
A Polynomial Time Algorithm for Prime

Recognition

Riaal Domingues

Submitted in partial fulfillment of the requirements for the degree

Magister Scientiae

in the Department of Mathematics and Applied mathematics

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

17 January 2006

Abstract

Prime numbers are of the utmost importance in many applications and in

particular cryptography. Firstly, number theory background is introduced in

order to present the non-deterministic Solovay-Strassen primality test. Sec-

ondly, the deterministic primality test discovered by Agrawal, Kayal and Sax-

ena in 2002 is presented with the proofs following their original paper. Lastly,

a remark will be made about the practical application of the deterministic

algorithm versus using the non-deterministic algorithms in applications.

Contents

1 Introduction 4

1.1 History . 5

1.2 The breakthrough . 7

2 Elementary number theory 8

2.1 Congruence . 9

2.1.1 Some basics . 9

2.1.2 Solving congruences . 11

2.2 A special congruence: The quadratic residue 16

2.3 The Jacobi symbol . 18

3 A non-deterministic algorithm 27

3.1 Practical computations . 28

3.1.1 Getting arbitrary accuracy using Euler’s criterion . . . 28

3.1.2 Computing the Jacobi symbol efficiently 29

3.1.3 Fast exponentiation . 32

3.2 The Solovay-Strassen test . 33

4 Deterministic polynomial time algorithm 34

4.1 Number and finite field theory background 34

4.2 The AKS algorithm . 36

2

4.3 Complexity of the algorithm 46

4.4 Usability of the algorithm in practical applications 48

A Computational complexity 50

A.1 Big O notation . 50

A.2 Basic operations and their complexity 51

A.2.1 Addition and multiplication 51

A.2.2 Multiplying polynomials 52

A.2.3 Greatest common divisor 53

A.2.4 Perfect power . 54

3

Chapter 1

Introduction

Prime numbers have been studied for centuries and must be the most im-

portant numbers known to us. Prime numbers have both theoretical and

practical applications with the most important practical application perhaps

in cryptography. Asymmetrical key crypto systems rely on the fact that it is

difficult to factor a very large given composite number into its prime factors.

In order for such a system to be practical however, the designer or user of

the system should start off with large prime numbers (which should be kept

secret) that are multiplied to form a large composite number that can be

made public without compromising the crypto system. To identify a given

large number (say 100 digits or more) as a prime number is thus of great

importance.

This dissertation presents the deterministic algorithm discovered by Agrawal,

Kaya and Saxena in 2002 (generally referred to as the AKS algorithm). Some

number theory is also developed to introduce the well known Solovay-Strassen

non-deterministic primality test as a contrast to provide a feel for the prac-

tical usability of the AKS algorithm.

4

Some fundamental number theory results will be given here, but prior knowl-

edge of abstract group theory is assumed, including some results from finite

fields. For a background on group theory and finite fields one can reference

[4]. For an introduction to number theory one can reference [5] for easy read-

ing, and for a more thorough introduction [6] would suffice. For a background

on non-deterministic algorithms [7] is a good reference. The original paper

on the AKS deterministic polynimial time algorithm is that of [1] and was

used for this dissertation. The official paper was published in [3]. There are

also some papers and books that followed, such as the paper by Granville

[9]. All the algorithms required, such as an algorithm to determine whether

a given integer is a perfect power, can be found in [8].

Many publications are available on the Internet and in hard copy, presenting

the deterministic algorithm and its proof. Many of these publications prove

the correctness of the algorithm using alternative approaches instead of fol-

lowing the original proof. This dissertation intends to follow the original

proof.

1.1 History

Prime numbers have been studied intensively since the days of Euclid and

Eratosthenes. The existence of a deterministic primality test has not re-

ally been under question as it is easy to see that the following algorithm

determines deterministically whether a given number is prime.

Algorithm 1 Input: Natural number n to be tested for primality. Output:

PRIME or COMPOSITE.

1. For i = 2 to b√nc do

2. If n is divisible by i then halt and return COMPOSITE.

5

3. return PRIME.

The problem with this algorithm however, is that it is impractical. Given

very large integers (of say 100 digits or more), we want to test for primality in

a fairly short time, without testing whether all the preceding integers divide

this integer. This algorithm runs in exponential time, i.e. if the size of the

input integer n doubles, the time required to determine whether it is prime

grows exponentially.

To make this more precise from a complexity point of view, we can consider

the running time of the algorithm using the big-O notation. The number of

digits in n will be given by blog nc, where the base of log can be taken to

express the number of digits of choice (i.e. 2 for binary, 10 for representation

as integer, etc.). We will thus have to test 2
blog nc

2 integers in Algorithm 1 in

the worst case before we can determine that n is prime (the worst case being

when n is prime). Clearly this amounts to a running time of O(2
blog nc

2),

which is exponential. What we want to achieve, is to find an algorithm that

runs in polynomial time, i.e. the running time should be O(logc n) where c

is some constant integer.

Fortunately, results from Fermat and Euler present other ways of testing for

primality. These tests are however of a non-deterministic nature which means

that they rely on probability (even though they do run in polynomial time).

The non-deterministic tests can output PRIME for a composite number with

a (chosen) small probability. There is also quite some number theory that

one needs to develop first, before it can be proven that these tests are actually

successful. The most state of the art algorithm to date for primality testing is

based on eliptic curve methods which involves even deeper results in number

theory. The most well-known and most used non-deterministic polynomial

time tests are the Solovay-Strassen and the Miller-Rabin tests.

6

Before the year 2002, the best deterministic algorithm to determine whether

n is prime had a running time of O(loglog log log n n) ([9], section 1.1). Clearly

this is still in exponential time, even though the log log log n term grows

”fairly slowly”.

1.2 The breakthrough

Agrawal, Kayal and Saxena of the Indian Institute of Technology in Kan-

pur, published their breakthrough on the Internet in a preliminary paper in

August 2002. They found (and proved valid) a deterministic algorithm for

primality testing that executes in polynomial time. This was a major break-

through and the correctness thereof was doubted for a short while. What

was so remarkable about the algorithm, was both its simplicity as well as the

simplicity of the proof. This algorithm was proved to have a running time of

O(log10,5 n). Some improvements were made by Lenstra and Pomerance to

O(log6 n) ([9], paragraph 7.1) since the discovery. Further improvements to

the algorithm were also made by Berrizbeitia and Berstein ([9], section 6),

to bring the running time down to as little as O(log4 n).

Kayal and Saxena had been students of Agrawal at the time. Agrawal re-

ceived the Clay Research Award of the Clay Mathematical Institute which is

presented ”as its highest recognition of general achievement in mathematical

research to one or more mathematicians”. Agrawal and his students were in-

vited to the presentation ceremony, however, his student’s visas were denied

by the U.S. State Department on the grounds that ”they gave insufficient

proof that after their one week visit to the United States, they would return

to India” [2].

7

Chapter 2

Elementary number theory

The non-deterministic primality test requires number theory background in

order to understand why the algorithm works so well. We will introduce the

essentials in this chapter as well as prove the following theorem.

Theorem 2 (Euler’s Criterion) Let n be an odd integer. Then n is prime

if and only if

(a

n

)
≡ a

n−1
2 (mod n)

for all a ∈ Z×n .

Here
(

a
n

)
denotes the Jacobi symbol. This will form the basis of the Solovay-

Strassen test. We will now introduce the necessary number theory in order

to prove this theorem.

8

2.1 Congruence

Congruence is one of the most useful tools in basic number theory. It was

introduced by Karl Friedrich Gauss in the nineteenth century.

2.1.1 Some basics

Many of the basic theorems and definitions regarding congruence will be

familiar to the reader. It is given here (some without proof) for the sake of

completeness.

Theorem 3 (Division Algorithm) Let a and b be integers with b > 0.

Then there exist unique integers q and r such that a = bq+r where 0 ≤ r < b.

Definition 4 Let n be a positive integer. For any two integers a and b we say

that a is congruent to b modulo n if n | (a−b) and we write a ≡ b (mod n).

Definition 5 Given any two integers a and b with b > 0 we can use the

division algorithm to write a = bq + r with 0 ≤ r < b with q ∈ N. We call r

the least non-negative residue of a modulo n.

This gives us the basis to form residue classes. By the above definition it is

clear that every integer is congruent to exactly one r ∈ {0, 1, 2, . . . , n − 1}.
Each of the values 0, 1, 2, . . . , n−1 forms a residue class, and any integer that

is congruent to one of these integers i ∈ {0, 1, 2...n−1} is said to belong to the

residue class i (mod n) . It is customary to denote the residue classes by the

representative, which is the least non-negative residue, and the notation [i] is

used to represent the residue class i. Residue classes are important because

many properties of numbers can be proved by proving it for the residue class

modulo n it belongs to.

9

Definition 6 A complete system of residues modulo n is a set of inte-

gers such that every integer is congruent modulo n to exactly one integer of

the set.

Therefore {0, 1, 2, . . . , n− 1} is a complete system of residues modulo n.

Some properties of congruences follow.

Theorem 7 Let a, b, c and n be integers with n > 0 with a ≡ b (mod n) .

Then

a + c ≡ b + c (mod n) (2.1)

ac ≡ bc (mod n). (2.2)

Cancelling common factors in congruences are not always allowed. Consider

for example the congruence 3 × 4 ≡ 5 × 4 (mod 8). Clearly, if we cancel

the common factor 4, the new ”congruence” is not a congruence anymore,

i.e. 3 6≡ 5(mod 8). We now present a theorem to show when it is allowed to

cancel common factors in congruences.

Theorem 8 Let a, b, c and n be integers with n > 0, ac ≡ bc (mod n) and

d = gcd(c, n). Then a ≡ b (mod n
d
) .

Proof. Since ac ≡ bc (mod n) there exists an integer k such that

ac− bc = kn

and therefore that

(a− b)(c/d) = k(n/d).

10

Since d = gcd(n, c), n/d has no common factors with c/d which means that

n/d divides a− b and the result follows.

2.1.2 Solving congruences

Next we look at solving congruences. Throughout the text x will denote the

unknown to be solved.

One of the most basic congruences with an unknown is the following:

ax ≡ b (mod n).

We regard all the solutions from the same congruence class as the same

solution.

Example 9 The numbers 2, 7, 12, 17, . . . are all the solutions for the congru-

ence 3x ≡ 1 (mod 5). However, all these numbers belong to the congruence

class 2 modulo 5 and hence there is only one solution to this congruence.

The following example illustrates that a congruence does not necessarily need

to have a solution.

Example 10 The congruence 5x ≡ 6 (mod 15) has no solutions. To see

this, one only needs to realise that 5x is a multiple of 5, and hence the only

residue classes 5x can belong to are 0, 5 and 10.

However, there is a theorem to assist in identifying when a congruence has a

solution, and given one solution will assist in finding all the solutions.

Definition 11 An integer a is called a unit modulo n if the congruence

ax ≡ 1(mod n) has a solution.

11

The following theorem identifies which integers modulo n are units.

Theorem 12 Let a and n be integers. Then a is a unit modulo n if and

only if gcd(a, n) = 1.

From algebra we know that the units modulo n form a group. This leads to

the definition of the unit group Z×n .

Definition 13 The unit group of Zn is given by the residue classes modulo n

which are units, hence

Z×n = {a ∈ Zn | gcd(a, n) = 1 and 1 ≤ a ≤ n}.

The unit group is therefore all the elements that are relatively prime to n

and it follows that the group’s order is given by the Euler totient function,

i.e. |Z×n | = φ(n). Now we have introduced enough concepts to prove the

following important theorem regarding the solutions of the linear congruence

ax ≡ b (mod n).

Theorem 14 Let a, b and n be integers with n > 0. Also, set d = gcd(a, n).

Then the congruence ax ≡ b (mod n) has solutions if and only if d | b. In

this case, given that x0 is a solution, there will be exactly d solutions and

these solutions are given by x0 +n′, x0 +2n′,...,x0 +(d−1)n′ where n′ = n/d.

Proof. Let us first prove that ax ≡ b (mod n) has solutions if and only if

d | b.

Firstly, if ax ≡ b (mod n) with d = gcd(a, n), clearly d | b.

Next suppose d | b. Since d divides all the factors in the congruence, it follows

that

12

(
a

d
)x ≡ b

d
(mod

n

d
) i.e. (2.3)

a′x ≡ b′ (mod n′) (2.4)

where a′ = a
d
, b′ = b

d
and n′ = n

d
. Now gcd(a′, n′) = 1 and a′ is a unit

modulo n′. If we multiply by the inverse of a′, it is clear that we will solve

for x modulo n′ in (2.4). But it is clear that a solution of (2.4) is also a solu-

tion of the original congruence and we have proved that ax ≡ b (mod n) has

a solution. It means that ax ≡ b (mod n) is equivalent to a′x ≡ b′ (mod n′).

Furthermore, all the solutions of a′x ≡ b′ (mod n′) belong to the same con-

gruence class modulo n′.

It remains to prove that the number of solutions are d. Let x0 be a solution

of (2.4) and consider

xk = x0 + kn′ (2.5)

where k is an integer. For any integer k we know that xk is in the same

residue class as x0 modulo n′, and hence is a solution of ax ≡ b (mod n′).

However, for ax ≡ b (mod n) the solutions given by (2.5) are not all the same.

For k = 0, 1, 2, ..., d− 1, every xk formed by (2.5) is in a different equivalence

class modulo n. In fact x0, x1, . . . , xd−1 are all the distinct solutions of ax ≡
b (mod n).

The following example illustrates the use of this theorem.

Example 15 Consider 5x ≡ 10 (mod 15). We notice that d = gcd(5, 15) =

5 divides 15 and thus the congruence 5x ≡ 10 (mod 15) is in fact solvable.

To solve the congruence we first divide by 5 to get

13

x ≡ 2 (mod 3).

We are thus looking for an x such that x− 2 = 3k where k is some integer.

Setting x = 5 will solve this equation and all the solutions will be given by

xk = 5 + 3k, where k ∈ {0, 1, 2, 3, 4}. See Table 2.1.

k 0 1 2 3 4

Solution 5 8 11 14 17

Solution (mod 15) 5 8 11 14 2

Table 2.1: Solutions of the congruence 5x ≡ 10 (mod 15)

Corollary 16 Let a, b and n be integers with n > 0. Also, set d = gcd(a, n).

There are exactly n
d

residue classes x modulo n satisfying ax ≡ b (mod n).

We also want to consider the solvability in abstract terms. Let G be a

multiplicative cyclic group of order n. Let z, b ∈ G be any elements and a

any natural number. We will consider solutions of the equation za = b where

z is the unknown element.

Theorem 17 Let G be a cyclic multiplicative group of order n. For a given

b ∈ G and a natural number a, the equation za = b is solvable in G, if and

only if b
n
d = 1 where d = gcd(a, n), and in that case there are exactly d

solutions.

Proof. Suppose za = b. Then

b
n
d = (za)

n
d

= (z
a
d)n

= 1.

14

For the converse suppose b
n
d = 1. Let α be a generator of G. Then b = αl

for some l, say. We want to show that there exists an integer k such that

(αk)a = αl. Such a k will exist if the congruence

ka ≡ l (mod n)

is solvable for k. But by Theorem 14 we know this congruence is solvable if

and only if d | l. But since (αl)
n
d = 1, we have that n | ln

d
, i.e. d | l and we

are done.

The Chinese Remainder Theorem is a very handy theorem that is often used

in the proofs.

Theorem 18 (Chinese Remainder Theorem) Consider n1, · · · , nk where

each ni ∈ N and gcd(ni, nj) = 1 for 1 ≤ i < j ≤ k. Then for any given inte-

gers c1, · · · , ck the congruences

x ≡ c1 (mod n1)

x ≡ c2 (mod n2)

...

x ≡ ck (mod nk)

have a unique solution modulo n where n = n1n2 · · ·nk.

Proof. Let mj = n
nj

for 1 ≤ j ≤ k. Then gcd(mj, nj) = 1 for j 6= i and

hence we can find aj and bj such that ajmj +binj = 1. From this follows that

15

ajmj ≡ 1 (mod nj). Thus we can choose xj such that mjxj ≡ cj (mod nj).

Now let x = m1x1 + · · ·+mkxk. Then x has the desired properties. It is easy

to see that the solution is unique. Suppose x ≡ y (mod nj) for 1 ≤ j ≤ k,

then surely x ≡ y (mod n) where n = n1n2 · · ·nk.

2.2 A special congruence: The quadratic residue

The Jacobi and Legendre symbols are both related to the solvability of the

congruence

x2 ≡ a (mod n).

Definition 19 (Quadratic residue) Let a and n be natural numbers and

gcd(a, n) = 1. Then a is called a quadratic residue modulo n if the con-

gruence x2 ≡ a(mod n) is solvable and a is called a quadratic non-residue

if this congruence has no solution.

Example 20 Let us consider the congruence x2 ≡ 5(mod 7).

x 0 1 2 3 4 5 6

x2(mod 7) 0 1 4 2 2 4 1

Table 2.2: The squares (mod 7)

Table 2.2 lists all the squares (mod 7). It is clear that none of them is 5

and hence 5 is a quadratic non-residue modulo 7. However, the congruence

x2 ≡ 2(mod 7) is solvable. In fact it has two solutions namely x = 3 and

x = 4 as can be seen from Table 2.2.

16

Definition 21 (Legendre symbol) Let p be a prime and a any integer

such that p - a. Then

(
a

p

)
=





1, if a is a quadratic residue modulo p

−1, if a is a quadratic non-residue modulo p.

Example 22 By using Table 2.2 we can see that the Legendre symbols have

the values

(
1

7

)
=

(
2

7

)
=

(
4

7

)
= 1

(
3

7

)
=

(
5

7

)
=

(
6

7

)
= −1.

Theorem 23 ((Part of) Euler’s criterion) Let p be an odd prime and a

any natural number. Then

(
a

p

)
≡ a

1
2
(p−1) (mod p).

Proof. Z×p is cyclic and |Z×p | = p − 1. From Theorem 17 we know that

z2 = a is solvable if and only of a
p−1

d = 1, where d = gcd(2, p − 1) = 2. We

thus have that
(

a

p

)
= 1 if and only if a

p−1
2 ≡ 1 (mod p).

Take any a that is relatively prime to p. Then

ap−1 − 1 = (a
p−1
2 − 1)(a

p−1
2 + 1) ≡ 0 (mod p).

17

From this we can see that a
p−1
2 can only attain two values namely

a
p−1
2 ≡ 1 (mod p) or a

p−1
2 ≡ −1 (mod p).

Thus
(

a

p

)
= −1 if and only if a

p−1
2 ≡ −1 (mod p).

Corollary 24 The Legendre symbol is multiplicative, i.e. for integers a and

b not divisible by an odd prime p

(
ab

p

)
=

(
a

p

) (
b

p

)
.

2.3 The Jacobi symbol

The Jacobi symbol is a generalisation of the Legendre symbol in the sense

that we allow a composite number instead of a prime number.

Definition 25 (Jacobi symbol) Let n be a positive odd integer such that

n = p1 · · · pk, pi prime and not all necessarily distinct. Let a be any integer

such that gcd(a, n) = 1. The Jacobi symbol is then defined as

(a

n

)
=





1 if a = 1

0 is a = 0(
a
p1

)
· · ·

(
a
pk

)
otherwise.

18

Careful consideration is now neccessary. When
(

a
n

)
= 1, it does not nec-

essarily mean that a is a quadratic residue. In fact we have the following

result.

Theorem 26 An integer a is a quadratic residue modulo n if and only if a

is a quadratic residue modulo p for every prime p in the prime factorisation

of n.

Proof. Let p be any prime divisor of n. Suppose
(

a
n

)
= 1. By definition

there exists an x such that x2 ≡ a (mod n). But then x2 ≡ a (mod p) for all

prime divisors p of n.

For the converse suppose that
(

a
p

)
= 1 for all prime divisors p of n. Set

f(x) = x2 − a. We want to show by induction that f(x) ≡ 0 (mod pj) has

a solution for all prime divisors p of n and for all j ≥ 1. The case j = 1 is

trivial since
(

a
p

)
= 1 by assumption and hence f(x) ≡ 0 (mod p). Suppose

y is such that f(y) ≡ 0 (mod pj). Then for any integer z

f(y + pjz) = y2 + 2ypjz + p2jz2 − a

≡ f(y) + pj2yz (mod pj+1).

By Theorem 14 we know that the congruence 2yz + f(y)
pj ≡ 0 (mod p) is

solvable for z if gcd(2y, p) | f(y)
pj . Since p is odd, gcd(2y, p) = 1 or gcd(2y, p) =

p. However y2 − a ≡ 0 (mod pj) which implies y2 − a ≡ 0 (mod p) so that

gcd(2y, p) = 1. It now follows that we can find a z such that 2yz + f(y)
pj ≡

0 (mod p). Then f(y + pjz) ≡ 0 (mod pj+1) and hence we have shown that

there exists a solution to the congruence x2 − a ≡ 0 (mod pj) for all prime

divisors p of n and for all j ≥ 1. We now have a system of congruences, for

19

the given a:

x2 ≡ a (mod pj1
1)

...

x2 ≡ a (mod pjk

k)

where n = pj1
1 pj2

2 . . . pjk

k is the prime factorisation of n. By the Chinese

Remainder Thereom there exists a unique solution modulo n and we are

done.

The Jacobi symbol, like the Legendre symbol, is multiplicative, i.e.
(

ab

n

)
=

(a

n

) (
b

n

)

for all integers a and b. Furthermore for any integers m and n such that

gcd(m, n) = 1 we also have

(a

mn

)
=

(a

m

)(a

n

)
.

These properties all follow easily from the fact that the Legendre symbol is

multiplicative.

We are now in a position to prove Euler’s Criterion:

Theorem 27 (Euler’s Criterion) Let n be an odd integer. Then n is

prime if and only if
(a

n

)
≡ a

n−1
2 (mod n)

for all a ∈ Z×n .

20

Before we prove Euler’s criterion, we first prove the following lemma by

Monier used in die proof of Euler’s criterion.

Lemma 28 Let n be an odd integer and let p1, · · · , pk be the distinct prime

factors of n. Then

|{a ∈ Z×n : a
n−1

2 ≡ (
a

n
) (mod n)}| = δ

r∏
i=1

gcd(
n− 1

2
, pi − 1)

where δ ∈ {1
2
, 1, 2}.

Proof. Define the homomorphisms f, g, h : Z×n → Z×n by:

f(b) = b
n−1

2

g(b) =

(
b

n

)

h(b) = b
n−1

2

(
b

n

)

where b ∈ Z×n . We want to determine the cardinality of the kernel of h. Note

that

b ∈ ker h if and only if f(b) = g(b) = 1 or f(b) = g(b) = −1.

Set M1 = {b ∈ Z×n : f(b) = g(b) = 1} and

M2 = {b ∈ Z×n : f(b) = g(b) = −1}. Then

ker h = M1 ∪M2 and M1 ∩M2 = ∅.

Now two possiblities exist. Either M2 = ∅ or M2 6= ∅.

M2 6= φ: For any z0 ∈ M2 define the map z 7→ z0z from M1 to M2. This is a

bijective map: It is trivial to see that the map is injective. To prove that the

21

map is surjective, we prove that for any x ∈ M2, x−1 ∈ M2. xx−1 = 1 ∈ M1.

So consider

(xx−1)
n−1

2 = (1)
n−1

2

⇐⇒ x
n−1

2 (x−1)
n−1

2 = 1

⇐⇒ −1(x−1)
n−1

2 = 1

⇐⇒ (x−1)
n−1

2 = −1.

We also need to show that
(

x−1

n

)
= −1. Firstly note that

(
xx−1

n

)
=

(
1
n

)
= 1.

Recalling that the Jacobi symbol is multiplicative, we thus have

1 =

(
xx−1

n

)

=
(x

n

) (
x−1

n

)

= −1

(
x−1

n

)
.

Therefore, we have proved that inverses of elements of M2 are also in M2.

The same method of proof will show that z−1
0 x ∈ M1 and thus the map is

surjective. Since the map is bijective and M2 6= φ , |M1| = |M2| and it follows

that

|ker h| = ε|M1|

where ε ∈ {1, 2}.

We also have the following:

[f(b) = 1] if and only if [f(b) = 1 and g(b) = 1] or [f(b) = 1 and g(b) = −1]

which results in a corresponding partition:

22

ker f = M1 ∪M ′
1

where M ′
1 = {b ∈ Z×n : f(b) = 1 and = g(b) = −1}.

Once again either M ′
1 = φ or |M1| = |M ′

1|, so |ker f | = γ|M1| for some

γ ∈ {1, 2}. Thus,

|ker h| = εγ−1|ker f |.

Therefore, if we can show that

|ker f | =
r∏

i=1

gcd(
n− 1

2
, pi − 1)

the result will follow and we are done.

For i = 1, . . . , r set qi = pαi
i , where αi is the largest power of pi in the prime

factorisation of n. Set b
n−1

2
i ≡ 1 (mod qi). Then we have the following system

of congruences:

b
n−1

2
1 ≡ 1 (mod q1)

b
n−1

2
2 ≡ 1 (mod q2)

...

b
n−1

2
r ≡ 1 (mod qr).

By using the Chinese Remainder Theorem, we can find a unique solution

modulo n and hence there is a bijection between ker f and the r-tuples

23

(b1, · · · , br). Since n is odd, each Z×qi
is cyclic and it follows from Theorem

17 that each bi can only assume the values gcd(n−1
2

, φ(qi)) = gcd(n−1
2

, pi−1).

Now we prove Euler’s criterion.

Proof. We have already shown in Theorem 23 that when n is prime
(

a
n

) ≡
a

1
2
(n−1) (mod n). For the converse we show that if n is odd, but not prime,

then there exists some a ∈ Z×n such that
(

a
n

) 6≡ a
n−1

2 (mod n). There are two

distinct cases:

Case 1: n is squarefree. Let n = p1 · · · pr be the prime factorisation

of n where p1 < p2 < · · · < pr with r ≥ 2. Assume
(

a
n

) ≡ a
n−1

2 (mod n)

for all a ∈ Z×n . Let g be a generator of the cyclic group Z×p1
. Using the

Chinese Remainder Theorem, find a ∈ Z×n such that a ≡ g (mod p1) and

a ≡ 1 (mod n
p1

). Then

(a

n

)
=

(
a

p1

)
· · ·

(
a

pr

)

=

(
g

p1

)(
1

p1

)
· · ·

(
1

pr

)

=

(
g

p1

)

= −1

since g is a quadratic non-residue as follows from Theorem 23. But, by

assumption
(

a
n

) ≡ a
n−1

2 (mod n), thus

a
n−1

2 ≡ −1 (mod n) ≡ −1 (mod
n

p1

)

24

which is contradictory to the choice of a.

Case 2: n contains a prime power factor, i.e. if n = pα1
1 . . . pαr

r is

the prime factorisation of n then αi > 1 for some 1 ≤ i ≤ r. Using the

Lemma 28, we will consider the ratio of |{a ∈ Z×n : a
n−1

2 ≡ (
a
n

)
(mod n)}|

and |Z×n | = φ(n). If this ratio is less than one, we have finished.

1

φ(n)
|{a ∈ Z×n : a

n−1
2 ≡

(a

n

)
(mod n)}| (2.6)

= δ

r∏
i=1

gcd(n−1
2

, pi − 1)

pαi−1
i (pi − 1)

(2.7)

Firstly, note that since n is odd its smallest possible prime factor is 3. We

thus have the following inequality for any i > 1:

pi − 1 < p2 · · · pr − 1 <
p1 · · · pr − 1

2

From this follows that the largest greatest common divisor possible in gcd(n−1
2

, pi−
1) is pi − 1 and thus

δ

r∏
i=1

gcd(n−1
2

, pi − 1)

pαi−1
i (pi − 1)

≤ δ

r∏
i=1

pi − 1

pαi−1
i (pi − 1)

.

Now, for any i the right hand side of (2.7) we find that, if αi = 1, then
pi−1

p
αi−1
i (pi−1)

= pi−1
(pi−1)

= 1. Also for αi > 1 we find that pi−1

p
αi−1
i (pi−1)

≤ pi−1
3 (pi−1)

= 1
3

(recall the smallest possible pi is 3). Combining this we now know that

δ

r∏
i=1

gcd(n−1
2

, pi − 1)

pαi−1
i (pi − 1)

≤ 1

3
.

We also know that δ ≤ 2, thus we find that

1

φ(n)
|{a ∈ Z×n : a

n−1
2 ≡

(a

n

)
(mod n)}| ≤ 2

3

25

and we are done.

26

Chapter 3

A non-deterministic algorithm

In non-deterministic primality tests, we want to trade the absolute accuracy

of the outcome for time. The idea is the following: Suppose we want to test

an integer n for primality. Further suppose that {a1, a2, . . . ak} are integers

such that 2 < ai < n. Suppose a test T takes as input n and ai and as

output declares n PRIME or COMPOSITE. However, with non-deterministic

primality tests, the output of the test is not always correct. For some given

composite number n and the correct choice of ai, T (n, ai) will output PRIME.

Let us call such an ai a liar. For the same composite integer n and another

choice aj, the output of T (n, aj) will be COMPOSITE. Let us call such an

aj a witness.

Now suppose a test T is such that, given a prime n, the probability that, given

any integer ai, T (n, ai) outputs PRIME is 1. However, given a composite

integer n, the probability that, given any integer ai, T (n, ai) outputs PRIME

is p < 1, where p is known from theoretical analysis. To make the test

practical we randomly select ai and test it using test T. If the output is

COMPOSITE, we declare n COMPOSITE. However, if the output is PRIME,

27

we select another ai and test it as well. Since the probability that any random

choice of ai is a liar is p, testing k random ais the probability that they are all

liars becomes pk. Since p < 1, we can make the probability for an incorrect

answer as small as we please but always greater than zero.

We can check all the integers ai ∈ {2, . . . n− 1}. This however would not be

practical. We thus choose a certainty we want to achieve of the correctness of

the output and determine how many randomly chosen ais we need to check

to achieve this. For many practical applications this works well, especially

in cryptographic applications.

3.1 Practical computations

The preceding chapter introduced the number theory to provide us with a

test for primality. In order for the test to be used in practice, we need to know

how to easily compute the Jacobi symbol without factorising the integer n

we are testing for primality (otherwise it would defy the objective). We also

need to optimise other computations like exponentiation.

3.1.1 Getting arbitrary accuracy using Euler’s crite-

rion

It is not practical to test all the elements in Z×n to obtain a result when we

use Euler’s criterion for primality testing. However, the following corollary

to Monier’s lemma provides us with the tool to trade off accuracy for time

(the number of elements in Z×n to be tested).

28

Corollary 29 Let n be odd and not prime. Then

|{b ∈ Z×n : b
n−1

2 ≡
(

b

n

)
(mod n)}| ≤ 1

2
φ(n).

Proof. Let h be defined as in Lemma 28 and let H = ker h. H is a proper

subgroup of Z×n (this follows from Theorem 27), so the index of H in Z×n is

at least two, i.e. (Z×n : H) ≥ 2. By Langrange’s Theorem

(Z×n : H) =
|Z×n |
|H|

Therefore | H | = |Z×n |
|(Z×n : H)|

≤ 1

2
|Z×n |

=
1

2
φ(n).

It follows from Corollary 29 that, choosing a random b ∈ Z×n when n is not

prime, the probability prob(b
n−1

2 6≡ (
b
n

)
(mod n)) ≥ 1

2
.

3.1.2 Computing the Jacobi symbol efficiently

In order to compute the Jacobi symbol
(

a
n

)
effectively without factorising n,

we need the quadratic reciprocity law as well as the quadratic character of

2. These results are presented here without proof. The proofs can be found

in [10].

29

Theorem 30 (Quadratic reciprocity law) Let m and n be odd integers.

Then

(m

n

)
=

{ (
n
m

)
if m ≡ 1 (mod 4) or n ≡ 1 (mod 4)

− (
n
m

)
if m ≡ 3 (mod 4) and n ≡ 3 (mod 4).

We need to know the Jacobi symbol for the special case m = 2 namely

(
2

n

)
=

{
1 if n ≡ 1 (mod 8) or n ≡ 7 (mod 8)

−1 if n ≡ 3 (mod 8) or n ≡ 5 (mod 8).

The following rules and algorithm were taken from [8], section 6.3, algorithm

6.3.3. Recalling the properties of the Jacobi symbol we can now derive a set

of rules from the above to compute the Jacobi symbol without factorising n.

Suppose we want to compute
(

a
n

)
, the following rules can be applied:

1. If a > n then
(

a
n

)
=

(
a (mod n)

n

)
.

2. if a = 0 then
(

a
n

)
= 0.

3. if a = 1 then
(

a
n

)
= 1.

4. if 4 | a then
(

a
n

)
=

(
4a

4

n

)
=

(
2
n

) (
2
n

) (
a
4

n

)
.

5. if 4 | a then

(a

n

)
=





(
a
2

n

)
if n ≡ 1 (mod 8) or n ≡ 7 (mod 8)(−a

2

n

)
if n ≡ 3 (mod 8) or n ≡ 5 (mod 8).

6. If a ≡ 1 (mod 4) or n ≡ 1 (mod 4) then
(

a
n

)
=

(
n mod a

n

)
.

7. If a ≡ 3 (mod 4) and n ≡ 3 (mod 4) then
(

a
n

)
= − (

n mod a
n

)
.

30

The following example illustrates the use of these rules to compute the Jacobi

symbol.

Example 31 Let us compute
(

773
1373

)
using the rules above. The reference on

the right hand side is the rule that is applied in each case.

(
773

1373

)
=

(
600

773

)
by rule (6)

=

(
150

173

)
by rule (4)

= −
(

75

173

)
by rule (5)

= −
(

23

75

)
by rule (6)

=

(
6

23

)
by rule (7)

=

(
3

23

)
by rule (5)

= −
(

2

3

)
by rule (6)

=

(
1

3

)
by rule (5)

= 1 by rule (3)

The following algorithm applies these rules in an efficient manner to compute

the Jacobi symbol. The algorithm runs in linear time (see [8], Algorithm

6.3.3).

Algorithm 32 (Computing the Jacobi Symbol) Input: Integer a, odd

integer n ≥ 3. Output:
(

a
n

)
.

1. b ← a (mod n).

2. c ← n.

31

3. s ← 1.

4. while b ≥ 2 repeat

5. while 4 | b repeat b ← b/4

6. if 2 | b then

7. if c mod 8 ∈ {3, 5} then s ← (−s).

8. b ← b/2.

9. if b = 1 then break.

10. if b (mod 4) = c (mod 4) = 3 then s ← (−s).

11. b ← c (mod b), c ← b.

12. return s× b.

3.1.3 Fast exponentiation

Another useful algorithm we will need for the primality test is fast modular

exponentiation. This algorithm is known as repeated squaring. Let a, e and

n be integers and suppose we want to compute ae (mod n). Further suppose

that e = ek2
k + ek−12

k−1 + · · ·+ e12
1 + e0 is the binary expansion of e.

Algorithm 33 Input: e = ek . . . e0, integer n. Output: ae (mod n).

1. y ← 1.

2. k ← blog2ec.

3. for i = 1 to k + 1 do

4. y ← y2aek−i (mod n) .

5. return y.

32

To see why this algorithm works, consider the following.

ae = aek2k+ek−12k−1+...+e121+e0

= aek2k

aek−12k−1

. . . ae121

ae020

= (ae
k)

2k

(ae
k−1)

2k−1

. . . (ae
1)

21

(ae
0)

20

This algorithm has a complexity of O(log n) multiplications ([8], Proposition

4.3.8).

3.2 The Solovay-Strassen test

We now introduce the Solovay-Strassen test based on Euler’s criterion.

Algorithm 34 Input: Odd integer n ≥ 3. Output: PRIME or COM-

POSITE.

1. Choose randomly a ∈ {2, . . . , n− 2}.

2. If a
n−1

2

(
a
n

)
(mod n) 6= 1 then return COMPOSITE.

3. else return PRIME.

It follows from Corollary 29 that the probability of this test to output PRIME

when n is in fact composite, is less than 1
2
. Thus to improve accuracy we

will repeat the test m times for the same given n , each time selecting a

random a to test. After m iterations the probability that the test will output

PRIME for an n that is composite is in fact less than 1
2m . Thus to get a 99%

accuracy, we only need to test 69 randomly chosen integers a, irrespective of

the size of n. This yields a powerful primality test for practical applications.

The Solovay-Strassen algorithm has a complexity of Õ(log2n) bit operations

([8], Proposition 6.4.7).

33

Chapter 4

Deterministic polynomial time

algorithm

4.1 Number and finite field theory background

We require some more results from number theory and algebra that will be

used in the proof of the AKS algorithm.

Theorem 35 (Fermat’s Little Theorem) Let a be an integer and p a

prime and also let gcd(a, p) = 1. Then

ap−1 ≡ 1 (mod p).

Proof. Consider the integers a, 2a, . . . , (p − 1)a. All these integers belong

to different residue classes modulo p. Thus multiplying the integers and

reducing modulo p will be in the same residue class as multyplying the rep-

resentatives 1, 2, . . . , p − 1 of the residue classes and reducing modulo p. In

34

other words

a · 2a · . . . · (p− 1)a ≡ 1 · 2 . . . · (p− 1) (mod p) (4.1)

⇐⇒ (p− 1)!ap−1 ≡ (p− 1)! (mod p). (4.2)

Since gcd((p−1)!, a) = 1, we can cancel the common factors in (4.2) and the

result follows.

Fermat’s Little Theorem is used as the basis for the Miller-Rabin non-deterministic

primality test which is not discussed here.

The following result about the least common multiple is useful.

Lemma 36 Let m ≥ 7. Then

lcm(1, 2, . . . , m) ≥ 2m.

The following results from finite field theory is given here without proof for

the sake of completeness. For a proof refer to [4].

Consider the polynomial xr − 1 over any field K. A root of this polynomial

in K is called an rth root of unity in K. Let the characteristic of K be p

and suppose p does not divide r. The set of all the rth roots of unity in K

forms a cyclic group of order r and we denote a generator of this group by

ξ. Another useful result is that if ξ is a primitive root of unity, then all the

primitive roots of unity are given by ξs for 1 ≤ s ≤ r and gcd(s, r) = 1.

Definition 37 (Cyclotomic polynomial) Let K be a field of characteris-

tic p and let ξ be a primitive rth root of unity over K. Then the polynomial

Qr(x) =
∏

gcd(s,r)=1,1≤s≤r

(x− ξs)

35

is called the rth cyclotomic polynomial over K.

Theorem 38 ([4], Theorem 2.47) Let d be the least positive integer such

that qd ≡ 1 (mod r). Then if K = Fq with gcd(q, r) = 1, then Qr(x) factors

into φ(r)/d distinct irreducible monic polynomials in Fq of degree d.

4.2 The AKS algorithm

We now turn our attention to the deterministic algorithm discovered by

Agrawal, Kayal and Saxena in 2002. This algorithm runs in polynomial

time. The algorithm is based on the following characterisation of primes.

Lemma 39 Let a ∈ Z, n ∈ N, n ≥ 2 and gcd(a, n) = 1. Then n is prime if

and only if

(x + a)n ≡ xn + a (mod n). (4.3)

Proof. Let n be prime. Expanding the left hand side of (4.3) we get

(x + a)n =
n∑

i=0

(
n

i

)
xian−i.

The coefficient of xk is thus given by
(

n
k

)
an−k. For the binomial coefficients(

n
k

)
for 0 < k < n, we see that n|(n

k

)
and hence reducing modulo n these terms

will be zero. From Fermat’s Little Theorem it follows that if n is prime then

an ≡ a(mod n) and (x + a)n ≡ xn + a (mod n).

To prove the converse, suppose n = qln′, where q is a prime and q - n′. Since

gcd(a, n) = 1 we only need to show that n does not divide
(

n
q

)
to arrive at a

contradiction.

36

Considering the coefficient of xq we know that gcd(a, n) = 1 and hence we

only need to consider
(

n
q

)
.

(
n

q

)
=

n!

q!(n− q)!

=
n(n− 1)(n− 2) . . . (n− q + 1)

q!

=
ql−1n′(n− 1)(n− 2) . . . (n− q + 1)

(q − 1)!

The factors (n− 1), (n− 2), . . . , (n− q + 1) do not have q as a prime factor.

To see this one only needs to realise that since n has a prime factor q it is

a multiple of q. Hence the preceeding multiple of q would be n − q. Thus

n -
(

n
q

)
and we have found a non-zero coefficient in the expansion of (x+a)n.

This implies that (4.3) does not hold and we are done.

This is yet another way of testing for primes. However, the problem with

this test is the evaluation on the left hand side of (4.3), as it has n terms.

Clearly this will not be practical for large values of n. A way of reducing the

number of terms to evaluate is to reduce modulo xr − 1 for some sufficiently

”small” (and well chosen) integer r. This leads to the following definition.

Definition 40 For any polynomials f(x), g(x) and m(x) and any natural

number n we say that f(x) ≡ g(x)(mod m(x), n) if there exist polynomials

u(x) and v(x) such that f(x)− g(x) = u(x)m(x) + nv(x).

The idea now is to evaluate (x + a)n reducing the terms (mod xr − 1, n), i.e.

we hope that n is prime if and only if

(x + a)n ≡ xn + a(mod xr − 1, n). (4.4)

37

It is clear from Lemma 39 that all primes n will satisfy (4.4). The question

is just whether some composites will also satisfy (4.4), and unfortunately the

answer is yes.

Choosing the correct r will however solve this problem. Agrawal, Kayal and

Saxena succeeded in the latter. We now present their algorithm. Let n be an

integer to be tested for primality and let or(n) denote the order of n modulo

r, i.e. nk ≡ 1 (mod r), where k is minimal, then or(n) = k.

Algorithm 41 (AKS Algorithm) Input: Natural number n. Output

Prime or Composite.

1. If n = ab for some a ∈ N and b > 1, then return COMPOSITE.

2. Find the smallest r such that or(n) > 4 log2n.

3. If 1 < gcd(a, n) < n for some a ≤ r then return COMPOSITE.

4. If n ≤ r then return PRIME.

5. For a = 1 to b2
√

φ(r)log nc do

6. if (x + a)n ≡ xn + a(mod xr − 1, n) then return COMPOSITE.

7. return PRIME.

Clearly, if any of the conditions above cause an output of COMPOSITE, the

algorithm will halt. Step 1 of the algorithm ensures that n is not a perfect

power. Step 2 finds the appropriate r of which the order modulo n is greater

than 4 log2n and step 4 determines that if this r is greater than n, then

n must be prime. Step 3 ensures none of the a’s to be tested has common

factors with n for, if so, n is not prime. Step 5 is where the actual congruency

testing (4.4) takes place.

What we know about n and r before step 5 is that n is not a perfect power,

there exists an r such that the order of n modulo r is greater than 4 log2n

38

where r < n and n has no prime factors less than r. This leads to the for-

mulation by Andrew Granville of this algorithm into a precise mathematical

theorem.

Theorem 42 For a given integer n ≥ 2, let r < n be a positive integer such

that or(n) > 4 log2 n. Then n is prime if and only if

1. n is not a perfect power, i.e. n 6= ab for some integers a and b,

2. n does not have any prime factor ≤ r,

3. (x+a)n ≡ xn +a (mod xr−1, n) for each integer 1 ≤ a ≤
√

φ(r)log n.

Let l = b2
√

φ(r)log nc for the remainder of the section to improve readability.

We first need to know that a suitable r can be found.

Lemma 43 There exists an r ≤ d16 log5 ne such that or(n) > 4 log2 n.

Proof. Suppose that no such r exists, i.e. for all r ≤ d16 log5 ne it is true

that or(n) ≤ 4 log2 n. Let {r1, . . . , rt} = {1, 2, . . . , d16 log5ne}. Note that

this implies for every 1 ≤ i ≤ t that nori(n) ≡ 1 (mod ri). It now follows that

each of these numbers ri divides the product

b4 log2 nc∏
i=1

(ni − 1).

Recalling the formula (1 + 2 + . . . + k) = k
2
(1 + k) we see that

b4 log2 nc∏
i=1

(ni − 1) <

b4 log2 nc∏
i=1

ni

= n
b4 log2 nc

2
(1+b4 log2 nc),

39

but

b4 log2 nc
2

(1 + b4 log2 nc) < 2 log2 n + 8 log4 n

< 16 log4 n,

thus

n
b4 log2 nc

2
(1+b4 log2 nc) < n16 log4 n

= 216 log5 n.

Since each ri divides the product
∏b4 log2 nc

i=1 (ni−1), lcm(r1, . . . , rt) < 216 log5 n.

By Lemma 36 the least common multiple of the first d16 log5 ne numbers

is at least 2d16 log5 ne, a contradiction. Therefore there must exist a number

r ≤ d16 log5 ne such that or(n) > 4 log2 n.

In order to prove Theorem 42, we establish a few definitions and lemmas.

Firstly, let us give an outline on how we will go about proving the theorem.

Outline of the proof. Assuming n is prime and proving all the conditions

hold is easy. For the converse we will assume n is composite, but all the

conditions hold. We will then construct a group and find a contradiction in

the size of the group, proving that our assumption was wrong in the first

place. Most of the work and definitions will be required for the second part

of the proof.

For the remainder of this section the following symbols will be used. Let n

be composite and suppose n has a prime factor p with n = pn′ where n′ is

some integer. We also assume that all the conditions given in the theorem

do hold for this composite n. Let us consider the following:

40

By assumption we have that

(x + a)n ≡ xn + a (mod xr − 1, n) for all 1 ≤ a ≤ l.

Since p|n it is obvious that

(x + a)n ≡ xn + a (mod xr − 1, p) for all 1 ≤ a ≤ l. (4.5)

But p is prime, so

(x + a)p ≡ xp + a (mod xr − 1, p) for all 1 ≤ a ≤ l. (4.6)

We can see from this that n thus behaves like a prime in this case, and we

define this property in the following way.

Definition 44 For any polynomial f(x) and natural number m, we say that

m is introspective for f(x) if

[f(x)]m ≡ f(xm) (mod xr − 1, p).

Note that both n and p are introspective numbers for the polynomial x + a

for all 1 ≤ a ≤ l (see (4.5) and (4.6)). Introspective numbers are closed under

multiplication:

Lemma 45 If m and m′ are introspective for f(x), then so is m.m′.

Proof. Since m is introspective

[f(x)]m.m′ ≡ [f(xm)]m
′
(mod xr − 1, p). (4.7)

Set x = xm in (4.7) and take into account that m′ is also introspective. Then

[f(xm)]m
′ ≡ [f(xm.m′

)] (mod xmr − 1, p) (4.8)

≡ [f(xm.m′
)] (mod xr − 1, p) (4.9)

41

since (xr − 1)|(xmr − 1). Combining (4.7) and (4.9) we get that f(x)m.m′ ≡
f(xm.m′

) (mod xr − 1, p) as desired.

For a fixed number m the set of polynomials that are introspective for m is

closed under multiplication.

Lemma 46 Let m be an integer that is introspective to the polynomials f(x)

and g(x). Then m is also introspective for the polynomial f(x).g(x).

Proof.

[f(x).g(x)]m = [f(x)]m.[g(x)]m

≡ f(xm).g(xm) (mod xr − 1, p)

Now define the following two sets:

I = {nipj | i, j ≥ 0} (4.10)

P = {
l∏

a=1

(x + a)ea | ea ≥ 0} (4.11)

It should be clear from the two preceding lemmas and the fact that both n

and p are introspective numbers for the polynomial x+a that all the numbers

in I are introspective for all the polynomials in P . Now we define two groups

that we will call G and H respectively from these sets. Firstly,

G = {i (mod r) | i ∈ I}

42

We know this is a group since gcd(n, r) = gcd(p, r) = 1 and all elements in I

have the form (nipj). Let |G| = t. Since or(n) > 4 log2n, and G is generated

by n and p modulo r, we know that

t > 4 log2n. (4.12)

Secondly, let Qr(x) be the r-th cyclotomic polynomial. Let h(x) be an irre-

ducible factor of Qr(x). Then define

H = {m(x) (mod h(x), p) | m(x) ∈ P}. (4.13)

This group is thus generated by the polynomials x+1, x+2, . . . , x + l in the

field Fq = Fp[x]/(h(x)).

The following two lemmas provide estimates on the size of H.

Lemma 47 | H |≥ (
t+l−2
t−1

)

Proof. Let f(x) and g(x) be two distinct polynomials in P with degree

less than t. We show that these polynomials will correspond to different

polynomials in H.

Suppose f(x) = g(x) in Fq. Then for m ∈ I we also have that [f(x)]m =

[g(x)]m in Fq. But h(x) | (xr − 1) and m is introspective for f and g, so we

have that

f(xm) = g(xm) (4.14)

in Fq. Define the polynomial p(y) = f(y) − g(y). By (4.14) xm is a root

of p(y) for every m ∈ G. Also gcd(m, r) = 1 and hence xm is a primitive

rth root of unity. Hence there will be |G| = t distinct roots of p(y) in Fq.

However, deg(p(y)) < t by the choice of f(x) and g(x) and Theorem 38. We

have a contradiction and consequently f(x) 6= g(x) in H.

43

Next we note that l = b2
√

φ(r)log nc < 2
√

rlog n < r and by the hypothesis

p > r. From this follows that the polynomials x + 1, x + 2, . . . , x + l are all

distinct in Fq. It might be possible that one of the polynomials is zero, say

x + a. This will happen when h(x) = x + a. In such a case x + a will not be

included in H. There are thus at least l− 1 distinct polynomials of degree 1

in H. All the polynomials in H are given by

(x + 1)e1(x + 2)e2 . . . (x + l − 1)el−1

where e1 + e2 + . . . + el−1 ≤ t, and there are
(

t−1+l−1
t−1

)
=

(
t+l−2
t−1

)
such polyno-

mials.

Lemma 48 If n is not a power of p, then |H| < 1
2
n2
√

t.

Proof. Consider the following subset of I:

Î = {nipj | 0 ≤ i, j ≤ b
√

tc}. (4.15)

Since n is not a power of p, |Î| = (b√tc + 1)2 > t. But |G| = t, so there

exist at least two numbers in Î that are equal modulo r, say m1 and m2 with

m1 > m2. We thus have that xm1 ≡ xm2(mod xr − 1).

Let f(x) ∈ P . Then

[f(x)]m1 ≡ f(xm1) (mod xr − 1, p)

≡ f(xm2) (mod xr − 1, p).

But we also have

f(x)m2 ≡ f(xm2) (mod xr − 1, p)

44

and hence [f(x)]m1 = [f(x)]m2 in Fq. Let p̃(y) = ym1 − ym2 . Then any

g(x) ∈ H is a root of p̃(y) in Fq. There are at least |H| distinct roots of p̃(y) in

Fq by what we have just shown. The degree of p̃(y) is m1 ≤ (np)b
√

tc < 1
2
n2
√

t

and thus |H| < 1
2
n2
√

t.

One can now use the bounds just proven to prove that the algorithm works

correctly. This will be proven by contradiction.

Lemma 49 If the algorithm returns PRIME, then n is prime.

Proof. Suppose the algorithm returns PRIME. Let us make the following

observations first. Considering 2
√

t log n and using inequality (4.12), we

have

2
√

t log n ≤ 2
√

4log2 n log n

= 4 log2 n

and hence

t > 2
√

t log n.

Using Lemma 47 with |G| = t and l = b2
√

φ(r) log nc one gets

45

|H| ≥
(

t + l − 2

t− 1

)

≥
(

l − 1 + b2√t log nc
b2√t log nc

)
(since t > 2

√
t log n)

≥
(

2b2√t log nc − 1

b2√t log nc

)
(since l = b2

√
φ(r) log nc ≥ b2

√
t log nc)

≥ 2b2
√

t log nc (since 2
√

t log n ≥ 3)

≥ 1

2
n2
√

t.

By Lemma 48 |G| < 1
2
n2
√

t if n is not a power of p. Therefore, n = pk for

some k > 0. If k > 1 then the algorithm will return COMPOSITE in step 1.

Therefore n = p.

4.3 Complexity of the algorithm

We will refer to Algorithm 41 throughout this section.

Step 1: Determining whether n is a perfect power

This step can be determined in Õ(log3n) bit operations and an algorithm is

given in Appendix A.

Step 2: Finding r

Algorithm 50 Input: Natural number n. Output: Smallest natural num-

ber r such that or(n) > 4 log2n.

46

1. r ← 1.

2. while r < n do

3. k ← 1.

4. while k ≤ 4 log2n do

5. if nk ≡ 1 (mod n) then return r and halt else k ← k + 1.

6. r ← r + 1.

For each r that is tested there are at most O(log2n) multiplications modulo n,

each multiplication at a cost of Õ(log r). Testing one such potential r thus

takes time Õ(log2n × log r). By Lemma 43 we know that we will find

a suitable r ≤ 16 log5 n and the inner loop will need to be executed at

most O(log5n) times. Thus, this step will take at most Õ(log5n × log2n ×
log(16 log5n)) ⊆ Õ(log7n).

Step 3: Determining whether all integers a ≤ r are relatively prime

to n. There are r numbers to compute the greatest common divisor of,

each computation taking O(log n). Using Lemma 43 we know r ≤ 16 log5n.

Consequently this step will take at most O(r log n) = O(log5n × log n) =

O(log6n).

Step 4: Determining whether r < n. This step takes O(log n).

Step 5: The final test. For the final step of the algorithm, recall that the

operation of computing a single (x+a)n (mod xr−1, n) takes Õ(rl(l+log r)),

where l is the number of bits of n (see Appendix A). Thus we have

Õ(r log n(log n + log r)) = Õ(r log2 n + r log n log r)).

47

We repeat this operation 2
√

φ(r)log n times in the loop, and recalling the

estimate for r (Lemma 43),

2
√

φ(r) log n Õ(r log2 n + log n log r)

= Õ(2r
√

φ(r) log3 n + 2r
√

φ(r)log2 n log r)

= Õ(r3/2 log3 n + r3/2log2 n log r)

= Õ((log5n)3/2 log3 n + (log5n)3/2log2 n log log5n)

= Õ(log15/2n log3 n + log15/2n log2 n log log5n)

= Õ(log10.5n + log9.5n log log5n)

⊆ Õ(log10.5n).

This step dominates all the other steps and hence is the complexity of the

algorithm.

It is clear that Õ(log10.5n) = O((log n log log n)10.5) is polynomial time.

Since the proof does not assume anything about the base of the logarithm,

this complexity is attained regardless of the representation of the integer n.

4.4 Usability of the algorithm in practical ap-

plications

The Solovay-Strassen algorithm has a complexity of Õ(log2n) bit operations

([8], Proposition 6.4.7). Repeating the algorithm 69 times will result in an

accuracy of 99% that an output of PRIME is indeed correct. This will result

in a complexity of 69Õ(log2n) = Õ(log2n).

In the previous section it was shown that for the AKS algorithm, the com-

plexity is Õ(log10.5n), which is considerably more than the non-deterministic

48

Solovay-Strassen test. For practical applications, the use of non-deterministic

polynomial time algorithms (like the Solovay-Strassen test) are thus more de-

sirable.

To motivate this point: Consider a system like the RSA assymetrical en-

cryption system. The security in the system is based on obtaining two large

primes p and q and multiplying them to form an integer n = pq. For modern

applications the integer n needs to be 2048 bits long in binary representation

to provide adequate security. This makes it unfeasible to try and factor n

into p and q which is unknown to the adversary attacking the crypto system.

Generation of these large primes typically takes 5 minutes or more on modern

day computers. Although this seems to be not too bad, imagine a system

that has hundreds of users. Generating these security paramaters (n, p and

q) will take a very long time.

49

Appendix A

Computational complexity

A.1 Big O notation

In computational complexity we are not interested in the exact time it will

take to run an algorithm, as technology influences this greatly. One would

rather concentrate on the operations in the algorithm and we are generally

interested in the number of bit operations. We now introduce the big O

notation which is central to the latter. A good reference for this appendix is

[11].

Definition 51 (Eventually positive partial function) A partial function

f : N→ R is a function that needs not be defined for all n ∈ N, and is called

eventually positive if there exists a constant k ∈ N such that f(n) is defined

and strictly positive for all n ≥ k.

Definition 52 (Big O notation) Let g : N → R be an eventually positive

function. Then O(g) is defined to be the set of all eventually positive functions

f : N→ R for which there exists constants k, c ∈ N such that f(n) and g(n)

are defined for all n ≥ k and f(n) ≤ cg(n) for all n ≥ k.

50

Constant factors are not important in computational complexity and is ab-

sorbed by the big O notation, since the constant factors can be handled by

the constant in the definition of the O notation. Generally, for easy repre-

sentation, one can also define soft-O.

Definition 53 (Soft-O) We write f ∈ Õ(y) if f ∈ O(y logO(1) y) and we

say f is in soft-O y.

By O(1) we mean any function that is eventually positive and bounded from

above. By logO(1) n, we mean log to the power of a function that is eventually

bounded by a constant. This especially include all constant powers of log n.

A.2 Basic operations and their complexity

The complexities of the following operations are referenced here without

proof. The algorithms and proofs can be found in [11] and is beyond the

scope of this dissertation.

A.2.1 Addition and multiplication

Ordinary addition and subtraction of n-word integers can be done in O(n).

Classic multiplication of two n-word integers (i.e. as we would do it as taught

in school with pencil and paper), would be quadratic, i.e. O(n2), but there

exist algorithms (Fast Fourier transform) which are much faster for both

multiplication and division. Both multiplication and division can be done in

Õ(n), i.e. linear time. We will use the latter for analysis purposes.

51

A.2.2 Multiplying polynomials

A basic operation in the AKS algorithm is multiplication of two polynomials

and reducing modulo a polynomial, say xr − 1. This is easily done by a

method called single-point evaluation. Suppose we have two polynomials

f(x) and g(x) of degree at most r − 1 and integer coefficients between −A

and A for some positive integer A. We can now form a natural bijection

ψ :

{
f(x) =

r−1∑
i=0

aix
i ∈ Z[x] : −A < ai ≤ A for all i

}
→ Z/(2A)r.

Let us first show how the bijection works and then prove that it is in fact a

bijection. Given a polynomial f(x) =
∑r−1

i=0 aix
i, we define

ψ(f) = f(2A) = a0 + a1(2A) + a2(2A)2 + . . . + ar(2A)r−1. (A.1)

Given a number −A < k < A, to find the polynomial that it represents,

we first compute a0 ≡ k (mod 2A). Then a1 ≡ (k−a0)
2A

(mod 2A), a2 ≡
(k−a0−a1)

(2A)2
(mod 2A), and in general ai ≡ (k−a0−a1...−ai−1)

(2A)i (mod 2A).

To understand this, consider again the form as given by equation (A.1).

When we compute modulo 2A we ”cancel” all terms that contain a factor

of 2A. However, we first subtract all the terms computed already, and then

divide (2A)i so that the coefficient a1 cannot contain a power of 2A and hence

reducing modulo 2A will not cancel ai , but will cancel any other coefficients

left in the equation as desired.

We need to show that this in fact yields a bijection, and moreover is a ho-

momorphism so that we can use the integers to compute the product of two

polynomials fast.

52

To prove that the mapping ψ is a bijection, we use the fact that this map-

ping is onto, for given any −A < k < A, by the above argument one can

find a polynomial f(x) that will map onto k. Also, there are exactly (2A)r

polynomials of degree at most r − 1 and coefficients −A < ai < A. Thus we

have an onto mapping from a finite set to a finite set of the same cardinality,

and hence a bijection.

To see that the mapping ψ is a homomorphism with respect to multiplication,

consider f(x) = a0 +a1x+ . . .+ar−1x
r−1 and g(x) = b0 +b1x+ . . .+br−1x

r−1.

Their mapping to Z/(2A)r will be f(2A) = a0 + a1(2A) + . . . + ar−1(2A)r−1

and g(2A) = b0 + b1(2A) + . . . + br−1(2A)r−1 respectively.

Now, multiplying f(x)g(x) in the polynomial ring will be exactly the same if

we represent the numbers in their polynomial form in the ring Z/(2A)r, i.e.

f(x)g(x) will involve exactly the same operations in the form f(2A)g(2A) ∈
Z/(2A)r. It should be clear from this that the operation of multiplication is

preserved (as will the operation of addition also be preserved, even though

we are not interested in addition for this purpose).

The complexity of this algorithm is as follows. Let r be the highest degree of

the two polynomials and n the largest coefficient. Then this operation can

be performed in Õ(r(log n + log r)) ([9], Section 3b.1).

A.2.3 Greatest common divisor

Another operation that is used often is determining the greatest common

divisor of two integers, say n and m where n ≥ m. This can be done by

using the Euclidean algorithm. There is a fast version of the Euclidean

algorithm which can execute in O(log n) (see [11], Chapter 11).

53

A.2.4 Perfect power

The following algorithm (taken from [8], Algorithm 2.3.5) takes as input an

integer n and determines whether it is a perfect power, i.e. it determines

whether there exist integers a < n and b > 1 such that n = ab.

Algorithm 54 Input: Natural number n. Output: ”n is a Perfect Power”

or ”n is not a Perfect Power”.

1. a,b,c,m integers.

2. b ← 2.

3. while 2b ≤ n do

4. a ← 1, c ← n.

5. while c− a ≥ 2 do

6. m ← a + c (mod 2).

7. p ← min{mb, n + 1}.

8. if p = n then return ”Perfect Power” and halt.

9. if p < n then a ← m else c ← m.

10. b ← b + 1.

11. return: ”n is not a Perfect Power”.

The operations used in this algorithm should be the most efficient ones. In

that case there are Õ(log2 n) multiplications of the first n integers. Thus this

algorithm will take at most Õ(log2n) multiplications, each of which takes

Õ(log n). The complexity of the algorithm is then Õ(log2n × log n) =

Õ(log3 n). The complexity analysis for this algorithm can be found in ([8],

Lemma 2.3.6).

54

Bibliography

[1] Manindra Agrawal, Neeraj Kayal, Nitin Saxena. PRIMES is in P,

http://www.cse.iitk.ac.in/users/manindra/primality original.pdf.

[2] http://www.flonnet.com/fl1925/stories/20021220008613400.htm

[3] Manindra Agrawal, Neeraj Kayal, Nitin Saxena. Primes is in P, Anals

of Mathematics 160(2), 781-793, 2004.

[4] Rudolf Lidl and Harald Niedereiter. Introduction to finite fields and their

applications revised edition, Cambridge University press, 2000.

[5] Kenneth H. Rosen. Elementary number theory and its applications,

Addison-Wesley publishing company, 1993.

[6] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern

Number Theory, second edition, Springer, 1990.

[7] Song Y. Yan. Primality testing and integer factorisation in public-key

cryptography, Kluwer Academic Publishers, 2004.

[8] Martin Dietzfelbinger. Primality testing in polynomial time, Springer,

2004.

55

[9] Andrew Granville. It is easy to determine whether a given integer is

a prime, Bulletin of the American Mathematical Society Volume 42

Number 1, 3-38 , September 2004.

[10] Prof. W.L. Fouché. Lecture notes, 2002.

[11] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Alge-

bra second edition, Cambridge University Press, 2003.

56

DECLARATION

I, the undersigned, hereby declare that the dissertation submitted herewith

for the degree Magister Scientiae to the University of Pretoria contains my

own, independent work and has not been submitted for any degree at any

other university.

Signature:

Name: Riaal Domingues

Date: 2006-01-18

57

	FRONT
	Title page
	Abstract
	Contents

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	Appendix A
	Bibliography
	Declaration

