuations (changes in the

demand for fuel gas downstream of the header), compositional changes in the feed streams,

and availability changes in the tail gas streams. Controlling the header composition and

pressure in the presence of these disturbances and noise using SISO (Single Input, Single

Output) control is a challenging task, even for the most experienced operator. Ratio control

can improve control somewhat but the fluctuations in the feed stream compositions mean

that the required ratios change as well. Furthermore, the unit cost of the fuel gas blend

must be minimised. Therefore, an automatic control system needs to be designed to take all

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 2

the disturbances (and noise) into account and simultaneously adjust the feed rates on the

inlet streams to reject disturbances while at the same time driving the system to a state of

minimum cost.

1.2 OBJECTIVES

The objectives of this research project are to address the control problem described in the

previous section by completing the following tasks:

 Changes cannot be made on the actual plant for the purposes of this study.

Therefore, a simulation study needs to be conducted to evaluate the proposed

control solution. To legitimise the simulation study, an accurate model of the

process needs to be derived. Therefore, the first task is to derive a process model

for use in the process simulation which will capture the nonlinear dynamic

behaviour of the process. This model will then be used as the “real plant”.

 In order to verify that the plant model represents the system adequately, a

validation needs to be carried out. Plant data are available and can be used to

compare the response of the model with that of the real system. Therefore, the

second step is to run a simulation with the feed values of the real plant and compare

the response of the model to that of the plant (from recorded output data) to

determine the correlation between the two.

 The system is a nonlinear, multivariable, interactive process which makes the use

of model predictive control (MPC) an attractive option for control due to its ability

to handle constrained, multivariable systems robustly and because of the ease at

which the control problem can be formulated into the MPC framework. By

designing the controller around a specific operating point, the effect of

nonlinearities can be mitigated. MPC uses a model of the process to predict

behaviour. If the model is non-linear or linear with constraints, the MPC algorithm

requires the use of a non-linear optimiser which complicates matters. Furthermore,

the software used for the design of the controller (namely the Matlab Model

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 3

Predictive Control Toolbox) only supports linear models. The MPC software

packages most widely used in industry (such as Aspentech’s DMCplus,

Honeywell’s RMPCT, Adersa’s HIECON, etc.) also use linear algorithms.

Therefore, a linear time-invariant (LTI) model needs to be derived from the non-

linear simulation model in order to apply linear MPC.

 After the LTI model has been obtained, the MPC controller can be designed subject

to constraints on the controlled variables (CVs) and manipulated variables (MVs).

This includes the specification of all the tuning parameters such as control horizon,

prediction horizon, weights, disturbance handling, constraints and constraint

softening, and speed of response.

 The closed loop system must be simulated with some disturbances to evaluate the

ability of the controller to keep the CVs within the prescribed ranges while

avoiding violations of the MV limits. At the same time, the operating cost of the

plant (the unit cost of the fuel gas blend) must be minimised.

 After the simulation is complete, the results need to be analysed to determine the

effectiveness of the control system.

 If the controller’s performance is far from the theoretical economic optimal

(calculated using a nonlinear optimiser), iterative linearisation can be employed to

compensate for process nonlinearities at different operating points.

 If the controller’s performance is still not close to the economic optimal, real-time

optimisation (RTO) can be included to set steady-state targets for the MVs and CVs

to drive the process closer to the theoretical optimum.

1.3 CONTRIBUTION OF THIS RESEARCH PROJECT

On a practical industrial level, there is great potential in optimisation and cost saving in the

preparation of plant utilities (which often go unnoticed). Steam and electricity

minimisation are becoming popular areas of optimisation and enjoy considerable attention.

In the same way, optimising on fuel gas preparation can reduce running costs and the use

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 4

of expensive makeup streams (such as natural gas) by maximising on the use of process

tail gas streams which are often free and would otherwise be flared. This has an obvious

environmental benefit as well.

Although there are many papers on MPC, modelling, model validation, and optimisation,

there is an absence of literature covering the specific application of these concepts on a

fuel gas blending system. Therefore, on an academic level, there is a possibility that this

project can make a significant contribution to this field by introducing a novel application

of these well studied topics. Furthermore, the iterative linearisation discussed in Section

5.3 and the RTO discussed in Section 5.4 allow for the application of types of nonlinear

MPC using linear algorithms. The work described in this document has been accepted for

publication in the Journal of Process Control [3] and for presentation at the 18th IFAC

world congress in Milan, Italy [4].

1.4 ORGANISATION OF DISSERTATION

The order of this dissertation follows that of the tasks described in Section 1.2. The first

part is a discussion of the modelling of the fuel gas blending system which is essential for

establishing a solid foundation for the work that follows. The second part contains the

validation results, comparing the response of the simulation model to that of the actual

plant to identical inputs. The third and fourth parts contain details on the derivation of an

LTI model (using system identification or SID) and the design of the MPC controller

(which includes three possible control schemes, increasing in complexity and

effectiveness). Finally, a simulation of the controlled system (closed-loop simulation) is

presented and its results analysed and explained. No dedicated chapter is included for

literature review. Instead, each chapter contains several inserts pertaining to the literature

for that specific topic.

Department of Electrical, Electronic and Computer Engineering 5

CHAPTER 2 PROCESS OVERVIEW

2.1 BACKGROUND

Although plant utilities like instrument air, steam, fuel gas, etc. do not receive as much

attention as more complex core processes such as reaction and distillation, these processes

are strongly dependent on them. As mentioned in Section 1.3, there seems to be a shortage

(or even an absence) of literature on the topic of the control of gas blending, in particular

fuel gas blending.

A similar application can be found in liquid fuel blending where additives are dosed into

the fuel in precise quantities (for which more literature is available). In a recent

publication, Chèbre et al. [5] described a control algorithm for blending liquid fuels to

produce mixtures with some prescribed properties while minimising the production cost.

Although the properties and behaviour of liquid blending differ from the gas blending of

this application, there are some similarities and concepts that can be applied to this study.

In some cases, real-time composition measurements are not available (mostly due to cost

and reliability issues regarding analysers) and observers are developed to estimate the

properties of the feed streams. If lab samples are taken, the observer parameters can be

updated periodically. For downstream measurements (on the blender outlet), it is

recommended to have online measurement using more than one analyser. This is also the

case for this study (mentioned in Section 3.3.1).

There are mainly two differences between the gas blending and liquid blending processes.

In the first place, the blended gases behave as nearly ideal mixtures and their combustion

properties are known functions of composition. Furthermore, periodic measurements of the

feed gas compositions are available. Thus, prediction of the impact of MV adjustments on

blend properties is easier than in liquid blending. Secondly, for gas blending, the dynamic

behaviour is generally faster than that of liquid blending (a residence time of between 2 to

CHAPTER 2 PROCESS OVERVIEW

Department of Electrical, Electronic and Computer Engineering 6

4 minutes in this case, whereas that of liquid blending systems is typically in the order of

hours) and therefore requires more frequent control adjustments and quicker sampling.

2.2 FUEL GAS PROCESS DESCRIPTION

Figure 2.1 shows a process diagram of the system. Although the header is depicted as a

vessel, it is made up of the volume of the piping network (estimated at 100 m3 by using the

gradient of the pressure increase for a 1 kNm3/h increase in feed). The flow rates are high

so it is assumed that turbulent flows facilitate perfect mixing so that the composition of the

exit stream equals the header composition (which is assumed to be uniform across the

header). Six gas streams enter the fuel gas header (shown with their fictional tag names in

Figure 2.1). These six feed streams are Natural Gas (NG), Reformed Gas (RG, hydrogen to

CO ratio of between 1.8:1 and 2:1), Hydrogen (H2), Nitrogen (N2), Tail Gas 1 (TG1), and

Tail Gas 2 (TG2).

The first four streams are make-up streams whereas the two tail gas streams are wild

streams, varying in availability and composition. The tail gasses are produced as by-

products of plants and can be utilised for heating purposes across the complex. Their

compositional properties are, however, unsuitable for the heating requirements of industrial

fuel gas. Therefore, these streams need to be mixed with make-up streams in correct ratios

and quantities to adjust the output composition to be more suitable for use as a fuel source.

In addition, the fuel gas mixture must be supplied at a specific pressure. Table 2.1 shows

the ranges for the outputs with their units of measure. These specifications determine the

combustion properties of the gas mixture. The HHV and WI give indications of the energy

content and density of the gas. The FSI determines how the flame physically behaves when

combusting. If the flame speed goes too high, there is a danger of the flame burning back

into the burner nozzle. If it is too low on the other hand, the probability of the flame being

blown out will increase. The Weaver FSI (or Weaver’s flame speed factor) is an indication

of the flame speed of a gas with reference to that of pure hydrogen (having a flame speed

of 100) [2].

CHAPTER 2 PROCESS OVERVIEW

Department of Electrical, Electronic and Computer Engineering 7

The NG, RG, and N2 streams have costs associated with them whereas the H2 and tail gas

streams would otherwise be flared and are therefore considered free. Therefore, the use of

the NG, RG, and N2 streams must be minimised in the optimisation problem whereas the

use of the tail gas streams and H2 should be maximised subject to its availability. Natural

gas is used continuously to increase the calorific value up to specification due to the

typically low heating value of the tail gasses. Nitrogen will only be used when the FSI is

too high (which will be the case if the tail gasses are rich in hydrogen). Reformed gas is

used as a substitute for the tail gas streams when not available. Hydrogen can be used

continuously, but cannot be used if the flame speed is high. Apart from these streams,

several disturbances act on the system, including fluctuations in the feed stream

compositions and total fuel gas demand (i.e. the discharge flow rate from the header).

Table 2.2 gives the typical compositions and characteristics of the inlet streams. The HHV,

WI, and FSI are functions of the molar composition of the fuel gas. Although the inlet

streams are depicted as flow controllers (the FIC referring to a Flow Indicator Controller),

the controller and actuator dynamics are omitted in this study and perfect manipulation of

the flow rates is assumed.

Table 2.1: Controlled variable ranges.

CV Abbreviation Range Units

Higher Heating Value HHV 16.5 – 18 MJ/Nm3

Wobbe Index WI 25 – 27 MJ/Nm3

Flame Speed Index FSI 39 – 46 -

Pressure P 2000 – 2200 kPa

CHAPTER 2 PROCESS OVERVIEW

Department of Electrical, Electronic and Computer Engineering 8

Figure 2.1. Process diagram of blending header.

Table 2.2: Typical inlet compositions (mol %).

 NG RG H2 N2 TG1 TG2

CH4 91.1 1.5 - - 5.5 15.0

C2+ 6.8 0.0 - - 1.0 1.0

H2 0.0 62.0 100.0 - 62.0 57.0

N2 1.5 0.5 - 100.0 2.5 6.0

CO 0.0 31.0 - - 26.0 13.0

CO2 0.6 5.0 - - 3.0 8.0

HHV 43.02 11.78 12.10 0.0 13.96 15.39

WI 52.62 17.87 45.73 0.0 21.60 22.92

CHAPTER 2 PROCESS OVERVIEW

Department of Electrical, Electronic and Computer Engineering 9

The ranges of the inlet streams are restricted by the typical availability of the streams.

Natural gas and reformed gas are available in large quantities whereas the hydrogen and

nitrogen streams are more limited. The flow rates on the tail gas streams can also become

quite large when they are available. Therefore, in normal operation, it is ideal to use as

many of these streams as possible. When one or both of these streams are not available

(such as when the upstream plants producing them trip), reformed gas is used to replace

them (having a comparable heating value). Table 2.3 shows the ranges used for the inlet

streams for this study. These ranges comprise physical constraints for the control problem

and cannot be exceeded in any way.

Table 2.3 MV limits and units.

MV Low limit High limit Units

NG 0 15 kNm3/h

RG 0 20 kNm3/h

H2 0 5 kNm3/h

N2 0 5 kNm3/h

TG1 0 30 kNm3/h

TG2 0 30 kNm3/h

2.3 CONCLUSION

In this section, the fuel gas blending process was described on a practical level, introducing

the feed streams, the controlled process variables, predominant components, typical ranges,

and limits. Figure 2.1 illustrates that six feed streams of variable composition and

availability enter the header and the gas mixture discharges from a single point at which

the composition and pressure are measured. In the next chapter, mathematical models are

developed for the fuel gas blending system for simulation and control purposes.

Department of Electrical, Electronic and Computer Engineering 10

CHAPTER 3 DYNAMIC MODELLING

3.1 INTRODUCTION

Mainly two approaches are followed when developing process models. The first is the

derivation of a model from the scientific principles of physics, chemistry, and biology

(called theoretical, first principle, or physical models) [6,7]. These models can become

very complex for some processes (and can be very time-consuming and expensive to

derive), especially if the model requires a large number of equations with a considerable

number of variables and unknown parameters. On the other hand, first principle models

give valuable insight into the behaviour of the process and are usually applicable over a

wide operating range [6]. The second method makes use of experimental data to determine

the relationship between the inputs and outputs of a process and is known as system

identification (SID). The models resulting from SID are called empirical models (also

referred to as black-box models) [6,7,8,9]. These models are typically easier to develop

than first principle models (and are usually more cost effective). Some disadvantages of

empirical models are that they are normally only valid around the operating point at which

they were developed and that aspects of the process that does not feature in the data used to

derive the model can easily be overlooked [6]. A third, less frequently used modelling type

is semi-empirical modelling (also called grey-box models) where one or more parameters

of a theoretical model is determined by fitting experimental data [6,8,9].

Both first principle and empirical models can be developed as steady-state or dynamic

models. Most linear models used in the process industry are empirical models [6,10,11].

Furthermore, with the development of industrial MPC technology, various vendors also

developed proprietary process identification technologies that integrate seamlessly with

their MPC development software. These software applications expedite and reduce the cost

for the development of dynamic empirical models from test data [11].

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 11

In this chapter, a brief overview of some of the most popular model forms, types, and

concepts is provided. These are not limited to either empirical or first principle models

although some will be more applicable to one than the other. In most cases, one model

form can readily be converted to another (for example from state-space to transfer function

and vice versa). Although the discussion is focussed on continuous time models, the

models can also be represented in discrete time format. Section 3.3 continues to describe

the development of a first principle model of the fuel gas blending system and Section 3.4

the development of a linear empirical model for use in the control algorithm.

3.2 MODEL TYPES

3.2.1 Linear versus nonlinear

Linear time invariant (LTI) models are usually sufficient for describing process behaviour

around a specific operating point (such as a plant running mostly at nominal operating

conditions). The main advantages of using a linear model are its simplicity (especially

when considering constrained cases), and the wealth of knowledge regarding linear system

analysis. There are some cases, however, where the process is highly non-linear or operate

over vastly different operating regions where it might be beneficial to use a nonlinear

model. This can allow improved control by improving the accuracy of the behavioural

predictions used in model-based control [10]. Linear models usually refer to LTI models

which mean that the model does not change with time and conforms to the principle of

superposition. LTI models can be derived from non-linear models by linearisation around

an operating point. Most industrial MPC applications are linear (Qin et al. considered a

total of 4542 linear applications versus a total of 93 nonlinear applications in their survey

performed from mid-1999 to early 2000’s [11]).

3.2.2 Steady-state versus dynamic

Steady-state (or static) models are concerned with the long term behaviour of the process

(where it settles at equilibrium). In these models, the relationships between inputs and

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 12

outputs are direct and instantaneous. The output values depend only on current inputs, not

on past process behaviour [7]. In the case of this study, a steady-state model is used for

real-time optimisation (RTO) as discussed in Section 5.4.

Dynamic models (unsteady-state or transient models) on the other hand describe how the

process reacts after input changes or disturbances. Dynamic behaviour occurs at conditions

such as plant start-up, shut-down, process disturbances, and transition from one operating

point to another [6]. The instantaneous output values of the system are dependent on the

current input values and disturbances as well as past system behaviour [8,7]. For this study,

dynamic models are used for simulation of the process and for control predictions.

3.2.3 Regression

Regression (also called parameter estimation) is the process of selecting a model form and

then determining the unknown model parameters from input-output data by minimising a

measure of difference between the model output and the actual output data [6]. The model

form may be selected based on some process knowledge or experience. Plotting the input

and output data and identifying overall trends in behaviour can help to choose a realistic

model form. It is desirable to select the simplest model structure that provides a good fit. A

popular model form is ARX (Auto Regression with eXogenous input) and is used by

various developers of MPC technology including Honeywell, Adersa, and Invensys [11].

3.2.4 State-space

State-space models describe system behaviour in the form of a set of ordinary differential

equations (ODEs) and are not limited to either linear or nonlinear systems [6]. There are

several advantages to using state-space models including the intuitive transition from SISO

to MIMO (Multiple Inputs, Multiple Outputs) models, ease of analysis of closed-loop

properties, computational advantages, and the ability to use the abundance of linear

systems theory with this form [10]. The basic form of a linear state-space model is [6,7]

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 13

       . . .

dx t
A x t B u t E d t

dt
   (3.1)

      . .y t C x t Du t  (3.2)

where x denotes the state vector (and determines the order of the system), y represents

the output vector, u is the input vector, and d is the disturbance vector. The outputs have

to be observable, i.e. must be measurable or inferable. Typically, the states are chosen to be

the output variables (if measurable directly). In such a case, the system is completely

portrayed by differential equations describing its dynamic behaviour (if there is no direct

feed-forward action from the inputs to the outputs). For an LTI system, the matrices ,A ,B

,C ,D and E are constant and describe the system in full [6]. The stability of the system

described in Equations (3.1) and (3.2) is solely determined by the A matrix of which the

eigenvalues must have negative real parts (corresponding to the roots of the characteristic

equation, 0I A  ) [6]. The first principle model discussed in Section 3.3 is in the state-

space form. Linear state-space models can easily be converted to transfer function models

described in the next section.

3.2.5 Transfer function

A transfer function model describes the dynamic relation between a specific input and

output in an algebraic expression and is represented in the s-domain (or the Laplace

domain). When representing systems graphically, these models are very intuitive. Transfer

functions are, however, limited to linear systems because the Laplace transform can only

be applied to linear equations [6]. Therefore, nonlinear systems need to be linearised in

order to be described by transfer functions. The basic form of a transfer function model is

    
 

Y s
G s

U s
 (3.3)

where  Y s and  U s are the Laplace transforms of the output  y t and input  u t

signals and  G s is the Laplace transform of  g t , the impulse response from  u t to

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 14

 y t . The Laplace transform for  g t is calculated as

       
0

stG s g t g t e dt
    (3.4)

where s is a complex independent variable and  is the Laplace operator. The Laplace

transfer of a unit impulse is    1t  . Therefore, defining the transfer function to be the

Laplace transform of the impulse response of the relation between input and output makes

it independent of the particular choice of forcing function. Therefore, any response of

 Y s , can be calculated by simply substituting the transfer function of the forcing function

into  U s in Equation (3.3). Calculating the steady-state gain of a system described by

transfer functions can easily be done by letting 0s  in  G s

according to the final value

theorem (if the gain exists, i.e. if the system is stable) [6]. The Honeywell RMPCT

Identifier package is an example of a commercially available SID tool that presents the

models in transfer function form [11].

3.2.6 Step response

Step response models describe the system by recording what the output does in response to

a unit step change in the input. For discrete calculation, a finite number of coefficients are

used to capture the system dynamics. The amount of coefficients required depends on the

settling time of the process and the desired accuracy of the model. These models are

therefore usually described with tables of coefficients rather than mathematical models.

This allows unusual dynamics to be captured without having to use high order parametric

models. This is the model form used in Aspentech’s DMCplus control software [11].

3.2.7 Impulse response

Impulse response models describe the system by recording what the output does in

response to a unit impulse injected at the input. Similar to step response models, these

models are often described by tables of coefficients. Adersa uses an FIR (Finite Impulse

Response) model in the HIECON package [11].

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 15

3.3 FIRST PRINCIPLE MODEL OF FUEL GAS SYSTEM

To obtain a realistic simulation of the fuel gas blending process, an accurate model is

required. The fuel gas system is nonlinear and should therefore be represented with a

nonlinear model if the nonlinear dynamics are to be captured satisfactorily. This section

describes the derivation of a first principle, nonlinear, state-space model based on a molar

balance of the components in the header. The HHV, WI, and FSI are functions of the molar

composition of the fuel gas. There are six states (the numbers of moles of the six

components in the header), six inputs (the volumetric flow rates of the six inlet streams),

and four outputs (HHV, FSI, WI, and pressure). The state equations are given by

 , , .fg i i fg i TN u y u  (3.5)

where 1 to 6i  , ,fg iN is the number of moles of component i in the header, iu is the total

molar flow of component i entering the header (summed over all inlet steams), Tu is the

total molar discharge rate from the header, and ,fg iy is the molar fraction of component i

in the header.

The inlet flows are described in terms of volumetric flow rates and compositions.

Therefore, these flows need to be converted to molar flow rates of the individual

components to get to iu . This is done by converting the volumetric flow rates to molar

flow rates. The volumetric flow rates are measured in 3kNm /h (i.e. under an ideal gas

assumption). Therefore, the individual component molar flow rates iu are

6

,
1

44.64 .
ji F i j

j

u y F


  (3.6)

for 1 to 6i  and where jF is the volumetric flow rate of the thj inlet stream 3(kNm /h)

and ,jF iy is the molar fraction of component i in inlet stream j . The j index refers to the

sequence shown in Figure 2.1, i.e. 1j  refers to the NG stream and 6j  refers to the

TG2 stream. The factor 1000 / 22.4 44.64 is the amount of litres per cubic meter divided

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 16

by the volume (in litres) filled by one mole of gas under ideal conditions and is used to

convert the volumetric flow rate to molar flow rate under the ideal gas assumption.

The outputs are calculated according to the molar fractions of the components in the

system (and the total number of moles in the case of pressure) [1,2,12,13]. The output

calculations are

6

,
1

.fg i fg i
i

HHV HHV y


 (3.7)

 fg
fg

fg

HHV
WI


 (3.8)

2

6

,
1

6 2

, ,
1 1

.

. 5 18.8 1

fg i i
i

fg

fg i i fg j O
i j

y s
FSI

y A n x



 


  



 
 (3.9)

 TN RTZ
P

V
 (3.10)

where is is the flame speed factor for component i , iA is the molar stoichiometric air

demand factor (for total combustion) for component i , ,fg jn is the molar fraction of inert

component j in the fuel gas, and
2Ox is the mole fraction of oxygen in the gas (usually

zero in this application) [2]. TN is the total number of moles in the system, 8.314R  is

the gas constant, T is the header temperature (Kelvin), V is the header volume (3m ,

estimated at 3100m), and Z is a real gas correction factor (to compensate for the

difference between the fuel gas behaviour and that of an ideal gas; 1.006Z  in this case

indicating that the ideal gas assumption is reasonable) [1]. The Fuel Gas specific gravity,

fg , is calculated as

6

,
1

.i fg i
i

fg
air

MWt y

MWt
 


 (3.11)

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 17

where iMWt is the molar weight of component i and 28.8airMWt  is the standard molar

weight of air. Table 3.1 lists some characteristics of the components [1].

Table 3.1: Component characteristics.

 HHV WI SG MWt A S

CH4 37.78 50.72 0.557 16.04 9.55 148

C2-C6 126.5 87.62 2.018 58.12 31.0 514

H2 12.10 45.88 0.069 2.016 2.39 339

N2 - - 0.973 28.02 - -

CO 11.97 12.17 0.968 28.01 2.39 61

CO2 - - 1.528 44.01 - -

3.3.1 Model validation

The integrity of the process model needs to be determined in order to support the validity

of the simulation study. Comparison of calculated data from the model versus data from

the real plant outputs using the same input data (flows, compositions, etc.) is the most

intuitive way of determining the integrity of the process model [14].

For the validation, a period of operation was identified in which all the flow measurements

are reliable (either zero or greater than the turn-down of the transmitters). This ensures that

the data used for the validation is a good representation of the flows entering and exiting

the header. The inlet flow rates, feed stream compositions, and header discharge rate were

used as verification data and the simulation output data compared to the plant

measurements (the system is at ambient temperature for which the effects of daily

fluctuations on the outputs are negligible). The initial model states were determined by

running a simulation using average feed flow rates and compositions as inputs and

recording the steady state molar values.

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 18

The dead-times on the analysers (for measuring HHV, WI, and FSI) were initially

estimated at 2 minutes and adjusted for better data correlation. The final dead-times were

20 seconds for HHV, 1 minute for WI, and 20 seconds for FSI (the FSI is measured by a

mass spectrometer which has a small dead-time but only provides a sample every 10

minutes).

As shown in Figure 3.1 to Figure 3.3, the model’s open-loop predictions of HHV, WI, and

FSI track the observed trends rather well. Computed correlation coefficients for a

validation period of 18 hours are shown in Table 3.2. Some factors contributing to the

discrepancies between the plant data and the model include infrequent feed stream and fuel

gas composition measurements, errors in feed flow measurements (especially when close

to the turn-downs of the flow transmitters), and interpolation adjustments made when the

plant's data historian recorded the data.

The presence of feedback control on the header pressure for all plant data complicates the

validation of the pressure model. Feedback can introduce non-causal effects from input to

output (for example an operator who anticipates an event and compensates for it before it

actually occurs) which complicates the validation [15]. The model is, however, based on

well developed physical models and will be assumed to be adequate for the purposes of

this simulation study.

Table 3.2: Correlation coefficients for output data.

Data set Correlation coefficient (%)

HHV 93.8

WI 84.8

FSI 83.1

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 19

Figure 3.1: FSI analyser data versus simulation data.

Figure 3.2: HHV analyser data versus simulation data.

0 2 4 6 8 10 12 14 16 18
40

41

42

43

44

45
FSI analyser data vs. simulation data

Time [h]

F
la

m
e

S
pe

ed
 I

nd
ex

FSIAnalyser

FSISim

0 2 4 6 8 10 12 14 16 18
16

16.5

17

17.5

18
HHV analyser data vs. simulation data

Time [h]

H
ig

he
r

H
ea

ti
ng

 V
al

ue
 [

M
J/

N
m3]

HHVAnalyser

HHVSim

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 20

Figure 3.3: WI analyser data versus simulation data.

For the HHV and WI there are in actual fact two analysers each, measuring at the same

points in the process (for redundancy reasons). The values are also recorded separately.

Therefore, although the plots shown in Figure 3.2 and Figure 3.3 show the comparisons of

the simulation data to one plant data set each for the HHV and WI, these are the average

values for the two analysers in each case.

3.4 EMPIRICAL MODEL OF FUEL GAS SYSTEM

Standard linear MPC was initially used for control of the plant due to its simplicity and

availability of linear MPC development software (such as the Matlab MPC Toolbox used

for this case study). In order to apply linear MPC, a linear dynamic model needs to be

derived. To derive a linear model for the process, the nonlinear first principle model can be

used and linearised around an operating point using theoretical calculations. Alternatively,

an empirical model can be derived from input-output data generated by the actual process

or (as in this case) from a simulation of the process using the first principle model.

0 2 4 6 8 10 12 14 16 18
24.5

25

25.5

26

26.5
WI analyser data vs. simulation data

Time [h]

W
ob

be
 I

nd
ex

 [
M

J/
N

m
3]

WIAnalyser

WISim

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 21

3.4.1 Steps in system identification

Several authors describe the sequence of activities to perform SID. The following is a

summary of the most important steps for deriving empirical dynamic models [6,7,8,9,15].

1. Specify intended purpose/objective of the model.

This will clarify what accuracy, computational time, etc. will be acceptable. For

example will the model be used in a training simulator or will it be used in a robust

controller.

2. Select model variables.

The selection of variables will determine the size of the model. Ideally, the model

should be kept concise (depending on the intended use) and should therefore only

include variables that have significance. For example, selecting an input variable

that has a negligible effect on the selected output variables will only add

complexity to the model without adding value.

3. Measure input and output signals.

In this step the actual plant data is collected and evaluated. This will include

determining the quality of the data and whether the data captures the dynamic

behaviour of the process adequately. Ideally, step testing should be performed on

the process to ensure that the captured data contains the necessary dynamic

information (with input signals designed to provide maximum information, i.e. to

adequately excite the process).

4. Select model structure and complexity.

This step will include an initial model order, type of model (state-space, transfer

function, FIR, etc.), and whether the model will be linear of non-linear.

5. Apply estimation method to estimate values for parameters in candidate model

structure.

This step will typically involve solving an optimisation problem that will attempt to

minimise some measure of error between the behaviour of the candidate model and

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 22

the plant data by changing the parameter values. Providing realistic initial values

for the parameters can expedite the process.

6. Evaluate the estimated model.

There are several means of determining the quality/validity of the model. As

mentioned in Section 3.3.1, the simplest and most intuitive way is to evaluate the

correlation between the response of the model and the response of the plant to the

same input values. If possible, a different data set should be used for the validation

than for the identification. For dynamic models, graphical evaluation can also be

used to compare the speed and shape of the responses to identical input changes

(typically a step input).

3.4.2 Final LTI model

Several types of LTI (Linear Time-Invariant) models were considered and fitted. Finally,

first-order-plus-dead-time transfer function models were selected and fitted for HHV, WI,

and FSI and with integrating models for pressure (to prevent numerical problems in

Matlab, the pressure models are not pure integrators but have poles close to the origin, not

at the origin). Therefore, the model fitted is of the form

   dsG s e
s







 (3.12)

where  and  are the parameters to be estimated and d is the time delay (in hours),

equal to 1 180 for the models to HHV and FSI, 1 60 for WI, and 0 for pressure. An

equivalent of Equation (3.12) in difference equation format is

      . .y t y t T u t nT     (3.13)

where T is the sampling period (20 seconds or 1 180 hours in this study) and n is the

delay in number of sampling periods. The linearisation was performed around an operating

point of [HHV, WI, FSI, P] = [16.75, 25.32, 43.47, 2085] which is a typical operating

region for the plant. The resulting model matrix is shown in Table 3.3. The time unit for

the model is hours.

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 23

Table 3.3: Linearised model matrix.

 NG RG H2

HHV /18024.61

28.62
se

s



 /1804.42

23.12
se

s



 /1805.04

26.44
se

s




WI /6030.73

28.69
se

s



 /606.23

23.39
se

s



 /602.25

26.29
se

s




FSI /18059.21

28.57
se

s



 /18011.05

22.92
se

s



 /18032.26

27.14
se

s




P
1120

s

1120

s

1120

s

 N2 TG1 TG2

HHV /18013.27

23.09
se

s



 /1803.31

25.78
se

s



 /1801.66

22.64
se

s




WI /6030.42

23.00
se

s



 /604.04

25.62
se

s



 /602.45

22.85
se

s




FSI /18033.59

23.00
se

s



 /18010.40

26.72
se

s



 /1802.23

22.17
se

s




P
1120

s

1120

s

1120

s

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 24

Figure 3.4. SID step changes in the NG, RG, and H2 streams.

0 2 4 6 8 10 12 14 16 18

2

3

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Natural gas (NG)

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

1

1.5

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Reformed Gas (RG)

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

1

1.5

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Hydrogen (H2)

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 25

Figure 3.5. SID step changes in the N2, TG1, and TG2 streams.

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

1

1.5

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Nitrogen (N2)

0 2 4 6 8 10 12 14 16 18

6

7

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 1 (TG1)

0 2 4 6 8 10 12 14 16 18

19

20

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 2 (TG2)

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 26

Figure 3.6. Step test results for the WI, FSI, and HHV.

0 2 4 6 8 10 12 14 16 18

25

26

27

Time [h]

W
I

[M
J/

N
m

3]

Wobbe Index

0 2 4 6 8 10 12 14 16 18

40

42

44

Time [h]

F
S

I

Flame Speed Index

0 2 4 6 8 10 12 14 16 18
16.5

17

17.5

18

18.5

Time [h]

H
H

V
 [

M
J/

N
m

3]

Higher Heating Value

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 27

Figure 3.7. Step test results for the header pressure.

The Matlab System Identification Toolbox was used with the data displayed in Figure 3.4

to Figure 3.7 to identify the model parameters. The toolbox requires the specification of the

data sets as well as the proposed forms of the candidate models (one form for each of the

sub-models). It is also capable of estimating linear and nonlinear dynamic models and has

additional functionality to validate the derived models. The user has the option of using the

SID GUI (launched with the ‘IDENT’ command in Matlab) or to use the command line

[8].

The step input magnitudes were chosen to excite the system adequately and were executed

in a mutually exclusive manner (when changing one MV, all other MVs are kept constant)

to ensure that the response data is uncorrelated. Furthermore, the durations of the changes

were adequate to capture the important time constants for each sub-model. This is clear

from Figure 3.4 and Figure 3.5. The step changes were made to the simulation model (the

non-linear first principle model discussed in Section 3.3) and are free of noise or other

unmeasured disturbances. Therefore, it is not necessary to be concerned about the signal-

to-noise ratio. The simulation input and output data must be combined into an ‘IDDATA’

object (that also contains the sampling time) and de-trended to remove the steady-state

offsets. If bad data sections are present, these need to be removed or interpolated, and if the

0 2 4 6 8 10 12 14 16 18

1000

1500

2000

Time [h]

P
 [

kP
a]

Header Pressure

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 28

data is very noisy, filtering can be considered. The data can be viewed conveniently by

using the ‘IDPLOT’ command [8]. See Addendum A: Matlab code for detail on the

implementation in Matlab.

Several options and model types are available. The types of parametric models include

ARX (Auto Regression with eXogenous inputs), state-space, transfer function, and non-

linear parameterised models. They are referred to as parametric models because they have

fixed structures with a number of unknown parameter to be determined by the SID process.

Any of these types require specification of the model order of which the definition will

vary depending on the type of model selected [8]. Step response and frequency response

models are not considered to be parametric models as they are described by data tables

rather than compact mathematical formulas with adjustable parameters. As mentioned, for

this study, transfer function models were used (specifically first-order-plus-dead-time).

The transfer function category is divided into two options. The first is referred to as

process models which includes low order models (up to 3 poles) and may contain an

integrator, a delay, and a zero. The second category is referred to as generalised transfer

functions described in an input-output polynomial form [9].

After identifying the model, the SID toolbox generates an SID model object which can be

converted to an LTI model object for use in (among others) the Control Systems Toolbox

and the Model Predictive Control Toolbox. Difficulties with poles at or near the origin

occur however when converting a high order parametric SID model object to an LTI model

object (especially when the models contain dead-times that need to be converted to states).

The model quality can be evaluated in several ways including comparing the model

response to the measured response, analysing the residuals between the two, and analysis

of the model uncertainty. The calculation of the residuals is illustrated in Figure 3.8 where

u is the common input signal, y is the measured output data from the plant, ŷ is the

calculated output from the model, and e is the residual (or error) signal to be analysed.

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 29

Figure 3.8. Block diagram of residual calculation [16].

To compare the outputs of the model with the measured outputs, the command

‘COMPARE’ can be used. For the model shown in Table 3.3, the comparison yielded the

results shown in Figure 3.9. The percentage fit is summarised in Table 3.4 and indicates

that the first-order-plus-dead-time model structure provides a good representation of the

dynamic behaviour of the nonlinear first principle model at the specific operating point. In

this case, the same data set was used for the modelling and validation due to the artificial

nature of the step data. In cases where actual plant data is used, it is better to use separate

data sets for the model identification and validation to ensure that the validation is

uncorrelated to the identification [16].

Table 3.4. LTI model validation.

CV % Fit

HHV 93.88

WI 93.12

FSI 93.92

P 99.20

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 30

Figure 3.9. Validation of the LTI model.

2 4 6 8 10 12 14 16 18
-1

-0.5

0

HHV. (sim)

H
H

V

Measured
Sim; Fit: 93.88%

2 4 6 8 10 12 14 16 18

-1

-0.5

0

WOBBE. (sim)

W
I

Measured
Sim; Fit: 93.12%

2 4 6 8 10 12 14 16 18

-1

0

1

2
FS. (sim)

F
S

I

Measured
Sim; Fit: 93.92%

2 4 6 8 10 12 14 16 18
-500

0

500

P. (sim)

Time (Hr)

P

Measured
Sim; Fit: 99.2%

CHAPTER 3 DYNAMIC MODELLING

Department of Electrical, Electronic and Computer Engineering 31

3.5 CONCLUSION

In this chapter, the two main approaches for model development were introduced, namely

first principle modelling and system identification from experimental data. Some important

model forms and concepts were discussed for clarity. Thereafter, both a nonlinear first

principle model and a linear empirical model were developed for the fuel gas blending

system. The former is used for process simulation whereas the latter is used for control

purposes (to be discussed in subsequent chapters). The first principle model was validated

against real plant data to ensure that it gives a fair representation of the actual process. The

empirical model was validated against the data from which it was derived (namely step

response data from the nonlinear first principle model simulation).

Department of Electrical, Electronic and Computer Engineering 32

CHAPTER 4 SIMULATION ENVIRONMENT

4.1 INTRODUCTION

The model described in Equations (3.5) to (3.11) was captured in a Simulink model for use

within Matlab. The model receives data from vectors in the Matlab workspace and writes

output vectors back into the workspace. The simulation time can be set in Simulink or the

simulation can be initiated through Matlab commands. For the simulation in this study, the

latter approach is followed. The model receives five vectors containing the compositions of

the NG, RG, TG1, and TG2 streams as well as the volumetric discharge flow rate from the

header (at 20 second intervals). All of these are unmeasured disturbances entering the

model. In addition, the model requires an initial state vector when the simulation is

initiated.

In turn, the model generates four main output vectors containing the HHV, WI, FSI, and

pressure values (also at 20 second intervals). Several other vectors are also returned

containing the HHV, WI, FSI and SG (specific gravity) of each of the individual inlet

streams (used in the iterative linearisation calculations discussed in Section 5.3). As

mentioned, the simulation receives an initial state vector. This vector contains the initial

values of the six defined states of the model (the number of moles of each of the

components) as well as several other values such as initial output values for the MPC

controller, initial values for the delay blocks on the model outputs, etc. The simulation is

set to receive this vector from the Matlab workspace and also to return a final state vector

at the end of each simulation run. This is required for seamless transition between

simulation runs. Therefore, the final state vector of one simulation run becomes the initial

state vector for the subsequent run. The configuration of these vectors can be done in the

Simulink settings shown in Figure B.1, Addendum B: MATLAB screenshots, where the

initial state vector is called ‘xInitial’ and the final state vector is called ‘xFinal’.

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 33

4.2 SIMULINK MODEL DESCRIPTION

Figure 4.1 shows the main Simulink model display indicating the input vectors entering on

the left and the output vectors on the right. The model contains several subsystems, each

containing some more detail and logic (numbered from 1 to 7 in Figure 4.1). The model is

shown in its closed loop configuration where its inputs (the volumetric flow rates of the six

inlet streams) are generated (and therefore manipulated) by the MPC controller. The

controller in turn receives the current controlled variable (CV) values (the HHV, WI, FSI,

and pressure) generated by the model and compares them to the reference values, thereby

providing the feedback in the control loop.

The first subsystem, Subsystem 1, (labelled ‘Inflows’ in Figure 4.1) is used to convert the

volumetric flow rates and compositions of the inlet streams to molar flow rates of the

individual components. Therefore, this subsystem implements Equation (3.6). The detail

for this block is shown in Figure 4.2. The Subsystem receives the volumetric flow rates of

the six inlet streams (kNm3/h, depicted as input 1 in Figure 4.2) and multiplies them with a

factor 1000 / 22.4 44.64 (the amount of litres per cubic meter divided by the volume

(litres) filled by one mole of gas under ideal conditions) to convert it to molar flow rate

under the ideal gas assumption (as mentioned in Section 3.3). This multiplication is done

by the gain block labelled ‘To kmol’ in Figure 4.2. The molar flow rates are then

multiplied by the molar compositions of the inlet streams (depicted as inputs 2 to 5 in

Figure 4.2) to arrive at the molar flows for the individual components in each stream.

Finally the molar flows of the individual components are summed over the inlet streams to

produce the total molar flow for each component into the header (iu , depicted as output 1

in Figure 4.2).

The second subsystem (Subsystem 2, labelled ‘Header’ in Figure 4.1) solves the state

equations to determine the state values over time and is shown in Figure 4.3. Therefore,

this subsystem solves Equation (3.5) from the molar flow rates calculated in Subsystem 2

to produce the total moles of each component in the header and converts them to molar

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 34

fractions by dividing by the total number of moles in the header. It also calculates the

header pressure from the moles, the temperature, the gas constant, the header volume, and

the ideal gas correction factor (thereby solving Equation (3.10), output 3 in Figure 4.3).

The block also receives the initial molar values at the initiation of the simulation (input 2 in

Figure 4.3) in order to solve the initial value integration problem. The gas constant,

volume, and real gas correction factor is set as block parameters in the subsystem (as

shown in Figure B.3). The differential state equations are solved by numerical integration.

The integration algorithm and step size can be specified in the simulation properties (as

shown in Figure B.2). For this study, the Bogacki-Shampine numerical integration method

is used which is a third order Runge-Kutta algorithm and is calculated as [17]

  1 ,n nk f t y (4.1)

 2 1

1 1
,

2 2n nk f t h y hk
    
 

 (4.2)

 3 2

3 3
,

4 4n nk f t h y hk    
 

 (4.3)

 1 1 2 3

2 1 4

9 3 9n ny y hk hk hk     (4.4)

  4 1,n nk f t h y   (4.5)

 1 1 2 3 4

7 1 1 1

24 4 3 8n nz y hk hk hk hk      (4.6)

where  ,y f t y is the ordinary differential equation (ODE) to be solved, ny is the

numerical solution at time nt , and h is the step size. The value calculated for 1ny  is a third

order approximation of the function whereas 1nz  is a second order approximation. The

difference between the two can be used to adapt the step size. The value of 4k in one step

equals the value of 1k in the subsequent step which allows for only three function

evaluations per step.

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 35

Subsystem 3 (labelled “MPC Controller in Figure 4.1) represents the MPC block for

Simulink. The block references an MPC object which is generated in Matlab by either

using the MPC GUI (Graphical User Interface) or through the Matlab command line. As

mentioned above, the block receives the current CV values from the plant model as well as

the CV reference setpoints and produces the manipulated variable (MV) moves (as

volumetric flow rates) for controlling the plant. The details of the MPC controller object

will be discussed in detail in Section 5.2.

Subsystems 4, 5, and 6 contain the calculations for Equations (3.7), (3.9), and (3.11) to

produce the HHV, FSI and SG. The WI is then calculated by taking the HHV (from

Subsystem 4 and dividing it by the square root of the SG from Subsystem 5 (i.e. the

calculation performed in Equation (3.8)). The analysers measuring the HHV, FSI, and WI

have time delays associated with them. Therefore, the simulation contains time delay

blocks that delay the results of the HHV and FSI calculations by 1 sampling instant each

(20 seconds) whereas that of the WI is delayed by three sampling periods (60 seconds).

Integer delay blocks were used instead of transport delays because they allow their initial

values to be arrays, thereby enabling the last values of one simulation run to be used as the

initial values for a next run. If this is not done, the CVs will have constant values for the

first couple of sampling periods (equal to the number of delays of the integer delay blocks)

of each simulation (the entire simulation is divided into 10 minute runs in-between which

the model is updated as discussed in Section 5.3). The delay values were set by

maximising the correlation between the simulation data and the plant data (discussed in

Section 3.3.1). The details for Subsystem 4 is shown in Figure 4.4. This subsystem

implements Equation (3.7) (the gain block multiplies the molar fractions of the

components with their corresponding HHV values as indicated in Table 3.1). Figure 4.5

shows the details for Subsystem 5 for the calculation of the SG. The first gain block

multiplies the molar fractions of the components with their respective molar weights and

the last divides them by the molar weight of air (see Equation (3.11)). Finally, Figure 4.6

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 36

depicts the details for Subsystem 6 that calculates the FSI of the fuel gas according to

Equation (3.9).

Subsystem 7 is used to calculate the HHV, WI, FSI, and SG of each inlet stream for use in

the iterative linearisation and RTO (Real-Time Optimisation) as discussed in Sections 5.3

and 5.4. Its detail is shown in Figure 4.7 and indicates that it contains Subsystems 4, 5, and

6.

C
H

A
P

T
E

R
 4

S
IM

U
L

A
T

IO
N

 E
N

V
IR

O
N

M
E

N
T

 D
ep

ar
tm

en
t o

f
E

le
ct

ri
ca

l,
E

le
ct

ro
ni

c
an

d
C

om
pu

te
r

E
ng

in
ee

ri
ng

 3

7

F
ig

u
re

 4
.1

. S
im

u
li

n
k

 m
od

el
 o

ve
rv

ie
w

.

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 38

Figure 4.2. Subsystem 1 detail that converts the volumetric flow rates of the inlet streams to

molar flow rates of the individual components.

Figure 4.3. Subsystem 2 detail that solves the state equations and calculates the header

pressure.

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 39

Figure 4.4. Subsystem 4 detail for the calculation of the HHV.

Figure 4.5. Subsystem 5 detail for the calculation of the SG.

Figure 4.6. Subsystem 6 detail for the calculation of the FSI.

CHAPTER 4 SIMULATION ENVIRONMENT

Department of Electrical, Electronic and Computer Engineering 40

Figure 4.7. Subsystem 7 detail for the calculation of the HHV, WI, FSI, and SG of the

individual inlet gas streams.

4.3 CONCLUSION

This chapter described details on the capturing of the first principle model described in

Section 3.3 into the simulation environment, namely Simulink. This allows the model to be

used in a simulation study to evaluate the efficacy of different control algorithms and to

gain insight into the behaviour of the process. The next chapter describes the development

of these control strategies.

Department of Electrical, Electronic and Computer Engineering 41

CHAPTER 5 CONTROL

5.1 MPC OVERVIEW

Since the first description of MPC in the late 1970’s by Richalet et al. [18] and its

application in the refining industry by Shell Oil [19], significant attention has been given to

the development of this powerful advanced control technique. MPC is a model-based

control strategy that uses a dynamic model of a system to predict its future behaviour and

then calculate the optimal control moves that would drive the states/outputs of a system

(described by a mathematical process model) to their desired values (some reference

trajectories) in an optimal way (determined by the definition of a performance function),

and keep them there. This is done by performing optimal control over a finite time interval

into the future, based on current state/output measurements, implementing the first control

moves, and repeating the process using the latest measurements (also known as receding

horizon control). Only the first moves are implemented due to model-process mismatches

and unmeasured disturbances that cause the predicted state trajectories to differ from the

actual system behaviour. If perfect process models were available and no disturbances

were present, all the control moves calculated by the optimal control problem could have

been enforced before repeating the optimisation problem. In essence, MPC aims to

optimise the predicted process behaviour by implementing optimal control moves [10].

Although there are many MPC algorithms, the basic structure of MPC is common to most

applications. The different algorithms differ according to the model used, the form of the

cost function, and the way the controller handles noise and disturbances [20]. An overview

of the commercial technologies available for MPC application in industrial plants can be

found in [11].

Predicting plant behaviour typically requires solving the state differential equations by

numerically integrating them over time. The control horizon is generally shorter than the

prediction horizon resulting in the last couple of prediction intervals (equal to the

difference between the prediction and control horizon) being subjected to the same

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 42

constant control moves. Figure 5.1 gives an illustration of a SISO (single input, single

output) MPC-controlled system after a setpoint change in the controlled output variable.

The input sequence u is calculated to get the predicted response, ŷ , as close as possible to

the reference trajectory while honouring the constraints on u and .y The control horizon,

N , is shorter than the prediction horizon, .M Therefore, for the balance of the sampling

instants between the control and prediction horizons, u will stay constant. If the controller

stops after calculating the first set of optimal control moves, mismatches between the

system and the model will be ignored as well as changes in the process and disturbances.

This problem is solved by implementing the first control moves (e.g. at time 1t , calculated

with the information available at time 0t), taking new measurements after one sampling

interval, recalculating the optimal control vector, and repeating the process. MPC can

therefore be seen as a repetition of an optimal control algorithm at every sampling interval

using the latest process measurements.

 Some of the advantages of using MPC include flexibility in formulating the objective

function and defining the process model, the ability to include equality and inequality

constraints directly in the control law, accommodation of multivariable systems, and the

possibility of dealing with large disturbances quickly (due to its inherent use of feed

forward control). The main drawbacks in using MPC are the computational burden

associated with it (especially when considering large systems and large control and

prediction horizons) and the need for a reliable model of the process [20]. The main

components of MPC are discussed in the following sections. One of the most popular

applications of MPC is distillation control. Therefore, due to a lack of literature on MPC

applications on blending processes, the components of MPC are discussed with reference

to its use in control of distillation columns.

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 43

Figure 5.1. Illustration of SISO MPC concept (adapted from [6]).

5.1.1 Process model

The predicted behaviour to be optimised, is based on the model which makes it the most

important element of the controller, although there will always be plant-model mismatch

that will influence the accuracy of the predictions. Feedback can be used to compensate for

these mismatches (although only to a certain extent) [10]. Refer to Sections 3.1 and 3.2 for

more information on model types.

5.1.2 Choosing system variables

This task involves choosing the CVs (or outputs), the MVs (or control inputs), the DVs,

and the state variables. The number of MVs, DVs, states, and CVs will be responsible for

the model size and consequently the size of the control problem (apart from whether the

model will be linear or nonlinear and if robustness will be considered). Choosing the

wrong variables will affect the controllability and observability of the system.

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 44

Furthermore, the measurability and measurement latency have to be considered when

choosing the controlled variables. For example, a process temperature can easily be

measured with a thermocouple device and the measurement can be available to the control

software after a negligible delay. An on-line composition measurement on the other hand

might require expensive analyser equipment and the measurement result might only be

available after a considerable delay. Therefore, inferentials are often used to predict

variables (like composition) from other easily obtainable variables (such as pressures and

temperatures). This is common in processes such as distillation control. For example

Richalet et al. [18] used key tray temperatures to control the compositions of light and

heavy end product streams. Product flow rates were changed to compensate for inlet

temperature disturbances to offer a degree of feed-forward action. Karacan [21]

manipulated the reflux ratio to control the top product temperature (and therefore the

purity) of a packed-type distillation column. Grüner et al. [22] aimed to control the top

(distillate) and bottoms compositions by adjusting the reflux ratio and reboiler heat duty.

They used the temperatures in the 4th and 60th trays (of a 63 tray column) to estimate the

compositions of the top and bottom product streams. Kawathecar and Riggs [23] chose the

primary composition control to be the percentage of impurities in the overhead product of

an ethyl acetate producing reactive distillation column. They specifically used the

temperature in the second tray from the top to infer the impurity level in the overhead

product and the temperature in the fifth tray from the bottom to infer the impurity level in

the bottom product. They chose these temperatures as their main handles based on data

obtained from a steady state model of the column which suggested the strongest correlation

between deviation in product purity and tray temperature deviation. Khaledi and Young

[24] controlled the percentage conversion and the bottom product purity in a reactive

distillation column by manipulating the reflux flow rate and reboiler heat duty respectively.

The reaction percentage was determined by measuring the differential temperature over

trays 2 to 4. They suggested using a tray temperature close to the bottom tray to infer the

purity of the bottom product. By graphing the stage temperature profiles at different

reboiler heat duties, the tray with the highest sensitivity to reboiler duty was determined

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 45

and used for the inferential. Therefore, a sensitivity study can provide insight into the most

appropriate variables to use when considering inferential control.

Several tools can be used to determine which variables will be best suited for the intended

control application. RGA (Relative Gain Array) analysis requires only the steady-state gain

matrix of the process and gives an indication of the process interactions as well as an idea

of the most suitable pairing between controlled and manipulated variables [6]. Another

useful tool is the SVA (Singular Value Analysis) which can help in the selection of the

CVs, MVs, and DVs, assist with evaluation of the robustness of the system, and (if not

using multivariable control) give recommended pairing of variables in a multiloop

configuration [6].

5.1.3 System identification

The topic of system identification is covered in Section 3.4. As mentioned, the two main

categories for models to be used in MPC are first principle (or theoretical) models and

empirical (or experimental) models. Richalet et al. [18] used a discrete-time FIR (Finite

Impulse Response) model to describe the relationship between inputs and outputs. The

output at any given time depends on a linear combination of past inputs. Cutler and

Ramaker [19] from Shell Oil used a linear step response model which relates output

changes to a weighted sum of past input changes.

Several authors developed dynamic models from first principles [23,22,25]. Kawathecar

and Riggs [23] followed this approach to develop a nonlinear model for a reactive

distillation column. Their model consisted of liquid dynamics equations, component

material balances, and energy balances (for each tray and the overall process). Grüner et al.

[22] and Rueda et al. [25] developed detailed column models based on dynamic mass and

energy balances.

Waller and Böling [26] used a quasi-ARMAX (Auto Regressive Moving Average with

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 46

eXogenous inputs) modelling scheme which can be seen as a combination of FIR and IIR

(Infinite Impulse Response) modelling [27]. The identification process was performed by

applying random magnitude input step changes of random duration. The steps were made

in both positive and negative directions to ensure that the model accounts for the ill-

conditioning. Simultaneous input changes were also made in the high and low gain

directions (determined by the ratio of the input signal changes). Their simulations showed

that the quasi-ARMAX model adequately captured the nonlinearity and directionality of

the process. In a similar fashion, Venkateswarlu and Reddy [28] used a polynomial ARMA

(Auto Regressive Moving Average) model and mentioned that the main advantage of these

models are that they capture the nonlinearities of the process in a structure with linear

parameters. The model parameters can be estimated by applying efficient parameter

estimation methods (such as recursive least-squares).

Similar to the approach followed in this study, Khaledi and Young [24] estimated the

nonlinear process of an ETBE (ethyl tert-butyl ether) reactive distillation column with a

simple linear first-order-plus-dead-time model. The model was obtained by performing a

series of step changes in the reflux rate and the reboiler heat duty (the MVs). From the step

responses, the first order process gains and time constants were determined. Although the

process showed high nonlinearity over wide MV ranges, it had near linear behaviour over

the operating range of interest and could therefore be adequately approximated by these

simple linear models.

Karacan [21] used a polynomial NARIMAX (Nonlinear Auto Regressive Integrated

Moving Average with eXogenous inputs) model (a type of nonlinear difference equation

model) to describe the dynamics of a pilot packed distillation column. The empirical model

was generated using process input-output data. He made several assumptions in modelling

the system to reduce the complexity of the resulting model and used a recursive Gauss-

Newton prediction error algorithm to determine the parameters for the NARIMAX model.

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 47

Ou and Rhinehart [29] developed a neural network (NN) model suitable for parallel

processing. The model consisted of a group of sub-models, each providing prediction for

one CV at a future point in time. The sub-models were mutually independent, allowing

them to be evaluated separately using parallel processing. Each of the sub-models was

created as a separate neural network structure, resulting in a grouped neural network

(GNN) process model. To compensate for process-model mismatches, the differences

between the current measured outputs and the values predicted for the current outputs at

the previous sampling interval were calculated and added to all prediction values in the

current prediction trajectory.

Alpbaz et al. [30] developed a set of models governed by ODEs for a packed distillation

column by dividing the height of the column into a number of stages. The process

dynamics were investigated by making step changes to the reflux ratio (MV) at steady state

conditions and observing the effect on the top temperature (CV related to the top product

purity). Again similar to the LTI model for this study, the step-response model was

expressed as a first-order-plus-dead-time function.

After the model has been developed, it needs to be validated to determine how closely it

resembles the actual process. This was discussed in Section 3.3.1.

5.1.4 Constraints and performance index

After obtaining the mathematical representation, the input, output, and state constraints

need to be specified and the performance function (also called the cost function, objective

function, or performance index) formulated. The performance function typically consists of

errors between the desired output/state trajectories and the predicted values. Additional

terms may include energy usage in the control signals and outputs, terminal conditions, and

time dependency. The performance index has to be minimised subject to the system

constraints. The constraints typically consist of both equality and inequality functions

describing physical constraints (such as levels having to be greater than zero) and

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 48

performance constraints (such as an optimal setpoint). In some cases, the rate of change in

the control and state/output variables are also included in the definition of the performance

index and constraints, thereby limiting the strain on actuators and process equipment.

Some constraints will be obvious (such as level constraints) whereas others may be

difficult to determine. The performance index to be minimised can be written in a general

form as [31] (see Equations (5.5) to (5.14) for detail on the cost function used in this study)

      
0

, , , , , ,
Mt

M M MJ y u t S y u t V y u t dt   (5.1)

where y is the output vector (the CVs), u is the input vector (the MVs), M is the

prediction horizon, S is the terminal cost (at the end of the prediction horizon), and V is

the interval cost. In many cases, the states are penalised rather than the actual outputs. In

such cases, the penalty function remains the same as Equation (5.1) with y substituted by

x , the state vector [31]. The terminal cost function is used if it is important that the system

reach a certain condition at the end of the prediction horizon (typically within a certain

range of a setpoint). The interval cost is used where it is not only important to get the

system to a desired state but also how it gets there. Equations (5.2) to (5.4) indicate the

form of V for some popular objectives including minimising time (Equation (5.2)), energy

(in control or output variables; Equation (5.3)), and deviation from setpoints (Equation

(5.4)).

  , , 1V y u t  (5.2)

  , , · ·TV y u t u R u (5.3)

      , , · ·
T

r rV y u t y y Q y y   (5.4)

The move suppression matrix R allows for the individual weighting of the input signals

according to their priorities, whereas Q allows for giving different weights to the output

signals according to their relevant importance.

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 49

Richalet et al. [18] defined the performance index as the error between the predicted

outputs and first order reference trajectories from the current values to the desired

setpoints. Thereby, the speed of the controller could be set by changing the time constants

of the reference trajectories.

Cutler and Ramaker [19] implemented a quadratic performance function which penalised

output deviations from the desired setpoint values. They also included a penalty term for

the MVs to limit the movement of the control signals, resulting in less aggressive output

responses. The weighting matrix for the MVs (move suppression matrix) allowed inputs to

be penalised by different factors. Waller and Böling [26], Kawathecar and Riggs [23],

Venkateswarlu and Reddy [28], Ou and Rhinehart [29], and Alpbaz et al. [30] followed

similar approaches. In some cases, a disturbance term was added to the objective function

over the prediction horizon to compensate for prediction-measurement mismatches at each

sampling interval [23].

Abou-Jeyab et al. [32] formulated the objective function using the absolute errors of the

controlled variables with regard to a reference trajectory minus the reflux flow rate (in

order to maximise the reflux flow). Upper and lower constraints were imposed on each of

the controlled and manipulated variables. For the manipulated variables, rate of change

constraints were also considered.

Wojsznis et al. [33] discussed a three-tier objective function with constraint handling as the

first priority, maximising economics as the second, and maintaining control as the third.

They employed dynamic assignment of weights (slack variables) to control and constraint

variables when it was predicted that the values would exceed their limits. The optimiser

addressed the basic control functionality objectives in its normal form (with built-in default

objectives) and addressed constraint and economic objectives using the penalised slack

variables. The slack variables allowed the performance index to be penalised according to

the severity of the predicted violations, weighting the errors more as the predicted

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 50

deviations became larger. This was done by reformulating the inequality constraints on the

controlled variables into equality constraints by adding the values of the predicted

violations as slack variables. This incremented the degrees of freedom and helped the

optimiser to cope with possible unfeasible solutions (such as after large disturbances). The

optimiser was prevented from using the slack variables in normal operation by making the

penalty weights for violating constraints significantly higher than the weights on economic

and control performances.

5.1.5 Controller parameters

The choice of controller parameters plays an important role in the performance of the

controller. The most important parameters for MPC are the control and prediction

horizons, the sampling (or iteration) time, and the objective function weighting matrices.

The control horizon refers to the number of future control moves calculated for every

iteration. The prediction horizon is the number of steps into the future for which the system

equations are solved to give estimates of the state/output values at these instances. It is

obvious that these parameters play an intricate role in the execution time of the control

algorithm.

The execution time of the control algorithm must be less than the required sampling time

of the system for the controller to be implementable in practice. Every system has a

minimum sampling time associated with it to ensure proper control. Therefore, the control

parameters play an important role in the success (or failure) of the controller. If the

prediction and control horizons are chosen to be too large, the execution time of the

algorithm (on a particular system) may become larger than the required sampling time of

the process.

Kawathecar and Riggs [23] used a prediction horizon of 80, a control horizon of 15, and a

sampling interval of 20 minutes in their control of a reactive distillation column.

Furthermore, they weighted impurities in the overhead product 10 times heavier than

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 51

impurities in the bottoms product due to the effect of the overhead impurities on the final

product. The move suppression factors were chosen to minimise the IAE (Integral

Absolute Error) from the setpoint of the overhead product based on overhead impurity

setpoint changes.

Abou-Jeyab et al. [32] used a control horizon of 1 in their formulation of a simplified

model predictive control algorithm. To determine the prediction horizon, they calculated

the average time it would take the predicted output trajectories to intersect the setpoint

trajectories due to a single control vector. The errors were then minimised only at this one

point in the future. Therefore, only one optimisation problem was solved and one control

vector calculated every sampling interval. By manipulating the optimisation point

(prediction horizon), the controller could be made more or less aggressive. Furthermore,

this algorithm allowed the independent adjustment of the response times for each of the

controlled variables by tuning the respective intervals at which the specific errors were

minimised.

Waller and Böling [26] used a control horizon of 3, a prediction horizon of 25, and a

sampling time of 1 minute. They weighted the bottom composition error slightly higher

than the distillate composition error with equal weights on the inputs.

Khaledi and Young [24] used a prediction horizon of 20 with a sampling time of 1.5

minutes and a control horizon of 2, reasoning that a small control horizon will prevent the

controller from being too aggressive.

Bezzo et al. [34] chose to use a prediction horizon of 60, a control horizon of 15, and a

sampling time of 5 minutes for control of a middle-vessel continuous distillation column.

They weighted the distillate and bottom compositions more heavily than the levels and

maintained loose control over the various levels.

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 52

5.1.6 Solving the optimisation problem

Some common formulations of the objective function (or performance index) were

discussed in Section 5.1.4. Solving the optimisation problem entails minimizing (or

maximising, depending on the formulation) the objective function by adjusting the set of

input variables (subject to constraints).

Various techniques are used for solving the optimisation problem. An important factor to

be considered is whether the system model is linear or nonlinear. There are two main

approaches to solving the optimisation problem namely sequentially or concurrently

[23,25]. For sequential solution, a reference control profile is selected and the system

equations are integrated to obtain a state/output profile. Thereafter, the objective function,

as well the sensitivities of the objective function to changes in manipulated variables, are

determined. The optimisation problem is then solved (using these gradients) to calculate an

updated control profile that will reduce the value of the objective function. These steps are

repeated to minimise the objective function value. The drawback of the sequential

approach is that the system equations have to be solved at each iteration of optimisation

resulting in long execution times. For concurrent solution, the model equations are

appended to the optimisation problem in the form of equality constraints (algebraic form)

and the optimality and constraints are therefore treated simultaneously. The optimisation

problem is then solved subject to these equality constraints as well as constraints on the

controlled, manipulated and state variables. The concurrent method will reduce the time

spent on numerical integration at the cost of a larger optimisation problem. Therefore,

there is a trade-off between these approaches. Generally, for large problems (involving

complex models and large prediction horizons) the concurrent solution is preferable

whereas the sequential method may be chosen for smaller problems with few states and

small prediction horizons. Some of the most common optimisation techniques include

linear programming (LP), quadratic programming (QP), sequential quadratic programming

(SQP), and nonlinear programming (NLP).

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 53

Cutler and Ramaker [19] calculated the optimal control vectors by solving a least squares

problem. Their use of a step response model allowed future output variations to be written

as a linear combination of future input moves. The matrix relating the inputs and the

outputs is known as the dynamic matrix. Therefore, their control algorithm is known as

DMC (Dynamic Matrix Control).

Kawathecar and Riggs [23] solved the system equations for their nonlinear model using the

Euler method with 0.5s time steps (compared to a 20 minute sampling interval). They

formulated the optimization problem as a nonlinear programming (NLP) problem. They

used the concurrent approach for performing optimisation and applied orthogonal

collocation on finite elements to convert the ODEs (Ordinary Differential Equation) into a

set of algebraic equations to be used as equality constraints.

Abou-Jeyab et al. [32] managed to perform a single linear programming solution at each

sampling interval with their simplified MPC algorithm. As mentioned in Section 5.1.5,

they calculated an average time at which the predicted response for a single control move

would intersect the setpoint trajectory (used as the prediction horizon) and minimised the

error at only that point in the future. They used the result as the only control vector

calculated at each sampling interval (i.e. a control horizon of 1), thereby reducing the size

of the optimisation problem drastically.

Grüner et al. [22] made use of asymptotically exact input/output linearisation for aiding in

solving the system equations. The control law required that the state of the plant be known,

which led to the development of an observer to estimate the state of the plant according to

simple temperature measurements. The input/output linearisation involved differentiating

the output equations with regard to time until the expression explicitly involved at least one

linear input component. The differentiated output equations were then linearised by

approximation with a finite differences approach. A new artificial input was then

introduced into the equation (together with input gain) that forced a linear (and decoupled)

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 54

behaviour from this input to the output. Therefore, by linearising the output equations,

linear optimisation techniques could be applied instead of using nonlinear optimisation.

Venkateswarlu et al. [28] investigated the use of stochastic algorithms, including genetic

algorithms (GAs) and simulated annealing (SA) for nonlinear optimisation as an

alternative to sequential quadratic programming (SQP). These stochastic techniques were

combined with a polynomial-type nonlinear empirical process model to arrive at their

modified NMPC algorithms, namely GANMPC and SANMPC. The attractiveness of using

GAs and SA lies in the ability to deal with constrained, nonlinear, and non-convex

optimisation problems without having to calculate the model derivatives. Furthermore,

these algorithms have the ability to find solutions in close proximity to the global minima,

and not to get stuck at local minima. Their choice of a polynomial input-output model

provided one-step-ahead prediction. Therefore, the prediction trajectory to be optimised

could be calculated by cascading the model with itself.

Diehl et al. [35,36] proposed a real-time optimisation algorithm based on direct multiple

shooting (falling under the class of concurrent optimisation). In this optimisation scheme,

the entire prediction horizon is considered and successive linearisation along optimal

trajectories is performed. The algorithm can be performed on systems described by

differential algebraic equations (DAE) and subject to inequality constraints. Direct

multiple shooting is a way of converting a continuous time system into discrete time for

use in digital systems. The real-time optimisation scheme starts by solving a Newton-type

optimisation problem over the entire prediction horizon, implements the first control move,

and proceeds to solving the next optimisation problem, considering only the rest of the

original prediction horizon. Therefore, the size of the optimisation problem decreases with

every iteration until the end of the prediction horizon is reached where after a new

prediction horizon is considered. This method is known as receding horizon control and

allows rapid response to disturbances. In a similar discussion, Gerdts [37] formulated a

direct shooting method for numerical solution of optimal control problems for systems

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 55

described by higher-index DAEs subject to state constraints. The direct shooting method is

described as a way of casting a continuous-time optimal control problem into a discrete-

time finite-dimensional nonlinear programming (NLP) problem. The problems

encountered when using numerical integration schemes to solve DAE systems include ill-

conditioning, instability, convergence problems, and calculation of consistent initial

values.

Karacan [21] used orthogonal collocation on finite elements employing Legendre

polynomials for solution of the NARIMAX model equations. This method implies dividing

the column into a number of elements and applying the orthogonal collocation to each

element separately. Thereafter, the model partial differential equations are solved using

these finite elements.

Ou and Rhinehart [29] formulated their grouped neural network model in such a way that

the predicted process values were calculated directly using past inputs and outputs and the

future guess inputs. Therefore, there was no need for numerical integration of the process

model.

5.2 MPC DESIGN FOR FUEL GAS CONTROL

The interactive and multivariable nature of the fuel gas blending system makes it an ideal

candidate for MPC. As mentioned, the MVs for this process were chosen to be the

volumetric flow rates (kNm3/h) of the six inlet gas streams and the CVs are the HHV, WI,

FSI, and pressure. No measured disturbances (DVs or FF variables) were included in the

model. The LTI model described in Section 3.4.2 was used as an initial model in the MPC

algorithm to control the plant CVs within their specified ranges while attempting to

minimise the operating cost according to the relative costs of the inlet streams. The relative

costs are given in Table 5.1. The MPC was designed using the Model Predictive Control

Toolbox in Matlab [15]. The Toolbox includes the ability to add an MPC function block to

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 56

a Simulink model and link the block to an MPC object (created with the MPC Toolbox).

This approach was followed and is indicated in Section 4.2, specifically in Figure 4.1. The

MVs and CVs are set in the MPC Toolbox utility (as shown in Figure B.4). This will

happen automatically if the LTI object is configured correctly.

Table 5.1. Relative costs of inlet streams [cost/kNm3].

Feed stream Relative cost

NG 0.678

RG 0.254

H2 0

N2 0.068

TG1 0

TG2 0

The average settling time for the HHV, WI, and FSI is about 12 minutes. This can be

determined by taking an average time constant of 1/ 25*60 2.6   minutes and then

calculating the settling time 5. 12st   minutes [6]. The initial values for the prediction

and control horizons were chosen according to the proposed guidelines in [6]. This resulted

in a control horizon of 5 and a prediction horizon of 44 (12 (settling time in minutes) times

3 (three samples per minute) plus 5 (the control horizon) plus 3 (the maximum dead-time

in samples)). These values did not give the desired results. The values were changed by

trial and error to arrive at a final prediction horizon of 39 samples (to cover the settling

time (36 samples) plus largest dead-time (3 samples)) and a control horizon of 3 sampling

intervals (to prevent the controller from being too aggressive). Furthermore, blocking of

the control horizon was used to distribute the control moves more evenly over the

prediction horizon. A block is one or more successive sampling periods over which the

MVs are kept constant [15]. The blocking parameters were selected to calculate control

moves at 2, 6, and 12 sampling intervals (as shown in Figure B.5).

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 57

Weights were added to the inputs in relation to the relative costs of the streams (given in

Table 5.1) with identical rate weights. The weights are shown in Table 5.2. The MV

weights penalise the deviation from nominal values (which are initially set to [0 0 5 0 30

30]). The outputs were given weights (shown in Table 5.3) for deviations from the nominal

values which were chosen to be mid-range (i.e. HHVnominal = 17.25, WInominal = 26,

FSInominal = 42.5, and Pnominal = 2100) for the initial two cases (without real-time

optimisation as discussed in Section 5.4). The weights were chosen according to priority of

the CVs where the highest priority is given to HHV and the lowest to pressure. The weight

settings are shown in Figure B.6.

Table 5.2. Weights on MVs.

MV Weight Rate weight

NG 67 1

RG 25 1

H2 0 1

N2 7 1

TG1 0 1

TG2 0 1

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 58

Table 5.3. Weights on CVs.

CV Weight

HHV 100

WI 80

FSI 70

P 20

In addition to the weights, constraints were put on the inputs and outputs with moderate

constraint softening on the CVs. The input constraints were chosen to be representative of

the availability of each stream and are shown in Table 5.4. The configuration of the

constraints and constraint softening are shown in Figure B.7 and Figure B.8.

Table 5.4. Limits on MVs [kNm3/h].

MV Low limit High limit Units

NG 0 15 kNm3/h

RG 0 20 kNm3/h

H2 0 5 kNm3/h

N2 0 5 kNm3/h

TG1 0 30 kNm3/h

TG2 0 30 kNm3/h

The output constraints correspond to the controlled variable ranges shown in Table 2.1.

The tuning settings (including prediction horizon, control horizon, weights, and rate

constraints) were derived by trial and error (using the recommended guidelines from [6]).

The form of the cost function is [15]

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 59

   

      
1

2
, , ,| , , 1 | ,

0

min
p

y i u i u iu k k u m k k
i

S k S k S k 
 



    


   (5.5)

with

        2

,
1

1| 1
yn

y
y i j j j

j

S w y k i k rk k i


      (5.6)

    
1

2

, |
un

u
u i j j

j

S w u k i kk 




   (5.7)

       ,
1

2

|
u

target

n
u

u i j j j
j

S w u k i k uk k i


    (5.8)

subject to

          
min min max max

|u u
j j j j ju i V u k i k u i iVi      (5.9)

          
min min max max

|u u
j j j j ju V ui i k i ik i u V          (5.10)

          
min min max max

1|y y
j j j j jy V y k i V iki yi i       (5.11)

 0, , 1i p   (5.12)

  | 0; , , 1u k h k h m p     (5.13)

 0  (5.14)

where  |u k i k  is the input change vector at time k i based on the information

available at time k , m is the control horizon, p is the prediction horizon,  is a slack

variable,  is the weight on the slack variable,  r k is the output reference vector at time

k , y
jw , u

jw , and u
jw are weighting matrices for the outputs, input increments, and the

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 60

inputs, yn is the number of outputs, and un is the number of inputs. The vectors
minju ,

minju ,
minjy ,

maxju ,
maxju , and

maxjy are the minimum and maximum values for the inputs,

input changes, and outputs whereas
min

u
jV ,

min

u
jV  ,

min

y
jV ,

max

u
jV ,

max

u
jV  , and

max

y
jV are the ECR

(Equal Concern for Relaxation) vectors that govern how much constraint violations can be

tolerated [15].

The way the MPC handles noise and disturbances is also specified (as shown in Figure B.9

and Figure B.10). The MPC GUI utility was used for the initial design of the MPC object

which was linked into the MPC block in Simulink. All subsequent changes to the model

and to the MPC object were done though Matlab commands (see Addendum A: Matlab

code). These include changes to the gains of the LTI model used by the MPC, changes to

the nominal MV and CV values, and updating of ideal resting values (steady-state targets)

on MVs.

5.3 ITERATIVE LINEARISATION

The MPC algorithm used for the control is designed for linear plants. The Fuel Gas system

however is nonlinear which reduces the performance of the MPC when moving away from

the design operating region. There are several possibilities for dealing with nonlinearities.

One option is to use nonlinear MPC which requires the use of a nonlinear model and

optimiser (which is more complex and computationally intensive than the linear case).

Another option is to continuously linearise the plant at the current operating point [38].

The latter is the technique followed in this study and results in the control scheme

becoming a variant of nonlinear MPC (NMPC). The iterative linearisation is performed by

calculating the gains of the Transfer Function Matrix (TFM) at every 30th iteration (every

10 minutes) and updating the model used by the MPC accordingly [12]. The compositions

of the inlet streams on the plant are measured by the same mass spectrometer mentioned in

Section 3.3.1 which samples every 10 minutes. Therefore, the linearisation frequency was

chosen to coincide with this sampling frequency. The initial TFM is given in Table 3.3.

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 61

The gain calculations are discussed in the following sections. The linearisation involves

normalising the TFM, updating it with the newly calculated gain values, and updating the

MPC to use the new TFM. The transient behaviour of the plant does not change

significantly at different operating regions. Therefore, only the gains of the TFM are

updated, leaving the dynamic parameters (the time constants and delays) unchanged.

The steady state values for the controlled variables can be calculated directly from the

volumetric flow rates and compositions of the inlet streams. Taking the derivatives of these

equations with regard to the individual inlet streams give the instantaneous gains. These

gains can then be used to update the model used in the MPC to provide a form of iterative

linearisation. The gain calculations are described in the next sections [12,13,39].

5.3.1 Heating value

The fuel gas heating value is calculated as

6

1

·
ii F

i
fg

T

F HHV
HHV

F



 (5.15)

where iF and
iFHHV are the volumetric flow rate (3kNm /h) and heating value (3MJ/Nm)

of the thi inlet stream and
1

6

i

T iF F


 is the total inlet volumetric flow rate. The gains are

then calculated as

 iF fgfg

i T

HHV HHVHHV

F F





 (5.16)

5.3.2 Wobbe index

The Wobbe index is calculated as (same as Equation (3.8))

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 62

 fg
fg

fg

HHV
WI


 (5.17)

where fgHHV is given in Equation (5.15) and fg is the relative density of the fuel gas,

calculated with regard to inlet flow rates as

6

1

·
ii F

i
fg

T

F

F


 


 (5.18)

where
iF is the relative density of inlet gas .i Taking the derivative of fgWI with regard

to iF gives

1.5

1
. .

2.
fg fg fg fg

i i fg ifg

WI HHV HHV

F F F




  
 

  
 (5.19)

with fg

i

HHV

F




 given in Equation (5.16) and

 iF fgfg

i TF F

  



 (5.20)

5.3.3 Flame speed index

The flame speed formula is (also shown in Equation (3.9)),

2

6

,
1

6 2

, ,
1 1

.

. 5 18.8 1

fg i i
i

fg

fg i i fg j O
i j

y s
FSI

y A n x



 


  



 
 (5.21)

with the values for iA and is given in Table 3.1. To calculate the FSI in terms of the inlet

volumetric flow rates, the molar components in the fuel gas are calculated using

6

,
1

,

.j Fj i
j

fg i
T

F y

y
F




 (5.22)

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 63

where ,Fj iy is the molar fraction of component i in inlet stream j . The derivative can then

be determined as

4 2

, ,

1 1, ,

. .fg fg fg x fg fg k

x ki fg x i fg k i

FSI FSI y FSI n

F y F n F 

    
 

      (5.23)

where ,fg xy refers to the molar fraction of combustible component x in the fuel gas and

,fg kn is the molar fraction of inert component k in the fuel gas. The individual terms in

Equation (5.23) are given by

2

6 2
,

, ,
1 1

.

. 5 18.8 1

fg x x fg

fg x
fg i i fg j O

i j

FSI s A FSI

y y A n x
 

 


    
 (5.24)

, ,, iF x fg xfg x

i T

y yy

F F





 (5.25)

2

6 2
,

, ,
1 1

5.

. 5 18.8 1

fg fg

fg k
fg i i fg j O

i j

FSI FSI

n y A n x
 

 


    
 (5.26)

, ,, iF k fg kfg k

i T

n nn

F F





 (5.27)

5.4 REAL-TIME OPTIMISATION (RTO)

5.4.1 Literature review

In order to push the operating cost of a process towards its true minimum (or maximise

operating profit) as operating conditions change (such as changes in feed and product

costs, variable equipment availability, and process disturbances), an online economic

optimisation technique is employed on top of MPC known as real-time optimisation (RTO)

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 64

[6,14,38,40]. Most RTO applications involve the use of nonlinear steady-state models that

are updated with plant parameters such as product compositions [41]. To increase process

economics, efficiency, and product quality, real-time optimisation (RTO) has become an

important topic in the control industry (with its relevance already noted in the early 1980’s

[14]). RTO is applied on top of one or more unit-based multivariable controllers and

strives to achieve operation near the economic optimum of the system as a whole by

recalculating the optimum operating conditions on a regular basis [6]. Typically, RTO is

based on a steady-state model of the plant and calculates the ideal target values for CVs

and MVs to reach the steady-state optimal (while honouring constraints). The steady-state

RTO calculations are performed at a lower frequency than the MPC execution interval

(due to typically long settling times on processes which limits the frequency of RTO

execution) [40,41]. It is also possible to apply dynamic RTO at a lower frequency than the

execution of the MPC (though at a higher frequency possible with steady-state RTO). This

allows for optimisation at a point in the future which is not necessarily the steady-state

point. One approach is to use a reduced order dynamic model of the plant that is less

sensitive to high frequency disturbances and more focussed on longer term behaviour

(which is more applicable to plant economics and unit interaction) [40].

5.4.2 Implementation

The optimal steady-state targets for the MVs and the CVs as well as the ideal resting

values for the MVs were calculated using a constrained nonlinear optimiser (the

‘FMINCON’ function in Matlab) and the nonlinear steady-state model discussed in section

5.3. The code is shown in Section A.6. The use of the nonlinear model for the RTO results

in the control scheme being another variant of nonlinear MPC.

5.5 CONCLUSION

In this chapter, a brief overview of MPC was given after which three controllers were

developed, starting with a base case MPC strategy that uses a constant LTI model.

Thereafter, iterative linearisation was introduced that calculates the model gains at

CHAPTER 5 CONTROL

Department of Electrical, Electronic and Computer Engineering 65

different operating points from a nonlinear steady-state model and adjusts the model used

by the controller accordingly. This results in a form of nonlinear MPC using a linear MPC

algorithm. Finally, the concept of real-time optimisation was discussed that calculates the

true optimal operating cost and the associated MV and CV values and writes these values

as targets to the controller. This is done by using a nonlinear constrained optimiser together

with the nonlinear steady-state model discussed in Section 5.3. In the next chapter a

simulation study is conducted that evaluates the performance of these controllers amid

several process disturbances.

Department of Electrical, Electronic and Computer Engineering 66

CHAPTER 6 SIMULATION AND RESULTS

6.1 INTRODUCTION

The controller was tested in a simulation study (using the nonlinear model discussed in

Section 3.3 to represent the plant) to demonstrate its ability to control the CVs within limits

in the presence of noise (the discharge flow signal has a 2% peak to peak noise) and

disturbances, while attempting to minimise operating cost. For simplicity, actuator

dynamics were not considered and perfect flow manipulation assumed. Three cases were

considered. The first uses only the initial LTI model and is referred to as the base case

MPC. The second uses iterative linearisation to update the gains of the LTI model. The

third utilises RTO in combination with iterative linearisation.

Two demand disturbances (changes in the total discharge) were introduced after 1 hours

and 3 hours respectively, each of a 3 3kNm /h magnitude. A composition disturbance was

also introduced in the NG stream at time 2 hours, changing the composition from [CH4,

C2+, H2, N2, CO, CO2] = [0.911, 0.068, 0.0, 0.015, 0.0, 0.006] to [0.841, 0.088, 0.01,

0.035, 0.01, 0.016]. The composition of the Tail Gas 1 stream was changed at time 4 hours

from [CH4, C2+, H2, N2, CO, CO2] = [0.055, 0.01, 0.62, 0.025, 0.26, 0.03] to [0.075, 0.04,

0.57, 0.025, 0.26, 0.03]. This compositional change causes a change in the HHV of TG1

from 13.98 to 17.98 MJ/Nm3 which causes the gain of the model from TG1 to HHV to

change sign (from negative to positive). This illustrates the effectiveness of the iterative

linearisation. When a constant LTI model is used, the controller does not detect the change

in composition and continues with the same inlet flow rates (not utilising the TG1 to reduce

the cost as it could do). When the gains are updated, the controller detects that the HHV of

the TG1 stream is higher and can therefore be exchanged for some NG, reducing the cost.

6.2 BASE CASE MPC VERSUS MPC WITH ITERATIVE LINEARISATION

The results of using a constant LTI model (the model given in Table 3.3) are shown in

Figure 6.1 to Figure 6.4. The results for the iterative linearisation case are shown in Figure

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 67

6.6 to Figure 6.8. The operating costs (calculated from the flow rates and normalised costs)

for the two cases are shown in Figure 6.5 and Figure 6.9. The same controller was used in

both cases (identical tuning settings).

The results illustrate that a seemingly small change in the composition of the feed streams

can cause a significant change in the optimal operating costs. In this case, an increase in

the HHV of Tail Gas 1 allows for a reduction in the NG usage which gives rise to the

significant cost reduction. The total cost (the operating cost integrated over the 6 hour

period) for the case of iterative linearisation is 0.2172 units whereas the cost for the

constant LTI model is 0.2501 units (a 13.15% cost reduction for this simulation).

Considering the composition change at 4 hours alone, the operating cost is reduced from

about 0.0415 to 0.0225 units per 3kNm (a reduction of 45.78%). The true optimal steady

state costs before and after this disturbance are 0.0325 and 0.0 units respectively

(calculated using a nonlinear optimiser with the steady state equations from Section 5.3

and shown as dashed lines in Figure 6.5 and Figure 6.9), with an ideal total cost of 0.1294

units. This indicates that, although the iterative linearisation improves performance, it still

falls short of the true optimal solution. This is mostly due to the formulation of the

optimisation problem in the MPC algorithm so as to provide adequate dynamic control.

The mid-range targets on the CVs, the rate weights on the MVs, and the weights on the

CVs are examples of parameters necessary for proper dynamic performance, which also

have an effect on the ability to reach the theoretical optimal cost. The next section provides

a solution to this problem by introducing real-time optimisation (RTO).

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 68

Figure 6.1. NG, RG, and H2 flows for the constant LTI model. The solid lines are the MV

values with the dashed lines indicating the limits.

0 1 2 3 4 5 6

0

5

10

15

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Natural gas (NG)

0 1 2 3 4 5 6
0

10

20

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Reformed Gas (RG)

0 1 2 3 4 5 6

0

2

4

6

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Hydrogen (H2)

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 69

Figure 6.2. N2, TG1, and TG2 flows for the constant LTI model. The solid lines are the MV

values with the dashed lines indicating the limits.

0 1 2 3 4 5 6

0

2

4

6

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Nitrogen (N2)

0 1 2 3 4 5 6
0

10

20

30

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 1 (TG1)

0 1 2 3 4 5 6
0

10

20

30

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 2 (TG2)

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 70

Figure 6.3. Controlled variables for the constant LTI model. The solid lines are the CV values

with the dashed lines indicating the limits.

0 1 2 3 4 5 6
16

17

18

Time [h]

H
H

V
 [

M
J/

N
m

3] Heating value

0 1 2 3 4 5 6

25

26

27

Time [h]

W
I

[M
J/

N
m

3]

Wobbe index

0 1 2 3 4 5 6
38
40
42
44
46
48

F
S

I

Time [h]

Flame speed

0 1 2 3 4 5 6

2000

2100

2200

Time [h]

P
re

ss
ur

e
[k

P
a]

Header pressure

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 71

Figure 6.4. Header discharge flow.

Figure 6.5. Operating cost and ideal optimal cost (dashed line) for the constant LTI model.

0 1 2 3 4 5 6
26

27

28

29

30

31

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Header discharge flow

0 1 2 3 4 5 6
0

0.05

0.1

Time [h]

C
os

t

Operating cost

Cost
Optimal cost

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 72

Figure 6.6. NG, RG, and H2 flows for the iterative linearisation case. The solid lines are the

MV values with the dashed lines indicating the limits.

0 1 2 3 4 5 6

0

5

10

15

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Natural gas (NG)

0 1 2 3 4 5 6
0

10

20

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Reformed Gas (RG)

0 1 2 3 4 5 6

0

2

4

6

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Hydrogen (H2)

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 73

Figure 6.7. N2, TG1, and TG2 flows for the iterative linearisation case. The solid lines are the

MV values with the dashed lines indicating the limits.

0 1 2 3 4 5 6

0

2

4

6

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Nitrogen (N2)

0 1 2 3 4 5 6
0

10

20

30

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 1 (TG1)

0 1 2 3 4 5 6
0

10

20

30

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 2 (TG2)

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 74

Figure 6.8. Controlled variables for the iterative linearisation case. The solid lines are the CV

values with the dashed lines indicating the limits.

0 1 2 3 4 5 6
16

17

18

Time [h]

H
H

V
 [

M
J/

N
m

3] Heating value

0 1 2 3 4 5 6

25

26

27

Time [h]

W
I

[M
J/

N
m

3]

Wobbe index

0 1 2 3 4 5 6
38
40
42
44
46
48

F
S

I

Time [h]

Flame speed

0 1 2 3 4 5 6

2000

2100

2200

Time [h]

P
re

ss
ur

e
[k

P
a]

Header pressure

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 75

Figure 6.9. Operating cost (solid line) and ideal optimal cost (dashed line) for the iterative

linearisation case.

6.3 REAL-TIME OPTIMISATION RESULTS

As discussed in Section 5.4, to get closer to the theoretical optimum, the ideal steady-state

values for the MVs must be calculated and pursued by the controller. These steady-state

values are calculated by means of a constrained nonlinear optimiser using the nonlinear

steady-state model stated in Section 5.3 (at a rate lower than the execution of the MPC).

The optimiser also provides the steady-state CV values resulting from the optimal MV

values. The ideal MV values are written as ideal MV resting values (steady-state targets) to

the MPC and as nominal values for the MVs. The ideal CV values become the setpoint

values in the MPC (different from the mid-range values previously used).

This results in the controller approaching the true optimal values much more effectively

than its previous counterpart. Figure 6.10 to Figure 6.12 show the results. The effect is a

reduction in the total cost from 0.2172 to 0.1369 units (a reduction of 36.97%). As

indicated in Section 6.2, the ideal optimal cost is 0.1294 units. Therefore, introducing the

RTO enables operation close to optimal cost (also evident from Figure 6.13).

0 1 2 3 4 5 6
0

0.05

0.1

Time [h]

C
os

t
Operating cost

Cost
Optimal cost

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 76

From Figure 6.12 it is clear that the dynamic control is still excellent with hardly any

constraint violations. The RTO drives one or more of the CVs to their limits in order to

reach the lower operating cost. Although a steady-state RTO approach was followed in this

study, it is also possible to apply a dynamic RTO strategy (using the dynamic model

discussed in Section 3.3) which will allow for a higher frequency of optimisation [40].

Table 6.1 compares the average costs per hour interval for the three cases and the optimal

steady-state cost. These values are calculated by adding the cost values in each one hour

interval and dividing by the number of samples in the interval.

Table 6.1: Time averaged costs per 1 hour interval for the constant LTI case, the iterative

linearisation case, the RTO case, and the steady-state optimal values.

Interval Constant

LTI

Iterative

linearisation

RTO Steady-state

optimal

0 – 1h 0.0411 0.0411 0.0324 0.0322

1 – 2h 0.0422 0.0430 0.0330 0.0322

2 – 3h 0.0425 0.0433 0.0327 0.0325

3 – 4h 0.0415 0.0413 0.0326 0.0325

4 – 5h 0.0415 0.0259 0.0060 0.0000

5 – 6h 0.0415 0.0225 0.0002 0.0000

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 77

Figure 6.10. NG, RG, and H2 flows with RTO. The solid lines are the MV values with the

dashed lines indicating the limits.

0 1 2 3 4 5 6

0

5

10

15

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Natural gas (NG)

0 1 2 3 4 5 6
0

10

20

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Reformed Gas (RG)

0 1 2 3 4 5 6

0

2

4

6

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Hydrogen (H2)

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 78

Figure 6.11. N2, TG1, and TG2 flows with RTO. The solid lines are the MV values with the

dashed lines indicating the limits.

0 1 2 3 4 5 6

0

2

4

6

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Nitrogen (N2)

0 1 2 3 4 5 6
0

10

20

30

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 1 (TG1)

0 1 2 3 4 5 6
0

10

20

30

Time [h]

F
lo

w
 [

kN
m

3 /h
]

Tail Gas 2 (TG2)

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 79

Figure 6.12. Controlled variables with RTO. The solid lines are the CV values with the

dashed lines indicating the limits.

0 1 2 3 4 5 6
16

17

18

Time [h]

H
H

V
 [

M
J/

N
m

3] Heating value

0 1 2 3 4 5 6

25

26

27

Time [h]

W
I

[M
J/

N
m

3]

Wobbe index

0 1 2 3 4 5 6
38
40
42
44
46
48

F
S

I

Time [h]

Flame speed

0 1 2 3 4 5 6

2000

2100

2200

Time [h]

P
re

ss
ur

e
[k

P
a]

Header pressure

CHAPTER 6 SIMULATION AND RESULTS

Department of Electrical, Electronic and Computer Engineering 80

Figure 6.13. Operating cost and ideal optimal cost (dashed line) with RTO.

6.4 CONCLUSION

In this chapter, three controllers were evaluated in a simulation study to evaluate its ability

to provide dynamic control during process disturbances while attempting to minimise the

operating cost. The base case provided good dynamic control and prevented constraint

violations but failed to adapt to feed composition changes that allow cost reduction. The

introduction of iterative linearisation improved matters somewhat, allowing the controller

to detect feed composition changes and reduce cost while still providing good dynamic

control. Finally, the use of real-time optimisation drives the process close to the theoretical

optimal cost without compromising dynamic control performance.

0 1 2 3 4 5 6
0

0.05

0.1

Time [h]

C
os

t
Operating cost

Cost
Optimal cost

Department of Electrical, Electronic and Computer Engineering 81

CHAPTER 7 CONCLUSION

7.1 RESULTS AND DISCUSSION

This dissertation described the modelling and model validation of an industrial fuel gas

header as well as a simulation study of three different Model Predictive Control (MPC)

strategies for controlling the system while minimising the overall operating cost.

The first principle model provides an adequate representation of the system to gain insight

in the behaviour of the fuel gas blending header for simulation purposes. The correlations

between the simulation and plant values indicate that the assumptions made (of ideal gas

and perfect mixing) are reasonable.

Despite the nonlinear and interactive nature of the fuel gas system, MPC is very effective

in controlling the outputs within the specified ranges while minimising the operating cost.

The controller is able to handle significant disturbances in demand and fluctuation in feed

compositions. Furthermore, the iterative linearisation allows the MPC to compensate for

model changes resulting from feed flow and composition changes. Introducing RTO

further increases the MPC performance, allowing the operating cost to approach the ideal

optimal cost while providing adequate dynamic control.

For this process, the CVs are allowed to be at the limits considering that small, short

duration violations of the constraints can be tolerated (the constraints are not hard). In

processes where the constraints may not be violated at all, safety margins can be included

to prevent the controller from driving the CVs right to their limits.

7.2 RECOMMENDATION FOR FUTURE WORK

In this work, three MPC algorithms were developed and tested. The first is a base case

MPC that employs a constant model and constant tuning settings. The second is the base

case with added iterative linearisation which allows the controller to adjust the model gains

CHAPTER 7 CONCLUSION

Department of Electrical, Electronic and Computer Engineering 82

at different operating points to compensate for the nonlinearities of the process. The final

MPC is the base case with added iterative linearisation with the addition of real-time

optimisation which uses a nonlinear constrained optimiser and nonlinear steady-state

model to calculate the CV and MV values to drive the process to its steady-state economic

optimal. The latter two approaches, although using a linear MPC algorithm, are forms of

nonlinear MPC. Therefore, in future work, other forms of nonlinear MPC can be used and

evaluated in an attempt to further improve performance. Other multivariable control

strategies may also be evaluated.

The LTI model used in the controller uses first-order-plus-dead-time models and

integrators to describe the process (see Table 3.3) which result in the fit given in Table 3.4.

Other model forms may be evaluated in an attempt to achieve better fit and improve

controller performance.

The simulation study uses some typical conditions and disturbances to evaluate the

controller’s performance. These include composition changes in the NG and TG1 streams

and a demand disturbance downstream of the header. Other scenarios can be included to

further evaluate performance such as changes in the availability of one or more of the inlet

streams, actuator or transmitter failures on the inlet streams, analyser failures, etc. The

simulation model can be further adjusted to include the actuator and sensor dynamics to

evaluate the effect of these on the controller performance.

Department of Electrical, Electronic and Computer Engineering 83

REFERENCES

[1] D.W. Green et al., Perry’s Chemical Engineers’ Handbook, 7th ed.: McGraw-Hill,

1997.

[2] F. Johnson and D.M. Rue, "Gas Interchangeability Tests: Evaluating the Range of

Interchangeability of Vaporized LNG and Natural Gas," Gas Technology Institute for

Gas Research Institute, April 2003.

[3] C.J. Muller, I.K. Craig, and N.L. Ricker, "Modelling, Validation, and Control of an

Industrial Fuel Gas Blending System," Journal of Process Control, vol. 21, no. 6, pp.

852-860, July 2011.

[4] C.J. Muller, I.K. Craig, and N.L. Ricker, "Modelling, Validation, and Control of an

Industrial Fuel Gas Blending System," in the 18th IFAC world congress (accepted for

presentation), Milan, 2011.

[5] M. Chèbre, Y. Creff, and N. Petit, "Feedback control and optimisation for the

production of commercial fuels by blending," Journal of Process Control, vol. 20, no.

4, pp. 441–451, April 2010.

[6] D.E. Seborg, T.F. Edgar, and D.A. Mellichamp, Process Dynamics and Control, 2nd

ed.: Wiley, 2004.

[7] L. Ljung and T. Glad, Modeling of Dynamic Systems, T.Kailath, Ed. Englewood

Cliffs, New Jersey: Prentice-Hall, 1994.

[8] L. Ljung, "System Identification Toolbox 7: Getting Started Guide," The MathWorks,

Inc., 2010.

[9] L. Ljung, "System Identification Toolbox 7: User's Guide," The MathWorks, Inc.,

2010.

[10] J.B. Rawlings, "Tutorial Overview of Model Predictive Control," IEEE Control

System Magazine, vol. 20, no. 3, pp. 38–50, June 2000.

[11] S.J. Qin and T.A. Badgwell, "A survey of industrial model predictive control

technology," Control Engineering Practice, vol. 11, no. 7, pp. 733–764, July 2003.

[12] P. Hughes, "Sasol Fuel Gas Optimiser: APC Controller Feasibility Study," Sasol

Department of Electrical, Electronic and Computer Engineering 84

Technology, Sasolburg, 2008.

[13] P. Hughes, "SCI Fuel Gas Optimiser: Engineering Documentation," Sasol

Technology, Sasolburg, 2010.

[14] C.R. Cutler and R.T. Perry, "Real Time Optimization with Multivariable Control is

Required to Maximize Profits," Computers and Chemical Engineering, vol. 7, no. 5,

pp. 663–667, February 1983.

[15] A. Bemporad, M. Morari, and N.L. Ricker, "Model Predictive Control Toolbox 3:

User’s guide," The MathWorks, Inc., 2010.

[16] I.K. Craig, Automation EBT410 SID problem set (Lecture notes), University of

Pretoria, Department of Electrical, Electronic, and Computer Engineering, 2010.

[17] P. Bogacki and L.F. Shampine, "A 3(2) pair of Runge - Kutta formulas," Applied

Mathematics Letters, vol. 2, no. 4, pp. 321–325, 1989.

[18] J. Richalet, A. Rault, J.L. Testud, and J. Papon, "Model predictive heuristic control:

Applications to industrial processes," Automatica, vol. 14, no. 5, pp. 413–428,

September 1978.

[19] C.R. Cutler and B.L. Ramaker, "Dynamic Matrix Control - A computer control

algorithm," in Procedings of the Joint Automation and Control Conference, Houston,

1980.

[20] E.F. Camacho and C. Bordons, Model Predictive Control, 2nd ed. London: Springer,

2007.

[21] S. Karacan, "Application of a non-linear long range predictive control," Chemical

Engineering and Processing, vol. 42, no. 12, pp. 943–953, December 2003.

[22] S. Grüner et al., "Nonlinear control of a reactive distillation column," Control

Engineering Practice, vol. 11, no. 8, pp. 915–925, August 2003.

[23] R. Kawathekar and J.B. Riggs, "Nonlinear model predictive control of a reactive

distillation column," Control Engineering Practice, vol. 15, no. 2, pp. 231–239,

February 2007.

[24] R. Khaledi and B.R. Young, "Modeling and Model Predictive Control of Composition

Department of Electrical, Electronic and Computer Engineering 85

and Conversion in an ETRE Reactive Distillation Column," Industrial and

Engineering Chemistry Research, vol. 44, no. 9, pp. 3134–3145, March 2005.

[25] A. Rueda, S. Cristea, C. de Prada, and R. De Keyser, "Non-linear Predictive Control

for a Distillation Column," in 44th IEEE Conference on Decision and Control, 2005,

pp. 5156–5161.

[26] J.B. Waller and J.M. Böling, "Multi-variable nonlinear MPC of an ill-conditioned

distillation column," Journal of Process Control, vol. 15, no. 1, pp. 23–29, February

2005.

[27] J. Hu, K. Kumamaru, and K. Hirasawa, "A Quasi-ARMAX approach to modelling of

non-linear systems," International Journal of Control, vol. 74, no. 18, pp. 1754–1766,

December 2001.

[28] C. Venkateswarlu and A.D. Reddy, "Nonlinear Model Predictive Control of Reactive

Distillation Based on Stochastic Optimization," Industrial and Engineering Chemistry

Research, vol. 47, no. 18, pp. 6949–6960, September 2008.

[29] J. Ou and R.R. Rhinehart, "Grouped neural network model-predictive control,"

Control Engineering Practice, vol. 11, no. 7, pp. 723–732, July 2003.

[30] M. Alpbaz, S. Karacan, Y. Cabbar, and H. Hapglu, "Application of model predictive

control and dynamic analysis to a pilot distillation column and experimental

verification," Chemical Engineering Journal, vol. 88, no. 1-3, pp. 163–174,

September 2002.

[31] D.E. Kirk, Optimal Control Theory: An Introduction. New Jersey: Prentice-Hall,

1970.

[32] R.A. Abou-Jeyab, Y.P. Gupta, J.R. Gervais, P.A. Branchi, and S.S. Woo,

"Constrained multivariable control of a distillation column using a simplified model

predictive control algorithm," Journal of Process Control, vol. 11, no. 5, pp. 509–517,

October 2001.

[33] W. Wojsznis, A. Mehta, P. Wojsznis, D. Thiele, and T. Blevins, "Multi-objective

optimization for model predictive control," ISA Transactions, vol. 46, no. 3, pp. 351–

361, June 2007.

Department of Electrical, Electronic and Computer Engineering 86

[34] F. Bezzo, F. Micheletti, R. Muradore, and M. Barolo, "Using MPC to control middle-

vessel continuous distillation columns," Journal of Process Control, vol. 15, no. 8, pp.

925–930, December 2005.

[35] M. Diehl, H.G. Bock, and J.P. Schlöder, "A Real-Time Iteration Scheme for

Nonlinear Optimization in Optimal Feedback Control," SIAM Journal on Control and

Optimization, vol. 43, no. 5, pp. 1714–1736, March 2005.

[36] M. Diehl et al., "Real-time optimization and nonlinear model predictive control of

process governed by differential-algebraic equations," Journal of Process Control,

vol. 12, no. 4, pp. 577–585, June 2002.

[37] M. Gerdts, "Direct Shooting Method for the Numerical Solution of Higher-Index

DAE Optimal Control Problems," Journal of Optimization Theory and Applications,

vol. 117, no. 2, pp. 267–294, May 2003.

[38] V. Adetola and M. Guay, "Integration of real-time optimization and model predictive

control," Journal of Process Control, vol. 20, no. 2, pp. 125–133, 2010.

[39] P. Hughes, Private communication, 2010.

[40] J.H. Lee, J.M. Lee, T.Tosukhowong, and J. Lu, "On Interfacing Model Predictive

Controllers with a Real-Time Optimizer," Computer Aided Chemical Engineering,

vol. 15, no. C, pp. 910–915, 2003.

[41] G. De Souza, D. Odloak, and A.C. Zanin, "Real time optimization (RTO) with model

predictive control (MPC)," Computers and Chemical Engineering, vol. 34, no. 12, pp.

1999–2006, July 2010.

Department of Electrical, Electronic and Computer Engineering 87

ADDENDUM A: MATLAB CODE

A.1 SYSTEM IDENTIFICATION (HEADERCONTROL.M)

%% ---%
% RUN SIMULATION FOR SID
%---%

 Ni_init = [16.0974 1.2514 43.6239 3.6697 11.5725 4.7168];
 % Initial number of moles of each component
 Feed = xlsread('Test\SID_flows.xls');
 P_downstream = xlsread('Test\P_downstream.xls');
 F_discharge = xlsread('Test\F_discharge_SID.xls');

 HHVi=16.5833;
 WOBBEi=ones(1,3)*25.884;
 FSi=41.1172;

 sim('Gas_Blending_SID', [0 18]) %Rub simulation for SID steps

 SIDCVs = figure;
 set(SIDCVs,'Position',[300,300,500,500])

 subplot(3,1,1);
 plot(WOBBE.time, WOBBE.signals.values,'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('WI [MJ/Nm^3]');
 title('Wobbe Index');
 xlim([0 18]);ylim([24.5 27]);

 subplot(3,1,2);
 plot(FS.time, FS.signals.values,'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('FSI');
 title('Flame Speed Index');
 xlim([0 18]);ylim([39 45]);

 subplot(3,1,3);
 plot(HHV.time, HHV.signals.values,'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('HHV [MJ/Nm^3]');
 title('Higher Heating Value');
 xlim([0 18]);ylim([16.5 18.5]);

 SIDP = figure;
 set(SIDP,'Position',[300,300,500,200])
 plot(P.time, P.signals.values, 'k')
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');

Department of Electrical, Electronic and Computer Engineering 88

 ylabel('P [kPa]');
 title('Header Pressure');
 xlim([0 18]);ylim([800 2200]);

 SIDMVs1 = figure;
 set(SIDMVs1,'Position',[300,300,500,500])
 subplot(3,1,1);
 plot(P.time, Feed(:,2),'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('Flow [kNm^3/h]');
 title('Natural gas (NG)');
 xlim([0 18]);ylim([1.5 3.5]);

 subplot(3,1,2);
 plot(P.time, Feed(:,3),'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('Flow [kNm^3/h]');
 title('Reformed Gas (RG)');
 xlim([0 18]);ylim([-0.5 1.5]);

 subplot(3,1,3);
 plot(P.time, Feed(:,4),'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('Flow [kNm^3/h]');
 title('Hydrogen (H_2)');
 xlim([0 18]);ylim([-0.5 1.5]);

 SIDMVs2 = figure;
 set(SIDMVs2,'Position',[300,300,500,500])
 subplot(3,1,1);
 plot(P.time, Feed(:,5),'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('Flow [kNm^3/h]');
 title('Nitrogen (N_2)');
 xlim([0 18]);ylim([-0.5 1.5]);

 subplot(3,1,2);
 plot(P.time, Feed(:,6),'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New
 Roman','FontSize',10);
 xlabel('Time [h]');
 ylabel('Flow [kNm^3/h]');
 title('Tail Gas 1 (TG_1)');
 xlim([0 18]);ylim([5.5 7.5]);

 subplot(3,1,3);
 plot(P.time, Feed(:,7),'k');
 set(get(gcf,'CurrentAxes'),'FontName','Times New Roman',

'FontSize', 10);
 xlabel('Time [h]');
 ylabel('Flow [kNm^3/h]');
 title('Tail Gas 2 (TG_2)');
 xlim([0 18]);ylim([18.5 20.5]);

Department of Electrical, Electronic and Computer Engineering 89

%---%
% SID
%---%
%{
- Retrieve data by DAT.y, DAT.u and DAT.Ts.
- Select portions by DAT1 = DAT(1:300) etc.

- Properties can be set and retrieved by SET and GET or by subfields:
 GET(DAT,'OutputName') or DAT.OutputName
 SET(DAT,'OutputName','Current') or DAT.OutputName = {'Current'};
- Type SET(IDDATA) for a complete list of properties.
- DAT(SAMPLES,OUTPUTS,INPUTS) to select submodels/intervals
 ex. idplot(IODAT(1:540,'HHV','NG'))
- Can dtrend whole iddata object.
- Use advice(DAT) to get some advice on data.
%}

 Y = [HHV.signals.values, WOBBE.signals.values, FS.signals.values, ...
 P.signals.values];
 U = Feed(:,2:7);
 Ts = 1/180; % Sampling time of 20s
 IODAT = iddata(Y,U,Ts); % Create IDDATA object
 set(IODAT, 'OutPutName', {'HHV','WOBBE','FS','P'}, 'InputName', ...
 {'NG','RG','H2','N2','T1','T2'}, 'Domain', 'Time', 'Name', ...
 'Fuel Gas', 'TimeUnit', 'Hr');
 IODATdet = dtrend(IODAT); % Remove means

%{
- Fit 1st order plus deadtime models to plant
The reason for fitting tf models in stead of ARX models is that,
when transforming ARX models from SID objects to LTI objects
required for use in MPC, the resulting converted models are
untidy, high order models which cause problems in the MPC
functions due to poles close to the origin etc. By fitting
fixed-structure tf models, the converted LTI models are
identical in structure.
%}

 %- 1st order plus DT structures
 G1struc = idproc({'P1D','P1D','P1D','P1D','P1D','P1D'}, ...
 'Td',{'value',[1/180 1/180 1/180 1/180 1/180 1/180]},...
 'Td',{'status','fixed', 'fixed', 'fixed', 'fixed', 'fixed',
'fixed'});
 G1 = pem(IODATdet(:,1,:),G1struc);

 G2struc = idproc({'P1D','P1D','P1D','P1D','P1D','P1D'},...
 'Td',{'value',[1/60 1/60 1/60 1/60 1/60 1/60]},...
 'Td',{'status','fixed', 'fixed', 'fixed', 'fixed', 'fixed',
'fixed'});
 G2 = pem(IODATdet(:,2,:),G2struc);

 G3struc = idproc({'P1D','P1D','P1D','P1D','P1D','P1D'},...
 'Td',{'value',[1/180 1/180 1/180 1/180 1/180 1/180]},...
 'Td',{'status','fixed', 'fixed', 'fixed', 'fixed', 'fixed',
'fixed'});
 G3 = pem(IODATdet(:,3,:),G3struc);

 G4struc = idproc({'P1','P1','P1','P1','P1','P1'});
 G4 = pem(IODATdet(:,4,:),G4struc);

%- Convert SID model to LTI object for use in MPC toolbox.

Department of Electrical, Electronic and Computer Engineering 90

%- 'min' discards the additional noise models
% created by the SID toolbox.
 G1tf = tf(G1,'min');
 G2tf = tf(G2,'min');
 G3tf = tf(G3,'min');
 G4tf = tf(G4,'min');

 Gtf = [G1tf; G2tf; G3tf; G4tf];

A.2 GAIN CALCULATIONS (HEADERCONTROL.M)

%---%
%% GAIN CALCULATIONS
%---%
%{
 For gain scheduling, it will be necessary to have models of unity gain
 and multiply them with the calculated gains at each execution. To get
 a tf object to unity gain requires some work.
%}

% Load initial state values for when the simulation is set not to
% use the initial state vector xInitial.
HHVi= 16.59 ;
WOBBEi= [25.81 25.81 25.81];
FSi= 41.03;
Ni_init = [14.1355 0.9777 48.2353 3.9576 8.4169 5.2088];

% Create initial gain matrix.
Goriginal = ones(3,6);

% Normalise the transfer function matrix (TFM)
for j=1:3
for k=1:6
 [Gn, Gd] = tfdata(Gtf(j,k),'v');
 Gp = Gn(2)/Gd(2); % Calculates the ss gain.
 Gtf(j,k) = Gtf(j,k)/Gp; % Normalise.
 Goriginal(j,k)=Gp; % Save gain in initial matrix.
end
end

% Add unity gain multipliers for pressure models.
Ginitial = vertcat(Goriginal,[1 1 1 1 1 1]);

A.3 CONTROL AND OPTIMISATION (HEADERCONTROL.M)

%% --
% MPC
% ---%

%% Initialise simulation
% Load the initial state vecotr which includes values for the dead-times
% and initialisation values for the MPC object.

% Simulation type - 3 for full with SS optimisation

Department of Electrical, Electronic and Computer Engineering 91

% - 2 for model update only
% - 1 for constant LTI model
SimType = 1;

%%%
% Load teh initial state vector
if SimType == 3
 load xInit_better;
elseif (SimType == 2) | (SimType == 1)
 load xInit_noSSopt;
end
xInitial = xFinal;
%%%

% Load the controller object and simulation data.
% The simulation data is stored in Microsoft Excel files.
load HeaderMPC_perfect_2.mat % Created with MPCtool.
NG_comp = xlsread('Test\NGcomp.xls');
RG_comp = xlsread('Test\RGcomp.xls');
TG1_comp = xlsread('Test\TG1comp.xls');
TG2_comp = xlsread('Test\TG2comp.xls');

Add noise to the discharge flow.
 F_discharge = xlsread('Test\F_discharge.xls');
 for i=1:2:length(F_discharge)
 F_discharge(i,2) = F_discharge(i,2)+(0.02*F_discharge(i,2)*...
 random('unif',0,1) - 0.01*F_discharge(i,2));
 end

% Initial values for SS optimum calculation
u0 = [1.8 0 4.2 0 0 24];
y0 = [16.59 25.81 41.03];
Fdist0 = 30;
y_NG0 = [91.1 6.8 0 1.5 0 0.6]/100;
y_NG = y_NG0;
y_RG0 = [1.5 0 62 0.5 31 5]/100;
y_RG = y_RG0;
y_TG10 = [5.5 1 62 2.5 26 3]/100;
y_TG1 = y_TG10;
y_TG20 = [15 1 57 6 13 8]/100;
y_TG2 = y_TG20;
HHV0 = [43.16 11.78 12.1 0 13.98 15.41];
Feed_HHV = HHV0;
SG0 = [0.6684 0.4345 0.07 0.9729 0.4172 0.4507];
Feed_SG = SG0;
Ptarget = 2100;
% Calculate SS optimum (true)
[OptimVal, MinCost] = GetSSoptimum(u0,y0,Fdist0,y_NG0,y_RG0,

y_TG10,y_TG20, HHV0, SG0);

%%%
% Set the initial ideal resting values for MVs.
if SimType == 3
 F_optimal = OptimVal(1:6);
 for i = 1:6
 HeaderMPC.MV(i).Target = F_optimal(i);
 end
 Targets = [OptimVal(7:9), Ptarget]; % Set ideal CV values
 HeaderMPC.Model.Nominal.U = F_optimal; % Set nominal MC values
elseif (SimType == 2) | (SimType == 1)
 F_optimal = [0 0 5 0 30 30]; % Use if SS
 for i = 1:6

Department of Electrical, Electronic and Computer Engineering 92

 HeaderMPC.MV(i).Target = F_optimal(i);
 end
 Targets = [17.25 26 42.5 2100]; %Use if SS
 % optimisation is not required
 HeaderMPC.Model.Nominal.U = [3 0 1 0 9 17];
end
%%%

HeaderMPC.Model.Nominal.Y = Targets; % Set nominal CV values

% Initialise the total vectors
HHV_tot=[];
WI_tot=[];
FSI_tot=[];
P_tot=[];
t_tot=[];
Flows_tot=[];
Cost = 0;
Optimal_Cost=[];

% Set gain matrix to initial values
Gain = Ginitial;

T = 10/60; % Time between model updates

Count = 0; % Iteration counter

%% Start simulating
for t=0:T:(6-T)

 % Normalise the transfer function matrix (TFM)
 load Gtf_perfect.mat
 for j=1:3
 for k=1:6
 [Gn, Gd] = tfdata(Gtf(j,k),'v');
 Gp = Gn(2)/Gd(2); % Calculates the ss gains
 Gtf(j,k) = Gtf(j,k)/Gp;
 end
 end
 % Write new gain values to TFM
 Gtf = Gtf.*Gain;

 %**
 if SimType == 3
 HeaderMPC.Model.Plant = ss(Gtf);
 elseif SimType == 2
 HeaderMPC.Model.Plant = ss(Gtf);
 else
 SimType = 1;
 end
 %**

 %Run simulation for one period
 sim('Gas_Blending_MPC', [t (t+T-1/180)]);

 Count = Count+1

 %Record outputs for period
 HHV_tot=vertcat(HHV_tot,HHV.signals.values);
 WI_tot=vertcat(WI_tot,WOBBE.signals.values);
 FSI_tot=vertcat(FSI_tot,FS.signals.values);
 P_tot=vertcat(P_tot,P.signals.values);

Department of Electrical, Electronic and Computer Engineering 93

 t_tot=vertcat(t_tot,P.time);
 Flows_tot=vertcat(Flows_tot,Flows.signals.values);

 xInitial=xFinal; %Save final state of last period as

initial state for next period

 %- Do the actual gain calcs according to the compositional data at
 %- the end of the previous execution period.

 % Take the latest flow control values
 Feed_flow = Flows.signals.values(size((Flows.signals.values),1),:);

 % Get the latest feed stream compositions
 y_NG = NG_comp(round((t+T)*180)+1,2:7)/100;
 y_RG = RG_comp(round((t+T)*180)+1,2:7)/100;
 y_TG1 = TG1_comp(round((t+T)*180)+1,2:7)/100;
 y_TG2 = TG2_comp(round((t+T)*180)+1,2:7)/100;
 y_H2 = [0 0 1 0 0 0];
 y_N2 = [0 0 0 1 0 0];

 % Get the latest feed stream HHV, WI, FSI, and SG values
 Feed_HHV = [NG_HHV.signals.values(length(NG_HHV.signals.values)),...
 RG_HHV.signals.values(length(RG_HHV.signals.values)),...
 12.1,...
 0,...
 TG1_HHV.signals.values(length(TG1_HHV.signals.values)),...
 TG2_HHV.signals.values(length(TG2_HHV.signals.values))];
 Feed_WI = [NG_WI.signals.values(length(NG_WI.signals.values)),...
 RG_WI.signals.values(length(RG_WI.signals.values)),...
 45.73,...
 0,...
 TG1_WI.signals.values(length(TG1_WI.signals.values)),...
 TG2_WI.signals.values(length(TG2_WI.signals.values))];
 Feed_FSI = [NG_FSI.signals.values(length(NG_FSI.signals.values)),...
 RG_FSI.signals.values(length(RG_FSI.signals.values)),...
 100,...
 0,...
 TG1_FSI.signals.values(length(TG1_FSI.signals.values)),...
 TG2_FSI.signals.values(length(TG2_FSI.signals.values))];
 Feed_SG = [NG_SG.signals.values(length(NG_SG.signals.values)),...
 RG_SG.signals.values(length(RG_SG.signals.values)),...
 0.069,...
 0.973,...
 TG1_SG.signals.values(length(TG1_SG.signals.values)),...
 TG2_SG.signals.values(length(TG2_SG.signals.values))];

 % HHV calcualtions
 for i=1:6
 HHV_gains(i)=(Feed_HHV(i)/sum(Feed_flow))-...
 (dot(Feed_flow, Feed_HHV)/(sum(Feed_flow))^2);
 end

 % WI calculations
 HHV_fg = dot(Feed_flow, Feed_HHV)/(sum(Feed_flow)); % ss HHV of FG
 SG_fg = dot(Feed_flow, Feed_SG)/(sum(Feed_flow)); % ss SG of FG
 WI_fg = HHV_fg/sqrt(SG_fg);
 for i=1:6
 dSGdF(i)= (Feed_SG(i) - SG_fg)/sum(Feed_flow);
 WI_gains(i) = (HHV_gains(i)/sqrt(SG_fg)) - ...
 (HHV_fg/(2*(SG_fg)^1.5))*dSGdF(i);
 end

Department of Electrical, Electronic and Computer Engineering 94

 % FSI calculations
 s = [148 514.4 339 0 61 0];
 A = [9.55 31 2.39 0 2.39 0];
 for i=1:6 % Calculate the mole fractions of each comp in FG
 y_fg(i) = (Feed_flow(1)*y_NG(i) + Feed_flow(2)*y_RG(i) +...
 Feed_flow(3)*y_H2(i) + Feed_flow(4)*y_N2(i) + ...
 Feed_flow(5)*y_TG1(i) + Feed_flow(6)*y_TG2(i))/sum(Feed_flow);
 end
 FSI_fg = (dot(y_fg,s))/(dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1); % Calc ss FSI

 FSI_gains(1) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(1)-
y_fg(1))/sum(Feed_flow))+...
 ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(2)-
y_fg(2))/sum(Feed_flow))+...
 ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(3)-
y_fg(3))/sum(Feed_flow))+...
 ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(5)-
y_fg(5))/sum(Feed_flow))+...
 ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(4)+y_NG(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow));

 FSI_gains(2) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(1)-
y_fg(1))/sum(Feed_flow))+...
 ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(2)-
y_fg(2))/sum(Feed_flow))+...
 ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(3)-
y_fg(3))/sum(Feed_flow))+...
 ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(5)-
y_fg(5))/sum(Feed_flow))+...
 ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(4)+y_RG(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow));

 FSI_gains(3) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(1)-
y_fg(1))/sum(Feed_flow))+...
 ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(2)-
y_fg(2))/sum(Feed_flow))+...
 ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(3)-
y_fg(3))/sum(Feed_flow))+...
 ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(5)-
y_fg(5))/sum(Feed_flow))+...
 ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(4)+y_H2(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow));

 FSI_gains(4) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(1)-
y_fg(1))/sum(Feed_flow))+...
 ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(2)-
y_fg(2))/sum(Feed_flow))+...
 ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(3)-
y_fg(3))/sum(Feed_flow))+...
 ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(5)-
y_fg(5))/sum(Feed_flow))+...
 ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(4)+y_N2(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow));

 FSI_gains(5) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(1)-
y_fg(1))/sum(Feed_flow))+...

Department of Electrical, Electronic and Computer Engineering 95

 ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(2)-
y_fg(2))/sum(Feed_flow))+...
 ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(3)-
y_fg(3))/sum(Feed_flow))+...
 ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(5)-
y_fg(5))/sum(Feed_flow))+...
 ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(4)+y_TG1(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow));

 FSI_gains(6) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(1)-
y_fg(1))/sum(Feed_flow))+...
 ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(2)-
y_fg(2))/sum(Feed_flow))+...
 ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(3)-
y_fg(3))/sum(Feed_flow))+...
 ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(5)-
y_fg(5))/sum(Feed_flow))+...
 ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(4)+y_TG2(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow));

 % Create the combined gain matrix
 Gain = vertcat(HHV_gains, WI_gains, FSI_gains, ones(1,6));

 % Calculate SS optimum values
 u0 = [1.8 0 4.2 0 0 24];
 y0 = [16.59 25.81 41.03];
 Fdist0 = F_discharge(round((t+T)*180),2);
 y_NG0 = y_NG;
 y_RG0 = y_RG;
 y_TG10 = y_TG1;
 y_TG20 = y_TG2;
 HHV0 = Feed_HHV;
 SG0 = Feed_SG;

 [OptimVal, MinCost] = GetSSoptimum(u0,y0,Fdist0,y_NG0,y_RG0,

y_TG10,y_TG20, HHV0, SG0);

 Optimal_Cost=vertcat(Optimal_Cost,MinCost);

 %F_optimal = [2.5527 0.0000 5.0000 0.0 0.0000 21.7390];
 F_optimal = abs(OptimVal(1:6));

 % Write the latest SS optimal values for the MVs and CVs
 % to the MPC object.
 %%%
 if SimType == 3
 Targets = [OptimVal(7:9), Ptarget];
 HeaderMPC.Model.Nominal.U = F_optimal;
 HeaderMPC.Model.Nominal.Y = Targets;
 for i = 1:6
 HeaderMPC.MV(i).Target = F_optimal(i);
 end
 end
 %%%

end

Department of Electrical, Electronic and Computer Engineering 96

A.4 COST CALCULATIONS (HEADERCONTROL.M)

%% --
% Cost calculations
% ---%

Tot_cost=0;
% Calculate the operating cost
for k=1:length(Flows_tot)
 Cost(k) = (0.68*Flows_tot(k,1) + ...
 0.2*Flows_tot(k,2) + ...
 0.07*Flows_tot(k,4))/sum(Flows_tot(k,:));
 Tot_cost=Tot_cost + Cost(k);
end
Tot_cost=Tot_cost/180

Bench_Cost = [0 0 0 0 0 0];
% Calculate the benchmark costs per time period
for k=1:6
 for i=1:180
 Bench_Cost(k) = Bench_Cost(k) + Cost((k-1)*180+i);
 end
 Bench_Cost(k) = Bench_Cost(k)/180;
end
Bench_Cost

Tot_opt_cost = 0;
% Calculate the operating cost
for k=1:length(Optimal_Cost)
 Tot_opt_cost=Tot_opt_cost + Optimal_Cost(k);
end
Tot_opt_cost=Tot_opt_cost/6

Bench_Opt_Cost = [0 0 0 0 0 0];
% Calculate the benchmark costs per time period
for k=1:6
 for i=1:6
 Bench_Opt_Cost(k) = Bench_Opt_Cost(k) + Optimal_Cost((k-1)*6+i);
 end
 Bench_Opt_Cost(k) = Bench_Opt_Cost(k)/6;
end
Bench_Opt_Cost

A.5 PLOT RESULTS (HEADERCONTROL.M)

%% --
% Plot results
% ---%

Plot the results
if SimType == 3
 GraphDrive = ['C:\Documents and Settings\mullecj1\Desktop',...
 '\Meesters\Documents\Dissertation\Final results\With SS opt\'];
 fid = fopen([GraphDrive,'Cost.txt'],'wt');
 fprintf(fid,'Actual cost: %2.4f\nOptimal cost: %2.4f\n',...
 Tot_cost,Tot_opt_cost);

Department of Electrical, Electronic and Computer Engineering 97

 fprintf(fid,'Benchmark
costs:\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n', ...
 Bench_Cost(1),Bench_Cost(2),Bench_Cost(3),Bench_Cost(4),...
 Bench_Cost(5),Bench_Cost(6));
 fclose(fid);
elseif (SimType == 2)
 GraphDrive = ['C:\Documents and Settings\mullecj1\Desktop',...
 '\Meesters\Documents\Dissertation\Final results\Model Update\'];
 fid = fopen([GraphDrive,'Cost.txt'],'wt');
 fprintf(fid,'Actual cost: %2.4f\nOptimal cost: %2.4f\n',...
 Tot_cost,Tot_opt_cost);
 fprintf(fid,'Benchmark
costs:\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n', ...
 Bench_Cost(1),Bench_Cost(2),Bench_Cost(3),Bench_Cost(4),...
 Bench_Cost(5),Bench_Cost(6));
 fclose(fid);
else
 GraphDrive = ['C:\Documents and Settings\mullecj1\Desktop',...
 '\Meesters\Documents\Dissertation\Final results\Constant LTI\'];
 fid = fopen([GraphDrive,'Cost.txt'],'wt');
 fprintf(fid,'Actual cost: %2.4f\nOptimal cost: %2.4f\n',...
 Tot_cost,Tot_opt_cost);
 fprintf(fid,'Benchmark
costs:\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n', ...
 Bench_Cost(1),Bench_Cost(2),Bench_Cost(3),Bench_Cost(4),...
 Bench_Cost(5),Bench_Cost(6));
 fclose(fid);
end

CVs = figure;
set(CVs,'Position',[200,200,500,600])
subplot(4,1,1);
plot(t_tot, HHV_tot,'k','LineWidth',1); % Plot HHV, Wobbe, and FS
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('HHV [MJ/Nm^3]');
title('Heating value');
ylim([16 18.5]);
xlim([0 6]);
hold;
HHVConst = [];
for i = 1:length(t_tot)
 HHVConst = [HHVConst, [18; 16.5]];
end;
plot(t_tot, HHVConst, 'k--');

subplot(4,1,2);
plot(t_tot, WI_tot,'k','LineWidth',1)
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('WI [MJ/Nm^3]');
title('Wobbe index');
ylim([24.5 27.5]);
xlim([0 6]);
hold;
WIConst = [];
for i = 1:length(t_tot)
 WIConst = [WIConst, [27; 25]];
end;
plot(t_tot, WIConst, 'k--');

subplot(4,1,3);

Department of Electrical, Electronic and Computer Engineering 98

plot(t_tot, FSI_tot,'k','LineWidth',1);
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
ylabel('FSI');
xlabel('Time [h]');
title('Flame speed');
ylim([37 48]);
xlim([0 6]);
hold;
FSIConst = [];
for i = 1:length(t_tot)
 FSIConst = [FSIConst, [39; 46]];
end;
plot(t_tot, FSIConst, 'k--');

subplot(4,1,4);
plot(t_tot, P_tot,'k','LineWidth',1) % Plot Pressure
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
hold;
PConst = [];
for i = 1:length(t_tot)
 PConst = [PConst, [2000; 2200]];
end;
plot(t_tot, PConst, 'k--');
ylim([1950 2250]);
xlim([0 6]);
xlabel('Time [h]');
ylabel('Pressure [kPa]');
title('Header pressure');

set(gcf,'PaperPositionMode','auto');

if SimType == 3
 saveas(CVs, [GraphDrive,'Outputs_SS.eps']);
 saveas(CVs, [GraphDrive,'Outputs_SS.emf']);
 saveas(CVs, [GraphDrive,'Outputs_SS.fig']);
elseif SimType == 2
 saveas(CVs, [GraphDrive,'Outputs.eps']);
 saveas(CVs, [GraphDrive,'Outputs.emf']);
 saveas(CVs, [GraphDrive,'Outputs.fig']);
else
 saveas(CVs, [GraphDrive,'Outputs_LTI.eps']);
 saveas(CVs, [GraphDrive,'Outputs_LTI.emf']);
 saveas(CVs, [GraphDrive,'Outputs_LTI.fig']);
end

DV = figure;
set(DV,'Position',[300,300,500,200])
plot(0:6/length(F_discharge):(6-1/length(F_discharge)),...
 F_discharge(:,2),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
ylim([26 31]);
xlim([0 6]);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Header discharge flow');

set(gcf,'PaperPositionMode','auto');
if SimType == 3
 saveas(DV, [GraphDrive,'Fdischarge_SS.eps']);
 saveas(DV, [GraphDrive,'Fdischarge_SS.emf']);
 saveas(DV, [GraphDrive,'Fdischarge_SS.fig']);
elseif SimType == 2

Department of Electrical, Electronic and Computer Engineering 99

 saveas(DV, [GraphDrive,'Fdischarge.eps']);
 saveas(DV, [GraphDrive,'Fdischarge.emf']);
 saveas(DV, [GraphDrive,'Fdischarge.fig']);
else
 saveas(DV, [GraphDrive,'Fdischarge_LTI.eps']);
 saveas(DV, [GraphDrive,'Fdischarge_LTI.emf']);
 saveas(DV, [GraphDrive,'Fdischarge_LTI.fig']);
end
MVs1 = figure;
set(MVs1,'Position',[300,300,500,500])
subplot(3,1,1);
plot(t_tot, Flows_tot(:,1),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Natural gas (NG)');
xlim([0 6]);ylim([-2 17]);
NGConst = [];
for i = 1:length(t_tot)
 NGConst = [NGConst, [0; 15]];
end;
hold;
plot(t_tot, NGConst, 'k--');

subplot(3,1,2);
plot(t_tot, Flows_tot(:,2),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Reformed Gas (RG)');
xlim([0 6]);ylim([-2 22]);
RGConst = [];
for i = 1:length(t_tot)
 RGConst = [RGConst, [0; 20]];
end;
hold;
plot(t_tot, RGConst, 'k--');

subplot(3,1,3);
plot(t_tot, Flows_tot(:,3),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Hydrogen (H_2)');
xlim([0 6]);ylim([-1 6]);
H2Const = [];
for i = 1:length(t_tot)
 H2Const = [H2Const, [0; 5]];
end;
hold;
plot(t_tot, H2Const, 'k--');

set(gcf,'PaperPositionMode','auto');
if SimType == 3
 saveas(MVs1, [GraphDrive,'Inputs1_SS.eps']);
 saveas(MVs1, [GraphDrive,'Inputs1_SS.emf']);
 saveas(MVs1, [GraphDrive,'Inputs1_SS.fig']);
elseif SimType == 2
 saveas(MVs1, [GraphDrive,'Inputs1.eps']);
 saveas(MVs1, [GraphDrive,'Inputs1.emf']);
 saveas(MVs1, [GraphDrive,'Inputs1.fig']);
else

Department of Electrical, Electronic and Computer Engineering 100

 saveas(MVs1, [GraphDrive,'Inputs1_LTI.eps']);
 saveas(MVs1, [GraphDrive,'Inputs1_LTI.emf']);
 saveas(MVs1, [GraphDrive,'Inputs1_LTI.fig']);
end
MVs2 = figure;
set(MVs2,'Position',[300,300,500,500])
subplot(3,1,1);
plot(t_tot, Flows_tot(:,4),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Nitrogen (N_2)');
xlim([0 6]);ylim([-1 6]);
N2Const = [];
for i = 1:length(t_tot)
 N2Const = [N2Const, [0; 5]];
end;
hold;
plot(t_tot, N2Const, 'k--');

subplot(3,1,2);
plot(t_tot, Flows_tot(:,5),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Tail Gas 1 (TG_1)');
xlim([0 6]);ylim([-3 33]);
TG1Const = [];
for i = 1:length(t_tot)
 TG1Const = [TG1Const, [0; 30]];
end;
hold;
plot(t_tot, TG1Const, 'k--');

subplot(3,1,3);
plot(t_tot, Flows_tot(:,6),'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
xlabel('Time [h]');
ylabel('Flow [kNm^3/h]');
title('Tail Gas 2 (TG_2)');
xlim([0 6]);ylim([-3 33]);
TG2Const = [];
for i = 1:length(t_tot)
 TG2Const = [TG2Const, [0; 30]];
end;
hold;
plot(t_tot, TG2Const, 'k--');

set(gcf,'PaperPositionMode','auto');
if SimType == 3
 saveas(MVs2, [GraphDrive,'Inputs2_SS.eps']);
 saveas(MVs2, [GraphDrive,'Inputs2_SS.emf']);
 saveas(MVs2, [GraphDrive,'Inputs2_SS.fig']);
elseif SimType == 2
 saveas(MVs2, [GraphDrive,'Inputs2.eps']);
 saveas(MVs2, [GraphDrive,'Inputs2.emf']);
 saveas(MVs2, [GraphDrive,'Inputs2.fig']);
else
 saveas(MVs2, [GraphDrive,'Inputs2_LTI.eps']);
 saveas(MVs2, [GraphDrive,'Inputs2_LTI.emf']);
 saveas(MVs2, [GraphDrive,'Inputs2_LTI.fig']);
end

Department of Electrical, Electronic and Computer Engineering 101

Cplot = figure;
set(Cplot,'Position',[300,300,500,200])
plot(t_tot, Cost,'k');
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
ylim([0 0.1]);
xlim([0 6]);
xlabel('Time [h]');
ylabel('Cost');
title('Operating cost');
hold;
stairs(0:1/6:6-1/6,Optimal_Cost,'k--');
legend('Cost','Optimal cost');

set(gcf,'PaperPositionMode','auto');
if SimType == 3
 saveas(Cplot, [GraphDrive,'Cost_SS.eps']);
 saveas(Cplot, [GraphDrive,'Cost_SS.emf']);
 saveas(Cplot, [GraphDrive,'Cost_SS.fig']);
elseif SimType == 2
 saveas(Cplot, [GraphDrive,'Cost.eps']);
 saveas(Cplot, [GraphDrive,'Cost.emf']);
 saveas(Cplot, [GraphDrive,'Cost.fig']);
else
 saveas(Cplot, [GraphDrive,'Cost_LTI.eps']);
 saveas(Cplot, [GraphDrive,'Cost_LTI.emf']);
 saveas(Cplot, [GraphDrive,'Cost_LTI.fig']);
end

A.6 CALCULATE STEADY-STATE OPTIMUM (GETSSOPT.M)

function [OptimVal, MinCost] = ...
 GetSSoptimum(u0,y0,Fdis0,y_NG0,y_RG0,y_TG10,y_TG20, HHV0, SG0)

lb = [0 0 0 0 0 0 16.5 25 39 0];
ub = [15 20 5 5 30 30 18 27 46 50];

%Opts = optimset('fmincon');
Opts.Display = 'none';
Opts.Algorithm = 'active-set';
x0 = [u0, y0, Fdis0];
[x,fval] = fmincon(@OptimalCost,x0,[],[],[],[],lb,ub,...
 @ (x) myconst(x,Fdis0,y_NG0,y_RG0,y_TG10,y_TG20, HHV0, SG0), Opts);
OptimVal = abs(x);
MinCost = fval;
end

function OptCost = OptimalCost(x)
 OptCost = (0.68*x(1) + ...
 0.2*x(2) + ...
 0.07*x(4))/sum(x(1:6));
end

function [c,ceq] = myconst(x,Fdis0,y_NG0,y_RG0,y_TG10,y_TG20, HHV0, SG0)

 s = [148 514.4 339 0 61 0];
 A = [9.55 31 2.39 0 2.39 0];

Department of Electrical, Electronic and Computer Engineering 102

 y_RG = y_RG0;
 y_NG = y_NG0;
 y_TG1 = y_TG10;
 y_TG2 = y_TG20;
 y_N2 = [0 0 0 1 0 0];
 y_H2 = [0 0 1 0 0 0];

 Feed_flow = x(1:6);
 Feed_HHV = HHV0;
 Feed_SG = SG0;

 % Write the outputs as equality constraints
 ceq7 = dot(Feed_flow, Feed_HHV)/(sum(Feed_flow)) - x(7); % ss HHV of FG
 HHV_fg = dot(Feed_flow, Feed_HHV)/(sum(Feed_flow));
 SG_fg = dot(Feed_flow, Feed_SG)/(sum(Feed_flow)); % ss SG of FG
 ceq8 = HHV_fg/sqrt(SG_fg) - x(8);

 for i=1:6 % Calculate the mole fractions of each comp in FG
 y_fg(i) = (Feed_flow(1)*y_NG(i) + Feed_flow(2)*y_RG(i) +...
 Feed_flow(3)*y_H2(i) + Feed_flow(4)*y_N2(i) + ...
 Feed_flow(5)*y_TG1(i) + Feed_flow(6)*y_TG2(i))/sum(Feed_flow);
 end
 ceq9 = (dot(y_fg,s))/(dot(y_fg,A)+5*...
 (y_fg(4)+y_fg(6))+1) - x(9); % Calc ss FSI
 ceq10 = sum(Feed_flow) - Fdis0;

 c = zeros(9);
 ceq = [0
 0
 0
 0
 0
 0
 ceq7
 ceq8
 ceq9
 ceq10];

end

A.7 PLOT VALIDATION RESULTS (VALIDATIONDATA.M)

valid = xlsread('Validation.xls');

% Plot HHV plots
HHVplot = figure;
plot(0:1/180:18, valid(:,2), 'k--', 'LineWidth', 0.5);
hold;
plot(0:1/180:18, valid(:,3), 'k-', 'LineWidth', 2);
set(HHVplot,'Position',[200,200,500,250])
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
title('HHV analyser data vs. simulation data');
xlabel('Time [h]');
ylabel('Higher Heating Value [MJ/Nm^3]');
legend('HHV_{Analyser}', 'HHV_{Sim}');

Department of Electrical, Electronic and Computer Engineering 103

% Plot WI data
WIplot = figure;
plot(0:1/180:18, valid(:,4), 'k--', 'LineWidth', 0.5);
hold;
plot(0:1/180:18, valid(:,5), 'k-', 'LineWidth', 2);
set(WIplot,'Position',[200,200,500,250])
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
title('WI analyser data vs. simulation data');
xlabel('Time [h]');
ylabel('Wobbe Index [MJ/Nm^3]');
legend('WI_{Analyser}', 'WI_{Sim}');

FSIplot = figure;
plot(0:1/180:18, valid(:,6), 'k--', 'LineWidth', 0.5);
hold;
plot(0:1/180:18, valid(:,7), 'k-', 'LineWidth', 2);
set(FSIplot,'Position',[300,300,500,250])
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10);
title('FSI analyser data vs. simulation data');
xlabel('Time [h]');
ylabel('Flame Speed Index');
legend('FSI_{Analyser}', 'FSI_{Sim}');
ylim([40 45]);

Department of Electrical, Electronic and Computer Engineering 104

ADDENDUM B: MATLAB SCREENSHOTS

B.1 SIMULINK ENVIRONMENT

Figure B.1. Configuration settings for initial and final state vectors from and to the Matlab

workspace.

Department of Electrical, Electronic and Computer Engineering 105

Figure B.2. Setting of the solver parameters in Simulink.

Figure B.3. Subsystem 2 parameters.

Department of Electrical, Electronic and Computer Engineering 106

B.2 MPC TOOLBOX GUI

Figure B.4. Declaration of MVs and CVs in the MPC Toolbox utility.

Department of Electrical, Electronic and Computer Engineering 107

Figure B.5. Control and prediction horizon settings (including blocking).

Department of Electrical, Electronic and Computer Engineering 108

Figure B.6. Weights on MVs and CVs as configured in the MPC utility.

Department of Electrical, Electronic and Computer Engineering 109

Figure B.7. Configuration of constraint softening.

Department of Electrical, Electronic and Computer Engineering 110

Figure B.8. Configuration of MV and CV constraints.

Department of Electrical, Electronic and Computer Engineering 111

Figure B.9. Configuration of disturbance handling in MPC Toolbox utility.

Department of Electrical, Electronic and Computer Engineering 112

Figure B.10. Configuration of noise handling in MPC Toolbox utility.

	FRONT
	Title page
	Summary
	Opsomming (Afrikaans)
	Acknowledgements
	List of abbreviations
	Table of contents

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	REFERENCES
	ADDENDA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

