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This dissertation forms part of the ongoing process at UP to model and control the
electric arc furnace process. Previous work focused on modelling the furnace process from
empirical thermodynamic principles as well as fitting the model to actual plant data.
Automation of the process mainly focused on subsystems of the process, for example the
electric subsystem and the off-gas subsystem.

The modelling effort, especially the model fitting, resulted in parameter values that are
described with confidence intervals, which gives rise to uncertainty in the model, because
the parameters can potentially lie anywhere in the confidence interval space.

Robust model predictive control is used in this dissertation, because it can explicitly
take the model uncertainty into account as part of the synthesis process. Nominal model
predictive control - not taking model uncertainty into account - is also applied in order
to determine if robust model predictive control provides any advantages over the nominal
model predictive control.

This dissertation uses the process model from previous work together with robust
model predictive control to determine the feasibility of automating the process with re-
gards to the primary process variables. Possible hurdles that prevent practical implemen-
tation are identified and studied.
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Opsomming
Titel: Robuuste Model Voorspellende Beheer van 'n Elektriese Boogoond
Verfyningsproses
Deur: Lodewicus Charl Coetzee

Studieleier: Professor I.K. Craig
Departement: Departement van Elektries, Elektronies and Rekenaar Ingenieurswese

Graad: Meester van Ingenieurswese (Elektroniese Ingenieurswese)

Die verhandeling vorm deel van die voortgaande studie deur UP om 'n elektriese boo-
goondproses te modelleer en te beheer. Vorige modellering het gefokus op die gebruik van
empiriese termodinamiese beginsels waarna die empiriese model gepas is op gemete aan-
legdata. Outomatisasie word hoofsaaklik gemik op substelsels van die proses, byvoorbeeld
die elektriese substelsel.

Die modelleringsproses, veral die passing van die model op aanlegdata, het daartoe
gelei dat daar onsekerhede in die model vervat word. Die onsekerhede word beskryf deur
parameters wat binne vasgestelde grense lé.

In die verhandeling word robuuste model voorspellende beheer gebruik, omdat dit die
onsekerhede van die aanleg eksplisiet in ag kan neem gedurende die sinteseproses. Die
robuuste beheerder word vergelyk met 'n nominale beheerder - wat nie die onsekerhede
in ag neem nie - om te bepaal watter voordeel die robuuste beheerder oor die nominale
beheerder bied.

Die aanlegmodel, wat in ’'n vorige studie verkry is, tesame met robuuste model voor-
spellende beheerteorie word gebruik om te bepaal hoe haalbaar dit is om die elektriese
boogoondverfyningsproses te outomatiseer. Die studie het moontlike struikelblokke gei-
dentifiseer wat praktiese implementering kan belemmer.

Sleutelwoorde: Elektriese Boogoond, Robuuste Model Voorspellende Beheer.



Acknowledgement

I thank God for blessing me with the opportunity to study. T owe my parents a debt
of gratitude for their support and understanding throughout my studies. I thank my
supervisor Prof. Craig for his guidance and help with this research and Mr. Bellingan

from Cape Gate for his insight in the practical operation of an electric arc furnace.



i ARSI
Contents
1 Introduction
1.1 Motivation . . . . . . . .o
1.2 Operation of the Electric Arc Furnace . . . . . . . .. .. ... ... ....
1.3 Aims and objectives . . . . .. ..
1.4 Organization . . . . . . . . . e
2 Process modelling
2.1 Introduction . . . . . . . oL
2.2 Reduced Nonlinear Model . . . . . . . ... ... oL
2.3 Predictor design . . . . . ...
2.4 Linearized model . . . . . . . ..
2.4.1 Operating point . . . . . . .. . ..
2.4.2  Derivative of nonlinear model . . . . . . . . ... ... ...
2.4.3 Linearized models . . . . . . . . ... oo
2.4.4 Linear models analysis . . . . . . . . ... ... ... ... ...,
2.4.5 Simplification of linear models . . . . . . . . ... ... ... ...
2.4.6 Analysis of simplified linear models . . . . . . . . ... ... .. ..
2.5 Conclusion . . . . . . ..o

3 Model predictive control
3.1 Introduction . . . . . . .. ..
3.2 Historical background . . . . .. .. ... 0oL
3.3 Stability of MPC . . . . . ...

i

10

12
12
15
18
20
21
22
26
29
31
35
35



\\\\\\\\\\\\\\\\\\\\\
vvvvvvvvvvvvvvvvvvvv
@ZP YUNIBESITHI YA PRETORIA

3.3.1 Stability conditions for model predictive controllers . . . . . . . .. 44
3.3.2  Terminal state MPC . . . . . . .. .. ... oL 47
3.3.3  Terminal cost MPC . . . . . . . .. ... oo 48
3.3.4 Terminal constraint set MPC . . . . . ... ... ... ... .... 48
3.3.5 Terminal cost and constraint set MPC . . . . .. ... ... .. .. 49

3.4 Robust MPC - Stability of uncertain systems . . . . . . . ... .. ... .. 50
3.4.1 Stability conditions for robust MPC . . . . . . .. ... ... .. .. o1
3.4.2 Open-loop min-max MPC . . . .. ... .. ... ... ....... 52
3.4.3 Feedback robust MPC . . . . . .. ... o4
3.4.4 Robust MPC implementations . . . . . . . . ... ... ... .... 56

3.5 Robust model predictive controllers . . . . . . . .. ... ... ... .. .. 58
3.5.1 Robust MPC using LMIs . . . . . . .. ... ... ... ... .... 58
3.5.1.1 System descriptions . . . . .. ... L 59

3.5.1.2  Objective function . . . . . .. .. ... . L. 60

3.5.1.3 Linear matrix inequalities . . . . . . . .. . ... ... .. 61

3.5.1.4  Unconstrained robust model predictive control . . . . . . . 61

3.5.1.5 Input constraints . . . . . . . .. ... ... ... 63

3.5.1.6  Output constraints . . . . . . . . . ... ... ... .... 64

3.5.1.7  Synthesis of the controller . . . . . . . ... ... ..... 65

3.5.1.8  Controller operation . . . . . ... ... ... ....... 65

3.5.2  Dual-mode robust model predictive controller . . . . . .. ... .. 66
3.5.2.1 Augmented system description . . . .. ... ... .. .. 66

3.5.2.2  Constraints of the augmented system . . . . . . . ... .. 66

3.5.2.3  Quadratic problem weighting matrix . . . .. ... .. .. 66

3.5.2.4  On-line control problem . . . . .. ... ... ... ... .. 67

3.5.2.5  Synthesis of controller . . . . . . ... ... ... . ..., 67

3.5.2.6  Controller operation . . . . ... ... ... ........ 68

3.6 Conclusion . . . . . . . . L 68

Electrical, Electronic and Computer Engineering iii



i ARSI CONTENTS

4 Simulation Study 70
4.1 Introduction . . . . . . . L 70
4.1.1 Controller weighting matrices . . . . . . ... ... .. ... .... 71

4.1.2 Closed-loop architectures . . . . . . . . ... .. ... ... ..... 72

4.1.3 Controller objectives . . . . . . . . ... oo 73

4.1.4 Typical operation . . . . . . . .. Lo Lo 75

4.2 Nominal Scenario . . . . . . . . . . L 76
4.3 Worst-case scenario: Efficiencies at their minimum . . . . . . . ... .. .. 78
4.3.1 Full state feedback . . . . . . .. ... oo 88

4.3.2  One plant measurement . . . . . . . . . . . ... 89

4.3.3 One plant measurement with predictor update . . . . . . . .. ... 98

4.4 Worst-case scenario: Efficiencies at their maximum . . . . . ... ... .. 103
4.4.1 Full state feedback . . . . . . .. ..o Lo 103

4.4.2 One plant measurement . . . . . . . . ... ... ... 104

4.5 Temperature disturbance . . . . . . .. ... oL o 109
4.6 SUmMmMAary . . .. ... 116
4.7 Conclusion . . . . . . .. 117

5 Conclusions and recommendations 124
5.1 Summary of dissertation . . . . .. .. ..o 124
5.2 Conclusion . . . . . . .. 125
5.3 Further work . . . . . ... 126
References 129
A Academic Problem 138
A.1 Academic problem model . . . . . . . ... 138
A.2 Simulation Results . . . . . . . ... .o 140
A.2.1 Nominal scenario . . . . . . . . . ... 141

A.2.2 Extreme deviation § = —-landd=1 .. ... .. ... ... .... 144

A3 Conclusion . . . . . . . L 144
Electrical, Electronic and Computer Engineering iv



i ARSI CONTENTS

B Auxiliary simulation results 149
B.1 Worst-case scenario: Efficiencies at their minimum . . . . . .. .. ... .. 149
B.1.1 Full state feedback . . . . .. ... ... . ... ... ... .. .. 150

B.1.2 One plant measurement . . . . . . .. ... ... ... ... ..., 154

B.1.3 One plant measurement with predictor update . . . . . . . . .. .. 158

B.2 Worst-case scenario: Efficiencies at their maximum . . ... ... ... .. 158
B.2.1 Full state feedback . . . . . .. .. ... . ... ... ... .. .. 163

B.2.2 One plant measurement . . . . . . . . . .. .. ..., 168

B.2.3 One plant measurement with predictor update . . . . . .. .. ... 175

C Measured bath and slag data 183
Electrical, Electronic and Computer Engineering v



List of abbreviations

ANN Artificial Neural Network

BOF Basic Oxygen Furnace

DMC Dynamic Matrix Control

DRI Direct Reduced Iron

DRMPC Dual-mode Robust Model Predictive Control
EAF Electric Arc Furnace

FRMPC Feedback Robust Model Predictive Control
GPC Generalized Predictive Control

IDCOM  Identification and Command

LMI Linear Matrix Inequalities

MPC Model Predictive Control

ODE Ordinary Differential Equation

QP Quadratic Programming

RHC Receding Horizon Control

RMPC Robust Model Predictive Control

SCADA  Supervisory Control And Data Acquisition
SDP Semidefinite Programming

SMOC Shell Multi-variable Optimizing Control

UP University of Pretoria

vi



Lis

List

C
CaO
cO
FeO

t of symbols

of Chemical Symbols

Carbon

Calcium Oxide
Carbon monoxide
[ron Oxide

Magnesium Oxide

MnO Manganese Oxide

P05
Si
S104

Non

Nonl

Z3
Ty
T7
Ty

T12

Phosphorus Oxide
Silicon

Silicon Dioxide

linear model symbols

inear model states

Carbon content in bath [kg|
Silicon content in bath [kg]
FeO content in slag [kg|

Si0; content in slag [kg|

nnnnnnnnnnnnnnnnnnnnn
vvvvvvvvvvvvvvvvvvvv
uuuuuuuuuuuuuuuuuuuuu

Bath and molten slag temperature [°C]|

vii



List of symbols

Nonlinear model inputs

d; Rate of oxygen injection |kg/s]

d, Rate of DRI addition [kg/s]

ds; Rate of slag forming additions |kg/s]

dy Electric power [kW]

ds Rate of graphite injection [kg/s]

Nonlinear model outputs

y1 Bath and molten slag temperature [°C]|

y2 Percentage carbon in bath [%]

y3 FeO content in slag [kg|

Nonlinear model parameters

AHj,

kxsi
Eac

kasi

NFeoO

TARC

Heat capacity of element / compound k [kJ/(mol.K)|
Molar mass of element / compound & [kg/mol]
Mole fraction of element / compound k
Equilibrium mole fraction of element / compound k
Enthalpy of formation of compound % [kJ/mol]
Initial temperature of element / compound & [K]|
Equilibrium concentration constant for carbon
Equilibrium concentration constant for silicon
Decarburization rate constant [kg/s|
Desiliconization rate constant [kg/s|

Graphite reactivity constant

EAF heat loss coefficient

Efficiency of bath oxidation

Efficiency of arc power input

Electrical, Electronic and Computer Engineering

viii



Chapter 1

Introduction

This chapter provides a motivation for the the study undertaken in this dissertation. A
short overview of the electric arc furnace process is given, followed by an explanation of the

contribution of this dissertation as well as the organization of the rest of the dissertation.

1.1 Motivation

With the growth of the world economies, the demand on natural resources is growing. Iron
ore is no different, and like most natural resources, it is not renewable. The solution is to
reuse old materials through recycling in order to reduce the demand for natural resources.
The use of electric arc furnaces (EAFs) is an important part of the recycling effort in the
steel industry. EAFs are capable of melting down solid scrap metal and refining it to the
required steel grade by manipulating the chemical properties of the steel. The electric
arc furnace is slowly replacing the basic oxygen furnace (BOF) (IISI, 2003), because it
uses chemical as well as electrical energy to melt the scrap metal. The electrical energy
is introduced by three carbon electrodes that form an electric arc between them that
radiates heat to the metal. Chemical energy is primarily provided by natural gas and
oxygen.

The electric arc furnace process is still heavily dependent on operator control. The
operator uses a recipe based on initial measurements of the chemical composition to

determine how long electrical power should be applied, as well as how much oxygen,



Chapter 1 i s iiration of the Electric Arc Furnace

carbon and other additives should be added. The melting time is often based on a feel
for the process and the sound emanating from the furnace. Measurements are taken
intermittently to gauge the progress and to make adjustments as needed. This leads to
varying success in obtaining the desired steel grade.

The process could benefit hugely from the use of better automation to increase energy
efficiency as well as to improve the consistency of the quality of the final product by
employing good set-point following. Automation could also improve the safety of the
process. Most of the current automation only focuses on the parts of the process that
ultimately do not have a direct influence on the grade of the steel produced.

The mathematical model of the electric arc furnace refining process includes uncer-
tainty. Control of the process requires that the controller needs to remain stable over all
possible realizations of the model while providing acceptable performance. Robust model
predictive control is well suited for uncertain multi-variable systems with constraints,
because it takes the model uncertainty explicitly into account as part of the synthesis
process. The closed-loop system is guaranteed stable over all modelled realizations of the
uncertain system. This makes robust model predictive control well suited as a control

method for the electric arc furnace refining process.

1.2 Operation of the Electric Arc Furnace

The electric arc furnace process is concerned with melting scrap metal and producing steel.
Each iteration of the process is called a tap. The time it takes to finish one iteration of
the process is called the tap-to-tap time. One tap consists of a few stages; charging the
furnace, melting down the scrap metal, refining the steel, removing the slag layer, tapping
the finished steel, and furnace turnaround. The electric arc furnace refining process is
well described by Taylor (1985); Fruehan (1998)

Charging: Figure 1.1 shows a schematic representation of an electric arc furnace that is
being charged. Charging consists of composing a bucket made up of scrap, other metallic
elements and slag formers. The composition of the scrap metal is dependent on the

desired grade of steel to be produced. The layering of the scrap is important: softer scrap

Electrical, Electronic and Computer Engineering 2
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Chapter 1 i s iiration of the Electric Arc Furnace

is placed at the bottom of the bucket, while harder scrap is loaded on top. The softer
scrap protects the furnace during charging and also melts down quickly. The melted scrap
forms a pool of molten metal that aids in melting the larger pieces. This physical layering
should prevent cave-ins from occurring, which could damage the carbon electrodes and
cause a catastrophic breakdown. To charge the bucket into the furnace, the roof of the
furnace swings away to expose the inside of the furnace. A crane positions the bucket
on top of the furnace and the floor of the bucket is opened to allow the scrap to fall into
the furnace. Some melt-shops only charge one bucket and then add direct reduced iron
(DRI) through chutes in the roof of the furnace. This requires extra infrastructure such

as a conveyor belt to transport the DRI to the chutes.

The type of scrap used in charging will have an influence on the time of the meltdown
stage. Light scrap melts down easily but does not contain as much metal as denser,
heavier scrap. More buckets of light scrap will thus be necessary to reach the required
molten weight. With heavier scrap the melting process takes longer, but less charging
needs to be done. The danger with denser scrap is the potential for late cave-ins that can

damage the electrodes.

Melting: Figure 1.2 shows a schematic representation of an electric arc furnace in the
process of melting down the solid scrap. The roof of the furnace is swung back on top
of the furnace. The roof contains the three carbon electrodes that are used to create an
electrical arc. Melting is initiated by applying electrical power to the furnace’s electrodes
as well as firing up the oxyfuel burners. The heat from the arc radiates towards the scrap
to melt it down. A long arc between the electrodes and scrap is selected during meltdown,
because it radiates more heat over a greater area than a short arc. The electric arc bores
a hole into the middle of the scrap heap, and as the hole is forming, the electrodes are
lowered into the hole. The surrounding scrap protects the furnace walls from the heat
radiating from the arc. As the electrodes bore into the scrap, a molten pool of metal
forms, which protects the bottom of the furnace from the arc. The burners proceed to

melt the metal at the edges of the furnace that are not reached by the arc.

The use of oxyfuel burners and oxygen lances do not guarantee that there will be no

Electrical, Electronic and Computer Engineering 4
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cold spots in the furnace. When heavy pieces of scrap are caught in the cold spots, it can
lead to late cave-ins during flat bath conditions (this is when all the scrap has melted).
These heavy pieces can fall onto the electrodes and damage them (Taylor, 1985). The
damaged electrodes will partially dissolve in the bath, leading to higher carbon content,

which in turn leads to long delays in order to remove it.

The oxyfuel system is the most efficient during the early meltdown stage. The solid
scrap usually has a large surface area exposed to the burner flame, which yields good
heat transfer to the scrap. As the scrap melts, it moves away from the flame and makes
way for other scrap to come into contact with the flame. A high temperature difference
between the scrap and flame leads to good heat transfer, but the burner’s effectiveness
decreases as the temperature difference shrinks (Fruehan, 1998). The effectiveness of the
oxyfuel burners are monitored by measuring the off-gas temperature. The less heat that

is transferred to the scrap, the higher the off-gas temperature will become.

Refining: Figure 1.3 shows a schematic representation of an electric arc furnace in
the refining stage, where all the solid scrap is melted down and flat bath conditions are
obtained. Refining commences as soon as all the scrap is melted down and only a molten
pool of metal remains. There is no longer any solid scrap left to protect the furnace
walls and roof from the electric arc. A short arc is selected during refining, because it
focuses the heat more locally. To protect the walls and roof further as well as improve
heat transfer to the molten metal, a foamy slag layer is formed that covers the arc. The
slag layer is controlled by injecting C' and O, into the bath. The C'O gas bubbles rise up
and form a foamy slag layer on top of the molten metal. The impurities are removed from
the molten metal primarily through oxidation. The oxidized impurities are trapped in the
slag layer. Common impurities found in the bath are phosphorus, sulphur, aluminium,
silicon, manganese and carbon. During the refining process the oxyfuel system is used in
lancing mode. Large amounts of oxygen are forced into the bath. The carbon reacts with
the oxygen and is an efficient source of heat for the bath, while the remaining oxygen
reacts with the iron to form FeO that is transferred to the slag. The oxidation of carbon

is the primary mechanism for decarburization when bath carbon is high. As the bath

Electrical, Electronic and Computer Engineering 6
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carbon decreases, the reduction of FeO from the slag becomes the main mechanism of

decarburization.

Phosphorus is removed from the bath through oxidation. The phosphorus is oxidized
to P,O5 and transferred to the slag. The capacity of the slag to retain P,Oj is controlled
by MgO and CaO components of the slag as well as a relatively lower temperature, high
FeO content in the slag and the acidity of the slag (Fruehan, 1998). The slag should be
basic, which requires a CaO/SiO; of greater than 2.2. Most of the phosphorus is removed
during the early part of refining when the temperature is lower. Deslagging should occur
early in the refining stage to prevent phosphorus from returning to the bath when the

temperature rises (Taylor, 1985).

Manganese is oxidized as MnO and transferred to the slag. It has most of the same
requirements as phosphorus, except that CaQO/SiO; should be less than 2.2. To compen-
sate for the suboptimal conditions, more oxygen can be injected into the bath to aid in

the removal of manganese.

Sulphur is one of the more difficult impurities to remove from the bath, because it
requires the opposite conditions to most of the other impurities. It requires high basicity,
low bath oxygen and thus low FeO in the slag as well as high slag fluidity (Taylor, 1985).
The other impurities such as SiO, and P05 cause the slag to become more acidic and
reduce the ability of the slag to retain sulphur. The process is also primarily based on
oxidation, while sulphur needs to be reduced from the bath. If the steel producer has a
ladle furnace, it is used for desulphurization, because additions can be made to lower the

bath oxygen and improve the conditions for desulphurization.

Silicon is the easiest impurity to remove from the bath. It is oxidized during decar-
burization much faster than carbon and is present as Si0O, in the slag. The silicon level is

usually lower than specified and ferrosilicon is added to bring it back up to specification.

Deslagging: To prevent the impurities caught in the slag layer from re-entering the
bath, the slag is removed from time to time in a process called deslagging. This is
accomplished by opening a door above the molten metal level and tipping the furnace

slightly toward the opening to drain off the slag. Phosphorus is primarily removed in

Electrical, Electronic and Computer Engineering 8
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the early stages of refining, while sulphur is removed later in the process, because of the
changing chemical composition of the environment and bath.

Tapping: At the end of the process when the steel has reached the desired chemical
composition and temperature, it is removed from the furnace. The steel is removed by
opening the tap hole at the bottom of the furnace and pouring it into a ladle for further
processing. This process is called tapping. In the ladle, de-oxidisers and bulk alloy
additions are added. The de-oxidizers aid in removing sulphur from the steel, because
removing sulphur requires low oxygen levels. The tap hole is just higher than the bottom
of the furnace. This is to ensure that a small amount of molten metal remains in the
furnace for the next heat. This is called a hot heel practice. The remaining molten metal
aids in melting down the new scrap early in the meltdown stage.

Furnace turnaround is where the furnace is inspected for damage and repairs are

conducted before the next tap is started.

1.3 Aims and objectives

The main aim of this dissertation is to determine the feasibility of automating the electric
arc furnace process with regards to the main variables of steel carbon content, temperature

at tapping and impurities in the steel. To this aim:

e a robust model predictive controller needs to be synthesised, which explicitly takes

model uncertainty into consideration during controller synthesis.

e The controller should be verified through a simulation study of the closed-loop

system in order to evaluate the performance of the controller:

— in the presence of uncertainty,

— and under limited feedback conditions inherent in most EAF melt-shops.

e The performance of the robust controller is compared to nominal model predictive

control to gauge the advantage of using robust control.

Electrical, Electronic and Computer Engineering 9
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Chapter 1 i AT Organization

This dissertation contributes the following:

e Linearized models of the reduced nonlinear model in structured uncertainty descrip-

tion.

e Synthesis of a nominal model predictive controller (one that does not take model

uncertainty into account) for the electric arc furnace refining process.

e Synthesis of a feedback robust model predictive controller for the electric arc furnace

refining process.

e Synthesis of a dual-mode robust model predictive controller for the electric arc fur-

nace process.

e Simulation study to compare the stability and performance of the above-mentioned

controllers under extreme model mismatch situations:

— using full state feedback in order to evaluate the performance of the controller

in the presence of uncertainty,

— using a five state nonlinear predictor with one correction measurement from

the plant for a more realistic closed-loop analysis,

— and a five state nonlinear predictor with one correction measurement from the
plant, and an internal model parameter update which attempts to improve the

closed-loop performance.

1.4 Organization

Chapter 2 provides a brief overview of the modelling of the process as well as the lin-
earization approach and model validation.

Chapter 3 provides an overview of the theory of stability of model predictive control
and the development of robust model predictive control theory. The chapter continues by
taking an in-depth look at the two robust model predictive control methods employed in

the simulation study.

Electrical, Electronic and Computer Engineering 10
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Chapter 4 provides an in-depth study of the robust and nominal model predictive
control of the reduced nonlinear model of the electric arc furnace process. Practical
scenarios are investigated in an attempt to quantify the effects of a lack of feedback from
the plant, as well as practical disturbances such as leaving the slag door open and late
cave-ins.

Chapter 5 provides a short summary of the dissertation, some conclusions drawn from
the simulation studies and recommendations for further work regarding the automation
of the electric arc furnace refining process.

Appendix A provides a simulation study on an academic problem in order to show
the advantage of robust model predictive control in terms of stability with regards to
nominal model predictive control. The academic problem gives further insight into the
performance of feedback and dual-mode robust model predictive controllers.

Appendix B provides additional simulation results.

Appendix C provides measured bath and slag data.

Electrical, Electronic and Computer Engineering 11



Chapter 2

Process modelling

This chapter details the mathematical model of the electric arc furnace. The chapter
starts by outlining the models that are available for the electric arc furnace and then
focuses on the chosen model. The chosen nonlinear model is then linearized around an
operating point with different model parameters to include the total uncertainty region

around that operating point.

2.1 Introduction

The electric arc furnace process is a very difficult process to model accurately, because it
is difficult to obtain process data. This is due to the extreme environment in which the
furnace operates, which makes it difficult to install measurement instruments. Some of the
instruments that are in common use do not allow for on-line measurements to be taken,
e.g. temperature probes that are manually dipped into the bath and burnt away as part
of the measurement process. Before any temperature measurements and samples can be
taken, the slag layer must be removed. The electrical power level must be reduced, which
in turn will cause the furnace to operate at a reduced efficiency. The sample of molten
steel that is taken during the measurement process takes a few minutes to analyse in a
lab. All these measurements have associated costs, and these also influence the operation
of the furnace.

There are different approaches to modelling the electric arc furnace (EAF) process.

12



Chapter 2 i AR, Introduction

The first approach is to develop static models of the EAF process. This is a popular
method of modelling the EAF process (Taylor, 1985; Turkdogan, 1989; Fruehan, 1998;
Deo and Boom, 1993). The modelling method is adapted from basic oxygen furnaces
where the model calculates offline the bulk mass and energy additions to attain required
steel properties with regards to temperature and chemical composition. Corrections are
made on-line to account for deviations once measurements have been made. Nyssen et al.
(1999) created a static model as an operator aid. The operating schedule is calculated
before the process is started and updates are made during the process to account for
deviations in the predicted and actual progress. The authors extended their work to
create a dynamic model as an on-line operator aid. The model gives an estimate of
the progress with regards to material melting, slag foam height, bath temperature and
composition (Nyssen et al., 2002). De Vos (1993) developed a static model with economic

objectives in mind. The model helped optimize the slag additives in order to reduce costs.

The second approach is to use dynamic models to model the process as consisting of
equilibrium zones with limited mass transfer between the equilibrium zones governed by

concentration gradients.

Cameron et al. (1998) (as discussed in MacRosty (2005)) developed the EAF model
with simulation in mind. The authors used the model to find improved practices for the
EAF through dynamic simulation. The model consists of four equilibrium zones with six
interfaces between the zones. The four zones are metal, slag, organic solid and gas. The
material is transferred between the zones driven by concentration gradients. Chemical
equilibrium is assumed at the interfaces. Off-gas data was used to validate the model.

Proprietary reasons may account for the lack of detail disclosed about the model.

Matson and Ramirez (1999) (as discussed in MacRosty (2005)) created a model of the
EAF by describing it as two control volumes. One volume contains the bath, slag and a
small amount of gas. The other volume contains the freeboard gases. The transfer of mass

between the control volumes is modelled as diffusion driven by a concentration gradient.

Modigell and coworkers (Modigell et al., 2001 a,b; Traebert et al., 1999) (as discussed

in MacRosty (2005)) created a mathematical model of the EAF that consists of four
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reaction zones. The zones are assumed to be in chemical equilibrium and the transport of
mass between the zones is driven by concentration gradients. The model was developed for
simulation purposes, but details of the model are lacking, probably because of proprietary

reasons.

The third approach is to model the process from fundamental thermodynamic and
kinetic principles. Bekker et al. (1999) created a dynamic model of the EAF that consists
of 17 ordinary differential equations (ODEs). This is a generic model that can be fitted
with plant data to any electric arc furnace. Rathaba (2004) fitted the generic model of
Bekker et al. (1999) with plant data from an industry partner. Rathaba (2004) reduced
the complexity of the generic model for the refining stage to a nonlinear model consisting
of 5 ODEs. The refining stage is of further interest, because during this stage the actual

grade of the steel is determined.

There are models that only focus on certain subsystems of the process. The oxyfuel
system increases the efficiency of the EAF process by adding an extra source of energy.
The oxygen injection by the oxyfuel subsystem has an effect on the decarburization of the

process (Fruehan, 1998; Thomson et al., 2001; Pujadas et al., 2003; Khan et al., 2003).

The foamy slag is an important aspect of the electric arc furnace process. It is respon-
sible for trapping the impurities that are oxidized from the bath. The foamy slag covers
the electric arc to shield the walls and roof of the furnace from the radiating heat and
also increases the heat transfer from the arc to the bath. It is important to control the
slag height in order to produce the greatest efficiency in the process (Oosthuizen et al.,
2001; Galgali et al., 2001; Morales et al., 2001b; Kimihisa and Fruehan, 1987, 1989a,b;
Jiang and Fruehan, 1991; Gou et al., 1996). One of the main contributors to EAF mod-
elling and the study of slag foaming is Morales et al. (2001b). Extensive slag data was
collected and analysed, during which the advantages of extended use of foaming were ob-
served through reduced electrical consumption and increased yield (Morales et al., 20015b).
This work was extended by creating an EAF simulator with emphasis placed on the be-
haviour of the slag; especially the effects that FeO and direct reduced iron (DRI) have on

the slag and the process (Morales et al., 2001a). The EAF modelling and slag foaming
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results were combined in a new model. The emphasis was still on slag composition, but
the effect of changing conditions in the furnace on slag foaming was added to the model;
a concept named dynamic foaming index (Morales et al., 2002). Controlling the foaming
in the electric arc furnace has been done successfully by using sonic analysis to measure
the acoustics of foaming. The sound emanating from the foaming slag is recorded and
analysed and the results used to control graphite injection which has a direct influence
on the slag foaming (Holmes and Memoli, 2001; Marique et al., 1999).

Neural networks are a popular modelling tool for stochastic processes, making it well
suited for modelling the voltage and current relationships that occur in the electric arc.
King and Nyman (1996) used neural networks to predict the future behaviour of the
electric arc. Neural networks were used by Raisz et al. (2000) to predict the furnace
state in terms of meltdown and flat bath foaming. Billings and Nicholson (1977) and
Billings et al. (1979) made an important contribution to the modelling and control of the
electric arc by studying impedance and current control and the need for a strategy that
includes both methods, which will help improve efficiency of heat transfer to the bath.
Chen-Wen et al. (2000) modelled the dramatic current variations called flicker that occur
during the early meltdown stage in order to design compensation circuits. Other contribu-
tions to the modelling of the electrical subsystem of the electric arc furnace were made by
Collantes-Bellido and Gomez (1997); Meng and Irons (2000) and Guo and Irons (2003),
who created a detailed three-dimensional model of the furnace in order to investigate the
radiative heat transfer.

Post combustion in the furnace free board gases was studied and modelled by Kleimt and Kohle

(1997); Tang et al. (2003).

2.2 Reduced Nonlinear Model

The following criteria were used in selecting the mathematical model:

1. The model should be able to predict the nonlinear dynamic behaviour during the

refining stage of the electric arc furnace process. The key reason is that the model is
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intended to be used to control the grade of the steel, which is primarily determined

during the refining stage, given that the correct charging is performed.

2. The model should be simple enough to be used on-line. The reason is that the model

will be used as a predictor for the on-line controller.

The reduced nonlinear model of Rathaba (2004) was chosen. The model specifically
models the refining stage of the process. Rathaba (2004) reduces the generic electric
arc furnace model of Bekker et al. (1999) from 17 to 5 ordinary differential equations.
Rathaba (2004) identifies the parameters of the reduced Bekker et al. (1999) model and
used process data from an industry partner to fit the parameters. The resulting parameters
are uncertain and have confidence intervals describing the uncertainty.

Over an entire tap, the process is very unpredictable due to delays and breakdowns that
invalidate the assumption of process continuity. The advantage of the refining stage is that
after the initial measurement, except for deslagging, the process is mostly uninterrupted
until the final measurement is made. At the start of the refining stage, all the solid scarp is
usually melted; the modelling assumption of homogeneity is also valid. Process variables
that undergo significant change during refining are bath temperature, carbon and silicon
concentrations (masses), masses of SiOy and FeO in slag and all free-board gases. The
masses of the bath and composite slag are approximately at steady state - they can be
treated as constants.

The reduced Bekker et al. (1999) model is given as

s = —kao (Xo— X5), (2.1)
Ty = —kgsi (Xsi — Xg)), (2.2)
. 2A]\/[FeOdl 'r'?kngFedE)
Ty = -
M02 (mT(slag) + a7+ l’g) Mec
10.13ds, (2.3)
. MSiOQ eq
rg = Vi dei (XSz — XSz) + 0045d2, (24)
Si
Ty = (pr +narcds — kvr (112 — Toir)) / (2.5)
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2Mp(siag) T 207 + 318
" Moy Cotstany |

where the molar concentrations are given as

M

X, — s/ Me , (2.6)

mrpe)/Mpe + 13/ Mc + 24/ Mg;

Mp.
XFeO = x7/ Lo ) (27)
mT(slag) /Mslag + x?/MFeO + xS/MSiOQ
e mT(slag)MFeO xSMFeO
X =k < + + 1) , 2.8
¢ xe x7Mslag x7MS’iOQ ( )
M,

X = 74/ Ms , 2.9

mrre)/Mpe + 13/ Mg; + x4/ Mg;

2

e M (slag) MFeO xSMFeO
X =k ,( + +1>. 2.10
o X x7Mslag x7MS’iOQ ( )

The reduced equations for the heat balance are:
p2 = (=2AHpcod/Mo,)nreo, (2.11)
d
Py = Ml (.1’12 — TOQ) CP(Og); (212)
O2
kyrds (AHp.o — AH
pu = Zhords(BHreo co), (2.13)
(mT(slag) + 27 + $8) Mc
Pt = P2+ ps+pu, (2.14)
with the parameters that are relevant to the reduced model
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State State Description Input  Input Description

T3 Dissolved Carbon [kg| d; Oxygen injection rate |kg/s]
Ty Dissolved Silicon [kg] dsy DRI addition rate [kg/s|

X7 FeO in bath [kg] ds Slag addition rate |kg/s]

Ts Si0s in bath [kg] dy Arc power [Kilowatt]

T12 Bath temperature [Celsius| ds Graphite injection rate |kg/s]

Table 2.1: Reduced model states and inputs.

Eac

kasi

Figr
0 = : (2.15)

kyr

NARC

NFeO

where k; o and kgg; are the rate constants for removal of carbon and silicon from the
bath; kg is the graphite reactivity constant; kyp is the EAF heat loss coefficient; n4rc
and nrco are the efficiencies of arc energy input and bath oxidation; mp(pe) and Mz (gaq)
are the total masses of the slag formers and bath - both are assumed constant; Mq, Mg,
Mpeo, Msi, Mg;o, and Mg,, are the molar masses of the different elements. The states
and inputs are described in table 2.1. A schematic of the electric arc furnace is shown in

figure 2.1, which shows the physical location of the states.

2.3 Predictor design

The simulation of the closed-loop system where only limited feedback is available, requires
a predictor to estimate the plant states between measurements. The predictor is the
reduced nonlinear model of the previous section. The parameters of the predictor need to
be updated in some of the simulation scenarios of chapter 4, where a simple ad-hoc method
is used as outlined in (2.16-2.17). Only one variable, temperature, is measured and only

one measurement is available, therefore the number of parameters that are updated needs
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x, - Silicon > Liquid Metal

X,, - Temperature

Tap Hole
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Figure 2.1: Electric arc furnace schematic showing states.
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to be limited. The parameters are updated by taking the difference between the estimated
temperature and the measured temperature value and multiplying it with a scale factor

before applying it to the efficiencies np.o and nagc.

NFeO—New — TFeO-0ld + CFeO (Tactual - Testimated)a (216)

"ARC—New = TARC-Old + CARC (Tactual - Testimated)a (217)

where Cr.o and Csrc are constants that affect the rate of change for np.o_new and
NARC—New- Lhe constants C'r.o and Cygre are tuned until the error between the predictor
and plant is minimized. The temperature is most significantly influenced by the parameter
variations. The top row of figure 2.2 (a to c¢) shows the scenario where the efficiencies
(nreo and nagc) are at their maximum versus the scenario where all parameters are set
to produce the fastest temperature response. The bottom results of figure 2.2 (d to f)
show the scenario where the efficiencies are at their minimum versus the scenario where
all parameters are set to produce the slowest temperature response. In both scenarios

the predictor remains sufficiently accurate just by manipulating the efficiencies ng.o and

NARC-

2.4 Linearized model

The robust model predictive control theory used in this study is dependent on a linear
internal model to predict the future response of the system. Therefore the model of section
2.2 should be linearized for use in the model predictive controllers.

The linearization procedure for the nonlinear model of section 2.2 consists of the

following steps (Goodwin et al., 2001):

1. Calculate the operating point of the process.

2. Calculate the derivative of the nonlinear model.

3. Substitute the operating point into the derivatives.
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Figure 2.2: Influence of npeo and narc versus all the parameters.

4. Repeat for all the different sets of parameters.

2.4.1 Operating point

The operating point of a system is the area of the state space where the process is in op-
eration most of the time. The process dynamics can be approximated by linear dynamics
in the region around the operating point. The procedure for finding the operating point
would be to simulate the process over the time interval of operation and average the val-
ues for each state. Initial conditions and the time interval are required to commence the
simulation. The initial conditions are obtained by averaging the process data at the start
of refining over all the measured taps. The time interval is the average time it takes from
the start of refining until tapping, as obtained from process data. The initial conditions
are summarized in table 2.2 and the average time for the refining stage is 10 minutes or

600 seconds.
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Table 2.2: Operating point of reduced model.

State Initial Condition Operating Point
X3 Dissolved Carbon 160 kg 76 kg

x4 Dissolved Silicon 24 kg 24 kg

X7 FeO in bath 4250.6 kg 7692.3 kg

T S104 in bath 1405 kg 1405 kg

Z19 Bath temperature 1600 °C 1785 °C

2.4.2 Derivative of nonlinear model

The next step in the linearization procedure is to calculate the partial derivative of each
state or output equation with regards to one of the state or input variables, depending

on which matrix is calculated. The nonlinear system is defined as

w(t) = flx(t),d(t)), (2.18)

y(t) = g(x(t),d(t)), (2.19)

where x € R” is the state vector, d € R™ is the input vector, y € R? is the output vector
of the system and f and g are nonlinear functions of the vectors x and d. The number
of states is n, the number of inputs is m and the number of outputs is p. The nonlinear

system can be linearized to the form

#(t) = Az(t) + Bd(t), (2.20)

y(t) = Cx(t) + Dd(t), (2.21)

where A € R™" B € R™™ (C € RP*"™ and D € RP*™ are matrices of the appropriate
dimensions. The procedure (Goodwin et al., 2001) for the reduced Bekker et al. (1999)

model of (2.1) to (2.5) can be summarized as follows:
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ofh of 0K 0K Oh
Oxrs Oxy Ox7 Oxrg Ox12

Of2 Of2 0fr Of2 Of
8:133 8:134 81‘7 81‘8 8:}312

A = | 0h Of O Ofs Ofs (2.22)

Oxrs Oxy Ox7 Oxrg Ox12

Ofa  Ofs Ofs Ofs Ofs
Oxrs Oxy Ox7 Oxrg Ox12

ofs Ofs Ofs Ofs Ofs =
| Ox3 Oxzy Ox7 Oxg Oz12 v TQ

oh 0h 9h 9K 9K
dd, ddy dds 9dy  Ods
fr 8fs Ofs Ofs Of

ddi  ddy Od3  9ds  9ds
B — ofs 0fs 0Ofs Ofs Ofs (2.23)

I —ZJ9 I 42 I 5

odq Ods ads Ody ads

Ofa O0fs Ofs 0Ofs Ofa
ddy ddy dds 9dy  Ods

of Ofs 0fs 0fs 0fs || 4=
L Ody Oda ads Ody ods

991 g1 991 9q1  Og¢i
Ors Oxy Ox7 Oxrg Ox12

C = 992 Og2 092 dg2 Og2 (2.24)
Ors Oxy Ox7 Oxrg Ox12

Ogs  Ogs Ogs Ogs  OJgs ==
Ox3 Oxq4 Oxy Oxg Oxio Q

991 991 991 Og1  Ogn
dd, Ods 0ds; Odi Ods

D = dga  Odg2  9dg2 9dg2  Ig2 (2.25)

a7 a7 Y

ddy ddy dds 9dy Ods

993 093 Og3 Ogs Ogs T =g

odq Oda ads Ody ads

d=dg

where z¢ is the operating point and dg the input vector that keeps the system at the

operating point.

The output functions for the system are as follows: the first equation (2.26) gives the
temperature, the second equation (2.27) gives percentage carbon in the bath and the third

equation (2.28) gives the amount of FeO in the slag:
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B = T2,
xs3

= 100 ,
v Mr(pey + 23 + 24

Yys = 7.

(2.26)
(2.27)

(2.28)

The partial derivatives are too large to put in matrix form, thus the matrices (2.22-

2.25) show which derivative fits where and the actual derivatives are shown below. The

derivatives that form the A matrix:

Ofr 0f2 0f2 0fs

oh
61’3

oh
8304

on
8307
on
a.ﬁlfg
24

83712

e

8903 ' 8$‘4 ' 8x7 ’ aZL‘g '

Afs 9fs

al‘lg

9fs

61’3 ’ 61’4 ’

Ofs Ofs Ofs Ofs

012
s
8307
9fs
a.ﬁlfg

9fa

8903 ' 8$‘4 ' 8x7 ’ aZL‘g '

al‘lg

dfs ofs

8—.1’37 61’4

9
8307

1/M,
—kdc< /Mo

Mr(re)/Mrpe + x3/Mc + v4/Ms;

x5/ Mg

(mT(Fe)/MFe + x3/Mce + 374/M5i)2> ’

. ( 23/ (McMs;) )
—hdC | — P} )
(mr(pey/Mre + x3/Mc + x4/ Mg;)

—k?dc M7 (slag) MFeO Mslag Ty MFeOMSiOQ
(:L‘7Mslag)2 (x7MSiOg)2 ’

de ( MFeO )

27 Msio, )’
0,
0,
0,

kngFed5 x'?kngFedE)MC
(mT(slag) + 7+ IL‘S) MC ((mT(slag) + a7 + {L‘g) Mc)Q’
567/€ngFed5MC
2

((mT(slag) + T7+ x8) MC)
0,
0,

kgrds (AHpeo — AHco) — arkgrds (AHpeo — AHco) Mc

(2.29)

(mT(slag) +T7+ x8) MC

((mer(etag) + 7 + 75) Mc)®
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9
aZL'g

9fs

83712

-mT(Fe)Cp(FeL)

2’rnT(slag) + 2x7 + g

MFe

-mT(Fe)Cp(FeL)

Mslag

2Mp(siag) + 207 + 318

MFe

_ 7kgds (AHpeo — AHco) Mc

Mslag

((mT(slag) + 27+ $8) MC)2

/

The derivatives that form the B matrix:

Ofi 0fr 0fi 9fr Ofr

Cp(slag(L))

[pt + nARCdll - kVT <x12 - Tair)] 2Cp(slag(L))/Mslag/

CP(Slay(L))

Cp(slag(L))

Cp(slag(L))

Cp(slag(L))

[ My (pe)Cp(Fer)  2M7(slag) + 277 + 328
i Mp. Mg |
[Pt + narcds — kvr (212 = Tuir)] 3Ch(stag 1))/ Mstag/
[ Mp(pe)Cp(Fer)  2M7(stag) + 227 + 323 |
I Mp. Mg
_]\j; Cp0,) — kvr| /
[ Mp(pe)Cprer) . 2M(siag) + 277 + 378

Mp. Mg

Of 0f 0fy 0f: O _
dd,” ddy’ Ods’ Ody’ Ods ’
% 2]\JFeO
8d1 N02 '
Ofs
—— 0.1
Ody 3
0f 0fs s _
dds’ ddy’ dds ’
of O 0fi Of _
dd,’ dd3’ dd,’ Ods ’
Afa
—— 0.045
Ody ’
ofs —2AHpc0 (212 — To,) Cp(0,)
i) e RO . 2.30
od, {( Mo, NFeo + Mo, / ( )
mrre)CpFer)  2M1(slag) + 277 + 318 o
MFe + Mslag p(slagry) | »
Afs
— 0
Ody ’
Afs
—— 0
0ds ’
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Ofs Mrre)Cp(Fer) — 2MT(slag) + 277 + 373

8—d4 = Narcds/ { MF: + : Moo Cp(slagm) ’
Ofs | wrkg (AHrpeo — AHco)

Jds (mT(slag) + 7 + IES) Me

mT(Fe)Cp(FeL) + 2mT(slag) + 2.1’7 + 3$8C l
MFe Mslag pls ag(L)) )

The derivatives that form the C matrix:

dg1 091 0g1 Ogqv

Oxs Oxy Ors Ors 0
g1 — 1

0x12 ’

992 _ 100 ! — 100 s . (2.31)
03 MT(Fe) + X3+ 24 (MT(Fe) + 3+ x4)
0o T3
D4 o (Mr(pe) + w3+ 24)°

dga 0ga Oga 0
Oxy’ Oxg’ Ox19 ’

dgs dgs 0gs 0gs — 0
Oxs’ Oxy Oxs’ OT12 ’
Oxy '

2.4.3 Linearized models

The nonlinear model has uncertain parameters with the uncertainty described in terms
of confidence intervals. The parameter uncertainty is assumed to be uniform and can
therefore lie anywhere within the confidence intervals. Each parameter vector produces
a model with different dynamics. The linear model can only model a specific parameter
vector within a specific region of state-space. In order to model all the possible dynamics,
different linear models are constructed. The uncertain space can be represented by a
polytopic uncertainty (Kothare et al., 1996) with each linear model representing a vertex of
the polytope. This representation requires 2" models, where n is the number of uncertain
entries in the linear model. In this case, there are 17 uncertain entries, which would

require 2'7 = 131072 different models.
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Table 2.3: Nonlinear reduced model parameters.

Parameter Lower bound Nominal Upper bound
kv 1.73 2.08 2.42
NARC 0.29 0.51 0.73
NFeO 0.54 0.75 0.96
kac 54.74 54.90 55.05
Egr 0.08 0.42 0.76

Polytopic uncertainty descriptions are very inefficient, thus the structured uncertainty
(Kothare et al., 1996) representation is preferred. The structured uncertainty representa-

tion makes use of a nominal model and a deviation model as follows

A = Apomina + ByAC,, (2.32)
B = Buomma + ByAD,., (2.33)
where
Ay
A,
A = ' , (2.34)
A,

where —1 < A; <1, i =1,2,...,n and BpCj is the maximum deviation from A, ,mina

and B,D,, is the maximum deviation from B, minai-

The nonlinear model has five parameters that can vary, but when the model is lin-
earized the uncertainty affects 17 entries in the A and B matrices. Four parameters were
varied in small increments, which resulted in over 214 ~ 200,000 models being constructed.
For each parameter, 21 different values were used and k4o was assumed constant. The

parameters of the nonlinear model are shown in table 2.3.

The nominal linear model is given below:
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[ 0996 1.78¢—5 —447c—6 4.18¢—6 0 |
0 1 0 0 0
Avominal = 0 0 1 2.94¢—5 0 |, (2.35)
0 0 0 1 0
0 0 ~7.96e —6 —1.08¢—5 1 |
[ _268¢—5 —197e—7 0  211e—6 |
0 0 0 0
Brominal = 12 0.13 0 —0.943 (2.36)
0 0.045 0 0
042  —T7.6le—7 620e—6 —0.014

To construct the structured uncertainty description, the extreme points K,,;, and K.

of the uncertain values are used as follows:

1

Knom - §(Kmax + szn)a (237)
1
Kdev = §<Kma:v - Kmm)7 (238)
which results in the following linear models

0.996 1.78¢ —5 —447e—6 4.18¢—6 0

0 1 0 0 0
AKnom = 0 0 1 3.64e—5 0 |, (2.39)

0 0 0 1 0

|0 0 —7.96e =6 —1.04e =5 1 |
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(00 0 0o 0]
0 0 0 0 0
AKgeo = |0 0 0 3.08¢—5 0 | (2.40)
0 0 0 0 0
| 00 322¢—6 4.82¢e—6 0 |
[ 268 -5 —197c—-7 0  211e—6 |
0 0 0 0
BKpom = 12 0.13 0 -1.17 |, (2.41)
0 0.045 0 0
| 041 —T46e—T7 6.08¢—6 —0.017 |
[ 0 0 0 2216 |
0 0 0 0
BK gy 0 0 0 0.988 |, (2.42)
0 0 0 0
| 0.11 2.92¢—7 3.03¢—6 0.014 |

where AKg., = B,C, and BK 4., = B,Dg,.

2.4.4 Linear models analysis

The linear models are compared to the nonlinear model in order to ascertain whether
they approximate the nonlinear model sufficiently well. Three scenarios are used; the
nominal case; parameters that produce the least efficiency, and parameters that produce
the best efficiency, i.e. the lower and upper bounds respectively as given in table 2.3. The
parameters influence the dynamics of the model and cause deviation from the nominal
case. Only the extreme cases are documented here, because they would provide the
largest deviation from the nominal case. In all cases, the inputs are first set to their
maximum levels, and then to their minimum levels. All these simulations (figures 2.3, 2.4
and 2.5) show that the linear models approximate the nonlinear model very well. The

worst approximation is for carbon, which shows the most nonlinear response of all the
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variables. In figure 2.6, the decarburization responses of all the different scenarios are
shown on top of each other, and it is clear that only the inputs cause a slightly different
response, while the parameter values have no significant influence. This result shows that
the inputs do have a slight influence on decarburization, but not enough to accelerate the
process significantly. The process can only be accelerated if the target temperature and

carbon content can be reached in a shorter time.

A modal analysis (How, 2001) is done on the linearized model in order to determine
if the carbon content is controllable. Before the modal analysis can be performed, the A

matrix is decomposed into its eigenvectors and eigenvalues as follow:

A = TAT, (2.43)
where

T — /Ul e Un 5 (244)

L

Wl -
T! = : : (2.45)

Wl -
and v;, 1 = 1,...,n is the right eigenvector of eigenvalue \;, w;, i« = 1,...,n is the left
eigenvector of eigenvalue \; and A = diag(Ay,...,\,) is the matrix of eigenvalues. To

check the controllability of the carbon content, a modal analysis is performed as follows:

Controllabilityc = w{ B, (2.46)

= {1.00 _570e —3 1.45¢—3 —1.36e —3 O]B, (2.47)

= {1.746—2 198¢—4 0 —1.706—3], (2.48)

where the B matrix used in the analysis is the matrix (2.36). The controllability analysis
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Figure 2.3: Linear and nonlinear model comparison with nominal parameters.

of the carbon content (2.46-2.48) shows that the carbon content is controllable through
oxygen injection, slag additives and graphite injection. The modal analysis does not take
constraints on the inputs into consideration. The constraints on the inputs limit the
effect of the inputs on the decarburization rate. This can be seen from figure 2.3 which
shows the reduction in carbon content with the inputs at their maximum and minimum.

Decarburization can therefore be described as marginally controllable.

2.4.5 Simplification of linear models

From the previous section, it is clear that carbon is only marginally controllable. Studying
the linear models more closely, it is clear that certain states and inputs can be eliminated.
The inputs that are controlled during the refining stage are oxygen injection, electric

power and graphite injection. DRI and slag are not added during the refining stage and
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Figure 2.4: Linear and nonlinear model comparison with efficiencies at their minimum.
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Figure 2.5: Linear and nonlinear model comparison with efficiencies at their maximum.
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Figure 2.6: Decarburization response with all parameter variations.
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can be removed from the linear models. The important states are carbon content, FeQO
content in the slag as well as temperature. Si and SiOs are impurities that need to be

minimized, or steered to a desired specification.

From the second row of equation (2.41) , it is clear that there is no input that influences
Si. The first column of equation (2.39), shows that carbon has no influence on the other
states. The second column shows that only S7 has an influence on carbon. The influence
of Si on carbon is very insignificant. Carbon will therefore be removed from the model,
for control purposes, because it cannot be significantly controlled as shown in the previous
section. S7 cannot be controlled and has no effect on any relevant term, and can therefore

also be removed.

From the fourth row of equation (2.41) , it is clear that only DRI addition influences
Si0;. The fourth column of (2.39) shows that SiO, has a very small influence on carbon,
FeO and temperature. In each instance, the cross-coupling term of SiOs is at least 1000
times smaller than the term for Si0, itself. SiOs, can therefore be removed from the

model without significantly affecting the dynamics of the system.

DRI only affects SiO, and thus becomes redundant and can be safely removed. The
two remaining states in (2.49) have no uncertainty on the diagonal terms. The only
remaining term that has significant uncertainty is the term that links F'eO to temperature.
The cross-couple term between FeO and temperature is a 1000 times smaller than the
diagonal term, and the uncertainty entry of this term is therefore left out, because of its
insignificant contribution to temperature. The simplified linear model can then be given

as follows

Anominalfsimplified - s (249)

12 0 —1.17
Bnominalfsimplified - ) (250)
0.41 6.07e —6 —0.017

0 0 0.988
Bdev—simplified - s (251)
0.11 3.03e—6 0.014
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where Biey—simpiified = BpDgu. Bp and D, can be realized from Bey—simpii fied 25

1000
B, = , (2.52)
01 11
0 0 0.988
0.11 0 0
w = (2.53)
0 3.03¢—-6 0
0 0 0.014
and the delta operator that is manipulated to describe the uncertain system is
Ay 0 0 0
0 Ay 0 O
A = , (2.54)
0 0 Az O
0 0 0 Ay

where —1 < A; <1,:i=1,2,3,4.

2.4.6 Analysis of simplified linear models

The simplified linear models are compared to the original nonlinear model. Three scenar-
ios are used; the nominal case; parameters that produce the least efficiency, and param-
eters that produce the best efficiency. In all cases, the inputs are set to their maximum
levels.

Figure 2.7 shows that the simplified linear models approximate the nonlinear model
reasonably well. The simplified linear models are therefore taken to be suitable as the

internal model for the model predictive controllers.

2.5 Conclusion

In this chapter the reduced nonlinear model for the refining stage of the electric arc

furnace was linearized. The structured uncertainty description was used to describe the
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Figure 2.7: Simulation to compare simplified linear model to nonlinear model.

uncertainty of the nonlinear model in terms of linear models. A simulation study showed
that the linear models approximated the nonlinear models reasonably well. The only
variable that showed significant deviation was carbon, because of its highly nonlinear
behaviour.

In the simplification of the linear models, it was shown that carbon is not significantly
controllable, which implies that control cannot be used to accelerate the refining stage.
The best option would be to ensure that the tapping temperature is at the desired value
by the time carbon reaches its desired level.

The simplified linear models approximated the nonlinear model reasonably well with
regards to FleO and temperature.

The simplified linear models are used in the synthesis of the model predictive con-

trollers in chapter 3.
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Chapter 3

Model predictive control

This chapter describes model predictive control and especially robust model predictive
control that is applied to the plant outlined in chapter 2. The chapter starts by explain-
ing model predictive control and its history, followed by a description of robust model
predictive control and the reason for its development, and finally focuses on the controller
theory used for the simulation study in chapter 4. The description of model predictive
control and the development of stability theory including robust stability are summarized

in the survey done by Mayne et al. (2000).

3.1 Introduction

Model predictive control (MPC), also known as receding horizon control (RHC), uses a
mathematical model of a system to predict its future behaviour in order to calculate a
sequence of control moves (N steps) into the future that will optimize (usually minimize)
an objective or penalty function, which describes a measure of performance of the system.
The first control move of the calculated sequence is applied to the system and a new mea-
surement is taken. The process is then repeated for the next time step. Model predictive
control calculates the control sequence on-line at each time step, compared to conventional
control theory where the control law is pre-calculated and valid for all possible states of the
system. Model predictive control has the distinct advantage of controlling multi-variable

systems well and can explicitly take into consideration constraints on the inputs (such as

37



Chapter 3 i AR, Introduction

actuators, valves, etc.) as well as states or outputs (Camacho and Bordons, 2003). MPC
is especially useful in situations where an explicit controller cannot be calculated offline.
The basic ideas present in the model predictive control family according to Camacho and Bordons

(2003) are:

e outputs at future time instances are predicted by the explicit use of a mathematical

model,;

e an objective function is minimized by calculating the appropriate control sequence;

and

e at each time instant, the horizon is displaced towards the future, which involves
applying the first control signal calculated at each time instance to the system;

called the receding horizon strategy.

The MPC theory described in this chapter is in discrete time and the system takes the

following form (Mayne et al., 2000):

rk+1) = f(z(k),u(k)), (3.1)

y(k) = g(x(k)). (3.2)

The control and state sequences must satisfy

a(k) € X, (3.3)

uw(k) € U, (3.4)

where X C R"™ and U C R™. The objective function that is used in the optimization

process has the following form:

k+N—-1

Ve, ku) = Z W(2(i), u(i)) + F(z(k + N)), (3.5)
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where [(x(i),u (7)) is the cost at each time step into the future with regards to the states
and inputs, while F'(x(k+ N)) is the cost at the final state reached after the whole control
sequence has been applied. At each time k, the final time is k+N, which increases as k
increases and is called a receding horizon. In certain model predictive control formulations,

a terminal constraint set is defined
z(k+N) € X;cCX (3.6)

The optimization of the objective function is performed subject to the constraints on
the control and state sequences and in certain cases the terminal constraint to yield the

optimized control sequence
u(z k) = (u(k;(x,k)),u(k+1;(x,k)),....,u’(k+ N —1; (z,k))), (3.7)
and optimized value for the objective function
Vo (x, k) = V(x, k,u’), (3.8)

where (z, k) denotes that the current state is x at time k. The first control move at time

k of the sequence u°(z, k) is implemented to form an implicit control law for time k

k(z, k) = u(k;(x,k)). (3.9)

The objective function is time invariant, because neither [(x(i), u(7)) nor F'(z(k+ N))
have terms that depend on time. The optimization problem Py(z) can be defined as
starting at time 0. N represents the finite prediction horizon over which the optimization

takes place, and the optimization problem can be redefined as

Py(z) : Vi(x) = m&n {Vn(z,u)lu e Uy}, (3.10)
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where the objective function is now

Vn(z,u) = [(z(i),u(i)) + F(z(N)), (3.11)

1=0

with Uy the set of feasible control sequences that satisfy the control, state and terminal

constraints. If problem Py(x) is solved, the optimal control sequences are obtained

u’(x) = {u’(0,2)),u(1,2)),....,u’(N —1,2)}, (3.12)

and the optimal state trajectory, if the control actions are implemented, is given by

x°(x) = {2°(0,2),2°(1,2),...,2°(N — 1,2),2°(N, z)}. (3.13)

The optimal objective value is

Vi) = Vi(z,u). (3.14)

The first control action is implemented, leading to the implicit time invariant control law

rn(z) = u’(0,x). (3.15)

Dynamic programming can be used to determine a sequence of objective functions
V;(-) deterministically in order to calculate the sequence of control laws x;(-) offline,
where j is the time-to-go until the prediction horizon. This is possible because of the
deterministic nature of the open-loop optimization. This would be preferable, but is
usually not possible. The difference between MPC and dynamic programming is purely a
matter of implementation. MPC differs from conventional optimal control theory in that
MPC uses a receding horizon control law ry(-) rather than an infinite horizon control

law.
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3.2 Historical background

Model predictive control builds on optimal control theory, the theory (necessary and
sufficient conditions) of optimality, Lyapunov stability of the optimal controlled system,
and algorithms for calculating the optimal feedback controller (if possible) (Mayne et al.,
2000). There are a few important ideas in optimal control that underlie MPC. The first
links together two principles of the control theory developed in the 1960s: Hamilton-
Jacobi-Bellman theory (Dynamic Programming) and the maximum principle, which pro-
vides necessary conditions for optimality. Dynamic programming provides sufficient con-
ditions for optimality as well as a procedure to synthesise an optimal feedback controller
u = k(z). The maximum principle provides necessary conditions of optimality as well
as computational algorithms for determining the optimal open-loop control u°(-; x) for a

given initial state x. These two principles are linked together as
k(x) = u(0;x), (3.16)

in order for the optimal feedback controller to be obtained by calculating the open-loop
control problem for each z (Mayne et al., 2000). From the commencement of optimal
control theory it is stated by Lee and Markus (1967, p. 423): “One technique for obtaining
a feedback controller synthesis from knowledge of open-loop controllers is to measure the
current control process state and then compute very rapidly for the open-loop control
function. The first portion of this function is then used during a short time interval,
after which a new measurement of the process state is made and a new open-loop control

function is computed for this new measurement. The procedure is then repeated.”

Kalman, as discussed inMayne et al. (2000), observed that optimality does not guar-
antee stability. There are conditions under which optimality results in stability: infinite
horizon controllers are stabilizing, if the system is stabilizable and detectable. Calculating
infinite horizon optimal solutions is not always practical on-line and an alternate solution
was needed to stabilize the receding horizon controller. The first results for stabilizing

receding horizon controllers were given by (Kleinman, 1970), who developed a minimum
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energy controller for linear systems. He showed that the feedback controller is linear,
time invariant and stable if a Lyapunov function V(z) = 27 Pz is used as the objective
function. Another approach is to define a stability constraint as part of the optimal con-
trol problem. The stability constraint is defined as an equality constraint x(7") = 0 that
forces the solution to converge to the origin. Thomas, as discussed in Mayne et al. (2000),
suggested this technique as part of a linear quadratic control problem and implemented
it by using M := P~! in place of P as the Ricatti variable and solving the Ricatti-like

differential equation with terminal condition M (T") = 0.

MPC was really driven by industry as part of process control theory. Richalet et al.
(1978) was the first to propose MPC for process control applications, but MPC was pro-
posed earlier by Propoi and Lee and Markus (as discussed in Mayne et al. (2000)). The
MPC method, called identification and command (IDCOM), was proposed by Richalet et al.
(1978). Tt uses a linear model in the form of a finite horizon impulse response, quadratic
cost and constraints on the inputs and outputs. The method makes provision for linear
estimation using least squares and the algorithm for solving the open-loop optimal control

problem is the “dual” of the identification algorithm.

Dynamic matrix control (DMC) is a later method proposed by Cutler and Ramaker
(1980) and Prett and Gillette (as discussed in Mayne et al. (2000)). DMC uses a step
response model, but as in IDCOM, handled constraints in an ad-hoc fashion. This lim-
itation was addressed by Garcia and Morshedi (as discussed in Mayne et al. (2000)) by
using quadratic programming to solve the constrained open-loop optimization problem.
This method also allows certain violations of the constraints in order to enlarge the set

of feasible states. This method is called QDMC (Quadratic Dynamic Matrix Control).

The third generation of MPC technology, introduced about a decade ago, “distin-
guishes between several levels of constraints (hard, soft and ranked). This technology
provides some mechanism to recover from an infeasible solution, and addresses the issues
resulting from a control structure that changes in real time, and allows for a wider range
of process dynamics and controller specifications” (Qin and Badgwell, 2003). The Shell

multi-variable optimizing control (SMOC) uses state-space models, incorporates general
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disturbance models and allows for state estimation using Kalman filters (as discussed in
Mayne et al. (2000)).

An independent but similar approach was developed from the adaptive control the-
ory and is called generalized predictive control (GPC). The method uses models in the

backward shift operator q'1

which is more general than the impulse and step response
models of DMC. GPC started as minimum variance control (Mayne et al., 2000) that only
allowed for a horizon of length 1. Minimum variance control was extended to allow for
longer prediction horizons by Peterka (1984) as well as Clarke et al. (1987a,b). GPC, and
early versions of DMC, did not explicitly incorporate stability in the method and had to

rely on the tuning of the prediction horizon as well as the weights on the states and inputs

to achieve stability.

3.3 Stability of MPC

The inability of both GPC and DMC to guarantee stability caused researchers to focus
more on modifying Py(z) to ensure stability due to increased criticism (Bitmead et al.,
1990) of the makeshift approach of using tuning to attain stability.

With terminal equality constraints, the system is forced to the origin by the controller
that takes the form F'(x) = 0, as there is no terminal cost and the terminal set is X; = {0}.
Keerthi and Gilbert, as discussed in Mayne et al. (2000), proposed this stabilizing strategy
for constrained, nonlinear, discrete systems, and showed a stability analysis of this version
(terminal equality constraints) of discrete-time receding horizon control. MPC with a
terminal equality constraint can be used to stabilize a system that cannot be stabilized by
continuous feedback controllers, according to Meadows et al. (as discussed in Mayne et al.
(2000)).

Using a terminal cost function is an alternative approach to ensure stability. Here
the terminal cost is F(-), but there is no terminal constraint and the terminal set is
thus X; = R". For unconstrained linear systems the terminal cost of F(z) = 127 Py is
proposed by Bitmead et al. (1990).

Terminal constraint sets differ from the terminal equality constraints, in that subsets
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of R™ that include a neighbourhood of the origin are used to stabilize the control, not
just the origin. The terminal constraint set, as with the terminal equality constraint,
does not employ a terminal cost, thus F'(z) = 0. The MPC controller should steer the
system to X; within a finite time, after which a local stabilizing controller s;(-) is em-
ployed. This methodology is usually referred to as dual mode control and was proposed by
Michalska and Mayne (1993) in the context of constrained, nonlinear, continuous systems
by using a variable horizon N.

A terminal cost and constraint set is employed in most modern model predictive con-
trollers. If a infinite horizon objective function can be used, on-line optimization is not
necessary and stability and robustness can be guaranteed. In practical systems, con-
straints and other nonlinearities make the use of infinite horizons impossible, but it is
possible to approximate an infinite horizon objective function if the system is suitably
close to the origin. By choosing the terminal set Xy as a suitable subset of R", the
terminal cost F(-) can be chosen to approximate an infinite horizon objective function.
A terminal cost and constraint set controller therefore needs a terminal constraint set
Xy in which the terminal cost F(-) and infinite horizon feedback controller K are em-
ployed. To synthesise these, Sznaier and Damborg (as discussed in Mayne et al. (2000))
proposed that the terminal cost F'(-) and feedback controller Ky of a standard LQ prob-
lem be used, which is an unconstrained infinite horizon problem, when the system is
linear (f(x,u) = Az + Bu) and the state and input constraint sets, X and U, are poly-
topes. The terminal constraint set X is chosen to be the mazimal output admissible set

(Gilbert and Tan, 1991) of the system f(z,u) = (A+ BKy)z.

3.3.1 Stability conditions for model predictive controllers

From the above discussion, it is clear that the additions of a terminal constraint set X,
terminal cost F'(-) and local feedback controller x in the terminal constraint set, form the
basis of stabilizing model predictive control. Some conditions, in the form of axioms, are
formulated (Mayne et al., 2000) for the terminal constraint set, terminal cost and local

feedback controller, which ensure that the controller is stabilizing.
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Two related methods are available for establishing stability. Both methods use a
Lyapunov function as the objective function. The first method ensures that the objective

function Vi (x) evolves with the state from x to ™+ = f(z, ky(x)) so that

V(™) = Vi(z) + l(z, ky(x)) < 0, (3.17)

while the alternative method uses the fact that

Vo(zt) = Vo(x) + Uz, kn(x)) = V(x") = Vy_1(zt), (3.18)

and shows that the right-hand side is negative, either directly or by showing that V?°(:) <
Vi’ (+) and exploiting monotonicity which implies that if Vi°(-) < V() then V%, (-) < V°(+)

for all 7 > 0.

Assume a model predictive controller that can steer the system state x to the ter-
minal constraint set X, within the prediction horizon N or fewer steps. The control
sequence that accomplishes this is called an admissible or feasible control sequence u =
{u(0),u(1),...,u(N — 1)}. This control sequence should satisfy the control constraints
u(i) € U for i = 0,1,..., N — 1 and ensure that the controlled states satisfy the state
constraints z"(7) € X for ¢ = 0,1,.., N and the final state satisfies the terminal con-
straint set "(N) € X;. If the control problem Py(x) is solved, the control sequence
u’(x) is obtained that will steer the system within the set of states that is possible
with a model predictive control of horizon N, x € Xy. The optimal control sequence
u®(z) = {u(0;z),u(l; x),...,u(N —1; )} will result in the optimal state sequence x°(x) =
{2°(0; ), 2°(1; x), ..., x°(N — 1;2),2°(N;x)}. The first control action of u®(x), that is
u = kn(x) = u°(0; x) is implemented to get to the next state x* = f(x, ky(z)) = 2°(1; x).
A feasible control sequence x(z") for the state 2, will result in an upper bound for the
optimal objective function V(x), because a feasible control sequence should give a larger
value for the objective function than an optimal control sequence. The abbreviated con-
trol sequence {u(l;x),u(2;z),...,u(N — 1;z)} derived from u°(z) should be a feasible

control sequence to steer state x* to 2°(N;z) € X;. If an extra term is added to the
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control sequence {u(1l;x),u(2;x),...,u(N — 1;x),u}, the control sequence will be feasible
for Py(27) if u € U and u steers z°(N;x) € Xy to f(2°(N;z),u) € X;. This will be
true if u = kp(2°(N;x)), with the terminal state constraint X; and local controller s ¢(-)

having the properties:

X CX, kp(x) €U and f(z,kp(x)) € Xy Vo € Xy, (3.19)

implying that the terminal set X is invariant when the controller is x¢(-). The feasible

control sequence for Py (z7T) is

u(z) = {u(L;2),u(2;2),...,u’(N — L;z), kp(x’(N;2)) }, (3.20)

with the associated cost

Vn(z™ a(z)) = Vy(z) —l(z, k(7)) — F(2°(N;2))
+H(2°(N;x), kp(2°(N;x))

FE(f(2°(N: ), kg (2 (N3 ). (3.21)

This cost is the upper bound on V¥ (x*) and satisfies

Vy(zt,a(z)) < V() —Il(z, kn(x)), (3.22)

it F(f(x,rf(z))) — F(x) + l(x,kp(x)) < 0 Ve € Xy, This is accomplished if F(-) is a
control Lyapunov function in the neighbourhood of the origin and the controller x; and
the terminal constraint set X are chosen appropriately. If this condition is satisfied, then
(3.17) will hold for all x € Xy and it is sufficient to say that the closed-loop system
2t = f(x,kn(x)) will converge to zero as time tends to infinity, provided that the initial

state is within X. The stability conditions can be summarized in the following axioms

(Mayne et al., 2000):

Al: Xy C X, Xy is a closed set and 0 € Xy. This condition implies that the state
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constraints should be satisfied in the terminal constraint set.

A2: ks(z) € U, Vo € X;. This condition implies that the constraints on the controls

should be satisfied by the local controller in the terminal constraint set Xj.

A3: f(z,kp(x)) € Xy, Vo € Xy, This implies that the terminal constraint set X is

positively invariant under the local controller s ¢(-).

A4: F(f(z,ks(2))) — F(x)+1(z,rp(x)) <0 Ve € Xy, The terminal cost function F'(-) is

a local Lyapunov function in the terminal constraint set Xy.

The conditions as summarized in Al to A4 are merely sufficient conditions to ensure
stability in model predictive controllers. These conditions can be shown to hold for the
monotonicity approach as well as the continuous case (Mayne et al., 2000). The following
few paragraphs will show how the stabilizing methods of section 3.3 satisfy the stability

conditions Al to A4.

3.3.2 Terminal state MPC

The terminal state variant of model predictive controllers (Mayne et al., 2000) uses the
terminal state X; = {0} with no terminal cost F(-) = 0. The local controller in the
terminal constraint set is x¢(x) = 0 that will ensure that the state remains at the origin
if this controller is applied. The functions F'(-) and xy(-) are only valid in Xy which is at

the origin. The satisfaction of the stability conditions Al to A4 are as follows:
Al: X; = {0} € X - Satisfied.

A2: k;(0) =0 € U - Satisfied.

A3: f(0,k¢(0)) = f(0,0) = 0 € X - Satisfied.

A4: F(f(0,k7(0))) — F(0) +1(0,k7(0)) = 0 - Satisfied.

The controller ensures that the closed-loop system is asymptotically (exponentially) stable

with region of attraction Xy.
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3.3.3 Terminal cost MPC

Terminal cost model predictive controllers are only valid for linear unconstrained (Bitmead et al.,
1990) and linear, stable, constrained (Rawlings and Muske, 1993) cases. In order to en-
sure stability a terminal constraint is necessary if the system is nonlinear or linear, con-
strained and unstable. Linear, unconstrained systems are defined as f(z,u) = Az + Bu,

and I(z,u) = 5(|2[3 + |u|%) where @ > 0 and R > 0. The first three conditions Al to A3

1
2
are trivially satisfied in the unconstrained case, because X = R™ and U = R™. In the case
where A and B are stabilizable, the local controller is defined as xy := Kz, and Py > 0

should satisfy the Lyapunov equation
A;";PAf+Qf:O, Af 2:A+BKf, Qf 2:Q+KfRKf, (323)

then the terminal cost function F'(x) := %xTPfx satisfies A4 and the closed-loop system is
asymptotically (exponentially) stable with a region of attraction R". Linear, constrained,
stable systems have control constraints u € U, but no constraints on the states, thus
X = Xy = R". In order to satisfy A2, the controller function, if linear, should be
k¢(z) = 0 (Rawlings and Muske, 1993), that leads to the first three conditions (Al to
A3) being satisfied. The final condition A4 is satisfied if the terminal cost function is
F(z) := 32 Prx, where P; satisfy the Lyapunov equation ATPA+ Q = 0, that results in

a controller with asymptotic (exponential) stability with region of attraction R™.

3.3.4 Terminal constraint set MPC

Terminal constraint set model predictive controllers employ a terminal constraint set
z(N) € Xy without a terminal cost F'(z) = 0 for nonlinear, constrained systems. Michalska and Mayne
(1993) introduced the idea of a variable prediction horizon N for continuous-time, con-
strained, nonlinear systems. Scokaert et al. (1999) proposed a fixed horizon version for
nonlinear, constrained, discrete-time systems. The controller steers the state of the sys-
tem x to within the terminal constraint set Xy, after which a local stabilizing controller

k¢(z) = Ky is employed. This type of MPC is sometimes referred to as dual-mode MPC.
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This method is similar to the terminal equality constraint method, except that the equal-
ity {0} is replaced by a set X;. The local controller xs(-) and the terminal constraint set
Xy are chosen to satisfy the first three conditions Al to A3. The local controller r¢(-) is
chosen to steer the system exponentially fast to the origin for all states in the terminal
constraint set (Vo € Xy). The stage cost of the objective function [(z, k¢(z)) should be 0
when the system state is within the terminal constraint set X, in order to satisfy A4. A

suitable choice for the stage cost is

lx,u) = ax)l(z,u), (3.24)

where a(z) = 1, Vz ¢ Xy, else a(z) = 0 and I(z,u) = L(27Qz + u" Ru), where Q > 0
and R > 0. The closed-loop system is exponentially stable with domain of attraction Xy,
because the MPC controller steers the system with initial state x € Xy within finite time

to X with the controller value ry(-).

3.3.5 Terminal cost and constraint set MPC

Terminal cost and constraint sets are employed by most modern model predictive con-
trollers. In linear, constrained systems the terminal cost function can be chosen F'(x) =
V2(z) = 12" Pz, that is the same as the unconstrained infinite horizon optimal con-
trol problem. The local controller k¢(x) = Kz is the optimal infinite horizon con-
troller and the terminal constraint set Xy is the maximal admissible set for the system
rt = Asr, Ay := A+ BKjy, thus satisfying A1-A4. This results in an exponentially
stable controller with domain of attraction X;. The ideal choice for the terminal cost
would be to choose F'(z) = V2(x), the objective function of an infinite horizon optimal
controller, that would result in the objective function for model predictive controller being
Vi(z) = V2(x), and on-line optimization would not be necessary. The resulting MPC
controller will have all the advantages of infinite horizon control. This is usually not

(z) = 12T P

practical, and the use of the terminal constraint set X; and F(z) = V2 5

uc

approximates the advantages of using F'(x) = V2(z). The nonlinear case is also given in

Electrical, Electronic and Computer Engineering 49



Chapter 3 R s C - Stability of uncertain systems

Mayne et al. (2000).

From this discussion, it is clear that the use of a terminal constraint set Xy, terminal
cost function F'(-) and local stabilizing controller xs(-) is necessary to ensure stability
in model predictive control. The first two requirements, terminal constraint set X, and
terminal cost function F'(-), are explicitly incorporated into the controller, while the feed-
back controller s ¢(-) is only implicitly needed to prove stability. If the cost function F'(-)
is as close to the objective function V2 (-) as possible, the closed-loop trajectory is exactly

the same as that predicted by the solution of the optimal control problem Py(z).

3.4 Robust MPC - Stability of uncertain systems

Robust model predictive control is concerned with the stability and performance of the
closed-loop system in the presence of uncertainty in the plant model. Early studies in
robustness of model predictive controllers considered unconstrained systems and found
that if the Lyapunov function retains its descent property in the presence of disturbances
(uncertainty), it will remain stable. In the constrained case, the problem becomes more
complex, because the uncertainty or disturbances should not cause the closed-loop system
to violate its state or control constraints.

Richalet et al. (1978) performed one the earliest studies in robustness on systems with
impulse response models, by investigating the effect of gain mismatches on the closed-loop
system. Later work on systems modelled by impulse responses approached the optimal
control problem as a min-max problem, that caused the problem to grow exponentially
with the size of the prediction horizon.

There are several approaches to robust model predictive control, the first being a study
of the robustness of model predictive control designed with a nominal model (that does not
take uncertainty into account). The second approach considers all the possible realizations
of the uncertain system when calculating the open-loop optimal controller (min-max open-
loop MPC). The open-loop nature of model predictive control is a problem when model
uncertainty is present and the third approach addresses this by introducing feedback in

the optimal control problem that is solved on-line.
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For the discussion of robust model predictive control, the uncertain system is described

as

= f(z,u,w), (3.25)

y = g(@), (3.26)

where the state x and control u satisfy the same constraints

z(k) € X (3.27)

u(k) € U, (3.28)

and the disturbance or uncertainty w satisfies w € W (z(k), u(k)) for all k where, for each
(x,u), W(z,u) is closed and contains the origin in its interior. The disturbance sequence
w = {w(0),w(l),...,w(N — 1)} together with the control sequence u and initial state
x will produce the resulting state trajectory z%"V(-;z). Let F(z,u) = f(z,u, W(zx,u)),
which will map values in X and U to subsets of R™, resulting in 2™ € F(x,u).

De Nicolao et al. (1996) and Magni and Sepulchre (1997) studied the inherent robust-
ness of model predictive controllers that were designed without taking uncertainty into

account.

3.4.1 Stability conditions for robust MPC

Most versions of robust model predictive control take all the realizations of the uncertainty
or disturbance w into consideration that requires strengthened assumptions to be satisfied,

which are summarized as robust versions of axioms A1-A4 (Mayne et al., 2000):
Al: Xy C X, Xy closed, 0 € Xy.

A2: ks(x) € U, Vo € Xy

A3a: f(z,ks(z),w) € Xy, Vo € Xy, Yw € W(z, ks(2)).

Ada: F(f(x,kp(x),w)) — F(x) + Uz, kp(z),w) <0, Vo € Xp, Vw € W(z, kp(x)).
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If F(-) is a robust Lyapunov function in the neighbourhood of the origin, there exists a
triple (F'(-), Xy, k¢(-)), which ensures that A4a is satisfied and results in an asymptotically

or exponentially stable controller.

3.4.2 Open-loop min-max MPC

Open-loop min-max model predictive control considers all the possible realizations of the
uncertain system in order to ensure that the state, control and terminal constraints are
met for all the possible realizations (Michalska and Mayne, 1993). The objective function

value in this case is determined for each realization

i

J(z,u,w) = l(z(i),u(d)) + F(z(N)), (3.29)

ﬂ.
o

where z(i) = "W (i;2;0) and the final objective value is the worst case for all the real-

izations

Vn(z,u) = max{J(z,u,w)lw € Wy(z,u)}, (3.30)

where Wy (z,u) is the set of admissible disturbance sequences. Other choices are to take
the objective value as the nominal objective value by using w = 0. Badgwell (as discussed
in Mayne et al. (2000)) used an interesting approach, where the controller should reduce
the objective function value for every realization, which is assumed finite, for a linear

system. This is stronger than only reducing the worst-case objective value.

The set of admissible control sequences Ug () is that set which satisfies the control,
state and terminal constraints for all possible realization of the disturbance sequence w
when the initial state is z. Suppose the the set X% for all 7 > 0, is the set of states
that can be robustly steered to the terminal state constraint Xy in ¢ steps or less by an

admissible control sequence u € U (z). The open-loop optimal control problem is

P(z): Vo(z) = min{Vy(z,u)lucU(z)}. (3.31)
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The solution to Pg(x) yields the optimal control sequence u°(x), where the implicit min-

max control law is

K%(z) = u’(0;2), (3.32)

as in the nominal case. The control sequence will result in a “bundle” of optimal state

sequences {x°(z,w)} as a result of the disturbance sequences w, so that

x%(xz,u) = {2°(0;x;w),2°(L; 25 w), ..., (N — 125 w), 2°(N;2; w) ). (3.33)

The triple (F'(-), Xf, k¢(+)) is assumed to satisfy the stability conditions A1-A4a. Assume
the process is started with an initial state # € X'g and has an optimal (and by implication
a feasible) control sequence {u®(0;z),u°(1;x),...,u’(N — 1;2)} for the optimal control
problem Pg(z) that steers the state to within the terminal constraint set X; within N steps
or less, so that 2°(N;z;w) € Xy, Vw € W(z,u’(z)). As a result the abbreviated control
sequence {u°(1;z),u’(2;x),...,u’(N — 1;2)} should steer the state xt € F(x, ky(x)) to
the terminal constraint set X; within N — 1 steps or less, where 2+ € Xg ;. A problem
arises when a feasible control sequence needs to be generated by adding a term to the

abbreviated control sequence

u(z) = {u(l;2),u(2;2),...,u’(N —1;2),v}, (3.34)

for the optimal control problem Pg(z%), where the control action v € U is required to
satisfy f(z°(N;z;w),v,wy) € Xy for all w € W(z,u’(x)). The stability condition A3a
does not ensure that such a control action v can be obtained, which prevents the upper
bound of the objective function Vg(z") from being calculated. Michalska and Mayne
(1993) circumvent this problem by using a variable horizon optimal control problem P(z)

with decision variables (u, N). The optimal solution (u°(z); N°(x)) is obtained by solving
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the optimal control problem P(zx), where

u’(z) = {u(0;2),u’(1;2),...,u’(N(x) — 1;2)}.

For the optimal control problem P(x™) the solution (u(x), N°(x)—1) is a feasible solution
for any a™ € X(x,ky(x)). The variable horizon objective function V°(-) and implicit
controller x°(-) will ensure that stability condition Ada holds for all z € X% C X;, Vw €
W (z, k°(z)). Inside the terminal constraint set X;, a suitable local controller x(-) is used
subject to stability conditions Al-Ada. This will result in an asymptotic (exponential)
stable controller with domain of attraction X%, subject to further modest assumptions

(Michalska and Mayne, 1993).

3.4.3 Feedback robust MPC

Feedback robust model predictive control is better suited for uncertain systems than open-
loop min-max controllers, because open-loop controllers assume that the trajectories of
the system may diverge, which may cause X% to be very small, or even empty for a
modest sized prediction horizon N, which is very conservative. This happens because
the open-loop min-max controllers do not take the effect of feedback into consideration,
which would prevent the trajectories from diverging too much. To address the shortcom-
ings of open-loop min-max control, feedback MPC was proposed by Lee and Yu (1997),
Scokaert and Mayne (1998), Magni et al. (2001) and Kothare et al. (1996). In feedback
model predictive control, the control sequence u is replaced by a control policy 7 which

is a sequence of control laws:

7 = {u(o),k1("), .., in_1(-)}, (3.35)

where k() : X — U is a control law for each i, while «(0) is a control action, because

there is only one initial state. The objective function for the feedback model predictive
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controller is

Vn(z,m) = max{J(z,m,w)|lw € Wy(x,m)} (3.36)

and the objective function for each realization

i

J(z,m, W) = l(x(i),u(?)) + F(xz(N)), (3.37)

-
Il
o

where x(i) = 2™"(i;x) is the state at time ¢ resulting from an initial state at time 0,
a control policy m and a disturbance sequence w. The admissible set of disturbances,
given the control policy 7 is implemented, is Wy (z, 7). The set of admissible control
policies that will satisfy the control, state and terminal constraints for all the admissible
disturbances with initial state x, is Il (z). The set of initial states that can be steered
to the terminal constraint set X; by an admissible control policy 7 in i steps or less, is

X{b, Vi > 0. The feedback optimal control problem becomes

Pl¥(z): Vi(z) = min{Vy(z,7)7 € y(z)}. (3.38)

If a solution to P]{,b(:c) exists, the optimal control policy is

ﬂ-o('r) = {uO(O; .T}), "icl)('; .T}), "ig('; .T}), e H?V71<'; SL’)}, (339)

where the implicit feedback model predictive control law is

() = ul(0;x). (3.40)

If the stability conditions Al-Ada are satisfied for P]{,b(x), a feasible control policy for

Pl (z*) for all 2 € F(x, k) (2)) and = € XL is

m(x,at) = )@ x), k505 2), s kv (5 a), k() (3.41)

Electrical, Electronic and Computer Engineering 55



nnnnnnnnnnnnnnnnnnnnn

Chapter 3 R(i sismae C - Stability of uncertain systems

With this feasible control policy, and with X{* an invariant set for 2+ € F(z, s (z)),
assumption Ada will be satisfied for all z € X4 and w € W (z, k{)(x)). The resulting
robust model predictive controller is asymptotically (exponentially) stable with domain
of attraction Xf\f’ under further modest assumptions. The results are very similar to open-
loop min-max control, except that the domain of attraction Xf\;’ includes X% and could
possibly be much larger. Feedback MPC is encouraging, but suffers from much higher

complexity than open-loop min-max control.

3.4.4 Robust MPC implementations

Some implementations of robust model predictive controllers that fall into the above-
mentioned categories, are linear matrix inequality (LMI) based controllers that produce
feedback policies which are implemented at each time interval. The problem with these
controllers is that they use an ellipsoid invariant set for their domain of attraction, which
makes them conservative. This is because the sets must be symmetric, and in systems
where the constraints are non-symmetric, the ellipsoid sets will be a small subset of
the maximum admissible set. The feedback robust MPC technique was introduced by
Kothare et al. (1996). The technique was improved by Cuzzola et al. (2002) by describing
the uncertain system as a polytope and applying different Lyapunov functions to each
vertex of the uncertain polytope to reduce the conservatism of the method. The method
uses semidefinite programming (SDP) to solve the minimization problem on-line, which
is computationally very expensive compared to quadratic programming (QP) used in
nominal MPC. Further improvements made by Wan and Kothare (2003); Casavolaa et al.
(2004); Ding et al. (2004) resulted in an attempt to move as much of the calculation as
possible offline. The LMI methods have been used to robustify PID (Proportional, Integral
and Derivative) control (Ge et al., 2002) and a few case studies on LMI based control were
done by Park and Rhee (2001) and Wu (2001).

An approach to feedback robust model predictive control is proposed by Langson et al.
(2004) who uses tubes to encapsulate all the possible states that can result from the

controller. If the uncertainties can be sufficiently described, the optimization problem
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needs only be calculated once, and the control policy will steer the system to the terminal
constraint set Xy, where a local stabilizing controller will keep the uncertain system in

the terminal constraint set.

There is a movement in robust model predictive control to reduce the on-line compu-
tational burden. Lee and Kouvaritakis (2002) propose a method where optimal control
sequences are computed offline for certain canonical states. A feasible (suboptimal) con-
trol sequence is generated on-line for the state x by using linear combinations of the
precomputed optimal control sequences. The on-line computation is reduced to a simple
matrix multiplication, and no on-line optimization is performed. De la Pena et al. (2004)
proposed using multi-parametric methods to describe a suboptimal control strategy that
will be less computationally expensive for on-line use. Fukushima and Bitmead (2005)
incorporate the uncertainties and bounded disturbances into a comparison model, and
the control algorithm can then be set up as a nominal MPC (without uncertainties) with
only a QP problem to solve on-line. The comparison model provides an upper bound on
the objective function value used in the on-line optimization. Mayne et al. (2005) reduced
the on-line optimization of robust model predictive control to a QP problem, with the
initial state as well as the control sequence as part of the decision variables. As the on-line
problem is a nominal control problem, tighter constraints are used to ensure robustness.

This is only valid for linear systems, and cannot be easily extended to nonlinear systems.

An interesting robust controller, in a process control environment, was proposed by
Tsai et al. (2002), which uses neural adaptive control based on artificial neural networks
(ANN) in conjunction with normal robust MPC. The outputs of the two controllers are
combined and the weightings are calculated from regional knowledge of the ANN, which
determines whether the ANN is operating in an area of good prediction characteristics or

not.

An alternative approach to robust model predictive control, is to modify the objective
function to ensure robust stability in the presence of uncertainties. Wang and Romagnoli
(2003) used robust identification theory to construct a generalized objective function, to

replace the quadratic objective function usually employed to produce a robust controller.
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The on-line optimization uses the nominal model, and robustness is provided by the
objective function. A method for robustifying generalized predictive control (GPC) has
been proposed by Rodriguez and Dumur (2005).

The robust model predictive controllers do not always provide off-set free tracking,
and this problem is addressed by Wang and Rawlings (20045,a) who use a robust predic-
tor that updates itself each time measurements are available to ensure that the off-set is
eliminated. Pannocchia (2004) approaches the problem by designing a robust linear feed-
back controller and an appropriate invariant set where the controller will satisfy the con-
straints. The controller uses the dual-mode approach suggested by Rossiter et al. (1998)
and later implemented by Kouvaritakis et al. (2000); Schuurmans and Rossiter (2000) and
Lee and Kouvaritakis (2000), where the feedback law u;() in the policy 7 is restricted to
have the form w;(z) = v; + Kz, 1 =0,1,2,..., N — 1, that changes the optimization prob-
lem to calculating the free control moves {vg, v1, vg, ..., vny_1} rather than the policy. The
dual-mode controller remains essentially a feedback model predictive control, because K=z

limits the diversion of trajectories of the closed-loop system.

3.5 Robust model predictive controllers

In this section two robust model predictive controller methods, used in comparison with
nominal MPC in the next chapter, are discussed in more detail. The first method, pro-
posed by Kothare et al. (1996) calculates a feedback policy at each time interval for
the system. The second method consists of a dual-mode controller first proposed by
Rossiter et al. (1998), where the feedback policy is a combination of an open-loop feed-

back control law x; = —Kx with free control moves v, u;(-) = v — K.

3.5.1 Robust MPC using LMIs

Traditional model predictive control solves an open-loop constrained optimization prob-
lem. The internal model is a nominal model and the assumption is that feedback will

compensate for the model uncertainty and unmeasured disturbances. The structure of
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the value function usually does not take the effect of feedback into consideration.

Kothare et al. (1996) formulated a new model predictive control strategy with robust-
ness in mind. The robust controller design explicitly incorporates model uncertainty. The
value function is also formulated to take feedback into consideration. The whole theory is
based on linear matrix inequalities (LMI) (Boyd et al., 1994). With current interior point
methods and computer technology, these functions can now be solved fast enough to be
applicable in on-line use. Current model predictive control theory can be recast as linear
matrix inequalities that incorporate input and output constraints, model uncertainty and

robustness measures.

3.5.1.1 System descriptions

The system is defined as a linear time-varying system by Kothare et al. (1996).

w(k+1) = A(k)z(k)+ B(k)u(k), (3.42)
y(k) = Cuz(k), (3.43)
[ A(k) B(k)] € %, (3.44)

where x(k) is the state of the system, u(k) is the control vector, y(k) is the output of
the system and €2 is the set of models that describes the system. For polytopic uncertain

systems, the set €2 is the polytope

O e Co{[A1 By, [ Ay Byl A Bi]}7

where C'o denotes the convex hull.

A second representation of the system is called the structured feedback uncertainty. The
uncertainty is described as perturbations in the feedback loop. The system description

looks as follows:
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a(k) = Cye(k) + Dyulk), (3.45)

The operator A is block-diagonal:

A = , , (3.46)

with A; : R" — R™,
For a linear time varying system, it can be shown that (3.45) can be cast in the form

of (3.42-3.43) by using
0 = { [ A+ B,AC, B+ B,AD,, | :A satisfies (3.46) with 7(4;) < 1} (3.47)

3.5.1.2 Objective function

The stage cost of the objective function used is a standard quadratic function of the form

To(k) = Y [wlk+ilk)" Qua(k + ilk) + u(k + i[k)" Ru(k +i|k)] . (3.48)

=0

where ()1 > 0 and R > 0 are symmetric weighting matrices. The objective function
strives to drive the state vector to zero. The () weighting matrix defines the severity of
the state position penalty and the R matrix that of the control action. The ratio of @)

and R will determine the priority of state position versus control action objectives.
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3.5.1.3 Linear matrix inequalities

Linear matrix inequalities have the following form

f
F(z) = F+ ) x5 >0, (3.49)
i=1
where x1, T3, ...,z; are the variables, F; = F'' € R™" are given, and F(z) > 0 means

that F'(x) is positive-definite. Multiple LMIs Fj(z) > 0, ..., F,,(x) > 0 can be expressed

as the single LMI

diag (Fy(x), ..., F,(z)) > 0. (3.50)

Convex quadratic inequalities are converted to linear form using Schur’s complements. In

the case of matrix inequalities of the form

R(z) >0, Q(z)— S(z)R(z)"*S(x)T >0, (3.51)

or

Q(x) >0, R(x)—S(x)'Q(x)"'S(x) >0, (3.52)

where Q(z) = Q(z)?, R(z) = R(x)', and S(z) depends affinely on z, then the matrix

inequality can be rewritten as

Q(r) S(x)
S(x)T R(z)

0. (3.53)

3.5.1.4 Unconstrained robust model predictive control

For robust model predictive control, the optimization becomes a min-max problem. The
objective function is maximized as a function of the uncertain models. The worst case is

then minimized as a function of the control sequence.
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min max Jp(k), (3.54)
u(k+i/k),i=0,1,2,..,m A(k+1) B(k+i) |€2i20
with
p
J(k) = [2(k +i|k)" Qia(k +ilk) + u(k + ilk)" Ru(k + i|k)] . (3.55)
=0

This problem can be recast as linear matrix inequalities and in this case the optimized
state-feedback gain z(k + i|k) = Fx(k + i|k) is determined that minimizes the objective

function as

i 3.56
min 7y (3.56)
subject to
1 z(klk)
> 0 (3.57)
v(klk)  @Q
and
Q QAT +YTBT QQ,* YTR?
A;Q + B;Y 0 0
AR v > 0,j=1,2,...,L, (3.58)
Q'”Q 0 ol 0
RY?y 0 0 ~I

where L is the number of linear models in the set Q and z(k|k) is the measured state.

From this optimization the feedback gain is ' =Y Q.

In the case of structured feedback uncertainty, the optimization becomes

S (359
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subject to
1 x(k|k)
> 0 (3.60)
w(klk)  Q
and
Q YT R1/2 QQ}H QC’;{ + YTDun QAT + YTRBT
RY?Y ~I 0 0 0
?Q 0 o 0 0 > 0, (3.61)
c,Q+D,Y 0 0 A 0
AQ + BY 0 0 0 Q— B,,AB;;F |
where
)\llnl
)\2-[712
A = ' >0, (3.62)
ALy,

where x(k|k) is the measured state and I,,, i = 1,2,..,7 is the identity matrix of the

correct dimensions for the diagonal entry i. The optimal feedback gain is F' =Y Q~!.

3.5.1.5 Input constraints

Input constraints can be incorporated into the robust model predictive formulation as

additional linear matrix inequalities. The input constraints of the form

[k +ilk)ll, < Unas, (3.63)
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can be written as linear matrix inequalities of the form

ufmwl Y
> 0. (3.64)
YT Q

For constraints on the individual components of the input vector of the form

lj(k+ k)] < Upmazs i >0, j = 1,2, ... na, (3.65)

the linear matrix inequalities are

X Y
Z O, with ij S U2

j,mazx> J=

1,2, ..., n, (3.66)
YT Q

with X a symmetric matrix.

3.5.1.6 Output constraints

Output constraints can be added to the robust model predictive control formulation as
additional linear matrix inequalities. Here the output has to be maximized over the
uncertain models. This ensures that the constraints will not be violated even in the worst

case scenario. The output constraints of the form

max ly(k +ilE)[ly < Ymaw, 721, (3.67)
[ A(k+1) B(k+1i)] €220

can be written in the following linear matrix inequality form for a polytopic uncertainty

description

Q (4,Q + B;Y)'c?t
C(AJQ + BJY> y%ﬂaz[

> 0,j=1,2,..L, (3.68)
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where L is the number of linear models in the uncertainty description. For the structured

uncertainty case, the output constraints become

yme (c,@+ unY)T (AQ + BY)Tch

C,Q + DY T 0 > 0, (3.69)
C(AQ + BY) 0 [-CB,T'BTCT
with
tljnl
t2[n2
T = ' > 0. (3.70)
trInT

The case for components of the output vector is exactly the same, except for C' = C; and

T = T;, where i is the output component in question, in (3.68) and (3.69).

3.5.1.7 Synthesis of the controller

The controller is synthesised by applying the linear models of section 2.4.5 in (3.61) and
choosing the weighting for the state deviation () and the penalty of the control action
R as in table 2.1. The input constraints are specified through (3.64) or (3.66) and the

output or state constraints through (3.69) and (3.70).

3.5.1.8 Controller operation

At each time interval k, the semidefinite optimization (3.59) is performed subject to the
linear matrix inequality constraints (3.60,3.61,3.62,3.66,3.69,3.70). The feedback law for
time step k is K = —F, where ' =Y Q™.
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3.5.2 Dual-mode robust model predictive controller

The controller proposed by Pluymers et al. (2005b) uses an optimized control sequence
over the prediction horizon N after which a global stabilizing state feedback gain K is

used.

3.5.2.1 Augmented system description

The system z(k 4+ 1) = ®(k)Z(k) uses an augmented description with vertices of the

uncertainty polytope given by:

A, — BK B, 0
o, = 0 0 J(N-Dmu(N-1)na) |+ =1L, (3.71)
0 0 0

where L is the number of models.

3.5.2.2 Constraints of the augmented system
The constraints of the augmented system are given by A;z(k) < bz, k=0, ...,00 with A;

and b; defined as:

A, 0 0 by

-AK A, O by

where the state constraints are A,x < b, and the input constraints are A,u < b,.
To calculate the robust invariant set from Az and bz the algorithm from Pluymers et al.
(20054) is used to construct Su,, = {7|AsT < bs}.

3.5.2.3 Quadratic problem weighting matrix

The quadratic program weighting matrix forms part of the value function (3.78) that is

optimized on-line. The weighting matrix P should satisfy:

P—-o'Po, > 1'7Qr,+r’er,, i=1,..,1L, (3.73)
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where 1,= [ Loy O ], Tu= [ K Ly ) 0} and &;,i=1,..,. The R matrix is the
weighting on the inputs and () the weighting on the states. The P matrix can be obtained

by doing convex optimization

min  ¢r(P), subject to (3.73). (3.74)

P=PT>0
3.5.2.4 On-line control problem

The implemented input vector u(k) is the combination of the state feedback gain and the

first block of the optimized sequence of free control moves,
u(k) = —=Kx(k) + °(k|k). (3.75)

The optimized sequence of free control moves ¢%,(k) is determined from a quadratic pro-

gram subject to the polyhedral set constraints AgZ < bg that form S,,, as follows

subject to
[ (k)T en(k)T } € Saug; (3.77)
where the objective function is
J (k) en (k) = [ ) en (k)T ] P [ o) ex (k)T ] NGO

with P = PT € RatNnu)x(natNn) gatisfying (3.73).

3.5.2.5 Synthesis of controller

The controller is synthesised by first constructing all the augmented linear systems as in
(3.71). This controller uses the polytopic uncertainty description Q = [ A; B, } L 1=

1,2, ..., L, where L is the number of models. The polytopic uncertainty description can be
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calculated from the structured uncertainty description by applying all the combinations
of the A operator to the structured uncertainty description. Each entry on the diagonal of
A can be either —1 or 1 and all other entries are 0. Each combination of diagonal entries
gives A;, 1 = 1,2,..., L, where L = 2" and A € R"*", gives a vertex of the polytopic
uncertainty description by producing [ A, B } The simplified model of section 2.4.5
has a A with dimension 4. This gives a total of L = 2% = 16 models.

The globally stabilizing unconstrained feedback gain K is then synthesised, such that
all the models { A, B } , 1 =1,2,..., L are stabilized by K. The augmented system is
synthesised as described in section 3.5.2.1 by using the globally stabilizing unconstrained
feedback gain K and the polytopic uncertain models €2 = [ A, B } ,1=1,2, ..., L.

The polyhedral set that describes the constraints of the system is then calculated from
the augmented system description and K as in section 3.5.2.2. The weighting matrix P
of the quadratic program is then calculated offline using the augmented system, K, the
weighting on the state deviation (), and weighting on the control action R as described

in section 3.5.2.3. The values for () and R are shown in table 2.1.

3.5.2.6 Controller operation

The controller components of the augmented system, globally stabilizing feedback gain
K, quadratic program weighting matrix P, and the polyhedral constraint set S,,,, as
synthesised in section 3.5.2.5, are then used as part of the quadratic program (3.76,3.77

and 3.78) at each time step k. The input vector is obtained by (3.75).

3.6 Conclusion

This chapter briefly describes the development of stability theory for model predictive
control and the subsequent robust stability and robust performance theory for model
predictive control. The chapter further highlights two robust model predictive controller
methods, namely feedback robust model predictive control and dual-mode robust model
predictive control. The synthesis and operation of both these controllers are described,

as they will be compared to nominal model predictive control, in terms of performance
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and stability in the presence of model uncertainty, in chapter 4.
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Chapter 4

Simulation Study

In this chapter, a comparative simulation study is conducted between nominal MPC and
two robust MPC schemes as applied to a model of an EAF. In the first instance, the
ability of the controllers to remain stable under model mismatches that occur due to the
uncertainty of the model is studied. The performance of the controllers based on a suitable
value function is used to compare the controllers. Secondly, more practical scenarios are
investigated, where a predictor is employed for feedback to the controllers and only limited
measurements are available from the plant for feedback. This provides an opportunity to

investigate the effect that a lack of measurements has on the performance of the system.

4.1 Introduction

The purpose of the refining process in an electric arc furnace is to produce a certain grade
of steel. The properties that define the grade of the steel are all the impurities within
the steel, of which carbon is the most important. The downstream processing of the steel
requires a certain temperature at tapping.

The reduced model of Bekker et al. (1999) only models carbon content, temperature,
FeO, Si and SiO;. The carbon content is only marginally controllable as shown in
section 2.4.4 and section 2.4.5, therefore the secondary objective, that is to control the
temperature to the desired value required for downstream processing, is pursued. In

section 2.4.5 it is shown that Si and Si0O, cannot be controlled, and are as such left out
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of the control objectives.
High levels of FeO in the slag are undesirable, because each time deslagging takes
place, iron is lost in the form of F'eO. One of the objectives would be to limit the amount

of FeO in the slag in order to maximize yield. There are two methods to accomplish this:

1. The state deviation from the desired amount of FeO can be penalized. This will
force the controller to apply control actions that will minimize the increase of FeO

in the slag.

2. Excessive oxygen injection could be penalized, because oxygen injection increases

the FeO in the slag due to the oxidation of iron.

The use of oxygen injection is governed by the trade-off between FeO production and its
use as an additional source of energy. Oxygen injection is also a mechanism by which
decarburization takes place. The trade-off can be made by placing a state constraint on
the increase of FeQ; usually it is desirable to limit FeO to less than 40% of the total
slag mass. If yield is paramount, a state weighting on F'eO is preferable. The controller
can be tuned to minimize the energy cost by setting the weights of the inputs according
to the cost of each energy source. This may result in oxygen injection being preferred as
energy source because it might be less expensive than electricity.

For these simulations, the bath temperature and F'eO content in the slag are shown as
outputs and oxygen and graphite injection as well as electric power are shown as inputs.
The carbon content in the bath is not shown because in all instances it will mirror that

of figure 2.6 in section 2.4.4.

4.1.1 Controller weighting matrices

The state weighting is such that only the deviation of temperature from the setpoint or
reference trajectory is penalized as shown in table 4.1. If FeO is penalized as an undesir-
able product, the optimization would try to minimize its production. The weighting on

oxygen can be determined by energy pricing considerations.
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Table 4.1: MPC weighting matrix for states.

Variable Weighting value

FeO content in slag
Temperature 1

Weighting matrix @ [ 8 (1) }

Table 4.2: MPC weighting matrix for inputs.

Variable Even weighting Oxygen heavy weighting
Oxygen injection weighting 0.01 0.1
Electric power weighting 0.01 0.01
Graphite injection weighting 0.01 0.01
0.01 0 0 0.1 0 0
Input weighting matrix R 0 001 O 0 001 O
0 0 0.01 0 0 0.01

There are two input weighting scenarios, the first where all the inputs have an equal
weighting, to encourage the controller to make use of all the inputs equally. In the second
scenario, oxygen has a greater weighting to force the controller to make less use of oxygen
injection to manipulate the temperature in order to reduce the amount of F'eO that forms.
The weighting of the inputs are summarized in table 4.2. The weighting of the inputs
is less than the weighting of temperature, for two reasons: Firstly, it reduces the steady
state offset if the steady state values are not at the origin, and secondly, it encourages

greater control action that leads to reduced response times.

4.1.2 Closed-loop architectures

There are two control architectures for the simulation study. The first controller archi-
tecture (figure 4.1) uses full state feedback, assuming continuous feedback for all states.
The setpoint or reference for the model predictive controller contains a value for the tem-
perature and FeO content, but the controller will ignore this setting for FeO, because

the weighting on the states (table 4.1) will cause no penalty in the objective function for
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Full State Feedback Control Architecture

< >

Setpoint - Oxyggn Injection Rate
- Temperature - Electric Power
or - FeO Content (Robust) - Graphite Injection Rate | 5 State
» Model Predictive » Nonlinear
Controller Plant
Reference
Trajectory
1
Temperature
FeO Content

Figure 4.1: Full state feedback control architecture.

the deviation of FeQO from its setpoint or reference. The controller manipulates oxygen
injection, electric power and graphite injection. The temperature and FeO content from
the plant are measured continuously and fed back to the model predictive controller.
The second control architecture (figure 4.2) is a limited measurement, predictor feed-
back architecture. The controller provides control action to both the plant and predictor,
the five state nonlinear model of section 2.2. The predictor provides continuous estimates
of the plant states, temperature and FeQ, to the model predictive controller. Each time
a measurement is available from the plant, it is fed to the predictor in order to correct

the state values, and predictor parameter values are updated as necessary.

4.1.3 Controller objectives

In order to determine whether the controllers attained the required level of performance,
the objectives against which the performance can be measured have to be clearly defined.
The objectives usually stem from the process that imposes the constraints on the inputs
(because of actuator limitations) and states as well as the setpoints that the controller
should reach and maintain.

The minimum and maximum oxygen and carbon injection rates are determined by

the injectors. The minimum oxygen and graphite injection rate is 0 kg/s, because neither
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Limited Measurement — Predictor Feedback Control Architecture

Setpoint - Oxygen Injection Rate
Temperature - Electric Power
or - FeO Content (Robust) - Graphite Injection Rate | 5 State
» Model Predictive » Nonlinear
Controller Plant
Reference
Trajectory
Limited
1 measurements
vy
Temperature
FeO Content 5 State
Nonlinear
Predictor

Figure 4.2: Limited measurement with predictor feedback control architecture.

oxygen nor graphite can be extracted by the injectors. The maximum oxygen injection
rate is 1 kg/s and the maximum graphite injection rate is 0.5 kg/s as specified by the
manufacturer.

The minimum power that the electric arc can produce is 0 Watt and the maximum
power it can produce is 40 MW.

The state constraint on FeQ is 40% of the total slag mass. This will prevent too much
iron being lost during deslagging.

The initial conditions for the refining stage for temperature, carbon, FeO, Si and
Si0, are calculated from the average values of measurements taken over multiple taps
(Rathaba, 2004). The measurements are shown in appendix C.

The initial value for temperature is chosen to be 1600°C, which is close to the average
value, while the tap temperature should be 1650°C' as required by the industry partner
(Bellingan, 2005) for downstream processing.

The initial values of the refining stage for carbon varies greatly, between 0.2% to 0.06%
of the bath mass. The initial value for carbon is chosen to be 0.2% of total bath mass.
The desired carbon content at tapping is 0.05% of the total bath mass as specified by the

industry partner (Bellingan, 2005) for the desired grade of steel. The difference between
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Table 4.3: Initial conditions for simulations

State Initial Condition
T3 Dissolved Carbon 160 kg

Ty Dissolved Silicon 24 kg

Ty FeO in bath 4250.6 kg

xg Si0s in bath 1405 kg

219 Bath temperature 1600 °C

Table 4.4: States and inputs constraints

State / Input Minimum constraint ~ Maximum constraint

x7 - FeO in bath 0% of total slag mass 40% of total slag
mass

dy - Oxygen injection rate 0 kg/s 1 kg/s

dy - Electric power 0 kW 40 000 kW

ds - Graphite injection rate 0 kg/s 0.5 kg/s

the initial and desired carbon content values determines the duration of the refining stage.
The time of 600s is derived from the time it takes the carbon content to reduce from 0.2%
to 0.05% of the total bath mass.

The initial conditions used for the simulations are summarized in table 4.3 and the

constraints on the states and inputs are summarized in table 4.4.

4.1.4 Typical operation

This section gives a quick overview of a typical tap and how control would be implemented.
The tap starts with the charging of scrap. The scrap is melted down and a second bucket
is added. When the second bucket is melted down, the slag layer is removed and a
temperature measurement and a sample of the molten metal are taken. The temperature
measurements are costly as the probes are burnt away. The temperature measurement
registers within seconds on the SCADA system, while the metal sample takes a few
minutes to analyze. The desired steel grade is decided before the tap commences and
as soon as the sample is analyzed, the melter knows how much time is needed to bring
the carbon content down to the desired level and what setting to put the burners on.
Approximately halfway though the refining stage, the slag layer is again removed and
another temperature measurement is taken. When the melter thinks that the composition

and temperature are at the desired values, the steel is tapped into a ladle for further
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processing.

If the refining stage is automated, the controller is engaged as soon as the sample
analysis is available. The predictor estimates the states of the furnace from the time that
the temperature measurement is taken with the sample and temperature data as initial
conditions. The controller takes over the oxygen and graphite injectors as well as the
power control for the furnace. The controller will give an indication to the melter when it
is time to take a temperature measurement and give an indication when the steel is ready
for tapping. The estimated temperature and carbon values for the furnace, as calculated
by the predictor, can be displayed for the melter. The melter can use the estimates to
track the progress of the process or use it to control the process manually for special

scenarios.

4.2 Nominal Scenario

The nominal scenario is where there is no model mismatch between the internal model of
the controllers, the predictor and the model of the plant. The nominal case is used as a
benchmark for further simulation studies. In this scenario the following assumptions are

made:

e Full state-feedback is available.
e There is no mismatch between the predictor and actual plant.

e There are no disturbances.

In this scenario, the effect of different weightings on the inputs as well as the use of
a reference trajectory are examined. Three controllers are compared: nominal MPC,
feedback robust MPC and the dual-mode robust MPC. In the nominal case there should
(theoretically) be no difference between the performance of the controllers, except that
the robust controllers might be more conservative than the nominal MPC. The first set
of results was obtained with even weighting (table 4.2) on the inputs and a setpoint of

1650°C' for temperature.
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From figures 4.3, 4.4 and 4.5, it is clear that, as expected, the nominal MPC and
dual-mode robust MPC have almost the same results. The feedback robust MPC is
not able to deal with the nominal case, because of limitations inherent in the theory.
Feedback robust MPC can only deal with symmetric constraints, and in order to apply it
where the constraints are asymmetric, a constant disturbance is added to the inputs. The
conservatism of the theory shows its influence, because the inputs must be driven to the
constraints in order to successfully control the system. The feedback robust MPC becomes
more conservative further away from the steady state value for both the states and inputs,
the origin for the states and the disturbance level for the inputs. To successfully control
the system, the inputs must be driven to the constraints. Feedback robust MPC constructs
the feedback policy in such a manner that the inputs do not reach the constraints and
the closed-loop system can therefore not follow the setpoint successfully. The controller
does this to ensure that the feedback gain can be applied to the whole trajectory of the
states from the current condition until it reaches the origin without the resulting inputs

violating the constraints. This method is therefore excluded from the rest of the study.

The second set of results was obtained with a higher weighting on the oxygen injection
rate (table 4.2) in order to limit FeO formation, and the temperature is driven to a

setpoint of 1650°C".

Figures 4.6 and 4.7 show that the increased weighting on oxygen leads to reduced
formation of F'eO. The robust MPC controller made use of more oxygen, which is evident
from the higher F'eO content with the same weighting on the oxygen in comparison with

the nominal MPC controller.

The third set of results was obtained with an even weighting on the inputs (table 4.2)
and with a linear reference trajectory for the temperature over the duration of the refining

stage.

Figures 4.8 and 4.9 show that the use of a reference trajectory reduces the amount of
oxygen and electric power used, and that the reduced levels of electric power and oxygen

injection are maintained for the entire duration of the refining stage.
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The fourth set of results was obtained with a higher weighting on the oxygen injection
rate (table 4.2) in order to reduce the formation of F'eO, and a linear reference trajectory
for temperature is employed over the duration of the refining stage.

Figures 4.10 and 4.11 show that the use of a higher weighting on oxygen injection
reduces the formation of FeO and it is clear that more electricity and less oxygen is used.
Again the nominal MPC controller uses less oxygen than the robust controller, resulting
in significantly less F'eO being produced.

From the nominal case, it is difficult to distinguish between the nominal MPC and
dual-mode robust MPC, because there are no model mismatches.

Robust MPC is more conservative in using oxygen than the nominal MPC controller
using the same weighting matrices, which can be attributed to the globally stabilizing
feedback gain of the dual-mode robust MPC introducing extra dynamics into the QP.
The reduced usage of oxygen will slightly reduce the decarburization rate as well as the
amount of FeO in the slag.

With both controllers, there is a slight offset between the setpoint and outputs, which
can be attributed to the steady-state inputs not reaching zero, and the offset is a result
of the optimization of the objective function being a trade-off between making the state
error zero and the inputs zero.

The scenarios where limited feedback is available are not investigated as it will produce
the same results as above. This is because there is no model mismatch between the internal

controller model and actual plant or between the predictor and actual plant.

4.3 Worst-case scenario: Efficiencies at their minimum

These worst-case scenario investigates the effect of a model mismatch between the internal
model of the model predictive controllers and the actual plant when full state feedback is
employed to gauge the robust stability and performance of the controllers. In the scenarios
where limited plant measurements are available, the effect of model mismatches between
the predictor and the actual plant is investigated in order to gauge the sensitivity of the

system to the performance of the predictor. This scenario focuses on the effect that lower
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Figure 4.3: Nominal MPC - Nominal Case with full state feedback.
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Figure 4.4: Dual Mode Robust MPC - Nominal Case with full state feedback.
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Figure 4.5: Feedback Robust MPC - Nominal Case with full state feedback.
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Figure 4.6: Nominal MPC - Nominal Case with full state feedback and reduced oxygen

usage.
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Figure 4.7: Dual Mode Robust MPC - Nominal Case with full state feedback and reduced

oxygen usage.
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Figure 4.8: Nominal MPC - Nominal Case, full state feedback and reference trajectory.
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Figure 4.9: Dual Mode Robust MPC - Nominal Case, full state feedback and reference
trajectory.
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Figure 4.10: Nominal MPC - Nominal Case, full state feedback, reference trajectory and

reduced oxygen usage.
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Figure 4.11: Dual Mode Robust MPC - Nominal Case, full state feedback, reference
trajectory and reduced oxygen usage.
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than nominal efficiencies (nreo and narc) have on the controller and system as a whole.

In these scenarios the following assumptions are made:

e There are three feedback scenarios:

— Full state-feedback is available.
— One temperature measurement is available.

— One temperature measurement and an update of the efficiencies (np.o and

narc) of the predictor are available.

e The predictor and actual plant have a mismatch in their efficiencies (nreo and nagc)

where the efficiencies are lower in the real plant than in the predictor.
e There are no disturbances.

The three feedback scenarios help to investigate the performance of the system with
regards to the different modules in the system, especially the performance of the predictor
and controller. One of the objectives of the controllers is to limit the amount of FeO that
forms. Only the scenarios with a higher penalty on oxygen are evaluated here, with the

other scenarios evaluated in appendix B.1.1.

4.3.1 Worst-case scenario: Efficiencies at their minimum with full

state feedback

In this first instance, full-state feedback is employed to evaluate the closed-loop perfor-
mance without a predictor in the loop in the extreme case where the efficiencies (nzco
and nagc) are at the minimum of the model parameter confidence intervals. Robust
MPC and nominal MPC are compared to determine whether robust MPC provides better
performance in the presence of model mismatch compared to nominal MPC.

A setpoint of 1650°C' for temperature as well as higher weighting on oxygen injection
(table 4.2) is used for the first set of simulations.

From these results (figures 4.12 and 4.13) it is clear that the robust MPC performs

better than the nominal MPC. The robust controller produced a smaller steady-state
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temperature offset. It is interesting to note that the nominal controller is stable for this
simulation even in this extreme model mismatch situation. The heavier weighting on
oxygen injection is not enough to limit the FeO production to below the constraint limit.

The second set of simulations uses a reference trajectory for temperature and a higher
weighting on the oxygen injection (table 4.2).

These results (figures 4.14 and 4.15) show the superior performance of the robust MPC
compared to the nominal MPC, with almost perfect tracking of the reference trajectory
by the robust MPC. The higher weighting on the oxygen causes the FeO constraint to be
reached much later and it forces the robust controller to use more electricity. The robust
MPC used more oxygen, but this resulted in better trajectory following when compared
to results obtained with the nominal MPC.

This scenario showed that both controllers are stable for the respective simulations
with extreme model mismatch, but the robust controller showed better performance in

terms of setpoint and reference trajectory following than the nominal controller.

4.3.2 Worst-case scenario: Efficiencies at their minimum with one

plant measurement

A more realistic feedback scenario is investigated, because typically only one measurement
of temperature is taken in the middle of the refining stage. The rest of the data is produced
by the predictor. The predictor uses the nominal plant parameters, while the real plant
uses the worst-case scenario where the efficiencies (7.0 and nagc) are at their minimum.
This scenario should shed light on the effect of model mismatch between the predictor
and real plant when compared to the results of the previous subsection.

A setpoint of 1650°C' for temperature as well as higher weighting on oxygen injection
(table 4.2) is used for the first set of simulations.

Figures 4.16 and 4.17 show that both controllers perform equally poorly as a result of
the inaccurate feedback from the predictor. An acceptable margin on the tap temperature
is £10°C, which both the controllers were unable to attain.

A reference trajectory for temperature as well as higher weighting on oxygen injection
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Figure 4.12: Nominal MPC - Efficiencies at a minimum, full-state feedback and reduced

oxygen usage.
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Figure 4.13: Dual-mode robust MPC - Efficiencies at a minimum, full-state feedback and

reduced oxygen usage.
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Figure 4.14: Nominal MPC - Efficiencies at a minimum, full-state feedback, reduced
oxygen usage and reference trajectory.
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Figure 4.15: Dual-mode robust MPC - Efficiencies at a minimum, full-state feedback,
reduced oxygen usage and reference trajectory.
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Figure 4.16: Nominal MPC - Efficiencies at a minimum, one measurement and reduced

oxXygen usage.

(table 4.2) is used for the second set of simulations.

These simulations (figures 4.18 and 4.19) show that the robust controller manages to

trace the reference better when compared to the nominal controller, but that it is still

outside the acceptable interval of £10°C. Both controllers using a reference trajectory on

average steer the temperature five degrees further from the desired final value compared

to when a setpoint is employed. The higher weighting on the oxygen causes less F'eO

to be produced by both controllers and limits the FeO content to within the constraint

limit.
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Figure 4.17: Dual-mode robust MPC - Efficiencies at a minimum, one measurement and

reduced oxygen usage.
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Figure 4.18: Nominal MPC - Efficiencies at a minimum, one measurement, reference
trajectory and reduced oxygen usage.
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Figure 4.19: Dual-mode robust MPC - Efficiencies at a minimum, one measurement,
reference trajectory and reduced oxygen usage.
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4.3.3 Worst-case scenario: Efficiencies at their minimum with one

plant measurement and predictor parameter update

In the previous section, the effect of model mismatch between the predictor and the actual
plant on the performance of the closed-loop system is made clear. To combat this, the
parameters of the predictor are updated each time a measurement is taken, in an attempt
to improve performance. In this scenario only one temperature measurement is taken in
the middle of the refining stage, with the rest of the state data produced by the predictor.
The predictor uses the nominal plant parameters until the first measurement is taken,
after which the corrected parameters are employed. The real plant uses the worst-case
scenario where the efficiencies (np.o and nagrc) are at their minimum.

A setpoint of 1650°C' for temperature as well as higher weighting on oxygen injection
(table 4.2) is used for the first set of simulations.

Figures 4.20 and 4.21 show that both controllers are able to steer the temperature to
within the desired margin of £10°C. The robust controller overshoots the setpoint, which
can be attributed to an overcorrection made in the predictor, as seen from the expected
trajectory compared to the actual trajectory. The expected trajectory of the robust MPC
ends at the desired setpoint, while the expected trajectory of the nominal MPC ends
well outside the accepted margin of 10°C. The nominal MPC steers the temperature
to within the accepted margin of £10°C, but only because of an overcorrection of the
predictor. Both controllers use less oxygen, but the nominal controller less than the
robust controller.

A reference trajectory for temperature as well as higher weighting on oxygen injection
(table 4.2) is used for the fourth set of simulations.

These simulations (figures 4.22 and 4.23) show that the nominal controller misses the
+10°C margin, while the robust controller does reach the +10°C' margin. The expected
trajectory of the robust controller reaches the desired value exactly, but the actual value
is somewhat lower, due to an undercorrection in the parameters of the predictor. The ex-
pected trajectory of the nominal MPC barely reaches the accepted margin, but the actual

trajectory misses the interval completely, due to the undercorrection in the parameters of
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Figure 4.20: Nominal MPC - Efficiencies at a minimum, one measurement and predictor
parameter update and reduced oxygen usage.

the predictor. The performance of the nominal MPC is hindered by its conservative use

of oxygen.

The inability of the controllers to follow the reference is due to an undercorrection
of the parameters of the predictor. The first sets of results show that the parameters of
the predictor are sufficiently corrected at the measurement point to enable satisfactory
results. In the reference trajectory simulations, the corrections to the parameters of the
predictor are insufficient, which would require the updater to be tuned differently for the
setpoint case and the reference trajectory case. The updater is sensitive to the timing
of the measurement, the initial conditions that vary for each tap, and other disturbances

such as late cave-ins.
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Figure 4.21: Dual-mode robust MPC - Efficiencies at a minimum, one measurement and
predictor parameter update and reduced oxygen usage.
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Figure 4.22: Nominal MPC - Efficiencies at a minimum, one measurement and predictor
parameter update, reference trajectory and reduced oxygen usage.
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Figure 4.23: Dual-mode robust MPC - Efficiencies at a minimum, one measurement and
predictor parameter update, reference trajectory and reduced oxygen usage.
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4.4 Worst-case scenario: Efficiencies at their maximum

These worst-case scenarios investigate the effect of model mismatch between the internal
model of the controllers and the actual plant as well as the predictor and the actual plant.
This scenario focuses on the effect created if the efficiencies (np.o and nagc) are higher
than nominal. This is a more theoretical scenario, because efficiencies do not tend to
be higher than expected, but are necessary to determine whether the controller would be

able to cope with such a situation. In these scenarios the following assumptions are made:
e There are three feedback scenarios:

— Full state-feedback is available.
— One temperature measurement is available.

— One temperature measurement and an update of predictor parameters are

available.

e The predictor and actual plant have a mismatch in their efficiencies (nreo and nagc)

where the efficiencies are higher in the real plant than in the predictor.

e There are no disturbances.

The three feedback scenarios help to investigate the performance of the system with
regards to the different modules in the system, especially the performance of the predictor

and controller.

4.4.1 Worst-case scenario: Efficiencies at their maximum with

full state feedback

In this first instance, full-state feedback is employed to evaluate the closed-loop perfor-
mance without a predictor present, in the extreme case where the efficiencies (g0 and
Narc) are at the maximum of the confidence interval for the plant model. Robust MPC
and nominal MPC are compared to determine which provides better performance in the

presence of model mismatch.
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The first set of simulations uses a setpoint of 1650°C' for temperature as well as higher
weighting on oxygen injection (table 4.2).

Figures 4.24 and 4.25 show that both controllers are capable of following the setpoint,
and the increased weighting on oxygen reduces the amount of FeO that forms. The
nominal MPC overshoots the temperature setpoint, while the robust MPC does not. The
nominal MPC uses less oxygen than the robust MPC, which result in less FeO forming
in the slag.

The second set of simulations uses a reference trajectory for temperature as well as a
higher weighting on oxygen injection (table 4.2).

The last simulations (figures 4.22 and 4.23) show that both controllers have good
reference following, with the robust controller overshooting slightly. The oxygen usage of
the nominal controller is slightly lower than the previous run, but significantly lower than
that of the robust controller.

Both controllers perform very well in this scenario where the efficiencies are higher
than expected, and do not show any difficulty with the model mismatch between the

internal model and the actual plant.

4.4.2 Worst-case scenario: Efficiencies at their maximum with

one plant measurement

A more realistic feedback scenario is investigated, where only one measurement of tem-
perature is taken in the middle of the refining stage, the rest of the data is produced by a
predictor. The predictor uses the nominal plant parameters, while the real plant uses the
worst-case scenario where the efficiencies (np.o and narc) are at their maximum. This
scenario should shed light on the effect of model mismatch between the predictor and real
plant when compared to the results of the previous section.

The first set of simulations uses a setpoint of 1650°C' for temperature as well as higher
weighting on oxygen injection (table 4.2).

Figures 4.28 and 4.29 show that both controllers fail to steer the temperature to within

the +10°C margin. The controllers overshoot the setpoint, because the efficiencies (nr.o
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Figure 4.24: Nominal MPC - Efficiencies at maximum with full state feedback and reduced

oxygen usage.
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Figure 4.25: Dual-mode robust MPC - Efficiencies at maximum with full state feedback

and reduced oxygen usage.
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Figure 4.26: Nominal MPC - Efficiencies at maximum with full state feedback, reference

trajectory and reduced oxygen usage.

Electrical, Electronic and Computer Engineering

107



Chapter 4 Worst-ca$ wiiiisio: Efficiencies at their maximum

Bath Temperature Slag FeO Content
1660 T T T T T 5400777777777777\777777\777777\7 777777777777
16501 7 5200 1
7 L
@ 1640 1 5000( —Actual 1
3 ot =3 Expected
= o = - - -State Constraint
o o >
5 1630+ - 1 © 4800r 1
IS o — Actual =
3 s - Expected %
£ 16201 A - - -Reference| | L 4600¢ il
it g
1610 B , 4400 /
1600 ~ 4 L L L L L 4200 L L L L L
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time [seconds] Time [seconds]
(a) Temperature (b) FeO in Slag
Oxygen Injection Rate x 10 Flectrlc Power Graphite Injection Rate
1 4
0.5
@ 08 E 3 o 0.4
=) < =)
206 = = 03
c o 2
$0.4 52 £ 02
g a ]
0.2 1 O 01
0
0
0 - - -0.1
0 200 400 600 0 200 400 600 0 2 0 600
Time [seconds] Time [seconds] Time [seconds]
(c) Oxygen Injection (d) Electric Power (e) Graphite Injection

Figure 4.27: Dual-mode robust MPC - Efficiencies at maximum with full state feedback,
reference trajectory and reduced oxygen usage.
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and nagc) are higher than expected and the controllers drive the temperature too high.
The measurement shows the controllers that the temperature is too high, and they respond
by turning off all energy sources. The temperature is lowered, but is limited by the tempo
of natural heat loss, which is too slow to reach the target by the end of the refining stage.
The process could be accelerated by opening the furnace roof, which would aid heat loss.
This situation can be prevented by taking a measurement earlier in the refining stage to
identify the problem sooner.

The second set of simulations uses a reference trajectory for temperature as well as
higher weighting on oxygen injection (table 4.2) and updates the parameters (np.o and
narc) of the predictor from the plant measurement.

These simulations (figures 4.30 and 4.31) show that both controllers steer the temper-
ature to within the £10°C margin. The reference trajectory causes the temperature to
increase much slower than with the setpoint, so that by the time a measurement is taken,
the temperature has not yet passed the desired final value of 1650°C. The temperature
does increase above the reference, and after the measurement, the controller corrects the
problem and once it has reached the reference, it follows it more closely. There is still an
undercorrection, which causes the temperature to increase faster than expected. The final
value ends within the accepted £10°C' margin. The heavier weighting on oxygen injection

usage results in lower F'eO production without affecting the temperature response.

4.5 Temperature disturbance

A temperature disturbance can occur due to a late cave-in. This happens when there
is solid scrap that falls into the bath, which is unexpected, because it is assumed that
all scrap has melted when refining commences. As a result, the bath temperature drops
quickly, and can be modelled by a step disturbance on the temperature. The following

assumptions are used for this simulation:

e One measurement from the plant.

e No predictor parameters update.
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Figure 4.28: Nominal MPC - Efficiencies at maximum, one measurement and reduced

oxygen usage.
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Figure 4.29: Dual-mode robust MPC - Efficiencies at maximum, one measurement and
reduced oxygen usage.
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Figure 4.30: Nominal MPC - Efficiencies at maximum, one measurement and predictor
update, reference trajectory and reduced oxygen usage.
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Figure 4.31: Dual-mode robust MPC - Efficiencies at maximum, one measurement and
predictor update, reference trajectory and reduced oxygen usage.
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Figure 4.32: Dual-mode robust MPC - Temperature disturbance of —20°C" at time 200s
with setpoint of 1650°C.

e Actual plant and predictor use nominal plant parameters.

e Disturbance of —20°C' on temperature at time 200s.

The first simulation uses a setpoint of 1650°C for temperature and even weighting on the
inputs (table 4.2) with a temperature disturbance of —20°C' at time 200s.

Figure 4.32 shows that the robust controller is capable of handling a quite severe
temperature drop of 20°C' and recover from it.

The second simulation uses a reference trajectory for temperature with even weighting
on the inputs (table 4.2) with a temperature disturbance of —20°C" at time 200s.

Figure 4.33 shows that the robust controller is capable of handling a quite severe
temperature drop of 20°C' and recover from it even when employing a reference trajectory.

The controller makes full use of the energy sources when the disturbance is detected.
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Figure 4.33: Dual-mode robust MPC - Temperature disturbance of —20°C" at time 200s
with a reference trajectory for temperature.
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In the limited feedback scenarios, the disturbance will only be detected when it occurs
before a measurement, of which there is usually only one during the refining stage. In
this case, predictor parameter update will have a detrimental effect on the performance,
because the difference would be attributed to model mismatch where the efficiencies are
lower than nominal, and an overcorrection would be made to the predictor. This will

result in the temperature ending up much higher than desired.

4.6 Summary

This section provides a summary of the results obtained in the previous sections. The
results are summarized in tables 4.5, 4.6, 4.7, 4.8 and4.9. The notation used in the tables

is as follows:
e Feedback:

— FSF - Full state feedback.

— OM - One temperature measurement is taken in the middle of the refining

stage with the rest of the data produced by a predictor.

— OMPU - One temperature measurement is taken in the middle of the refining

stage with which the parameters of the predictor are updated.
e Setpoint or Reference:

— Setpoint - A constant setpoint for temperature of 1650°C' is employed.

— Reference - A linearly increasing reference is employed for temperature that

reaches 1650°C' at the end of the refining stage period.
e Input weighting:

— Even - All inputs are penalized equally in the objective function (table 4.2).

— Oxygen Heavy (OH) - Oxygen usage is penalized more than the other inputs

in the objective function (table 4.2).
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e AT - Temperature difference - The amount that the final temperature value differs

from 1650°C.
e Acceptable - If the final temperature value is within a +10°C' margin of 1650°C.

e Energy usage - The value of a linear penalty function that uses the same weightings

of the inputs as the controllers.

The energy usage is a function that sums up all the inputs together over the whole
duration of the refining stage. All the inputs are scaled so that the maximum value of
each contributes equally to the energy usage metric. This metric gives an indication of
how much energy is applied throughout the refining stage for each simulation scenario.

The metric is calculated as follows

EU = +Jux*Ryxu” (4.1)

where R, is the scaling matrix and u € R%9%3 | where there is a sample every second over

10 minutes and three inputs. The scaling matrix is

10 0 0
R, = 0 0.00025 0 |- (4.2)
0 0 20

This gives an indication of overall controller action employed by the controller, because
the same metric was included in the controller. The metric can be changed to include

energy cost that will lead to the most energy efficient solution.

4.7 Conclusion

This comprehensive simulation study looked at some theoretical as well as more practical
scenarios in order to investigate the performance of the robust and nominal controllers in
the presence of model mismatch. The performance of the closed-loop system where there

is model mismatch between the predictor and actual plant was also studied.
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Controller Feedback Setpoint or Reference Input weighting Temperature difference Energy usage Fig
Nominal MPC FSF Setpoint Even < 19C 8.5e+004 4.3
Robust MPC FSF Setpoint Even < 1°%C 1.0e+4-005 4.4
Nominal MPC FSF Setpoint Oxygen Heavy < 1°C 1.7e+005 4.6
Robust MPC FSF Setpoint Oxygen Heavy < 1°C 1.4e-+005 4.7
Nominal MPC FSF Reference Even < 1°C 8.9e+004 4.8
Robust MPC FSF Reference Even 3°C 9.6e+004 4.9
Nominal MPC FSF Reference Oxygen Heavy <1°C 1.8e+005 4.10
Robust MPC FSF Reference Oxygen Heavy 3°C 1.7e+005 4.11

"SOTOURIDIY [RUTWIOU [[}IM S}[NSII UOTJR[NUIS JO ATRUIWING C'F 9[qe],

¥ 1o1deyp

UOISN[OUO0))



SurzeouiSuyg 19ndwio) pue dIUOIIIBH ‘[BIII}IIH

6TT

Controller Feedback Setpoint or Reference Input weighting ~ AT  Acceptable Energy usage Fig
Nominal MPC FSF Setpoint Even —20C Yes 2.3e+005 B.1
Robust MPC FSF Setpoint Even < 1°%C Yes 2.3e-+005 B.2
Nominal MPC FSF Setpoint Oxygen Heavy  —2°C Yes 3.5e+005 4.12
Robust MPC FSF Setpoint Oxygen Heavy < 1°C Yes 2.7e4-005 4.13
Nominal MPC FSF Reference Even —4°C Yes 2.2e-+005 B.3
Robust MPC FSF Reference Even < 1°C Yes 2.5e-+005 B.4
Nominal MPC FSF Reference Oxygen Heavy  —5°C Yes 3.4e+005 4.14
Robust MPC FSF Reference Oxygen Heavy < 1°C Yes 3.5e+005 4.15
Nominal MPC OM Setpoint Even -20°C No 1.4e+4005 B.5
Robust MPC OM Setpoint Even —20°C No 1.1e-+005 B.6
Nominal MPC OM Setpoint Oxygen Heavy —23°C No 2.4e+005  4.16
Robust MPC OM Setpoint Oxygen Heavy —21°C No 1.9e-+005 417
Nominal MPC OM Reference Even -24°C No 1.2e-+005 B.7
Robust MPC OM Reference Even -220C No 1.3e-+005 B.8
Nominal MPC OM Reference Oxygen Heavy —30°C No 2.2e-+005 4.18
Robust MPC OM Reference Oxygen Heavy —27°C No 2.1e-+005 4.19
Nominal MPC ~ OMPU Setpoint Even —50C Yes 2.2e+005 B.9
Robust MPC OMPU Setpoint Even +20C Yes 2.6e-+005 B.10
Nominal MPC  OMPU Setpoint Oxygen Heavy  —6°C Yes 3.3e+005 4.20
Robust MPC ~ OMPU Setpoint Oxygen Heavy  +6°C Yes 3.0e-+005 4.21
Nominal MPC ~ OMPU Reference Even —-17°C No 1.6e+005  B.11
Robust MPC ~ OMPU Reference Even —12°C No 1.9e+005  B.12
Nominal MPC  OMPU Reference Oxygen Heavy —19°C No 2.7e4005 4.22
Robust MPC OMPU Reference Oxygen Heavy  —9°C Yes 2.7e4-005 4.23
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Controller Feedback Setpoint or Reference Input weighting ~ AT  Acceptable Energy usage Fig
Nominal MPC FSF Setpoint Even < 19C Yes 4.3e+004  B.13
Robust MPC FSF Setpoint Even < 1°%C Yes 7.4e+004 B.14
Nominal MPC FSF Setpoint Oxygen Heavy < 1°C Yes 1.1e+005 4.24
Robust MPC FSF Setpoint Oxygen Heavy < 1°C Yes 9.1e+004  4.25
Nominal MPC FSF Reference Even <1°C Yes 4.3e+004  B.15
Robust MPC FSF Reference Even +4°C Yes 5.8e+004 B.16
Nominal MPC FSF Reference Oxygen Heavy < 1°C Yes 1.2e+005 4.26
Robust MPC FSF Reference Oxygen Heavy  +3°C Yes 1.1e+005 4.27
Nominal MPC OM Setpoint Even +11°C No 6.0e-004  B.17
Robust MPC OM Setpoint Even +14°C No 8.3e-+004 B.18
Nominal MPC OM Setpoint Oxygen Heavy +19°C No 1.4e4+005  4.28
Robust MPC OM Setpoint Oxygen Heavy +18°C No 1.1e+005 4.29
Nominal MPC OM Reference Even +11°C No 5.8e+004 B.19
Robust MPC OM Reference Even +13°C No 6.4e+004 B.20
Nominal MPC OM Reference Oxygen Heavy +11°C No 1.3e+005 B.21
Robust MPC OM Reference Oxygen Heavy +13°C No 1.3e+005 B.22
Nominal MPC  OMPU Setpoint Even +11°C No 6.0e-+004 B.23
Robust MPC OMPU Setpoint Even +14°C No 8.3e-+004 B.24
Nominal MPC ~ OMPU Setpoint Oxygen Heavy +19°C No 1.4e+005 B.25
Robust MPC ~ OMPU Setpoint Oxygen Heavy +18°C No 1.1e+005 B.26
Nominal MPC ~ OMPU Reference Even +7°C Yes 4.9e+004  B.27
Robust MPC ~ OMPU Reference Even +8°C Yes 6.0e+004 B.28
Nominal MPC ~ OMPU Reference Oxygen Heavy  +5°C Yes 1.2e+005 4.30
Robust MPC OMPU Reference Oxygen Heavy  +7°C Yes 1.2e+005 4.31
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Controller ~ Feedback Setpoint or Reference Input weighting AT  Acceptable Energy usage Fig
Robust MPC OM Setpoint Even < 1°%C Yes 1.4e+4-005 4.32
Robust MPC OM Reference Even +20C Yes 1.4e+005 4.33
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Controller Feedback Setpoint or Reference Input weighting AT  Efficiencies Energy usage Fig
Nominal MPC  OMPU Reference Even +7°C Max 4.9e+004 B.27
Robust MPC OMPU Reference Even +8°C Max 6.0e+004 B.28
Nominal MPC  OMPU Reference Oxygen Heavy  +5°C Max 1.2e+4005 4.30
Robust MPC ~ OMPU Reference Oxygen Heavy +7°C Max 1.2e+005 4.31
Nominal MPC ~ OMPU Setpoint Even —5°C Min 2.2e-+005 B.9
Robust MPC OMPU Setpoint Even +20C Min 2.6e+005 B.10
Nominal MPC  OMPU Setpoint Oxygen Heavy —6°C Min 3.3e+005 4.20
Robust MPC ~ OMPU Setpoint Oxygen Heavy  +6°C Min 3.0e+005 4.21
Robust MPC ~ OMPU Reference Oxygen Heavy —9°C Min 2.7e-+005 4.23
Robust MPC OM Setpoint Even < 1°C Dist 1.4e-+005 4.32
Robust MPC OM Reference Even +20C Dist 1.4e+005 4.33
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Chapter 4 i AR, Conclusion

In the scenarios where full state feedback is available, both the dual-mode robust
model predictive controller and the nominal model predictive controller perform equally
well. The model uncertainty is such that the nominal controller is capable of handling
it satisfactorily. The feedback robust MPC cannot handle asymmetric constraints such
as those present in the EAF refining process. An ad-hoc solution to compensate for
this limitation is to add a constant disturbance to the inputs. This was not a successful
strategy, because the inputs have to be driven to their constraints, which the feedback
robust MPC avoids. This prevents the feedback robust MPC method from successfully
following the temperature setpoint or reference.

A bigger problem with automating the process is the lack of feedback from the plant.
A predictor is used to estimate the plant states in order for the controller to generate
control actions for the plant. With the limited number of measurements, the effect of
model mismatch between the predictor and actual plant has a much bigger impact on
the performance of the closed-loop system than the effects of model uncertainty. The
effects of model mismatch can be reduced by using the plant measurement to update
the predictor parameters, but this will meet with varying success, because there is usu-
ally only one measurement available during the refining stage from which to update the
parameters of the predictor. If a late cave-in occurs, the predictor will be incorrectly
updated, which will hinder further performance. The updating of the parameters of the
predictor was done using an ad-hoc method to determine if it will produce better results
than a predictor without parameter update. The predictor utilizing this ad-hoc method
shows an improvement over the predictor without parameter updates. A more in-depth
study is necessary to design a proper predictor for the EAF refining process, one that
utilizes better updating methods and takes all other aspects into consideration through a
more systematic design. This was not done here, because it falls outside the scope of this

dissertation.
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Chapter 5

Conclusions and recommendations

5.1 Summary of dissertation

The main aim of the dissertation was to synthesise a robust and nominal model predictive
controller for the electric arc furnace refining process and to evaluate the feasibility of
such a controller through a simulation study. This work is based on a five state nonlinear
model that was derived by Rathaba (2004) for the electric arc furnace refining stage from
previous work by Bekker et al. (1999) and Oosthuizen et al. (2001) who created a full
twenty-two state nonlinear model of the electric arc furnace process.

In Chapter 2 the five state nonlinear model was linearized for use in the model predic-
tive controllers. A structured uncertainty description was used to describe all the linear
models that resulted from the uncertain nonlinear model. The linear models were reduced
to simplify the controllers by eliminating states that are practically uncontrollable.

In Chapter 3 a brief overview was given of the development of stability theory for robust
model predictive controllers. Two control methods, feedback robust model predictive
control and dual-mode robust model predictive control, were examined in more detail
with regards to synthesis and use.

In Chapter 4 an extensive simulation study was done on the refining stage of the
electric arc furnace refining process. Simulations were done where full state feedback was
assumed in order to evaluate the baseline performance and stability of the robust and

nominal controllers. Both the nominal and robust controllers were stable during all the
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simulations and performed well under model mismatch. More practical scenarios were
also investigated where there was only a limited number of measurements and a predictor
was employed to estimate the furnace states. Each time a measurement was available,
the predictor was corrected. In an extension, each time a measurement was available, the
predictor was corrected and its internal model parameters updated to better approximate
the real plant. The simulations show that the lack of feedback has a far greater effect on

performance than model mismatch.

5.2 Conclusion

A robust model predictive controller seemed appropriate at the onset of this study in
order to explicitly take the model uncertainty into consideration as part of the controller
synthesis. For comparison, a nominal model predictive controller was used to quantify
the advantage of using a robust controller. In the academic problem it was clear that
the robust controllers were the only ones to successfully control the uncertain system.
The electric arc furnace process does not become unstable for all the simulations when
nominal model predictive control is used, even under extreme model mismatch. The
nominal model predictive controller is therefore more than adequate for controlling the
process.

The lack of feedback is a much bigger obstacle in automating the electric arc furnace
refining process. The predictor needs to be very accurate, but with the uncertainty and
lack of measurements, it is very difficult to ensure accuracy. More frequent measurements
would need to be taken and improvements need to be made to the updating of the internal
model of the predictor to ensure satisfactory results.

The electric arc furnace refining process has states that are manipulated by more than
one input. The inputs and certain states have constraints. A simple single-input-single-
output controller will be difficult to tune in order to control the process and the constraints
will be handled in an ad-hoc fashion. A better strategy is to use a multi-variable control
system that can explicitly take constraints into account, e.g. model predictive control.

This study has shown that it is not necessary to use robust model predictive control,
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because the parameter variation does not pose a problem for nominal model predictive
control.

Operators are using the electric arc furnace daily without control and are able to reach
the targets more often than not. This study shows that robust model predictive control
have difficulty to steer the temperature to the desired setpoint with the limited number of
measurements available. All simulation, except for the nominal cases, assumed worst-case
scenarios. It is therefore likely that the worst-case scenarios do not occur frequently in
practice and that the performance of the closed-loop system might be better in reality.
The uncertainties in the model might also be overstated and therefore lead to overly

conservative results in the simulations.

5.3 Further work

There are certain areas where further work needs to be done in order to make automatic

control of the furnace practical:

e A better predictor needs to be developed in order to handle the model uncertainty
and take late cave-ins into account, by using a more systematic design method and

verifying it on real plant data.

e Methods should be devised to increase measurements during the refining stage. This
is quite a challenge due to the harsh environment that the furnace operates in. A
possible solution is to develop soft sensors that estimate bath temperature from the

off-gas temperature and coolant temperature.
Improvements can be made to the control strategy in the following areas:
e Add economic objectives to the control by examining:

— Energy cost of electricity and chemical sources as in Oosthuizen et al. (2004).
— Optimizing yield.

— Different reference trajectories for temperature and other variables.
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e Safety and environmental impact.
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Appendix A

Academic Problem

In this chapter, an academic problem is used to compare the two robust MPC together
with nominal MPC, with respect to robust stability and performance. The academic
problem consists of a system with greatly varying dynamic behaviour, which provides an

excellent test of the stability and robustness of the different controllers.

A.1 Academic problem model

This academic problem was taken from Kothare et al. (1996). The problem is a two-
mass-spring system (figure A.1). The system was discretized using Euler’s first order

approximation for the derivative with a sampling time of 0.1s. The discretized system is

. .
— Mass 1 VAV — Mass 2
O O @ @

Figure A.1: Coupled mass-spring system.
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given by
(k1) [ 0o 01 0 || e ]
za(k + 1) _ 0 1 0 0.1 xo(k) A
i IL‘4(k’ + 1) i i OlK/m2 —OlK/m2 0 1 1L l‘4(k’) i
_ . -
0
u(k) (A.2)
0.1/my
L O -
y(k) = xa(k) (A.3)

where x7 and x5 are the positions of body 1 and body 2 respectively and z3 and x4 are
the respective velocities of body 1 and body 2. The mass of body 1 is m; and the mass of
body 2 is my, while K is the spring constant. The input of the system u is the force that

is applied to the first body. The performance specifications can be summarized as follows

e Use constant mass for body 1 and body 2 of 1 kg: m; = my = 1.

e Use an uncertain spring constant that varies between 0.5 and 10: 0.5 < K < 10.

An input constraint of |u| < 1 should be maintained.

A output unit step should be followed.

Assume full state feedback is available.

To describe the effect of the uncertain spring constant K, a structured uncertainty de-

scription is used. The structured uncertainty description has the form

Q = | A+ B,6C, B+ B,dD,, (A.4)

where €2 is the system space, 0 is an operator that varies between -1 and 1, B,C, describes

the deviation from the nominal for A, and B,D,, describes the deviation from nominal

Electrical, Electronic and Computer Engineering 139



Appendix A i AR, Simulation Results

for B.
The system in (A.1) can be rewritten as a structured uncertainty description with the

constant values substituted as:

K- K
5 — nom A5
Kdev ( )
1 0 0.1 0
0 1 0 0.1
A = (A.6)
—01K,0;mm 01Ku0m 10
01K, om —01K,0m 0 1
0
0
B = (A.7)
0.1
0
0
0
B, = (A.8)
—0.1
0.1
Co = | Koo —Kgew 0 0 (A.9)
Dy = 0 (A.10)

A.2 Simulation Results

Three controllers were used in the simulation study. The controller closed-loop system
structure is shown in figure A.2. The feedback robust model predictive controller is shown
first, the dual-mode robust model predictive controller second, and the nominal model

predictive control as a benchmark last. Three simulation scenarios were considered:

1. The nominal case where § = 0.

2. Extreme deviation from nominal § =-1.
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<

Position of mass 2 (Robust) Force 4 State
Setpoint » Model Predictive » Linear
Controller Plant

- Positions of masses
- Velocity of masses

Figure A.2: Academic problem closed-loop system.

Table A.1: Academic problem MPC state and input weighting.

Variable Description Value
1000
- 0100
Q State weighting 0010
0001

R Input weighting 0.00001

3. Extreme deviation from nominal § =1.

The nominal scenario gives an indication of the conservatism that is introduced in order
to robustify the closed loop. The nominal MPC will be the benchmark with which to
compare the two robust controllers. The two extreme cases provide a measure of the

performance of the two robust controllers.

A.2.1 Nominal scenario

The nominal scenario uses the nominal model (6 = 0). All the controllers use the same
state and input weighting (shown in table A.1) in order to gauge their relative perfor-
mance, and to get a feel for the amount of conservatism that is introduced in order to
robustify the controllers.

These results (figures A.3 and A.4) show that the nominal MPC gives the best per-

formance when 0 = 0. This is to be expected, because the robust controllers are more
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Figure A.3: Feedback and Dual-mode Robust MPC - Nominal Scenario
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Figure A.4: Nominal MPC - Nominal Scenario
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conservative in order to ensure stability for all the system realizations. The results also
show that the feedback robust model predictive controller gives better performance than
the dual-mode robust model predictive controller. The internal, globally stabilizing feed-
back control employed by the dual-mode controller is generated by the feedback robust
control algorithm for the initial state. The feedback gain was generated without tak-
ing the input constraint into account in order to reduce conservatism for the dual-mode

controller.

A.2.2 Extreme deviation 6 = —1 and 6 =1

The extreme deviation scenarios help gauge the performance of the robust controllers.
Both controllers use the same weighting on state and input deviation as shown in table
ALl

The results in figure A.5 show that both robust controllers are stable in this simulation,
because the closed-loop system converges to the setpoints, but the feedback robust model
predictive controller delivers better performance in terms of settling time.

The results in figure A.6 mirror the previous conclusion, because both robust con-
trollers are stable in this simulation, but the feedback robust model predictive controller
delivers better performance in terms of reaching the desired setpoint as well as overshoot.
Figure A.7 shows the performance of the closed-loop system with nominal MPC. Here it
is clear that the closed-loop is unstable for this simulation, because the closed-loop system

oscillates with increasing amplitude, and the same result is obtained in the case where

0=1.

A.3 Conclusion

The academic problem shows the advantage of using robust model predictive control,
where uncertainty causes large variations in dynamic behaviour. Both the robust con-
trollers were stable for all the simulations over the whole variation in system dynamics,

whereas the nominal MPC was unstable in both extreme scenario simulations. The feed-
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Electrical, Electronic and Computer Engineering

145



Appendix A

(O

Conclusion
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Figure A.7: Nominal MPC - Extreme scenario § = —1
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back robust controller delivered better performance than the dual-mode robust controller,
because as the state and inputs approach 0, the controller makes the feedback gain less
conservative. The feedback controller has a problem with non-symmetric input constraints
when there is a steady-state other than the origin, because the feedback gain of the con-
troller stays conservative and might also lead to large steady-state offsets in the states.
The behaviour of the dual mode controller is greatly influenced by the globally stabilizing

feedback gain K, more so than by the weighting matrices ) and R.
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Auxiliary simulation results

In this appendix, all the auxiliary simulation results of chapter 4 are shown with a short
description of the simulation parameters and a short discussion of the results. In this
appendix, only the scenarios where there are even weightings on the inputs are evaluated.
This gives an indication how it will affect the temperature response if more oxygen is
available as an energy source when compared to the reduced oxygen usage scenarios

shown in chapter 4.

B.1 Worst-case scenario: Efficiencies at their minimum

This scenario focuses on the effect that lower than nominal efficiencies (np.o and narc)
have on the controller and system as a whole. In this scenario the following assumptions

are made:

e There are three feedback scenarios:

— Full state-feedback is available.
— One measurement is available.

— One measurement and update of the efficiencies (ng.o and nagc) of the pre-

dictor are available.

e The predictor and actual plant have a mismatch in their efficiencies (nreo and nagc)

where the efficiencies are lower in the real plant than in the predictor.
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Figure B.1: Nominal MPC - Efficiencies at a minimum with full-state feedback.

e There are no disturbances.

B.1.1 Worst-case scenario: Minimum efficiencies with full state

feedback

In this first instance, full-state feedback is employed to evaluate the closed-loop perfor-
mance without a predictor in the loop, in the extreme case where the efficiencies (nzco
and narc) are at the minimum of the confidence interval for the plant model. Robust
MPC and nominal MPC are compared to determine whether robust MPC provides better
performance in the presence of model mismatch compared to nominal MPC.

A temperature setpoint of 1650°C" as well as even weighting (table 4.2) is used for the

first set of simulations.

From these result (figures B.1 and B.2), it is clear that the robust MPC performs
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Figure B.2: Dual-mode robust MPC - Efficiencies at a minimum with full-state feedback.
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Figure B.3: Nominal MPC - Efficiencies at a minimum, full-state feedback and reference
trajectory.

better than the nominal MPC. The robust controller produced a smaller steady-state
offset for the temperature. It is interesting to note that the nominal controller is stable

for this simulation with extreme model mismatch.

A reference trajectory is used for temperature over the duration of the refining stage

as well as even weighting (table 4.2) on the inputs for the second set of simulations.

These results (figures B.3 and B.4) show that the robust controller performs much
better with almost perfect reference following compared to the nominal controller. The
nominal controller uses much less oxygen than the robust controller, which can account

for the difficulty in following the reference trajectory.

Electrical, Electronic and Computer Engineering 152



Appendix B Worst-c8 sisasirio: Efficiencies at their minimum

Bath Temperature Slag FeO Content
1660 T T T T T 5400777777777777\777777\777777\7 777777777777
1650r 5200}
‘2 1640}
E S 5000 —Actual
8 =3 Expected
= 16301 % - - -State Constraint
5 ‘© 4800 1
S 1620 —— Actual 3
“é_ Expected 2 4600
o ('R 4
3 1610 Reference| |
1600 4400 1
1590 L L L L L 4200 L L L L L
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time [seconds] Time [seconds]
(a) Temperature (b) FeO in Slag
Oxygen Injection Rate x 10 Flectrlc Power Graphite Injection Rate
1 4
0.5
@0'8 §3 o 0.4
=) < =)
206 = = 03
c o 2
S04 | 82 £ 02
g a g
0.2 /\\K/ 1 | © o1
0
0 1
0 - - -0.1
0 200 400 600 0 200 400 600 0 2 0 600
Time [seconds] Time [seconds] Time [seconds]
(c) Oxygen Injection (d) Electric Power (e) Graphite Injection

Figure B.4: Dual-mode robust MPC - Efficiencies at a minimum, full-state feedback and
reference trajectory.
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Figure B.5: Nominal MPC - Efficiencies at a minimum with one measurement.

B.1.2 Worst-case scenario: Minimum efficiencies with one plant

measurement

In this scenario only one measurement of temperature is taken in the middle of the refining
stage, the rest of the data is produced by the predictor. The predictor uses the nominal
plant parameters, while the real plant uses the worst-case scenario where the efficiencies
(nreo and nagrc) are at their minimum. This scenario should shed light on the effect of

model mismatch between the predictor and real plant model.

A setpoint of 1650°C' for temperature as well as even weightings on the inputs (table
4.2) are used for the first set of simulations.

These results (figures B.5 and B.6) show that both controllers perform equally poorly.
The controllers are under the impression that they have reached the desired setpoint as in-

dicated by the expected line, but in reality the temperature is lower. At the measurement
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Figure B.6: Dual-mode robust MPC - Efficiencies at a minimum with one measurement.
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Figure B.7: Nominal MPC - Efficiencies at a minimum, one measurement and reference
trajectory.

point, the value of the predictor is corrected, and the controllers respond accordingly.
The final value is still below the desired value, because of the mismatch in the predictor.
An accepted margin of error is 10°C each way, which the controllers are not capable of

attaining.

A reference trajectory for temperature as well as even weighting on the inputs (table

4.2) is used for the second set of simulations.

Figures B.7 and B.8 show poor reference following by both controllers due to the
inaccuracy of the predictor. The expected line shows what the controller expects the
values to be. The robust controller follows the reference slightly better than the nominal

controller but still ends below the 10°C' accepted interval.
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Figure B.8: Dual-mode robust MPC - Efficiencies at a minimum, one measurement and

reference trajectory.
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B.1.3 Worst-case scenario: Minimum efficiencies with one plant

measurement and predictor parameter update

In the previous section, the effect of model mismatch between the predictor and the
actual plant on the performance of the closed-loop system is clear. To combat this, the
parameters of the predictor are updated each time a measurement is taken, in an attempt
to improve performance. In this scenario only one measurement is taken in the middle of
the refining stage, the rest of the state data is produced by the predictor. The predictor
uses the nominal plant parameters until the first measurement is taken, after which the
updated parameters are employed. The real plant uses the worst-case scenario where the
efficiencies (ngre.o and napc) are at their minimum.

A setpoint of 1650°C for temperature as well as even weighting on the inputs (table
4.2) is used for the first set of simulations.

Figures B.9 and B.10 show that both controllers are now able to steer the process to
within the desired £10°C margin. The robust controller is able to reach the desired set-
point by the end of the refining stage, which is slightly better than the nominal controller.

A reference trajectory for temperature as well as even weighting for the inputs (table
4.2) is used for the second set of simulations.

Figures B.11 and B.12 show that neither of the controllers can steer the temperature to
within £10°C. This is due to an undercorrection made in the predictor. In both cases, the
expected state propagation follows the reference trajectory, but the actual performance of
the robust controller is better than that of the nominal controller. The nominal controller
uses significantly less oxygen than the robust controller which can explain why the robust

MPC performs slightly better than the nominal MPC.

B.2 Worst-case scenario: Efficiencies at their maximum

This worst-case scenario investigates the effect of model mismatch between the internal
model of the controllers and the actual plant, as well as the predictor and the actual plant.

This scenario focuses on the effect created if the efficiencies (np.o and nagc) are higher
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Figure B.9: Nominal MPC - Efficiencies at a minimum with one measurement and pre-
dictor parameter update.
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Figure B.10: Dual-mode robust MPC - Efficiencies at a minimum with one measurement
and predictor parameter update.
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Figure B.11: Nominal MPC - Efficiencies at a minimum, one measurement and predictor
parameter update and reference trajectory.
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Figure B.12: Dual-mode robust MPC - Efficiencies at a minimum, one measurement and

predictor parameter update and reference trajectory.

Electrical, Electronic and Computer Engineering

162



nnnnnnnnnnnnnnnnnnnnn

Appendix B WOI‘St-C‘i winiisi-ior Efficiencies at their maximum

than nominal. This is a more theoretical scenario, because efficiencies do not tend to be
higher than expected, but it is necessary to determine whether the controller would be

able to cope with such a situation. In this scenario the following assumptions are made:
e There are three feedback scenarios:

— Full state-feedback is available.
— One measurement is available.

— One measurement and update of predictor parameters are available.

e The predictor and actual plant have a mismatch in their efficiencies (nreo and nagc)

where the efficiencies are higher in the real plant than in the predictor.

e There are no disturbances.

B.2.1 Worst-case scenario: Maximum efficiencies with full state

feedback

In this first instance, full-state feedback is employed to evaluate the closed-loop perfor-
mance without a predictor present in the extreme case where the efficiencies (np.o and
Narc) are at the maximum of the confidence interval for the plant model. Robust MPC
and nominal MPC are compared to determine which provides better performance in the
presence of model mismatch.

The first set of simulations uses a setpoint of 1650°C' for temperature as well as even
weighting on the inputs (table 4.2).

Figures B.13 and B.14 show that both controllers are able to follow the setpoint, and
because of the increased efficiency of the oxygen and electric power, less energy is needed,
which results in both controllers keeping the F'eO content below the constraint level.

The second set of simulations uses a reference trajectory for temperature as well as
even weighting on the inputs (table 4.2).

Figures B.15 and B.16 show that both controllers have good reference following. The

nominal controller uses much less oxygen than the robust controller, which is evident in
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Figure B.13: Nominal MPC - Efficiencies at maximum with full state feedback.
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Figure B.14: Dual-mode robust MPC - Efficiencies at maximum with full state feedback.
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Figure B.15: Nominal MPC - Efficiencies at maximum with full state feedback and refer-
ence trajectory.
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Figure B.16: Dual-mode robust MPC - Efficiencies at maximum with full state feedback

and reference trajectory.
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the final values of the FeO content. The robust controller slightly overshoots the final

value for the temperature but is still well within the desired +£10°C interval.

B.2.2 Worst-case scenario: Efficiencies at their maximum with

one plant measurement

A more realistic feedback scenario is investigated, where only one temperature measure-
ment is taken in the middle of the refining stage, the rest of the state data is produced
by a predictor. The predictor uses the nominal plant parameters, while the real plant
uses the worst-case scenario where the efficiencies (np.o and n4rc) are at their maximum.
This scenario should shed light on the effect of model mismatch between the predictor
and real plant when compared to the results of the previous section.

The first set of simulations uses a setpoint of 1650°C' for temperature as well as even
weighting on the inputs (table 4.2).

Figures B.17 and B.18 show that both controllers fail to steer the temperature to
within the £10°C' margin. The controllers overshoot the setpoint, because the efficiencies
(nreo and napc) are higher than expected and the controllers drive the temperature too
high. The measurement shows the controllers that the temperature is too high, and they
respond by turning off all energy sources. The temperature is lowered, but is limited by
the tempo of natural heat loss, which is too slow to reach the target by the end of the
refining stage. The process could be accelerated by opening the furnace roof, which would
aid heat loss. This situation can be prevented by taking a measurement earlier in the
refining stage to identify the problem sooner.

The second set of simulations uses a reference trajectory for temperature as well as
even weighting on the inputs (table 4.2).

Figures B.19 and B.20 show that both controllers overshoot the final temperature with
more than the accepted margin of £10°C. By the time that the measurement is taken,
the temperature is still below the desired value, but already higher than the reference.
The controllers correct the problem by steering the temperature back to the reference,

but as soon as the error is corrected, the temperature is again steered faster than the
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Figure B.17: Nominal MPC - Efficiencies at maximum with one measurement.
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Figure B.18: Dual-mode robust MPC - Efficiencies at maximum with one measurement.
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Figure B.19: Nominal MPC - Efficiencies at maximum, one measurement and reference
trajectory.
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Figure B.20: Dual-mode robust MPC - Efficiencies at maximum, one measurement and
reference trajectory.

Electrical, Electronic and Computer Engineering 172



Appendix B Worst-c & ii-io: Efficiencies at their maximum

Bath Temperature Slag FeO Content
1670 " " " T T 54007”7”7”77:7”7”\7”7”\7 777777777777
1660
52001 1
16501
5000+ —— Actual 4

Expected
- - - State Constraint

Temperature [Celsius]
= = =
[} (2] [e2]
N w B
o o o
FeO Weight [kg]
N
o)
o
o

—Actual
s Expected |
- - -Reference 46007 ]
1610 1
44001 1
1600 1 -
1590 L L L L L 4200 L L L L L
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time [seconds] Time [seconds]
(a) Temperature (b) FeO in Slag
Oxygen Injection Rate x10* Electric Power Graphite Injection Rate
1 4
0.5
E0.8 3 @ 04
j=) =~ =
206 = = 03
= o} 2 2
20.4 g S 02
& o o
0.2 1 O 01
0
0
0 —0.10
0 200 400 600 0 200 400 600 200 400 600
Time [seconds] Time [seconds] Time [seconds]
(c) Oxygen Injection (d) Electric Power (e) Graphite Injection

Figure B.21: Nominal MPC - Efficiencies at maximum, one measurement, reference tra-
jectory and reduced oxygen usage.

reference.

The third set of simulations uses a reference trajectory for temperature as well as

higher weighting on oxygen injection (table 4.2).

These simulations (figures B.21 and B.22) show much the same trend as the previous
set, with the exception that both controllers use less oxygen, which in turn produces less
FeO, but the robust controller uses significantly less oxygen compared with the previous

simulation in figure B.20.

The model mismatch between the predictor and the actual plant in this scenario, causes
the temperature to overshoot the desired value of 1650°C. The effect can be reduced by
taking a sample earlier in the refining stage, which will minimize the overshoot and give
more time for the bath to cool off. The second solution is to use the reference trajectory,

but from the last two simulations it is clear that the predictor parameters should be
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Figure B.22: Dual-mode robust MPC - Efficiencies at maximum, one measurement, ref-
erence trajectory and reduced oxygen usage.
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updated to prevent overshoot from occurring after the measurement.

B.2.3 Worst-case scenario: Efficiencies at their maximum with

one plant measurement and predictor parameters update

In the previous section, the effect that model mismatch has on the performance of the
system is apparent. To combat the effect, the parameters of the predictor are updated
each time a measurement is taken, in an attempt to improve performance. In this scenario
only one measurement of temperature is taken in the middle of the refining stage, the rest
of the data is produced by the predictor. The predictor uses the nominal plant parameters
for the efficiencies (1.0 and n4grc) until a measurement is taken, after which the corrected
parameters are employed. The “real plant” uses the worst-case where the efficiencies (ngco
and napc) are at their maximum.

The first set of simulations uses a setpoint of 1650°C' for temperature as well as even
weighting on the inputs (table 4.2).

Figures B.23 and B.24 show much the same results as in section 4.4.2. The update in
the predictor does not aid in accelerating the cooling of the bath. The only solution here
would be to take a measurement earlier in the process.

The second set of simulations uses a setpoint of 1650°C' for temperature as well as
higher weighting on oxygen injection (table 4.2).

Figures B.25 and B.26 show much the same result as the previous simulation where
the predictor update does not solve the cooling limitation. The only difference is that,
where energy is applied, less oxygen is used because of the heavier weighting on the oxygen
injection rate.

A reference trajectory for temperature as well as even weighting on the inputs (table
4.2) is used for the third set of simulations.

Figures B.27 and B.28 show encouraging results. The reference trajectory causes
the temperature to increase much slower than with the setpoint, so that by the time
a measurement is taken, the temperature has not yet passed the desired final value of

1650°C. The temperature does increase above the reference, and after the measurement,
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Figure B.23: Nominal MPC - Efficiencies at maximum with one measurement and pre-
dictor update.

Electrical, Electronic and Computer Engineering 176



Appendix B Worst-c & siinisi-io: Efficiencies at their maximum

Bath Temperature Slag FeO Content
1680 T T T T T 5400777777777777\777777\777777\7 777777777777
16701 1
5200 1
) 16601 1
@ = 5000 1
@ 1650~~~ f m s =4
o P
— <
(0] (o))
5 16401 1 ‘© 4800 1
= = —Actual
2 1630} 1 9 Expected
g 1L 4600 - - -State Constraint| |
= 1620¢ 8
—Actual 4400 i
1610 Expected |
- - -Reference
1600 L L L L L 4200 L L L L L
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time [seconds] Time [seconds]
(a) Temperature (b) FeO in Slag
Oxygen Injection Rate x 10 Flectrlc Power Graphite Injection Rate
1 4
0.5
z0.8 3 7 04
=) < =)
206 = = 03
c o 2
$0.4 52 £ 02
g a g
0.2 1 © o1
0
0
0 : . -0.1
0 200 400 600 0 200 400 600 0 2 0 600
Time [seconds] Time [seconds] Time [seconds]
(c) Oxygen Injection (d) Electric Power (e) Graphite Injection

Figure B.24: Dual-mode robust MPC - Efficiencies at maximum with one measurement
and predictor update.
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Figure B.25: Nominal MPC - Efficiencies at maximum,
update and reduced oxygen usage.
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Figure B.26: Dual-mode robust MPC - Efficiencies at maximum, one measurement and
predictor update and reduced oxygen usage.
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Figure B.27: Nominal MPC - Efficiencies at maximum, one measurement and predictor
update and reference trajectory.
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Figure B.28: Dual-mode robust MPC - Efficiencies at maximum, one measurement and
predictor update and reference trajectory.
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the controller corrects the problem and once it has reached the reference, it follows it
more closely. There is still an undercorrection, that causes the temperature to increase
faster than expected. The final value ends within the accepted +10°C' margin. The
nominal controller uses less oxygen than the robust controller as evident from the final

FeO values.
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Measured bath and slag data

Tables C.1 and C.2 show measured bath and slag data for 18 taps. This data were

collected by Rathaba (2004).
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Tap # Time % C % Si O [ppm] Time Temp®C| Time % FeO % SiOz % CaO % MgO % AlyO3

1 7.05 0.199 0.03 - 7.15 1619 7.04 17.70 18.2 50.53 3.53 5.10
7.15 0.125 - 219 7.16 1630 7.16 31.55 10.5 43.45 3.33 3.07
7.16 0.119 - 229 7.20 1678 7.20 36.53 9.08 37.57 3.47 2.73
7.20 0.043 - 658

2 8.14 0.082 0.01 - 8.14 1598 8.11 27.04 13.7 43.74 5.08 3.69
8.16 0.060 - 448 8.16 1618 8.16 30.25 12.5 43.09 5.42 3.51
8.18 0.054 - 504 8.18 1638 8.18 39.20 10.3 34.41 5.43 3.01
8.21 0.039 - 704 8.21 1640

3 9.10 0.111  0.03 - 9.13 1597 9.10 31.50 13.4 40.13 5.04 4.13
9.14 0.053 - 514 9.15 1636 9.14 26.21 12.6 46.07 6.38 3.90
9.17 0.043 - 623 9.18 1631 9.17 31.82 11.4 40.48 6.14 3.48

4 10.14 0.078 0.02 - 10.14 1594 | 10.13 32.13 11.6 41.14 5.46 4.32
10.20 0.043 - 648 10.20 1610 | 10.18 29.80 10.7 43.12 5.77 4.13

10.21 1658 | 10.20 31.65 10.1 41.13 5.77 3.78

5 11.36 0.060 0.02 - 11.37 1586 | 11.33 37.80 9.85 36.39 5.14 3.48
11.42  0.056 - 466 11.42 1602 | 11.43 38.25 7.58 36.15 5.11 2.72
11.44 0.040 - 699 11.44 1658 | 11.45 38.12 8.10 39.83 5.69 2.91

6 12.51 0.060 0.03 - 12.53 1615 | 12.50 43.95 10.8 29.38 5.25 4.14
12.55 0.048 0.03 - 12.55 1647 | 12.53 43.65 10.1 30.32 5.43 3.84
12.55 0.026 - 1048 12.56 45.29 9.61 30.21 5.38 3.68

7 13.43 0.088 0.03 - 13.43 1571 | 13.40 34.52 11.7 37.95 5.41 5.00
13.45 0.071 0.03 - 13.47 1546 | 13.44 34.81 11.6 37.65 5.49 5.03
13.47 0.065 - 376 13.49 1601 | 13.48 36.35 9.41 32.00 5.71 3.96
13.49 0.054 - 481 13.51 1615
13.55 0.046 - 572

8 15.05 0.056 0.03 - 15.07 1630 | 15.04 37.33 8.96 38.27 8.07 3.81
15.07 0.051 0.03 - 15.08 1643 | 15.06 35.64 9.24 37.74 7.81 3.92
15.08 0.037 - 738 15.08 35.06 8.57 34.60 7.30 3.62

9 16.02 0.157 0.03 - 16.05 1540 | 15.56 26.96 11.7 40.20 7.23 4.58
16.06 0.106 0.03 - 16.08 1615 | 16.06 26.57 10.6 43.41 7.05 4.22
16.08 0.062 - 481 16.10 1636 | 16.09 27.05 10.2 39.16 6.34 4.00
16.09 0.072 0.03 - 16.13 1660
16.10  0.093 - 293
16.13  0.033 - 845
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Tap # Time % C % Si O [ppm] Time Temp®C| Time % FeO % SiOz % CaO % MgO % AlyO3
10 17.03 0.078 0.03 - 17.05 1579 | 17.02 24.57 14.8 42.47 5.31 4.36
17.05 0.085 0.03 - 17.07 1614 | 17.05 23.91 15.0 44.46 5.98 4.57
17.09 0.044 - 624 17.09 1647 | 17.09 25.08 15.2 43.29 6.50 4.64
17.09 0.059 0.03 -
11 10.37 0.112 0.02 - 10.36 1570 | 10.43 35.69 11.1 36.17 5.59 3.83
10.39 0.034 - 760 10.39 1600
10.42 0.030 - 894 10.42 1638
10.44 0.045 - 604 10.44 1631
12 11.34 0.057 0.02 - 11.41 1566 11.47 36.34 11.6 34.72 6.96 3.89
11.45 0.034 - 804 11.45 1631
11.47 0.031 - 920 11.47 1673
13 12.43 0.081 0.02 - 12.45 1585 | 12.50 34.91 10.2 37.55 5.68 3.59
12.48 0.042 - 642 12.48 1623
12.50 0.039 - 678 12.50 1621
14 13.42 0.115 0.04 - 13.47 1594 | 14.10 36.18 10.8 34.39 5.48 3.78
13.50 0.050 - 531 13.50 1610
14.08 0.033 - 823 14.05 1658
14.10 0.030 - 930 14.08 1621
14.10 1652
15 14.56 0.068 0.03 - 15.02 1589 | 15.09 41.95 10.2 34.43 6.04 3.57
15.06 0.036 - 861 15.05 1626
15.09 0.035 - 757 15.06 1641
15.11 0.030 - 907 15.08 1626
15.10 1650
16 16.03 0.075 0.03 - 16.04 1624 | 16.05 37.33 10.2 37.51 5.83 3.47
16.06 0.034 - 861 16.06 1645
17 16.54 0.080 0.03 - 17.00 1564 | 17.10 31.93 12.4 39.96 4.31 4.53
17.06 0.036 - 356 17.04 1566
17.08 0.035 - 592 17.06 1588
17.08 1639
18 17.56 0.169 0.03 - 18.05 1582 | 17.10 31.93 11.2 39.96 6.76 4.20
18.01 0.093 0.02 - 18.08 1618
18.09 0.060 - 592 18.09 1661
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