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SummaryTitle: Robust Model Predi
tive Control of an Ele
tri
 Ar
 Furna
eRe�ning Pro
essBy: Lodewi
us Charl CoetzeeSupervisor: Professor I.K. CraigDepartment: Department of Ele
tri
al, Ele
troni
 and Computer EngineeringDegree: Master of Engineering (Ele
troni
 Engineering)This dissertation forms part of the ongoing pro
ess at UP to model and 
ontrol theele
tri
 ar
 furna
e pro
ess. Previous work fo
used on modelling the furna
e pro
ess fromempiri
al thermodynami
 prin
iples as well as �tting the model to a
tual plant data.Automation of the pro
ess mainly fo
used on subsystems of the pro
ess, for example theele
tri
 subsystem and the o�-gas subsystem.The modelling e�ort, espe
ially the model �tting, resulted in parameter values that aredes
ribed with 
on�den
e intervals, whi
h gives rise to un
ertainty in the model, be
ausethe parameters 
an potentially lie anywhere in the 
on�den
e interval spa
e.Robust model predi
tive 
ontrol is used in this dissertation, be
ause it 
an expli
itlytake the model un
ertainty into a

ount as part of the synthesis pro
ess. Nominal modelpredi
tive 
ontrol - not taking model un
ertainty into a

ount - is also applied in orderto determine if robust model predi
tive 
ontrol provides any advantages over the nominalmodel predi
tive 
ontrol.This dissertation uses the pro
ess model from previous work together with robustmodel predi
tive 
ontrol to determine the feasibility of automating the pro
ess with re-gards to the primary pro
ess variables. Possible hurdles that prevent pra
ti
al implemen-tation are identi�ed and studied.Keywords: Ele
tri
 Ar
 Furna
e, Robust Model Predi
tive Control, EAF, RMPC.

 



OpsommingTitel: Robuuste Model Voorspellende Beheer van 'n Elektriese BoogoondVerfyningsprosesDeur: Lodewi
us Charl CoetzeeStudieleier: Professor I.K. CraigDepartement: Departement van Elektries, Elektronies and Rekenaar IngenieursweseGraad: Meester van Ingenieurswese (Elektroniese Ingenieurswese)Die verhandeling vorm deel van die voortgaande studie deur UP om 'n elektriese boo-goondproses te modelleer en te beheer. Vorige modellering het gefokus op die gebruik vanempiriese termodinamiese beginsels waarna die empiriese model gepas is op gemete aan-legdata. Outomatisasie word hoofsaaklik gemik op substelsels van die proses, byvoorbeelddie elektriese substelsel.Die modelleringsproses, veral die passing van die model op aanlegdata, het daartoegelei dat daar onsekerhede in die model vervat word. Die onsekerhede word beskryf deurparameters wat binne vasgestelde grense lê.In die verhandeling word robuuste model voorspellende beheer gebruik, omdat dit dieonsekerhede van die aanleg eksplisiet in ag kan neem gedurende die sinteseproses. Dierobuuste beheerder word vergelyk met 'n nominale beheerder - wat nie die onsekerhedein ag neem nie - om te bepaal watter voordeel die robuuste beheerder oor die nominalebeheerder bied.Die aanlegmodel, wat in 'n vorige studie verkry is, tesame met robuuste model voor-spellende beheerteorie word gebruik om te bepaal hoe haalbaar dit is om die elektrieseboogoondverfyningsproses te outomatiseer. Die studie het moontlike struikelblokke geï-denti�seer wat praktiese implementering kan belemmer.Sleutelwoorde: Elektriese Boogoond, Robuuste Model Voorspellende Beheer.
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Chapter 1
Introdu
tion
This 
hapter provides a motivation for the the study undertaken in this dissertation. Ashort overview of the ele
tri
 ar
 furna
e pro
ess is given, followed by an explanation of the
ontribution of this dissertation as well as the organization of the rest of the dissertation.1.1 MotivationWith the growth of the world e
onomies, the demand on natural resour
es is growing. Ironore is no di�erent, and like most natural resour
es, it is not renewable. The solution is toreuse old materials through re
y
ling in order to redu
e the demand for natural resour
es.The use of ele
tri
 ar
 furna
es (EAFs) is an important part of the re
y
ling e�ort in thesteel industry. EAFs are 
apable of melting down solid s
rap metal and re�ning it to therequired steel grade by manipulating the 
hemi
al properties of the steel. The ele
tri
ar
 furna
e is slowly repla
ing the basi
 oxygen furna
e (BOF) (IISI, 2003), be
ause ituses 
hemi
al as well as ele
tri
al energy to melt the s
rap metal. The ele
tri
al energyis introdu
ed by three 
arbon ele
trodes that form an ele
tri
 ar
 between them thatradiates heat to the metal. Chemi
al energy is primarily provided by natural gas andoxygen.The ele
tri
 ar
 furna
e pro
ess is still heavily dependent on operator 
ontrol. Theoperator uses a re
ipe based on initial measurements of the 
hemi
al 
omposition todetermine how long ele
tri
al power should be applied, as well as how mu
h oxygen,1

 



Chapter 1 Operation of the Ele
tri
 Ar
 Furna
e
arbon and other additives should be added. The melting time is often based on a feelfor the pro
ess and the sound emanating from the furna
e. Measurements are takenintermittently to gauge the progress and to make adjustments as needed. This leads tovarying su

ess in obtaining the desired steel grade.The pro
ess 
ould bene�t hugely from the use of better automation to in
rease energye�
ien
y as well as to improve the 
onsisten
y of the quality of the �nal produ
t byemploying good set-point following. Automation 
ould also improve the safety of thepro
ess. Most of the 
urrent automation only fo
uses on the parts of the pro
ess thatultimately do not have a dire
t in�uen
e on the grade of the steel produ
ed.The mathemati
al model of the ele
tri
 ar
 furna
e re�ning pro
ess in
ludes un
er-tainty. Control of the pro
ess requires that the 
ontroller needs to remain stable over allpossible realizations of the model while providing a

eptable performan
e. Robust modelpredi
tive 
ontrol is well suited for un
ertain multi-variable systems with 
onstraints,be
ause it takes the model un
ertainty expli
itly into a

ount as part of the synthesispro
ess. The 
losed-loop system is guaranteed stable over all modelled realizations of theun
ertain system. This makes robust model predi
tive 
ontrol well suited as a 
ontrolmethod for the ele
tri
 ar
 furna
e re�ning pro
ess.1.2 Operation of the Ele
tri
 Ar
 Furna
eThe ele
tri
 ar
 furna
e pro
ess is 
on
erned with melting s
rap metal and produ
ing steel.Ea
h iteration of the pro
ess is 
alled a tap. The time it takes to �nish one iteration ofthe pro
ess is 
alled the tap-to-tap time. One tap 
onsists of a few stages; 
harging thefurna
e, melting down the s
rap metal, re�ning the steel, removing the slag layer, tappingthe �nished steel, and furna
e turnaround. The ele
tri
 ar
 furna
e re�ning pro
ess iswell des
ribed by Taylor (1985); Fruehan (1998)Charging: Figure 1.1 shows a s
hemati
 representation of an ele
tri
 ar
 furna
e that isbeing 
harged. Charging 
onsists of 
omposing a bu
ket made up of s
rap, other metalli
elements and slag formers. The 
omposition of the s
rap metal is dependent on thedesired grade of steel to be produ
ed. The layering of the s
rap is important: softer s
rapEle
tri
al, Ele
troni
 and Computer Engineering 2
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Chapter 1 Operation of the Ele
tri
 Ar
 Furna
eis pla
ed at the bottom of the bu
ket, while harder s
rap is loaded on top. The softers
rap prote
ts the furna
e during 
harging and also melts down qui
kly. The melted s
rapforms a pool of molten metal that aids in melting the larger pie
es. This physi
al layeringshould prevent 
ave-ins from o

urring, whi
h 
ould damage the 
arbon ele
trodes and
ause a 
atastrophi
 breakdown. To 
harge the bu
ket into the furna
e, the roof of thefurna
e swings away to expose the inside of the furna
e. A 
rane positions the bu
keton top of the furna
e and the �oor of the bu
ket is opened to allow the s
rap to fall intothe furna
e. Some melt-shops only 
harge one bu
ket and then add dire
t redu
ed iron(DRI) through 
hutes in the roof of the furna
e. This requires extra infrastru
ture su
has a 
onveyor belt to transport the DRI to the 
hutes.The type of s
rap used in 
harging will have an in�uen
e on the time of the meltdownstage. Light s
rap melts down easily but does not 
ontain as mu
h metal as denser,heavier s
rap. More bu
kets of light s
rap will thus be ne
essary to rea
h the requiredmolten weight. With heavier s
rap the melting pro
ess takes longer, but less 
hargingneeds to be done. The danger with denser s
rap is the potential for late 
ave-ins that 
andamage the ele
trodes.Melting: Figure 1.2 shows a s
hemati
 representation of an ele
tri
 ar
 furna
e in thepro
ess of melting down the solid s
rap. The roof of the furna
e is swung ba
k on topof the furna
e. The roof 
ontains the three 
arbon ele
trodes that are used to 
reate anele
tri
al ar
. Melting is initiated by applying ele
tri
al power to the furna
e's ele
trodesas well as �ring up the oxyfuel burners. The heat from the ar
 radiates towards the s
rapto melt it down. A long ar
 between the ele
trodes and s
rap is sele
ted during meltdown,be
ause it radiates more heat over a greater area than a short ar
. The ele
tri
 ar
 boresa hole into the middle of the s
rap heap, and as the hole is forming, the ele
trodes arelowered into the hole. The surrounding s
rap prote
ts the furna
e walls from the heatradiating from the ar
. As the ele
trodes bore into the s
rap, a molten pool of metalforms, whi
h prote
ts the bottom of the furna
e from the ar
. The burners pro
eed tomelt the metal at the edges of the furna
e that are not rea
hed by the ar
.The use of oxyfuel burners and oxygen lan
es do not guarantee that there will be noEle
tri
al, Ele
troni
 and Computer Engineering 4
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Chapter 1 Operation of the Ele
tri
 Ar
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e
old spots in the furna
e. When heavy pie
es of s
rap are 
aught in the 
old spots, it 
anlead to late 
ave-ins during �at bath 
onditions (this is when all the s
rap has melted).These heavy pie
es 
an fall onto the ele
trodes and damage them (Taylor, 1985). Thedamaged ele
trodes will partially dissolve in the bath, leading to higher 
arbon 
ontent,whi
h in turn leads to long delays in order to remove it.The oxyfuel system is the most e�
ient during the early meltdown stage. The solids
rap usually has a large surfa
e area exposed to the burner �ame, whi
h yields goodheat transfer to the s
rap. As the s
rap melts, it moves away from the �ame and makesway for other s
rap to 
ome into 
onta
t with the �ame. A high temperature di�eren
ebetween the s
rap and �ame leads to good heat transfer, but the burner's e�e
tivenessde
reases as the temperature di�eren
e shrinks (Fruehan, 1998). The e�e
tiveness of theoxyfuel burners are monitored by measuring the o�-gas temperature. The less heat thatis transferred to the s
rap, the higher the o�-gas temperature will be
ome.Re�ning: Figure 1.3 shows a s
hemati
 representation of an ele
tri
 ar
 furna
e inthe re�ning stage, where all the solid s
rap is melted down and �at bath 
onditions areobtained. Re�ning 
ommen
es as soon as all the s
rap is melted down and only a moltenpool of metal remains. There is no longer any solid s
rap left to prote
t the furna
ewalls and roof from the ele
tri
 ar
. A short ar
 is sele
ted during re�ning, be
ause itfo
uses the heat more lo
ally. To prote
t the walls and roof further as well as improveheat transfer to the molten metal, a foamy slag layer is formed that 
overs the ar
. Theslag layer is 
ontrolled by inje
ting C and O2 into the bath. The CO gas bubbles rise upand form a foamy slag layer on top of the molten metal. The impurities are removed fromthe molten metal primarily through oxidation. The oxidized impurities are trapped in theslag layer. Common impurities found in the bath are phosphorus, sulphur, aluminium,sili
on, manganese and 
arbon. During the re�ning pro
ess the oxyfuel system is used inlan
ing mode. Large amounts of oxygen are for
ed into the bath. The 
arbon rea
ts withthe oxygen and is an e�
ient sour
e of heat for the bath, while the remaining oxygenrea
ts with the iron to form FeO that is transferred to the slag. The oxidation of 
arbonis the primary me
hanism for de
arburization when bath 
arbon is high. As the bathEle
tri
al, Ele
troni
 and Computer Engineering 6
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Chapter 1 Operation of the Ele
tri
 Ar
 Furna
e
arbon de
reases, the redu
tion of FeO from the slag be
omes the main me
hanism ofde
arburization.Phosphorus is removed from the bath through oxidation. The phosphorus is oxidizedto P2O5 and transferred to the slag. The 
apa
ity of the slag to retain P2O5 is 
ontrolledby MgO and CaO 
omponents of the slag as well as a relatively lower temperature, high
FeO 
ontent in the slag and the a
idity of the slag (Fruehan, 1998). The slag should bebasi
, whi
h requires a CaO/SiO2 of greater than 2.2. Most of the phosphorus is removedduring the early part of re�ning when the temperature is lower. Deslagging should o

urearly in the re�ning stage to prevent phosphorus from returning to the bath when thetemperature rises (Taylor, 1985).Manganese is oxidized as MnO and transferred to the slag. It has most of the samerequirements as phosphorus, ex
ept that CaO/SiO2 should be less than 2.2. To 
ompen-sate for the suboptimal 
onditions, more oxygen 
an be inje
ted into the bath to aid inthe removal of manganese.Sulphur is one of the more di�
ult impurities to remove from the bath, be
ause itrequires the opposite 
onditions to most of the other impurities. It requires high basi
ity,low bath oxygen and thus low FeO in the slag as well as high slag �uidity (Taylor, 1985).The other impurities su
h as SiO2 and P2O5 
ause the slag to be
ome more a
idi
 andredu
e the ability of the slag to retain sulphur. The pro
ess is also primarily based onoxidation, while sulphur needs to be redu
ed from the bath. If the steel produ
er has aladle furna
e, it is used for desulphurization, be
ause additions 
an be made to lower thebath oxygen and improve the 
onditions for desulphurization.Sili
on is the easiest impurity to remove from the bath. It is oxidized during de
ar-burization mu
h faster than 
arbon and is present as SiO2 in the slag. The sili
on level isusually lower than spe
i�ed and ferrosili
on is added to bring it ba
k up to spe
i�
ation.Deslagging: To prevent the impurities 
aught in the slag layer from re-entering thebath, the slag is removed from time to time in a pro
ess 
alled deslagging. This isa

omplished by opening a door above the molten metal level and tipping the furna
eslightly toward the opening to drain o� the slag. Phosphorus is primarily removed inEle
tri
al, Ele
troni
 and Computer Engineering 8

 



Chapter 1 Aims and obje
tivesthe early stages of re�ning, while sulphur is removed later in the pro
ess, be
ause of the
hanging 
hemi
al 
omposition of the environment and bath.Tapping: At the end of the pro
ess when the steel has rea
hed the desired 
hemi
al
omposition and temperature, it is removed from the furna
e. The steel is removed byopening the tap hole at the bottom of the furna
e and pouring it into a ladle for furtherpro
essing. This pro
ess is 
alled tapping. In the ladle, de-oxidisers and bulk alloyadditions are added. The de-oxidizers aid in removing sulphur from the steel, be
auseremoving sulphur requires low oxygen levels. The tap hole is just higher than the bottomof the furna
e. This is to ensure that a small amount of molten metal remains in thefurna
e for the next heat. This is 
alled a hot heel pra
ti
e. The remaining molten metalaids in melting down the new s
rap early in the meltdown stage.Furna
e turnaround is where the furna
e is inspe
ted for damage and repairs are
ondu
ted before the next tap is started.1.3 Aims and obje
tivesThe main aim of this dissertation is to determine the feasibility of automating the ele
tri
ar
 furna
e pro
ess with regards to the main variables of steel 
arbon 
ontent, temperatureat tapping and impurities in the steel. To this aim:
• a robust model predi
tive 
ontroller needs to be synthesised, whi
h expli
itly takesmodel un
ertainty into 
onsideration during 
ontroller synthesis.
• The 
ontroller should be veri�ed through a simulation study of the 
losed-loopsystem in order to evaluate the performan
e of the 
ontroller:� in the presen
e of un
ertainty,� and under limited feedba
k 
onditions inherent in most EAF melt-shops.
• The performan
e of the robust 
ontroller is 
ompared to nominal model predi
tive
ontrol to gauge the advantage of using robust 
ontrol.Ele
tri
al, Ele
troni
 and Computer Engineering 9

 



Chapter 1 OrganizationThis dissertation 
ontributes the following:
• Linearized models of the redu
ed nonlinear model in stru
tured un
ertainty des
rip-tion.
• Synthesis of a nominal model predi
tive 
ontroller (one that does not take modelun
ertainty into a

ount) for the ele
tri
 ar
 furna
e re�ning pro
ess.
• Synthesis of a feedba
k robust model predi
tive 
ontroller for the ele
tri
 ar
 furna
ere�ning pro
ess.
• Synthesis of a dual-mode robust model predi
tive 
ontroller for the ele
tri
 ar
 fur-na
e pro
ess.
• Simulation study to 
ompare the stability and performan
e of the above-mentioned
ontrollers under extreme model mismat
h situations:� using full state feedba
k in order to evaluate the performan
e of the 
ontrollerin the presen
e of un
ertainty,� using a �ve state nonlinear predi
tor with one 
orre
tion measurement fromthe plant for a more realisti
 
losed-loop analysis,� and a �ve state nonlinear predi
tor with one 
orre
tion measurement from theplant, and an internal model parameter update whi
h attempts to improve the
losed-loop performan
e.1.4 OrganizationChapter 2 provides a brief overview of the modelling of the pro
ess as well as the lin-earization approa
h and model validation.Chapter 3 provides an overview of the theory of stability of model predi
tive 
ontroland the development of robust model predi
tive 
ontrol theory. The 
hapter 
ontinues bytaking an in-depth look at the two robust model predi
tive 
ontrol methods employed inthe simulation study.Ele
tri
al, Ele
troni
 and Computer Engineering 10

 



Chapter 1 OrganizationChapter 4 provides an in-depth study of the robust and nominal model predi
tive
ontrol of the redu
ed nonlinear model of the ele
tri
 ar
 furna
e pro
ess. Pra
ti
als
enarios are investigated in an attempt to quantify the e�e
ts of a la
k of feedba
k fromthe plant, as well as pra
ti
al disturban
es su
h as leaving the slag door open and late
ave-ins.Chapter 5 provides a short summary of the dissertation, some 
on
lusions drawn fromthe simulation studies and re
ommendations for further work regarding the automationof the ele
tri
 ar
 furna
e re�ning pro
ess.Appendix A provides a simulation study on an a
ademi
 problem in order to showthe advantage of robust model predi
tive 
ontrol in terms of stability with regards tonominal model predi
tive 
ontrol. The a
ademi
 problem gives further insight into theperforman
e of feedba
k and dual-mode robust model predi
tive 
ontrollers.Appendix B provides additional simulation results.Appendix C provides measured bath and slag data.
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Chapter 2
Pro
ess modelling
This 
hapter details the mathemati
al model of the ele
tri
 ar
 furna
e. The 
hapterstarts by outlining the models that are available for the ele
tri
 ar
 furna
e and thenfo
uses on the 
hosen model. The 
hosen nonlinear model is then linearized around anoperating point with di�erent model parameters to in
lude the total un
ertainty regionaround that operating point.2.1 Introdu
tionThe ele
tri
 ar
 furna
e pro
ess is a very di�
ult pro
ess to model a

urately, be
ause itis di�
ult to obtain pro
ess data. This is due to the extreme environment in whi
h thefurna
e operates, whi
h makes it di�
ult to install measurement instruments. Some of theinstruments that are in 
ommon use do not allow for on-line measurements to be taken,e.g. temperature probes that are manually dipped into the bath and burnt away as partof the measurement pro
ess. Before any temperature measurements and samples 
an betaken, the slag layer must be removed. The ele
tri
al power level must be redu
ed, whi
hin turn will 
ause the furna
e to operate at a redu
ed e�
ien
y. The sample of moltensteel that is taken during the measurement pro
ess takes a few minutes to analyse in alab. All these measurements have asso
iated 
osts, and these also in�uen
e the operationof the furna
e.There are di�erent approa
hes to modelling the ele
tri
 ar
 furna
e (EAF) pro
ess.12

 



Chapter 2 Introdu
tionThe �rst approa
h is to develop stati
 models of the EAF pro
ess. This is a popularmethod of modelling the EAF pro
ess (Taylor, 1985; Turkdogan, 1989; Fruehan, 1998;Deo and Boom, 1993). The modelling method is adapted from basi
 oxygen furna
eswhere the model 
al
ulates o�ine the bulk mass and energy additions to attain requiredsteel properties with regards to temperature and 
hemi
al 
omposition. Corre
tions aremade on-line to a

ount for deviations on
e measurements have been made. Nyssen et al.(1999) 
reated a stati
 model as an operator aid. The operating s
hedule is 
al
ulatedbefore the pro
ess is started and updates are made during the pro
ess to a

ount fordeviations in the predi
ted and a
tual progress. The authors extended their work to
reate a dynami
 model as an on-line operator aid. The model gives an estimate ofthe progress with regards to material melting, slag foam height, bath temperature and
omposition (Nyssen et al., 2002). De Vos (1993) developed a stati
 model with e
onomi
obje
tives in mind. The model helped optimize the slag additives in order to redu
e 
osts.The se
ond approa
h is to use dynami
 models to model the pro
ess as 
onsisting ofequilibrium zones with limited mass transfer between the equilibrium zones governed by
on
entration gradients.Cameron et al. (1998) (as dis
ussed in Ma
Rosty (2005)) developed the EAF modelwith simulation in mind. The authors used the model to �nd improved pra
ti
es for theEAF through dynami
 simulation. The model 
onsists of four equilibrium zones with sixinterfa
es between the zones. The four zones are metal, slag, organi
 solid and gas. Thematerial is transferred between the zones driven by 
on
entration gradients. Chemi
alequilibrium is assumed at the interfa
es. O�-gas data was used to validate the model.Proprietary reasons may a

ount for the la
k of detail dis
losed about the model.Matson and Ramirez (1999) (as dis
ussed in Ma
Rosty (2005)) 
reated a model of theEAF by des
ribing it as two 
ontrol volumes. One volume 
ontains the bath, slag and asmall amount of gas. The other volume 
ontains the freeboard gases. The transfer of massbetween the 
ontrol volumes is modelled as di�usion driven by a 
on
entration gradient.Modigell and 
oworkers (Modigell et al., 2001a,b; Traebert et al., 1999) (as dis
ussedin Ma
Rosty (2005)) 
reated a mathemati
al model of the EAF that 
onsists of fourEle
tri
al, Ele
troni
 and Computer Engineering 13

 



Chapter 2 Introdu
tionrea
tion zones. The zones are assumed to be in 
hemi
al equilibrium and the transport ofmass between the zones is driven by 
on
entration gradients. The model was developed forsimulation purposes, but details of the model are la
king, probably be
ause of proprietaryreasons.The third approa
h is to model the pro
ess from fundamental thermodynami
 andkineti
 prin
iples. Bekker et al. (1999) 
reated a dynami
 model of the EAF that 
onsistsof 17 ordinary di�erential equations (ODEs). This is a generi
 model that 
an be �ttedwith plant data to any ele
tri
 ar
 furna
e. Rathaba (2004) �tted the generi
 model ofBekker et al. (1999) with plant data from an industry partner. Rathaba (2004) redu
edthe 
omplexity of the generi
 model for the re�ning stage to a nonlinear model 
onsistingof 5 ODEs. The re�ning stage is of further interest, be
ause during this stage the a
tualgrade of the steel is determined.There are models that only fo
us on 
ertain subsystems of the pro
ess. The oxyfuelsystem in
reases the e�
ien
y of the EAF pro
ess by adding an extra sour
e of energy.The oxygen inje
tion by the oxyfuel subsystem has an e�e
t on the de
arburization of thepro
ess (Fruehan, 1998; Thomson et al., 2001; Pujadas et al., 2003; Khan et al., 2003).The foamy slag is an important aspe
t of the ele
tri
 ar
 furna
e pro
ess. It is respon-sible for trapping the impurities that are oxidized from the bath. The foamy slag 
oversthe ele
tri
 ar
 to shield the walls and roof of the furna
e from the radiating heat andalso in
reases the heat transfer from the ar
 to the bath. It is important to 
ontrol theslag height in order to produ
e the greatest e�
ien
y in the pro
ess (Oosthuizen et al.,2001; Galgali et al., 2001; Morales et al., 2001b; Kimihisa and Fruehan, 1987, 1989a,b;Jiang and Fruehan, 1991; Gou et al., 1996). One of the main 
ontributors to EAF mod-elling and the study of slag foaming is Morales et al. (2001b). Extensive slag data was
olle
ted and analysed, during whi
h the advantages of extended use of foaming were ob-served through redu
ed ele
tri
al 
onsumption and in
reased yield (Morales et al., 2001b).This work was extended by 
reating an EAF simulator with emphasis pla
ed on the be-haviour of the slag; espe
ially the e�e
ts that FeO and dire
t redu
ed iron (DRI) have onthe slag and the pro
ess (Morales et al., 2001a). The EAF modelling and slag foamingEle
tri
al, Ele
troni
 and Computer Engineering 14

 



Chapter 2 Redu
ed Nonlinear Modelresults were 
ombined in a new model. The emphasis was still on slag 
omposition, butthe e�e
t of 
hanging 
onditions in the furna
e on slag foaming was added to the model;a 
on
ept named dynami
 foaming index (Morales et al., 2002). Controlling the foamingin the ele
tri
 ar
 furna
e has been done su

essfully by using soni
 analysis to measurethe a
ousti
s of foaming. The sound emanating from the foaming slag is re
orded andanalysed and the results used to 
ontrol graphite inje
tion whi
h has a dire
t in�uen
eon the slag foaming (Holmes and Memoli, 2001; Marique et al., 1999).Neural networks are a popular modelling tool for sto
hasti
 pro
esses, making it wellsuited for modelling the voltage and 
urrent relationships that o

ur in the ele
tri
 ar
.King and Nyman (1996) used neural networks to predi
t the future behaviour of theele
tri
 ar
. Neural networks were used by Raisz et al. (2000) to predi
t the furna
estate in terms of meltdown and �at bath foaming. Billings and Ni
holson (1977) andBillings et al. (1979) made an important 
ontribution to the modelling and 
ontrol of theele
tri
 ar
 by studying impedan
e and 
urrent 
ontrol and the need for a strategy thatin
ludes both methods, whi
h will help improve e�
ien
y of heat transfer to the bath.Chen-Wen et al. (2000) modelled the dramati
 
urrent variations 
alled �i
ker that o

urduring the early meltdown stage in order to design 
ompensation 
ir
uits. Other 
ontribu-tions to the modelling of the ele
tri
al subsystem of the ele
tri
 ar
 furna
e were made byCollantes-Bellido and Gomez (1997); Meng and Irons (2000) and Guo and Irons (2003),who 
reated a detailed three-dimensional model of the furna
e in order to investigate theradiative heat transfer.Post 
ombustion in the furna
e free board gases was studied and modelled by Kleimt and Kohle(1997); Tang et al. (2003).2.2 Redu
ed Nonlinear ModelThe following 
riteria were used in sele
ting the mathemati
al model:1. The model should be able to predi
t the nonlinear dynami
 behaviour during there�ning stage of the ele
tri
 ar
 furna
e pro
ess. The key reason is that the model isEle
tri
al, Ele
troni
 and Computer Engineering 15

 



Chapter 2 Redu
ed Nonlinear Modelintended to be used to 
ontrol the grade of the steel, whi
h is primarily determinedduring the re�ning stage, given that the 
orre
t 
harging is performed.2. The model should be simple enough to be used on-line. The reason is that the modelwill be used as a predi
tor for the on-line 
ontroller.The redu
ed nonlinear model of Rathaba (2004) was 
hosen. The model spe
i�
allymodels the re�ning stage of the pro
ess. Rathaba (2004) redu
es the generi
 ele
tri
ar
 furna
e model of Bekker et al. (1999) from 17 to 5 ordinary di�erential equations.Rathaba (2004) identi�es the parameters of the redu
ed Bekker et al. (1999) model andused pro
ess data from an industry partner to �t the parameters. The resulting parametersare un
ertain and have 
on�den
e intervals des
ribing the un
ertainty.Over an entire tap, the pro
ess is very unpredi
table due to delays and breakdowns thatinvalidate the assumption of pro
ess 
ontinuity. The advantage of the re�ning stage is thatafter the initial measurement, ex
ept for deslagging, the pro
ess is mostly uninterrupteduntil the �nal measurement is made. At the start of the re�ning stage, all the solid s
arp isusually melted; the modelling assumption of homogeneity is also valid. Pro
ess variablesthat undergo signi�
ant 
hange during re�ning are bath temperature, 
arbon and sili
on
on
entrations (masses), masses of SiO2 and FeO in slag and all free-board gases. Themasses of the bath and 
omposite slag are approximately at steady state - they 
an betreated as 
onstants.The redu
ed Bekker et al. (1999) model is given as
ẋ3 = −kdC (XC − Xeq

C ) , (2.1)
ẋ4 = −kdSi (XSi − Xeq

Si) , (2.2)
ẋ7 =

2MFeOd1

MO2

−
x7kgrMFed5

(

mT (slag) + x7 + x8

)

MC

+0.13d2, (2.3)
ẋ8 =

MSiO2

MSi
kdSi (XSi − Xeq

Si) + 0.045d2, (2.4)
˙x12 = (pt + ηARCd4 − kV T (x12 − Tair)) / (2.5)Ele
tri
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Chapter 2 Redu
ed Nonlinear Model
[

mT (Fe)Cp(FeL)

MFe

+
2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]

,

where the molar 
on
entrations are given as
Xc =

x3/MC

mT (Fe)/MFe + x3/MC + x4/MSi
, (2.6)

XFeO =
x7/MFeO

mT (slag)/Mslag + x7/MFeO + x8/MSiO2

, (2.7)
Xeq

C = kXC

(

mT (slag)MFeO

x7Mslag
+

x8MFeO

x7MSiO2

+ 1

)

, (2.8)
XSi =

x4/MSi

mT (Fe)/MFe + x3/MSi + x4/MSi

, (2.9)
Xeq

Si = kXSi

(

mT (slag)MFeO

x7Mslag
+

x8MFeO

x7MSiO2

+ 1

)2

. (2.10)
The redu
ed equations for the heat balan
e are:

p2 = (−2∆HFeOd1/MO2) ηFeO, (2.11)
p5 =

d1

MO2

(x12 − TO2) CP (O2), (2.12)
p11 =

x7kgrd5 (∆HFeO − ∆HCO)
(

mT (slag) + x7 + x8

)

MC

, (2.13)
pt = p2 + p5 + p11, (2.14)with the parameters that are relevant to the redu
ed modelEle
tri
al, Ele
troni
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Chapter 2 Predi
tor designState State Des
ription Input Input Des
ription
x3 Dissolved Carbon [kg℄ d1 Oxygen inje
tion rate [kg/s℄
x4 Dissolved Sili
on [kg℄ d2 DRI addition rate [kg/s℄
x7 FeO in bath [kg℄ d3 Slag addition rate [kg/s℄
x8 SiO2 in bath [kg℄ d4 Ar
 power [Kilowatt℄
x12 Bath temperature [Celsius℄ d5 Graphite inje
tion rate [kg/s℄Table 2.1: Redu
ed model states and inputs.
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where kdC and kdSi are the rate 
onstants for removal of 
arbon and sili
on from thebath; kgr is the graphite rea
tivity 
onstant; kV T is the EAF heat loss 
oe�
ient; ηARCand ηFeO are the e�
ien
ies of ar
 energy input and bath oxidation; mT (Fe) and mT (slag)are the total masses of the slag formers and bath - both are assumed 
onstant; MC , MFe,

MFeO, MSi, MSiO2 and Mslag are the molar masses of the di�erent elements. The statesand inputs are des
ribed in table 2.1. A s
hemati
 of the ele
tri
 ar
 furna
e is shown in�gure 2.1, whi
h shows the physi
al lo
ation of the states.
2.3 Predi
tor designThe simulation of the 
losed-loop system where only limited feedba
k is available, requiresa predi
tor to estimate the plant states between measurements. The predi
tor is theredu
ed nonlinear model of the previous se
tion. The parameters of the predi
tor need tobe updated in some of the simulation s
enarios of 
hapter 4, where a simple ad-ho
 methodis used as outlined in (2.16-2.17). Only one variable, temperature, is measured and onlyone measurement is available, therefore the number of parameters that are updated needsEle
tri
al, Ele
troni
 and Computer Engineering 18

 



Chapter 2 Predi
tor design
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hemati
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Chapter 2 Linearized modelto be limited. The parameters are updated by taking the di�eren
e between the estimatedtemperature and the measured temperature value and multiplying it with a s
ale fa
torbefore applying it to the e�
ien
ies ηFeO and ηARC .
ηFeO−New = ηFeO−Old + CFeO(Tactual − Testimated), (2.16)
ηARC−New = ηARC−Old + CARC(Tactual − Testimated), (2.17)where CFeO and CARC are 
onstants that a�e
t the rate of 
hange for ηFeO−New and

ηARC−New. The 
onstants CFeO and CARC are tuned until the error between the predi
torand plant is minimized. The temperature is most signi�
antly in�uen
ed by the parametervariations. The top row of �gure 2.2 (a to 
) shows the s
enario where the e�
ien
ies(ηFeO and ηARC) are at their maximum versus the s
enario where all parameters are setto produ
e the fastest temperature response. The bottom results of �gure 2.2 (d to f)show the s
enario where the e�
ien
ies are at their minimum versus the s
enario whereall parameters are set to produ
e the slowest temperature response. In both s
enariosthe predi
tor remains su�
iently a

urate just by manipulating the e�
ien
ies ηFeO and
ηARC .2.4 Linearized modelThe robust model predi
tive 
ontrol theory used in this study is dependent on a linearinternal model to predi
t the future response of the system. Therefore the model of se
tion2.2 should be linearized for use in the model predi
tive 
ontrollers.The linearization pro
edure for the nonlinear model of se
tion 2.2 
onsists of thefollowing steps (Goodwin et al., 2001):1. Cal
ulate the operating point of the pro
ess.2. Cal
ulate the derivative of the nonlinear model.3. Substitute the operating point into the derivatives.Ele
tri
al, Ele
troni
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Chapter 2 Linearized model
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e of ηFeO and ηARC versus all the parameters.4. Repeat for all the di�erent sets of parameters.

2.4.1 Operating pointThe operating point of a system is the area of the state spa
e where the pro
ess is in op-eration most of the time. The pro
ess dynami
s 
an be approximated by linear dynami
sin the region around the operating point. The pro
edure for �nding the operating pointwould be to simulate the pro
ess over the time interval of operation and average the val-ues for ea
h state. Initial 
onditions and the time interval are required to 
ommen
e thesimulation. The initial 
onditions are obtained by averaging the pro
ess data at the startof re�ning over all the measured taps. The time interval is the average time it takes fromthe start of re�ning until tapping, as obtained from pro
ess data. The initial 
onditionsare summarized in table 2.2 and the average time for the re�ning stage is 10 minutes or600 se
onds.Ele
tri
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Chapter 2 Linearized modelTable 2.2: Operating point of redu
ed model.State Initial Condition Operating Point
x3 Dissolved Carbon 160 kg 76 kg
x4 Dissolved Sili
on 24 kg 24 kg
x7 FeO in bath 4250.6 kg 7692.3 kg
x8 SiO2 in bath 1405 kg 1405 kg
x12 Bath temperature 1600 0C 1785 0C

2.4.2 Derivative of nonlinear model
The next step in the linearization pro
edure is to 
al
ulate the partial derivative of ea
hstate or output equation with regards to one of the state or input variables, dependingon whi
h matrix is 
al
ulated. The nonlinear system is de�ned as

ẋ(t) = f(x(t), d(t)), (2.18)
y(t) = g(x(t), d(t)), (2.19)where x ∈ R

n is the state ve
tor, d ∈ R
m is the input ve
tor, y ∈ R

p is the output ve
torof the system and f and g are nonlinear fun
tions of the ve
tors x and d. The numberof states is n, the number of inputs is m and the number of outputs is p. The nonlinearsystem 
an be linearized to the form
ẋ(t) = Ax(t) + Bd(t), (2.20)
y(t) = Cx(t) + Dd(t), (2.21)where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n and D ∈ R
p×m are matri
es of the appropriatedimensions. The pro
edure (Goodwin et al., 2001) for the redu
ed Bekker et al. (1999)model of (2.1) to (2.5) 
an be summarized as follows:Ele
tri
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troni
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Chapter 2 Linearized model
A =

























∂f1

∂x3

∂f1

∂x4

∂f1

∂x7

∂f1

∂x8

∂f1

∂x12

∂f2

∂x3

∂f2

∂x4

∂f2

∂x7

∂f2

∂x8

∂f2

∂x12

∂f3

∂x3

∂f3

∂x4

∂f3

∂x7

∂f3

∂x8

∂f3

∂x12

∂f4

∂x3

∂f4

∂x4

∂f4

∂x7

∂f4

∂x8

∂f4

∂x12

∂f5

∂x3

∂f5

∂x4

∂f5

∂x7

∂f5

∂x8

∂f5

∂x12

























˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

x = xQ

d = dQ

, (2.22)
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, (2.25)
where xQ is the operating point and dQ the input ve
tor that keeps the system at theoperating point.

The output fun
tions for the system are as follows: the �rst equation (2.26) gives thetemperature, the se
ond equation (2.27) gives per
entage 
arbon in the bath and the thirdequation (2.28) gives the amount of FeO in the slag:Ele
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Chapter 2 Linearized model
y1 = x12, (2.26)
y2 = 100

x3

MT (Fe) + x3 + x4

, (2.27)
y3 = x7. (2.28)The partial derivatives are too large to put in matrix form, thus the matri
es (2.22-2.25) show whi
h derivative �ts where and the a
tual derivatives are shown below. Thederivatives that form the A matrix:

∂f1

∂x3
= −kdC

(

1/MC

mT (Fe)/MFe + x3/MC + x4/MSi
−

x3/M
2
C

(

mT (Fe)/MFe + x3/MC + x4/MSi

)2

)

,

∂f1

∂x4

= −kdC

(

−
x3/ (MCMSi)

(

mT (Fe)/MFe + x3/MC + x4/MSi

)2

)

,

∂f1

∂x7
= −kdC

(

mT (slag)MFeOMslag

(x7Mslag)
2 +

x8MFeOMSiO2

(x7MSiO2)
2

)

,
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)

,

∂f1

∂x12
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∂x4
,
∂f2

∂x7
,
∂f2

∂x8
,
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,
∂f3
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,
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= −

kgrMFed5
(
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)
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+
x7kgrMFed5MC

((
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)

MC

)2 ,
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)2 ,

∂f4

∂x3
,
∂f4

∂x4
,
∂f4
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∂x3
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∂f5

∂x7
=
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kgrd5 (∆HFeO − ∆HCO)
(

mT (slag) + x7 + x8

)

MC

−
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((
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)
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)2

]
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Chapter 2 Linearized model
[
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Chapter 2 Linearized model
∂f5

∂d4
= ηARCd4/
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.The derivatives that form the C matrix:
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∂g2
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= −100
x3
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MT (Fe) + x3 + x4

)2 ,

∂g2
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∂g2
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∂g3

∂x4
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∂g3

∂x8
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∂g3

∂x12

= 0,

∂g3

∂x7

= 1.2.4.3 Linearized modelsThe nonlinear model has un
ertain parameters with the un
ertainty des
ribed in termsof 
on�den
e intervals. The parameter un
ertainty is assumed to be uniform and 
antherefore lie anywhere within the 
on�den
e intervals. Ea
h parameter ve
tor produ
esa model with di�erent dynami
s. The linear model 
an only model a spe
i�
 parameterve
tor within a spe
i�
 region of state-spa
e. In order to model all the possible dynami
s,di�erent linear models are 
onstru
ted. The un
ertain spa
e 
an be represented by apolytopi
 un
ertainty (Kothare et al., 1996) with ea
h linear model representing a vertex ofthe polytope. This representation requires 2n models, where n is the number of un
ertainentries in the linear model. In this 
ase, there are 17 un
ertain entries, whi
h wouldrequire 217 = 131072 di�erent models.Ele
tri
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Chapter 2 Linearized modelTable 2.3: Nonlinear redu
ed model parameters.Parameter Lower bound Nominal Upper bound
kV T 1.73 2.08 2.42
ηARC 0.29 0.51 0.73
ηFeO 0.54 0.75 0.96
kdC 54.74 54.90 55.05
kgr 0.08 0.42 0.76Polytopi
 un
ertainty des
riptions are very ine�
ient, thus the stru
tured un
ertainty(Kothare et al., 1996) representation is preferred. The stru
tured un
ertainty representa-tion makes use of a nominal model and a deviation model as follows

A = Anominal + Bp∆Cq, (2.32)
B = Bnominal + Bp∆Dqu, (2.33)where

∆ =
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, (2.34)
where −1 ≤ ∆i ≤ 1, i = 1, 2, ..., n and BP Cq is the maximum deviation from Anominaland BpDqu is the maximum deviation from Bnominal.The nonlinear model has �ve parameters that 
an vary, but when the model is lin-earized the un
ertainty a�e
ts 17 entries in the A and B matri
es. Four parameters werevaried in small in
rements, whi
h resulted in over 214 ≈ 200,000 models being 
onstru
ted.For ea
h parameter, 21 di�erent values were used and kdC was assumed 
onstant. Theparameters of the nonlinear model are shown in table 2.3.The nominal linear model is given below:Ele
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Chapter 2 Linearized model
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To 
onstru
t the stru
tured un
ertainty des
ription, the extreme points Kmin and Kmaxof the un
ertain values are used as follows:

Knom =
1

2
(Kmax + Kmin), (2.37)

Kdev =
1

2
(Kmax − Kmin), (2.38)whi
h results in the following linear models
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Chapter 2 Linearized model
AKdev =

























0 0 0 0 0

0 0 0 0 0

0 0 0 3.08e − 5 0

0 0 0 0 0

0 0 3.22e − 6 4.82e − 6 0

























, (2.40)
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, (2.42)
where AKdev ≡ BpCq and BKdev ≡ BpDqu.2.4.4 Linear models analysisThe linear models are 
ompared to the nonlinear model in order to as
ertain whetherthey approximate the nonlinear model su�
iently well. Three s
enarios are used; thenominal 
ase; parameters that produ
e the least e�
ien
y, and parameters that produ
ethe best e�
ien
y, i.e. the lower and upper bounds respe
tively as given in table 2.3. Theparameters in�uen
e the dynami
s of the model and 
ause deviation from the nominal
ase. Only the extreme 
ases are do
umented here, be
ause they would provide thelargest deviation from the nominal 
ase. In all 
ases, the inputs are �rst set to theirmaximum levels, and then to their minimum levels. All these simulations (�gures 2.3, 2.4and 2.5) show that the linear models approximate the nonlinear model very well. Theworst approximation is for 
arbon, whi
h shows the most nonlinear response of all theEle
tri
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Chapter 2 Linearized modelvariables. In �gure 2.6, the de
arburization responses of all the di�erent s
enarios areshown on top of ea
h other, and it is 
lear that only the inputs 
ause a slightly di�erentresponse, while the parameter values have no signi�
ant in�uen
e. This result shows thatthe inputs do have a slight in�uen
e on de
arburization, but not enough to a

elerate thepro
ess signi�
antly. The pro
ess 
an only be a

elerated if the target temperature and
arbon 
ontent 
an be rea
hed in a shorter time.A modal analysis (How, 2001) is done on the linearized model in order to determineif the 
arbon 
ontent is 
ontrollable. Before the modal analysis 
an be performed, the Amatrix is de
omposed into its eigenve
tors and eigenvalues as follow:
A = TΛT−1, (2.43)where

T =


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
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
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

, (2.44)
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











− wT
1 −...

− wT
n −













, (2.45)
and vi, i = 1, . . . , n is the right eigenve
tor of eigenvalue λi, wi, i = 1, . . . , n is the lefteigenve
tor of eigenvalue λi and Λ = diag(λ1, . . . , λn) is the matrix of eigenvalues. To
he
k the 
ontrollability of the 
arbon 
ontent, a modal analysis is performed as follows:

ControllabilityC = wT
1 B, (2.46)

=

[

1.00 −5.70e − 3 1.45e − 3 −1.36e − 3 0

]

B, (2.47)
=

[

1.74e − 2 1.28e − 4 0 −1.70e − 3

]

, (2.48)where the B matrix used in the analysis is the matrix (2.36). The 
ontrollability analysisEle
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Chapter 2 Linearized model
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Figure 2.3: Linear and nonlinear model 
omparison with nominal parameters.of the 
arbon 
ontent (2.46-2.48) shows that the 
arbon 
ontent is 
ontrollable throughoxygen inje
tion, slag additives and graphite inje
tion. The modal analysis does not take
onstraints on the inputs into 
onsideration. The 
onstraints on the inputs limit thee�e
t of the inputs on the de
arburization rate. This 
an be seen from �gure 2.3 whi
hshows the redu
tion in 
arbon 
ontent with the inputs at their maximum and minimum.De
arburization 
an therefore be des
ribed as marginally 
ontrollable.2.4.5 Simpli�
ation of linear modelsFrom the previous se
tion, it is 
lear that 
arbon is only marginally 
ontrollable. Studyingthe linear models more 
losely, it is 
lear that 
ertain states and inputs 
an be eliminated.The inputs that are 
ontrolled during the re�ning stage are oxygen inje
tion, ele
tri
power and graphite inje
tion. DRI and slag are not added during the re�ning stage andEle
tri
al, Ele
troni
 and Computer Engineering 31
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Figure 2.4: Linear and nonlinear model 
omparison with e�
ien
ies at their minimum.
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Figure 2.5: Linear and nonlinear model 
omparison with e�
ien
ies at their maximum.
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Figure 2.6: De
arburization response with all parameter variations.Ele
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Chapter 2 Linearized model
an be removed from the linear models. The important states are 
arbon 
ontent, FeO
ontent in the slag as well as temperature. Si and SiO2 are impurities that need to beminimized, or steered to a desired spe
i�
ation.From the se
ond row of equation (2.41) , it is 
lear that there is no input that in�uen
es
Si. The �rst 
olumn of equation (2.39), shows that 
arbon has no in�uen
e on the otherstates. The se
ond 
olumn shows that only Si has an in�uen
e on 
arbon. The in�uen
eof Si on 
arbon is very insigni�
ant. Carbon will therefore be removed from the model,for 
ontrol purposes, be
ause it 
annot be signi�
antly 
ontrolled as shown in the previousse
tion. Si 
annot be 
ontrolled and has no e�e
t on any relevant term, and 
an thereforealso be removed.From the fourth row of equation (2.41) , it is 
lear that only DRI addition in�uen
es
SiO2. The fourth 
olumn of (2.39) shows that SiO2 has a very small in�uen
e on 
arbon,
FeO and temperature. In ea
h instan
e, the 
ross-
oupling term of SiO2 is at least 1000times smaller than the term for SiO2 itself. SiO2 
an therefore be removed from themodel without signi�
antly a�e
ting the dynami
s of the system.DRI only a�e
ts SiO2 and thus be
omes redundant and 
an be safely removed. Thetwo remaining states in (2.49) have no un
ertainty on the diagonal terms. The onlyremaining term that has signi�
ant un
ertainty is the term that links FeO to temperature.The 
ross-
ouple term between FeO and temperature is a 1000 times smaller than thediagonal term, and the un
ertainty entry of this term is therefore left out, be
ause of itsinsigni�
ant 
ontribution to temperature. The simpli�ed linear model 
an then be givenas follows

Anominal−simplified =







1 0

−7.87e − 6 1






, (2.49)

Bnominal−simplified =







12 0 −1.17

0.41 6.07e − 6 −0.017






, (2.50)

Bdev−simplified =







0 0 0.988

0.11 3.03e − 6 0.014






, (2.51)Ele
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Chapter 2 Con
lusionwhere Bdev−simplified ≡ BpDqu. Bp and Dqu 
an be realized from Bdev−simplified as
Bp =







1 0 0 0

0 1 1 1






, (2.52)

Dqu =



















0 0 0.988

0.11 0 0

0 3.03e − 6 0

0 0 0.014



















, (2.53)
and the delta operator that is manipulated to des
ribe the un
ertain system is

∆ =



















∆1 0 0 0

0 ∆2 0 0

0 0 ∆3 0

0 0 0 ∆4



















, (2.54)
where −1 ≤ ∆i ≤ 1, i = 1, 2, 3, 4.2.4.6 Analysis of simpli�ed linear modelsThe simpli�ed linear models are 
ompared to the original nonlinear model. Three s
enar-ios are used; the nominal 
ase; parameters that produ
e the least e�
ien
y, and param-eters that produ
e the best e�
ien
y. In all 
ases, the inputs are set to their maximumlevels.Figure 2.7 shows that the simpli�ed linear models approximate the nonlinear modelreasonably well. The simpli�ed linear models are therefore taken to be suitable as theinternal model for the model predi
tive 
ontrollers.2.5 Con
lusionIn this 
hapter the redu
ed nonlinear model for the re�ning stage of the ele
tri
 ar
furna
e was linearized. The stru
tured un
ertainty des
ription was used to des
ribe theEle
tri
al, Ele
troni
 and Computer Engineering 35
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lusion
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ies MaximumFigure 2.7: Simulation to 
ompare simpli�ed linear model to nonlinear model.un
ertainty of the nonlinear model in terms of linear models. A simulation study showedthat the linear models approximated the nonlinear models reasonably well. The onlyvariable that showed signi�
ant deviation was 
arbon, be
ause of its highly nonlinearbehaviour.In the simpli�
ation of the linear models, it was shown that 
arbon is not signi�
antly
ontrollable, whi
h implies that 
ontrol 
annot be used to a

elerate the re�ning stage.The best option would be to ensure that the tapping temperature is at the desired valueby the time 
arbon rea
hes its desired level.The simpli�ed linear models approximated the nonlinear model reasonably well withregards to FeO and temperature.The simpli�ed linear models are used in the synthesis of the model predi
tive 
on-trollers in 
hapter 3.
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Chapter 3
Model predi
tive 
ontrol
This 
hapter des
ribes model predi
tive 
ontrol and espe
ially robust model predi
tive
ontrol that is applied to the plant outlined in 
hapter 2. The 
hapter starts by explain-ing model predi
tive 
ontrol and its history, followed by a des
ription of robust modelpredi
tive 
ontrol and the reason for its development, and �nally fo
uses on the 
ontrollertheory used for the simulation study in 
hapter 4. The des
ription of model predi
tive
ontrol and the development of stability theory in
luding robust stability are summarizedin the survey done by Mayne et al. (2000).3.1 Introdu
tionModel predi
tive 
ontrol (MPC), also known as re
eding horizon 
ontrol (RHC), uses amathemati
al model of a system to predi
t its future behaviour in order to 
al
ulate asequen
e of 
ontrol moves (N steps) into the future that will optimize (usually minimize)an obje
tive or penalty fun
tion, whi
h des
ribes a measure of performan
e of the system.The �rst 
ontrol move of the 
al
ulated sequen
e is applied to the system and a new mea-surement is taken. The pro
ess is then repeated for the next time step. Model predi
tive
ontrol 
al
ulates the 
ontrol sequen
e on-line at ea
h time step, 
ompared to 
onventional
ontrol theory where the 
ontrol law is pre-
al
ulated and valid for all possible states of thesystem. Model predi
tive 
ontrol has the distin
t advantage of 
ontrolling multi-variablesystems well and 
an expli
itly take into 
onsideration 
onstraints on the inputs (su
h as37

 



Chapter 3 Introdu
tiona
tuators, valves, et
.) as well as states or outputs (Cama
ho and Bordons, 2003). MPCis espe
ially useful in situations where an expli
it 
ontroller 
annot be 
al
ulated o�ine.The basi
 ideas present in the model predi
tive 
ontrol family a

ording to Cama
ho and Bordons(2003) are:
• outputs at future time instan
es are predi
ted by the expli
it use of a mathemati
almodel ;
• an obje
tive fun
tion is minimized by 
al
ulating the appropriate 
ontrol sequen
e;and
• at ea
h time instant, the horizon is displa
ed towards the future, whi
h involvesapplying the �rst 
ontrol signal 
al
ulated at ea
h time instan
e to the system;
alled the re
eding horizon strategy.The MPC theory des
ribed in this 
hapter is in dis
rete time and the system takes thefollowing form (Mayne et al., 2000):

x(k + 1) = f(x(k), u(k)), (3.1)
y(k) = g(x(k)). (3.2)The 
ontrol and state sequen
es must satisfy

x(k) ∈ X, (3.3)
u(k) ∈ U, (3.4)where X ⊂ R

n and U ⊂ R
m. The obje
tive fun
tion that is used in the optimizationpro
ess has the following form:

V (x, k,u) =
k+N−1
∑

i=k

l(x(i), u(i)) + F (x(k + N)), (3.5)Ele
tri
al, Ele
troni
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Chapter 3 Introdu
tionwhere l(x(i), u(i)) is the 
ost at ea
h time step into the future with regards to the statesand inputs, while F (x(k+N)) is the 
ost at the �nal state rea
hed after the whole 
ontrolsequen
e has been applied. At ea
h time k, the �nal time is k+N, whi
h in
reases as kin
reases and is 
alled a re
eding horizon. In 
ertain model predi
tive 
ontrol formulations,a terminal 
onstraint set is de�ned
x(k + N) ∈ Xf ⊂ X. (3.6)The optimization of the obje
tive fun
tion is performed subje
t to the 
onstraints onthe 
ontrol and state sequen
es and in 
ertain 
ases the terminal 
onstraint to yield theoptimized 
ontrol sequen
e

u
o(x, k) = (uo(k; (x, k)), uo(k + 1; (x, k)), ..., uo(k + N − 1; (x, k))), (3.7)and optimized value for the obje
tive fun
tion

V o(x, k) = V (x, k,uo), (3.8)where (x, k) denotes that the 
urrent state is x at time k. The �rst 
ontrol move at timek of the sequen
e u
o(x, k) is implemented to form an impli
it 
ontrol law for time k

κ(x, k) = uo(k; (x, k)). (3.9)
The obje
tive fun
tion is time invariant, be
ause neither l(x(i), u(i)) nor F (x(k +N))have terms that depend on time. The optimization problem PN(x) 
an be de�ned asstarting at time 0. N represents the �nite predi
tion horizon over whi
h the optimizationtakes pla
e, and the optimization problem 
an be rede�ned as

PN(x) : V o
N(x) = min

u

{VN(x,u)|u ∈ UN} , (3.10)Ele
tri
al, Ele
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Chapter 3 Introdu
tionwhere the obje
tive fun
tion is now
VN(x,u) =

N−1
∑

i=0

l(x(i), u(i)) + F (x(N)), (3.11)with UN the set of feasible 
ontrol sequen
es that satisfy the 
ontrol, state and terminal
onstraints. If problem PN(x) is solved, the optimal 
ontrol sequen
es are obtained
u

o(x) = {uo(0, x)), uo(1, x)), ..., uo(N − 1, x)}, (3.12)and the optimal state traje
tory, if the 
ontrol a
tions are implemented, is given by
x

o(x) = {xo(0, x), xo(1, x), ..., xo(N − 1, x), xo(N, x)}. (3.13)The optimal obje
tive value is
V o

N(x) = VN(x,uo). (3.14)The �rst 
ontrol a
tion is implemented, leading to the impli
it time invariant 
ontrol law
κN(x) = uo(0, x). (3.15)

Dynami
 programming 
an be used to determine a sequen
e of obje
tive fun
tions
Vj(·) deterministi
ally in order to 
al
ulate the sequen
e of 
ontrol laws κj(·) o�ine,where j is the time-to-go until the predi
tion horizon. This is possible be
ause of thedeterministi
 nature of the open-loop optimization. This would be preferable, but isusually not possible. The di�eren
e between MPC and dynami
 programming is purely amatter of implementation. MPC di�ers from 
onventional optimal 
ontrol theory in thatMPC uses a re
eding horizon 
ontrol law κN(·) rather than an in�nite horizon 
ontrollaw.Ele
tri
al, Ele
troni
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Chapter 3 Histori
al ba
kground3.2 Histori
al ba
kgroundModel predi
tive 
ontrol builds on optimal 
ontrol theory, the theory (ne
essary andsu�
ient 
onditions) of optimality, Lyapunov stability of the optimal 
ontrolled system,and algorithms for 
al
ulating the optimal feedba
k 
ontroller (if possible) (Mayne et al.,2000). There are a few important ideas in optimal 
ontrol that underlie MPC. The �rstlinks together two prin
iples of the 
ontrol theory developed in the 1960s: Hamilton-Ja
obi-Bellman theory (Dynami
 Programming) and the maximum prin
iple, whi
h pro-vides ne
essary 
onditions for optimality. Dynami
 programming provides su�
ient 
on-ditions for optimality as well as a pro
edure to synthesise an optimal feedba
k 
ontroller
u = κ(x). The maximum prin
iple provides ne
essary 
onditions of optimality as wellas 
omputational algorithms for determining the optimal open-loop 
ontrol uo(·; x) for agiven initial state x. These two prin
iples are linked together as

κ(x) = uo(0; x), (3.16)in order for the optimal feedba
k 
ontroller to be obtained by 
al
ulating the open-loop
ontrol problem for ea
h x (Mayne et al., 2000). From the 
ommen
ement of optimal
ontrol theory it is stated by Lee and Markus (1967, p. 423): �One te
hnique for obtaininga feedba
k 
ontroller synthesis from knowledge of open-loop 
ontrollers is to measure the
urrent 
ontrol pro
ess state and then 
ompute very rapidly for the open-loop 
ontrolfun
tion. The �rst portion of this fun
tion is then used during a short time interval,after whi
h a new measurement of the pro
ess state is made and a new open-loop 
ontrolfun
tion is 
omputed for this new measurement. The pro
edure is then repeated.�Kalman, as dis
ussed inMayne et al. (2000), observed that optimality does not guar-antee stability. There are 
onditions under whi
h optimality results in stability: in�nitehorizon 
ontrollers are stabilizing, if the system is stabilizable and dete
table. Cal
ulatingin�nite horizon optimal solutions is not always pra
ti
al on-line and an alternate solutionwas needed to stabilize the re
eding horizon 
ontroller. The �rst results for stabilizingre
eding horizon 
ontrollers were given by (Kleinman, 1970), who developed a minimumEle
tri
al, Ele
troni
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Chapter 3 Histori
al ba
kgroundenergy 
ontroller for linear systems. He showed that the feedba
k 
ontroller is linear,time invariant and stable if a Lyapunov fun
tion V (x) = xT Px is used as the obje
tivefun
tion. Another approa
h is to de�ne a stability 
onstraint as part of the optimal 
on-trol problem. The stability 
onstraint is de�ned as an equality 
onstraint x(T ) = 0 thatfor
es the solution to 
onverge to the origin. Thomas, as dis
ussed in Mayne et al. (2000),suggested this te
hnique as part of a linear quadrati
 
ontrol problem and implementedit by using M := P−1 in pla
e of P as the Ri
atti variable and solving the Ri
atti-likedi�erential equation with terminal 
ondition M(T ) = 0.MPC was really driven by industry as part of pro
ess 
ontrol theory. Ri
halet et al.(1978) was the �rst to propose MPC for pro
ess 
ontrol appli
ations, but MPC was pro-posed earlier by Propoi and Lee and Markus (as dis
ussed in Mayne et al. (2000)). TheMPCmethod, 
alled identi�
ation and 
ommand (IDCOM), was proposed by Ri
halet et al.(1978). It uses a linear model in the form of a �nite horizon impulse response, quadrati

ost and 
onstraints on the inputs and outputs. The method makes provision for linearestimation using least squares and the algorithm for solving the open-loop optimal 
ontrolproblem is the �dual� of the identi�
ation algorithm.Dynami
 matrix 
ontrol (DMC) is a later method proposed by Cutler and Ramaker(1980) and Prett and Gillette (as dis
ussed in Mayne et al. (2000)). DMC uses a stepresponse model, but as in IDCOM, handled 
onstraints in an ad-ho
 fashion. This lim-itation was addressed by Gar
ía and Morshedi (as dis
ussed in Mayne et al. (2000)) byusing quadrati
 programming to solve the 
onstrained open-loop optimization problem.This method also allows 
ertain violations of the 
onstraints in order to enlarge the setof feasible states. This method is 
alled QDMC (Quadrati
 Dynami
 Matrix Control).The third generation of MPC te
hnology, introdu
ed about a de
ade ago, �distin-guishes between several levels of 
onstraints (hard, soft and ranked). This te
hnologyprovides some me
hanism to re
over from an infeasible solution, and addresses the issuesresulting from a 
ontrol stru
ture that 
hanges in real time, and allows for a wider rangeof pro
ess dynami
s and 
ontroller spe
i�
ations� (Qin and Badgwell, 2003). The Shellmulti-variable optimizing 
ontrol (SMOC) uses state-spa
e models, in
orporates generalEle
tri
al, Ele
troni
 and Computer Engineering 42

 



Chapter 3 Stability of MPCdisturban
e models and allows for state estimation using Kalman �lters (as dis
ussed inMayne et al. (2000)).An independent but similar approa
h was developed from the adaptive 
ontrol the-ory and is 
alled generalized predi
tive 
ontrol (GPC). The method uses models in theba
kward shift operator q-1 whi
h is more general than the impulse and step responsemodels of DMC. GPC started as minimum varian
e 
ontrol (Mayne et al., 2000) that onlyallowed for a horizon of length 1. Minimum varian
e 
ontrol was extended to allow forlonger predi
tion horizons by Peterka (1984) as well as Clarke et al. (1987a,b). GPC, andearly versions of DMC, did not expli
itly in
orporate stability in the method and had torely on the tuning of the predi
tion horizon as well as the weights on the states and inputsto a
hieve stability.3.3 Stability of MPCThe inability of both GPC and DMC to guarantee stability 
aused resear
hers to fo
usmore on modifying PN (x) to ensure stability due to in
reased 
riti
ism (Bitmead et al.,1990) of the makeshift approa
h of using tuning to attain stability.With terminal equality 
onstraints, the system is for
ed to the origin by the 
ontrollerthat takes the form F (x) = 0, as there is no terminal 
ost and the terminal set is Xf = {0}.Keerthi and Gilbert, as dis
ussed in Mayne et al. (2000), proposed this stabilizing strategyfor 
onstrained, nonlinear, dis
rete systems, and showed a stability analysis of this version(terminal equality 
onstraints) of dis
rete-time re
eding horizon 
ontrol. MPC with aterminal equality 
onstraint 
an be used to stabilize a system that 
annot be stabilized by
ontinuous feedba
k 
ontrollers, a

ording to Meadows et al. (as dis
ussed in Mayne et al.(2000)).Using a terminal 
ost fun
tion is an alternative approa
h to ensure stability. Herethe terminal 
ost is F (·), but there is no terminal 
onstraint and the terminal set isthus Xf = R
n. For un
onstrained linear systems the terminal 
ost of F (x) = 1

2
xT Pfx isproposed by Bitmead et al. (1990).Terminal 
onstraint sets di�er from the terminal equality 
onstraints, in that subsetsEle
tri
al, Ele
troni
 and Computer Engineering 43

 



Chapter 3 Stability of MPCof R
n that in
lude a neighbourhood of the origin are used to stabilize the 
ontrol, notjust the origin. The terminal 
onstraint set, as with the terminal equality 
onstraint,does not employ a terminal 
ost, thus F (x) = 0. The MPC 
ontroller should steer thesystem to Xf within a �nite time, after whi
h a lo
al stabilizing 
ontroller κf (·) is em-ployed. This methodology is usually referred to as dual mode 
ontrol and was proposed byMi
halska and Mayne (1993) in the 
ontext of 
onstrained, nonlinear, 
ontinuous systemsby using a variable horizon N.A terminal 
ost and 
onstraint set is employed in most modern model predi
tive 
on-trollers. If a in�nite horizon obje
tive fun
tion 
an be used, on-line optimization is notne
essary and stability and robustness 
an be guaranteed. In pra
ti
al systems, 
on-straints and other nonlinearities make the use of in�nite horizons impossible, but it ispossible to approximate an in�nite horizon obje
tive fun
tion if the system is suitably
lose to the origin. By 
hoosing the terminal set Xf as a suitable subset of R

n, theterminal 
ost F (·) 
an be 
hosen to approximate an in�nite horizon obje
tive fun
tion.A terminal 
ost and 
onstraint set 
ontroller therefore needs a terminal 
onstraint set
Xf in whi
h the terminal 
ost F (·) and in�nite horizon feedba
k 
ontroller Kf are em-ployed. To synthesise these, Sznaier and Damborg (as dis
ussed in Mayne et al. (2000))proposed that the terminal 
ost F (·) and feedba
k 
ontroller Kf of a standard LQ prob-lem be used, whi
h is an un
onstrained in�nite horizon problem, when the system islinear (f(x, u) = Ax + Bu) and the state and input 
onstraint sets, X and U, are poly-topes. The terminal 
onstraint set Xf is 
hosen to be the maximal output admissible set(Gilbert and Tan, 1991) of the system f(x, u) = (A + BKf)x.3.3.1 Stability 
onditions for model predi
tive 
ontrollersFrom the above dis
ussion, it is 
lear that the additions of a terminal 
onstraint set Xf ,terminal 
ost F (·) and lo
al feedba
k 
ontroller κf in the terminal 
onstraint set, form thebasis of stabilizing model predi
tive 
ontrol. Some 
onditions, in the form of axioms, areformulated (Mayne et al., 2000) for the terminal 
onstraint set, terminal 
ost and lo
alfeedba
k 
ontroller, whi
h ensure that the 
ontroller is stabilizing.Ele
tri
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Chapter 3 Stability of MPCTwo related methods are available for establishing stability. Both methods use aLyapunov fun
tion as the obje
tive fun
tion. The �rst method ensures that the obje
tivefun
tion V o
N(x) evolves with the state from x to x+ = f(x, κN(x)) so that

V o
N(x+) − V o

N (x) + l(x, κN (x)) ≤ 0, (3.17)while the alternative method uses the fa
t that
V o

N(x+) − V o
N(x) + l(x, κN (x)) = V o

N(x+) − VN−1(x
+), (3.18)and shows that the right-hand side is negative, either dire
tly or by showing that V o

1 (·) ≤

V o
0 (·) and exploiting monotoni
ity whi
h implies that if V o

1 (·) ≤ V o
0 (·) then V o

i+1(·) ≤ V o
i (·)for all i ≥ 0.Assume a model predi
tive 
ontroller that 
an steer the system state x to the ter-minal 
onstraint set Xf within the predi
tion horizon N or fewer steps. The 
ontrolsequen
e that a

omplishes this is 
alled an admissible or feasible 
ontrol sequen
e u =

{u(0), u(1), ..., u(N − 1)}. This 
ontrol sequen
e should satisfy the 
ontrol 
onstraints
u(i) ∈ U for i = 0, 1, ..., N − 1 and ensure that the 
ontrolled states satisfy the state
onstraints xu(i) ∈ X for i = 0, 1, .., N and the �nal state satis�es the terminal 
on-straint set xu(N) ∈ Xf . If the 
ontrol problem PN(x) is solved, the 
ontrol sequen
e
u

o(x) is obtained that will steer the system within the set of states that is possiblewith a model predi
tive 
ontrol of horizon N, x ∈ XN . The optimal 
ontrol sequen
e
u

o(x) = {u(0; x), u(1; x), ..., u(N −1; x)} will result in the optimal state sequen
e x
o(x) =

{xo(0; x), xo(1; x), ..., xo(N − 1; x), xo(N ; x)}. The �rst 
ontrol a
tion of u
o(x), that is

u = κN (x) = uo(0; x) is implemented to get to the next state x+ = f(x, κN(x)) = xo(1; x).A feasible 
ontrol sequen
e x̃(x+) for the state x+, will result in an upper bound for theoptimal obje
tive fun
tion V o
N(x+), be
ause a feasible 
ontrol sequen
e should give a largervalue for the obje
tive fun
tion than an optimal 
ontrol sequen
e. The abbreviated 
on-trol sequen
e {u(1; x), u(2; x), ..., u(N − 1; x)} derived from u

o(x) should be a feasible
ontrol sequen
e to steer state x+ to xo(N ; x) ∈ Xf . If an extra term is added to theEle
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Chapter 3 Stability of MPC
ontrol sequen
e {u(1; x), u(2; x), ..., u(N − 1; x), u}, the 
ontrol sequen
e will be feasiblefor PN(x+) if u ∈ U and u steers xo(N ; x) ∈ Xf to f(xo(N ; x), u) ∈ Xf . This will betrue if u = κf(x
o(N ; x)), with the terminal state 
onstraint Xf and lo
al 
ontroller κf (·)having the properties:

Xf ⊂ X, κf (x) ∈ U and f(x, κf(x)) ∈ Xf ∀x ∈ Xf , (3.19)implying that the terminal set Xf is invariant when the 
ontroller is κf(·). The feasible
ontrol sequen
e for PN(x+) is
ũ(x) = {uo(1; x), uo(2; x), ..., uo(N − 1; x), κf(x

o(N ; x))}, (3.20)with the asso
iated 
ost
VN(x+, ũ(x)) = V o

N(x) − l(x, κN (x)) − F (xo(N ; x))

+l(xo(N ; x), κf (x
o(N ; x))

+F (f(xo(N ; x), κf (x
o(N ; x))). (3.21)This 
ost is the upper bound on V o

N (x+) and satis�es
VN(x+, ũ(x)) ≤ V o

N(x) − l(x, κN(x)), (3.22)if F (f(x, κf(x))) − F (x) + l(x, κf (x)) ≤ 0 ∀x ∈ Xf . This is a

omplished if F (·) is a
ontrol Lyapunov fun
tion in the neighbourhood of the origin and the 
ontroller κf andthe terminal 
onstraint set Xf are 
hosen appropriately. If this 
ondition is satis�ed, then(3.17) will hold for all x ∈ XN and it is su�
ient to say that the 
losed-loop system
x+ = f(x, κN(x)) will 
onverge to zero as time tends to in�nity, provided that the initialstate is within XN . The stability 
onditions 
an be summarized in the following axioms(Mayne et al., 2000):A1: Xf ⊂ X, Xf is a 
losed set and 0 ∈ Xf . This 
ondition implies that the stateEle
tri
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Chapter 3 Stability of MPC
onstraints should be satis�ed in the terminal 
onstraint set.A2: κf (x) ∈ U, ∀x ∈ Xf . This 
ondition implies that the 
onstraints on the 
ontrolsshould be satis�ed by the lo
al 
ontroller in the terminal 
onstraint set Xf .A3: f(x, κf(x)) ∈ Xf , ∀x ∈ Xf . This implies that the terminal 
onstraint set Xf ispositively invariant under the lo
al 
ontroller κf(·).A4: F (f(x, κf(x)))−F (x) + l(x, κf (x)) ≤ 0 ∀x ∈ Xf . The terminal 
ost fun
tion F (·) isa lo
al Lyapunov fun
tion in the terminal 
onstraint set Xf .The 
onditions as summarized in A1 to A4 are merely su�
ient 
onditions to ensurestability in model predi
tive 
ontrollers. These 
onditions 
an be shown to hold for themonotoni
ity approa
h as well as the 
ontinuous 
ase (Mayne et al., 2000). The followingfew paragraphs will show how the stabilizing methods of se
tion 3.3 satisfy the stability
onditions A1 to A4.3.3.2 Terminal state MPCThe terminal state variant of model predi
tive 
ontrollers (Mayne et al., 2000) uses theterminal state Xf = {0} with no terminal 
ost F (·) = 0. The lo
al 
ontroller in theterminal 
onstraint set is κf(x) = 0 that will ensure that the state remains at the originif this 
ontroller is applied. The fun
tions F (·) and κf(·) are only valid in Xf whi
h is atthe origin. The satisfa
tion of the stability 
onditions A1 to A4 are as follows:A1: Xf = {0} ∈ X - Satis�ed.A2: κf (0) = 0 ∈ U - Satis�ed.A3: f(0, κf(0)) = f(0, 0) = 0 ∈ Xf - Satis�ed.A4: F (f(0, κf(0))) − F (0) + l(0, κf(0)) = 0 - Satis�ed.The 
ontroller ensures that the 
losed-loop system is asymptoti
ally (exponentially) stablewith region of attra
tion XN .Ele
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Chapter 3 Stability of MPC3.3.3 Terminal 
ost MPCTerminal 
ost model predi
tive 
ontrollers are only valid for linear un
onstrained (Bitmead et al.,1990) and linear, stable, 
onstrained (Rawlings and Muske, 1993) 
ases. In order to en-sure stability a terminal 
onstraint is ne
essary if the system is nonlinear or linear, 
on-strained and unstable. Linear, un
onstrained systems are de�ned as f(x, u) = Ax + Bu,and l(x, u) = 1
2
(|x|2Q + |u|2R) where Q > 0 and R > 0. The �rst three 
onditions A1 to A3are trivially satis�ed in the un
onstrained 
ase, be
ause X = R

n and U = R
m. In the 
asewhere A and B are stabilizable, the lo
al 
ontroller is de�ned as κf := Kfx, and Pf > 0should satisfy the Lyapunov equation

AT
f PAf + Qf = 0, Af := A + BKf , Qf := Q + KfRKf , (3.23)then the terminal 
ost fun
tion F (x) := 1

2
xT Pfx satis�es A4 and the 
losed-loop system isasymptoti
ally (exponentially) stable with a region of attra
tion R

n. Linear, 
onstrained,stable systems have 
ontrol 
onstraints u ∈ U, but no 
onstraints on the states, thus
X = Xf = R

n. In order to satisfy A2, the 
ontroller fun
tion, if linear, should be
κf(x) = 0 (Rawlings and Muske, 1993), that leads to the �rst three 
onditions (A1 toA3) being satis�ed. The �nal 
ondition A4 is satis�ed if the terminal 
ost fun
tion is
F (x) := 1

2
xT Pfx, where Pf satisfy the Lyapunov equation AT PA + Q = 0, that results ina 
ontroller with asymptoti
 (exponential) stability with region of attra
tion R

n.3.3.4 Terminal 
onstraint set MPCTerminal 
onstraint set model predi
tive 
ontrollers employ a terminal 
onstraint set
x(N) ∈ Xf without a terminal 
ost F (x) = 0 for nonlinear, 
onstrained systems. Mi
halska and Mayne(1993) introdu
ed the idea of a variable predi
tion horizon N for 
ontinuous-time, 
on-strained, nonlinear systems. S
okaert et al. (1999) proposed a �xed horizon version fornonlinear, 
onstrained, dis
rete-time systems. The 
ontroller steers the state of the sys-tem x to within the terminal 
onstraint set Xf , after whi
h a lo
al stabilizing 
ontroller
κf(x) = Kfx is employed. This type of MPC is sometimes referred to as dual-mode MPC.Ele
tri
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Chapter 3 Stability of MPCThis method is similar to the terminal equality 
onstraint method, ex
ept that the equal-ity {0} is repla
ed by a set Xf . The lo
al 
ontroller κf (·) and the terminal 
onstraint set
Xf are 
hosen to satisfy the �rst three 
onditions A1 to A3. The lo
al 
ontroller κf (·) is
hosen to steer the system exponentially fast to the origin for all states in the terminal
onstraint set (∀x ∈ Xf). The stage 
ost of the obje
tive fun
tion l(x, κf(x)) should be 0when the system state is within the terminal 
onstraint set Xf in order to satisfy A4. Asuitable 
hoi
e for the stage 
ost is

l(x, u) := α(x)l(x, u), (3.24)where α(x) = 1, ∀x /∈ Xf , else α(x) = 0 and l(x, u) = 1
2
(xT Qx + uTRu), where Q > 0and R > 0. The 
losed-loop system is exponentially stable with domain of attra
tion XN ,be
ause the MPC 
ontroller steers the system with initial state x ∈ XN within �nite timeto Xf with the 
ontroller value κN(·).

3.3.5 Terminal 
ost and 
onstraint set MPCTerminal 
ost and 
onstraint sets are employed by most modern model predi
tive 
on-trollers. In linear, 
onstrained systems the terminal 
ost fun
tion 
an be 
hosen F (x) =

V 0
uc(x) = 1

2
xT Pfx, that is the same as the un
onstrained in�nite horizon optimal 
on-trol problem. The lo
al 
ontroller κf (x) = Kfx is the optimal in�nite horizon 
on-troller and the terminal 
onstraint set Xf is the maximal admissible set for the system

x+ = Afx, Af := A + BKf , thus satisfying A1-A4. This results in an exponentiallystable 
ontroller with domain of attra
tion Xf . The ideal 
hoi
e for the terminal 
ostwould be to 
hoose F (x) = V o
∞(x), the obje
tive fun
tion of an in�nite horizon optimal
ontroller, that would result in the obje
tive fun
tion for model predi
tive 
ontroller being

V o
N(x) = V o

∞(x), and on-line optimization would not be ne
essary. The resulting MPC
ontroller will have all the advantages of in�nite horizon 
ontrol. This is usually notpra
ti
al, and the use of the terminal 
onstraint set Xf and F (x) = V 0
uc(x) = 1

2
xT Pfxapproximates the advantages of using F (x) = V o

∞(x). The nonlinear 
ase is also given inEle
tri
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Chapter 3 Robust MPC - Stability of un
ertain systemsMayne et al. (2000).From this dis
ussion, it is 
lear that the use of a terminal 
onstraint set Xf , terminal
ost fun
tion F (·) and lo
al stabilizing 
ontroller κf(·) is ne
essary to ensure stabilityin model predi
tive 
ontrol. The �rst two requirements, terminal 
onstraint set Xf andterminal 
ost fun
tion F (·), are expli
itly in
orporated into the 
ontroller, while the feed-ba
k 
ontroller κf(·) is only impli
itly needed to prove stability. If the 
ost fun
tion F (·)is as 
lose to the obje
tive fun
tion V o
∞(·) as possible, the 
losed-loop traje
tory is exa
tlythe same as that predi
ted by the solution of the optimal 
ontrol problem PN(x).3.4 Robust MPC - Stability of un
ertain systemsRobust model predi
tive 
ontrol is 
on
erned with the stability and performan
e of the
losed-loop system in the presen
e of un
ertainty in the plant model. Early studies inrobustness of model predi
tive 
ontrollers 
onsidered un
onstrained systems and foundthat if the Lyapunov fun
tion retains its des
ent property in the presen
e of disturban
es(un
ertainty), it will remain stable. In the 
onstrained 
ase, the problem be
omes more
omplex, be
ause the un
ertainty or disturban
es should not 
ause the 
losed-loop systemto violate its state or 
ontrol 
onstraints.Ri
halet et al. (1978) performed one the earliest studies in robustness on systems withimpulse response models, by investigating the e�e
t of gain mismat
hes on the 
losed-loopsystem. Later work on systems modelled by impulse responses approa
hed the optimal
ontrol problem as a min-max problem, that 
aused the problem to grow exponentiallywith the size of the predi
tion horizon.There are several approa
hes to robust model predi
tive 
ontrol, the �rst being a studyof the robustness of model predi
tive 
ontrol designed with a nominal model (that does nottake un
ertainty into a

ount). The se
ond approa
h 
onsiders all the possible realizationsof the un
ertain system when 
al
ulating the open-loop optimal 
ontroller (min-max open-loop MPC). The open-loop nature of model predi
tive 
ontrol is a problem when modelun
ertainty is present and the third approa
h addresses this by introdu
ing feedba
k inthe optimal 
ontrol problem that is solved on-line.Ele
tri
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Chapter 3 Robust MPC - Stability of un
ertain systemsFor the dis
ussion of robust model predi
tive 
ontrol, the un
ertain system is des
ribedas
x+ = f(x, u, w), (3.25)
y = g(x), (3.26)where the state x and 
ontrol u satisfy the same 
onstraints

x(k) ∈ X, (3.27)
u(k) ∈ U, (3.28)and the disturban
e or un
ertainty w satis�es w ∈ W (x(k), u(k)) for all k where, for ea
h

(x, u), W (x, u) is 
losed and 
ontains the origin in its interior. The disturban
e sequen
e
w := {w(0), w(1), ..., w(N − 1)} together with the 
ontrol sequen
e u and initial state
x will produ
e the resulting state traje
tory xu,w(·; x). Let F(x, u) := f(x, u, W (x, u)),whi
h will map values in X and U to subsets of R

n, resulting in x+ ∈ F(x, u).De Ni
olao et al. (1996) and Magni and Sepul
hre (1997) studied the inherent robust-ness of model predi
tive 
ontrollers that were designed without taking un
ertainty intoa

ount.3.4.1 Stability 
onditions for robust MPCMost versions of robust model predi
tive 
ontrol take all the realizations of the un
ertaintyor disturban
e w into 
onsideration that requires strengthened assumptions to be satis�ed,whi
h are summarized as robust versions of axioms A1-A4 (Mayne et al., 2000):A1: Xf ⊂ X, Xf 
losed, 0 ∈ Xf .A2: κf (x) ∈ U, ∀x ∈ Xf .A3a: f(x, κf(x), w) ∈ Xf , ∀x ∈ Xf , ∀w ∈ W (x, κf (x)).A4a: F (f(x, κf(x), w)) − F (x) + l(x, κf (x), w) ≤ 0, ∀x ∈ Xf , ∀w ∈ W (x, κf(x)).Ele
tri
al, Ele
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Chapter 3 Robust MPC - Stability of un
ertain systemsIf F (·) is a robust Lyapunov fun
tion in the neighbourhood of the origin, there exists atriple (F (·), Xf , κf (·)), whi
h ensures that A4a is satis�ed and results in an asymptoti
allyor exponentially stable 
ontroller.
3.4.2 Open-loop min-max MPCOpen-loop min-max model predi
tive 
ontrol 
onsiders all the possible realizations of theun
ertain system in order to ensure that the state, 
ontrol and terminal 
onstraints aremet for all the possible realizations (Mi
halska and Mayne, 1993). The obje
tive fun
tionvalue in this 
ase is determined for ea
h realization

J(x,u,w) :=
N−1
∑

i=0

l(x(i), u(i)) + F (x(N)), (3.29)where x(i) = xu,w(i; x; 0) and the �nal obje
tive value is the worst 
ase for all the real-izations
VN (x,u) := max{J(x,u,w)|w ∈ WN(x,u)}, (3.30)where WN (x,u) is the set of admissible disturban
e sequen
es. Other 
hoi
es are to takethe obje
tive value as the nominal obje
tive value by using w = 0. Badgwell (as dis
ussedin Mayne et al. (2000)) used an interesting approa
h, where the 
ontroller should redu
ethe obje
tive fun
tion value for every realization, whi
h is assumed �nite, for a linearsystem. This is stronger than only redu
ing the worst-
ase obje
tive value.The set of admissible 
ontrol sequen
es Uol

N (x) is that set whi
h satis�es the 
ontrol,state and terminal 
onstraints for all possible realization of the disturban
e sequen
e wwhen the initial state is x. Suppose the the set X
ol
i , for all i ≥ 0, is the set of statesthat 
an be robustly steered to the terminal state 
onstraint Xf in i steps or less by anadmissible 
ontrol sequen
e u ∈ Uol

N (x). The open-loop optimal 
ontrol problem is
P ol

N (x) : V o
N(x) = min{VN(x,u)|u ∈ Uol

N (x)}. (3.31)Ele
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Chapter 3 Robust MPC - Stability of un
ertain systemsThe solution to P ol
N (x) yields the optimal 
ontrol sequen
e u

o(x), where the impli
it min-max 
ontrol law is
κol

N(x) := u
o(0; x), (3.32)as in the nominal 
ase. The 
ontrol sequen
e will result in a �bundle� of optimal statesequen
es {xo(x,w)} as a result of the disturban
e sequen
es w, so that

x
o(x,u) = {xo(0; x;w), xo(1; x;w), ..., xo(N − 1; x;w), xo(N ; x;w)}. (3.33)The triple (F (·), Xf , κf (·)) is assumed to satisfy the stability 
onditions A1-A4a. Assumethe pro
ess is started with an initial state x ∈ X ol

N and has an optimal (and by impli
ationa feasible) 
ontrol sequen
e {uo(0; x), uo(1; x), ..., uo(N − 1; x)} for the optimal 
ontrolproblem P ol
N (x) that steers the state to within the terminal 
onstraint set Xf within N stepsor less, so that xo(N ; x;w) ∈ Xf , ∀w ∈ W(x,uo(x)). As a result the abbreviated 
ontrolsequen
e {uo(1; x), uo(2; x), ..., uo(N − 1; x)} should steer the state x+ ∈ F(x, κN(x)) tothe terminal 
onstraint set Xf within N − 1 steps or less, where x+ ∈ X ol

N−1. A problemarises when a feasible 
ontrol sequen
e needs to be generated by adding a term to theabbreviated 
ontrol sequen
e
ũ(x) = {uo(1; x), uo(2; x), ..., uo(N − 1; x), v}, (3.34)for the optimal 
ontrol problem P ol

N (x+), where the 
ontrol a
tion v ∈ U is required tosatisfy f(xo(N ; x;w), v, wN) ∈ XN for all w ∈ W(x,uo(x)). The stability 
ondition A3adoes not ensure that su
h a 
ontrol a
tion v 
an be obtained, whi
h prevents the upperbound of the obje
tive fun
tion V o
N (x+) from being 
al
ulated. Mi
halska and Mayne(1993) 
ir
umvent this problem by using a variable horizon optimal 
ontrol problem P (x)with de
ision variables (u, N). The optimal solution (uo(x); No(x)) is obtained by solving
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Chapter 3 Robust MPC - Stability of un
ertain systemsthe optimal 
ontrol problem P (x), where
u

o(x) = {uo(0; x), uo(1; x), ..., uo(N(x) − 1; x)}.For the optimal 
ontrol problem P (x+) the solution (u(x), No(x)−1) is a feasible solutionfor any x+ ∈ X (x, κN(x)). The variable horizon obje
tive fun
tion V o(·) and impli
it
ontroller κol(·) will ensure that stability 
ondition A4a holds for all x ∈ X
ol
N ⊂ Xf , ∀w ∈

W (x, κol(x)). Inside the terminal 
onstraint set Xf , a suitable lo
al 
ontroller κf(·) is usedsubje
t to stability 
onditions A1-A4a. This will result in an asymptoti
 (exponential)stable 
ontroller with domain of attra
tion X
ol
N , subje
t to further modest assumptions(Mi
halska and Mayne, 1993).

3.4.3 Feedba
k robust MPCFeedba
k robust model predi
tive 
ontrol is better suited for un
ertain systems than open-loop min-max 
ontrollers, be
ause open-loop 
ontrollers assume that the traje
tories ofthe system may diverge, whi
h may 
ause X
ol
N to be very small, or even empty for amodest sized predi
tion horizon N , whi
h is very 
onservative. This happens be
ausethe open-loop min-max 
ontrollers do not take the e�e
t of feedba
k into 
onsideration,whi
h would prevent the traje
tories from diverging too mu
h. To address the short
om-ings of open-loop min-max 
ontrol, feedba
k MPC was proposed by Lee and Yu (1997),S
okaert and Mayne (1998), Magni et al. (2001) and Kothare et al. (1996). In feedba
kmodel predi
tive 
ontrol, the 
ontrol sequen
e u is repla
ed by a 
ontrol poli
y π whi
his a sequen
e of 
ontrol laws:

π := {u(o), κ1(·), ..., κN−1(·)}, (3.35)where κi(·) : X → U is a 
ontrol law for ea
h i, while u(0) is a 
ontrol a
tion, be
ausethere is only one initial state. The obje
tive fun
tion for the feedba
k model predi
tiveEle
tri
al, Ele
troni
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Chapter 3 Robust MPC - Stability of un
ertain systems
ontroller is
VN(x, π) := max{J(x, π,w)|w ∈ WN(x, π)} (3.36)and the obje
tive fun
tion for ea
h realization
J(x, π,w) :=

N−1
∑

i=0

l(x(i), u(i)) + F (x(N)), (3.37)where x(i) = xπ,u(i; x) is the state at time i resulting from an initial state at time 0,a 
ontrol poli
y π and a disturban
e sequen
e w. The admissible set of disturban
es,given the 
ontrol poli
y π is implemented, is WN (x, π). The set of admissible 
ontrolpoli
ies that will satisfy the 
ontrol, state and terminal 
onstraints for all the admissibledisturban
es with initial state x, is ΠN (x). The set of initial states that 
an be steeredto the terminal 
onstraint set Xf by an admissible 
ontrol poli
y π in i steps or less, is
X

fb
i , ∀i ≥ 0. The feedba
k optimal 
ontrol problem be
omes

P fb
N (x) : V o

N(x) = min{VN(x, π)|π ∈ ΠN(x)}. (3.38)If a solution to P fb
N (x) exists, the optimal 
ontrol poli
y is

πo(x) = {uo(0; x), κo
1(·; x), κo

2(·; x), ..., κo
N−1(·; x)}, (3.39)where the impli
it feedba
k model predi
tive 
ontrol law is

κfb
N (x) := uo(0; x). (3.40)If the stability 
onditions A1-A4a are satis�ed for P fb

N (x), a feasible 
ontrol poli
y for
P fb

N (x+) for all x+ ∈ F(x, κfb
N (x)) and x ∈ X

fb
N is

π̃(x, x+) := {κo
1(x

+; x), κo
2(·; x), ..., κN−1(·; x), κf(·)}. (3.41)
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Chapter 3 Robust MPC - Stability of un
ertain systemsWith this feasible 
ontrol poli
y, and with X
fb
N an invariant set for x+ ∈ F(x, κfb

N (x)),assumption A4a will be satis�ed for all x ∈ X
fb
N and w ∈ W (x, κfb

N (x)). The resultingrobust model predi
tive 
ontroller is asymptoti
ally (exponentially) stable with domainof attra
tion X
fb
N under further modest assumptions. The results are very similar to open-loop min-max 
ontrol, ex
ept that the domain of attra
tion X

fb
N in
ludes X

ol
N and 
ouldpossibly be mu
h larger. Feedba
k MPC is en
ouraging, but su�ers from mu
h higher
omplexity than open-loop min-max 
ontrol.3.4.4 Robust MPC implementationsSome implementations of robust model predi
tive 
ontrollers that fall into the above-mentioned 
ategories, are linear matrix inequality (LMI) based 
ontrollers that produ
efeedba
k poli
ies whi
h are implemented at ea
h time interval. The problem with these
ontrollers is that they use an ellipsoid invariant set for their domain of attra
tion, whi
hmakes them 
onservative. This is be
ause the sets must be symmetri
, and in systemswhere the 
onstraints are non-symmetri
, the ellipsoid sets will be a small subset ofthe maximum admissible set. The feedba
k robust MPC te
hnique was introdu
ed byKothare et al. (1996). The te
hnique was improved by Cuzzola et al. (2002) by des
ribingthe un
ertain system as a polytope and applying di�erent Lyapunov fun
tions to ea
hvertex of the un
ertain polytope to redu
e the 
onservatism of the method. The methoduses semide�nite programming (SDP) to solve the minimization problem on-line, whi
his 
omputationally very expensive 
ompared to quadrati
 programming (QP) used innominal MPC. Further improvements made by Wan and Kothare (2003); Casavolaa et al.(2004); Ding et al. (2004) resulted in an attempt to move as mu
h of the 
al
ulation aspossible o�ine. The LMI methods have been used to robustify PID (Proportional, Integraland Derivative) 
ontrol (Ge et al., 2002) and a few 
ase studies on LMI based 
ontrol weredone by Park and Rhee (2001) and Wu (2001).An approa
h to feedba
k robust model predi
tive 
ontrol is proposed by Langson et al.(2004) who uses tubes to en
apsulate all the possible states that 
an result from the
ontroller. If the un
ertainties 
an be su�
iently des
ribed, the optimization problemEle
tri
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troni
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Chapter 3 Robust MPC - Stability of un
ertain systemsneeds only be 
al
ulated on
e, and the 
ontrol poli
y will steer the system to the terminal
onstraint set Xf , where a lo
al stabilizing 
ontroller will keep the un
ertain system inthe terminal 
onstraint set.There is a movement in robust model predi
tive 
ontrol to redu
e the on-line 
ompu-tational burden. Lee and Kouvaritakis (2002) propose a method where optimal 
ontrolsequen
es are 
omputed o�ine for 
ertain 
anoni
al states. A feasible (suboptimal) 
on-trol sequen
e is generated on-line for the state x by using linear 
ombinations of thepre
omputed optimal 
ontrol sequen
es. The on-line 
omputation is redu
ed to a simplematrix multipli
ation, and no on-line optimization is performed. De la Pena et al. (2004)proposed using multi-parametri
 methods to des
ribe a suboptimal 
ontrol strategy thatwill be less 
omputationally expensive for on-line use. Fukushima and Bitmead (2005)in
orporate the un
ertainties and bounded disturban
es into a 
omparison model, andthe 
ontrol algorithm 
an then be set up as a nominal MPC (without un
ertainties) withonly a QP problem to solve on-line. The 
omparison model provides an upper bound onthe obje
tive fun
tion value used in the on-line optimization. Mayne et al. (2005) redu
edthe on-line optimization of robust model predi
tive 
ontrol to a QP problem, with theinitial state as well as the 
ontrol sequen
e as part of the de
ision variables. As the on-lineproblem is a nominal 
ontrol problem, tighter 
onstraints are used to ensure robustness.This is only valid for linear systems, and 
annot be easily extended to nonlinear systems.An interesting robust 
ontroller, in a pro
ess 
ontrol environment, was proposed byTsai et al. (2002), whi
h uses neural adaptive 
ontrol based on arti�
ial neural networks(ANN) in 
onjun
tion with normal robust MPC. The outputs of the two 
ontrollers are
ombined and the weightings are 
al
ulated from regional knowledge of the ANN, whi
hdetermines whether the ANN is operating in an area of good predi
tion 
hara
teristi
s ornot.An alternative approa
h to robust model predi
tive 
ontrol, is to modify the obje
tivefun
tion to ensure robust stability in the presen
e of un
ertainties. Wang and Romagnoli(2003) used robust identi�
ation theory to 
onstru
t a generalized obje
tive fun
tion, torepla
e the quadrati
 obje
tive fun
tion usually employed to produ
e a robust 
ontroller.Ele
tri
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Chapter 3 Robust model predi
tive 
ontrollersThe on-line optimization uses the nominal model, and robustness is provided by theobje
tive fun
tion. A method for robustifying generalized predi
tive 
ontrol (GPC) hasbeen proposed by Rodríguez and Dumur (2005).The robust model predi
tive 
ontrollers do not always provide o�-set free tra
king,and this problem is addressed by Wang and Rawlings (2004b,a) who use a robust predi
-tor that updates itself ea
h time measurements are available to ensure that the o�-set iseliminated. Panno

hia (2004) approa
hes the problem by designing a robust linear feed-ba
k 
ontroller and an appropriate invariant set where the 
ontroller will satisfy the 
on-straints. The 
ontroller uses the dual-mode approa
h suggested by Rossiter et al. (1998)and later implemented by Kouvaritakis et al. (2000); S
huurmans and Rossiter (2000) andLee and Kouvaritakis (2000), where the feedba
k law ui(·) in the poli
y π is restri
ted tohave the form ui(x) = vi + Kx, i = 0, 1, 2, ..., N − 1, that 
hanges the optimization prob-lem to 
al
ulating the free 
ontrol moves {v0, v1, v2, ..., vN−1} rather than the poli
y. Thedual-mode 
ontroller remains essentially a feedba
k model predi
tive 
ontrol, be
ause Kxlimits the diversion of traje
tories of the 
losed-loop system.
3.5 Robust model predi
tive 
ontrollersIn this se
tion two robust model predi
tive 
ontroller methods, used in 
omparison withnominal MPC in the next 
hapter, are dis
ussed in more detail. The �rst method, pro-posed by Kothare et al. (1996) 
al
ulates a feedba
k poli
y at ea
h time interval forthe system. The se
ond method 
onsists of a dual-mode 
ontroller �rst proposed byRossiter et al. (1998), where the feedba
k poli
y is a 
ombination of an open-loop feed-ba
k 
ontrol law κf ≡ −Kx with free 
ontrol moves v, ui(·) = v − Kx.3.5.1 Robust MPC using LMIsTraditional model predi
tive 
ontrol solves an open-loop 
onstrained optimization prob-lem. The internal model is a nominal model and the assumption is that feedba
k will
ompensate for the model un
ertainty and unmeasured disturban
es. The stru
ture ofEle
tri
al, Ele
troni
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Chapter 3 Robust model predi
tive 
ontrollersthe value fun
tion usually does not take the e�e
t of feedba
k into 
onsideration.Kothare et al. (1996) formulated a new model predi
tive 
ontrol strategy with robust-ness in mind. The robust 
ontroller design expli
itly in
orporates model un
ertainty. Thevalue fun
tion is also formulated to take feedba
k into 
onsideration. The whole theory isbased on linear matrix inequalities (LMI) (Boyd et al., 1994). With 
urrent interior pointmethods and 
omputer te
hnology, these fun
tions 
an now be solved fast enough to beappli
able in on-line use. Current model predi
tive 
ontrol theory 
an be re
ast as linearmatrix inequalities that in
orporate input and output 
onstraints, model un
ertainty androbustness measures.
3.5.1.1 System des
riptionsThe system is de�ned as a linear time-varying system by Kothare et al. (1996).

x(k + 1) = A(k)x(k) + B(k)u(k), (3.42)
y(k) = Cx(k), (3.43)

[ A(k) B(k)] ∈ Ω, (3.44)where x(k) is the state of the system, u(k) is the 
ontrol ve
tor, y(k) is the output ofthe system and Ω is the set of models that des
ribes the system. For polytopi
 un
ertainsystems, the set Ω is the polytope
Ω ∈ Co

{

[ A1 B1 ], [ A2 B2 ], ..., [ Ai Bi ]

}

,where Co denotes the 
onvex hull.A se
ond representation of the system is 
alled the stru
tured feedba
k un
ertainty. Theun
ertainty is des
ribed as perturbations in the feedba
k loop. The system des
riptionlooks as follows:Ele
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troni
 and Computer Engineering 59

 



Chapter 3 Robust model predi
tive 
ontrollers
x(k + 1) = Ax(k) + Bu(k) + Bpp(k),

y(k) = Cx(k),

q(k) = Cpx(k) + Dquu(k), (3.45)
p(k) = (∆q)(k).The operator ∆ is blo
k-diagonal:
∆ =

























∆1

∆2

.

.

∆r

























, (3.46)
with ∆i : R

ni → R
ni.For a linear time varying system, it 
an be shown that (3.45) 
an be 
ast in the formof (3.42-3.43) by using

Ω =

{[

A + Bp∆Cq B + Bp∆Dqu

]

: ∆ satis�es (3.46) with σ(∆i) ≤ 1

}

.(3.47)3.5.1.2 Obje
tive fun
tionThe stage 
ost of the obje
tive fun
tion used is a standard quadrati
 fun
tion of the form
Jp(k) =

p
∑

i=0

[

x(k + i|k)T Q1x(k + i|k) + u(k + i|k)T Ru(k + i|k)
]

, (3.48)where Q1 > 0 and R > 0 are symmetri
 weighting matri
es. The obje
tive fun
tionstrives to drive the state ve
tor to zero. The Q weighting matrix de�nes the severity ofthe state position penalty and the R matrix that of the 
ontrol a
tion. The ratio of Qand R will determine the priority of state position versus 
ontrol a
tion obje
tives.Ele
tri
al, Ele
troni
 and Computer Engineering 60

 



Chapter 3 Robust model predi
tive 
ontrollers3.5.1.3 Linear matrix inequalitiesLinear matrix inequalities have the following form
F (x) = F0 +

f
∑

i=1

xiFi > 0, (3.49)where x1, x2, ..., xf are the variables, Fi = F T
i ∈ R

nxn are given, and F (x) > 0 meansthat F (x) is positive-de�nite. Multiple LMIs F1(x) > 0, ..., Fn(x) > 0 
an be expressedas the single LMI
diag (F1(x), ..., Fn(x)) > 0. (3.50)Convex quadrati
 inequalities are 
onverted to linear form using S
hur's 
omplements. Inthe 
ase of matrix inequalities of the form

R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0, (3.51)or
Q(x) > 0, R(x) − S(x)T Q(x)−1S(x) > 0, (3.52)where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depends a�nely on x, then the matrixinequality 
an be rewritten as







Q(x) S(x)

S(x)T R(x)






> 0. (3.53)3.5.1.4 Un
onstrained robust model predi
tive 
ontrolFor robust model predi
tive 
ontrol, the optimization be
omes a min-max problem. Theobje
tive fun
tion is maximized as a fun
tion of the un
ertain models. The worst 
ase isthen minimized as a fun
tion of the 
ontrol sequen
e.Ele
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tive 
ontrollers
min

u(k+i/k),i=0,1,2,..,m
max"

A(k + i) B(k + i)

#

∈Ω,i≥0
Jp(k), (3.54)with

Jp(k) =

p
∑

i=0

[

x(k + i|k)T Q1x(k + i|k) + u(k + i|k)T Ru(k + i|k)
]

. (3.55)This problem 
an be re
ast as linear matrix inequalities and in this 
ase the optimizedstate-feedba
k gain x(k + i|k) = Fx(k + i|k) is determined that minimizes the obje
tivefun
tion as
min
γ,Q,Y

γ (3.56)subje
t to






1 x(k|k)

x(k|k) Q






≥ 0 (3.57)and



















Q QAT
j + Y T BT

j QQ
1/2
1 Y T R1/2

AjQ + BjY Q 0 0

Q1/2Q 0 γI 0

R1/2Y 0 0 γI



















≥ 0, j = 1, 2, .., L, (3.58)
where L is the number of linear models in the set Ω and x(k|k) is the measured state.From this optimization the feedba
k gain is F = Y Q−1.In the 
ase of stru
tured feedba
k un
ertainty, the optimization be
omes

min
γ,Q,Y,Λ

γ (3.59)Ele
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tive 
ontrollerssubje
t to






1 x(k|k)

x(k|k) Q






≥ 0 (3.60)and

























Q Y T R1/2 QQ
1/2
1 QCT

q + Y T DT
qu QAT + Y T BT

R1/2Y γI 0 0 0

Q
1/2
1 Q 0 γI 0 0

CqQ + DquY 0 0 Λ 0

AQ + BY 0 0 0 Q − BpΛBT
p

























≥ 0, (3.61)
where

Λ =

































λ1In1

λ2In2

.

.

.

λrInr

































> 0, (3.62)
where x(k|k) is the measured state and Ini

, i = 1, 2, .., r is the identity matrix of the
orre
t dimensions for the diagonal entry i. The optimal feedba
k gain is F = Y Q−1.
3.5.1.5 Input 
onstraintsInput 
onstraints 
an be in
orporated into the robust model predi
tive formulation asadditional linear matrix inequalities. The input 
onstraints of the form

‖u(k + i|k)‖2 ≤ umax, (3.63)Ele
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an be written as linear matrix inequalities of the form






u2
maxI Y

Y T Q






≥ 0. (3.64)For 
onstraints on the individual 
omponents of the input ve
tor of the form

|uj(k + i|k)| ≤ uj,max, i ≥ 0, j = 1, 2, ..., nu, (3.65)the linear matrix inequalities are






X Y

Y T Q






≥ 0, with Xjj ≤ u2

j,max, j = 1, 2, ..., nu, (3.66)with X a symmetri
 matrix.
3.5.1.6 Output 
onstraintsOutput 
onstraints 
an be added to the robust model predi
tive 
ontrol formulation asadditional linear matrix inequalities. Here the output has to be maximized over theun
ertain models. This ensures that the 
onstraints will not be violated even in the worst
ase s
enario. The output 
onstraints of the form

max

[ A(k + i) B(k + i)] ∈Ω,i≥0

‖y(k + i|k)‖2 ≤ ymax, i ≥ 1, (3.67)
an be written in the following linear matrix inequality form for a polytopi
 un
ertaintydes
ription






Q (AjQ + BjY )T CT

C(AjQ + BjY ) y2
maxI






≥ 0, j = 1, 2, ..., L, (3.68)Ele
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Chapter 3 Robust model predi
tive 
ontrollerswhere L is the number of linear models in the un
ertainty des
ription. For the stru
turedun
ertainty 
ase, the output 
onstraints be
ome












y2
maxQ (cqQ + DquY )T (AQ + BY )T CT

CqQ + DquY T−1 0

C(AQ + BY ) 0 I − CBpT
−1BT

p CT













≥ 0, (3.69)
with

T =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1In1

t2In2

.

.

.

trInr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0. (3.70)
The 
ase for 
omponents of the output ve
tor is exa
tly the same, ex
ept for C = Ci and
T = Ti, where i is the output 
omponent in question, in (3.68) and (3.69).
3.5.1.7 Synthesis of the 
ontrollerThe 
ontroller is synthesised by applying the linear models of se
tion 2.4.5 in (3.61) and
hoosing the weighting for the state deviation Q and the penalty of the 
ontrol a
tion
R as in table 2.1. The input 
onstraints are spe
i�ed through (3.64) or (3.66) and theoutput or state 
onstraints through (3.69) and (3.70).
3.5.1.8 Controller operationAt ea
h time interval k, the semide�nite optimization (3.59) is performed subje
t to thelinear matrix inequality 
onstraints (3.60,3.61,3.62,3.66,3.69,3.70). The feedba
k law fortime step k is K = −F , where F = Y Q−1.Ele
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Chapter 3 Robust model predi
tive 
ontrollers3.5.2 Dual-mode robust model predi
tive 
ontrollerThe 
ontroller proposed by Pluymers et al. (2005b) uses an optimized 
ontrol sequen
eover the predi
tion horizon N after whi
h a global stabilizing state feedba
k gain K isused.3.5.2.1 Augmented system des
riptionThe system x̃(k + 1) = Φ(k)x̃(k) uses an augmented des
ription with verti
es of theun
ertainty polytope given by:
Φi =













Ai − BiK Bi 0

0 0 I((N−1).nu,(N−1).nu)

0 0 0













, i = 1, .., L, (3.71)
where L is the number of models.3.5.2.2 Constraints of the augmented systemThe 
onstraints of the augmented system are given by Ax̃x̃(k) ≤ bx̃, k = 0, ...,∞ with Ax̃and bx̃ de�ned as:

Ax̃ =







Ax 0 0

−AuK Au 0






Bx̃ =







bx

bu






, (3.72)where the state 
onstraints are Axx ≤ bx and the input 
onstraints are Auu ≤ bu.To 
al
ulate the robust invariant set fromAx̃ and bx̃ the algorithm from Pluymers et al.(2005a) is used to 
onstru
t Saug = {x̃|ASx̃ ≤ bS}.3.5.2.3 Quadrati
 problem weighting matrixThe quadrati
 program weighting matrix forms part of the value fun
tion (3.78) that isoptimized on-line. The weighting matrix P should satisfy:

P − ΦT
i PΦi > ΓT

x QΓx + ΓT
u RΓu, i = 1, ..., L, (3.73)Ele
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Chapter 3 Robust model predi
tive 
ontrollerswhere Γx=

[

I(nx,nx) 0

], Γu=

[

−K I(nu,nu) 0

] and Φi, i=1,...,L. The R matrix is theweighting on the inputs and Q the weighting on the states. The P matrix 
an be obtainedby doing 
onvex optimization
min

P=P T >0
tr(P ), subje
t to (3.73). (3.74)3.5.2.4 On-line 
ontrol problemThe implemented input ve
tor u(k) is the 
ombination of the state feedba
k gain and the�rst blo
k of the optimized sequen
e of free 
ontrol moves,

u(k) = −Kx(k) + co(k|k). (3.75)The optimized sequen
e of free 
ontrol moves co
N(k) is determined from a quadrati
 pro-gram subje
t to the polyhedral set 
onstraints ASx̃ ≤ bS that form Saug as follows

min
cN (k)

J (x(k), cN (k)) , (3.76)subje
t to
[

x(k)T cN(k)T

]T

∈ Saug, (3.77)where the obje
tive fun
tion is
J (x(k), cN(k)) =

[

x(k)T cN(k)T

]

P

[

x(k)T cN(k)T

]T

, (3.78)with P = P T ∈ ℜ(nx+N.nu)×(nx+N.nu) satisfying (3.73).3.5.2.5 Synthesis of 
ontrollerThe 
ontroller is synthesised by �rst 
onstru
ting all the augmented linear systems as in(3.71). This 
ontroller uses the polytopi
 un
ertainty des
ription Ω =

[

Ai Bi

]

, i =

1, 2, ..., L, where L is the number of models. The polytopi
 un
ertainty des
ription 
an beEle
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lusion
al
ulated from the stru
tured un
ertainty des
ription by applying all the 
ombinationsof the ∆ operator to the stru
tured un
ertainty des
ription. Ea
h entry on the diagonal of
∆ 
an be either −1 or 1 and all other entries are 0. Ea
h 
ombination of diagonal entriesgives ∆i, i = 1, 2, ..., L, where L = 2n and ∆ ∈ R

n×n, gives a vertex of the polytopi
un
ertainty des
ription by produ
ing [ Ai Bi

]. The simpli�ed model of se
tion 2.4.5has a ∆ with dimension 4. This gives a total of L = 24 = 16 models.The globally stabilizing un
onstrained feedba
k gain K is then synthesised, su
h thatall the models [ Ai Bi

]

, i = 1, 2, ..., L are stabilized by K. The augmented system issynthesised as des
ribed in se
tion 3.5.2.1 by using the globally stabilizing un
onstrainedfeedba
k gain K and the polytopi
 un
ertain models Ω =

[

Ai Bi

]

, i = 1, 2, ..., L.The polyhedral set that des
ribes the 
onstraints of the system is then 
al
ulated fromthe augmented system des
ription and K as in se
tion 3.5.2.2. The weighting matrix Pof the quadrati
 program is then 
al
ulated o�ine using the augmented system, K, theweighting on the state deviation Q, and weighting on the 
ontrol a
tion R as des
ribedin se
tion 3.5.2.3. The values for Q and R are shown in table 2.1.3.5.2.6 Controller operationThe 
ontroller 
omponents of the augmented system, globally stabilizing feedba
k gain
K, quadrati
 program weighting matrix P , and the polyhedral 
onstraint set Saug, assynthesised in se
tion 3.5.2.5, are then used as part of the quadrati
 program (3.76,3.77and 3.78) at ea
h time step k. The input ve
tor is obtained by (3.75).3.6 Con
lusionThis 
hapter brie�y des
ribes the development of stability theory for model predi
tive
ontrol and the subsequent robust stability and robust performan
e theory for modelpredi
tive 
ontrol. The 
hapter further highlights two robust model predi
tive 
ontrollermethods, namely feedba
k robust model predi
tive 
ontrol and dual-mode robust modelpredi
tive 
ontrol. The synthesis and operation of both these 
ontrollers are des
ribed,as they will be 
ompared to nominal model predi
tive 
ontrol, in terms of performan
eEle
tri
al, Ele
troni
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lusionand stability in the presen
e of model un
ertainty, in 
hapter 4.
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Chapter 4
Simulation Study
In this 
hapter, a 
omparative simulation study is 
ondu
ted between nominal MPC andtwo robust MPC s
hemes as applied to a model of an EAF. In the �rst instan
e, theability of the 
ontrollers to remain stable under model mismat
hes that o

ur due to theun
ertainty of the model is studied. The performan
e of the 
ontrollers based on a suitablevalue fun
tion is used to 
ompare the 
ontrollers. Se
ondly, more pra
ti
al s
enarios areinvestigated, where a predi
tor is employed for feedba
k to the 
ontrollers and only limitedmeasurements are available from the plant for feedba
k. This provides an opportunity toinvestigate the e�e
t that a la
k of measurements has on the performan
e of the system.4.1 Introdu
tionThe purpose of the re�ning pro
ess in an ele
tri
 ar
 furna
e is to produ
e a 
ertain gradeof steel. The properties that de�ne the grade of the steel are all the impurities withinthe steel, of whi
h 
arbon is the most important. The downstream pro
essing of the steelrequires a 
ertain temperature at tapping.The redu
ed model of Bekker et al. (1999) only models 
arbon 
ontent, temperature,
FeO, Si and SiO2. The 
arbon 
ontent is only marginally 
ontrollable as shown inse
tion 2.4.4 and se
tion 2.4.5, therefore the se
ondary obje
tive, that is to 
ontrol thetemperature to the desired value required for downstream pro
essing, is pursued. Inse
tion 2.4.5 it is shown that Si and SiO2 
annot be 
ontrolled, and are as su
h left out70

 



Chapter 4 Introdu
tionof the 
ontrol obje
tives.High levels of FeO in the slag are undesirable, be
ause ea
h time deslagging takespla
e, iron is lost in the form of FeO. One of the obje
tives would be to limit the amountof FeO in the slag in order to maximize yield. There are two methods to a

omplish this:1. The state deviation from the desired amount of FeO 
an be penalized. This willfor
e the 
ontroller to apply 
ontrol a
tions that will minimize the in
rease of FeOin the slag.2. Ex
essive oxygen inje
tion 
ould be penalized, be
ause oxygen inje
tion in
reasesthe FeO in the slag due to the oxidation of iron.The use of oxygen inje
tion is governed by the trade-o� between FeO produ
tion and itsuse as an additional sour
e of energy. Oxygen inje
tion is also a me
hanism by whi
hde
arburization takes pla
e. The trade-o� 
an be made by pla
ing a state 
onstraint onthe in
rease of FeO; usually it is desirable to limit FeO to less than 40% of the totalslag mass. If yield is paramount, a state weighting on FeO is preferable. The 
ontroller
an be tuned to minimize the energy 
ost by setting the weights of the inputs a

ordingto the 
ost of ea
h energy sour
e. This may result in oxygen inje
tion being preferred asenergy sour
e be
ause it might be less expensive than ele
tri
ity.For these simulations, the bath temperature and FeO 
ontent in the slag are shown asoutputs and oxygen and graphite inje
tion as well as ele
tri
 power are shown as inputs.The 
arbon 
ontent in the bath is not shown be
ause in all instan
es it will mirror thatof �gure 2.6 in se
tion 2.4.4.4.1.1 Controller weighting matri
esThe state weighting is su
h that only the deviation of temperature from the setpoint orreferen
e traje
tory is penalized as shown in table 4.1. If FeO is penalized as an undesir-able produ
t, the optimization would try to minimize its produ
tion. The weighting onoxygen 
an be determined by energy pri
ing 
onsiderations.Ele
tri
al, Ele
troni
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Chapter 4 Introdu
tionTable 4.1: MPC weighting matrix for states.Variable Weighting value
FeO 
ontent in slag 0Temperature 1Weighting matrix Q

[

0 0
0 1

]

Table 4.2: MPC weighting matrix for inputs.Variable Even weighting Oxygen heavy weightingOxygen inje
tion weighting 0.01 0.1Ele
tri
 power weighting 0.01 0.01Graphite inje
tion weighting 0.01 0.01Input weighting matrix R 



0.01 0 0
0 0.01 0
0 0 0.01









0.1 0 0
0 0.01 0
0 0 0.01





There are two input weighting s
enarios, the �rst where all the inputs have an equalweighting, to en
ourage the 
ontroller to make use of all the inputs equally. In the se
onds
enario, oxygen has a greater weighting to for
e the 
ontroller to make less use of oxygeninje
tion to manipulate the temperature in order to redu
e the amount of FeO that forms.The weighting of the inputs are summarized in table 4.2. The weighting of the inputsis less than the weighting of temperature, for two reasons: Firstly, it redu
es the steadystate o�set if the steady state values are not at the origin, and se
ondly, it en
ouragesgreater 
ontrol a
tion that leads to redu
ed response times.4.1.2 Closed-loop ar
hite
turesThere are two 
ontrol ar
hite
tures for the simulation study. The �rst 
ontroller ar
hi-te
ture (�gure 4.1) uses full state feedba
k, assuming 
ontinuous feedba
k for all states.The setpoint or referen
e for the model predi
tive 
ontroller 
ontains a value for the tem-perature and FeO 
ontent, but the 
ontroller will ignore this setting for FeO, be
ausethe weighting on the states (table 4.1) will 
ause no penalty in the obje
tive fun
tion forEle
tri
al, Ele
troni
 and Computer Engineering 72
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tion
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Figure 4.1: Full state feedba
k 
ontrol ar
hite
ture.the deviation of FeO from its setpoint or referen
e. The 
ontroller manipulates oxygeninje
tion, ele
tri
 power and graphite inje
tion. The temperature and FeO 
ontent fromthe plant are measured 
ontinuously and fed ba
k to the model predi
tive 
ontroller.The se
ond 
ontrol ar
hite
ture (�gure 4.2) is a limited measurement, predi
tor feed-ba
k ar
hite
ture. The 
ontroller provides 
ontrol a
tion to both the plant and predi
tor,the �ve state nonlinear model of se
tion 2.2. The predi
tor provides 
ontinuous estimatesof the plant states, temperature and FeO, to the model predi
tive 
ontroller. Ea
h timea measurement is available from the plant, it is fed to the predi
tor in order to 
orre
tthe state values, and predi
tor parameter values are updated as ne
essary.4.1.3 Controller obje
tivesIn order to determine whether the 
ontrollers attained the required level of performan
e,the obje
tives against whi
h the performan
e 
an be measured have to be 
learly de�ned.The obje
tives usually stem from the pro
ess that imposes the 
onstraints on the inputs(be
ause of a
tuator limitations) and states as well as the setpoints that the 
ontrollershould rea
h and maintain.The minimum and maximum oxygen and 
arbon inje
tion rates are determined bythe inje
tors. The minimum oxygen and graphite inje
tion rate is 0 kg/s, be
ause neitherEle
tri
al, Ele
troni
 and Computer Engineering 73
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Figure 4.2: Limited measurement with predi
tor feedba
k 
ontrol ar
hite
ture.oxygen nor graphite 
an be extra
ted by the inje
tors. The maximum oxygen inje
tionrate is 1 kg/s and the maximum graphite inje
tion rate is 0.5 kg/s as spe
i�ed by themanufa
turer.The minimum power that the ele
tri
 ar
 
an produ
e is 0 Watt and the maximumpower it 
an produ
e is 40 MW .The state 
onstraint on FeO is 40% of the total slag mass. This will prevent too mu
hiron being lost during deslagging.The initial 
onditions for the re�ning stage for temperature, 
arbon, FeO, Si and
SiO2 are 
al
ulated from the average values of measurements taken over multiple taps(Rathaba, 2004). The measurements are shown in appendix C.The initial value for temperature is 
hosen to be 16000C, whi
h is 
lose to the averagevalue, while the tap temperature should be 16500C as required by the industry partner(Bellingan, 2005) for downstream pro
essing.The initial values of the re�ning stage for 
arbon varies greatly, between 0.2% to 0.06%of the bath mass. The initial value for 
arbon is 
hosen to be 0.2% of total bath mass.The desired 
arbon 
ontent at tapping is 0.05% of the total bath mass as spe
i�ed by theindustry partner (Bellingan, 2005) for the desired grade of steel. The di�eren
e betweenEle
tri
al, Ele
troni
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Chapter 4 Introdu
tionTable 4.3: Initial 
onditions for simulationsState Initial Condition
x3 Dissolved Carbon 160 kg
x4 Dissolved Sili
on 24 kg
x7 FeO in bath 4250.6 kg
x8 SiO2 in bath 1405 kg
x12 Bath temperature 1600 0CTable 4.4: States and inputs 
onstraintsState / Input Minimum 
onstraint Maximum 
onstraint
x7 - FeO in bath 0% of total slag mass 40% of total slagmass
d1 - Oxygen inje
tion rate 0 kg/s 1 kg/s
d4 - Ele
tri
 power 0 kW 40 000 kW
d5 - Graphite inje
tion rate 0 kg/s 0.5 kg/sthe initial and desired 
arbon 
ontent values determines the duration of the re�ning stage.The time of 600s is derived from the time it takes the 
arbon 
ontent to redu
e from 0.2%to 0.05% of the total bath mass.The initial 
onditions used for the simulations are summarized in table 4.3 and the
onstraints on the states and inputs are summarized in table 4.4.4.1.4 Typi
al operationThis se
tion gives a qui
k overview of a typi
al tap and how 
ontrol would be implemented.The tap starts with the 
harging of s
rap. The s
rap is melted down and a se
ond bu
ketis added. When the se
ond bu
ket is melted down, the slag layer is removed and atemperature measurement and a sample of the molten metal are taken. The temperaturemeasurements are 
ostly as the probes are burnt away. The temperature measurementregisters within se
onds on the SCADA system, while the metal sample takes a fewminutes to analyze. The desired steel grade is de
ided before the tap 
ommen
es andas soon as the sample is analyzed, the melter knows how mu
h time is needed to bringthe 
arbon 
ontent down to the desired level and what setting to put the burners on.Approximately halfway though the re�ning stage, the slag layer is again removed andanother temperature measurement is taken. When the melter thinks that the 
ompositionand temperature are at the desired values, the steel is tapped into a ladle for furtherEle
tri
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Chapter 4 Nominal S
enariopro
essing.If the re�ning stage is automated, the 
ontroller is engaged as soon as the sampleanalysis is available. The predi
tor estimates the states of the furna
e from the time thatthe temperature measurement is taken with the sample and temperature data as initial
onditions. The 
ontroller takes over the oxygen and graphite inje
tors as well as thepower 
ontrol for the furna
e. The 
ontroller will give an indi
ation to the melter when itis time to take a temperature measurement and give an indi
ation when the steel is readyfor tapping. The estimated temperature and 
arbon values for the furna
e, as 
al
ulatedby the predi
tor, 
an be displayed for the melter. The melter 
an use the estimates totra
k the progress of the pro
ess or use it to 
ontrol the pro
ess manually for spe
ials
enarios.4.2 Nominal S
enarioThe nominal s
enario is where there is no model mismat
h between the internal model ofthe 
ontrollers, the predi
tor and the model of the plant. The nominal 
ase is used as aben
hmark for further simulation studies. In this s
enario the following assumptions aremade:
• Full state-feedba
k is available.
• There is no mismat
h between the predi
tor and a
tual plant.
• There are no disturban
es.In this s
enario, the e�e
t of di�erent weightings on the inputs as well as the use ofa referen
e traje
tory are examined. Three 
ontrollers are 
ompared: nominal MPC,feedba
k robust MPC and the dual-mode robust MPC. In the nominal 
ase there should(theoreti
ally) be no di�eren
e between the performan
e of the 
ontrollers, ex
ept thatthe robust 
ontrollers might be more 
onservative than the nominal MPC. The �rst setof results was obtained with even weighting (table 4.2) on the inputs and a setpoint of1650oC for temperature.Ele
tri
al, Ele
troni
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Chapter 4 Nominal S
enarioFrom �gures 4.3, 4.4 and 4.5, it is 
lear that, as expe
ted, the nominal MPC anddual-mode robust MPC have almost the same results. The feedba
k robust MPC isnot able to deal with the nominal 
ase, be
ause of limitations inherent in the theory.Feedba
k robust MPC 
an only deal with symmetri
 
onstraints, and in order to apply itwhere the 
onstraints are asymmetri
, a 
onstant disturban
e is added to the inputs. The
onservatism of the theory shows its in�uen
e, be
ause the inputs must be driven to the
onstraints in order to su

essfully 
ontrol the system. The feedba
k robust MPC be
omesmore 
onservative further away from the steady state value for both the states and inputs,the origin for the states and the disturban
e level for the inputs. To su

essfully 
ontrolthe system, the inputs must be driven to the 
onstraints. Feedba
k robust MPC 
onstru
tsthe feedba
k poli
y in su
h a manner that the inputs do not rea
h the 
onstraints andthe 
losed-loop system 
an therefore not follow the setpoint su

essfully. The 
ontrollerdoes this to ensure that the feedba
k gain 
an be applied to the whole traje
tory of thestates from the 
urrent 
ondition until it rea
hes the origin without the resulting inputsviolating the 
onstraints. This method is therefore ex
luded from the rest of the study.The se
ond set of results was obtained with a higher weighting on the oxygen inje
tionrate (table 4.2) in order to limit FeO formation, and the temperature is driven to asetpoint of 1650oC.Figures 4.6 and 4.7 show that the in
reased weighting on oxygen leads to redu
edformation of FeO. The robust MPC 
ontroller made use of more oxygen, whi
h is evidentfrom the higher FeO 
ontent with the same weighting on the oxygen in 
omparison withthe nominal MPC 
ontroller.The third set of results was obtained with an even weighting on the inputs (table 4.2)and with a linear referen
e traje
tory for the temperature over the duration of the re�ningstage.Figures 4.8 and 4.9 show that the use of a referen
e traje
tory redu
es the amount ofoxygen and ele
tri
 power used, and that the redu
ed levels of ele
tri
 power and oxygeninje
tion are maintained for the entire duration of the re�ning stage.Ele
tri
al, Ele
troni
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their minimumThe fourth set of results was obtained with a higher weighting on the oxygen inje
tionrate (table 4.2) in order to redu
e the formation of FeO, and a linear referen
e traje
toryfor temperature is employed over the duration of the re�ning stage.Figures 4.10 and 4.11 show that the use of a higher weighting on oxygen inje
tionredu
es the formation of FeO and it is 
lear that more ele
tri
ity and less oxygen is used.Again the nominal MPC 
ontroller uses less oxygen than the robust 
ontroller, resultingin signi�
antly less FeO being produ
ed.From the nominal 
ase, it is di�
ult to distinguish between the nominal MPC anddual-mode robust MPC, be
ause there are no model mismat
hes.Robust MPC is more 
onservative in using oxygen than the nominal MPC 
ontrollerusing the same weighting matri
es, whi
h 
an be attributed to the globally stabilizingfeedba
k gain of the dual-mode robust MPC introdu
ing extra dynami
s into the QP.The redu
ed usage of oxygen will slightly redu
e the de
arburization rate as well as theamount of FeO in the slag.With both 
ontrollers, there is a slight o�set between the setpoint and outputs, whi
h
an be attributed to the steady-state inputs not rea
hing zero, and the o�set is a resultof the optimization of the obje
tive fun
tion being a trade-o� between making the stateerror zero and the inputs zero.The s
enarios where limited feedba
k is available are not investigated as it will produ
ethe same results as above. This is be
ause there is no model mismat
h between the internal
ontroller model and a
tual plant or between the predi
tor and a
tual plant.4.3 Worst-
ase s
enario: E�
ien
ies at their minimumThese worst-
ase s
enario investigates the e�e
t of a model mismat
h between the internalmodel of the model predi
tive 
ontrollers and the a
tual plant when full state feedba
k isemployed to gauge the robust stability and performan
e of the 
ontrollers. In the s
enarioswhere limited plant measurements are available, the e�e
t of model mismat
hes betweenthe predi
tor and the a
tual plant is investigated in order to gauge the sensitivity of thesystem to the performan
e of the predi
tor. This s
enario fo
uses on the e�e
t that lowerEle
tri
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tionFigure 4.3: Nominal MPC - Nominal Case with full state feedba
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tionFigure 4.5: Feedba
k Robust MPC - Nominal Case with full state feedba
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tionFigure 4.6: Nominal MPC - Nominal Case with full state feedba
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tionFigure 4.7: Dual Mode Robust MPC - Nominal Case with full state feedba
k and redu
edoxygen usage.
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tionFigure 4.8: Nominal MPC - Nominal Case, full state feedba
k and referen
e traje
tory.
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(e) Graphite Inje
tionFigure 4.9: Dual Mode Robust MPC - Nominal Case, full state feedba
k and referen
etraje
tory.
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(e) Graphite Inje
tionFigure 4.10: Nominal MPC - Nominal Case, full state feedba
k, referen
e traje
tory andredu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.11: Dual Mode Robust MPC - Nominal Case, full state feedba
k, referen
etraje
tory and redu
ed oxygen usage.
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their minimumthan nominal e�
ien
ies (ηFeO and ηARC) have on the 
ontroller and system as a whole.In these s
enarios the following assumptions are made:
• There are three feedba
k s
enarios:� Full state-feedba
k is available.� One temperature measurement is available.� One temperature measurement and an update of the e�
ien
ies (ηFeO and

ηARC) of the predi
tor are available.
• The predi
tor and a
tual plant have a mismat
h in their e�
ien
ies (ηFeO and ηARC)where the e�
ien
ies are lower in the real plant than in the predi
tor.
• There are no disturban
es.The three feedba
k s
enarios help to investigate the performan
e of the system withregards to the di�erent modules in the system, espe
ially the performan
e of the predi
torand 
ontroller. One of the obje
tives of the 
ontrollers is to limit the amount of FeO thatforms. Only the s
enarios with a higher penalty on oxygen are evaluated here, with theother s
enarios evaluated in appendix B.1.1.4.3.1 Worst-
ase s
enario: E�
ien
ies at their minimum with fullstate feedba
kIn this �rst instan
e, full-state feedba
k is employed to evaluate the 
losed-loop perfor-man
e without a predi
tor in the loop in the extreme 
ase where the e�
ien
ies (ηFeOand ηARC) are at the minimum of the model parameter 
on�den
e intervals. RobustMPC and nominal MPC are 
ompared to determine whether robust MPC provides betterperforman
e in the presen
e of model mismat
h 
ompared to nominal MPC.A setpoint of 1650oC for temperature as well as higher weighting on oxygen inje
tion(table 4.2) is used for the �rst set of simulations.From these results (�gures 4.12 and 4.13) it is 
lear that the robust MPC performsbetter than the nominal MPC. The robust 
ontroller produ
ed a smaller steady-stateEle
tri
al, Ele
troni
 and Computer Engineering 88

 



Chapter 4 Worst-
ase s
enario: E�
ien
ies at their minimumtemperature o�set. It is interesting to note that the nominal 
ontroller is stable for thissimulation even in this extreme model mismat
h situation. The heavier weighting onoxygen inje
tion is not enough to limit the FeO produ
tion to below the 
onstraint limit.The se
ond set of simulations uses a referen
e traje
tory for temperature and a higherweighting on the oxygen inje
tion (table 4.2).These results (�gures 4.14 and 4.15) show the superior performan
e of the robust MPC
ompared to the nominal MPC, with almost perfe
t tra
king of the referen
e traje
toryby the robust MPC. The higher weighting on the oxygen 
auses the FeO 
onstraint to berea
hed mu
h later and it for
es the robust 
ontroller to use more ele
tri
ity. The robustMPC used more oxygen, but this resulted in better traje
tory following when 
omparedto results obtained with the nominal MPC.This s
enario showed that both 
ontrollers are stable for the respe
tive simulationswith extreme model mismat
h, but the robust 
ontroller showed better performan
e interms of setpoint and referen
e traje
tory following than the nominal 
ontroller.4.3.2 Worst-
ase s
enario: E�
ien
ies at their minimum with oneplant measurementA more realisti
 feedba
k s
enario is investigated, be
ause typi
ally only one measurementof temperature is taken in the middle of the re�ning stage. The rest of the data is produ
edby the predi
tor. The predi
tor uses the nominal plant parameters, while the real plantuses the worst-
ase s
enario where the e�
ien
ies (ηFeO and ηARC) are at their minimum.This s
enario should shed light on the e�e
t of model mismat
h between the predi
torand real plant when 
ompared to the results of the previous subse
tion.A setpoint of 1650oC for temperature as well as higher weighting on oxygen inje
tion(table 4.2) is used for the �rst set of simulations.Figures 4.16 and 4.17 show that both 
ontrollers perform equally poorly as a result ofthe ina

urate feedba
k from the predi
tor. An a

eptable margin on the tap temperatureis ±100C, whi
h both the 
ontrollers were unable to attain.A referen
e traje
tory for temperature as well as higher weighting on oxygen inje
tionEle
tri
al, Ele
troni
 and Computer Engineering 89
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(e) Graphite Inje
tionFigure 4.12: Nominal MPC - E�
ien
ies at a minimum, full-state feedba
k and redu
edoxygen usage.
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(e) Graphite Inje
tionFigure 4.13: Dual-mode robust MPC - E�
ien
ies at a minimum, full-state feedba
k andredu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.14: Nominal MPC - E�
ien
ies at a minimum, full-state feedba
k, redu
edoxygen usage and referen
e traje
tory.
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(e) Graphite Inje
tionFigure 4.15: Dual-mode robust MPC - E�
ien
ies at a minimum, full-state feedba
k,redu
ed oxygen usage and referen
e traje
tory.
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(e) Graphite Inje
tionFigure 4.16: Nominal MPC - E�
ien
ies at a minimum, one measurement and redu
edoxygen usage.
(table 4.2) is used for the se
ond set of simulations.

These simulations (�gures 4.18 and 4.19) show that the robust 
ontroller manages totra
e the referen
e better when 
ompared to the nominal 
ontroller, but that it is stilloutside the a

eptable interval of ±100C. Both 
ontrollers using a referen
e traje
tory onaverage steer the temperature �ve degrees further from the desired �nal value 
omparedto when a setpoint is employed. The higher weighting on the oxygen 
auses less FeOto be produ
ed by both 
ontrollers and limits the FeO 
ontent to within the 
onstraintlimit.Ele
tri
al, Ele
troni
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(e) Graphite Inje
tionFigure 4.17: Dual-mode robust MPC - E�
ien
ies at a minimum, one measurement andredu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.18: Nominal MPC - E�
ien
ies at a minimum, one measurement, referen
etraje
tory and redu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.19: Dual-mode robust MPC - E�
ien
ies at a minimum, one measurement,referen
e traje
tory and redu
ed oxygen usage.
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their minimum4.3.3 Worst-
ase s
enario: E�
ien
ies at their minimum with oneplant measurement and predi
tor parameter updateIn the previous se
tion, the e�e
t of model mismat
h between the predi
tor and the a
tualplant on the performan
e of the 
losed-loop system is made 
lear. To 
ombat this, theparameters of the predi
tor are updated ea
h time a measurement is taken, in an attemptto improve performan
e. In this s
enario only one temperature measurement is taken inthe middle of the re�ning stage, with the rest of the state data produ
ed by the predi
tor.The predi
tor uses the nominal plant parameters until the �rst measurement is taken,after whi
h the 
orre
ted parameters are employed. The real plant uses the worst-
ases
enario where the e�
ien
ies (ηFeO and ηARC) are at their minimum.A setpoint of 1650oC for temperature as well as higher weighting on oxygen inje
tion(table 4.2) is used for the �rst set of simulations.Figures 4.20 and 4.21 show that both 
ontrollers are able to steer the temperature towithin the desired margin of ±100C. The robust 
ontroller overshoots the setpoint, whi
h
an be attributed to an over
orre
tion made in the predi
tor, as seen from the expe
tedtraje
tory 
ompared to the a
tual traje
tory. The expe
ted traje
tory of the robust MPCends at the desired setpoint, while the expe
ted traje
tory of the nominal MPC endswell outside the a

epted margin of ±100C. The nominal MPC steers the temperatureto within the a

epted margin of ±100C, but only be
ause of an over
orre
tion of thepredi
tor. Both 
ontrollers use less oxygen, but the nominal 
ontroller less than therobust 
ontroller.A referen
e traje
tory for temperature as well as higher weighting on oxygen inje
tion(table 4.2) is used for the fourth set of simulations.These simulations (�gures 4.22 and 4.23) show that the nominal 
ontroller misses the
±100C margin, while the robust 
ontroller does rea
h the ±100C margin. The expe
tedtraje
tory of the robust 
ontroller rea
hes the desired value exa
tly, but the a
tual valueis somewhat lower, due to an under
orre
tion in the parameters of the predi
tor. The ex-pe
ted traje
tory of the nominal MPC barely rea
hes the a

epted margin, but the a
tualtraje
tory misses the interval 
ompletely, due to the under
orre
tion in the parameters ofEle
tri
al, Ele
troni
 and Computer Engineering 98
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(e) Graphite Inje
tionFigure 4.20: Nominal MPC - E�
ien
ies at a minimum, one measurement and predi
torparameter update and redu
ed oxygen usage.
the predi
tor. The performan
e of the nominal MPC is hindered by its 
onservative useof oxygen.The inability of the 
ontrollers to follow the referen
e is due to an under
orre
tionof the parameters of the predi
tor. The �rst sets of results show that the parameters ofthe predi
tor are su�
iently 
orre
ted at the measurement point to enable satisfa
toryresults. In the referen
e traje
tory simulations, the 
orre
tions to the parameters of thepredi
tor are insu�
ient, whi
h would require the updater to be tuned di�erently for thesetpoint 
ase and the referen
e traje
tory 
ase. The updater is sensitive to the timingof the measurement, the initial 
onditions that vary for ea
h tap, and other disturban
essu
h as late 
ave-ins.Ele
tri
al, Ele
troni
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(e) Graphite Inje
tionFigure 4.21: Dual-mode robust MPC - E�
ien
ies at a minimum, one measurement andpredi
tor parameter update and redu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.22: Nominal MPC - E�
ien
ies at a minimum, one measurement and predi
torparameter update, referen
e traje
tory and redu
ed oxygen usage.
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Chapter 4 Worst-
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enario: E�
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ies at their minimum
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(e) Graphite Inje
tionFigure 4.23: Dual-mode robust MPC - E�
ien
ies at a minimum, one measurement andpredi
tor parameter update, referen
e traje
tory and redu
ed oxygen usage.
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their maximum4.4 Worst-
ase s
enario: E�
ien
ies at their maximumThese worst-
ase s
enarios investigate the e�e
t of model mismat
h between the internalmodel of the 
ontrollers and the a
tual plant as well as the predi
tor and the a
tual plant.This s
enario fo
uses on the e�e
t 
reated if the e�
ien
ies (ηFeO and ηARC) are higherthan nominal. This is a more theoreti
al s
enario, be
ause e�
ien
ies do not tend tobe higher than expe
ted, but are ne
essary to determine whether the 
ontroller would beable to 
ope with su
h a situation. In these s
enarios the following assumptions are made:
• There are three feedba
k s
enarios:� Full state-feedba
k is available.� One temperature measurement is available.� One temperature measurement and an update of predi
tor parameters areavailable.
• The predi
tor and a
tual plant have a mismat
h in their e�
ien
ies (ηFeO and ηARC)where the e�
ien
ies are higher in the real plant than in the predi
tor.
• There are no disturban
es.The three feedba
k s
enarios help to investigate the performan
e of the system withregards to the di�erent modules in the system, espe
ially the performan
e of the predi
torand 
ontroller.4.4.1 Worst-
ase s
enario: E�
ien
ies at their maximum withfull state feedba
kIn this �rst instan
e, full-state feedba
k is employed to evaluate the 
losed-loop perfor-man
e without a predi
tor present, in the extreme 
ase where the e�
ien
ies (ηFeO and

ηARC) are at the maximum of the 
on�den
e interval for the plant model. Robust MPCand nominal MPC are 
ompared to determine whi
h provides better performan
e in thepresen
e of model mismat
h.Ele
tri
al, Ele
troni
 and Computer Engineering 103

 



Chapter 4 Worst-
ase s
enario: E�
ien
ies at their maximumThe �rst set of simulations uses a setpoint of 1650oC for temperature as well as higherweighting on oxygen inje
tion (table 4.2).Figures 4.24 and 4.25 show that both 
ontrollers are 
apable of following the setpoint,and the in
reased weighting on oxygen redu
es the amount of FeO that forms. Thenominal MPC overshoots the temperature setpoint, while the robust MPC does not. Thenominal MPC uses less oxygen than the robust MPC, whi
h result in less FeO formingin the slag.The se
ond set of simulations uses a referen
e traje
tory for temperature as well as ahigher weighting on oxygen inje
tion (table 4.2).The last simulations (�gures 4.22 and 4.23) show that both 
ontrollers have goodreferen
e following, with the robust 
ontroller overshooting slightly. The oxygen usage ofthe nominal 
ontroller is slightly lower than the previous run, but signi�
antly lower thanthat of the robust 
ontroller.Both 
ontrollers perform very well in this s
enario where the e�
ien
ies are higherthan expe
ted, and do not show any di�
ulty with the model mismat
h between theinternal model and the a
tual plant.4.4.2 Worst-
ase s
enario: E�
ien
ies at their maximum withone plant measurementA more realisti
 feedba
k s
enario is investigated, where only one measurement of tem-perature is taken in the middle of the re�ning stage, the rest of the data is produ
ed by apredi
tor. The predi
tor uses the nominal plant parameters, while the real plant uses theworst-
ase s
enario where the e�
ien
ies (ηFeO and ηARC) are at their maximum. Thiss
enario should shed light on the e�e
t of model mismat
h between the predi
tor and realplant when 
ompared to the results of the previous se
tion.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as higherweighting on oxygen inje
tion (table 4.2).Figures 4.28 and 4.29 show that both 
ontrollers fail to steer the temperature to withinthe ±100C margin. The 
ontrollers overshoot the setpoint, be
ause the e�
ien
ies (ηFeOEle
tri
al, Ele
troni
 and Computer Engineering 104

 



Chapter 4 Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure 4.24: Nominal MPC - E�
ien
ies at maximum with full state feedba
k and redu
edoxygen usage.
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure 4.25: Dual-mode robust MPC - E�
ien
ies at maximum with full state feedba
kand redu
ed oxygen usage.
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure 4.26: Nominal MPC - E�
ien
ies at maximum with full state feedba
k, referen
etraje
tory and redu
ed oxygen usage.
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Chapter 4 Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure 4.27: Dual-mode robust MPC - E�
ien
ies at maximum with full state feedba
k,referen
e traje
tory and redu
ed oxygen usage.
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Chapter 4 Temperature disturban
eand ηARC) are higher than expe
ted and the 
ontrollers drive the temperature too high.The measurement shows the 
ontrollers that the temperature is too high, and they respondby turning o� all energy sour
es. The temperature is lowered, but is limited by the tempoof natural heat loss, whi
h is too slow to rea
h the target by the end of the re�ning stage.The pro
ess 
ould be a

elerated by opening the furna
e roof, whi
h would aid heat loss.This situation 
an be prevented by taking a measurement earlier in the re�ning stage toidentify the problem sooner.The se
ond set of simulations uses a referen
e traje
tory for temperature as well ashigher weighting on oxygen inje
tion (table 4.2) and updates the parameters (ηFeO and
ηARC) of the predi
tor from the plant measurement.These simulations (�gures 4.30 and 4.31) show that both 
ontrollers steer the temper-ature to within the ±100C margin. The referen
e traje
tory 
auses the temperature toin
rease mu
h slower than with the setpoint, so that by the time a measurement is taken,the temperature has not yet passed the desired �nal value of 16500C. The temperaturedoes in
rease above the referen
e, and after the measurement, the 
ontroller 
orre
ts theproblem and on
e it has rea
hed the referen
e, it follows it more 
losely. There is still anunder
orre
tion, whi
h 
auses the temperature to in
rease faster than expe
ted. The �nalvalue ends within the a

epted ±100C margin. The heavier weighting on oxygen inje
tionusage results in lower FeO produ
tion without a�e
ting the temperature response.4.5 Temperature disturban
eA temperature disturban
e 
an o

ur due to a late 
ave-in. This happens when thereis solid s
rap that falls into the bath, whi
h is unexpe
ted, be
ause it is assumed thatall s
rap has melted when re�ning 
ommen
es. As a result, the bath temperature dropsqui
kly, and 
an be modelled by a step disturban
e on the temperature. The followingassumptions are used for this simulation:

• One measurement from the plant.
• No predi
tor parameters update.Ele
tri
al, Ele
troni
 and Computer Engineering 109

 



Chapter 4 Temperature disturban
e
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(e) Graphite Inje
tionFigure 4.28: Nominal MPC - E�
ien
ies at maximum, one measurement and redu
edoxygen usage.
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(e) Graphite Inje
tionFigure 4.29: Dual-mode robust MPC - E�
ien
ies at maximum, one measurement andredu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.30: Nominal MPC - E�
ien
ies at maximum, one measurement and predi
torupdate, referen
e traje
tory and redu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.31: Dual-mode robust MPC - E�
ien
ies at maximum, one measurement andpredi
tor update, referen
e traje
tory and redu
ed oxygen usage.
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(e) Graphite Inje
tionFigure 4.32: Dual-mode robust MPC - Temperature disturban
e of −200C at time 200swith setpoint of 16500C.
• A
tual plant and predi
tor use nominal plant parameters.
• Disturban
e of −200C on temperature at time 200s.The �rst simulation uses a setpoint of 16500C for temperature and even weighting on theinputs (table 4.2) with a temperature disturban
e of −200C at time 200s.Figure 4.32 shows that the robust 
ontroller is 
apable of handling a quite severetemperature drop of 200C and re
over from it.The se
ond simulation uses a referen
e traje
tory for temperature with even weightingon the inputs (table 4.2) with a temperature disturban
e of −200C at time 200s.Figure 4.33 shows that the robust 
ontroller is 
apable of handling a quite severetemperature drop of 200C and re
over from it even when employing a referen
e traje
tory.The 
ontroller makes full use of the energy sour
es when the disturban
e is dete
ted.Ele
tri
al, Ele
troni
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(e) Graphite Inje
tionFigure 4.33: Dual-mode robust MPC - Temperature disturban
e of −200C at time 200swith a referen
e traje
tory for temperature.
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Chapter 4 SummaryIn the limited feedba
k s
enarios, the disturban
e will only be dete
ted when it o

ursbefore a measurement, of whi
h there is usually only one during the re�ning stage. Inthis 
ase, predi
tor parameter update will have a detrimental e�e
t on the performan
e,be
ause the di�eren
e would be attributed to model mismat
h where the e�
ien
ies arelower than nominal, and an over
orre
tion would be made to the predi
tor. This willresult in the temperature ending up mu
h higher than desired.4.6 SummaryThis se
tion provides a summary of the results obtained in the previous se
tions. Theresults are summarized in tables 4.5, 4.6, 4.7, 4.8 and4.9. The notation used in the tablesis as follows:
• Feedba
k:� FSF - Full state feedba
k.� OM - One temperature measurement is taken in the middle of the re�ningstage with the rest of the data produ
ed by a predi
tor.� OMPU - One temperature measurement is taken in the middle of the re�ningstage with whi
h the parameters of the predi
tor are updated.
• Setpoint or Referen
e:� Setpoint - A 
onstant setpoint for temperature of 16500C is employed.� Referen
e - A linearly in
reasing referen
e is employed for temperature thatrea
hes 16500C at the end of the re�ning stage period.
• Input weighting:� Even - All inputs are penalized equally in the obje
tive fun
tion (table 4.2).� Oxygen Heavy (OH) - Oxygen usage is penalized more than the other inputsin the obje
tive fun
tion (table 4.2).Ele
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Chapter 4 Con
lusion
• ∆T - Temperature di�eren
e - The amount that the �nal temperature value di�ersfrom 16500C.
• A

eptable - If the �nal temperature value is within a ±100C margin of 16500C.
• Energy usage - The value of a linear penalty fun
tion that uses the same weightingsof the inputs as the 
ontrollers.The energy usage is a fun
tion that sums up all the inputs together over the wholeduration of the re�ning stage. All the inputs are s
aled so that the maximum value ofea
h 
ontributes equally to the energy usage metri
. This metri
 gives an indi
ation ofhow mu
h energy is applied throughout the re�ning stage for ea
h simulation s
enario.The metri
 is 
al
ulated as follows

EU =
√

u ∗ R1 ∗ uT (4.1)where R1 is the s
aling matrix and u ∈ R
600×3 , where there is a sample every se
ond over10 minutes and three inputs. The s
aling matrix is

R1 =













10 0 0

0 0.00025 0

0 0 20













. (4.2)
This gives an indi
ation of overall 
ontroller a
tion employed by the 
ontroller, be
ausethe same metri
 was in
luded in the 
ontroller. The metri
 
an be 
hanged to in
ludeenergy 
ost that will lead to the most energy e�
ient solution.4.7 Con
lusionThis 
omprehensive simulation study looked at some theoreti
al as well as more pra
ti
als
enarios in order to investigate the performan
e of the robust and nominal 
ontrollers inthe presen
e of model mismat
h. The performan
e of the 
losed-loop system where thereis model mismat
h between the predi
tor and a
tual plant was also studied.Ele
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Table4.5:Summaryofsimulationresultswithnominale�
ien
ies.

Controller Feedba
k Setpoint or Referen
e Input weighting Temperature di�eren
e Energy usage FigNominal MPC FSF Setpoint Even < 10C 8.5e+004 4.3Robust MPC FSF Setpoint Even < 10C 1.0e+005 4.4Nominal MPC FSF Setpoint Oxygen Heavy < 10C 1.7e+005 4.6Robust MPC FSF Setpoint Oxygen Heavy < 10C 1.4e+005 4.7Nominal MPC FSF Referen
e Even < 10C 8.9e+004 4.8Robust MPC FSF Referen
e Even 30C 9.6e+004 4.9Nominal MPC FSF Referen
e Oxygen Heavy < 10C 1.8e+005 4.10Robust MPC FSF Referen
e Oxygen Heavy 30C 1.7e+005 4.11
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Table4.6:Summaryofsimulationresultswithe�
ien
iesattheirminimum.

Controller Feedba
k Setpoint or Referen
e Input weighting ∆T A

eptable Energy usage FigNominal MPC FSF Setpoint Even −20C Yes 2.3e+005 B.1Robust MPC FSF Setpoint Even < 10C Yes 2.3e+005 B.2Nominal MPC FSF Setpoint Oxygen Heavy −20C Yes 3.5e+005 4.12Robust MPC FSF Setpoint Oxygen Heavy < 10C Yes 2.7e+005 4.13Nominal MPC FSF Referen
e Even −40C Yes 2.2e+005 B.3Robust MPC FSF Referen
e Even < 10C Yes 2.5e+005 B.4Nominal MPC FSF Referen
e Oxygen Heavy −50C Yes 3.4e+005 4.14Robust MPC FSF Referen
e Oxygen Heavy < 10C Yes 3.5e+005 4.15Nominal MPC OM Setpoint Even −200C No 1.4e+005 B.5Robust MPC OM Setpoint Even −200C No 1.1e+005 B.6Nominal MPC OM Setpoint Oxygen Heavy −230C No 2.4e+005 4.16Robust MPC OM Setpoint Oxygen Heavy −210C No 1.9e+005 4.17Nominal MPC OM Referen
e Even −240C No 1.2e+005 B.7Robust MPC OM Referen
e Even −220C No 1.3e+005 B.8Nominal MPC OM Referen
e Oxygen Heavy −300C No 2.2e+005 4.18Robust MPC OM Referen
e Oxygen Heavy −270C No 2.1e+005 4.19Nominal MPC OMPU Setpoint Even −50C Yes 2.2e+005 B.9Robust MPC OMPU Setpoint Even +20C Yes 2.6e+005 B.10Nominal MPC OMPU Setpoint Oxygen Heavy −60C Yes 3.3e+005 4.20Robust MPC OMPU Setpoint Oxygen Heavy +60C Yes 3.0e+005 4.21Nominal MPC OMPU Referen
e Even −170C No 1.6e+005 B.11Robust MPC OMPU Referen
e Even −120C No 1.9e+005 B.12Nominal MPC OMPU Referen
e Oxygen Heavy −190C No 2.7e+005 4.22Robust MPC OMPU Referen
e Oxygen Heavy −90C Yes 2.7e+005 4.23
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Table4.7:Summaryofsimulationresultswithe�
ien
iesattheirmaximum.

Controller Feedba
k Setpoint or Referen
e Input weighting ∆T A

eptable Energy usage FigNominal MPC FSF Setpoint Even < 10C Yes 4.3e+004 B.13Robust MPC FSF Setpoint Even < 10C Yes 7.4e+004 B.14Nominal MPC FSF Setpoint Oxygen Heavy < 10C Yes 1.1e+005 4.24Robust MPC FSF Setpoint Oxygen Heavy < 10C Yes 9.1e+004 4.25Nominal MPC FSF Referen
e Even < 10C Yes 4.3e+004 B.15Robust MPC FSF Referen
e Even +40C Yes 5.8e+004 B.16Nominal MPC FSF Referen
e Oxygen Heavy < 10C Yes 1.2e+005 4.26Robust MPC FSF Referen
e Oxygen Heavy +30C Yes 1.1e+005 4.27Nominal MPC OM Setpoint Even +110C No 6.0e+004 B.17Robust MPC OM Setpoint Even +140C No 8.3e+004 B.18Nominal MPC OM Setpoint Oxygen Heavy +190C No 1.4e+005 4.28Robust MPC OM Setpoint Oxygen Heavy +180C No 1.1e+005 4.29Nominal MPC OM Referen
e Even +110C No 5.8e+004 B.19Robust MPC OM Referen
e Even +130C No 6.4e+004 B.20Nominal MPC OM Referen
e Oxygen Heavy +110C No 1.3e+005 B.21Robust MPC OM Referen
e Oxygen Heavy +130C No 1.3e+005 B.22Nominal MPC OMPU Setpoint Even +110C No 6.0e+004 B.23Robust MPC OMPU Setpoint Even +140C No 8.3e+004 B.24Nominal MPC OMPU Setpoint Oxygen Heavy +190C No 1.4e+005 B.25Robust MPC OMPU Setpoint Oxygen Heavy +180C No 1.1e+005 B.26Nominal MPC OMPU Referen
e Even +70C Yes 4.9e+004 B.27Robust MPC OMPU Referen
e Even +80C Yes 6.0e+004 B.28Nominal MPC OMPU Referen
e Oxygen Heavy +50C Yes 1.2e+005 4.30Robust MPC OMPU Referen
e Oxygen Heavy +70C Yes 1.2e+005 4.31
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Table4.8:Summaryofsimulationresultswithe�
ien
iesatnominalandtemperature
disturban
e.

Controller Feedba
k Setpoint or Referen
e Input weighting ∆T A

eptable Energy usage FigRobust MPC OM Setpoint Even < 10C Yes 1.4e+005 4.32Robust MPC OM Referen
e Even +20C Yes 1.4e+005 4.33
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Table4.9:Summaryofsimulationresultsthatprodu
eda

eptableresultsex
luding
nominalandfullstatefeedba
ks
enarios.

Controller Feedba
k Setpoint or Referen
e Input weighting ∆T E�
ien
ies Energy usage FigNominal MPC OMPU Referen
e Even +70C Max 4.9e+004 B.27Robust MPC OMPU Referen
e Even +80C Max 6.0e+004 B.28Nominal MPC OMPU Referen
e Oxygen Heavy +50C Max 1.2e+005 4.30Robust MPC OMPU Referen
e Oxygen Heavy +70C Max 1.2e+005 4.31Nominal MPC OMPU Setpoint Even −50C Min 2.2e+005 B.9Robust MPC OMPU Setpoint Even +20C Min 2.6e+005 B.10Nominal MPC OMPU Setpoint Oxygen Heavy −60C Min 3.3e+005 4.20Robust MPC OMPU Setpoint Oxygen Heavy +60C Min 3.0e+005 4.21Robust MPC OMPU Referen
e Oxygen Heavy −90C Min 2.7e+005 4.23Robust MPC OM Setpoint Even < 10C Dist 1.4e+005 4.32Robust MPC OM Referen
e Even +20C Dist 1.4e+005 4.33
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Chapter 4 Con
lusionIn the s
enarios where full state feedba
k is available, both the dual-mode robustmodel predi
tive 
ontroller and the nominal model predi
tive 
ontroller perform equallywell. The model un
ertainty is su
h that the nominal 
ontroller is 
apable of handlingit satisfa
torily. The feedba
k robust MPC 
annot handle asymmetri
 
onstraints su
has those present in the EAF re�ning pro
ess. An ad-ho
 solution to 
ompensate forthis limitation is to add a 
onstant disturban
e to the inputs. This was not a su

essfulstrategy, be
ause the inputs have to be driven to their 
onstraints, whi
h the feedba
krobust MPC avoids. This prevents the feedba
k robust MPC method from su

essfullyfollowing the temperature setpoint or referen
e.A bigger problem with automating the pro
ess is the la
k of feedba
k from the plant.A predi
tor is used to estimate the plant states in order for the 
ontroller to generate
ontrol a
tions for the plant. With the limited number of measurements, the e�e
t ofmodel mismat
h between the predi
tor and a
tual plant has a mu
h bigger impa
t onthe performan
e of the 
losed-loop system than the e�e
ts of model un
ertainty. Thee�e
ts of model mismat
h 
an be redu
ed by using the plant measurement to updatethe predi
tor parameters, but this will meet with varying su

ess, be
ause there is usu-ally only one measurement available during the re�ning stage from whi
h to update theparameters of the predi
tor. If a late 
ave-in o

urs, the predi
tor will be in
orre
tlyupdated, whi
h will hinder further performan
e. The updating of the parameters of thepredi
tor was done using an ad-ho
 method to determine if it will produ
e better resultsthan a predi
tor without parameter update. The predi
tor utilizing this ad-ho
 methodshows an improvement over the predi
tor without parameter updates. A more in-depthstudy is ne
essary to design a proper predi
tor for the EAF re�ning pro
ess, one thatutilizes better updating methods and takes all other aspe
ts into 
onsideration through amore systemati
 design. This was not done here, be
ause it falls outside the s
ope of thisdissertation.
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Chapter 5
Con
lusions and re
ommendations
5.1 Summary of dissertationThe main aim of the dissertation was to synthesise a robust and nominal model predi
tive
ontroller for the ele
tri
 ar
 furna
e re�ning pro
ess and to evaluate the feasibility ofsu
h a 
ontroller through a simulation study. This work is based on a �ve state nonlinearmodel that was derived by Rathaba (2004) for the ele
tri
 ar
 furna
e re�ning stage fromprevious work by Bekker et al. (1999) and Oosthuizen et al. (2001) who 
reated a fulltwenty-two state nonlinear model of the ele
tri
 ar
 furna
e pro
ess.In Chapter 2 the �ve state nonlinear model was linearized for use in the model predi
-tive 
ontrollers. A stru
tured un
ertainty des
ription was used to des
ribe all the linearmodels that resulted from the un
ertain nonlinear model. The linear models were redu
edto simplify the 
ontrollers by eliminating states that are pra
ti
ally un
ontrollable.In Chapter 3 a brief overview was given of the development of stability theory for robustmodel predi
tive 
ontrollers. Two 
ontrol methods, feedba
k robust model predi
tive
ontrol and dual-mode robust model predi
tive 
ontrol, were examined in more detailwith regards to synthesis and use.In Chapter 4 an extensive simulation study was done on the re�ning stage of theele
tri
 ar
 furna
e re�ning pro
ess. Simulations were done where full state feedba
k wasassumed in order to evaluate the baseline performan
e and stability of the robust andnominal 
ontrollers. Both the nominal and robust 
ontrollers were stable during all the124

 



Chapter 5 Con
lusionsimulations and performed well under model mismat
h. More pra
ti
al s
enarios werealso investigated where there was only a limited number of measurements and a predi
torwas employed to estimate the furna
e states. Ea
h time a measurement was available,the predi
tor was 
orre
ted. In an extension, ea
h time a measurement was available, thepredi
tor was 
orre
ted and its internal model parameters updated to better approximatethe real plant. The simulations show that the la
k of feedba
k has a far greater e�e
t onperforman
e than model mismat
h.5.2 Con
lusionA robust model predi
tive 
ontroller seemed appropriate at the onset of this study inorder to expli
itly take the model un
ertainty into 
onsideration as part of the 
ontrollersynthesis. For 
omparison, a nominal model predi
tive 
ontroller was used to quantifythe advantage of using a robust 
ontroller. In the a
ademi
 problem it was 
lear thatthe robust 
ontrollers were the only ones to su

essfully 
ontrol the un
ertain system.The ele
tri
 ar
 furna
e pro
ess does not be
ome unstable for all the simulations whennominal model predi
tive 
ontrol is used, even under extreme model mismat
h. Thenominal model predi
tive 
ontroller is therefore more than adequate for 
ontrolling thepro
ess.The la
k of feedba
k is a mu
h bigger obsta
le in automating the ele
tri
 ar
 furna
ere�ning pro
ess. The predi
tor needs to be very a

urate, but with the un
ertainty andla
k of measurements, it is very di�
ult to ensure a

ura
y. More frequent measurementswould need to be taken and improvements need to be made to the updating of the internalmodel of the predi
tor to ensure satisfa
tory results.The ele
tri
 ar
 furna
e re�ning pro
ess has states that are manipulated by more thanone input. The inputs and 
ertain states have 
onstraints. A simple single-input-single-output 
ontroller will be di�
ult to tune in order to 
ontrol the pro
ess and the 
onstraintswill be handled in an ad-ho
 fashion. A better strategy is to use a multi-variable 
ontrolsystem that 
an expli
itly take 
onstraints into a

ount, e.g. model predi
tive 
ontrol.This study has shown that it is not ne
essary to use robust model predi
tive 
ontrol,Ele
tri
al, Ele
troni
 and Computer Engineering 125

 



Further workbe
ause the parameter variation does not pose a problem for nominal model predi
tive
ontrol.Operators are using the ele
tri
 ar
 furna
e daily without 
ontrol and are able to rea
hthe targets more often than not. This study shows that robust model predi
tive 
ontrolhave di�
ulty to steer the temperature to the desired setpoint with the limited number ofmeasurements available. All simulation, ex
ept for the nominal 
ases, assumed worst-
ases
enarios. It is therefore likely that the worst-
ase s
enarios do not o

ur frequently inpra
ti
e and that the performan
e of the 
losed-loop system might be better in reality.The un
ertainties in the model might also be overstated and therefore lead to overly
onservative results in the simulations.5.3 Further workThere are 
ertain areas where further work needs to be done in order to make automati

ontrol of the furna
e pra
ti
al:
• A better predi
tor needs to be developed in order to handle the model un
ertaintyand take late 
ave-ins into a

ount, by using a more systemati
 design method andverifying it on real plant data.
• Methods should be devised to in
rease measurements during the re�ning stage. Thisis quite a 
hallenge due to the harsh environment that the furna
e operates in. Apossible solution is to develop soft sensors that estimate bath temperature from theo�-gas temperature and 
oolant temperature.Improvements 
an be made to the 
ontrol strategy in the following areas:
• Add e
onomi
 obje
tives to the 
ontrol by examining:� Energy 
ost of ele
tri
ity and 
hemi
al sour
es as in Oosthuizen et al. (2004).� Optimizing yield.� Di�erent referen
e traje
tories for temperature and other variables.Ele
tri
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• Safety and environmental impa
t.
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Appendix A
A
ademi
 Problem
In this 
hapter, an a
ademi
 problem is used to 
ompare the two robust MPC togetherwith nominal MPC, with respe
t to robust stability and performan
e. The a
ademi
problem 
onsists of a system with greatly varying dynami
 behaviour, whi
h provides anex
ellent test of the stability and robustness of the di�erent 
ontrollers.
A.1 A
ademi
 problem modelThis a
ademi
 problem was taken from Kothare et al. (1996). The problem is a two-mass-spring system (�gure A.1). The system was dis
retized using Euler's �rst orderapproximation for the derivative with a sampling time of 0.1s. The dis
retized system is

Mass 1 Mass 2

K

X1 X2

U

Figure A.1: Coupled mass-spring system.138

 



Appendix A A
ademi
 problem modelgiven by
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u(k) (A.2)
y(k) = x2(k) (A.3)where x1 and x2 are the positions of body 1 and body 2 respe
tively and x3 and x4 arethe respe
tive velo
ities of body 1 and body 2. The mass of body 1 is m1 and the mass ofbody 2 is m2, while K is the spring 
onstant. The input of the system u is the for
e thatis applied to the �rst body. The performan
e spe
i�
ations 
an be summarized as follows

• Use 
onstant mass for body 1 and body 2 of 1 kg: m1 = m2 = 1.
• Use an un
ertain spring 
onstant that varies between 0.5 and 10: 0.5 ≤ K ≤ 10.
• An input 
onstraint of |u| ≤ 1 should be maintained.
• A output unit step should be followed.
• Assume full state feedba
k is available.To des
ribe the e�e
t of the un
ertain spring 
onstant K, a stru
tured un
ertainty de-s
ription is used. The stru
tured un
ertainty des
ription has the form

Ω =

[

A + BpδCq B + BpδDqu

] (A.4)where Ω is the system spa
e, δ is an operator that varies between -1 and 1, BpCq des
ribesthe deviation from the nominal for A, and BpDqu des
ribes the deviation from nominalEle
tri
al, Ele
troni
 and Computer Engineering 139

 



Appendix A Simulation Resultsfor B.The system in (A.1) 
an be rewritten as a stru
tured un
ertainty des
ription with the
onstant values substituted as:
δ =

K − Knom

Kdev

(A.5)
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(A.8)
Cq =

[

Kdev −Kdev 0 0

] (A.9)
Dqu = 0 (A.10)A.2 Simulation ResultsThree 
ontrollers were used in the simulation study. The 
ontroller 
losed-loop systemstru
ture is shown in �gure A.2. The feedba
k robust model predi
tive 
ontroller is shown�rst, the dual-mode robust model predi
tive 
ontroller se
ond, and the nominal modelpredi
tive 
ontrol as a ben
hmark last. Three simulation s
enarios were 
onsidered:1. The nominal 
ase where δ = 0.2. Extreme deviation from nominal δ =-1.Ele
tri
al, Ele
troni
 and Computer Engineering 140

 



Appendix A Simulation Results
4 State

Linear

Plant

(Robust)

Model Predictive 

Controller

Setpoint
Position of mass 2 Force

- Positions of masses

- Velocity of massesFigure A.2: A
ademi
 problem 
losed-loop system.Table A.1: A
ademi
 problem MPC state and input weighting.Variable Des
ription ValueQ State weighting 







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







R Input weighting 0.000013. Extreme deviation from nominal δ =1.The nominal s
enario gives an indi
ation of the 
onservatism that is introdu
ed in orderto robustify the 
losed loop. The nominal MPC will be the ben
hmark with whi
h to
ompare the two robust 
ontrollers. The two extreme 
ases provide a measure of theperforman
e of the two robust 
ontrollers.A.2.1 Nominal s
enarioThe nominal s
enario uses the nominal model (δ = 0). All the 
ontrollers use the samestate and input weighting (shown in table A.1) in order to gauge their relative perfor-man
e, and to get a feel for the amount of 
onservatism that is introdu
ed in order torobustify the 
ontrollers.These results (�gures A.3 and A.4) show that the nominal MPC gives the best per-forman
e when δ = 0. This is to be expe
ted, be
ause the robust 
ontrollers are moreEle
tri
al, Ele
troni
 and Computer Engineering 141

 



Appendix A Simulation Results
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0 20 40 60
0

0.5

1

1.5

Time [seconds]

S
ta

te
 1

State Response 1

Nominal MPC
Reference

0 20 40 60
0

0.5

1

1.5

Time [seconds]
S

ta
te

 2

State Response 2

Actual
Reference

0 20 40 60
−0.1

0

0.1

0.2

0.3

0.4

Time [seconds]

S
ta

te
 3

State Response 3

Nominal MPC
Reference

0 20 40 60
−0.2

0

0.2

0.4

0.6

Time [seconds]

S
ta

te
 4

State Response 4

Nominal MPC
Reference

0 20 40 60
−1

−0.5

0

0.5

1

Time [seconds]

In
pu

t

Input

Figure A.4: Nominal MPC - Nominal S
enario
Ele
tri
al, Ele
troni
 and Computer Engineering 143

 



Appendix A Con
lusion
onservative in order to ensure stability for all the system realizations. The results alsoshow that the feedba
k robust model predi
tive 
ontroller gives better performan
e thanthe dual-mode robust model predi
tive 
ontroller. The internal, globally stabilizing feed-ba
k 
ontrol employed by the dual-mode 
ontroller is generated by the feedba
k robust
ontrol algorithm for the initial state. The feedba
k gain was generated without tak-ing the input 
onstraint into a

ount in order to redu
e 
onservatism for the dual-mode
ontroller.A.2.2 Extreme deviation δ = −1 and δ = 1The extreme deviation s
enarios help gauge the performan
e of the robust 
ontrollers.Both 
ontrollers use the same weighting on state and input deviation as shown in tableA.1.The results in �gure A.5 show that both robust 
ontrollers are stable in this simulation,be
ause the 
losed-loop system 
onverges to the setpoints, but the feedba
k robust modelpredi
tive 
ontroller delivers better performan
e in terms of settling time.The results in �gure A.6 mirror the previous 
on
lusion, be
ause both robust 
on-trollers are stable in this simulation, but the feedba
k robust model predi
tive 
ontrollerdelivers better performan
e in terms of rea
hing the desired setpoint as well as overshoot.Figure A.7 shows the performan
e of the 
losed-loop system with nominal MPC. Here itis 
lear that the 
losed-loop is unstable for this simulation, be
ause the 
losed-loop systemos
illates with in
reasing amplitude, and the same result is obtained in the 
ase where
δ = 1.
A.3 Con
lusionThe a
ademi
 problem shows the advantage of using robust model predi
tive 
ontrol,where un
ertainty 
auses large variations in dynami
 behaviour. Both the robust 
on-trollers were stable for all the simulations over the whole variation in system dynami
s,whereas the nominal MPC was unstable in both extreme s
enario simulations. The feed-Ele
tri
al, Ele
troni
 and Computer Engineering 144
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k and Dual-mode Robust MPC - Extreme s
enario δ = 1
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Appendix A Con
lusionba
k robust 
ontroller delivered better performan
e than the dual-mode robust 
ontroller,be
ause as the state and inputs approa
h 0, the 
ontroller makes the feedba
k gain less
onservative. The feedba
k 
ontroller has a problem with non-symmetri
 input 
onstraintswhen there is a steady-state other than the origin, be
ause the feedba
k gain of the 
on-troller stays 
onservative and might also lead to large steady-state o�sets in the states.The behaviour of the dual mode 
ontroller is greatly in�uen
ed by the globally stabilizingfeedba
k gain K, more so than by the weighting matri
es Q and R.
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Appendix B
Auxiliary simulation results
In this appendix, all the auxiliary simulation results of 
hapter 4 are shown with a shortdes
ription of the simulation parameters and a short dis
ussion of the results. In thisappendix, only the s
enarios where there are even weightings on the inputs are evaluated.This gives an indi
ation how it will a�e
t the temperature response if more oxygen isavailable as an energy sour
e when 
ompared to the redu
ed oxygen usage s
enariosshown in 
hapter 4.B.1 Worst-
ase s
enario: E�
ien
ies at their minimumThis s
enario fo
uses on the e�e
t that lower than nominal e�
ien
ies (ηFeO and ηARC)have on the 
ontroller and system as a whole. In this s
enario the following assumptionsare made:

• There are three feedba
k s
enarios:� Full state-feedba
k is available.� One measurement is available.� One measurement and update of the e�
ien
ies (ηFeO and ηARC) of the pre-di
tor are available.
• The predi
tor and a
tual plant have a mismat
h in their e�
ien
ies (ηFeO and ηARC)where the e�
ien
ies are lower in the real plant than in the predi
tor.149

 



Appendix B Worst-
ase s
enario: E�
ien
ies at their minimum
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(e) Graphite Inje
tionFigure B.1: Nominal MPC - E�
ien
ies at a minimum with full-state feedba
k.
• There are no disturban
es.B.1.1 Worst-
ase s
enario: Minimum e�
ien
ies with full statefeedba
kIn this �rst instan
e, full-state feedba
k is employed to evaluate the 
losed-loop perfor-man
e without a predi
tor in the loop, in the extreme 
ase where the e�
ien
ies (ηFeOand ηARC) are at the minimum of the 
on�den
e interval for the plant model. RobustMPC and nominal MPC are 
ompared to determine whether robust MPC provides betterperforman
e in the presen
e of model mismat
h 
ompared to nominal MPC.A temperature setpoint of 1650oC as well as even weighting (table 4.2) is used for the�rst set of simulations.From these result (�gures B.1 and B.2), it is 
lear that the robust MPC performsEle
tri
al, Ele
troni
 and Computer Engineering 150
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(e) Graphite Inje
tionFigure B.2: Dual-mode robust MPC - E�
ien
ies at a minimum with full-state feedba
k.
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(e) Graphite Inje
tionFigure B.3: Nominal MPC - E�
ien
ies at a minimum, full-state feedba
k and referen
etraje
tory.
better than the nominal MPC. The robust 
ontroller produ
ed a smaller steady-stateo�set for the temperature. It is interesting to note that the nominal 
ontroller is stablefor this simulation with extreme model mismat
h.A referen
e traje
tory is used for temperature over the duration of the re�ning stageas well as even weighting (table 4.2) on the inputs for the se
ond set of simulations.These results (�gures B.3 and B.4) show that the robust 
ontroller performs mu
hbetter with almost perfe
t referen
e following 
ompared to the nominal 
ontroller. Thenominal 
ontroller uses mu
h less oxygen than the robust 
ontroller, whi
h 
an a

ountfor the di�
ulty in following the referen
e traje
tory.Ele
tri
al, Ele
troni
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(e) Graphite Inje
tionFigure B.4: Dual-mode robust MPC - E�
ien
ies at a minimum, full-state feedba
k andreferen
e traje
tory.
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(e) Graphite Inje
tionFigure B.5: Nominal MPC - E�
ien
ies at a minimum with one measurement.B.1.2 Worst-
ase s
enario: Minimum e�
ien
ies with one plantmeasurementIn this s
enario only one measurement of temperature is taken in the middle of the re�ningstage, the rest of the data is produ
ed by the predi
tor. The predi
tor uses the nominalplant parameters, while the real plant uses the worst-
ase s
enario where the e�
ien
ies(ηFeO and ηARC) are at their minimum. This s
enario should shed light on the e�e
t ofmodel mismat
h between the predi
tor and real plant model.A setpoint of 1650oC for temperature as well as even weightings on the inputs (table4.2) are used for the �rst set of simulations.These results (�gures B.5 and B.6) show that both 
ontrollers perform equally poorly.The 
ontrollers are under the impression that they have rea
hed the desired setpoint as in-di
ated by the expe
ted line, but in reality the temperature is lower. At the measurementEle
tri
al, Ele
troni
 and Computer Engineering 154
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ase s
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ien
ies at their minimum
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(e) Graphite Inje
tionFigure B.6: Dual-mode robust MPC - E�
ien
ies at a minimum with one measurement.
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(e) Graphite Inje
tionFigure B.7: Nominal MPC - E�
ien
ies at a minimum, one measurement and referen
etraje
tory.
point, the value of the predi
tor is 
orre
ted, and the 
ontrollers respond a

ordingly.The �nal value is still below the desired value, be
ause of the mismat
h in the predi
tor.An a

epted margin of error is 100C ea
h way, whi
h the 
ontrollers are not 
apable ofattaining.A referen
e traje
tory for temperature as well as even weighting on the inputs (table4.2) is used for the se
ond set of simulations.Figures B.7 and B.8 show poor referen
e following by both 
ontrollers due to theina

ura
y of the predi
tor. The expe
ted line shows what the 
ontroller expe
ts thevalues to be. The robust 
ontroller follows the referen
e slightly better than the nominal
ontroller but still ends below the 100C a

epted interval.Ele
tri
al, Ele
troni
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(e) Graphite Inje
tionFigure B.8: Dual-mode robust MPC - E�
ien
ies at a minimum, one measurement andreferen
e traje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximumB.1.3 Worst-
ase s
enario: Minimum e�
ien
ies with one plantmeasurement and predi
tor parameter updateIn the previous se
tion, the e�e
t of model mismat
h between the predi
tor and thea
tual plant on the performan
e of the 
losed-loop system is 
lear. To 
ombat this, theparameters of the predi
tor are updated ea
h time a measurement is taken, in an attemptto improve performan
e. In this s
enario only one measurement is taken in the middle ofthe re�ning stage, the rest of the state data is produ
ed by the predi
tor. The predi
toruses the nominal plant parameters until the �rst measurement is taken, after whi
h theupdated parameters are employed. The real plant uses the worst-
ase s
enario where thee�
ien
ies (ηFeO and ηARC) are at their minimum.A setpoint of 1650oC for temperature as well as even weighting on the inputs (table4.2) is used for the �rst set of simulations.Figures B.9 and B.10 show that both 
ontrollers are now able to steer the pro
ess towithin the desired ±100C margin. The robust 
ontroller is able to rea
h the desired set-point by the end of the re�ning stage, whi
h is slightly better than the nominal 
ontroller.A referen
e traje
tory for temperature as well as even weighting for the inputs (table4.2) is used for the se
ond set of simulations.Figures B.11 and B.12 show that neither of the 
ontrollers 
an steer the temperature towithin±100C. This is due to an under
orre
tion made in the predi
tor. In both 
ases, theexpe
ted state propagation follows the referen
e traje
tory, but the a
tual performan
e ofthe robust 
ontroller is better than that of the nominal 
ontroller. The nominal 
ontrolleruses signi�
antly less oxygen than the robust 
ontroller whi
h 
an explain why the robustMPC performs slightly better than the nominal MPC.B.2 Worst-
ase s
enario: E�
ien
ies at their maximumThis worst-
ase s
enario investigates the e�e
t of model mismat
h between the internalmodel of the 
ontrollers and the a
tual plant, as well as the predi
tor and the a
tual plant.This s
enario fo
uses on the e�e
t 
reated if the e�
ien
ies (ηFeO and ηARC) are higherEle
tri
al, Ele
troni
 and Computer Engineering 158
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(e) Graphite Inje
tionFigure B.9: Nominal MPC - E�
ien
ies at a minimum with one measurement and pre-di
tor parameter update.
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(e) Graphite Inje
tionFigure B.10: Dual-mode robust MPC - E�
ien
ies at a minimum with one measurementand predi
tor parameter update.
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(e) Graphite Inje
tionFigure B.11: Nominal MPC - E�
ien
ies at a minimum, one measurement and predi
torparameter update and referen
e traje
tory.
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(e) Graphite Inje
tionFigure B.12: Dual-mode robust MPC - E�
ien
ies at a minimum, one measurement andpredi
tor parameter update and referen
e traje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximumthan nominal. This is a more theoreti
al s
enario, be
ause e�
ien
ies do not tend to behigher than expe
ted, but it is ne
essary to determine whether the 
ontroller would beable to 
ope with su
h a situation. In this s
enario the following assumptions are made:
• There are three feedba
k s
enarios:� Full state-feedba
k is available.� One measurement is available.� One measurement and update of predi
tor parameters are available.
• The predi
tor and a
tual plant have a mismat
h in their e�
ien
ies (ηFeO and ηARC)where the e�
ien
ies are higher in the real plant than in the predi
tor.
• There are no disturban
es.B.2.1 Worst-
ase s
enario: Maximum e�
ien
ies with full statefeedba
kIn this �rst instan
e, full-state feedba
k is employed to evaluate the 
losed-loop perfor-man
e without a predi
tor present in the extreme 
ase where the e�
ien
ies (ηFeO and

ηARC) are at the maximum of the 
on�den
e interval for the plant model. Robust MPCand nominal MPC are 
ompared to determine whi
h provides better performan
e in thepresen
e of model mismat
h.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as evenweighting on the inputs (table 4.2).Figures B.13 and B.14 show that both 
ontrollers are able to follow the setpoint, andbe
ause of the in
reased e�
ien
y of the oxygen and ele
tri
 power, less energy is needed,whi
h results in both 
ontrollers keeping the FeO 
ontent below the 
onstraint level.The se
ond set of simulations uses a referen
e traje
tory for temperature as well aseven weighting on the inputs (table 4.2).Figures B.15 and B.16 show that both 
ontrollers have good referen
e following. Thenominal 
ontroller uses mu
h less oxygen than the robust 
ontroller, whi
h is evident inEle
tri
al, Ele
troni
 and Computer Engineering 163
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(e) Graphite Inje
tionFigure B.13: Nominal MPC - E�
ien
ies at maximum with full state feedba
k.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum

0 100 200 300 400 500 600
1600

1610

1620

1630

1640

1650

Time [seconds]

T
em

pe
ra

tu
re

 [C
el

si
us

]

Bath Temperature

Actual
Expected
Reference

(a) Temperature 0 100 200 300 400 500 600
4200

4400

4600

4800

5000

5200

5400

Time [seconds]

F
eO

 W
ei

gh
t [

kg
]

Slag FeO Content

Actual
Expected
State Constraint

(b) FeO in Slag
0 200 400 600

0

0.2

0.4

0.6

0.8

1

Time [seconds]

O
xy

ge
n 

[k
g/

s]

Oxygen Injection Rate

(
) Oxygen Inje
tion 0 200 400 600
0

1

2

3

4

x 10
4

Time [seconds]

P
ow

er
 [k

W
]

Electric Power

(d) Ele
tri
 Power 0 200 400 600
−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [seconds]

G
ra

ph
ite

 [k
g/

s]

Graphite Injection Rate

(e) Graphite Inje
tionFigure B.14: Dual-mode robust MPC - E�
ien
ies at maximum with full state feedba
k.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.15: Nominal MPC - E�
ien
ies at maximum with full state feedba
k and refer-en
e traje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.16: Dual-mode robust MPC - E�
ien
ies at maximum with full state feedba
kand referen
e traje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximumthe �nal values of the FeO 
ontent. The robust 
ontroller slightly overshoots the �nalvalue for the temperature but is still well within the desired ±100C interval.B.2.2 Worst-
ase s
enario: E�
ien
ies at their maximum withone plant measurementA more realisti
 feedba
k s
enario is investigated, where only one temperature measure-ment is taken in the middle of the re�ning stage, the rest of the state data is produ
edby a predi
tor. The predi
tor uses the nominal plant parameters, while the real plantuses the worst-
ase s
enario where the e�
ien
ies (ηFeO and ηARC) are at their maximum.This s
enario should shed light on the e�e
t of model mismat
h between the predi
torand real plant when 
ompared to the results of the previous se
tion.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as evenweighting on the inputs (table 4.2).Figures B.17 and B.18 show that both 
ontrollers fail to steer the temperature towithin the ±100C margin. The 
ontrollers overshoot the setpoint, be
ause the e�
ien
ies(ηFeO and ηARC) are higher than expe
ted and the 
ontrollers drive the temperature toohigh. The measurement shows the 
ontrollers that the temperature is too high, and theyrespond by turning o� all energy sour
es. The temperature is lowered, but is limited bythe tempo of natural heat loss, whi
h is too slow to rea
h the target by the end of there�ning stage. The pro
ess 
ould be a

elerated by opening the furna
e roof, whi
h wouldaid heat loss. This situation 
an be prevented by taking a measurement earlier in there�ning stage to identify the problem sooner.The se
ond set of simulations uses a referen
e traje
tory for temperature as well aseven weighting on the inputs (table 4.2).Figures B.19 and B.20 show that both 
ontrollers overshoot the �nal temperature withmore than the a

epted margin of ±100C. By the time that the measurement is taken,the temperature is still below the desired value, but already higher than the referen
e.The 
ontrollers 
orre
t the problem by steering the temperature ba
k to the referen
e,but as soon as the error is 
orre
ted, the temperature is again steered faster than theEle
tri
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troni
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.17: Nominal MPC - E�
ien
ies at maximum with one measurement.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.18: Dual-mode robust MPC - E�
ien
ies at maximum with one measurement.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.19: Nominal MPC - E�
ien
ies at maximum, one measurement and referen
etraje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.20: Dual-mode robust MPC - E�
ien
ies at maximum, one measurement andreferen
e traje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.21: Nominal MPC - E�
ien
ies at maximum, one measurement, referen
e tra-je
tory and redu
ed oxygen usage.referen
e.The third set of simulations uses a referen
e traje
tory for temperature as well ashigher weighting on oxygen inje
tion (table 4.2).These simulations (�gures B.21 and B.22) show mu
h the same trend as the previousset, with the ex
eption that both 
ontrollers use less oxygen, whi
h in turn produ
es less
FeO, but the robust 
ontroller uses signi�
antly less oxygen 
ompared with the previoussimulation in �gure B.20.The model mismat
h between the predi
tor and the a
tual plant in this s
enario, 
ausesthe temperature to overshoot the desired value of 16500C. The e�e
t 
an be redu
ed bytaking a sample earlier in the re�ning stage, whi
h will minimize the overshoot and givemore time for the bath to 
ool o�. The se
ond solution is to use the referen
e traje
tory,but from the last two simulations it is 
lear that the predi
tor parameters should beEle
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.22: Dual-mode robust MPC - E�
ien
ies at maximum, one measurement, ref-eren
e traje
tory and redu
ed oxygen usage.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximumupdated to prevent overshoot from o

urring after the measurement.B.2.3 Worst-
ase s
enario: E�
ien
ies at their maximum withone plant measurement and predi
tor parameters updateIn the previous se
tion, the e�e
t that model mismat
h has on the performan
e of thesystem is apparent. To 
ombat the e�e
t, the parameters of the predi
tor are updatedea
h time a measurement is taken, in an attempt to improve performan
e. In this s
enarioonly one measurement of temperature is taken in the middle of the re�ning stage, the restof the data is produ
ed by the predi
tor. The predi
tor uses the nominal plant parametersfor the e�
ien
ies (ηFeO and ηARC) until a measurement is taken, after whi
h the 
orre
tedparameters are employed. The �real plant� uses the worst-
ase where the e�
ien
ies (ηFeOand ηARC) are at their maximum.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as evenweighting on the inputs (table 4.2).Figures B.23 and B.24 show mu
h the same results as in se
tion 4.4.2. The update inthe predi
tor does not aid in a

elerating the 
ooling of the bath. The only solution herewould be to take a measurement earlier in the pro
ess.The se
ond set of simulations uses a setpoint of 1650oC for temperature as well ashigher weighting on oxygen inje
tion (table 4.2).Figures B.25 and B.26 show mu
h the same result as the previous simulation wherethe predi
tor update does not solve the 
ooling limitation. The only di�eren
e is that,where energy is applied, less oxygen is used be
ause of the heavier weighting on the oxygeninje
tion rate.A referen
e traje
tory for temperature as well as even weighting on the inputs (table4.2) is used for the third set of simulations.Figures B.27 and B.28 show en
ouraging results. The referen
e traje
tory 
ausesthe temperature to in
rease mu
h slower than with the setpoint, so that by the timea measurement is taken, the temperature has not yet passed the desired �nal value of
16500C. The temperature does in
rease above the referen
e, and after the measurement,Ele
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troni
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.23: Nominal MPC - E�
ien
ies at maximum with one measurement and pre-di
tor update.

Ele
tri
al, Ele
troni
 and Computer Engineering 176

 



Appendix B Worst-
ase s
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ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.24: Dual-mode robust MPC - E�
ien
ies at maximum with one measurementand predi
tor update.
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(e) Graphite Inje
tionFigure B.25: Nominal MPC - E�
ien
ies at maximum, one measurement and predi
torupdate and redu
ed oxygen usage.
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ies at their maximum
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(e) Graphite Inje
tionFigure B.26: Dual-mode robust MPC - E�
ien
ies at maximum, one measurement andpredi
tor update and redu
ed oxygen usage.
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(e) Graphite Inje
tionFigure B.27: Nominal MPC - E�
ien
ies at maximum, one measurement and predi
torupdate and referen
e traje
tory.

Ele
tri
al, Ele
troni
 and Computer Engineering 180

 



Appendix B Worst-
ase s
enario: E�
ien
ies at their maximum
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(e) Graphite Inje
tionFigure B.28: Dual-mode robust MPC - E�
ien
ies at maximum, one measurement andpredi
tor update and referen
e traje
tory.
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Appendix B Worst-
ase s
enario: E�
ien
ies at their maximumthe 
ontroller 
orre
ts the problem and on
e it has rea
hed the referen
e, it follows itmore 
losely. There is still an under
orre
tion, that 
auses the temperature to in
reasefaster than expe
ted. The �nal value ends within the a

epted ±100C margin. Thenominal 
ontroller uses less oxygen than the robust 
ontroller as evident from the �nal
FeO values.
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Appendix C
Measured bath and slag data
Tables C.1 and C.2 show measured bath and slag data for 18 taps. This data were
olle
ted by Rathaba (2004).
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AppendixCTableC.1:Measuredbathandslagdata(Rathaba,2004)part1.

Tap # Time % C % Si O2 [ppm℄ Time Temp0C Time % FeO % SiO2 % CaO % MgO % Al2O31 7.05 0.199 0.03 - 7.15 1619 7.04 17.70 18.2 50.53 3.53 5.107.15 0.125 - 219 7.16 1630 7.16 31.55 10.5 43.45 3.33 3.077.16 0.119 - 229 7.20 1678 7.20 36.53 9.08 37.57 3.47 2.737.20 0.043 - 6582 8.14 0.082 0.01 - 8.14 1598 8.11 27.04 13.7 43.74 5.08 3.698.16 0.060 - 448 8.16 1618 8.16 30.25 12.5 43.09 5.42 3.518.18 0.054 - 504 8.18 1638 8.18 39.20 10.3 34.41 5.43 3.018.21 0.039 - 704 8.21 16403 9.10 0.111 0.03 - 9.13 1597 9.10 31.50 13.4 40.13 5.04 4.139.14 0.053 - 514 9.15 1636 9.14 26.21 12.6 46.07 6.38 3.909.17 0.043 - 623 9.18 1631 9.17 31.82 11.4 40.48 6.14 3.484 10.14 0.078 0.02 - 10.14 1594 10.13 32.13 11.6 41.14 5.46 4.3210.20 0.043 - 648 10.20 1610 10.18 29.80 10.7 43.12 5.77 4.1310.21 1658 10.20 31.65 10.1 41.13 5.77 3.785 11.36 0.060 0.02 - 11.37 1586 11.33 37.80 9.85 36.39 5.14 3.4811.42 0.056 - 466 11.42 1602 11.43 38.25 7.58 36.15 5.11 2.7211.44 0.040 - 699 11.44 1658 11.45 38.12 8.10 39.83 5.69 2.916 12.51 0.060 0.03 - 12.53 1615 12.50 43.95 10.8 29.38 5.25 4.1412.55 0.048 0.03 - 12.55 1647 12.53 43.65 10.1 30.32 5.43 3.8412.55 0.026 - 1048 12.56 45.29 9.61 30.21 5.38 3.687 13.43 0.088 0.03 - 13.43 1571 13.40 34.52 11.7 37.95 5.41 5.0013.45 0.071 0.03 - 13.47 1546 13.44 34.81 11.6 37.65 5.49 5.0313.47 0.065 - 376 13.49 1601 13.48 36.35 9.41 32.00 5.71 3.9613.49 0.054 - 481 13.51 161513.55 0.046 - 5728 15.05 0.056 0.03 - 15.07 1630 15.04 37.33 8.96 38.27 8.07 3.8115.07 0.051 0.03 - 15.08 1643 15.06 35.64 9.24 37.74 7.81 3.9215.08 0.037 - 738 15.08 35.06 8.57 34.60 7.30 3.629 16.02 0.157 0.03 - 16.05 1540 15.56 26.96 11.7 40.20 7.23 4.5816.06 0.106 0.03 - 16.08 1615 16.06 26.57 10.6 43.41 7.05 4.2216.08 0.062 - 481 16.10 1636 16.09 27.05 10.2 39.16 6.34 4.0016.09 0.072 0.03 - 16.13 166016.10 0.093 - 29316.13 0.033 - 845

Ele
tri
al,Ele
troni
andComputerEngineering
184

 



AppendixCTableC.2:Measuredbathandslagdata(Rathaba,2004)part2.

Tap # Time % C % Si O2 [ppm℄ Time Temp0C Time % FeO % SiO2 % CaO % MgO % Al2O310 17.03 0.078 0.03 - 17.05 1579 17.02 24.57 14.8 42.47 5.31 4.3617.05 0.085 0.03 - 17.07 1614 17.05 23.91 15.0 44.46 5.98 4.5717.09 0.044 - 624 17.09 1647 17.09 25.08 15.2 43.29 6.50 4.6417.09 0.059 0.03 -11 10.37 0.112 0.02 - 10.36 1570 10.43 35.69 11.1 36.17 5.59 3.8310.39 0.034 - 760 10.39 160010.42 0.030 - 894 10.42 163810.44 0.045 - 604 10.44 163112 11.34 0.057 0.02 - 11.41 1566 11.47 36.34 11.6 34.72 6.96 3.8911.45 0.034 - 804 11.45 163111.47 0.031 - 920 11.47 167313 12.43 0.081 0.02 - 12.45 1585 12.50 34.91 10.2 37.55 5.68 3.5912.48 0.042 - 642 12.48 162312.50 0.039 - 678 12.50 162114 13.42 0.115 0.04 - 13.47 1594 14.10 36.18 10.8 34.39 5.48 3.7813.50 0.050 - 531 13.50 161014.08 0.033 - 823 14.05 165814.10 0.030 - 930 14.08 162114.10 165215 14.56 0.068 0.03 - 15.02 1589 15.09 41.95 10.2 34.43 6.04 3.5715.06 0.036 - 861 15.05 162615.09 0.035 - 757 15.06 164115.11 0.030 - 907 15.08 162615.10 165016 16.03 0.075 0.03 - 16.04 1624 16.05 37.33 10.2 37.51 5.83 3.4716.06 0.034 - 861 16.06 164517 16.54 0.080 0.03 - 17.00 1564 17.10 31.93 12.4 39.96 4.31 4.5317.06 0.036 - 356 17.04 156617.08 0.035 - 592 17.06 158817.08 163918 17.56 0.169 0.03 - 18.05 1582 17.10 31.93 11.2 39.96 6.76 4.2018.01 0.093 0.02 - 18.08 161818.09 0.060 - 592 18.09 1661
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