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3.1 Case descriptions

The method described in the previous chapter for estimating the inside temperature
statistics was based on a well-verified deterministic method. It should therefore be
applicable to all problems the deterministic method can be used for, provided the input

data set is available. Still, different cases are needed to verify the Monte Carlo method.

For this reason the building selection was not considered critical. Input Data for several
buildings used by Van Heerden (Van Heerden, E., 1997) and Ellis (Ellis, M.W., 1999) for
verification studies was available. From this four buildings were chosen to test the

method developed.

This ensures that the buildings used will be realistic. The details of the buildings are from
the study of Ellis. To ease comparison with the work of Van Heerden and Ellis the
designations they used for the buildings was kept. Detailed descriptions can be found in

Appendix C.

Deciding on a ventilation rate to use for the building can also be tricky. Van Heerden
gives values for the number of Air Changes per Hour (ACH) for a tight building as 0.5
ACH and for a very leaky building as 2 ACH. This can be taken to be a building with
closed windows. When a building with open windows is considered, the ACH rates can
be a lot higher. For this reason it was decided to use ventilation rates of 0, 1, 5, 10 and 50

ACH (Air Changes per Hour).
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3.2 Input data

3.2.1 Time span and location

In order to find the statistics of the input variables, measured input data will have to be
used. For the statistics to be reliable, this data will have to span some years. This must be
the same type of data as used by Quick. Furthermore weather data is highly dependent on

the site, as thus data from only one site is acceptable.

For the true nature of weather data to be clear, as much weather data as possible is
needed. The South African Weather Bureau was able to supply data collected at the Irene
weather station near Pretoria, since hourly data for temperature, humidity and global

radiation was available for this site. (SAWB, 1999)

Although data for many of the months of 1993 were available, the data did not span the
whole of that year. It was decided to stick to whole annual cycles, as this is one of the
main periods of the data. (Hittle, D.C. and Pederson, C.O., 1981) Thus the five years of
1994-1998 was used. This data was made available in electronic format, making the
subsequent analyzing and processing easier. Data files were of global radiation in mega
joules, temperature in degrees Celsius and relative humidity as the fraction of the mass of

water in the air divided by the mass the air can hold, expressed as a %. (SAWB, 1999)
Unfortunately diffuse radiation data are not measured at most weather stations, including

Irene. For these locations ways have to be found to calculate the diffuse from the global

values.

3.2.2 Calculation of Diffuse radiation
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Several formulas exist for the calculation of diffuse radiation from the Global. Kimura
(Kimura, K., 1977) gives an equation of Liu and Jordan (Liu, B.Y.H., and Jordan, R.C.,
1960), Eq. 3.2.2-1. According to Lunde (Lunde, J.L., 1980) this is based too heavily on
data from Blue Hill, Massachusetts. He then goes on to give a formula by Page, Eq 3.2.2-
2 (Page, J.K., 1961)

Lo i ﬁ(0_2710—0.29131ﬂ) Eq.3.2.2-1
s I,
Where

Isy = Diffuse solar radiation
1o = Solar constant
B = The angle between the sun and the earth

Ipn = Direct normal solar radiation

H,

[@}:1.00-1.131{7 Eq3.2.2-2

Where

H,, = Monthly daily-average diffuse radiation on a horizontal surface

H, = Monthly daily-average total global radiation on a horizontal surface

, Where

K_T = Clearness index, defined by H%

or

H ,, = Monthly daily-average extraterrestrial radiation on a horizontal surface

As with most methods, Page calculates the monthly Clearness Index, an indication of the
fraction of extra terrestrial radiation that reaches the earth. This is then used in an linear

relationship with the global radiation to give the diffuse.

It was decided to use the method of Page. According to Lunde it correlates well with

Choudhury, (Choudhury, N.K.O., 1963) Stanhill (Stanhill, G., 1966) and Norris (Norris,
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D.J., 1966). It would be advisable to obtain new recent constants for South Africa, but

none was available.

All these methods were set up to give the total amount of diffuse radiation per day, and
use a clearness index to give it as a fraction of the global radiation for the entire day. But

Quick uses hourly values of all its variables.

The problem is that although the total diffuse radiation for the day will still be correct, if
the hourly value of global radiation is used to calculate the diffuse part, then the ratio of
diffuse/global will stay constant during the day. It is well known that this is not the case,
and that when the sun rises and sets the ratio is much larger than during the middle of the

day, when it will be at a minimum.

At the moment this remains the best method available. It should be remembered that the

global radiation would always be a lot more than the diffuse. Therefore this approach can
be used for the moment. If and when a better method does come to the fore, or preferably
measures values of diffuse radiation becomes available, it should be implemented without

delay.

3.2.3 The reasoning behind and selection of periods of similar weather.

The reason to change to Monte Carlo simulations is to have available the statistics of the
output variable of the problem. The simulation must calculate these statistics as
completely as possible. Software should then interpret it in such a way that the user can

extract all useable information without being confused.

The most comprehensive solution suitable for our needs will be where the full internal
temperature PDF for any time is known for each and every day of the year. In this way it

would be easy to find out exactly for what days cooling might be necessary, when it
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should heated, and for what times in the year there will be heating and cooling days. The

maximum heating/cooling load will also be clear, as well as total power consumption.

From a full and true stochastic answer this can be found. However, for reasons as
explained, we decided on a Monte Carlo method. To get this type of detail from a Monte
Carlo method would entail a huge amount of data and very long simulation times.
Weather data for many years will be needed in order to have a high enough certainty for

the data of each day.

Being engineers, we have to make a working compromise between the limited data
available, the amount of computing time necessary, and the extra accuracy obtained for
the effort. It was thus decided to make a study to see in how many discrete periods of

assumed constant weather the year can be divided.

The monthly average was calculated for temperature and radiation over the time period
chosen. After this was presented graphically it was decided that for Irene four periods
would define the problem sufficiently. See figure 3.2.3-1. These roughly concur with the
seasons. Summer for Oct, Nov, Des, Jan, Feb and March. April and May for fall, June

and July for winter, August and September for spring.

It must be made clear that this part of the analysis must be done for each new location.
Hokoi et al divided the weather of Tokyo into winter and summer, although no indication
is given of the reasoning behind this. (Hokoi, S. et al, 1990) Locations on the equator, for

example, will have marked different periods of constant weather.

These weather data periods can now be treated as times of constant weather, and input
statistics calculated for each of them. This would mean that with two variables chosen as
stochastical, the whole Monte Carlo method would use 72 days to describe the weather

statistics of 1826 days, 4% of the total.
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Monthly averages, 1934-1933
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Figure 3.2.3-1

3.2.4 Data simulations for testing purposes.

As previously said, the reasoning behind this study is to develop a Monte Carlo method
to give estimates of the output statistics with minimal effort. For this a deterministic tool
will be utilized. Quick was chosen, in part because of its extensive verification. (Van

Heerden, E., 1997)

In the end, the results as obtained by the Monte Carlo method developed in this study will
have to be tested against measurements. However, since measurements are not available
it was decided that it would be better to test against the results as obtained by simulating
each day with QUICK. This would be taken as equivalent to a full 5 years of measured

building internal temperatures.

Because of the verification done on the program, the results can be trusted. Furthermore,
a full 5 years of real weather data will be used. It would be out of the time frame
available for this study to measure a full 5 years of indoor temperature for a building. We
will then also know that we have the exact corresponding external climate, and not the

external climate for a location some distance away.
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The external climate from a location not exactly that of the building under consideration
may be influenced by micro-climatic effects. This would mean we use a different external
climate for the simulations than the building being measured has experienced. In the end

our measurements will not be trustworthy.

For this simulation every variable as needed by Quick will be used (global and diffuse
radiation, temperature and relative humidity), not only the ones chosen as stochastical.
This will test all the assumptions made, with the only exception of the calculation of the
diffuse radiation. Since the variables will be simulated together, and no convolution will

be done, cross-correlation's between different variables are inherently considered.

These simulations were done for the same ACH rates and houses used for the Monte
Carlo simulations. After the simulations was done the PDF's for the inside temperature
was obtained from the raw data, one for each hour of each of the periods of constant

weather. These full simulations represent the true inside temperature statistics.

At the same time, the effect of the convolution done must be tested as well. Not only do
we know there are cross-correlation's between the variables, but also we know for the
convolution process to be correct the variables have to be independent. For this reason a
second full simulation was done, this time simulating the temperature and radiation parts
of the input as separate variables. The most important reason for this simulation is to see
how big an error is made by assuming the variables are independent from one another,
and if the error is acceptable. This was also done for the four houses, as well as the

different ACH rates decided upon.

After simulating the separate variables, the PDF's was created for each season for each
hour for each output variable. The output variables are inside temperature caused by

outside temperature, and inside temperature caused by outside radiation. The combined
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effect was then found by convolving the PDF's, to obtain the statistics of the single output

variable, inside temperature caused by outside weather.

These full convolutions represent the best possible result. They will be compared to the
full simulations to see if the assumption that radiation and temperature can be taken as

independent creates unacceptable errors.
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3.3 Results

Input files were created with the method of minimum, mode and maximum. They are for
the different seasons, for temperature with radiation, global and diffuse, and relative
humidity taken as zero and for radiation, both global and diffuse, with temperature and
relative humidity taken as zero. Simulations were then run for the four houses, for the

different ACH rates, and from this PDF's were created with the method discussed.

Statistically the accepted way to test the result would be to use a Chi-square test. This
would give an answer as the percentage chance that the two distributions were drawn
from the same population. Lets look at Figure 3.3-1. The smooth curve is a PDF result

from the Monte Carlo method, and the jagged curve a PDF from the full simulation.

Sample Honte Carlo and Full simulation results
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Figure 3.3-1

If we look at the distributions, we can see that they are not too different. The Chi-square

2
statistic for two binned data sets is given by: X*= Z—(];; i')
'_ sl

[ I

(Press, W.H. et al,

1992). If this is calculated for these two curves, with the full simulation curve not

normalized, and the area under the Monte Carlo curve made to be equal to that of the full
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simulation curve, we have a chi-square statistic value of 40. 53, and 22 degrees of

freedom. See Appendix D for more detail.

We use the incomplete gamma function to find the percentage chance that the two
distributions are from the same population (Press, W.H. et al, 1992) and we get an answer
of 0.937%. From this we will decide that the distributions are not from the same
population, and that the Monte Carlo method did fail. At the same time, we do not know
far will the answer be out. The Chi-square does not give an indication of this. We knew
we were not going to be 100% accurate. Therefore it was decided to find another way of

presenting the results.

The most important question will be: if the Monte Carlo method predicts a temperature of
29 and higher for 5% of the time, how far will it be out? To answer these types of
questions, five points on the PDF was defined, the minimum temperature expected, the
temperature where the cumulative area under the curve is at a 5% minimum or 0.05, the
mean temperature (area 0.5), the 5% maximum temperature (area 0.95) and the maximum

temperature.

Different points defined on a POF

Dccurrence
2
8

min 5 percent min

Figure 3.3-2
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By then deducting the temperature predicted by the full simulations from that predicted
by the Monte Carlo method at these points, the error made by the Monte Carlo method
can be found. If we find these errors for the same PDF's in figure 3.3-1, we find that both
show the minimum temperature as 12 degrees. The 5% minimum of the Monte Carlo is
out by 1.4 degrees, the average by 0.31, the 5% maximum by 0.5 and the maximum by 2

degrees.

From this we can see that for the purpose of predicting the temperatures inside a building,
these two PDF's are not that far apart, and that the Monte Carlo Method produced quite a
good approximation in this case. The first and last values for the Monte Carlo method are
very small, creating the appearance on the graph that the minimum is out by 2 degrees,

and the maximums are the same.

This underlines the need to look at the 5% extremes. Generally, the maximum and
minimum can also be greatly influenced by a single day in 100 years, but the effect will
not be as noticeable at the 5% extreme mark. The values of both curves are given in

tabular format in Appendix D for clarification.

For the large amount of data we have here, the average error and standard deviation of
the error give a understandable and interpretable indication of the accuracy of the
method. To furthermore try to not confuse the reader, a 24-hour format was not used. All
figures given therefore combine the results from a 24-hour period as a single number.

The Monte Carlo results of course are still in a 24-hour format.

The figures give two answers: firstly the error of the Monte Carlo simulation compared to
the full simulation. This is considered the absolute error. Lastly the figures give the error
made by the convolved simulation as compared to the full simulation. This will give an

indication of the error made by assuming the variables are independent.
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The first figure gives these two answers if all the data points are considered, i.e. all
ACH's, houses, seasons and positions on the PDF are used. The rest of the graphs give
the two answers split up according to the different variables, i.e. ACH's, houses, seasons
and positions on the PDF used. In Appendix A the information of the figures are given in

tabular format, and Appendix B gives the detailed results.

Mean and standard deviation for all data

Degrees Celsius
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i
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Figure 3.3-3 All data points
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Hesn and standard devistion for different ach rates
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Figure 3.3-4: Different Air Changes per Hour (ACH) rates

Mesh and standard deviation for different houses
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Figure 3.3-5 Different houses
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Mean and standard deviation for different

seasons
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Figure 3.3-6 Different seasons
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Figure 3.3-7 Different locations on the PDF
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3.4 Discussion

In figure 3.3-3 all the data is considered. When the convolved simulation is compared to
the full simulation we can see that the mean error is 0 °C, with a standard deviation of
about 1 degree. The Monte Carlo method compares well to the full simulations, with a

mean error of less than a degree (0.68°C). The standard deviation is 1,37°C.

If the errors of the different ACH rates are compared, the convolved simulation result
again hold up well, with errors ranging from -0,23°C at Oach climbing to 0,41°C at
50ach. The Monte Carlo simulation compares well to the full simulations, with mean
errors ranging from -1.11°C for Oach to -0.07°C for 50ach. The standard deviations range

from 1,44°C to 1,25°C.

The Monte Carlo simulation compared to the full simulation result for the different
buildings are quite close to one another, indicating repeatability of the result for different

buildings. The convolved simulation result again compares well to the full simulation.

Mean errors for summer and fall (-0.23°C and -0.57°C) are better than those from winter
and spring (-0.87°C and -1.04°C). At the same time the standard deviations are
practically the same, indicating that the difference in mean errors may be due to the

uncertainty in the answers. The convolved simulation result is again acceptable.

When different locations on the PDF are compared to one another, the error for the
different locations change a bit from one location to another. Errors range from -0.02°C
for the maximum to -1.44°C for the 5% minimum. The biggest variation in the result for
the convolved simulation is found here, with mean errors ranging from -1.17°C to

Q.71°C,
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