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In industrial fuel gas preparation, there are several compositional properties that must be 

controlled within specified limits. This allows client plants to use the fuel gas mixture 

safely without having to adjust and control the composition themselves. The variables to be 

controlled are the Higher Heating Value (HHV), Wobbe Index (WI), Flame Speed Index 

(FSI), and Pressure (P). These variables are controlled by adjusting the volumetric flow 

rates of several inlet gas streams of which some are makeup streams (always available) and 

some are wild streams that vary in composition and availability (by-products of plants). 

The inlet streams need to be adjusted in the correct ratios to keep all the controlled 

variables (CVs) within limits while minimising the cost of the gas blend. Furthermore, the 

controller needs to compensate for fluctuations in inlet stream compositions and total fuel 

gas demand (the total discharge from the header). This dissertation describes the modelling 

and model validation of an industrial fuel gas header as well as a simulation study of three 

different Model Predictive Control (MPC) strategies for controlling the system while 

minimising the overall operating cost. 
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By die voorbereiding van industriële brandstofgas is daar verskeie samestellingseienskappe 

wat binne bepaalde beperkings beheer moet word. Dié beheer verseker veilige gebruik van 

die brandstofgasmengsel deur kliëntaanlegte sonder om self die samestelling te beheer of 

aan te pas. Die veranderlikes wat beheer moet word, is die hoër hittewaarde, die Wobbe-

indeks, die vlamspoedindeks, en die druk. Hierdie veranderlikes word beheer deur 

aanpassing van die volumetriese vloeitempo’s van verskeie inlaatgasstrome, waarvan 

sommige aanvulstrome is (altyd beskikbaar) en ander wilde strome is wat wissel in 

beskikbaarheid en samestelling (byprodukte van aanlegte). Die inlaatstrome moet aangepas 

word om die regte verhoudings te lewer sodat al die beheerde veranderlikes binne die 

vasgestelde perke bly, terwyl die koste van die gasmengsel tot 'n minimum beperk word. 

Die beheerder moet terselfdetyd kompenseer vir fluksuasies in die inlaatstroom-

samestelling en die totale gasaanvraag (die totale vloeitempo uit die vermengingsaanleg). 

Hierdie verhandeling beskryf die modellering en model-validering van 'n industriële 

brandstofgasaanleg, sowel as 'n simulasiestudie van drie model-voorspellende 

beheertoepassings vir die beheer van die stelsel wat die totale bedryfskoste van die aanleg 

tot 'n minimum beperk. 
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CHAPTER 1   INTRODUCTION 

1.1 PROBLEM STATEMENT 

Fuel gas is an important utility in industrial processes. It is used in furnaces, catalytic 

crackers, and other combustion units. The end user’s equipment is designed according to 

certain specifications with regard to the composition of the fuel gas. The specifications 

may include (as is the case for this study) the higher heating value (HHV or gross calorific 

value) [1], the Wobbe index (WI), and the flame speed index (FSI, using Weaver's flame 

speed factor) [2]. Apart from these compositional properties, the fuel gas must be supplied 

at a prescribed pressure (P). All of these requirements need to be addressed in the 

preparation of the gas in the fuel gas blending header. 

 

Typically, the header consists of a vessel or piping network which is fed by several inlet 

streams and discharges from a single outlet point. In the system considered for this study, 

six feed streams enter the header. Of these six streams, four are makeup streams (always 

available but often costly) and two are wild streams (tail gasses which are by-products of 

plants and vary considerably in availability and composition). The feed gas streams need to 

be mixed in the correct quantities and ratios to ensure that the compositional properties are 

kept within specified limits while ensuring that the outlet pressure of the header does not 

fluctuate beyond predetermined bounds.  

 

The header is susceptible to disturbances in the form of load fluctuations (changes in the 

demand for fuel gas downstream of the header), compositional changes in the feed streams, 

and availability changes in the tail gas streams. Controlling the header composition and 

pressure in the presence of these disturbances and noise using SISO (Single Input, Single 

Output) control is a challenging task, even for the most experienced operator. Ratio control 

can improve control somewhat but the fluctuations in the feed stream compositions mean 

that the required ratios change as well. Furthermore, the unit cost of the fuel gas blend 

must be minimised. Therefore, an automatic control system needs to be designed to take all 
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the disturbances (and noise) into account and simultaneously adjust the feed rates on the 

inlet streams to reject disturbances while at the same time driving the system to a state of 

minimum cost.  

1.2 OBJECTIVES 

The objectives of this research project are to address the control problem described in the 

previous section by completing the following tasks: 

 Changes cannot be made on the actual plant for the purposes of this study. 

Therefore, a simulation study needs to be conducted to evaluate the proposed 

control solution. To legitimise the simulation study, an accurate model of the 

process needs to be derived. Therefore, the first task is to derive a process model 

for use in the process simulation which will capture the nonlinear dynamic 

behaviour of the process. This model will then be used as the “real plant”. 

 In order to verify that the plant model represents the system adequately, a 

validation needs to be carried out. Plant data are available and can be used to 

compare the response of the model with that of the real system. Therefore, the 

second step is to run a simulation with the feed values of the real plant and compare 

the response of the model to that of the plant (from recorded output data) to 

determine the correlation between the two. 

 The system is a nonlinear, multivariable, interactive process which makes the use 

of model predictive control (MPC) an attractive option for control due to its ability 

to handle constrained, multivariable systems robustly and because of the ease at 

which the control problem can be formulated into the MPC framework. By 

designing the controller around a specific operating point, the effect of 

nonlinearities can be mitigated. MPC uses a model of the process to predict 

behaviour. If the model is non-linear or linear with constraints, the MPC algorithm 

requires the use of a non-linear optimiser which complicates matters. Furthermore, 

the software used for the design of the controller (namely the Matlab Model 
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Predictive Control Toolbox) only supports linear models.  The MPC software 

packages most widely used in industry (such as Aspentech’s DMCplus, 

Honeywell’s RMPCT, Adersa’s HIECON, etc.) also use linear algorithms. 

Therefore, a linear time-invariant (LTI) model needs to be derived from the non-

linear simulation model in order to apply linear MPC. 

 After the LTI model has been obtained, the MPC controller can be designed subject 

to constraints on the controlled variables (CVs) and manipulated variables (MVs). 

This includes the specification of all the tuning parameters such as control horizon, 

prediction horizon, weights, disturbance handling, constraints and constraint 

softening, and speed of response. 

 The closed loop system must be simulated with some disturbances to evaluate the 

ability of the controller to keep the CVs within the prescribed ranges while 

avoiding violations of the MV limits. At the same time, the operating cost of the 

plant (the unit cost of the fuel gas blend) must be minimised. 

 After the simulation is complete, the results need to be analysed to determine the 

effectiveness of the control system. 

 If the controller’s performance is far from the theoretical economic optimal 

(calculated using a nonlinear optimiser), iterative linearisation can be employed to 

compensate for process nonlinearities at different operating points. 

 If the controller’s performance is still not close to the economic optimal, real-time 

optimisation (RTO) can be included to set steady-state targets for the MVs and CVs 

to drive the process closer to the theoretical optimum. 

1.3 CONTRIBUTION OF THIS RESEARCH PROJECT 

On a practical industrial level, there is great potential in optimisation and cost saving in the 

preparation of plant utilities (which often go unnoticed). Steam and electricity 

minimisation are becoming popular areas of optimisation and enjoy considerable attention. 

In the same way, optimising on fuel gas preparation can reduce running costs and the use 
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of expensive makeup streams (such as natural gas) by maximising on the use of process 

tail gas streams which are often free and would otherwise be flared. This has an obvious 

environmental benefit as well.  

 

Although there are many papers on MPC, modelling, model validation, and optimisation, 

there is an absence of literature covering the specific application of these concepts on a 

fuel gas blending system. Therefore, on an academic level, there is a possibility that this 

project can make a significant contribution to this field by introducing a novel application 

of these well studied topics. Furthermore, the iterative linearisation discussed in Section 

5.3 and the RTO discussed in Section 5.4 allow for the application of types of nonlinear 

MPC using linear algorithms. The work described in this document has been accepted for 

publication in the Journal of Process Control [3] and for presentation at the 18th IFAC 

world congress in Milan, Italy [4]. 

1.4 ORGANISATION OF DISSERTATION 

The order of this dissertation follows that of the tasks described in Section 1.2. The first 

part is a discussion of the modelling of the fuel gas blending system which is essential for 

establishing a solid foundation for the work that follows. The second part contains the 

validation results, comparing the response of the simulation model to that of the actual 

plant to identical inputs. The third and fourth parts contain details on the derivation of an 

LTI model (using system identification or SID) and the design of the MPC controller 

(which includes three possible control schemes, increasing in complexity and 

effectiveness). Finally, a simulation of the controlled system (closed-loop simulation) is 

presented and its results analysed and explained. No dedicated chapter is included for 

literature review. Instead, each chapter contains several inserts pertaining to the literature 

for that specific topic. 
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CHAPTER 2   PROCESS OVERVIEW 

2.1 BACKGROUND 

Although plant utilities like instrument air, steam, fuel gas, etc. do not receive as much 

attention as more complex core processes such as reaction and distillation, these processes 

are strongly dependent on them. As mentioned in Section 1.3, there seems to be a shortage 

(or even an absence) of literature on the topic of the control of gas blending, in particular 

fuel gas blending.  

 

A similar application can be found in liquid fuel blending where additives are dosed into 

the fuel in precise quantities (for which more literature is available). In a recent 

publication, Chèbre et al.  [5] described a control algorithm for blending liquid fuels to 

produce mixtures with some prescribed properties while minimising the production cost. 

Although the properties and behaviour of liquid blending differ from the gas blending of 

this application, there are some similarities and concepts that can be applied to this study. 

In some cases, real-time composition measurements are not available (mostly due to cost 

and reliability issues regarding analysers) and observers are developed to estimate the 

properties of the feed streams. If lab samples are taken, the observer parameters can be 

updated periodically. For downstream measurements (on the blender outlet), it is 

recommended to have online measurement using more than one analyser. This is also the 

case for this study (mentioned in Section 3.3.1).  

 

There are mainly two differences between the gas blending and liquid blending processes. 

In the first place, the blended gases behave as nearly ideal mixtures and their combustion 

properties are known functions of composition. Furthermore, periodic measurements of the 

feed gas compositions are available. Thus, prediction of the impact of MV adjustments on 

blend properties is easier than in liquid blending. Secondly, for gas blending, the dynamic 

behaviour is generally faster than that of liquid blending (a residence time of between 2 to 
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4 minutes in this case, whereas that of liquid blending systems is typically in the order of 

hours) and therefore requires more frequent control adjustments and quicker sampling. 

2.2 FUEL GAS PROCESS DESCRIPTION 

Figure 2.1 shows a process diagram of the system. Although the header is depicted as a 

vessel, it is made up of the volume of the piping network (estimated at 100 m3 by using the 

gradient of the pressure increase for a 1 kNm3/h increase in feed). The flow rates are high 

so it is assumed that turbulent flows facilitate perfect mixing so that the composition of the 

exit stream equals the header composition (which is assumed to be uniform across the 

header). Six gas streams enter the fuel gas header (shown with their fictional tag names in 

Figure 2.1). These six feed streams are Natural Gas (NG), Reformed Gas (RG, hydrogen to 

CO ratio of between 1.8:1 and 2:1), Hydrogen (H2), Nitrogen (N2), Tail Gas 1 (TG1), and 

Tail Gas 2 (TG2).  

 

The first four streams are make-up streams whereas the two tail gas streams are wild 

streams, varying in availability and composition. The tail gasses are produced as by-

products of plants and can be utilised for heating purposes across the complex. Their 

compositional properties are, however, unsuitable for the heating requirements of industrial 

fuel gas. Therefore, these streams need to be mixed with make-up streams in correct ratios 

and quantities to adjust the output composition to be more suitable for use as a fuel source. 

In addition, the fuel gas mixture must be supplied at a specific pressure. Table 2.1 shows 

the ranges for the outputs with their units of measure. These specifications determine the 

combustion properties of the gas mixture. The HHV and WI give indications of the energy 

content and density of the gas. The FSI determines how the flame physically behaves when 

combusting. If the flame speed goes too high, there is a danger of the flame burning back 

into the burner nozzle. If it is too low on the other hand, the probability of the flame being 

blown out will increase. The Weaver FSI (or Weaver’s flame speed factor) is an indication 

of the flame speed of a gas with reference to that of pure hydrogen (having a flame speed 

of 100) [2]. 
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The NG, RG, and N2 streams have costs associated with them whereas the H2 and tail gas 

streams would otherwise be flared and are therefore considered free. Therefore, the use of 

the NG, RG, and N2 streams must be minimised in the optimisation problem whereas the 

use of the tail gas streams and H2 should be maximised subject to its availability. Natural 

gas is used continuously to increase the calorific value up to specification due to the 

typically low heating value of the tail gasses. Nitrogen will only be used when the FSI is 

too high (which will be the case if the tail gasses are rich in hydrogen). Reformed gas is 

used as a substitute for the tail gas streams when not available. Hydrogen can be used 

continuously, but cannot be used if the flame speed is high. Apart from these streams, 

several disturbances act on the system, including fluctuations in the feed stream 

compositions and total fuel gas demand (i.e. the discharge flow rate from the header).  

 

Table 2.2 gives the typical compositions and characteristics of the inlet streams. The HHV, 

WI, and FSI are functions of the molar composition of the fuel gas. Although the inlet 

streams are depicted as flow controllers (the FIC referring to a Flow Indicator Controller), 

the controller and actuator dynamics are omitted in this study and perfect manipulation of 

the flow rates is assumed. 

 

 

Table 2.1: Controlled variable ranges. 

CV Abbreviation Range Units 

Higher Heating Value HHV 16.5 – 18 MJ/Nm3 

Wobbe Index WI 25 – 27 MJ/Nm3 

Flame Speed Index FSI 39 – 46 - 

Pressure P 2000 – 2200 kPa 
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Figure 2.1. Process diagram of blending header. 

 

 
 

Table 2.2: Typical inlet compositions (mol %). 

 NG RG H2 N2 TG1 TG2 

CH4 91.1 1.5 - - 5.5 15.0 

C2+ 6.8 0.0 - - 1.0 1.0 

H2 0.0 62.0 100.0 - 62.0 57.0 

N2 1.5 0.5 - 100.0 2.5 6.0 

CO 0.0 31.0 - - 26.0 13.0 

CO2 0.6 5.0 - - 3.0 8.0 

HHV 43.02 11.78 12.10 0.0 13.96 15.39 

WI 52.62 17.87 45.73 0.0 21.60 22.92 
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The ranges of the inlet streams are restricted by the typical availability of the streams. 

Natural gas and reformed gas are available in large quantities whereas the hydrogen and 

nitrogen streams are more limited. The flow rates on the tail gas streams can also become 

quite large when they are available. Therefore, in normal operation, it is ideal to use as 

many of these streams as possible. When one or both of these streams are not available 

(such as when the upstream plants producing them trip), reformed gas is used to replace 

them (having a comparable heating value). Table 2.3 shows the ranges used for the inlet 

streams for this study. These ranges comprise physical constraints for the control problem 

and cannot be exceeded in any way. 

 
Table 2.3 MV limits and units. 

MV Low limit High limit Units 

NG 0 15 kNm3/h 

RG 0 20 kNm3/h 

H2 0 5 kNm3/h 

N2 0 5 kNm3/h 

TG1 0 30 kNm3/h 

TG2 0 30 kNm3/h 

2.3 CONCLUSION 

In this section, the fuel gas blending process was described on a practical level, introducing 

the feed streams, the controlled process variables, predominant components, typical ranges, 

and limits. Figure 2.1 illustrates that six feed streams of variable composition and 

availability enter the header and the gas mixture discharges from a single point at which 

the composition and pressure are measured. In the next chapter, mathematical models are 

developed for the fuel gas blending system for simulation and control purposes. 
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CHAPTER 3   DYNAMIC MODELLING 

3.1 INTRODUCTION 

Mainly two approaches are followed when developing process models. The first is the 

derivation of a model from the scientific principles of physics, chemistry, and biology 

(called theoretical, first principle, or physical models) [6,7]. These models can become 

very complex for some processes (and can be very time-consuming and expensive to 

derive), especially if the model requires a large number of equations with a considerable 

number of variables and unknown parameters. On the other hand, first principle models 

give valuable insight into the behaviour of the process and are usually applicable over a 

wide operating range [6]. The second method makes use of experimental data to determine 

the relationship between the inputs and outputs of a process and is known as system 

identification (SID). The models resulting from SID are called empirical models (also 

referred to as black-box models) [6,7,8,9]. These models are typically easier to develop 

than first principle models (and are usually more cost effective). Some disadvantages of 

empirical models are that they are normally only valid around the operating point at which 

they were developed and that aspects of the process that does not feature in the data used to 

derive the model can easily be overlooked [6]. A third, less frequently used modelling type 

is semi-empirical modelling (also called grey-box models) where one or more parameters 

of a theoretical model is determined by fitting experimental data [6,8,9]. 

 

Both first principle and empirical models can be developed as steady-state or dynamic 

models. Most linear models used in the process industry are empirical models [6,10,11]. 

Furthermore, with the development of industrial MPC technology, various vendors also 

developed proprietary process identification technologies that integrate seamlessly with 

their MPC development software. These software applications expedite and reduce the cost 

for the development of dynamic empirical models from test data [11].  
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In this chapter, a brief overview of some of the most popular model forms, types, and 

concepts is provided. These are not limited to either empirical or first principle models 

although some will be more applicable to one than the other. In most cases, one model 

form can readily be converted to another (for example from state-space to transfer function 

and vice versa). Although the discussion is focussed on continuous time models, the 

models can also be represented in discrete time format. Section 3.3 continues to describe 

the development of a first principle model of the fuel gas blending system and Section 3.4 

the development of a linear empirical model for use in the control algorithm. 

3.2 MODEL TYPES 

3.2.1 Linear versus nonlinear 

Linear time invariant (LTI) models are usually sufficient for describing process behaviour 

around a specific operating point (such as a plant running mostly at nominal operating 

conditions). The main advantages of using a linear model are its simplicity (especially 

when considering constrained cases), and the wealth of knowledge regarding linear system 

analysis. There are some cases, however, where the process is highly non-linear or operate 

over vastly different operating regions where it might be beneficial to use a nonlinear 

model. This can allow improved control by improving the accuracy of the behavioural 

predictions used in model-based control [10]. Linear models usually refer to LTI models 

which mean that the model does not change with time and conforms to the principle of 

superposition. LTI models can be derived from non-linear models by linearisation around 

an operating point. Most industrial MPC applications are linear (Qin et al. considered a 

total of 4542 linear applications versus a total of 93 nonlinear applications in their survey 

performed from mid-1999 to early 2000’s [11]). 

3.2.2 Steady-state versus dynamic 

Steady-state (or static) models are concerned with the long term behaviour of the process 

(where it settles at equilibrium). In these models, the relationships between inputs and 
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outputs are direct and instantaneous. The output values depend only on current inputs, not 

on past process behaviour [7]. In the case of this study, a steady-state model is used for 

real-time optimisation (RTO) as discussed in Section 5.4.  

 

Dynamic models (unsteady-state or transient models) on the other hand describe how the 

process reacts after input changes or disturbances. Dynamic behaviour occurs at conditions 

such as plant start-up, shut-down, process disturbances, and transition from one operating 

point to another [6]. The instantaneous output values of the system are dependent on the 

current input values and disturbances as well as past system behaviour [8,7]. For this study, 

dynamic models are used for simulation of the process and for control predictions. 

3.2.3 Regression 

Regression (also called parameter estimation) is the process of selecting a model form and 

then determining the unknown model parameters from input-output data by minimising a 

measure of difference between the model output and the actual output data [6]. The model 

form may be selected based on some process knowledge or experience. Plotting the input 

and output data and identifying overall trends in behaviour can help to choose a realistic 

model form. It is desirable to select the simplest model structure that provides a good fit. A 

popular model form is ARX (Auto Regression with eXogenous input) and is used by 

various developers of MPC technology including Honeywell, Adersa, and Invensys [11]. 

3.2.4 State-space 

State-space models describe system behaviour in the form of a set of ordinary differential 

equations (ODEs) and are not limited to either linear or nonlinear systems [6]. There are 

several advantages to using state-space models including the intuitive transition from SISO 

to MIMO (Multiple Inputs, Multiple Outputs) models, ease of analysis of closed-loop 

properties, computational advantages, and the ability to use the abundance of linear 

systems theory with this form [10]. The basic form of a linear state-space model is [6,7] 
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       . . .

dx t
A x t B u t E d t

dt
    (3.1) 

      . .y t C x t Du t   (3.2) 

where x  denotes the state vector (and determines the order of the system), y  represents 

the output vector, u  is the input vector, and d  is the disturbance vector. The outputs have 

to be observable, i.e. must be measurable or inferable. Typically, the states are chosen to be 

the output variables (if measurable directly). In such a case, the system is completely 

portrayed by differential equations describing its dynamic behaviour (if there is no direct 

feed-forward action from the inputs to the outputs). For an LTI system, the matrices ,A ,B

,C ,D  and E  are constant and describe the system in full [6]. The stability of the system 

described in Equations (3.1) and (3.2) is solely determined by the A  matrix of which the 

eigenvalues must have negative real parts (corresponding to the roots of the characteristic 

equation, 0I A   ) [6]. The first principle model discussed in Section 3.3 is in the state-

space form. Linear state-space models can easily be converted to transfer function models 

described in the next section. 

3.2.5 Transfer function 

A transfer function model describes the dynamic relation between a specific input and 

output in an algebraic expression and is represented in the s-domain (or the Laplace 

domain). When representing systems graphically, these models are very intuitive. Transfer 

functions are, however, limited to linear systems because the Laplace transform can only 

be applied to linear equations [6]. Therefore, nonlinear systems need to be linearised in 

order to be described by transfer functions. The basic form of a transfer function model is 

    
 

Y s
G s

U s
  (3.3) 

where  Y s  and  U s  are the Laplace transforms of the output  y t  and input  u t  

signals and  G s  is the Laplace transform of  g t , the impulse response from  u t  to 
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 y t . The Laplace transform for  g t  is calculated as  

       
0

stG s g t g t e dt
     (3.4) 

where s  is a complex independent variable and   is the Laplace operator. The Laplace 

transfer of a unit impulse is    1t  . Therefore, defining the transfer function to be the 

Laplace transform of the impulse response of the relation between input and output makes 

it independent of the particular choice of forcing function. Therefore, any response of 

 Y s , can be calculated by simply substituting the transfer function of the forcing function 

into  U s  in Equation (3.3). Calculating the steady-state gain of a system described by 

transfer functions can easily be done by letting 0s   in  G s
 
according to the final value 

theorem (if the gain exists, i.e. if the system is stable) [6]. The Honeywell RMPCT 

Identifier package is an example of a commercially available SID tool that presents the 

models in transfer function form [11]. 

3.2.6 Step response 

Step response models describe the system by recording what the output does in response to 

a unit step change in the input. For discrete calculation, a finite number of coefficients are 

used to capture the system dynamics. The amount of coefficients required depends on the 

settling time of the process and the desired accuracy of the model. These models are 

therefore usually described with tables of coefficients rather than mathematical models. 

This allows unusual dynamics to be captured without having to use high order parametric 

models. This is the model form used in Aspentech’s DMCplus control software [11]. 

3.2.7 Impulse response 

Impulse response models describe the system by recording what the output does in 

response to a unit impulse injected at the input. Similar to step response models, these 

models are often described by tables of coefficients. Adersa uses an FIR (Finite Impulse 

Response) model in the HIECON package [11].  
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3.3 FIRST PRINCIPLE MODEL OF FUEL GAS SYSTEM 

To obtain a realistic simulation of the fuel gas blending process, an accurate model is 

required. The fuel gas system is nonlinear and should therefore be represented with a 

nonlinear model if the nonlinear dynamics are to be captured satisfactorily. This section 

describes the derivation of a first principle, nonlinear, state-space model based on a molar 

balance of the components in the header. The HHV, WI, and FSI are functions of the molar 

composition of the fuel gas. There are six states (the numbers of moles of the six 

components in the header), six inputs (the volumetric flow rates of the six inlet streams), 

and four outputs (HHV, FSI, WI, and pressure). The state equations are given by  

 , , .fg i i fg i TN u y u   (3.5) 

where 1 to 6i  , ,fg iN  is the number of moles of component i  in the header, iu  is the total 

molar flow of component i  entering the header (summed over all inlet steams), Tu  is the 

total molar discharge rate from the header, and ,fg iy  is the molar fraction of component i  

in the header.  

 

The inlet flows are described in terms of volumetric flow rates and compositions. 

Therefore, these flows need to be converted to molar flow rates of the individual 

components to get to iu . This is done by converting the volumetric flow rates to molar 

flow rates. The volumetric flow rates are measured in 3kNm /h  (i.e. under an ideal gas 

assumption). Therefore, the individual component molar flow rates iu  are  

 
6

,
1

44.64 .
ji F i j

j

u y F


   (3.6) 

for 1 to 6i   and where jF  is the volumetric flow rate of the thj  inlet stream 3(kNm /h)  

and ,jF iy  is the molar fraction of component i  in inlet stream j . The j  index refers to the 

sequence shown in Figure 2.1, i.e. 1j   refers to the NG stream and 6j   refers to the 

TG2 stream. The factor 1000 / 22.4 44.64  is the amount of litres per cubic meter divided 
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by the volume (in litres) filled by one mole of gas under ideal conditions and is used to 

convert the volumetric flow rate to molar flow rate under the ideal gas assumption. 

 

The outputs are calculated according to the molar fractions of the components in the 

system (and the total number of moles in the case of pressure) [1,2,12,13]. The output 

calculations are 

 
6

,
1

.fg i fg i
i

HHV HHV y


  (3.7) 

 fg
fg

fg

HHV
WI


  (3.8) 

 

2

6

,
1

6 2

, ,
1 1

.

. 5 18.8 1

fg i i
i

fg

fg i i fg j O
i j

y s
FSI

y A n x



 


  



 
 (3.9) 

 TN RTZ
P

V
  (3.10) 

where is  is the flame speed factor for component i , iA  is the molar stoichiometric air 

demand factor (for total combustion) for component i , ,fg jn  is the molar fraction of inert 

component j  in the fuel gas, and 
2Ox  is the mole fraction of oxygen in the gas (usually 

zero in this application) [2]. TN  is the total number of moles in the system, 8.314R   is 

the gas constant, T  is the header temperature (Kelvin), V  is the header volume ( 3m , 

estimated at 3100m ), and Z  is a real gas correction factor (to compensate for the 

difference between the fuel gas behaviour and that of an ideal gas; 1.006Z   in this case 

indicating that the ideal gas assumption is reasonable) [1]. The Fuel Gas specific gravity, 

fg , is calculated as 

 

6

,
1

.i fg i
i

fg
air

MWt y

MWt
 


 (3.11) 
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where iMWt  is the molar weight of component i  and 28.8airMWt   is the standard molar 

weight of air. Table 3.1 lists some characteristics of the components [1]. 

 

Table 3.1: Component characteristics. 

 HHV WI SG MWt A S 

CH4 37.78 50.72 0.557 16.04 9.55 148 

C2-C6 126.5 87.62 2.018 58.12 31.0 514 

H2 12.10 45.88 0.069 2.016 2.39 339 

N2 - - 0.973 28.02 - - 

CO 11.97 12.17 0.968 28.01 2.39 61 

CO2 - - 1.528 44.01 - - 

 

3.3.1 Model validation 

The integrity of the process model needs to be determined in order to support the validity 

of the simulation study. Comparison of calculated data from the model versus data from 

the real plant outputs using the same input data (flows, compositions, etc.) is the most 

intuitive way of determining the integrity of the process model [14]. 

 

For the validation, a period of operation was identified in which all the flow measurements 

are reliable (either zero or greater than the turn-down of the transmitters). This ensures that 

the data used for the validation is a good representation of the flows entering and exiting 

the header. The inlet flow rates, feed stream compositions, and header discharge rate were 

used as verification data and the simulation output data compared to the plant 

measurements (the system is at ambient temperature for which the effects of daily 

fluctuations on the outputs are negligible). The initial model states were determined by 

running a simulation using average feed flow rates and compositions as inputs and 

recording the steady state molar values. 
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The dead-times on the analysers (for measuring HHV, WI, and FSI) were initially 

estimated at 2 minutes and adjusted for better data correlation. The final dead-times were 

20 seconds for HHV, 1 minute for WI, and 20 seconds for FSI (the FSI is measured by a 

mass spectrometer which has a small dead-time but only provides a sample every 10 

minutes).  

 

As shown in Figure 3.1 to Figure 3.3, the model’s open-loop predictions of HHV, WI, and 

FSI track the observed trends rather well. Computed correlation coefficients for a 

validation period of 18 hours are shown in Table 3.2. Some factors contributing to the 

discrepancies between the plant data and the model include infrequent feed stream and fuel 

gas composition measurements, errors in feed flow measurements (especially when close 

to the turn-downs of the flow transmitters), and interpolation adjustments made when the 

plant's data historian recorded the data. 

 

The presence of feedback control on the header pressure for all plant data complicates the 

validation of the pressure model. Feedback can introduce non-causal effects from input to 

output (for example an operator who anticipates an event and compensates for it before it 

actually occurs) which complicates the validation [15]. The model is, however, based on 

well developed physical models and will be assumed to be adequate for the purposes of 

this simulation study. 

 

Table 3.2: Correlation coefficients for output data. 

Data set Correlation coefficient (%) 

HHV 93.8 

WI 84.8 

FSI 83.1 
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Figure 3.1: FSI analyser data versus simulation data. 

 

 

 

Figure 3.2: HHV analyser data versus simulation data. 
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Figure 3.3: WI analyser data versus simulation data. 

 

For the HHV and WI there are in actual fact two analysers each, measuring at the same 

points in the process (for redundancy reasons). The values are also recorded separately. 

Therefore, although the plots shown in Figure 3.2 and Figure 3.3 show the comparisons of 

the simulation data to one plant data set each for the HHV and WI, these are the average 

values for the two analysers in each case. 

3.4 EMPIRICAL MODEL OF FUEL GAS SYSTEM 

Standard linear MPC was initially used for control of the plant due to its simplicity and 

availability of linear MPC development software (such as the Matlab MPC Toolbox used 

for this case study). In order to apply linear MPC, a linear dynamic model needs to be 

derived. To derive a linear model for the process, the nonlinear first principle model can be 

used and linearised around an operating point using theoretical calculations. Alternatively, 

an empirical model can be derived from input-output data generated by the actual process 

or (as in this case) from a simulation of the process using the first principle model. 
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3.4.1 Steps in system identification 

Several authors describe the sequence of activities to perform SID. The following is a 

summary of the most important steps for deriving empirical dynamic models [6,7,8,9,15]. 

 

1. Specify intended purpose/objective of the model.  

This will clarify what accuracy, computational time, etc. will be acceptable. For 

example will the model be used in a training simulator or will it be used in a robust 

controller. 

2. Select model variables.  

The selection of variables will determine the size of the model. Ideally, the model 

should be kept concise (depending on the intended use) and should therefore only 

include variables that have significance. For example, selecting an input variable 

that has a negligible effect on the selected output variables will only add 

complexity to the model without adding value. 

3. Measure input and output signals.  

In this step the actual plant data is collected and evaluated. This will include 

determining the quality of the data and whether the data captures the dynamic 

behaviour of the process adequately. Ideally, step testing should be performed on 

the process to ensure that the captured data contains the necessary dynamic 

information (with input signals designed to provide maximum information, i.e. to 

adequately excite the process).  

4. Select model structure and complexity.  

This step will include an initial model order, type of model (state-space, transfer 

function, FIR, etc.), and whether the model will be linear of non-linear. 

5. Apply estimation method to estimate values for parameters in candidate model 

structure.  

This step will typically involve solving an optimisation problem that will attempt to 

minimise some measure of error between the behaviour of the candidate model and 
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the plant data by changing the parameter values. Providing realistic initial values 

for the parameters can expedite the process. 

6. Evaluate the estimated model.  

There are several means of determining the quality/validity of the model. As 

mentioned in Section 3.3.1, the simplest and most intuitive way is to evaluate the 

correlation between the response of the model and the response of the plant to the 

same input values. If possible, a different data set should be used for the validation 

than for the identification. For dynamic models, graphical evaluation can also be 

used to compare the speed and shape of the responses to identical input changes 

(typically a step input). 

3.4.2 Final LTI model 

Several types of LTI (Linear Time-Invariant) models were considered and fitted. Finally, 

first-order-plus-dead-time transfer function models were selected and fitted for HHV, WI, 

and FSI and with integrating models for pressure (to prevent numerical problems in 

Matlab, the pressure models are not pure integrators but have poles close to the origin, not 

at the origin). Therefore, the model fitted is of the form 

   dsG s e
s







 (3.12) 

where   and   are the parameters to be estimated and d  is the time delay (in hours), 

equal to 1 180  for the models to HHV and FSI, 1 60  for WI, and 0 for pressure. An 

equivalent of Equation (3.12) in difference equation format is 

      . .y t y t T u t nT      (3.13) 

where T  is the sampling period (20 seconds or 1 180  hours in this study) and n  is the 

delay in number of sampling periods. The linearisation was performed around an operating 

point of [HHV, WI, FSI, P] = [16.75, 25.32, 43.47, 2085] which is a typical operating 

region for the plant. The resulting model matrix is shown in Table 3.3. The time unit for 

the model is hours.  
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Table 3.3: Linearised model matrix. 

 NG RG H2 

HHV /18024.61

28.62
se

s



 /1804.42

23.12
se

s



 /1805.04

26.44
se

s



 

WI /6030.73

28.69
se

s



 /606.23

23.39
se

s



 /602.25

26.29
se

s



 

FSI /18059.21

28.57
se

s



 /18011.05

22.92
se

s



 /18032.26

27.14
se

s



 

P 
1120

s
 

1120

s
 

1120

s
 

    

 N2 TG1 TG2 

HHV /18013.27

23.09
se

s



 /1803.31

25.78
se

s



 /1801.66

22.64
se

s



 

WI /6030.42

23.00
se

s



 /604.04

25.62
se

s



 /602.45

22.85
se

s



 

FSI /18033.59

23.00
se

s



 /18010.40

26.72
se

s



 /1802.23

22.17
se

s



 

P 
1120

s
 

1120

s
 

1120

s
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Figure 3.4. SID step changes in the NG, RG, and H2 streams. 
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Figure 3.5. SID step changes in the N2, TG1, and TG2 streams. 
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Figure 3.6. Step test results for the WI, FSI, and HHV. 
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Figure 3.7. Step test results for the header pressure. 

 

The Matlab System Identification Toolbox was used with the data displayed in Figure 3.4 

to Figure 3.7 to identify the model parameters. The toolbox requires the specification of the 

data sets as well as the proposed forms of the candidate models (one form for each of the 

sub-models). It is also capable of estimating linear and nonlinear dynamic models and has 

additional functionality to validate the derived models. The user has the option of using the 

SID GUI (launched with the ‘IDENT’ command in Matlab) or to use the command line 

[8]. 

 

The step input magnitudes were chosen to excite the system adequately and were executed 

in a mutually exclusive manner (when changing one MV, all other MVs are kept constant) 

to ensure that the response data is uncorrelated. Furthermore, the durations of the changes 

were adequate to capture the important time constants for each sub-model. This is clear 

from Figure 3.4 and Figure 3.5. The step changes were made to the simulation model (the 

non-linear first principle model discussed in Section 3.3) and are free of noise or other 

unmeasured disturbances. Therefore, it is not necessary to be concerned about the signal-

to-noise ratio. The simulation input and output data must be combined into an ‘IDDATA’ 

object (that also contains the sampling time) and de-trended to remove the steady-state 

offsets. If bad data sections are present, these need to be removed or interpolated, and if the 
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data is very noisy, filtering can be considered. The data can be viewed conveniently by 

using the ‘IDPLOT’ command [8]. See Addendum A: Matlab code for detail on the 

implementation in Matlab.   

 

Several options and model types are available. The types of parametric models include 

ARX (Auto Regression with eXogenous inputs), state-space, transfer function, and non-

linear parameterised models. They are referred to as parametric models because they have 

fixed structures with a number of unknown parameter to be determined by the SID process. 

Any of these types require specification of the model order of which the definition will 

vary depending on the type of model selected [8]. Step response and frequency response 

models are not considered to be parametric models as they are described by data tables 

rather than compact mathematical formulas with adjustable parameters. As mentioned, for 

this study, transfer function models were used (specifically first-order-plus-dead-time). 

The transfer function category is divided into two options. The first is referred to as 

process models which includes low order models (up to 3 poles) and may contain an 

integrator, a delay, and a zero. The second category is referred to as generalised transfer 

functions described in an input-output polynomial form [9].  

 

After identifying the model, the SID toolbox generates an SID model object which can be 

converted to an LTI model object for use in (among others) the Control Systems Toolbox 

and the Model Predictive Control Toolbox. Difficulties with poles at or near the origin 

occur however when converting a high order parametric SID model object to an LTI model 

object (especially when the models contain dead-times that need to be converted to states). 

The model quality can be evaluated in several ways including comparing the model 

response to the measured response, analysing the residuals between the two, and analysis 

of the model uncertainty. The calculation of the residuals is illustrated in Figure 3.8 where 

u  is the common input signal, y  is the measured output data from the plant, ŷ  is the 

calculated output from the model, and e  is the residual (or error) signal to be analysed. 
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Figure 3.8. Block diagram of residual calculation [16]. 

 

To compare the outputs of the model with the measured outputs, the command 

‘COMPARE’ can be used. For the model shown in Table 3.3, the comparison yielded the 

results shown in Figure 3.9. The percentage fit is summarised in Table 3.4 and indicates 

that the first-order-plus-dead-time model structure provides a good representation of the 

dynamic behaviour of the nonlinear first principle model at the specific operating point. In 

this case, the same data set was used for the modelling and validation due to the artificial 

nature of the step data. In cases where actual plant data is used, it is better to use separate 

data sets for the model identification and validation to ensure that the validation is 

uncorrelated to the identification [16]. 

 

Table 3.4. LTI model validation. 

CV % Fit 

HHV 93.88 

WI 93.12 

FSI 93.92 

P 99.20 
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Figure 3.9. Validation of the LTI model. 
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3.5 CONCLUSION 

In this chapter, the two main approaches for model development were introduced, namely 

first principle modelling and system identification from experimental data. Some important 

model forms and concepts were discussed for clarity. Thereafter, both a nonlinear first 

principle model and a linear empirical model were developed for the fuel gas blending 

system. The former is used for process simulation whereas the latter is used for control 

purposes (to be discussed in subsequent chapters). The first principle model was validated 

against real plant data to ensure that it gives a fair representation of the actual process. The 

empirical model was validated against the data from which it was derived (namely step 

response data from the nonlinear first principle model simulation). 
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CHAPTER 4   SIMULATION ENVIRONMENT 

4.1 INTRODUCTION 

The model described in Equations (3.5) to (3.11) was captured in a Simulink model for use 

within Matlab. The model receives data from vectors in the Matlab workspace and writes 

output vectors back into the workspace. The simulation time can be set in Simulink or the 

simulation can be initiated through Matlab commands. For the simulation in this study, the 

latter approach is followed. The model receives five vectors containing the compositions of 

the NG, RG, TG1, and TG2 streams as well as the volumetric discharge flow rate from the 

header (at 20 second intervals). All of these are unmeasured disturbances entering the 

model. In addition, the model requires an initial state vector when the simulation is 

initiated.  

 

In turn, the model generates four main output vectors containing the HHV, WI, FSI, and 

pressure values (also at 20 second intervals). Several other vectors are also returned 

containing the HHV, WI, FSI and SG (specific gravity) of each of the individual inlet 

streams (used in the iterative linearisation calculations discussed in Section 5.3). As 

mentioned, the simulation receives an initial state vector. This vector contains the initial 

values of the six defined states of the model (the number of moles of each of the 

components) as well as several other values such as initial output values for the MPC 

controller, initial values for the delay blocks on the model outputs, etc. The simulation is 

set to receive this vector from the Matlab workspace and also to return a final state vector 

at the end of each simulation run. This is required for seamless transition between 

simulation runs. Therefore, the final state vector of one simulation run becomes the initial 

state vector for the subsequent run. The configuration of these vectors can be done in the 

Simulink settings shown in Figure B.1, Addendum B: MATLAB screenshots, where the 

initial state vector is called ‘xInitial’ and the final state vector is called ‘xFinal’. 
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4.2 SIMULINK MODEL DESCRIPTION 

Figure 4.1 shows the main Simulink model display indicating the input vectors entering on 

the left and the output vectors on the right. The model contains several subsystems, each 

containing some more detail and logic (numbered from 1 to 7 in Figure 4.1). The model is 

shown in its closed loop configuration where its inputs (the volumetric flow rates of the six 

inlet streams) are generated (and therefore manipulated) by the MPC controller. The 

controller in turn receives the current controlled variable (CV) values (the HHV, WI, FSI, 

and pressure) generated by the model and compares them to the reference values, thereby 

providing the feedback in the control loop.  

 

The first subsystem, Subsystem 1, (labelled ‘Inflows’ in Figure 4.1) is used to convert the 

volumetric flow rates and compositions of the inlet streams to molar flow rates of the 

individual components. Therefore, this subsystem implements Equation (3.6). The detail 

for this block is shown in Figure 4.2. The Subsystem receives the volumetric flow rates of 

the six inlet streams (kNm3/h, depicted as input 1 in Figure 4.2) and multiplies them with a 

factor 1000 / 22.4 44.64  (the amount of litres per cubic meter divided by the volume 

(litres) filled by one mole of gas under ideal conditions) to convert it to molar flow rate 

under the ideal gas assumption (as mentioned in Section 3.3). This multiplication is done 

by the gain block labelled ‘To kmol’ in Figure 4.2. The molar flow rates are then 

multiplied by the molar compositions of the inlet streams (depicted as inputs 2 to 5 in 

Figure 4.2) to arrive at the molar flows for the individual components in each stream. 

Finally the molar flows of the individual components are summed over the inlet streams to 

produce the total molar flow for each component into the header ( iu , depicted as output 1 

in Figure 4.2). 

 

The second subsystem (Subsystem 2, labelled ‘Header’ in Figure 4.1) solves the state 

equations to determine the state values over time and is shown in Figure 4.3. Therefore, 

this subsystem solves Equation (3.5) from the molar flow rates calculated in Subsystem 2 

to produce the total moles of each component in the header and converts them to molar 
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fractions by dividing by the total number of moles in the header. It also calculates the 

header pressure from the moles, the temperature, the gas constant, the header volume, and 

the ideal gas correction factor (thereby solving Equation (3.10), output 3 in Figure 4.3). 

The block also receives the initial molar values at the initiation of the simulation (input 2 in 

Figure 4.3) in order to solve the initial value integration problem. The gas constant, 

volume, and real gas correction factor is set as block parameters in the subsystem (as 

shown in Figure B.3). The differential state equations are solved by numerical integration. 

The integration algorithm and step size can be specified in the simulation properties (as 

shown in Figure B.2). For this study, the Bogacki-Shampine numerical integration method 

is used which is a third order Runge-Kutta algorithm and is calculated as [17] 

 

  1 ,n nk f t y  (4.1) 

 2 1

1 1
,

2 2n nk f t h y hk
    
 

 (4.2) 

 3 2

3 3
,

4 4n nk f t h y hk    
 

 (4.3) 

 1 1 2 3

2 1 4

9 3 9n ny y hk hk hk      (4.4) 

  4 1,n nk f t h y    (4.5) 

 1 1 2 3 4

7 1 1 1

24 4 3 8n nz y hk hk hk hk       (4.6) 

 

where  ,y f t y  is the ordinary differential equation (ODE) to be solved, ny  is the 

numerical solution at time nt , and h  is the step size. The value calculated for 1ny   is a third 

order approximation of the function whereas 1nz   is a second order approximation. The 

difference between the two can be used to adapt the step size. The value of 4k  in one step 

equals the value of 1k  in the subsequent step which allows for only three function 

evaluations per step.  
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Subsystem 3 (labelled “MPC Controller in Figure 4.1) represents the MPC block for 

Simulink. The block references an MPC object which is generated in Matlab by either 

using the MPC GUI (Graphical User Interface) or through the Matlab command line. As 

mentioned above, the block receives the current CV values from the plant model as well as 

the CV reference setpoints and produces the manipulated variable (MV) moves (as 

volumetric flow rates) for controlling the plant. The details of the MPC controller object 

will be discussed in detail in Section 5.2. 

 

Subsystems 4, 5, and 6 contain the calculations for Equations (3.7), (3.9), and (3.11) to 

produce the HHV, FSI and SG. The WI is then calculated by taking the HHV (from 

Subsystem 4 and dividing it by the square root of the SG from Subsystem 5 (i.e. the 

calculation performed in Equation (3.8)). The analysers measuring the HHV, FSI, and WI 

have time delays associated with them. Therefore, the simulation contains time delay 

blocks that delay the results of the HHV and FSI calculations by 1 sampling instant each 

(20 seconds) whereas that of the WI is delayed by three sampling periods (60 seconds). 

Integer delay blocks were used instead of transport delays because they allow their initial 

values to be arrays, thereby enabling the last values of one simulation run to be used as the 

initial values for a next run. If this is not done, the CVs will have constant values for the 

first couple of sampling periods (equal to the number of delays of the integer delay blocks) 

of each simulation (the entire simulation is divided into 10 minute runs in-between which 

the model is updated as discussed in Section 5.3). The delay values were set by 

maximising the correlation between the simulation data and the plant data (discussed in 

Section 3.3.1). The details for Subsystem 4 is shown in Figure 4.4. This subsystem 

implements Equation (3.7) (the gain block multiplies the molar fractions of the 

components with their corresponding HHV values as indicated in Table 3.1). Figure 4.5 

shows the details for Subsystem 5 for the calculation of the SG. The first gain block 

multiplies the molar fractions of the components with their respective molar weights and 

the last divides them by the molar weight of air (see Equation (3.11)). Finally, Figure 4.6 
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depicts the details for Subsystem 6 that calculates the FSI of the fuel gas according to 

Equation (3.9). 

 

Subsystem 7 is used to calculate the HHV, WI, FSI, and SG of each inlet stream for use in 

the iterative linearisation and RTO (Real-Time Optimisation) as discussed in Sections 5.3 

and 5.4. Its detail is shown in Figure 4.7 and indicates that it contains Subsystems 4, 5, and 

6. 
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Figure 4.2. Subsystem 1 detail that converts the volumetric flow rates of the inlet streams to 

molar flow rates of the individual components. 

 

Figure 4.3. Subsystem 2 detail that solves the state equations and calculates the header 

pressure. 
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Figure 4.4. Subsystem 4 detail for the calculation of the HHV. 

 

 

Figure 4.5. Subsystem 5 detail for the calculation of the SG. 

 

 

 

Figure 4.6. Subsystem 6 detail for the calculation of the FSI. 
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Figure 4.7. Subsystem 7 detail for the calculation of the HHV, WI, FSI, and SG of the 

individual inlet gas streams. 

 

4.3 CONCLUSION 

This chapter described details on the capturing of the first principle model described in 

Section 3.3 into the simulation environment, namely Simulink. This allows the model to be 

used in a simulation study to evaluate the efficacy of different control algorithms and to 

gain insight into the behaviour of the process. The next chapter describes the development 

of these control strategies. 
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CHAPTER 5   CONTROL 

5.1 MPC OVERVIEW 

Since the first description of MPC in the late 1970’s by Richalet et al. [18] and its 

application in the refining industry by Shell Oil [19], significant attention has been given to 

the development of this powerful advanced control technique. MPC is a model-based 

control strategy that uses a dynamic model of a system to predict its future behaviour and 

then calculate the optimal control moves that would drive the states/outputs of a system 

(described by a mathematical process model) to their desired values (some reference 

trajectories) in an optimal way (determined by the definition of a performance function), 

and keep them there. This is done by performing optimal control over a finite time interval 

into the future, based on current state/output measurements, implementing the first control 

moves, and repeating the process using the latest measurements (also known as receding 

horizon control). Only the first moves are implemented due to model-process mismatches 

and unmeasured disturbances that cause the predicted state trajectories to differ from the 

actual system behaviour. If perfect process models were available and no disturbances 

were present, all the control moves calculated by the optimal control problem could have 

been enforced before repeating the optimisation problem. In essence, MPC aims to 

optimise the predicted process behaviour by implementing optimal control moves [10]. 

 

Although there are many MPC algorithms, the basic structure of MPC is common to most 

applications. The different algorithms differ according to the model used, the form of the 

cost function, and the way the controller handles noise and disturbances [20]. An overview 

of the commercial technologies available for MPC application in industrial plants can be 

found in [11].  

 

Predicting plant behaviour typically requires solving the state differential equations by 

numerically integrating them over time. The control horizon is generally shorter than the 

prediction horizon resulting in the last couple of prediction intervals (equal to the 

difference between the prediction and control horizon) being subjected to the same 
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constant control moves. Figure 5.1 gives an illustration of a SISO (single input, single 

output) MPC-controlled system after a setpoint change in the controlled output variable. 

The input sequence u  is calculated to get the predicted response, ŷ , as close as possible to 

the reference trajectory while honouring the constraints on u  and .y  The control horizon, 

N , is shorter than the prediction horizon, .M  Therefore, for the balance of the sampling 

instants between the control and prediction horizons, u  will stay constant. If the controller 

stops after calculating the first set of optimal control moves, mismatches between the 

system and the model will be ignored as well as changes in the process and disturbances. 

This problem is solved by implementing the first control moves (e.g. at time 1t , calculated 

with the information available at time 0t ), taking new measurements after one sampling 

interval, recalculating the optimal control vector, and repeating the process. MPC can 

therefore be seen as a repetition of an optimal control algorithm at every sampling interval 

using the latest process measurements.  

 

 Some of the advantages of using MPC include flexibility in formulating the objective 

function and defining the process model, the ability to include equality and inequality 

constraints directly in the control law, accommodation of multivariable systems, and the 

possibility of dealing with large disturbances quickly (due to its inherent use of feed 

forward control). The main drawbacks in using MPC are the computational burden 

associated with it (especially when considering large systems and large control and 

prediction horizons) and the need for a reliable model of the process [20]. The main 

components of MPC are discussed in the following sections. One of the most popular 

applications of MPC is distillation control. Therefore, due to a lack of literature on MPC 

applications on blending processes, the components of MPC are discussed with reference 

to its use in control of distillation columns. 
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Figure 5.1. Illustration of SISO MPC concept (adapted from [6]). 

 

5.1.1 Process model 

The predicted behaviour to be optimised, is based on the model which makes it the most 

important element of the controller, although there will always be plant-model mismatch 

that will influence the accuracy of the predictions. Feedback can be used to compensate for 

these mismatches (although only to a certain extent) [10]. Refer to Sections 3.1 and 3.2 for 

more information on model types. 

5.1.2 Choosing system variables 

This task involves choosing the CVs (or outputs), the MVs (or control inputs), the DVs, 

and the state variables. The number of MVs, DVs, states, and CVs will be responsible for 

the model size and consequently the size of the control problem (apart from whether the 

model will be linear or nonlinear and if robustness will be considered). Choosing the 

wrong variables will affect the controllability and observability of the system.  

 

 
 
 



CHAPTER 5    CONTROL 

 

 

Department of Electrical, Electronic and Computer Engineering 44 

Furthermore, the measurability and measurement latency have to be considered when 

choosing the controlled variables. For example, a process temperature can easily be 

measured with a thermocouple device and the measurement can be available to the control 

software after a negligible delay. An on-line composition measurement on the other hand 

might require expensive analyser equipment and the measurement result might only be 

available after a considerable delay. Therefore, inferentials are often used to predict 

variables (like composition) from other easily obtainable variables (such as pressures and 

temperatures). This is common in processes such as distillation control. For example 

Richalet et al. [18] used key tray temperatures to control the compositions of light and 

heavy end product streams. Product flow rates were changed to compensate for inlet 

temperature disturbances to offer a degree of feed-forward action. Karacan [21] 

manipulated the reflux ratio to control the top product temperature (and therefore the 

purity) of a packed-type distillation column. Grüner et al. [22] aimed to control the top 

(distillate) and bottoms compositions by adjusting the reflux ratio and reboiler heat duty. 

They used the temperatures in the 4th and 60th trays (of a 63 tray column) to estimate the 

compositions of the top and bottom product streams. Kawathecar and Riggs [23] chose the 

primary composition control to be the percentage of impurities in the overhead product of 

an ethyl acetate producing reactive distillation column. They specifically used the 

temperature in the second tray from the top to infer the impurity level in the overhead 

product and the temperature in the fifth tray from the bottom to infer the impurity level in 

the bottom product. They chose these temperatures as their main handles based on data 

obtained from a steady state model of the column which suggested the strongest correlation 

between deviation in product purity and tray temperature deviation. Khaledi and Young 

[24] controlled the percentage conversion and the bottom product purity in a reactive 

distillation column by manipulating the reflux flow rate and reboiler heat duty respectively. 

The reaction percentage was determined by measuring the differential temperature over 

trays 2 to 4. They suggested using a tray temperature close to the bottom tray to infer the 

purity of the bottom product. By graphing the stage temperature profiles at different 

reboiler heat duties, the tray with the highest sensitivity to reboiler duty was determined 
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and used for the inferential. Therefore, a sensitivity study can provide insight into the most 

appropriate variables to use when considering inferential control. 

 

Several tools can be used to determine which variables will be best suited for the intended 

control application. RGA (Relative Gain Array) analysis requires only the steady-state gain 

matrix of the process and gives an indication of the process interactions as well as an idea 

of the most suitable pairing between controlled and manipulated variables [6]. Another 

useful tool is the SVA (Singular Value Analysis) which can help in the selection of the 

CVs, MVs, and DVs, assist with evaluation of the robustness of the system, and (if not 

using multivariable control) give recommended pairing of variables in a multiloop 

configuration [6].  

5.1.3 System identification 

The topic of system identification is covered in Section 3.4. As mentioned, the two main 

categories for models to be used in MPC are first principle (or theoretical) models and 

empirical (or experimental) models. Richalet et al. [18] used a discrete-time FIR (Finite 

Impulse Response) model to describe the relationship between inputs and outputs. The 

output at any given time depends on a linear combination of past inputs. Cutler and 

Ramaker [19] from Shell Oil used a linear step response model which relates output 

changes to a weighted sum of past input changes. 

 

Several authors developed dynamic models from first principles [23,22,25]. Kawathecar 

and Riggs [23] followed this approach to develop a nonlinear model for a reactive 

distillation column. Their model consisted of liquid dynamics equations, component 

material balances, and energy balances (for each tray and the overall process). Grüner et al. 

[22] and Rueda et al. [25] developed detailed column models based on dynamic mass and 

energy balances.  

 

Waller and Böling [26] used a quasi-ARMAX (Auto Regressive Moving Average with 
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eXogenous inputs) modelling scheme which can be seen as a combination of FIR and IIR 

(Infinite Impulse Response) modelling [27]. The identification process was performed by 

applying random magnitude input step changes of random duration. The steps were made 

in both positive and negative directions to ensure that the model accounts for the ill-

conditioning. Simultaneous input changes were also made in the high and low gain 

directions (determined by the ratio of the input signal changes). Their simulations showed 

that the quasi-ARMAX model adequately captured the nonlinearity and directionality of 

the process. In a similar fashion, Venkateswarlu and Reddy [28] used a polynomial ARMA 

(Auto Regressive Moving Average) model and mentioned that the main advantage of these 

models are that they capture the nonlinearities of the process in a structure with linear 

parameters. The model parameters can be estimated by applying efficient parameter 

estimation methods (such as recursive least-squares).  

 

Similar to the approach followed in this study, Khaledi and Young [24] estimated the 

nonlinear process of an ETBE (ethyl tert-butyl ether) reactive distillation column with a 

simple linear first-order-plus-dead-time model. The model was obtained by performing a 

series of step changes in the reflux rate and the reboiler heat duty (the MVs). From the step 

responses, the first order process gains and time constants were determined. Although the 

process showed high nonlinearity over wide MV ranges, it had near linear behaviour over 

the operating range of interest and could therefore be adequately approximated by these 

simple linear models. 

 

Karacan [21] used a polynomial NARIMAX (Nonlinear Auto Regressive Integrated 

Moving Average with eXogenous inputs) model (a type of nonlinear difference equation 

model) to describe the dynamics of a pilot packed distillation column. The empirical model 

was generated using process input-output data. He made several assumptions in modelling 

the system to reduce the complexity of the resulting model and used a recursive Gauss-

Newton prediction error algorithm to determine the parameters for the NARIMAX model. 
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Ou and Rhinehart [29] developed a neural network (NN) model suitable for parallel 

processing. The model consisted of a group of sub-models, each providing prediction for 

one CV at a future point in time. The sub-models were mutually independent, allowing 

them to be evaluated separately using parallel processing. Each of the sub-models was 

created as a separate neural network structure, resulting in a grouped neural network 

(GNN) process model. To compensate for process-model mismatches, the differences 

between the current measured outputs and the values predicted for the current outputs at 

the previous sampling interval were calculated and added to all prediction values in the 

current prediction trajectory. 

 

Alpbaz et al. [30] developed a set of models governed by ODEs for a packed distillation 

column by dividing the height of the column into a number of stages. The process 

dynamics were investigated by making step changes to the reflux ratio (MV) at steady state 

conditions and observing the effect on the top temperature (CV related to the top product 

purity). Again similar to the LTI model for this study, the step-response model was 

expressed as a first-order-plus-dead-time function. 

 

After the model has been developed, it needs to be validated to determine how closely it 

resembles the actual process. This was discussed in Section 3.3.1. 

5.1.4 Constraints and performance index 

After obtaining the mathematical representation, the input, output, and state constraints 

need to be specified and the performance function (also called the cost function, objective 

function, or performance index) formulated. The performance function typically consists of 

errors between the desired output/state trajectories and the predicted values. Additional 

terms may include energy usage in the control signals and outputs, terminal conditions, and 

time dependency. The performance index has to be minimised subject to the system 

constraints. The constraints typically consist of both equality and inequality functions 

describing physical constraints (such as levels having to be greater than zero) and 
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performance constraints (such as an optimal setpoint). In some cases, the rate of change in 

the control and state/output variables are also included in the definition of the performance 

index and constraints, thereby limiting the strain on actuators and process equipment. 

Some constraints will be obvious (such as level constraints) whereas others may be 

difficult to determine. The performance index to be minimised can be written in a general 

form as [31] (see Equations (5.5) to (5.14) for detail on the cost function used in this study) 

      
0

, , , , , ,
Mt

M M MJ y u t S y u t V y u t dt    (5.1) 

where y  is the output vector (the CVs), u  is the input vector (the MVs), M is the 

prediction horizon, S  is the terminal cost (at the end of the prediction horizon), and V  is 

the interval cost. In many cases, the states are penalised rather than the actual outputs. In 

such cases, the penalty function remains the same as Equation (5.1) with y  substituted by 

x , the state vector [31]. The terminal cost function is used if it is important that the system 

reach a certain condition at the end of the prediction horizon (typically within a certain 

range of a setpoint). The interval cost is used where it is not only important to get the 

system to a desired state but also how it gets there. Equations (5.2) to (5.4) indicate the 

form of V  for some popular objectives including minimising time (Equation (5.2)), energy 

(in control or output variables; Equation (5.3)), and deviation from setpoints (Equation 

(5.4)).   

  , , 1V y u t   (5.2) 

  , , · ·TV y u t u R u  (5.3) 

      , , · ·
T

r rV y u t y y Q y y    (5.4) 

 

The move suppression matrix R  allows for the individual weighting of the input signals 

according to their priorities, whereas Q  allows for giving different weights to the output 

signals according to their relevant importance. 
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Richalet et al. [18] defined the performance index as the error between the predicted 

outputs and first order reference trajectories from the current values to the desired 

setpoints. Thereby, the speed of the controller could be set by changing the time constants 

of the reference trajectories. 

 

Cutler and Ramaker [19] implemented a quadratic performance function which penalised 

output deviations from the desired setpoint values. They also included a penalty term for 

the MVs to limit the movement of the control signals, resulting in less aggressive output 

responses. The weighting matrix for the MVs (move suppression matrix) allowed inputs to 

be penalised by different factors. Waller and Böling [26], Kawathecar and Riggs [23], 

Venkateswarlu and Reddy [28], Ou and Rhinehart [29], and Alpbaz et al. [30] followed 

similar approaches. In some cases, a disturbance term was added to the objective function 

over the prediction horizon to compensate for prediction-measurement mismatches at each 

sampling interval [23]. 

 

Abou-Jeyab et al. [32] formulated the objective function using the absolute errors of the 

controlled variables with regard to a reference trajectory minus the reflux flow rate (in 

order to maximise the reflux flow). Upper and lower constraints were imposed on each of 

the controlled and manipulated variables. For the manipulated variables, rate of change 

constraints were also considered. 

 

Wojsznis et al. [33] discussed a three-tier objective function with constraint handling as the 

first priority, maximising economics as the second, and maintaining control as the third. 

They employed dynamic assignment of weights (slack variables) to control and constraint 

variables when it was predicted that the values would exceed their limits. The optimiser 

addressed the basic control functionality objectives in its normal form (with built-in default 

objectives) and addressed constraint and economic objectives using the penalised slack 

variables. The slack variables allowed the performance index to be penalised according to 

the severity of the predicted violations, weighting the errors more as the predicted 
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deviations became larger. This was done by reformulating the inequality constraints on the 

controlled variables into equality constraints by adding the values of the predicted 

violations as slack variables. This incremented the degrees of freedom and helped the 

optimiser to cope with possible unfeasible solutions (such as after large disturbances). The 

optimiser was prevented from using the slack variables in normal operation by making the 

penalty weights for violating constraints significantly higher than the weights on economic 

and control performances. 

5.1.5 Controller parameters 

The choice of controller parameters plays an important role in the performance of the 

controller. The most important parameters for MPC are the control and prediction 

horizons, the sampling (or iteration) time, and the objective function weighting matrices. 

The control horizon refers to the number of future control moves calculated for every 

iteration. The prediction horizon is the number of steps into the future for which the system 

equations are solved to give estimates of the state/output values at these instances. It is 

obvious that these parameters play an intricate role in the execution time of the control 

algorithm.  

 

The execution time of the control algorithm must be less than the required sampling time 

of the system for the controller to be implementable in practice. Every system has a 

minimum sampling time associated with it to ensure proper control. Therefore, the control 

parameters play an important role in the success (or failure) of the controller. If the 

prediction and control horizons are chosen to be too large, the execution time of the 

algorithm (on a particular system) may become larger than the required sampling time of 

the process. 

 

Kawathecar and Riggs [23] used a prediction horizon of 80, a control horizon of 15, and a 

sampling interval of 20 minutes in their control of a reactive distillation column. 

Furthermore, they weighted impurities in the overhead product 10 times heavier than 
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impurities in the bottoms product due to the effect of the overhead impurities on the final 

product. The move suppression factors were chosen to minimise the IAE (Integral 

Absolute Error) from the setpoint of the overhead product based on overhead impurity 

setpoint changes. 

 

Abou-Jeyab et al. [32] used a control horizon of 1 in their formulation of a simplified 

model predictive control algorithm. To determine the prediction horizon, they calculated 

the average time it would take the predicted output trajectories to intersect the setpoint 

trajectories due to a single control vector. The errors were then minimised only at this one 

point in the future. Therefore, only one optimisation problem was solved and one control 

vector calculated every sampling interval. By manipulating the optimisation point 

(prediction horizon), the controller could be made more or less aggressive. Furthermore, 

this algorithm allowed the independent adjustment of the response times for each of the 

controlled variables by tuning the respective intervals at which the specific errors were 

minimised.  

 

Waller and Böling [26] used a control horizon of 3, a prediction horizon of 25, and a 

sampling time of 1 minute. They weighted the bottom composition error slightly higher 

than the distillate composition error with equal weights on the inputs. 

 

Khaledi and Young [24] used a prediction horizon of 20 with a sampling time of 1.5 

minutes and a control horizon of 2, reasoning that a small control horizon will prevent the 

controller from being too aggressive. 

 

Bezzo et al. [34] chose to use a prediction horizon of 60, a control horizon of 15, and a 

sampling time of 5 minutes for control of a middle-vessel continuous distillation column. 

They weighted the distillate and bottom compositions more heavily than the levels and 

maintained loose control over the various levels. 
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5.1.6 Solving the optimisation problem 

Some common formulations of the objective function (or performance index) were 

discussed in Section 5.1.4. Solving the optimisation problem entails minimizing (or 

maximising, depending on the formulation) the objective function by adjusting the set of 

input variables (subject to constraints). 

 

Various techniques are used for solving the optimisation problem. An important factor to 

be considered is whether the system model is linear or nonlinear. There are two main 

approaches to solving the optimisation problem namely sequentially or concurrently 

[23,25]. For sequential solution, a reference control profile is selected and the system 

equations are integrated to obtain a state/output profile. Thereafter, the objective function, 

as well the sensitivities of the objective function to changes in manipulated variables, are 

determined. The optimisation problem is then solved (using these gradients) to calculate an 

updated control profile that will reduce the value of the objective function. These steps are 

repeated to minimise the objective function value. The drawback of the sequential 

approach is that the system equations have to be solved at each iteration of optimisation 

resulting in long execution times. For concurrent solution, the model equations are 

appended to the optimisation problem in the form of equality constraints (algebraic form) 

and the optimality and constraints are therefore treated simultaneously. The optimisation 

problem is then solved subject to these equality constraints as well as constraints on the 

controlled, manipulated and state variables. The concurrent method will reduce the time 

spent on numerical integration at the cost of a larger optimisation problem. Therefore, 

there is a trade-off between these approaches. Generally, for large problems (involving 

complex models and large prediction horizons) the concurrent solution is preferable 

whereas the sequential method may be chosen for smaller problems with few states and 

small prediction horizons. Some of the most common optimisation techniques include 

linear programming (LP), quadratic programming (QP), sequential quadratic programming 

(SQP), and nonlinear programming (NLP). 
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Cutler and Ramaker [19] calculated the optimal control vectors by solving a least squares 

problem. Their use of a step response model allowed future output variations to be written 

as a linear combination of future input moves. The matrix relating the inputs and the 

outputs is known as the dynamic matrix. Therefore, their control algorithm is known as 

DMC (Dynamic Matrix Control). 

 

Kawathecar and Riggs [23] solved the system equations for their nonlinear model using the 

Euler method with 0.5s time steps (compared to a 20 minute sampling interval). They 

formulated the optimization problem as a nonlinear programming (NLP) problem. They 

used the concurrent approach for performing optimisation and applied orthogonal 

collocation on finite elements to convert the ODEs (Ordinary Differential Equation) into a 

set of algebraic equations to be used as equality constraints. 

 

Abou-Jeyab et al. [32] managed to perform a single linear programming solution at each 

sampling interval with their simplified MPC algorithm. As mentioned in Section 5.1.5, 

they calculated an average time at which the predicted response for a single control move 

would intersect the setpoint trajectory (used as the prediction horizon) and minimised the 

error at only that point in the future. They used the result as the only control vector 

calculated at each sampling interval (i.e. a control horizon of 1), thereby reducing the size 

of the optimisation problem drastically. 

 

Grüner et al. [22] made use of asymptotically exact input/output linearisation for aiding in 

solving the system equations. The control law required that the state of the plant be known, 

which led to the development of an observer to estimate the state of the plant according to 

simple temperature measurements. The input/output linearisation involved differentiating 

the output equations with regard to time until the expression explicitly involved at least one 

linear input component. The differentiated output equations were then linearised by 

approximation with a finite differences approach. A new artificial input was then 

introduced into the equation (together with input gain) that forced a linear (and decoupled) 
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behaviour from this input to the output. Therefore, by linearising the output equations, 

linear optimisation techniques could be applied instead of using nonlinear optimisation. 

 

Venkateswarlu et al. [28] investigated the use of stochastic algorithms, including genetic 

algorithms (GAs) and simulated annealing (SA) for nonlinear optimisation as an 

alternative to sequential quadratic programming (SQP). These stochastic techniques were 

combined with a polynomial-type nonlinear empirical process model to arrive at their 

modified NMPC algorithms, namely GANMPC and SANMPC. The attractiveness of using 

GAs and SA lies in the ability to deal with constrained, nonlinear, and non-convex 

optimisation problems without having to calculate the model derivatives. Furthermore, 

these algorithms have the ability to find solutions in close proximity to the global minima, 

and not to get stuck at local minima. Their choice of a polynomial input-output model 

provided one-step-ahead prediction. Therefore, the prediction trajectory to be optimised 

could be calculated by cascading the model with itself. 

 

Diehl et al. [35,36] proposed a real-time optimisation algorithm based on direct multiple 

shooting (falling under the class of concurrent optimisation). In this optimisation scheme, 

the entire prediction horizon is considered and successive linearisation along optimal 

trajectories is performed. The algorithm can be performed on systems described by 

differential algebraic equations (DAE) and subject to inequality constraints. Direct 

multiple shooting is a way of converting a continuous time system into discrete time for 

use in digital systems. The real-time optimisation scheme starts by solving a Newton-type 

optimisation problem over the entire prediction horizon, implements the first control move, 

and proceeds to solving the next optimisation problem, considering only the rest of the 

original prediction horizon. Therefore, the size of the optimisation problem decreases with 

every iteration until the end of the prediction horizon is reached where after a new 

prediction horizon is considered. This method is known as receding horizon control and 

allows rapid response to disturbances. In a similar discussion, Gerdts [37] formulated a 

direct shooting method for numerical solution of optimal control problems for systems 
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described by higher-index DAEs subject to state constraints. The direct shooting method is 

described as a way of casting a continuous-time optimal control problem into a discrete-

time finite-dimensional nonlinear programming (NLP) problem. The problems 

encountered when using numerical integration schemes to solve DAE systems include ill-

conditioning, instability, convergence problems, and calculation of consistent initial 

values.  

 

Karacan [21] used orthogonal collocation on finite elements employing Legendre 

polynomials for solution of the NARIMAX model equations. This method implies dividing 

the column into a number of elements and applying the orthogonal collocation to each 

element separately. Thereafter, the model partial differential equations are solved using 

these finite elements. 

 

Ou and Rhinehart [29] formulated their grouped neural network model in such a way that 

the predicted process values were calculated directly using past inputs and outputs and the 

future guess inputs. Therefore, there was no need for numerical integration of the process 

model. 

5.2 MPC DESIGN FOR FUEL GAS CONTROL 

The interactive and multivariable nature of the fuel gas blending system makes it an ideal 

candidate for MPC. As mentioned, the MVs for this process were chosen to be the 

volumetric flow rates (kNm3/h) of the six inlet gas streams and the CVs are the HHV, WI, 

FSI, and pressure. No measured disturbances (DVs or FF variables) were included in the 

model. The LTI model described in Section 3.4.2 was used as an initial model in the MPC 

algorithm to control the plant CVs within their specified ranges while attempting to 

minimise the operating cost according to the relative costs of the inlet streams. The relative 

costs are given in Table 5.1. The MPC was designed using the Model Predictive Control 

Toolbox in Matlab [15]. The Toolbox includes the ability to add an MPC function block to 
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a Simulink model and link the block to an MPC object (created with the MPC Toolbox). 

This approach was followed and is indicated in Section 4.2, specifically in Figure 4.1. The 

MVs and CVs are set in the MPC Toolbox utility (as shown in Figure B.4). This will 

happen automatically if the LTI object is configured correctly.  

 

Table 5.1. Relative costs of inlet streams [cost/kNm3]. 

Feed stream Relative cost 

NG 0.678 

RG 0.254 

H2 0 

N2 0.068 

TG1 0 

TG2 0 

 

The average settling time for the HHV, WI, and FSI is about 12 minutes. This can be 

determined by taking an average time constant of 1/ 25*60 2.6    minutes and then 

calculating the settling time 5. 12st    minutes [6]. The initial values for the prediction 

and control horizons were chosen according to the proposed guidelines in [6]. This resulted 

in a control horizon of 5 and a prediction horizon of 44 (12 (settling time in minutes) times 

3 (three samples per minute) plus 5 (the control horizon) plus 3 (the maximum dead-time 

in samples)). These values did not give the desired results. The values were changed by 

trial and error to arrive at a final prediction horizon of 39 samples (to cover the settling 

time (36 samples) plus largest dead-time (3 samples)) and a control horizon of 3 sampling 

intervals (to prevent the controller from being too aggressive). Furthermore, blocking of 

the control horizon was used to distribute the control moves more evenly over the 

prediction horizon. A block is one or more successive sampling periods over which the 

MVs are kept constant [15]. The blocking parameters were selected to calculate control 

moves at 2, 6, and 12 sampling intervals (as shown in Figure B.5). 
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Weights were added to the inputs in relation to the relative costs of the streams (given in 

Table 5.1) with identical rate weights. The weights are shown in Table 5.2. The MV 

weights penalise the deviation from nominal values (which are initially set to [0 0 5 0 30 

30]). The outputs were given weights (shown in Table 5.3) for deviations from the nominal 

values which were chosen to be mid-range (i.e. HHVnominal = 17.25, WInominal = 26, 

FSInominal = 42.5, and Pnominal = 2100) for the initial two cases (without real-time 

optimisation as discussed in Section 5.4). The weights were chosen according to priority of 

the CVs where the highest priority is given to HHV and the lowest to pressure. The weight 

settings are shown in Figure B.6. 

 

Table 5.2. Weights on MVs. 

MV Weight Rate weight 

NG 67 1 

RG 25 1 

H2 0 1 

N2 7 1 

TG1 0 1 

TG2 0 1 
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Table 5.3. Weights on CVs. 

CV Weight 

HHV 100 

WI 80 

FSI 70 

P 20 

 

 

In addition to the weights, constraints were put on the inputs and outputs with moderate 

constraint softening on the CVs. The input constraints were chosen to be representative of 

the availability of each stream and are shown in Table 5.4. The configuration of the 

constraints and constraint softening are shown in Figure B.7 and Figure B.8. 

 

Table 5.4. Limits on MVs [kNm3/h]. 

MV Low limit High limit Units 

NG 0 15 kNm3/h

RG 0 20 kNm3/h

H2 0 5 kNm3/h

N2 0 5 kNm3/h

TG1 0 30 kNm3/h

TG2 0 30 kNm3/h

 

The output constraints correspond to the controlled variable ranges shown in Table 2.1. 

The tuning settings (including prediction horizon, control horizon, weights, and rate 

constraints) were derived by trial and error (using the recommended guidelines from [6]). 

The form of the cost function is [15] 
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where  |u k i k   is the input change vector at time k i  based on the information 

available at time k , m  is the control horizon, p  is the prediction horizon,   is a slack 

variable,   is the weight on the slack variable,  r k is the output reference vector at time 

k , y
jw , u

jw , and u
jw  are weighting matrices for the outputs, input increments, and the 
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inputs, yn  is the number of outputs, and un  is the number of inputs. The vectors 
minju , 

minju , 
minjy , 

maxju , 
maxju , and 

maxjy  are the minimum and maximum values for the inputs, 

input changes, and outputs whereas 
min

u
jV , 

min

u
jV  , 

min

y
jV , 

max

u
jV , 

max

u
jV  , and 

max

y
jV  are the ECR 

(Equal Concern for Relaxation) vectors that govern how much constraint violations can be 

tolerated [15]. 

 

The way the MPC handles noise and disturbances is also specified (as shown in Figure B.9 

and Figure B.10). The MPC GUI utility was used for the initial design of the MPC object 

which was linked into the MPC block in Simulink. All subsequent changes to the model 

and to the MPC object were done though Matlab commands (see Addendum A: Matlab 

code). These include changes to the gains of the LTI model used by the MPC, changes to 

the nominal MV and CV values, and updating of ideal resting values (steady-state targets) 

on MVs. 

5.3 ITERATIVE LINEARISATION 

The MPC algorithm used for the control is designed for linear plants. The Fuel Gas system 

however is nonlinear which reduces the performance of the MPC when moving away from 

the design operating region. There are several possibilities for dealing with nonlinearities. 

One option is to use nonlinear MPC which requires the use of a nonlinear model and 

optimiser (which is more complex and computationally intensive than the linear case). 

Another option is to continuously linearise the plant at the current operating point [38]. 

The latter is the technique followed in this study and results in the control scheme 

becoming a variant of nonlinear MPC (NMPC). The iterative linearisation is performed by 

calculating the gains of the Transfer Function Matrix (TFM) at every 30th iteration (every 

10 minutes) and updating the model used by the MPC accordingly [12]. The compositions 

of the inlet streams on the plant are measured by the same mass spectrometer mentioned in 

Section 3.3.1 which samples every 10 minutes. Therefore, the linearisation frequency was 

chosen to coincide with this sampling frequency. The initial TFM is given in Table 3.3. 
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The gain calculations are discussed in the following sections. The linearisation involves 

normalising the TFM, updating it with the newly calculated gain values, and updating the 

MPC to use the new TFM. The transient behaviour of the plant does not change 

significantly at different operating regions. Therefore, only the gains of the TFM are 

updated, leaving the dynamic parameters (the time constants and delays) unchanged. 

 

The steady state values for the controlled variables can be calculated directly from the 

volumetric flow rates and compositions of the inlet streams. Taking the derivatives of these 

equations with regard to the individual inlet streams give the instantaneous gains. These 

gains can then be used to update the model used in the MPC to provide a form of iterative 

linearisation. The gain calculations are described in the next sections [12,13,39]. 

5.3.1 Heating value 

The fuel gas heating value is calculated as 
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where iF  and 
iFHHV  are the volumetric flow rate ( 3kNm /h ) and heating value ( 3MJ/Nm ) 

of the thi  inlet stream and 
1

6

i

T iF F


  is the total inlet volumetric flow rate. The gains are 

then calculated as  
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5.3.2 Wobbe index 

The Wobbe index is calculated as (same as Equation (3.8))  
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where fgHHV  is given in Equation (5.15) and fg  is the relative density of the fuel gas, 

calculated with regard to inlet flow rates as 
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where 
iF  is the relative density of inlet gas .i  Taking the  derivative of fgWI  with regard 

to iF  gives  
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with fg

i

HHV

F




 given in Equation (5.16) and  
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5.3.3 Flame speed index 

The flame speed formula is (also shown in Equation (3.9)),  
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with the values for iA  and is  given in Table 3.1. To calculate the FSI in terms of the inlet 

volumetric flow rates, the molar components in the fuel gas are calculated using 
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where ,Fj iy  is the molar fraction of component i  in inlet stream j . The derivative can then 

be determined as 
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where ,fg xy  refers to the molar fraction of combustible component x  in the fuel gas and 

,fg kn  is the molar fraction of inert component k  in the fuel gas. The individual terms in 

Equation (5.23) are given by 
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5.4 REAL-TIME OPTIMISATION (RTO) 

5.4.1 Literature review 

In order to push the operating cost of a process towards its true minimum (or maximise 

operating profit) as operating conditions change (such as changes in feed and product 

costs, variable equipment availability, and process disturbances), an online economic 

optimisation technique is employed on top of MPC known as real-time optimisation (RTO) 
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[6,14,38,40]. Most RTO applications involve the use of nonlinear steady-state models that 

are updated with plant parameters such as product compositions [41]. To increase process 

economics, efficiency, and product quality, real-time optimisation (RTO) has become an 

important topic in the control industry (with its relevance already noted in the early 1980’s 

[14]). RTO is applied on top of one or more unit-based multivariable controllers and 

strives to achieve operation near the economic optimum of the system as a whole by 

recalculating the optimum operating conditions on a regular basis [6]. Typically, RTO is 

based on a steady-state model of the plant and calculates the ideal target values for CVs 

and MVs to reach the steady-state optimal (while honouring constraints). The steady-state 

RTO calculations are performed at a lower frequency than the MPC execution interval 

(due to typically long settling times on processes which limits the frequency of RTO 

execution) [40,41]. It is also possible to apply dynamic RTO at a lower frequency than the 

execution of the MPC (though at a higher frequency possible with steady-state RTO). This 

allows for optimisation at a point in the future which is not necessarily the steady-state 

point. One approach is to use a reduced order dynamic model of the plant that is less 

sensitive to high frequency disturbances and more focussed on longer term behaviour 

(which is more applicable to plant economics and unit interaction) [40].  

5.4.2 Implementation 

The optimal steady-state targets for the MVs and the CVs as well as the ideal resting 

values for the MVs were calculated using a constrained nonlinear optimiser (the 

‘FMINCON’ function in Matlab) and the nonlinear steady-state model discussed in section 

5.3. The code is shown in Section A.6. The use of the nonlinear model for the RTO results 

in the control scheme being another variant of nonlinear MPC.  

5.5 CONCLUSION 

In this chapter, a brief overview of MPC was given after which three controllers were 

developed, starting with a base case MPC strategy that uses a constant LTI model. 

Thereafter, iterative linearisation was introduced that calculates the model gains at 
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different operating points from a nonlinear steady-state model and adjusts the model used 

by the controller accordingly. This results in a form of nonlinear MPC using a linear MPC 

algorithm. Finally, the concept of real-time optimisation was discussed that calculates the 

true optimal operating cost and the associated MV and CV values and writes these values 

as targets to the controller. This is done by using a nonlinear constrained optimiser together 

with the nonlinear steady-state model discussed in Section 5.3. In the next chapter a 

simulation study is conducted that evaluates the performance of these controllers amid 

several process disturbances. 
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CHAPTER 6   SIMULATION AND RESULTS 

6.1 INTRODUCTION 

The controller was tested in a simulation study (using the nonlinear model discussed in 

Section 3.3 to represent the plant) to demonstrate its ability to control the CVs within limits 

in the presence of noise (the discharge flow signal has a 2% peak to peak noise) and 

disturbances, while attempting to minimise operating cost. For simplicity, actuator 

dynamics were not considered and perfect flow manipulation assumed. Three cases were 

considered. The first uses only the initial LTI model and is referred to as the base case 

MPC. The second uses iterative linearisation to update the gains of the LTI model. The 

third utilises RTO in combination with iterative linearisation. 

 

Two demand disturbances (changes in the total discharge) were introduced after 1 hours 

and 3 hours respectively, each of a 3 3kNm /h  magnitude. A composition disturbance was 

also introduced in the NG stream at time 2 hours, changing the composition from [CH4, 

C2+, H2, N2, CO, CO2] = [0.911, 0.068, 0.0, 0.015, 0.0, 0.006] to [0.841, 0.088, 0.01, 

0.035, 0.01, 0.016]. The composition of the Tail Gas 1 stream was changed at time 4 hours 

from [CH4, C2+, H2, N2, CO, CO2] = [0.055, 0.01, 0.62, 0.025, 0.26, 0.03] to [0.075, 0.04, 

0.57, 0.025, 0.26, 0.03]. This compositional change causes a change in the HHV of TG1 

from 13.98 to 17.98 MJ/Nm3 which causes the gain of the model from TG1 to HHV to 

change sign (from negative to positive). This illustrates the effectiveness of the iterative 

linearisation. When a constant LTI model is used, the controller does not detect the change 

in composition and continues with the same inlet flow rates (not utilising the TG1 to reduce 

the cost as it could do). When the gains are updated, the controller detects that the HHV of 

the TG1 stream is higher and can therefore be exchanged for some NG, reducing the cost. 

6.2 BASE CASE MPC VERSUS MPC WITH ITERATIVE LINEARISATION 

The results of using a constant LTI model (the model given in Table 3.3) are shown in 

Figure 6.1 to Figure 6.4. The results for the iterative linearisation case are shown in Figure 
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6.6 to Figure 6.8. The operating costs (calculated from the flow rates and normalised costs) 

for the two cases are shown in Figure 6.5 and Figure 6.9. The same controller was used in 

both cases (identical tuning settings). 

 

The results illustrate that a seemingly small change in the composition of the feed streams 

can cause a significant change in the optimal operating costs. In this case, an increase in 

the HHV of Tail Gas 1 allows for a reduction in the NG usage which gives rise to the 

significant cost reduction. The total cost (the operating cost integrated over the 6 hour 

period) for the case of iterative linearisation is 0.2172 units whereas the cost for the 

constant LTI model is 0.2501 units (a 13.15% cost reduction for this simulation). 

Considering the composition change at 4 hours alone, the operating cost is reduced from 

about 0.0415 to 0.0225 units per 3kNm  (a reduction of 45.78%). The true optimal steady 

state costs before and after this disturbance are 0.0325 and 0.0 units respectively 

(calculated using a nonlinear optimiser with the steady state equations from Section 5.3 

and shown as dashed lines in Figure 6.5 and Figure 6.9), with an ideal total cost of 0.1294 

units. This indicates that, although the iterative linearisation improves performance, it still 

falls short of the true optimal solution. This is mostly due to the formulation of the 

optimisation problem in the MPC algorithm so as to provide adequate dynamic control. 

The mid-range targets on the CVs, the rate weights on the MVs, and the weights on the 

CVs are examples of parameters necessary for proper dynamic performance, which also 

have an effect on the ability to reach the theoretical optimal cost. The next section provides 

a solution to this problem by introducing real-time optimisation (RTO). 
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Figure 6.1. NG, RG, and H2 flows for the constant LTI model. The solid lines are the MV 

values with the dashed lines indicating the limits. 
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Figure 6.2. N2, TG1, and TG2 flows for the constant LTI model. The solid lines are the MV 

values with the dashed lines indicating the limits. 
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Figure 6.3. Controlled variables for the constant LTI model. The solid lines are the CV values 

with the dashed lines indicating the limits. 
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Figure 6.4. Header discharge flow. 

 

 

Figure 6.5. Operating cost and ideal optimal cost (dashed line) for the constant LTI model. 
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Figure 6.6. NG, RG, and H2 flows for the iterative linearisation case. The solid lines are the 

MV values with the dashed lines indicating the limits. 
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Figure 6.7. N2, TG1, and TG2 flows for the iterative linearisation case. The solid lines are the 

MV values with the dashed lines indicating the limits. 
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Figure 6.8. Controlled variables for the iterative linearisation case. The solid lines are the CV 

values with the dashed lines indicating the limits. 
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Figure 6.9. Operating cost (solid line) and ideal optimal cost (dashed line) for the iterative 

linearisation case. 

 

6.3 REAL-TIME OPTIMISATION RESULTS 

As discussed in Section 5.4, to get closer to the theoretical optimum, the ideal steady-state 

values for the MVs must be calculated and pursued by the controller. These steady-state 

values are calculated by means of a constrained nonlinear optimiser using the nonlinear 

steady-state model stated in Section 5.3 (at a rate lower than the execution of the MPC). 

The optimiser also provides the steady-state CV values resulting from the optimal MV 

values. The ideal MV values are written as ideal MV resting values (steady-state targets) to 

the MPC and as nominal values for the MVs. The ideal CV values become the setpoint 

values in the MPC (different from the mid-range values previously used).  

 

This results in the controller approaching the true optimal values much more effectively 

than its previous counterpart. Figure 6.10 to Figure 6.12 show the results. The effect is a 

reduction in the total cost from 0.2172 to 0.1369 units (a reduction of 36.97%). As 

indicated in Section 6.2, the ideal optimal cost is 0.1294 units. Therefore, introducing the 

RTO enables operation close to optimal cost (also evident from Figure 6.13).  
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From Figure 6.12 it is clear that the dynamic control is still excellent with hardly any 

constraint violations. The RTO drives one or more of the CVs to their limits in order to 

reach the lower operating cost. Although a steady-state RTO approach was followed in this 

study, it is also possible to apply a dynamic RTO strategy (using the dynamic model 

discussed in Section 3.3) which will allow for a higher frequency of optimisation [40]. 

Table 6.1 compares the average costs per hour interval for the three cases and the optimal 

steady-state cost. These values are calculated by adding the cost values in each one hour 

interval and dividing by the number of samples in the interval. 

 

 

Table 6.1: Time averaged costs per 1 hour interval for the constant LTI case, the iterative 

linearisation case, the RTO case, and the steady-state optimal values. 

Interval Constant 

LTI 

Iterative 

linearisation 

RTO Steady-state 

optimal 

0 – 1h 0.0411 0.0411 0.0324 0.0322 

1 – 2h 0.0422 0.0430 0.0330 0.0322 

2 – 3h 0.0425 0.0433 0.0327 0.0325 

3 – 4h 0.0415 0.0413 0.0326 0.0325 

4 – 5h 0.0415 0.0259 0.0060 0.0000 

5 – 6h 0.0415 0.0225 0.0002 0.0000 
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Figure 6.10. NG, RG, and H2 flows with RTO. The solid lines are the MV values with the 

dashed lines indicating the limits. 
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Figure 6.11. N2, TG1, and TG2 flows with RTO. The solid lines are the MV values with the 

dashed lines indicating the limits. 
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Figure 6.12. Controlled variables with RTO. The solid lines are the CV values with the 

dashed lines indicating the limits. 
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Figure 6.13. Operating cost and ideal optimal cost (dashed line) with RTO. 

6.4 CONCLUSION 

In this chapter, three controllers were evaluated in a simulation study to evaluate its ability 

to provide dynamic control during process disturbances while attempting to minimise the 

operating cost. The base case provided good dynamic control and prevented constraint 

violations but failed to adapt to feed composition changes that allow cost reduction. The 

introduction of iterative linearisation improved matters somewhat, allowing the controller 

to detect feed composition changes and reduce cost while still providing good dynamic 

control. Finally, the use of real-time optimisation drives the process close to the theoretical 

optimal cost without compromising dynamic control performance.  
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CHAPTER 7   CONCLUSION 

7.1 RESULTS AND DISCUSSION 

This dissertation described the modelling and model validation of an industrial fuel gas 

header as well as a simulation study of three different Model Predictive Control (MPC) 

strategies for controlling the system while minimising the overall operating cost. 

 

The first principle model provides an adequate representation of the system to gain insight 

in the behaviour of the fuel gas blending header for simulation purposes. The correlations 

between the simulation and plant values indicate that the assumptions made (of ideal gas 

and perfect mixing) are reasonable.  

 

Despite the nonlinear and interactive nature of the fuel gas system, MPC is very effective 

in controlling the outputs within the specified ranges while minimising the operating cost. 

The controller is able to handle significant disturbances in demand and fluctuation in feed 

compositions. Furthermore, the iterative linearisation allows the MPC to compensate for 

model changes resulting from feed flow and composition changes. Introducing RTO 

further increases the MPC performance, allowing the operating cost to approach the ideal 

optimal cost while providing adequate dynamic control.  

 

For this process, the CVs are allowed to be at the limits considering that small, short 

duration violations of the constraints can be tolerated (the constraints are not hard). In 

processes where the constraints may not be violated at all, safety margins can be included 

to prevent the controller from driving the CVs right to their limits. 

7.2 RECOMMENDATION FOR FUTURE WORK 

In this work, three MPC algorithms were developed and tested. The first is a base case 

MPC that employs a constant model and constant tuning settings. The second is the base 

case with added iterative linearisation which allows the controller to adjust the model gains 
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at different operating points to compensate for the nonlinearities of the process. The final 

MPC is the base case with added iterative linearisation with the addition of real-time 

optimisation which uses a nonlinear constrained optimiser and nonlinear steady-state 

model to calculate the CV and MV values to drive the process to its steady-state economic 

optimal. The latter two approaches, although using a linear MPC algorithm, are forms of 

nonlinear MPC. Therefore, in future work, other forms of nonlinear MPC can be used and 

evaluated in an attempt to further improve performance. Other multivariable control 

strategies may also be evaluated. 

 

The LTI model used in the controller uses first-order-plus-dead-time models and 

integrators to describe the process (see Table 3.3) which result in the fit given in Table 3.4. 

Other model forms may be evaluated in an attempt to achieve better fit and improve 

controller performance. 

 

The simulation study uses some typical conditions and disturbances to evaluate the 

controller’s performance. These include composition changes in the NG and TG1 streams 

and a demand disturbance downstream of the header. Other scenarios can be included to 

further evaluate performance such as changes in the availability of one or more of the inlet 

streams, actuator or transmitter failures on the inlet streams, analyser failures, etc. The 

simulation model can be further adjusted to include the actuator and sensor dynamics to 

evaluate the effect of these on the controller performance.  
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ADDENDUM A: MATLAB CODE 

A.1  SYSTEM IDENTIFICATION (HEADERCONTROL.M) 

%% -----------------------------------------------------------------------% 
%                         RUN SIMULATION FOR SID 
%-------------------------------------------------------------------------% 
  
 
  
    Ni_init = [16.0974    1.2514   43.6239    3.6697   11.5725    4.7168]; 
            % Initial number of moles of each component 
        Feed = xlsread('Test\SID_flows.xls'); 
    P_downstream = xlsread('Test\P_downstream.xls'); 
    F_discharge = xlsread('Test\F_discharge_SID.xls'); 
     
    HHVi=16.5833; 
    WOBBEi=ones(1,3)*25.884; 
    FSi=41.1172; 
     
    sim('Gas_Blending_SID', [0 18]) %Rub simulation for SID steps 
  
    SIDCVs = figure; 
    set(SIDCVs,'Position',[300,300,500,500]) 
     
    subplot(3,1,1); 
    plot(WOBBE.time, WOBBE.signals.values,'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New 
  Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('WI [MJ/Nm^3]'); 
    title('Wobbe Index'); 
    xlim([0 18]);ylim([24.5 27]); 
     
    subplot(3,1,2); 
    plot(FS.time, FS.signals.values,'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New 
  Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('FSI'); 
    title('Flame Speed Index'); 
    xlim([0 18]);ylim([39 45]); 
     
    subplot(3,1,3); 
    plot(HHV.time, HHV.signals.values,'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New 
  Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('HHV [MJ/Nm^3]'); 
    title('Higher Heating Value'); 
    xlim([0 18]);ylim([16.5 18.5]); 
     
    SIDP = figure; 
    set(SIDP,'Position',[300,300,500,200]) 
    plot(P.time, P.signals.values, 'k')  
    set(get(gcf,'CurrentAxes'),'FontName','Times New  
 Roman','FontSize',10); 
    xlabel('Time [h]'); 
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    ylabel('P [kPa]'); 
    title('Header Pressure'); 
    xlim([0 18]);ylim([800 2200]); 
     
    SIDMVs1 = figure; 
    set(SIDMVs1,'Position',[300,300,500,500]) 
    subplot(3,1,1); 
    plot(P.time, Feed(:,2),'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New  
 Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('Flow [kNm^3/h]'); 
    title('Natural gas (NG)'); 
    xlim([0 18]);ylim([1.5 3.5]); 
  
    subplot(3,1,2); 
    plot(P.time, Feed(:,3),'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New  
 Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('Flow [kNm^3/h]'); 
    title('Reformed Gas (RG)'); 
    xlim([0 18]);ylim([-0.5 1.5]); 
  
    subplot(3,1,3); 
    plot(P.time, Feed(:,4),'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New  
 Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('Flow [kNm^3/h]'); 
    title('Hydrogen (H_2)'); 
    xlim([0 18]);ylim([-0.5 1.5]); 
  
    SIDMVs2 = figure; 
    set(SIDMVs2,'Position',[300,300,500,500]) 
    subplot(3,1,1); 
    plot(P.time, Feed(:,5),'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New  
 Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('Flow [kNm^3/h]'); 
    title('Nitrogen (N_2)'); 
    xlim([0 18]);ylim([-0.5 1.5]); 
  
    subplot(3,1,2); 
    plot(P.time, Feed(:,6),'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New  
 Roman','FontSize',10); 
    xlabel('Time [h]'); 
    ylabel('Flow [kNm^3/h]'); 
    title('Tail Gas 1 (TG_1)'); 
    xlim([0 18]);ylim([5.5 7.5]); 
  
    subplot(3,1,3); 
    plot(P.time, Feed(:,7),'k'); 
    set(get(gcf,'CurrentAxes'),'FontName','Times New Roman',  

'FontSize', 10); 
    xlabel('Time [h]'); 
    ylabel('Flow [kNm^3/h]'); 
    title('Tail Gas 2 (TG_2)'); 
    xlim([0 18]);ylim([18.5 20.5]); 
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%-------------------------------------------------------------------------% 
%                                   SID 
%-------------------------------------------------------------------------% 
%{ 
- Retrieve data by DAT.y, DAT.u and DAT.Ts. 
- Select portions by DAT1 = DAT(1:300) etc. 
  
- Properties can be set and retrieved by SET and GET or by subfields:  
       GET(DAT,'OutputName') or DAT.OutputName 
       SET(DAT,'OutputName','Current') or DAT.OutputName = {'Current'}; 
- Type SET(IDDATA) for a complete list of properties. 
- DAT(SAMPLES,OUTPUTS,INPUTS) to select submodels/intervals 
      ex. idplot(IODAT(1:540,'HHV','NG')) 
- Can dtrend whole iddata object. 
- Use advice(DAT) to get some advice on data. 
%} 
  
    Y = [HHV.signals.values, WOBBE.signals.values, FS.signals.values, ... 
        P.signals.values]; 
    U = Feed(:,2:7); 
    Ts = 1/180;                 % Sampling time of 20s 
    IODAT = iddata(Y,U,Ts);     % Create IDDATA object 
    set(IODAT, 'OutPutName', {'HHV','WOBBE','FS','P'}, 'InputName', ... 
        {'NG','RG','H2','N2','T1','T2'}, 'Domain', 'Time', 'Name', ... 
        'Fuel Gas', 'TimeUnit', 'Hr'); 
    IODATdet = dtrend(IODAT);   % Remove means 
     
  
%{ 
- Fit 1st order plus deadtime models to plant 
The reason for fitting tf models in stead of ARX models is that, 
when transforming ARX models from SID objects to LTI objects 
required for use in MPC, the resulting converted models are 
untidy, high order models which cause problems in the MPC 
functions due to poles close to the origin etc. By fitting 
fixed-structure tf models, the converted LTI models are 
identical in structure. 
%} 
  
    %- 1st order plus DT structures 
    G1struc = idproc({'P1D','P1D','P1D','P1D','P1D','P1D'}, ... 
        'Td',{'value',[1/180 1/180 1/180 1/180 1/180 1/180]},... 
            'Td',{'status','fixed', 'fixed', 'fixed', 'fixed', 'fixed', 
'fixed'}); 
    G1 = pem(IODATdet(:,1,:),G1struc); 
     
    G2struc = idproc({'P1D','P1D','P1D','P1D','P1D','P1D'},... 
        'Td',{'value',[1/60 1/60 1/60 1/60 1/60 1/60]},... 
            'Td',{'status','fixed', 'fixed', 'fixed', 'fixed', 'fixed', 
'fixed'}); 
    G2 = pem(IODATdet(:,2,:),G2struc); 
         
    G3struc = idproc({'P1D','P1D','P1D','P1D','P1D','P1D'},... 
        'Td',{'value',[1/180 1/180 1/180 1/180 1/180 1/180]},... 
            'Td',{'status','fixed', 'fixed', 'fixed', 'fixed', 'fixed', 
'fixed'}); 
    G3 = pem(IODATdet(:,3,:),G3struc); 
         
    G4struc = idproc({'P1','P1','P1','P1','P1','P1'}); 
    G4 = pem(IODATdet(:,4,:),G4struc); 
     
%- Convert SID model to LTI object for use in MPC toolbox. 
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%- 'min' discards the additional noise models 
%  created by the SID toolbox. 
    G1tf = tf(G1,'min'); 
    G2tf = tf(G2,'min'); 
    G3tf = tf(G3,'min'); 
    G4tf = tf(G4,'min'); 
     
    Gtf = [G1tf; G2tf; G3tf; G4tf];  
 
 

A.2  GAIN CALCULATIONS (HEADERCONTROL.M) 

%-------------------------------------------------------------------------% 
%%                            GAIN CALCULATIONS 
%-------------------------------------------------------------------------% 
%{     
 For gain scheduling, it will be necessary to have models of unity gain 
 and multiply them with the calculated gains at each execution. To get  
 a tf object to unity gain requires some work.  
%} 
  
% Load initial state values for when the simulation is set not to 
% use the initial state vector xInitial. 
HHVi= 16.59 ; 
WOBBEi= [25.81 25.81 25.81]; 
FSi= 41.03; 
Ni_init = [14.1355    0.9777   48.2353    3.9576    8.4169    5.2088]; 
  
% Create initial gain matrix.  
Goriginal = ones(3,6); 
  
% Normalise the transfer function matrix (TFM) 
for j=1:3 
for k=1:6 
    [Gn, Gd] = tfdata(Gtf(j,k),'v'); 
    Gp = Gn(2)/Gd(2); % Calculates the ss gain. 
    Gtf(j,k) = Gtf(j,k)/Gp; % Normalise. 
    Goriginal(j,k)=Gp; % Save gain in initial matrix. 
end 
end 
  
% Add unity gain multipliers for pressure models. 
Ginitial = vertcat(Goriginal,[1 1 1 1 1 1]);  
 

A.3  CONTROL AND OPTIMISATION (HEADERCONTROL.M) 

%% ------------------------------------------------------------------------ 
%                               MPC 
%  -----------------------------------------------------------------------% 
  
%% Initialise simulation 
% Load the initial state vecotr which includes values for the dead-times 
% and initialisation values for the MPC object. 
  
% Simulation type   - 3 for full with SS optimisation 
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%                   - 2 for model update only 
%                   - 1 for constant LTI model 
SimType = 1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Load teh initial state vector 
if SimType == 3 
    load xInit_better;  
elseif (SimType == 2) | (SimType == 1) 
    load xInit_noSSopt; 
end  
xInitial = xFinal; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Load the controller object and simulation data. 
% The simulation data is stored in Microsoft Excel files. 
load HeaderMPC_perfect_2.mat % Created with MPCtool. 
NG_comp = xlsread('Test\NGcomp.xls'); 
RG_comp = xlsread('Test\RGcomp.xls'); 
TG1_comp = xlsread('Test\TG1comp.xls'); 
TG2_comp = xlsread('Test\TG2comp.xls'); 
  
Add noise to the discharge flow. 
   F_discharge = xlsread('Test\F_discharge.xls'); 
    for i=1:2:length(F_discharge) 
        F_discharge(i,2) = F_discharge(i,2)+(0.02*F_discharge(i,2)*... 
            random('unif',0,1) - 0.01*F_discharge(i,2)); 
    end 
  
% Initial values for SS optimum calculation 
u0 = [1.8 0 4.2 0 0 24]; 
y0 = [16.59 25.81 41.03]; 
Fdist0 = 30; 
y_NG0 = [91.1 6.8 0 1.5 0 0.6]/100; 
y_NG = y_NG0; 
y_RG0 = [1.5 0 62 0.5 31 5]/100; 
y_RG = y_RG0; 
y_TG10 = [5.5 1 62 2.5 26 3]/100; 
y_TG1 = y_TG10; 
y_TG20 = [15 1 57 6 13 8]/100; 
y_TG2 = y_TG20; 
HHV0 = [43.16 11.78 12.1 0 13.98 15.41]; 
Feed_HHV = HHV0; 
SG0 = [0.6684 0.4345 0.07 0.9729 0.4172 0.4507]; 
Feed_SG = SG0; 
Ptarget = 2100; 
% Calculate SS optimum (true) 
[OptimVal, MinCost] = GetSSoptimum(u0,y0,Fdist0,y_NG0,y_RG0, 

y_TG10,y_TG20, HHV0, SG0); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Set the initial ideal resting values for MVs. 
if SimType == 3 
    F_optimal = OptimVal(1:6); 
    for i = 1:6 
        HeaderMPC.MV(i).Target = F_optimal(i); 
    end 
    Targets = [OptimVal(7:9), Ptarget]; % Set ideal CV values 
    HeaderMPC.Model.Nominal.U = F_optimal; % Set nominal MC values 
elseif (SimType == 2)  | (SimType == 1) 
    F_optimal = [0 0 5 0 30 30]; % Use if SS 
    for i = 1:6 
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        HeaderMPC.MV(i).Target = F_optimal(i); 
    end 
    Targets = [17.25 26 42.5 2100];    %Use if SS 
                                    % optimisation is not required 
    HeaderMPC.Model.Nominal.U = [3 0 1 0 9 17]; 
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
HeaderMPC.Model.Nominal.Y = Targets; % Set nominal CV values 
  
% Initialise the total vectors 
HHV_tot=[]; 
WI_tot=[]; 
FSI_tot=[]; 
P_tot=[]; 
t_tot=[]; 
Flows_tot=[]; 
Cost = 0; 
Optimal_Cost=[]; 
  
% Set gain matrix to initial values 
Gain = Ginitial; 
  
T = 10/60; % Time between model updates 
  
Count = 0; % Iteration counter 
  
%% Start simulating 
for t=0:T:(6-T) 
     
    % Normalise the transfer function matrix (TFM) 
    load Gtf_perfect.mat 
    for j=1:3 
    for k=1:6 
        [Gn, Gd] = tfdata(Gtf(j,k),'v'); 
        Gp = Gn(2)/Gd(2); % Calculates the ss gains 
        Gtf(j,k) = Gtf(j,k)/Gp; 
    end 
    end 
    % Write new gain values to TFM 
    Gtf = Gtf.*Gain; 
     
    %********************************************************************** 
    if SimType == 3 
        HeaderMPC.Model.Plant = ss(Gtf); 
    elseif SimType == 2 
        HeaderMPC.Model.Plant = ss(Gtf); 
    else 
        SimType = 1; 
    end  
    %********************************************************************** 
     
    %Run simulation for one period 
    sim('Gas_Blending_MPC', [t (t+T-1/180)]);  
     
    Count = Count+1 
     
    %Record outputs for period 
    HHV_tot=vertcat(HHV_tot,HHV.signals.values); 
    WI_tot=vertcat(WI_tot,WOBBE.signals.values); 
    FSI_tot=vertcat(FSI_tot,FS.signals.values); 
    P_tot=vertcat(P_tot,P.signals.values); 
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    t_tot=vertcat(t_tot,P.time); 
    Flows_tot=vertcat(Flows_tot,Flows.signals.values); 
         
    xInitial=xFinal; %Save final state of last period as  

initial state for next period 
         
    %- Do the actual gain calcs according to the compositional data at 
    %- the end of the previous execution period. 
     
    % Take the latest flow control values 
    Feed_flow = Flows.signals.values(size((Flows.signals.values),1),:); 
     
    % Get the latest feed stream compositions 
    y_NG = NG_comp(round((t+T)*180)+1,2:7)/100; 
    y_RG = RG_comp(round((t+T)*180)+1,2:7)/100; 
    y_TG1 = TG1_comp(round((t+T)*180)+1,2:7)/100; 
    y_TG2 = TG2_comp(round((t+T)*180)+1,2:7)/100; 
    y_H2 = [0 0 1 0 0 0]; 
    y_N2 = [0 0 0 1 0 0]; 
     
    % Get the latest feed stream HHV, WI, FSI, and SG values 
    Feed_HHV = [NG_HHV.signals.values(length(NG_HHV.signals.values)),... 
                RG_HHV.signals.values(length(RG_HHV.signals.values)),... 
                12.1,... 
                0,... 
                TG1_HHV.signals.values(length(TG1_HHV.signals.values)),... 
                TG2_HHV.signals.values(length(TG2_HHV.signals.values))]; 
    Feed_WI = [NG_WI.signals.values(length(NG_WI.signals.values)),... 
                RG_WI.signals.values(length(RG_WI.signals.values)),... 
                45.73,... 
                0,... 
                TG1_WI.signals.values(length(TG1_WI.signals.values)),... 
                TG2_WI.signals.values(length(TG2_WI.signals.values))]; 
    Feed_FSI = [NG_FSI.signals.values(length(NG_FSI.signals.values)),... 
                RG_FSI.signals.values(length(RG_FSI.signals.values)),... 
                100,... 
                0,... 
                TG1_FSI.signals.values(length(TG1_FSI.signals.values)),... 
                TG2_FSI.signals.values(length(TG2_FSI.signals.values))]; 
     Feed_SG = [NG_SG.signals.values(length(NG_SG.signals.values)),... 
                RG_SG.signals.values(length(RG_SG.signals.values)),... 
                0.069,... 
                0.973,... 
                TG1_SG.signals.values(length(TG1_SG.signals.values)),... 
                TG2_SG.signals.values(length(TG2_SG.signals.values))]; 
     
    % HHV calcualtions 
    for i=1:6 
       HHV_gains(i)=(Feed_HHV(i)/sum(Feed_flow))-... 
           (dot(Feed_flow, Feed_HHV)/(sum(Feed_flow))^2);  
    end 
     
    % WI calculations 
    HHV_fg = dot(Feed_flow, Feed_HHV)/(sum(Feed_flow)); % ss HHV of FG 
    SG_fg = dot(Feed_flow, Feed_SG)/(sum(Feed_flow));   % ss SG of FG 
    WI_fg = HHV_fg/sqrt(SG_fg); 
    for i=1:6 
        dSGdF(i)= (Feed_SG(i) - SG_fg)/sum(Feed_flow); 
        WI_gains(i) = (HHV_gains(i)/sqrt(SG_fg)) - ... 
            (HHV_fg/(2*(SG_fg)^1.5))*dSGdF(i); 
    end 
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    % FSI calculations 
    s = [148 514.4 339 0 61 0]; 
    A = [9.55 31 2.39 0 2.39 0]; 
    for i=1:6 % Calculate the mole fractions of each comp in FG 
        y_fg(i) = (Feed_flow(1)*y_NG(i) + Feed_flow(2)*y_RG(i) +... 
            Feed_flow(3)*y_H2(i) + Feed_flow(4)*y_N2(i) + ... 
            Feed_flow(5)*y_TG1(i) + Feed_flow(6)*y_TG2(i))/sum(Feed_flow); 
    end 
    FSI_fg = (dot(y_fg,s))/(dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1); % Calc ss FSI 
     
    FSI_gains(1) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(1)-
y_fg(1))/sum(Feed_flow))+... 
        ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(2)-
y_fg(2))/sum(Feed_flow))+... 
        ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(3)-
y_fg(3))/sum(Feed_flow))+... 
        ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(5)-
y_fg(5))/sum(Feed_flow))+... 
        ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_NG(4)+y_NG(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow)); 
 
    FSI_gains(2) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(1)-
y_fg(1))/sum(Feed_flow))+... 
        ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(2)-
y_fg(2))/sum(Feed_flow))+... 
        ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(3)-
y_fg(3))/sum(Feed_flow))+... 
        ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(5)-
y_fg(5))/sum(Feed_flow))+... 
        ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_RG(4)+y_RG(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow)); 
 
    FSI_gains(3) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(1)-
y_fg(1))/sum(Feed_flow))+... 
        ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(2)-
y_fg(2))/sum(Feed_flow))+... 
        ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(3)-
y_fg(3))/sum(Feed_flow))+... 
        ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(5)-
y_fg(5))/sum(Feed_flow))+... 
        ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_H2(4)+y_H2(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow)); 
 
    FSI_gains(4) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(1)-
y_fg(1))/sum(Feed_flow))+... 
        ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(2)-
y_fg(2))/sum(Feed_flow))+... 
        ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(3)-
y_fg(3))/sum(Feed_flow))+... 
        ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(5)-
y_fg(5))/sum(Feed_flow))+... 
        ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_N2(4)+y_N2(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow)); 
 
    FSI_gains(5) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(1)-
y_fg(1))/sum(Feed_flow))+... 
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        ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(2)-
y_fg(2))/sum(Feed_flow))+... 
        ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(3)-
y_fg(3))/sum(Feed_flow))+... 
        ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(5)-
y_fg(5))/sum(Feed_flow))+... 
        ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG1(4)+y_TG1(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow)); 
 
    FSI_gains(6) = ((s(1)-
A(1)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(1)-
y_fg(1))/sum(Feed_flow))+... 
        ((s(2)-A(2)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(2)-
y_fg(2))/sum(Feed_flow))+... 
        ((s(3)-A(3)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(3)-
y_fg(3))/sum(Feed_flow))+... 
        ((s(5)-A(5)*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(5)-
y_fg(5))/sum(Feed_flow))+... 
        ((-5*FSI_fg)/((dot(y_fg,A)+5*(y_fg(4)+y_fg(6))+1)))*((y_TG2(4)+y_TG2(6)-
(y_fg(4)+y_fg(6)))/sum(Feed_flow)); 
     
    % Create the combined gain matrix 
    Gain = vertcat(HHV_gains, WI_gains, FSI_gains, ones(1,6)); 
  
    % Calculate SS optimum values 
    u0 = [1.8 0 4.2 0 0 24]; 
    y0 = [16.59 25.81 41.03]; 
    Fdist0 = F_discharge(round((t+T)*180),2); 
    y_NG0 = y_NG; 
    y_RG0 = y_RG; 
    y_TG10 = y_TG1; 
    y_TG20 = y_TG2; 
    HHV0 = Feed_HHV; 
    SG0 = Feed_SG; 
     
    [OptimVal, MinCost] = GetSSoptimum(u0,y0,Fdist0,y_NG0,y_RG0, 

y_TG10,y_TG20, HHV0, SG0); 
  
    Optimal_Cost=vertcat(Optimal_Cost,MinCost); 
     
    %F_optimal = [2.5527   0.0000    5.0000    0.0    0.0000   21.7390]; 
    F_optimal = abs(OptimVal(1:6)); 
     
    % Write the latest SS optimal values for the MVs and CVs 
    % to the MPC object.     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if SimType == 3 
        Targets = [OptimVal(7:9), Ptarget]; 
        HeaderMPC.Model.Nominal.U = F_optimal; 
        HeaderMPC.Model.Nominal.Y = Targets; 
        for i = 1:6 
            HeaderMPC.MV(i).Target = F_optimal(i); 
        end 
    end  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
end 
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A.4  COST CALCULATIONS (HEADERCONTROL.M) 

%% ------------------------------------------------------------------------ 
%                            Cost calculations 
%  -----------------------------------------------------------------------% 
  
Tot_cost=0; 
% Calculate the operating cost 
for k=1:length(Flows_tot) 
    Cost(k) = (0.68*Flows_tot(k,1) + ... 
                0.2*Flows_tot(k,2) + ... 
                0.07*Flows_tot(k,4))/sum(Flows_tot(k,:)); 
    Tot_cost=Tot_cost + Cost(k); 
end 
Tot_cost=Tot_cost/180 
  
Bench_Cost = [0 0 0 0 0 0]; 
% Calculate the benchmark costs per time period 
for k=1:6 
    for i=1:180 
        Bench_Cost(k) = Bench_Cost(k) + Cost((k-1)*180+i); 
    end 
    Bench_Cost(k) = Bench_Cost(k)/180; 
end 
Bench_Cost 
  
Tot_opt_cost = 0; 
% Calculate the operating cost 
for k=1:length(Optimal_Cost) 
    Tot_opt_cost=Tot_opt_cost + Optimal_Cost(k); 
end 
Tot_opt_cost=Tot_opt_cost/6 
  
Bench_Opt_Cost = [0 0 0 0 0 0]; 
% Calculate the benchmark costs per time period 
for k=1:6 
    for i=1:6 
        Bench_Opt_Cost(k) = Bench_Opt_Cost(k) + Optimal_Cost((k-1)*6+i); 
    end 
    Bench_Opt_Cost(k) = Bench_Opt_Cost(k)/6; 
end 
Bench_Opt_Cost 
 

 

A.5  PLOT RESULTS (HEADERCONTROL.M) 

%% ------------------------------------------------------------------------ 
%                               Plot results 
%  -----------------------------------------------------------------------% 
  
Plot the results 
if SimType == 3 
    GraphDrive = ['C:\Documents and Settings\mullecj1\Desktop',... 
        '\Meesters\Documents\Dissertation\Final results\With SS opt\']; 
    fid = fopen([GraphDrive,'Cost.txt'],'wt'); 
        fprintf(fid,'Actual cost: %2.4f\nOptimal cost: %2.4f\n',... 
            Tot_cost,Tot_opt_cost); 
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        fprintf(fid,'Benchmark 
costs:\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n', ... 
            Bench_Cost(1),Bench_Cost(2),Bench_Cost(3),Bench_Cost(4),... 
            Bench_Cost(5),Bench_Cost(6)); 
    fclose(fid); 
elseif (SimType == 2) 
    GraphDrive = ['C:\Documents and Settings\mullecj1\Desktop',... 
        '\Meesters\Documents\Dissertation\Final results\Model Update\']; 
    fid = fopen([GraphDrive,'Cost.txt'],'wt'); 
        fprintf(fid,'Actual cost: %2.4f\nOptimal cost: %2.4f\n',... 
            Tot_cost,Tot_opt_cost); 
        fprintf(fid,'Benchmark 
costs:\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n', ... 
            Bench_Cost(1),Bench_Cost(2),Bench_Cost(3),Bench_Cost(4),... 
            Bench_Cost(5),Bench_Cost(6)); 
    fclose(fid); 
else 
    GraphDrive = ['C:\Documents and Settings\mullecj1\Desktop',... 
        '\Meesters\Documents\Dissertation\Final results\Constant LTI\']; 
    fid = fopen([GraphDrive,'Cost.txt'],'wt'); 
        fprintf(fid,'Actual cost: %2.4f\nOptimal cost: %2.4f\n',... 
            Tot_cost,Tot_opt_cost); 
        fprintf(fid,'Benchmark 
costs:\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n%2.4f\n', ... 
            Bench_Cost(1),Bench_Cost(2),Bench_Cost(3),Bench_Cost(4),... 
            Bench_Cost(5),Bench_Cost(6)); 
    fclose(fid); 
end  
  
CVs = figure; 
set(CVs,'Position',[200,200,500,600]) 
subplot(4,1,1); 
plot(t_tot, HHV_tot,'k','LineWidth',1);   % Plot HHV, Wobbe, and FS 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('HHV [MJ/Nm^3]'); 
title('Heating value'); 
ylim([16 18.5]); 
xlim([0 6]); 
hold; 
HHVConst = []; 
for i = 1:length(t_tot) 
    HHVConst = [HHVConst, [18; 16.5]]; 
end; 
plot(t_tot, HHVConst, 'k--'); 
  
subplot(4,1,2); 
plot(t_tot, WI_tot,'k','LineWidth',1) 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('WI [MJ/Nm^3]'); 
title('Wobbe index'); 
ylim([24.5 27.5]); 
xlim([0 6]); 
hold; 
WIConst = []; 
for i = 1:length(t_tot) 
    WIConst = [WIConst, [27; 25]]; 
end; 
plot(t_tot, WIConst, 'k--'); 
  
subplot(4,1,3); 
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plot(t_tot, FSI_tot,'k','LineWidth',1); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
ylabel('FSI'); 
xlabel('Time [h]'); 
title('Flame speed'); 
ylim([37 48]); 
xlim([0 6]); 
hold; 
FSIConst = []; 
for i = 1:length(t_tot) 
    FSIConst = [FSIConst, [39; 46]]; 
end; 
plot(t_tot, FSIConst, 'k--'); 
  
subplot(4,1,4); 
plot(t_tot, P_tot,'k','LineWidth',1)      % Plot Pressure 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
hold; 
PConst = []; 
for i = 1:length(t_tot) 
    PConst = [PConst, [2000; 2200]]; 
end; 
plot(t_tot, PConst, 'k--'); 
ylim([1950 2250]); 
xlim([0 6]); 
xlabel('Time [h]'); 
ylabel('Pressure [kPa]'); 
title('Header pressure'); 
  
set(gcf,'PaperPositionMode','auto'); 
  
if SimType == 3 
    saveas(CVs, [GraphDrive,'Outputs_SS.eps']); 
    saveas(CVs, [GraphDrive,'Outputs_SS.emf']); 
    saveas(CVs, [GraphDrive,'Outputs_SS.fig']); 
elseif SimType == 2 
    saveas(CVs, [GraphDrive,'Outputs.eps']); 
    saveas(CVs, [GraphDrive,'Outputs.emf']); 
    saveas(CVs, [GraphDrive,'Outputs.fig']); 
else 
    saveas(CVs, [GraphDrive,'Outputs_LTI.eps']); 
    saveas(CVs, [GraphDrive,'Outputs_LTI.emf']); 
    saveas(CVs, [GraphDrive,'Outputs_LTI.fig']); 
end 
  
DV = figure; 
set(DV,'Position',[300,300,500,200]) 
plot(0:6/length(F_discharge):(6-1/length(F_discharge)),... 
    F_discharge(:,2),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
ylim([26 31]); 
xlim([0 6]); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Header discharge flow'); 
  
set(gcf,'PaperPositionMode','auto'); 
if SimType == 3 
    saveas(DV, [GraphDrive,'Fdischarge_SS.eps']); 
    saveas(DV, [GraphDrive,'Fdischarge_SS.emf']); 
    saveas(DV, [GraphDrive,'Fdischarge_SS.fig']); 
elseif SimType == 2 
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    saveas(DV, [GraphDrive,'Fdischarge.eps']); 
    saveas(DV, [GraphDrive,'Fdischarge.emf']); 
    saveas(DV, [GraphDrive,'Fdischarge.fig']); 
else 
    saveas(DV, [GraphDrive,'Fdischarge_LTI.eps']); 
    saveas(DV, [GraphDrive,'Fdischarge_LTI.emf']); 
    saveas(DV, [GraphDrive,'Fdischarge_LTI.fig']); 
end 
MVs1 = figure; 
set(MVs1,'Position',[300,300,500,500]) 
subplot(3,1,1); 
plot(t_tot, Flows_tot(:,1),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Natural gas (NG)'); 
xlim([0 6]);ylim([-2 17]); 
NGConst = []; 
for i = 1:length(t_tot) 
    NGConst = [NGConst, [0; 15]]; 
end; 
hold; 
plot(t_tot, NGConst, 'k--'); 
  
subplot(3,1,2); 
plot(t_tot, Flows_tot(:,2),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Reformed Gas (RG)'); 
xlim([0 6]);ylim([-2 22]); 
RGConst = []; 
for i = 1:length(t_tot) 
    RGConst = [RGConst, [0; 20]]; 
end; 
hold; 
plot(t_tot, RGConst, 'k--'); 
  
subplot(3,1,3); 
plot(t_tot, Flows_tot(:,3),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Hydrogen (H_2)'); 
xlim([0 6]);ylim([-1 6]); 
H2Const = []; 
for i = 1:length(t_tot) 
    H2Const = [H2Const, [0; 5]]; 
end; 
hold; 
plot(t_tot, H2Const, 'k--'); 
  
set(gcf,'PaperPositionMode','auto'); 
if SimType == 3 
    saveas(MVs1, [GraphDrive,'Inputs1_SS.eps']); 
    saveas(MVs1, [GraphDrive,'Inputs1_SS.emf']); 
    saveas(MVs1, [GraphDrive,'Inputs1_SS.fig']); 
elseif SimType == 2 
    saveas(MVs1, [GraphDrive,'Inputs1.eps']); 
    saveas(MVs1, [GraphDrive,'Inputs1.emf']); 
    saveas(MVs1, [GraphDrive,'Inputs1.fig']); 
else 
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    saveas(MVs1, [GraphDrive,'Inputs1_LTI.eps']); 
    saveas(MVs1, [GraphDrive,'Inputs1_LTI.emf']); 
    saveas(MVs1, [GraphDrive,'Inputs1_LTI.fig']); 
end 
MVs2 = figure; 
set(MVs2,'Position',[300,300,500,500]) 
subplot(3,1,1); 
plot(t_tot, Flows_tot(:,4),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Nitrogen (N_2)'); 
xlim([0 6]);ylim([-1 6]); 
N2Const = []; 
for i = 1:length(t_tot) 
    N2Const = [N2Const, [0; 5]]; 
end; 
hold; 
plot(t_tot, N2Const, 'k--'); 
  
subplot(3,1,2); 
plot(t_tot, Flows_tot(:,5),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Tail Gas 1 (TG_1)'); 
xlim([0 6]);ylim([-3 33]); 
TG1Const = []; 
for i = 1:length(t_tot) 
    TG1Const = [TG1Const, [0; 30]]; 
end; 
hold; 
plot(t_tot, TG1Const, 'k--'); 
  
subplot(3,1,3); 
plot(t_tot, Flows_tot(:,6),'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
xlabel('Time [h]'); 
ylabel('Flow [kNm^3/h]'); 
title('Tail Gas 2 (TG_2)'); 
xlim([0 6]);ylim([-3 33]); 
TG2Const = []; 
for i = 1:length(t_tot) 
    TG2Const = [TG2Const, [0; 30]]; 
end; 
hold; 
plot(t_tot, TG2Const, 'k--'); 
  
set(gcf,'PaperPositionMode','auto'); 
if SimType == 3 
    saveas(MVs2, [GraphDrive,'Inputs2_SS.eps']); 
    saveas(MVs2, [GraphDrive,'Inputs2_SS.emf']); 
    saveas(MVs2, [GraphDrive,'Inputs2_SS.fig']); 
elseif SimType == 2 
    saveas(MVs2, [GraphDrive,'Inputs2.eps']); 
    saveas(MVs2, [GraphDrive,'Inputs2.emf']); 
    saveas(MVs2, [GraphDrive,'Inputs2.fig']); 
else 
    saveas(MVs2, [GraphDrive,'Inputs2_LTI.eps']); 
    saveas(MVs2, [GraphDrive,'Inputs2_LTI.emf']); 
    saveas(MVs2, [GraphDrive,'Inputs2_LTI.fig']); 
end 
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Cplot = figure; 
set(Cplot,'Position',[300,300,500,200]) 
plot(t_tot, Cost,'k'); 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
ylim([0 0.1]); 
xlim([0 6]); 
xlabel('Time [h]'); 
ylabel('Cost'); 
title('Operating cost'); 
hold; 
stairs(0:1/6:6-1/6,Optimal_Cost,'k--'); 
legend('Cost','Optimal cost'); 
  
set(gcf,'PaperPositionMode','auto'); 
if SimType == 3 
    saveas(Cplot, [GraphDrive,'Cost_SS.eps']); 
    saveas(Cplot, [GraphDrive,'Cost_SS.emf']); 
    saveas(Cplot, [GraphDrive,'Cost_SS.fig']); 
elseif SimType == 2 
    saveas(Cplot, [GraphDrive,'Cost.eps']); 
    saveas(Cplot, [GraphDrive,'Cost.emf']); 
    saveas(Cplot, [GraphDrive,'Cost.fig']); 
else 
    saveas(Cplot, [GraphDrive,'Cost_LTI.eps']); 
    saveas(Cplot, [GraphDrive,'Cost_LTI.emf']); 
    saveas(Cplot, [GraphDrive,'Cost_LTI.fig']); 
end 

 

A.6  CALCULATE STEADY-STATE OPTIMUM (GETSSOPT.M) 

function [OptimVal, MinCost] = ... 
    GetSSoptimum(u0,y0,Fdis0,y_NG0,y_RG0,y_TG10,y_TG20, HHV0, SG0) 
  
lb = [0 0 0 0 0 0 16.5 25 39 0]; 
ub = [15 20 5 5 30 30 18 27 46 50]; 
  
%Opts = optimset('fmincon'); 
Opts.Display = 'none'; 
Opts.Algorithm = 'active-set'; 
x0 = [u0, y0, Fdis0]; 
[x,fval] = fmincon(@OptimalCost,x0,[],[],[],[],lb,ub,... 
    @ (x) myconst(x,Fdis0,y_NG0,y_RG0,y_TG10,y_TG20, HHV0, SG0), Opts); 
OptimVal = abs(x); 
MinCost = fval; 
end 
  
function OptCost = OptimalCost(x) 
     OptCost = (0.68*x(1) + ... 
                0.2*x(2) + ... 
                0.07*x(4))/sum(x(1:6)); 
end 
  
function [c,ceq] = myconst(x,Fdis0,y_NG0,y_RG0,y_TG10,y_TG20, HHV0, SG0) 
     
    s = [148 514.4 339 0 61 0]; 
    A = [9.55 31 2.39 0 2.39 0]; 
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    y_RG = y_RG0; 
    y_NG = y_NG0; 
    y_TG1 = y_TG10; 
    y_TG2 = y_TG20; 
    y_N2 = [0 0 0 1 0 0]; 
    y_H2 = [0 0 1 0 0 0]; 
  
    Feed_flow = x(1:6); 
    Feed_HHV = HHV0; 
    Feed_SG = SG0; 
     
    % Write the outputs as equality constraints 
    ceq7 = dot(Feed_flow, Feed_HHV)/(sum(Feed_flow)) - x(7); % ss HHV of FG 
    HHV_fg = dot(Feed_flow, Feed_HHV)/(sum(Feed_flow)); 
    SG_fg = dot(Feed_flow, Feed_SG)/(sum(Feed_flow));   % ss SG of FG 
    ceq8 = HHV_fg/sqrt(SG_fg) - x(8); 
     
    for i=1:6 % Calculate the mole fractions of each comp in FG 
        y_fg(i) = (Feed_flow(1)*y_NG(i) + Feed_flow(2)*y_RG(i) +... 
            Feed_flow(3)*y_H2(i) + Feed_flow(4)*y_N2(i) + ... 
            Feed_flow(5)*y_TG1(i) + Feed_flow(6)*y_TG2(i))/sum(Feed_flow); 
    end 
    ceq9 = (dot(y_fg,s))/(dot(y_fg,A)+5*... 
        (y_fg(4)+y_fg(6))+1) - x(9); % Calc ss FSI 
    ceq10 = sum(Feed_flow) - Fdis0; 
     
    c = zeros(9); 
    ceq = [0 
           0 
           0 
           0 
           0 
           0 
           ceq7 
           ceq8 
           ceq9 
           ceq10]; 
            
end 
 

A.7  PLOT VALIDATION RESULTS (VALIDATIONDATA.M) 

valid = xlsread('Validation.xls'); 
  
% Plot HHV plots 
HHVplot = figure; 
plot(0:1/180:18, valid(:,2), 'k--', 'LineWidth', 0.5); 
hold; 
plot(0:1/180:18, valid(:,3), 'k-', 'LineWidth', 2); 
set(HHVplot,'Position',[200,200,500,250]) 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
title('HHV analyser data vs. simulation data'); 
xlabel('Time [h]'); 
ylabel('Higher Heating Value [MJ/Nm^3]'); 
legend('HHV_{Analyser}', 'HHV_{Sim}'); 
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% Plot WI data 
WIplot = figure; 
plot(0:1/180:18, valid(:,4), 'k--', 'LineWidth', 0.5); 
hold; 
plot(0:1/180:18, valid(:,5), 'k-', 'LineWidth', 2); 
set(WIplot,'Position',[200,200,500,250]) 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
title('WI analyser data vs. simulation data'); 
xlabel('Time [h]'); 
ylabel('Wobbe Index [MJ/Nm^3]'); 
legend('WI_{Analyser}', 'WI_{Sim}'); 
  
FSIplot = figure; 
plot(0:1/180:18, valid(:,6), 'k--', 'LineWidth', 0.5); 
hold; 
plot(0:1/180:18, valid(:,7), 'k-', 'LineWidth', 2); 
set(FSIplot,'Position',[300,300,500,250]) 
set(get(gcf,'CurrentAxes'),'FontName','Times New Roman','FontSize',10); 
title('FSI analyser data vs. simulation data'); 
xlabel('Time [h]'); 
ylabel('Flame Speed Index'); 
legend('FSI_{Analyser}', 'FSI_{Sim}'); 
ylim([40 45]); 
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ADDENDUM B: MATLAB SCREENSHOTS 

B.1 SIMULINK ENVIRONMENT 

 

Figure B.1. Configuration settings for initial and final state vectors from and to the Matlab 

workspace. 
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Figure B.2. Setting of the solver parameters in Simulink. 

 

 

 

Figure B.3. Subsystem 2 parameters. 
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B.2 MPC TOOLBOX GUI 

 

 

Figure B.4. Declaration of MVs and CVs in the MPC Toolbox utility. 
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Figure B.5. Control and prediction horizon settings (including blocking). 
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Figure B.6. Weights on MVs and CVs as configured in the MPC utility. 
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Figure B.7. Configuration of constraint softening. 
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Figure B.8. Configuration of MV and CV constraints. 
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Figure B.9. Configuration of disturbance handling in MPC Toolbox utility. 
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Figure B.10. Configuration of noise handling in MPC Toolbox utility. 
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