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Summary

High levels of speech recognition have been obtained with cochlear implant users in quiet
conditions. In noisy environments, speech recognition deteriorates considerably,
especially in speech-like noise. The aim of this study was to determine what underlies
measured speech recognition in cochlear implantees, and furthermore, what underlies
perception of speech in noise. Vowel and consonant recognition was determined in ten
normal-hearing listeners using acoustic simulations. An acoustic model was developed in
order to process vowels and consonants in quiet and noisy conditions; multi-talker babble
and speech-like noise were added to the speech segments for the noisy conditions. A total
of seven conditions were simulated acoustically; namely for recognition in quiet and as a
function of signal-to-noise ratio (0 dB, 20 dB and 40 dB speech-like noise and 0 dB, 20 dB
and 40 dB multi-talker babble). An eight- channel SPEAK processor was modelled and
used to process the speech segments. A number of biophysical interactions between
simulated nerve fibres and the cochlear implant were simulated by including models of
these interactions in the acoustic model. Biophysical characteristics that were modelled
included dynamic range compression and current spread in the cochlea. Recognition
scores deteriorated with increasing noise levels, as expected. Vowel recognition was better
than consonant recognition in general. In quiet conditions, the features transmitted most
efficiently for recognition of speech segments were duration and F, for vowels and burst
and affrication for consonants. In noisy conditions, listeners mainly depended on the
duration of vowels for recognition and the burst of consonants. As the SNR decreased, the
number of features used to recognise speech segments also became fewer. This suggests

that the addition of noise reduces the number of acoustic features available for recognition.



Efforts to improve the transmission of important speech features in cochlear implants

should improve recognition of speech in noisy conditions.

Keywords: acoustic model, simulation, speech-like noise, confusion matrix, biophysics,

acoustic analysis.
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Opsomming

In 'n ruislose omgewing word hoé vlakke van spraakherkenning verkry met kogléere
implantings. Die herkenning van spraak verminder egter drasties in omstandighede waar
ruis teenwoordig is, spesifiek spraakagtige ruis. Die doel van hierdie studie is om te bepaal
wat onderliggend is aan spraakherkenning in persone met kogléere inplantings, en verder
ook wat onderliggend is aan spraakherkenning in ruis. Vokaal- en konsonantherkenning is
bepaal vir tien normaalhorende luisteraars deur gebruik te maak van akoestiese simulasies.
'n Akoestiese model is ontwikkel sodat vokale en konsonante geprosesseer kon word in stil
en ruiserige omgewings. Vir die ruiserige omgewing is multispreker-babbelklanke en
spraakagtige ruis by die spraaksegmente gevoeg. 'n Totaal van sewe kondisies is akoesties
gesimuleer; naamlik herkenning in ruislose omstandighede en herkenning as 'n funksie
van sein-tot-ruis verhouding (0 dB, 20 dB en 40 dB spraakagtige ruis en 0 dB, 20 dB en 40
dB multispreker babbelklanke). 'n Agt-kanaal SPEAK prosesseerder is gemodelleer en
gebruik om die spraaksegmente te prosesseer. Biofisiese interaksies tussen die
gestimuleerde senuweeselle en die kogléere inplanting is ook gesimuleer deur modelle van
hierdie interaksies in die akoestiese model in te sluit. Biofisiese eienskappe wat ingesluit
is, is onder andere dinamiesebereik-samedrukking en stroomverspreidings in die koglea.
Herkenning van spraak het afgeneem met 'n toename in ruisvlakke, soos verwag kon word.
Vokaalherkenning was oor die algemeen hoér as konsonantherkenning. In ruislose
omstandighede is die akoestiese eienskappe van spraaksegmente wat die effektiefste
oorgedra word die tydsduur en F,-formantfrekwensie van vokale en die ploffing en
affrikasie van konsonante. In ruiserige omstandighede het luisteraars hoofsaaklik

staatgemaak op die tydsduur van vokale en die ploffing van konsonante. Soos die sein-tot-



ruis vlakke afgeneem het, het die aantal eienskappe wat gebruik word vir spraakherkenning
ook afgeneem. Dit dui daarop dat die aantal akoestiese eienskappe beskikbaar vir
spraakherkenning afneem met die byvoeging van ruis. Herkenning van spraak in ruis met
kogléere prosteses kan verbeter word deur die oordrag van belangrike eienskappe in spraak

te verbeter.

Sleutelwoorde:  akoestiese model, simulasie, spraakagtige ruis, biofisika, akoestiese

analise, verwarringsmatriks.



List of abbreviations

Cl Cochlear implant

CIS Continuous Interleaved Sampling (Cochlear implant speech processing
algorithm)

dB Decibels

FEM Finite Element Modelling

FFT Fast Fourier Transform

F, First formant

F, Second formant

FITA Feature Information Transmission Analysis

HINT Hearing in noise test

IR Infinite impulse response

LPC Linear Predictive Coding

NMT Nucleus Matlab Toolbox

pdf Probability density function

pps pulses per second

RMS Root-Mean-Square

SPEAK Spectral Peak (Cochlear implant speech processing algorithm)

SPL Sound Pressure Level

SNR Signal to Noise Ratio

VAF Variance Accounted For (Multidimensional scaling parameter)
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CHAPTER1 INTRODUCTION

1.1 BACKGROUND AND SCOPE OF WORK

This dissertation investigates the encoding of speech with cochlear implants (CY).
However, before discussing the issues concerning cochlear implants, it is necessary to

familiarise the reader with the context.

In normal hearing, the outer ear picks up acoustic pressure waves. The middle ear then
converts these waves to mechanical vibrations. A number of small bones are responsible
for this conversion. The mechanical vibrations are transformed to vibrations in fluid in the
inner ear, the cochlea. When the fluids of the cochlea undergo pressure variations, the
basilar membrane undergoes displacements that contain information about the frequency
and temporal information of the acoustic signal. The displacement of the basilar
membrane causes hair cells in the cochlea to deform. Neurotransmitter is released when
the hair cells are deformed, which causes neurons to fire, indicating that there is excitation
in the inner ear at a specific cochlear place. Electric signals, generated from the firing
neurons, are carried on the auditory nerve and convey information about the acoustic signal

to the brain.

The auditory system cannot transform acoustic pressure waves (sound) to neural impulses
when the hair cells are damaged, causing hearing impairment. The hair cells can be
damaged in various ways, including by diseases such as meningitis and Meniere’s disease,
congenital disorders and some drug treatments (Bhatia, Gibbin, Nikolopoulos and
O'Donoghue, 2004; Matsui and Cotanche, 2004). The auditory neurons can degenerate as
a result of the damaged hair cells (Miller, Chi, O'Keeffe, Kruszka, Raphael and Altschuler,
1997; Ohlemiller and Gagnon, 2004; Whitlon, 2004). Loizou (1998), describes a person
with a large number of damaged auditory nerves or hair cells in the cochlea as profoundly
deaf.
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It has been shown (Hinojosa and Marion, 1983) that the loss of hair cells, rather than the
loss of auditory neurons, is the most common cause of deafness. This is a promising find,
as the remaining neurons can be excited directly through electrical stimulation. The
normal hearing mechanism (outer, middle and part of the inner ear) can be bypassed by a
device called a cochlear implant that stimulates the auditory neurons directly. The
challenge faced by researchers is to find a way in which to stimulate the auditory neurons
so that useful information about speech is conveyed to the brain, i.e. amplitude, frequency

and temporal information.

A cochlear implant is a device that picks up sound with a microphone and sends the speech
signal to a speech processor. This processor converts sound to electric signals that are
transmitted to an implanted electrode array (consisting of multiple electrodes), implanted
in the cochlea by a surgeon. Different auditory nerve fibres are stimulated at different
places in the cochlea, depending on the information in the speech signal. The signal
processor divides the incoming signal into a number of frequency bands or channels and
calculates the energy in the band; the energy determines the amplitude of the electric
pulses used to activate the electrodes. The electrodes at the base of the cochlea are used to
stimulate with information about high frequency signals and those at the apex are used to
stimulate with information about low frequency signals. The cochlear implant is used to
mimic the function of a healthy cochlea (Clark, 2003; Loizou, 1999a; Loizou, 1998,
Waltzman and Cohen, 2000; Zeng, Popper and Fay, 2004).

To test the ability of a cochlear implant user to recognise speech, the recognition of
sentences, monosyllabic words, vowels and consonants are normally determined (Fu,
Shannon and Wang, 1998; Loizou, 1998; Tyler, Preece and Lowder, 1987). Recognition
scores for sentence tests are usually higher than for other tests, owing to knowledge about
grammar and context. Initially, single-channel implants were used, but performance was
poor, scores for word identification ranged from 2 % to 4 %, as reported in Danhauer,
Ghadialy, Eskwitt and Mendel (1990). Speech recognition was greatly improved with the
introduction of multichannel implants. Recognition scores for vowels and consonants are
reported as approximately 70 % (Loizou, 1998), a significantly higher figure than for

single-channel implants. Today, only multichannel implants are used.

Electrical, Electronic and Computer Engineering 2
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The success of cochlear implants differs among individuals, and can be affected by various
factors, such as insertion depth (Dorman, Loizou and Rainey, 1997a; Faulkner, Rosen and
Stanton, 2003), number of independent spectral channels (Faulkner, Rosen and Wilkinson,
2001; Friesen, Shannon, Baskent and Wang, 2001) and speech-processing strategy
(Skinner, Fourakis, Holden, Holden and Demorest, 1996; Whitford, Seligman,
Everingham, Antognelli, Skok, Hollow, Plant, Gerin, Staller, McDermott, Gibson and
Clark, 1995). It is difficult to determine to what extent a certain factor influences speech
perception because of the interaction between factors. For example, meningitis is
associated with bone growth in the cochlea, which will cause an obstruction when the
electrode is inserted into the cochlea. A particular question that may arise in this instance,
is whether a user has poor speech recognition as a result of hair cell loss, or as a result of

shallow electrode insertion.

Cochlear implants still have numerous limitations, including decreased performance in
noise (Faulkner et al., 2001; Miiller, Schén and Helms, 2002; ter Keurs, Festen and Plomp,
1993b). For speech recognition in noise, it becomes difficult to separate different sources
of sound. It has been reported that cochlear implantees have little appreciation for music
signals, indicating that information needed to perceive music is lost during processing
(Koelsch, Wittfoth, Wolf, Miiller and Hahne, 2004; Kong, Cruz, Jones and Zeng, 2004,
McDermott, 2004; McDermott and McKay, 1997).

The problem addressed in this dissertation, is to determine what underlies measured speech
recognition in cochlear implantees, and furthermore, what underlies perception of speech

in noise.

1.2 APPROACH

There are numerous ways in which the effect of a specific characteristic of a cochlear
implant can be examined, including speech recognition experiments with implantees and
psychoacoustic experiments. One way is to change characteristics of an existing implant,
such as insertion depth of electrodes or the number of spectral channels, and observe the

effect. Another is to locate a cochlear implant user who has an implant processor or

Electrical, Electronic and Computer Engineering 3
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electrode array with a specific characteristic and analyse the speech recognition of this

particular implant user.

A more systematic way to examine the effect of implant characteristics is to use acoustic
simulations. For this dissertation, the approach followed to investigate the effect of
cochlear implant characteristics, is using acoustic simulations (Dorman et al., 1997a;
Dorman, Loizou and Rainey, 1997b; Shannon, Zeng, Kamath, Wygonski and Ekelid, 1995;
Shannon, Zeng and Wygonski, 1998). An acoustic simulation is an algorithm that
processes speech exactly like a cochlear implant processor but presents sounds to normal-
hearing persons. The amplitudes that result from the processing are used to modulate
noisebands instead of electric current pulses for the simulation. The modulated noisebands

are played back acoustically to a normal-hearing listener for recognition.

With an acoustic simulation', different scenarios can be set up and speech can be processed
through the model. These sounds can then be played back to normal-hearing persons to
determine the effect that each factor has on speech recognition. As mentioned previously,
sentences, monosyllabic words, vowels and consonants are used as tests for speech
recognition. Acoustic models may be used to assist engineers and other professionals in
developing custom maps’ and/or custom algorithms for cochlear implant users, or to
determine to what extent a cochlear implant could be successful. By being able to hear
what cochlear implant users hear, a clearer understanding can be acquired as to what
underlies speech recognition. Conducting experiments becomes easier when normal-
hearing persons are used instead of cochlear implant users. More normal-hearing persons
are available for experiments than cochlear implant users, so that more experiments can be

done in a shorter time.

1 . . . . . .
An acoustic model is developed in order to perform acoustic simulations on speech.

?A cochlear implant map refers to the specific set of parameters that the audiologist can manipulate
in a cochlear implant. This includes setting the highest and lowest levels of stimulation to be used
on each electrode.

Electrical, Electronic and Computer Engineering 4
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There are many factors that may be considered in an acoustic simulation, as will be
discussed later. A trade-off must be made between the simplicity of the acoustic
simulation and its accuracy. To obtain a good approximation for a cochlear implant, it
may be necessary to include complex processing, originating from the complexity of the
biophysics of the cochlea. However, some of the more complex detail of the biophysics of
a cochlear implant may be ignored in the simulation; still the overall operation of the
simulation must be the same as that of an implant. When more factors are included, the
interaction between these factors must also be determined and integrated into the

simulation, making the acoustic model more complex.

The approach that will be followed to develop the acoustic model, is to perform signal
processing on normal speech in exactly the same way that cochlear implant processors do.
At the point where electric signals are generated for stimulation in the cochlear implant, an
appropriate substitute must be used to stimulate the healthy cochlea of a normal-hearing
person acoustically. A sum of noise bands with specific centre frequencies are used to
simulate the electric stimulation of nerve cells in the cochlea (figure 1.1). A speech signal
is reconstructed from the noise bands and played back to normal-hearing persons. Details

will be discussed in chapter 3.

Recei hlear implant
Processor > §ce1ver/ Electrodes Coc .e ar imp
Stimulator listener
Acoustic Normal-hearing
model listener

Figure 1.1. Different processing paths for electric hearing and acoustic hearing

1.3 OBJECTIVES

This study had three primary objectives. It was necessary to develop the needed tools, i.e.

the acoustic model, before specific research questions could be answered. The first

Electrical, Electronic and Computer Engineering 5
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objective was to develop the model, which was then used in the remainder of the study to
investigate particular characteristics of the biophysics of cochlear implants. A second
objective was to perform experiments with normal-hearing persons instead of cochlear
implantees ahd thirdly, experiments in noise were performed to determine speech

recognition in noisy conditions. These objectives are discussed in more detail below.

First of all, an acoustic model was developed to simulate cochlear implants as closely as
possible. There are two definite components of the acoustic model — the implant-
processing model and the biophysical model. The processing model can be controlled to
some degree, whereas the biophysical model is user-specific and may vary in different
cochlear implant users. To determine whether the model was successfully implemented,
the results achieved with the model were compared with existing results. Results of vowel
and consonant recognition with cochlear implant users (Fu et al., 1998; Pretorius,
Hanekom, Van Wieringen and Wouters, 2005) were compared with the results achieved
when normal-hearing persons listened to speech processed through the acoustic model. As
results compared satisfactorily, it was assumed that the model is a good approximation of a

cochlear implant. This is discussed in chapter 4.

Next, acoustic simulations were used to determine the influence on speech recognition
when dynamic range compression of the stimulus current was included. These results were
compared with results achieved when the compression was excluded. By performing these
experiments, a clearer understanding can be achieved of the effect of using electric signals
to stimulate the cochlea to produce the sensation of sound. These experiments were all
conducted with normal-hearing persons after the vowels and consonants were processed
through the model. Analyses of the processed vowels and consonant signals were
conducted to determine the effect that dynamic range compression, spread of electric

current and quantisation of current had on the signal properties of the speech sounds.

Lastly, the model was used to determine the effect that noise has on the recognition of
vowels and consonants and to investigate what underlies this performance. It is evident
that speech-recognition performance is poorer in the presence of noise, especially speech-
like noise (Fetterman and Domico, 2002; Hochberg, Boothroyd, Weiss and Hellman, 1992;

Electrical, Electronic and Computer Engineering 6
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Kiefer, Miiller, Pfennigdorff, Schon, Helms, Von Ilberg, Baumgartner, Gstotiner,
Ehrenberger, Amold, Stephan, Thumfart and Baur, 1996; Miiller-Deile, Schmidt and
Rudert, 1995). The waveform of the speech signals was analysed to observe any major
differences between the speech signals in quiet and in noise. Experiments with normal-
hearing persons were conducted to determine the type of confusions present in noisy
environments. From the confusion matrices, conclusions were made as to the cause of the

confusions in noise.

A secondary objective of this study is to develop a tool that may be used to assist with
improved designs of cochlear implants. By using the model, specific characteristics of the
processor or hardware can be changed and the model can be analysed to explain why a
cochlear implant user hears what he or she hears. This is beneficial in the sense that
acoustic simulations are the bridge between understanding speech recognition of cochlear
implant users and acoustic properties of processed speech. With an appropriate acoustic
model, it becomes possible to analyse the acoustic properties of processed speech in a
cochlear implant as well as speech after taking into account the biophysics of the implant.
The analyses can then be used to explain speech recognition directly from signal
characteristics. Figure 1.2 shows that analyses of speech after the biophysics can be done

only with the use of the model. This is a valuable contribution of the model.

Sound Electrically
Sound un Biophysics » stimulated
hearing

1

|

I

|

I

E

processor |

t

|

Acoustic analysis !

without model :

Acoustic analysis
with model

Figure 1.2. Flow diagram showing the value of the acoustic model — acoustic analyses can be
performed at any stage of processing, including after the modelled biophysics, which cannot

be done without the model.
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1.4 HYPOTHESIS AND RESEARCH QUESTIONS

The hypothesis in the current study is that an acoustic model can provide insight into the
performance of cochlear implants in quiet and noisy conditions. By developing an acoustic
model that includes the processing and biophysics of the cochlear implant (figure 1.3),
specific characteristics can be isolated and examined. Biophysics are a very important
aspect of cochlear implants and an accurate model can give better insight into the effect
that biophysics have on speech recognition. The term 'biophysics’ includes several aspects
relating to the electrode-nerve interface, including the spread of stimulation current and

insertion depth of the electrodes.

Acoustic model components

Speech . . \ Speech recognition
P Biophysics | p co8
processor : experiments

Speech

L

Figure 1.3, Graphical representation of the components of the acoustic model. The input to

the model is speech; the processed speech is used in experiments.

It is important that the component of the acoustic model that simulates the processor of the
cochlear implant, closely emulates that of the cochlear implant. To simulate the
biophysics, results from the literature are used. Some of these are experimental results and
others are from models of specific aspects of the cochlear implant. It is assumed that these
results are accurate enough to be used in this study. The combination of the model of the
cochlear implant processor and biophysics yielded an accurate model.  Acoustic
simulations were generated to determine speech recognition using normal-hearing persons
instead of cochlear implant users. The same feature information transmission analyses
were performed on the results achieved with the acoustic simulations as those performed

on results achieved with cochlear implantees.

With respect to the results of the experiments before and after dynamic range compression

of the stimulus current, the more complete model (inclusion of dynamic range
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compression) is expected to compare better with results from experiments with cochlear
implantees. The hypothesis is that the percentage correct scores for recognition of vowels
and consonants will be closer to the results found with cochlear implant users with the
inclusion of dynamic range compression than for the exclusion of dynamic range

compression.

By assuming that the acoustic model with dynamic range compression simulates cochlear
implants accurately, the study can be taken further to determine the effect of noise on
speech recognition. An advantage of using the acoustic simulations in this case, is that
acoustic analyses can be performed on the output signals of the acoustic model so that the
underlying effect of noise on speech recognition can be determined in terms of acoustic

properties.

Specifically, the research questions investigated in this dissertation are:

e What are the components needed for an accurate acoustic simulation and how

should these be implemented?

e Using the developed model, what underlies speech recognition in cochlear
implants?

e What are the effects on speech recognition of electric stimulation with signals that
have undergone dynamic range compression?

e What are the effects of speech-like noise and white noise on the recognition of

vowels and consonants?

* What are the acoustic cues for speech recognition in the presence of dynamic range

compression and speech-like noise and white noise, using acoustic analyses?

1.5 OUTLINE

In the following chapters, the process of the development of a model is given. Before any
development on the model could be done, a thorough background study was conducted.
The technology used in cochlear implants is described, as well as the models currently

used for experiments with normal-hearing persons. From the literature study, the
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opportunities are identified so that the models may be implemented more accurately. The
implementation of existing models is used as a starting point for the development of a

more comprehensive acoustic model to be used for the acoustic simulations.

The development of the acoustic model is described in chapter 3. All the individual
functions included in the model are described in detail and the reasoning behind the choice
of the specific implementation is also given. The development of acoustic models for both
the CIS and SPEAK strategies are described. After careful reflection it was decided that
only the SPEAK strategy would be considered for the experimental study. From results
found for the CIS strategy, it appeared that the high stimulation rate of the CIS strategy
could not be implemented in a meaningful way. This has a direct impact on the quality of
the acoustic simulation, as the high stimulation rate is one of the most important aspects of
the CIS strategy. Also in this chapter, the methodology followed to do the acoustic

experiments for normal-hearing persons is given.

The results from the model and experiments described in chapter 3 are reported and
discussed in chapter 4. Acoustic properties obtained from the results achieved with the
acoustic simulations are used to explain confusions found in the experiments. Acoustic
analyses are performed on both the vowels and consonants in chapter 4 for quiet and noisy
conditions. Various analyses are performed on the confusion matrices to reach a clearer

understanding of what acoustic properties are important for speech recognition.

The relation of this study to the literature is discussed in chapter 5. Insights gained into
various aspects are reported and the implications of what is learnt from this study are
evaluated. Finally, in chapter 6, a conclusion is drawn from all the results achieved
through the completion of this study. The objectives that were met with the conclusion of
the study are summarised. This study has contributed to the current state of literature and
this is also presented in the final chapter. Possible improvements that can be made to the
model developed in this study, are stated in this chapter and any studies that might flow
from this study are suggested in this chapter.
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2.1 CHAPTER OBJECTIVES

The previous chapter outlined the study. The problem, to determine what underlies
measured speech recognition in cochlear implantees in quiet and noise, was introduced.
To solve this problem, it is necessary to gain insight into previous work. A thorough
discussion of the relevant literature is given in this chapter. Gaps in the current knowledge
will become apparent from the material discussed here. This chapter includes background
on the modelling of cochlear implant speech processors (section 2.3) and biophysics
(section 2.4 - see figure 1.3) as well as studies performed previously with the use of

acoustic simulations (section 2.5).

2.2 INTRODUCTION

To simulate the effect of electric stimulation in the cochlea acoustically, two aspects of
cochlear implants need to be modelled. First of all, there are the processing steps that need
to be exactly like those performed in the cochlear implant processor and secondly, the
biophysics must be taken into account. In the aforementioned categories, there are many
parameters, such as insertion depth of electrodes and number of independent spectral
channels, that are different for each user. The effect that these variables have on speech

recognition in quiet and noisy conditions are investigated.

To determine what effect each of these variables have on the recognition of speech, a good
understanding of each variable is vital. In the following sections, these variables will be
discussed and from this background, an acoustic model is developed in chapter 3. Both the

cochlear implant processing steps and the biophysics will be discussed.

As discussed in chapter 1, the implementation of the signal-processing strategy and model
of biophysics are two separate components of the acoustic model. The signal-processing

strategies and biophysics will therefore be discussed separately in the following section.
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2.3 SPEECH-PROCESSING STRATEGIES

In earlier years, cochlear implants were implemented using single-channel implants
(Danhauer et al., 1990; Hochmair-Desoyer, Hochmair and Stiglbrunner, 1985). Electrical
stimulation was presented at a single location in the cochlea using one electrode. Implants
have developed to such a degree that only multichannel implants are used today; general
consensus has been reached that multichannel implants result in better speech recognition
(Loizou, 1999b; Loizou, 1998; McDermott, McKay and Vandali, 1991).

Multichannel implants use an array of electrodes so that electrical stimulation can be
provided at several locations in the cochlea (Waltzman and Cohen, 2000; Zeng et al.,
2004). The tonotopic coding of frequencies in the cochlea is therefore used to be able to
transfer spectral information (Greenwood, 1990). Different electrodes are used to
stimulate different nerve cells. The nerve cells near the apex are stimulated with low

frequency signals and those near the base are stimulated with high frequency signals.

With the introduction of multichannel implants, many questions arose (Loizou, 1999b;
Loizou, 1998). These include questions such as how many channels are sufficient for high
levels of speech understanding (Dorman et al., 1997b; Friesen et al., 2001) and what type
of information should be extracted from speech for transmission to the electrodes (McKay,
Vandali, McDermott and Clark, 1994; Whitford, Seligman, Blamey, McDermott and
Patrick, 1993). To answer these questions, researchers developed different devices with a
varying number of spectral channels. Typically, there is a fixed number of implanted
electrodes. A subset of these electrodes is activated depending on the spectral resolution of

the implemented processor.

The exact number of channels needed for good speech recognition is still under
investigation; an extended study is reported in the next section (Dorman et al., 1997b;
Faulkner et al.,, 2001; Friesen et al., 2001). Many different signal-processing strategies
have been developed to extract different features from the speech signal (Kiefer et al.,
1996; Loizou, 1999b; McKay et al., 1994; Skinner, Amdt and Staller, 2002; Skinner et al.,
1996; Whitford et al., 1993; Whitford, Seligman, Everingham, Antognelli, Skok, Hollow,
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Plant, Gerin, Staller, McDermott, Gibson and Clark, 1995a). They can be divided into

three main groups, namely waveform, feature-extraction and hybrid.

Waveform strategies present a waveform, either pulsatile or analog, obtained by filtering a
speech signal into separate frequency bands. A strategy is feature-extracting when spectral
features or temporal features of a speech signal are presented to the electrodes (Dowell,
Seligman, Blamey and Clark, 1987). To obtain these spectral or temporal features, specific
algorithms are used. Hybrid strategies use a mixture of feature-extracting and waveform
strategies (Whitford et al., 1995b).

Examples of the different strategies are Compressed-Analog (CA) and Continuous
Interleaved Sampling (CIS) (waveform strategies), Fo/F,, Fo/Fi/F, and MPEAK (feature-
extraction strategies), Interleaved Processor, Spectral Maxima Sound Processor, SPEAK
and ACE (hybrid strategies).

As mentioned in Throckmorton and Collins (2002), results for speech understanding did
not differ significantly for the CIS and SPEAK strategies, suggesting that the performance
of these two strategies compares well. Holden, Skinner, Holden and Binzer (1995) report a
significant difference between SPEAK and MPEAK strategies, with SPEAK producing
considerably better results than MPEAK. For the purpose of this study, a description of
only the CIS approach and SPEAK processor will be presented. These are the strategies

most widely used at present.

2.3.1 Continuous Interleaved Sampling Strategy (CIS)

The CIS strategy was originally designed to address fhe problem of channel interactions
when stimulating all the electrodes simultaneously (White, Merzenich and Gardi, 1984).
The CIS approach uses pulses that are nonsimultaneous and interleaved to stimulate nerve
cells. The nerve cells are stimulated by sending biphasic pulse trains to the electrodes,

with only one electrode stimulated at any given time (Loizou, 1999b; Loizou, 1999a).
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The first processing step in the CIS strategy is the pre-emphasis of the higher frequencies.
A pre-emphasis filter is used to attenuate the low frequencies so that the frequency band
has equal loudness across the whole speech spectrum (Hartman, 1998). The signal is now
passed through a bank of bandpass filters. The number of filters depends on the number of
spectral channels used. To extract the envelopes of the filtered waveforms, full-wave
rectification and low-pass filtering are used. The typical cut-off frequency for the low-pass
filter is 200 or 400 Hz. The outputs of the filters are compressed and used to modulate
biphasic pulses (Loizou, 1999b). The logarithmic compression of the signal depends on
the particular user’s dynamic range of electrically evoked hearing. The amplitudes of the
trains of balanced biphasic pulses are proportional to the envelopes of the processed
waveforms. The pulses are then delivered to the electrodes at a constant rate and in a

sequential manner.

The rate of stimulation appears to have a significant influence on speech recognition — the
number of pulses per second (pps) that is used varies from user to user. Some users
achieve optimum performance with 833 pps while others achieve optimum performance
with 1 365 pps (Loizou, 1998; Wilson, Lawson and Zerbi, 1995). Pulse rates vary from as
low as 100 pps to as high as 2 500 pps. Skinner et al. (2002) report that users obtain the

best speech recognition scores for stimulation rates that vary between 900 and 2 400 pps.

The order of stimulation of the electrodes does not have a large impact on speech
recognition (Dorman and Loizou, 1997; Wilson et al., 1995). This parameter is user-
dependent and can be changed as desired. There are various orders in which to stimulate
the electrodes, including apex-to-base, base-to-apex (natural order) and staggered order.
Different orders have been implemented in previous studies. In the model developed, the

order of stimulation can be changed as desired (Loizou, 1998; Skinner et al., 2002).
2.3.2 SPEAK Strategy
The SPEAK strategy is an “n-of-m” strategy, where the speech signal is filtered into m

frequency bands and the processor selects the n (r < m) outputs with the largest energy in

the envelope in any one stimulation cycle (Loizou, 1999b; Whitford et al., 1995b). Only
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the n electrodes corresponding to these selected outputs are then activated.

A pre-emphasis filter is used, similar to that of the CIS strategy, to produce speech that is
equal in loudness across the frequency spectrum. The speech signal is then filtered into 20
frequency bands with centre frequencies ranging from 250 Hz to 10 kHz. The outputs of
the filters are rectified and low-passed filtered (cut-off frequency of 200 Hz). The SPEAK
processor now selects a number of maxima at 4 ms intervals to modulate the amplitude of
the stimulating pulse train. The number of maxima varies between five and 10, with an
average of six. “Maxima” does not necessarily refer to the amplitude of spectral peaks
within the signal, but to the energy content within a frequency band. Figure 2.1 shows a

block diagram of the processing steps involved in the SPEAK strategy.
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Speech

Pre-emphasis filter
1200 Hz 1® order
Butterworth HPF

N 6" order
Butterworth BPF

Full wave
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maximum RMS
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loudness growth
function

Activation of
electrodes

Figure 2.1. Block diagram of processing steps for SPEAK strategy

The electrodes are organised according to the tonotopic order within the cochlea; each
output of the bandpass filters is allocated to a specific electrode. For example, the most
apical electrode corresponds to the output of the filter with the lowest centre frequency.
The stimulation rate of the electrodes varies between 180 pps and 300 pps (Loizou, 1999b)
a rate of 250 pps is reported in Skinner et al. ( 2002).
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The rate of stimulation depends on the number of selected maxima as well as the particular
user’s parameters. When more maxima are selected for a broader spectrum, the
stimulation rate is reduced (Whitford et al.,, 1995b). Temporal information is increased
when the spectral content is reduced and the stimulation rate is increased. Note that there

is a trade-off between spectral content and temporal information.

The specific characteristics of the CIS and SPEAK strategies are important for the
implementation of the acoustic simulations. The acoustic models should process speech as
closely as possible to the cochlear implant processors. To summarise, a list of the
important characteristics of the signal-processing model that should be included in an

acoustic simulation is given below:
¢ Pre-empbhasis filter cut-off frequency
¢ Bandpass filter bandwidths and centre frequencies

e Stimulation rate, which affects the interval length in which the maxima are

determined
e Cut-off frequency of the low-pass filter
e Number of spectral channels for analysis
¢ Dynamic range compression of stimulus current
¢ Quantisation of stimulus current

Chapter 3 will explain how these signal-processing steps were included in the acoustic

model.

2.3.3 Modelling of signal-processing strategies in existing acoustic models

Many factors affecting speech recognition in cochlear implant users have been
investigated, including the number of channels needed for speech understanding (Dorman
et al., 1997b; Faulkner et al., 2001; Friesen et al., 2001), insertion depth of electrodes
(Baskent and Shannon, 2005; Dorman et al., 1997a; Faulkner et al., 2003), dynamic range
compression of stimulus current (Fu and Shannon, 1998) and interaction between channels
(Throckmorton and Collins, 2002; White et al., 1984).
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Modelling the signal processing of the cochlear implant is the first step in developing an
acoustic model. Before any of the existing models are discussed that deal with biophysical

modelling, the modelling of signal processing strategies is described.

For the CIS speech processing strategy, the speech signals are first processed through a
pre-emphasis filter for equal intensity across the frequency range (Hartman, 1998) — a
second order 1 200 Hz or 2 000 Hz high-pass filter. The pre-emphasised data are filtered
into L (2 < L < 20) logarithmic frequency bands using 6™ order Butterworth filters. The
signal's envelope is extracted with full-wave rectification and low-pass filtering (400 Hz
cut-off). The amplitudes of the sinusoids are computed from the root-mean-square of the
envelopes every 4 ms. Lastly, the sinusoids are summed and played back to normal-
hearing persons (Dorman, Loizou, Fitzke and Tu Z, 1998; Dorman et al., 1997b; Dorman,
Loizou, Spahr and Maloff, 2002). Another way to present the processed speech signals
(Dorman et al., 1997b) is to present the processed speech signal as a sum of noise bands
the width of the channels. The amplitudes of the noise bands are computed in the same

manner as discussed earlier.

For the SPEAK strategy, only the peaks in the short-term spectrum are used to modulate
the stimulating pulses. The processing is similar to that of the CIS strategy. The number
of filter banks are 16-20 (McKay and Henshall, 2002), in contrast to the 2-20 of the CIS
strategy. Of these 16-20 filter banks, only the 6-8 channels with the maximum energy
content are used in any one stimulation cycle. The RMS (root-mean-square) of the filtered

waveforms is calculated for every 4 ms as for the CIS strategy.

2.4 MODELLING OF BIOPHYSICAL CHARACTERISTICS

Speech recognition performance of cochlear implants are influenced by the biophysical
characteristics of the implant, such as the number of independent spectral channels, the
insertion depth of electrodes and current spread within the cochlea. Even though standard
signal-processing strategies are used for all cochlear implants, the interaction between the
stimulating electrodes and the nerve cells in the cochlea vary among cochlear implant

users. There are models and physical measurements that can predict general behaviour
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under specific circumstances. These measurements and models are used to develop a
biophysical model that simulates these interactions. Specific biophysics involved with

cochlear implants and how they can be modelled are discussed in the following section.

The most important factor that should be included in the biophysical model, and also the
most basic, is the number of channels. Any other factor that may be important enough to
be included in the model can be added by altering this basic model. As can be seen from
the literature, the insertion depth of the electrode can be simulated by altering the analysis
and carrier frequencies of the basic model. Different aspects of insertion depth can be

investigated using this model.

When speaking of the number of channels in a cochlear implant, one refers to the number
of areas in the cochlea that are stimulated using a specific centre frequency. The number
of available, independent channels plays an important role in the level of speech

recognition.

For high levels of speech understanding, a minimum number of independent channels are
needed for stimulation. The optimum number needed must be determined, as speech
recognition against number of channels reaches a plateau at a specific number of channels.
The effect of the number of channels on speech recognition has been investigated by
Dorman et al. (1997b) and Shannon et al. (1995). The number of channels is difficult to
determine using implant users, because of other factors that may play a role in speech
understanding, e.g. the number of surviving ganglion cells. The use of acoustic

simulations is ideal to examine the effect of this specific factor.

For the simulations, speech is processed with algorithms similar to those implemented in
the implant processor. The processed signals are then presented to normal-hearing persons
as a sum of sinusoids or noise bands. It is important to note that the only factor being
varied is the number of channels; all other factors are held constant. Loizou (1998)
determined that between five and eight independent channels are needed for good speech
recognition. For vowel recognition, a minimum of eight channels are needed and for

sentence recognition, five channels are needed. High levels of recognition will therefore
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be obtained with five to eight independent channels. The number of channels that should

be implemented in the acoustic model should be between five and eight.

The insertion depth of electrode arrays for cochlear implants has a distinct influence on the
performance of speech understanding. Dorman et al. (1997a) explained this phenomenon
with the following example: when an electrode array is inserted approximately 27 mm into
the cochlea, the most apical electrode will lie near the area for 350 Hz signals. The centre
frequency of the first filter in an eight-channel prosthesis will be at 350 Hz. In this case
there will be little, if any, frequency mismatching. On the other hand, when the electrode
array is inserted only 22 mm into the cochlea, the first filter's centre frequency (350 Hz)
will be used to stimulate near the 800 Hz area of the cochlea. It is clear then that frequency
up-shifting will take place, and this will have an effect on speech perception. The
following figure shows the frequency bands associated with the insertion of the electrode

array in the cochlea:

Apex

+«——22 mm—> Base
‘ Electrode
Cochlea _ / ,y/,r///r /r — Array

100 1000 10000
Frequency (Hz)

Figure 2.2. Insertion depth of electrodes

Loizou (1998) described experiments conducted to determine the effect of insertion depth
of the electrode array on speech understanding, using simulations played back to normal-
hearing persons. Insertion depths of 22 mm to 25 mm for the CIS strategy were simulated.
Again, the only factor varied for the simulations was the insertion depth; a fixed number

of electrodes was used. The signal processing is similar to that of the experiment with the
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number of channels. In this case only five channels were used for the CIS strategy, as
described in Dorman et al. (1997a) and Loizou (1999a). Five amplitudes were calculated
at fixed frequencies that would be used in the simulation. The set of amplitudes was
different for the four simulation scenarios. The sine wave output frequencies that
simulated the different electrode depths were calculated using the frequency-to-place

equations found in Greenwood (1990).

The results show that insertion depth has a significant effect on speech recognition. For
the 25 mm and 24 mm insertion depth, reasonable speech understanding was obtained, but
for 23 mm and 22 mm, recognition was very poor. This shows that when the cochlea is
obstructed in such a way that the electrode array cannot be inserted deeper than 23 mm, it

is possible that poor speech recognition will be achieved by the cochlear implant user.

Shannon et al. (1998) found that analysis and carrier bands must be matched in frequency.
The specific cut-off frequencies of the bands are not as critical, and carrier bands that are
shifted in frequency decrease performance considerably. From the work of Baskent,
Shannon and Baskent (2003) and Faulkner et al. (2003) it is clear that the best speech
recognition results, pertaining to insertion depth of electrodes, will be obtained when
acoustic frequency information is mapped onto the appropriate cochlear place. For this

study, frequency-place mapping was implemented, as described in chapter 3.

Channel interactions are a very real problem with cochlear implants. In acoustical hearing
the nerve cells are stimulated tonotopically, according to the energy present at different
frequencies. For good performance in speech-recognition tasks, the optimal number of
channels needs to be stimulated independently. This is achieved when only the neural
fibres in the immediate area of the stimulating electrode are excited. However, this does
not happen. The current spreads through the whole cochlea and excites fibres that are far
away from the electrode as well (Hawkins, McMullen, Popper and Fay, 1996). This causes
channel interactions (Vanpoucke, Zarowski and Peeters, 2004). Channel interactions cause
the number of perceptually independent frequency channels to be less than the number of

electrodes available.
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In Hanekom (2001), a three-dimensional finite element model (FEM) was developed to
determine the potential distribution within the human cochlea. These models are complex
and an approximation may be used instead for the modelling of current spread, as
described in Vanpoucke et al. (2004) and Jolly, Spelman and Clopton (1996). In
Vanpoucke et al. (2004) the potential distribution in the cochlea is determined for every
electrode stimulated separately. The potentials at the neighbouring electrodes are

measured to determine the spread of current through the cochlea as a function of distance.

Asynchronous stimulation is used in cochlear implants in an attempt to minimise channel
interactions. A smaller group of nerve cells are stimulated with the biphasic pulse. This
has an influence on the quality of the perceived speech signal. In the model developed by
Fu and Galvin 111 (2001), the channels are desynchronised by introducing a delay for each
channel; the delay of each channel is a fraction of the total pulse rate. The order of delay
of the different channels depends on the order of stimulation of electrodes in cochlear
implants. For example, for the “apex-to-basal” order, the highest frequency sinusoidal
signal is delayed with the longest time delay and the lowest sinusoidal signal does not have
a delay (Loizou, 1999b; Skinner et al., 2002).

Cochlear implants work on the basis of stimulating the auditory neurons directly without
going through the normal mechanism for a healthy cochlea (outer, middle and part of the
inner ear). Information about speech is transmitted directly to the auditory nerve
connected to the brain. It is therefore very important that the auditory neurons are still
intact, even though the hair cells in the inner ear may be damaged (Hinojosa and Marion,
1983; Loizou, 1999a).

The effectiveness of the cochlear implant depends on the distribution of healthy nerve cells
in the spiral ganglion. If there are no living ganglion cells present at a specific place in the
cochlea, it is impossible to convey any information about speech to the brain for the
corresponding frequency. Hearing loss as a function of frequency is reported in Starr,
Isaacson, Michalewski, Zeng, Kong, Beale, Paulson, Keats and Lesperance (2004), where
typical distributions of dead ganglion cells can be observed. Every cochlear implant user

has a different neural survival spread, making it difficult to assume a general survival
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spread. It has been proven though that auditory cells in the basal area of the cochlea are
damaged before auditory cells in the apical area, causing hearing loss for high-frequency
speech components (Starr et al., 2004). This auditory nerve spread must be included in the

acoustical simulation.

The biophysics of cochlear implants, as described in this section, were implemented in the
acoustic model as a separate processing block (see figure 1.3). The model can also be used
in further studies to investigate the effect on speech recognition of biophysical

characteristics not mentioned in this chapter.

2.5 PREVIOUS RESEARCH CONDUCTED WITH ACOUSTIC MODELS

As reported in the previous section, various studies have been performed with acoustic
models to determine the effects of specific characteristics of cochlear implants on speech
recognition. The characteristics are either part of the speech processor or the biophysics of
the cochlear implant. Specific experimental studies performed using normal-hearing
listeners and/or cochlear implant users, are discussed in this section in order to demonstrate

typical studies that can be performed using an acoustic model.

Dorman et al. (2002) conducted a study to determine the number of channels needed for
good speech understanding in quiet and noise. A comparison was made between the CIS
and SPEAK strategies. For quiet conditions, six channels for SPEAK and eight fixed
channels for CIS were determined to be adequate for high levels of speech understanding.
In noise, nine channels for SPEAK and 10 channels for CIS were the minimum number of
channels for good understanding. Similar to the results obtained by Dorman et al. (2002)
are those obtained by Friesen et al. (2001) and Fu et al. (1998). They investigated the
effect of noise and spectral resolution on speech recognition. Their findings were that it is
necessary to improve the effective number of spectral channels for better performance in
noise. Cochlear implant users are not able to use spectral information received from the
electrodes of their implant fully. These results must also be taken into account when

developing an acoustic model to mimic the cochlear implant accurately.
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Another factor related to the number of channels needed for good speech understanding is
the minimum spectral contrast required. Loizou and Poroy (2001) conducted a study in
which they used a model that manipulated the channel amplitudes of the basic model. The
new model implemented a 1 — 10 dB (decibel) spectral contrast for the channel amplitudes.
The results showed that cochlear implant listeners needed 4 — 6 dB more spectral contrast

than normal-hearing listeners for high recognition levels.

The differences in spectral shape resolution abilities among cochlear implant listeners, and
between cochlear implant and normal-hearing listeners were investigated by Henry and
Turner (2003). The effect of varying the number of channels on spectral shape resolution
was examined. To determine spectral shape resolution, the spacing where an interchange
in peak and valley position could be detected was measured. The participants in the
experiment were 21 cochlear implant users and eight normal-hearing persons. The specific
experiments conducted were spectral ripple resolution and vowel recognition, using vowel
stimuli recorded by Hillenbrand, Getty, Clark and Wheeler (1995). Their findings were
that there is a wide variation in the ability of different cochlear implant listeners to
determine spectral shapes in the acoustic signal; spectral shape resolution was poorer in
cochlear implant users than normal-hearing listeners with the same number of channels;
normal-hearing listeners were able to make use of more channels to determine spectral
peaks than cochlear implant listeners and there was a significant correlation between vowel

recognition and spectral shape resolution for cochlear implant users.

Recognition of spectrally asynchronous sentences by normal-hearing persons and cochlear
implant listeners with varying spectral resolution and fine spectral structure was examined
by Fu and Galvin IHI (2001). A CIS processor with four or 16 channels was used for the
cochlear implant listeners and either a full-spectrum or a noise-band processor, also four or
16 channels, for normal-hearing persons. The output of each channel was time-shifted
with respect to the other channels, with the delay ranging from 0 to 240 ms. Six normal-
hearing persons and five cochlear implant users participated in the study. The Hearing in
Noise Test (HINT) (Nilsson, Soli and Sullivan, 1994) sentence set was used. They found
that a detailed auditory analysis of the short-term spectrum is not necessary for

understanding speech. The loss of fine spectral information has nevertheless a distinct
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negative effect on speech intelligibility when cross-channel spectral asynchrony is present.

Loizou and Poroy (2001), performed a study to determine the minimum spectral contrast
needed for vowel identification by normal-hearing persons and cochlear implant users.
The vowels used for the experiments were produced by a male speaker and selected from
the vowel database used by Hillenbrand et al. (1995). For normal-hearing persons, the
speech data were processed in a similar way to the CIS strategy and presented to the
participants. Throughout the experiments, the peak-to-trough ratio and number of channels
were varied correspondingly. It was found that minimum spectral contrast was dependent
on the spectral resolution of the processed signal. Six cochlear implant users and nine

normal-hearing persons participated in the study.

The effect of reduced spectral resolution and distorted spectral distribution of temporal
envelope cues on consonant, vowel and sentence recognition was measured in Shannon et
al. (1998). In all the experiments, an acoustical model was used to process speech similar
to the CIS strategy. Eight normal-hearing persons participated in the study. The vowel
and consonant tokens that were used were taken from the sound track of the lowa
audiovisual speech perception laser video disc (Tyler et al., 1987). The words used for
recognition in sentences were taken from the sound track from the City University of New
York laser videodisc everyday sentences (Boothroyd, Hnath-Chisolm and Hanin, 1985).
The experiments included location of band divisions, frequency-shifting envelope cues,
warping the spectral distribution of envelope cues and spectral smearing. The experiments
showed that the exact cutoff frequencies which define the bands are not critical for speech
recognition. The warping of the spectral distribution of envelope cues causes speech to be
completely unintelligible. Poor intelligibility results from a tonotopic shift of the envelope
pattern. Another finding from the study was that the selectivity of the envelope carrier

bands was not critical for speech recognition.

The effect of channel interactions on speech recognition can be investigated with
acoustical models. Different kinds of channel interactions can also be investigated and
compared. In Throckmorton and Collins (2002) a thorough study of five different kinds of

interactions are conducted and the results are compared. Initially experiments with
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normal-hearing persons were conducted to determine the effect of pitch reverséls, electrode
discrimination and forward masking effects. Two additional models were later added
based on the earlier results, namely pitch gap models and a modified set of forward
masking models. Eleven normal-hearing persons participated in the study. The
experiments conducted were vowel recognition, consonant recognition, sentence
recognition (using the CID Everyday Sentence Lists) and word and phoneme recognition
(using the NU #6 Monosyllabic Words Lists). The results from this study indicate that
various channel interactions affect speech recognition to different degrees. The effects of
channel interactions are frequency dependent, spectral interactions that affect lower-
frequency information have a more significant effect on speech recognition than

interactions affecting higher-frequency information.

Acoustic simulations were used to determine the effect of compression of frequency-to-
place mapping on speech recognition in Baskent et al. (2003). Expansion of the
frequency-to-place mapping was also measured. A vocoder was used to process
consonants, vowels and sentences similar to the CIS strategy, using four, eight and 16
channels. Six normal-hearing persons participated in the study. The vowel tokens were
taken from the materials recorded by Hillenbrand et al. (1995) and the sentences were
taken from the TIMIT sentence materials. Results from this study suggests that speech
recognition is dependent on the mapping of acoustic frequency information onto the

appropriate place in the cochlea.

The recognition of frequency-shifted and spectrally degraded vowels were investigated by
Fu and Shannon (1999a) for acoustic and electric hearing. Experiments with five normal-
hearing subjects showed that vowel recognition is sensitive to both spectral resolution and
frequency shifting. However, the effect of a frequency shift does not appear to interact
with spectral resolution. The results from five cochlear implant users were similar to those
from the normal-hearing subjects. The speech signals used for the experiments were taken
from Hillenbrand et al. (1995).

In Friesen et al. (2001), speech recognition in noise with a varying number of spectral

channels was compared for acoustic and electric hearing. Recognition in four different
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signal-to-noise ratios (15, 10, 5 and 0 dB) was measured, while varying the number of
spectral channels. Five normal-hearing listeners and 19 cochlear implant listeners
participated in the study. Vowel and consonant recognition using the speech signals from
Hillenbrand et al. (1995) was tested, as well as monosyllable word and sentence
recognition using the CNC words test and HINT sentence test. The results demonstrate
that most cochlear implant users are unable to fully utilise the spectral information

provided by the number of electrodes used in their implant.

An interesting observation was made by Becken, Donaldson, Kimberley and Nelson
(2005), who performed a study to determine the relationship between psychophysical
measures of electric hearing and neural survival in cochlear implant users. Their
conclusion was that there is no consistent relationship between spiral ganglion cell survival
and threshold, maximum acceptable loudness level and dynamic range. The conclusion is
that there is a complex relationship among electrode location, neural survival and
behavioural measures of hearing. The proximity and number of surviving spiral ganglion
cells have no influence on threshold, maximum acceptable loudness level and dynamic

range. These measures are affected by other factors.

2.6 GAPSIN THE CURRENT LITERATURE

From knowledge obtained from literature, a number of gaps was identified. Research was
not done to fill all the gaps; this study contributes to the existing acoustic models by
addressing some of these issues. The model to be developed must be able to determine the
effect on speech recognition of many combined cochlear implant characteristics, which

does not appear to be available at present.

No literature appears to be available on models that simulate current distribution in the
cochlea. This also has an effect on speech recognition and should be investigated in order
to explain the influence of current spread on acoustic features. When the cochlea is
stimulated with current, not only the nerve cells in the immediate area are stimulated, but
also nerve cells in the area of the current spread. This causes the stimulated frequency

band to increase and it is expected that a broadband signal will be perceived by the
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cochlear implantee. This current spread only exists for electric stimulation; it is important

to model it for acoustic hearing.

It is also apparent from the literature that the relationship between spectral resolution and
electrode insertion depth is a topic that still needs a great deal of research. At the moment,
the number of independent channels do not achieve their full potential, because of limiting

factors such as insertion depth.

One aspect of the current study is to determine the effect that dynamic range compression
has on speech recognition with specific reference to the SPEAK strategy. Dynamic range
compression refers to the stimulating current levels of the implant. Every implant user has
specific comfortable (C) and threshold (T) current levels. All the amplitudes of the
stimulating current pulses must be in the range between T and C, resulting in dynamic
range compression (Fu and Shannon, 1998). To determine the effect, experiments were
conducted with speech signals processed through the developed model before and after
dynamic range compression. The experiments were conducted with normal-hearing

persons using acoustic simulations.

Although many studies have investigated the effect of noise on speech recognition, it
appears that no one has done research on speech recognition in noise with the inclusion of
dynamic range compression. Noise will contribute to the energy in a specific frequency
band, increasing the stimulus current. As the energy content in a frequency band increases,
the stimulus currents will approach the comfortable level and will reach a plateau. This
will have a direct impact on speech recognition, as the envelope of a signal might be lost in

the presence of noise.

These gaps led to the primary research question, "What underlies measured speech
recognition in cochlear implantees, and furthermore, what underlies perception of speech

in noise?"
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2.7 DEVELOPMENT OF AN ACOUSTIC MODEL

The models proposed in the literature studied are parsimonious; a comprehensive acoustic
model will be developed and evaluated to determine whether the results compare better
with results found with cochlear implant users. To evaluate the model, experiments were
set up involving cochlear implant users and normal-hearing persons, and the results can be
compared. Results from Friesen et al. (2001) suggest that a relative comparison must be
made between results from cochlear implant users and normal-hearing persons. Using

absolute values is not recommended.

A good starting point for the development of an acoustic model would be to use existing
models that simulate the effect of the number of channels on speech recognition. One must
remember though that the number of channels is only one aspect of the functioning of the
cochlear implant and acoustic simulation. A possible solution would be to give the user
the option to change different factors, including number of channels, type of signal
processing, dynamic range compression of stimulus current and insertion depth of

electrodes.

The fundamental signal processing that will be done on speech signals to simulate any
influencing factor will always be done in a similar way to that described in section 2.4.
One can easily see that any model will have a specific number of channels. The other
factors that may have an influence will be simulated by changing characteristics associated
with a particular factor. Thus, even though a user may have the use of all available
electrodes, it is still very important to understand and implement the signal processing

associated with the number of channels.

Most of the models already in use implement very similar signal-processing techniques. It
is therefore safe to use these fundamental models and combine or expand them to build a
model that incorporates more than one factor. The challenge would be to build a cogent
argument that will demonstrate the influences of all the different factors and their
combination and interaction. Although two separate factors have a distinct influence on

speech recognition, it is not safe to assume that one can just add the effects for the overall
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evaluation of speech recognition. The studies on channel interactions have shown that

there is more than one possible consequence of interaction between factors.

2.8 SUMMARY

In Chapter 2, the literature on which the study is based was summarised. The background
needed for the development of this specific model is condensed into one chapter. Based on
the existing models described in this chapter, a new and more comprehensive model was
developed (discussed in the following chapters). Experiments conducted in previous
studies were also discussed. The experiments that will be conducted in this study will be
based on the procedures recorded in the studies mentioned. The method followed to
develop the acoustic simulation and to conduct the needed experiments will be described in

detail in the following section, chapter 3.
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3.1 CHAPTER OBJECTIVES

Following the background given in the previous chapter, the development of a model for
cochlear implants is given in this section. The section describing the methods
implemented is divided into two parts, the building of the model, and the experiments done
using the simulations from the model in order to meet the specific objectives. Analysis of
vowels and consonants was done using the programs PRAAT and Matlab. The spectral
information of the speech segments was analysed before and after being processed with the

model.

3.2 INTRODUCTION

The approach followed to develop the acoustic model was to separate the model into
biophysics and signal processing parts. For some aspects of the model, characteristics of
previous models were incorporated. The intention was to develop a more detailed model
that incorporated aspects not previously found in acoustic models. The speech processing
part of the model should obviously emulate the cochlear implant speech processing as
close as possible. To this end, the Nucleus Matlab Toolbox (NMT) from Cochlear Pty Ltd

was used.

Cochlear Pty Ltd' developed this toolbox for Matlab in order to process speech similar to a
cochlear implant. Current signals that can be used to activate a cochlear implant electrode
array directly are generated by the toolbox in order to perform controlled experiments with
cochlear implant users. The processing steps used in this toolbox are exactly the same as
those in the cochlear implant processor. These steps were analysed to determine which
steps are important for the acoustic simulation. As will be shown, some of the steps are

particular to cochlear implant users and not appropriate in an acoustic simulation that

1
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normal-hearing listeners will listen to. The real challenge lies in the simulation of the
biophysics so that a model can be developed that can simulate what happens in the cochlea
after stimulation with current pulses. To do this, several aspects of the nerve-electrode
interface were considered, including current spread within the cochlea and current-

loudness mapping within the cochlea.

In the sections that follow, the development of the model is described, based on the
processing steps from the NMT and previously developed models. A detailed description

of the processing steps of the model is given below.

3.3 DEVELOPMENT OF AN ACOUSTIC SIMULATION

3.3.1 Processing steps in Nucleus speech processor as performed in the NMT

The NMT implements two types of speech-processing strategies as they appear in the
Nucleus cochlear implant processor. The one focuses on temporal information in the
speech signal (CIS) while the other focuses on spectral information (SPEAK). The
processing steps of the SPEAK strategy were analysed and included in the model, with
modifications introduced. The steps for CIS and SPEAK are summarised below as
implemented in the NMT. Typically, six channels are used for the CIS processing
strategy; this is less than for SPEAK in order to have a higher stimulation rate (Loizou,
1999b). For SPEAK, the incoming speech is divided into 20 frequency bands and the eight
channels with the highest energy content in any one stimulation cycle are used for

stimulation.

The speech signal is divided into time windows with an overlap of 75 %. These are
windowed with a Hanning window to prevent sharp transitions in the speech signal in the
time domain. When blocks of speech are extracted from a signal in the time domain, the
speech signal is in effect modulated with a square wave, introducing broadband frequency
components to the speech signal's spectrum. This is due to the broadband frequency
response of a square wave. By using Hanning windows, the speech signal is modulated

with a smooth function, minimising the spectral spread. The length of the windows is
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fixed at 8 ms. The signal is then divided into frequency bands using a Fast Fourier
Transform (FFT); the frequency bins are predetermined for both CIS and SPEAK. There
are six CIS frequency bands and as mentioned before, 20 frequency bands for SPEAK.
Note that in the developed model, a number of bandpass filters were used instead of

frequency bins, based on existing models {Loizou, 1998).

The energy content in each band for a specific time window is determined next. Each
frequency band has an amplitude gain according to the characteristics of the implant for a
specific user; these are applied with the determination of energy content. The length of
one time window is 128 samples (8 ms at a sampling frequency of 44.1 kHz). Because of
the 75 % overlap, new samples are available every 2 ms. The overall maximum
stimulation rate is 14 400 pps in the Nucleus speech processor. The stimulation rate of a
single electrode depends on the number of channels® in use. For example, for a six-
channel implant, the stimulation rate of a single electrode will be 14 400 pps divided by
six, which is 2400 pps. For the CIS strategy all the channels are used for further
processing. Only the eight channels with the highest energy content per time window is
used for the SPEAK strategy for further processing. The corresponding channel position is

retained for the SPEAK strategy for when the electrodes are activated at a later stage.

The calculated energy levels, described above, are mapped to current levels that will be
used to stimulate the nerve cells in the cochlea. The maximum current level is the comfort
(C) level and the minimum level is the threshold (T) level. Every cochlear implantee has a
specific comfort and threshold current level for each electrode pair. The threshold level of
each electrode pair is the minimum current value for a just-audible stimulus. The comfort
level is the maximum current value that can be used for stimulation before it becomes
uncomfortably loud. These values are user-specific and can be changed within the NMT
(also in the acoustic simulation). Usually these are set by the audiologist and are
commonly known as a "map". In the NMT the current levels are clipped so that all values
fall within the C and T levels.

“Channel' refers to two electrodes in an electrode array, one electrode is the stimulating electrode

and the other is the return electrode for the stimulating current

Electrical, Electronic and Computer Engineering 33



CHAPTER 3 METHODS

A logarithmic loudness growth function is next applied to the computed current values in
the NMT. (This is in fact not a loudness growth function even though the NMT calls this
function as such.) This step is not included in the acoustic simulation, as it is shown in the
next section that the loudness growth function linearises the current-loudness function only

when stimulating nerve cells with current signals in cochlear implants.

The stimulation order for a cochlear implant can be changed as needed; by default the
channels are activated from the most basal position to the most apical position. In the
NMT (in the acoustic simulation as well), the order of stimulation is set to the default order
by sorting the channels according to their centre frequency. The final step in the
processing is to map the current values, as determined in the previous steps, to particular

electrodes that will stimulate specific places in the cochlea.

3.3.2 Processing steps in the acoustic model

The processing part of the acoustic model must be as close as possible to the actual signal
processing done by the processor of a cochlear implant. All the filtering, amplitude
calculations, frequency mapping and other steps must be performed exactly as the
processor does. The acoustic model was programmed in Matlab. The speech signals used
for the experiments were processed by Matlab code and the output saved as a .wav file for

easy manipulation afterwards.

The following block diagram, figure 3.1, gives the building blocks of the acoustic model,

followed by a detailed description of each processing step.
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Figure 3.1. Block diagram of basic acoustic model

Examples of the output of the processing steps used in the model are shown where

possible. The processing was done on an English sentence, "The fire is very hot". The

original signal is shown in figures 3.2 and 3.3 for the time and frequency domain.
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Figure 3.2. Time domain representation of the original sentence, "The fire is very hot"
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Figure 3.3. Frequency domain representation of the original sentence, "The fire is very hot"

3.3.2.1 Bandpass filters

The original data are read from a .wav file and then filtered into 20 different frequency
bands. The bandwidths and centre frequencies are determined by Greenwood's frequency-
to-place equation (Greenwood, 1990) for an insertion depth of 25 mm and a distance of

0.75 mm in between electrodes. Greenwood's frequency-to-place equation, as calculated
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for human cadavers, is

£ =165.4x(10°%4% _1) Hy, 3.1)

where f is the frequency corresponding to a specific distance (d) from the base of the
cochlea. The 20 bandpass filters are sixth-order Butterworth filters, which were used
because of their flat bandpass response. The number of filters corresponds to the number
of places in the cochlea that will be stimulated with the electrode array. In table 3.1, the
upper and lower -3 dB cut-off frequencies of each frequency band are summarised. The
filter was implemented as an IIR filter. A typical transfer function is shown in figure 3.4.

An example of the output of the bandpass filters is shown in figures 3.5 and 3.6.

Table 3.1. -3 dB cut-off frequencies for bandpass filters as determined by Greenwood's

frequency-to-place equations; frequency bands are defined for bipolar stimulation

Lower cut-off |Upper cut-off
Channel [frequency (Hz) |frequency (Hz)
1 460 528
2 528 604
3 604 688
4 688 781
5 781 884
6 884 999
7 999 1126
8 1126 1267
9 1267 1423
10 1423 1597
11 1597 1789
12 1789 2003
13 2 003 2239
14 2239 2 502
15 2 502 2793
16 2793 3116
17 3116 3474
18 3474 3871
19 3871 4312
20 4312 4 801
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Figure 3.4. Transfer function of bandpass filter for channel 5
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Figure 3.5. Example of time domain representation of bandpass filtered speech for channel 5
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Figure 3.6. Frequency domain representation of bandpass filtered speech for channel 5

3.3.2.2 Calculation of energy in each band

An indication of the energy content in each analysis band is determined by full wave
rectification and root-mean-square calculation. The envelope of each band is extracted by

full wave rectification using the equation
AFWR = IABPF" (3.2)

where Agppr is the bandpass filtered signal amplitude and Arwr is the full wave rectified
amplitude. When full wave rectification is performed on a signal centred at f,, the effect is
similar to multiplying the signal with itself (squaring function). This in effect is
modulation of the signal with itself, causing frequency components to appear at (f. — f) Hz
and (f. + f)) Hz. Full wave rectification of the original speech signal will result in
components at the double frequencies and at 0 Hz. This is exactly the reason why full
wave rectification is used. In lowpass filtering of the full wave rectified data, the only
components that will remain are the components mixed down to lower frequencies. From
the low-frequency components, an indication of the energy content in the speech signal is

obtained by determining the RMS of the signal envelope.

Electrical, Electronic and Computer Engineering 39






CHAPTER 3 METHODS

S o o o
[T -

E & & 8
i

0.03 1

0.02 1

Amplitude in arbitrary units

0.01+

Soshean, Ab

3

10 10
Frequency (Hz)

Figure 3.9. Example of frequency domain representation of full wave rectified speech for

channel 5

3.3.2.3 Root-mean-square calculation

An indication of the energy content in the signal is calculated by determining the root-
mean-square of the full wave rectified data for each channel. Each channel is divided into
a number of time windows with 75 % overlap and the RMS is calculated for every
window. This value represents the energy content in a specific frequency band for a given

window of time. The equation used to calculate the RMS is

’ 1
Apys = "]\l‘,'Z*"IMVRi2 ’ (3.3)

where N is the number of samples in the full wave rectified data vector and Apw; is the i®

data point in the vector of full wave rectified samples.

By extracting blocks of data from the speech signal, the signal is in effect modulated with a
square wave, changing the spectral shape of the speech signal over a broad frequency band.
The spectrum of a Hanning window has a narrow frequency band, reducing the spread of

frequencies when extracting windows. The Hanning windows ensure that there are no high
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frequency components present in the speech signal that will cause a click when listening to
the processed signal. In the time domain, the signal is smoothed by the Hanning windows
so that there are no abrupt transitions from one window to another. The length of the
windows is fixed to be 8 ms long, irrespective of the number of channels used and the
stimulation rate. The number of samples in a window depends on the sampling frequency

of the original signal and is calculated using the equation

1

x R (3.4
(1/ f,)ms/ sample

= 8ms

samples

where Ngmples is the number of samples in the Hanning window and f; is the sampling
frequency measured in kHz. For the speech signals processed in this study, there were 353
samples in an analysis window. The weights of the Hanning window are shown in figure
3.10. The full wave rectified vector is divided into blocks of 353 points and multiplied
with the values shown in this graph. Calculated RMS values are shown in figures 3.11 and
3.12.

Hanning window weight

200
Sample number

Figure 3.10. 8 ms Hanning window with 353 samples for a sampling frequency of 44.1 kHz
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Figure 3.11. Calculated RMS values for speech signal as in figure 3.8
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Figure 3.12. A closer look at three RMS values; it can be seen that the RMS values remain

constant for 2 ms (effective length of Hanning windows)
3.3.2.4 Current to loudness mapping
The RMS values calculated in the previous step must be mapped to stimulation current

magnitudes. This is done so that processing can be performed with the current values

further on in the model, including the determination of the bandwidths of the noise bands
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(to be explained later) used to reconstruct the speech signal. The signal energy, reflected

in the RMS values, is converted to signal intensity (dB SPL) using the equation

10x 10g(Agys ) - (3.5)

These values are then mapped to current values ranging from a comfort level (C) to
threshold level (T), over a range of 30 dB, reflected in figure 3.13 (Fu and Shannon, 1998;
Zeng, Grant, Niparko, Galvin III, Shannon, Opie and Segel, 2002). This 30 dB is used
owing to the reduction in dynamic range for cochlear implants. The dynamic range can
comprise a range of current levels, according to the comfortable and threshold current
levels. Typical values are 1 mA for C and 100 pA for T (Bruce, White, Irlicht, O'Leary,
Dynes, Javel and Clark, 1999). In the acoustic simulation, the maximum amplitude of all
the channels in dB SPL is used to normalise the amplitude vector of each channel
separately so that the maximum normalised amplitude across all channels is 0 dB, as
indicated in figure 3.14. For the mapping of signal intensity to current levels, C
corresponds to 0 dB SPL and T to -30 dB SPL. The values of C and T can be changed by

the user or audiologist.

|

o
>

Current intensities between
comfort and threshold levels

T, 100 uA y

-40 -30 -20 -10 0 10
Sound pressure levels

Figure 3.13. Sound pressure levels mapped to current intensities on a log scale (example

values are used for T and C)
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Figure 3.14. Example of frequency response of speech signal that shows the normalisation of

the processed speech and the 30 dB dynamic range window

Current levels calculated in this processing step are used to stimulate the cochlea in a
cochlear implant to produce a hearing sensation. It is important for these current values to
be used to 'stimulate’ the normal-hearing person with the dynamic range compression
included. For the cochlear implant, the dynamic range is compressed because of the limits
on the currents that can be used for stimulation, for example the individual's comfort and
threshold levels as well as the quantisation of current. Linear mapping is used for this step.
The loudness growth function applied in the NMT is not included here, an explanation for

the exclusion of this step is given in the next paragraphs.

The current-loudness function for cochlear implants was obtained from Chatterjee (1999).
The effect of applying the loudness growth function is shown in figures 3.15 to 3.17. A
current-loudness graph for cochlear implant users is shown in figure 3.15. When the
stimulation pulses are processed through the loudness growth function (figure 3.16), the
result is a linear current-loudness relationship (figure 3.17) for cochlear implants. In
Chatterjee (1999), a number of exponents for the current-loudness function were reported.

For this demonstration an exponent of 0.02 was used.
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Figure 3.15. (Log) Loudness perception of cochlear implant users as a function of stimulus
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Figure 3.16. Loudness growth function (obtained from the NMT) applied to envelope
magnitudes to linearise the relationship between stimulus current (proportion of dynamic

range) and perceived loudness for cochlear implant users

The equation used for the loudness growth function, as obtained from the NMT, is

_log(l+ LGFax EM)
log(l+ LGFa)

CM

, (3.6)

where CM is the compressed magnitudes (fraction of dynamic range), EM is the envelope
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magnitudes and LGFa is a loudness growth parameter obtained from the NMT.

| |

Loudness

0 I | |
0 20 40 60 80

Stimutus amplitude (dB SPL)

Figure 3.17. Resulting linear relationship of current-loudness (log) distribution

The equation used to obtain the linear relationship is
L =20log(e™ ™), (3.7

where L is the loudness, P is a current-loudness exponent and CM is the compressed

magnitudes from equation 3.6.

For normal-hearing listeners, the exponential current-loudness relationship (figure 3.15)
does not exist, therefore the processing done by the loudness growth function is not
necessary for the acoustic simulation. There is already a linear relationship between
stimulus amplitude (in dB SPL) and loudness (Hartman, 1998). The output of this step in
the acoustic simulation is a vector with current amplitudes that are clipped at specific

values to simulate the limitations of cochlear implant stimulation (see figure 3.18).

Electrical, Electronic and Computer Engineering 47



CHAPTER 3 METHODS

1 mA ' ; T 7
o
>
=2
=
(]
B
=]
o
o
()
a,
a, ‘
: H
2 )
{
100 uA ‘ ‘
0 ). ] 1 —
0 0.5 1 1.5

Time (s)
Figure 3.18. Sound intensity mapped to current levels for the same speech signal as in figure
3.2 (channel 5)

3.3.2.5 Current distribution - Noise bands

To reconstruct the speech signal, bandlimited noise bands are used. When an electrode is
activated in the cochlea, not only the nerve fibres in the immediate area will be stimulated
by the current pulses, but also nerve fibres some distance away. The use of bandlimited
noise bands is a good approximation to the spread of current in the cochlea. The noise
bands have specific centre frequencies (to simulate a specific place in the cochlea) and
bandwidths (to simulate the current spread in the cochlea). The centre frequencies of the
noise bands are the same as for the analysis bands, the bandwidths for the noise bands are
wider than for the analysis bands. The bandwidth of the noise bands depends on the
intensity of the current used to stimulate with an electrode, the spread in the cochlea for
normal listeners is not taken into account. For the noise bands, the upper -3 dB cut off
frequency of one band is the lower -3 dB cut off frequency of the next frequency band.
The current threshold where a nerve will be activated is determined by the distance of the
electrode from the nerve cell and the current distribution in the cochlea. The current
distribution depends on the stimulation mode. In this simulation bipolar configuration is

assumed, so that the current decay is assumed to be 4 dB/mm (Bruce et al., 1999).

For an electrode 1 mm away from the nerve cells and a threshold current of T = 100 pA,
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the current level 4 dB below 100 pA will be the minimum current that will still yield an
audible sound. The current level is 63.1 pA for the assumed distance of 1 mm; the
distance can be changed in the acoustic simulation. For mapped current values above 63.1
pA, the bandwidth for the specific channel will be non-zero, for values below 63.1 pA, the
bandwidth will be zero and there will be no stimulation for this specific channel. The
magnitude of the stimulation current can be used dynamically to determine the bandwidth

of the noise band in mm with the equations
I.(dB) =T(dB)—4(dB/mm)x Dy (3.8)

| = 4(dB/ mm))x D, -1, (dB)|

BW =
| 4

121, (3.9)

where Iy is the minimum current at the nerve cell, T is the threshold current (i.e. 100 pA),
D is the distance of the nerve cell from the activated electrode, I is the stimulating current
at the nerve cell and BW is the bandwidth. The bandwidths and centre frequencies of the
noise bands are calculated in mm and translated into Hz using Greenwood's frequency-to-
place equations. For all I < Ir, the bandwidth is zero. The current decay is demonstrated in

figures 3.19 and 3.20 for the case of threshold stimulation and above-threshold stimulation.

Electrode array

Stimulation current — 100 pA —0 O Electrode plane

4 dB/mm 1 mm

current decay

Current reaching nerve
fibres — 63 pA Stimulated area

Figure 3.19. Figure to demonstrate the current decay in the cochlea for threshold stimulation

(Is = 100 pA)
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Electrode array

Stimulation 3
current — 120 pA *

1 mm

63pA 75pA 63 PA

Stimulated area — 1.96 mm
(e.g. 180 Hz BW)

Figure 3.20. Figure to demonstrate the current spread in the cochlea for above-threshold

stimulation (Is = 120 pA)

In the actual implementation, the bandwidth was not varied. The average and standard
deviations of the bandwidths of the channels were calculated for a number of sentences. It
was found that the standard deviation of the bandwidth of a channel is less than 5 % of the
centre frequency when the bandwidths are calculated dynamically using the stimulation
current. This is a very small percentage, given that implementing a different order filter
for the bandpass filters can change the bandwidth of a channel by 5 %. It was therefore
decided to calculate and use the average bandwidths across a number of speech signals and
remove the dynamic allocation of bandwidths because of the almost negligible effect and
computational overhead introduced. The bandwidths used for the channels at an insertion
depth of 25 mm are given in table 3.2. Figure 3.21 shows a band-limited white Gaussian
noise signal used in the summation of all the channels. A broadband noise signal was

generated in Matlab and filtered with a sixth-order Butterworth bandpass filter.
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Figure 3.21. Example of the time domain representation of bandlimited noise for channel 5

Table 3.2. Bandwidths used for filters to generate noise bands

Channel Ba‘zg‘;dm Channel Ba’g{‘:;dth
1 90 11 275
2 105 12 305
3 120 13 340
4 133 14 375
5 150 15 420
6 165 16 460
7 180 17 515
8 200 18 570
9 225 19 630
10 250 20 700

As a comment, another way of simulating the current distribution in the cochlea is by
frequency modulating a sinusoidal carrier signal. The centre frequency for the sinusoidal
carriers are chosen according to the frequency-to-place mapping of the processed signal.
The frequency of the modulating signal depends on the magnitude of the stimulating
current. The bandwidth is therefore effectively equal to the frequency of the modulating

signal. The modulated signal will have energy at the carrier frequency and at the carrier
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Afrequency plus and minus the modulating frequency (Proakis and Salehi, 2002). This is
shown in figure 3.22. This approach was not followed, however, as the use of noise bands

was assumed to be a better approximation to the actual sound sensation.
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Figure 3.22. Frequency modulated carrier that shows an increase in bandwidth that may be

used for the summation of sinusoids

3.3.2.6 Quantisation

The final step before summation of all the channels is the quantisation of the stimulation
current values. In the Nucleus cochlear implant there are only 238 available current levels
by which the nerve cells can be stimulated, ranging from T to C, a section of the range is
shown in figure 3.23. As mentioned, T may typically be around 100 pA and C around 1
mA. The stimulation intensity is also quantised into 238 linear steps in the acoustic
simulation. The 20 dB intensity range is divided into 238 steps. This function causes a
reduction of the intensity resolution available for a more realistic simulation of what
happens in the cochlear implant. The function ‘quant’ in Matlab is used to quantise the

continuous speech signal so that it is represented in 238 steps.
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Figure 3.23. Input current quantised into 238 discrete levels; this figure shows only 24

current levels between 0.1 mA and 0.2 mA

3.3.2.7 Summation of all the channels

To reconstruct the speech signal, all the individual channels must be added together. This
is done by amplitude modulating noise bands (representing the 20 channels) with the
magnitudes obtained from the quantisation step. The bandwidths of the noise bands are
also calculated from these magnitudes, as described earlier. When the channels are
summed, the stimulation rate and asynchronous stimulation are taken into account, as will

be explained in the following sections.

The channels of a cochlear implant are stimulated in a specific order at a rate of 14 400 pps
(the maximum rate is assumed, a slower rate might be a more accurate simulation of the
SPEAK strategy). They are not stimulated simultaneously; only one channel can be active
during a 1/(14 400 pps) period. The stimulation rate of a single channel therefore depends
on the number of channels that are used in a specific cochlear implant. For example, for an
eight-channel implant, each channel will be stimulated every 8/14 400 seconds (555.56
ps). This corresponds to a frequency of 1 800 Hz. Each channel is effectively modulated
with a pulse train with a frequency of 1 800 pps and a duty cycle of 0.125 (1/8).
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The values used to modulate the noisebands are calculated from the quantised intensities.
The effective window length that is used to calculate the RMS values is 2 ms, while the
period of stimulation in the cochlea is 69.44 ps per single channel. This means that the
analysis windows are much longer than the stimulation windows’. The quantised values
are constant for a 2 ms window, the amplitudes of the modulated noise bands will also
remain constant over a period of 2 ms, irrespective of the stimulation period, similar to a

sample and hold function. This is demonstrated in figure 3.24.
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Figure 3.24. Figure that shows that the modulated stimulating pulses’ amplitude (solid line)
follows the amplitudes from the 2 ms analysis windows (dashed line) for one channel. The

length of a stimulation pulse is 69.44 s

One of the important challenges encountered during the development of the simulation was
finding a way to simulate the periodicity of stimulation while providing enough
information for a normal-hearing person to perceive a specific frequency. When a
stimulating frequency of 14 400 pps is used, one stimulation period equals 69.44 ps.
When a signal with a frequency of less than 14 400 Hz must be used for the acoustic
stimulation, a whole period of the signal will not be completed within the stimulation
window. It is important that at least half a period must be completed for the acoustic
stimulation, since a healthy cochlea uses frequency information for the sensation of

*Stimulation pulses used for electrical stimulation become stimulation windows in the acoustic

simulation
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hearing. If a fraction of a period is used as stimulus, the frequency specificity is lost and
the normal-hearing listener will not be able to perceive the specific frequency, as shown in
figure 3.25.

1 . pR—

0.8§ ’.‘ \\ .
A Y "
_g 3 69 Eg "" \‘\
2 4 \
= 0.6 ;g Y 7
g .’. \\
= , ’! AN
g 0.4 \ s N
= Y 4 \
vl

o
o
T
,/
7
vd
v
L

O .~.~'-.. .4-(’ .
0.5 1 1.5 2
Time (ms)

Figure 3.25. Graph that shows the stimulation pulses (solid line) and an acoustic 800 Hz pure

tone inside the frequency range of speech (dashed line). For example, the 800 Hz pure tone is

used to acoustically simulate stimulation at the 800 Hz position in the cochlea. It is clear from
the graph that the stimulation window is too short to transmit frequency information about

the signal — the highlighted sections of the pure tone do not convey a 800 Hz sensation

The short periods of the stimulation pulses introduce a problem, as most speech signals are
typically in the frequency range of 80 Hz to 6 kHz. For electric stimulation this problem
does not exist, as the electrodes stimulate nerve fibres at the exact place where a specific
frequency sensation is generated. To simulate the processing correctly using acoustic
signals, a method must be developed so that the effect of the stimulation rate is still
present, but the frequency information is retained for the acoustic stimulation of normal-

hearing listeners.

One way of solving the problem is to simulate all the channels continuously, but to amplify
the channel that represents the activated electrode in a cochlear implant for one stimulation
period. This will still give the effect of the periodicity of stimulating the electrodes in a

basal-to-apex order.
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A pilot experiment was done to assist in deciding how to simulate the periodicity of
stimulation effectively. The simulation generated a pure tone which was then modulated

with a square wave. The square wave's frequency was determined by the equation

14400
f:m'm =

Hz, (3.10)

channels

where £, is the stimulation frequency of 1 channel, 14 400 is the maximum stimulation
frequency (pps) and Nepannels are the number of channels used in the simulation. The duty
cycle of the square wave was determined by the number of channels used in the simulation.
For an eight channel simulation, the duty cycle was 0.125. The modulation depth of the
square wave was 0.5, which meant that the active channel was amplified with 1 while the
rest of the channels were amplified with 0.5 for each stimulation period. The outcome of
the experiment was that the pitch of the modulated signal was the same as the pure tone,
with an audible pitch representing the modulation signal. This modulation scheme was
used in combination with the method explained in the following section to simulate the

stimulation rate while still preserving the pitch of the acoustic signal.

When the harmonics of a fundamental tone are added together and used as an acoustic
stimulus, the pitch of the signal will be the same as the pitch of the fundamental tone
(Terhardt, 1979; Terhardt, Stoll and Seewann, 1982). This can be used effectively to
simulate the pitch of a low-frequency signal when this signal can only be turned on for a
short period of time. The harmonics will complete at least half a period in the stimulation
window as shown in figure 3.26, while the pitch will be the same as for the fundamental

tone and frequency specificity will not be lost with the acoustic simulation.

The same principle for pitch applies to noise bands with a specific centre frequency and
bandwidth. When noise bands are generated centred around the three harmonic
frequencies of the fundamental centre frequency, the pitch of the noise will be the same as
the noise band centred at the fundamental frequency. The choice of the three harmonics is
done in such a way that the smallest harmonic will be able to complete a half period within
the stimulation period of 69.44 us. For the maximum stimulation rate of 14 400 pps, the

minimum harmonic frequency needed to complete a half period is 7.2 kHz, which is half
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the maximum stimulation rate. When a signal is halfwave rectified, as is done by
modulating the smallest harmonic with a square wave, the frequency of that signal will be
present in the spectrum.
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Figure 3.26. Demonstration that half a period of the second harmonic of 3.2 kHz (dashed
line) is completed in a time period of 69.44 ps (thin solid line). The signal modulated with the

stimulation window is also shown (thick solid line)
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Table 3.3. Number of harmonics included in the summation of the noise bands

Number of
Fundamental .
Channel harmonics
tone (Hz)
used
1 493 17
2 565 15
3 645 14
4 733 12
5 831 11
6 940 10
7 1061 9
8 1195 9
9 1343 8
10 1508 7
11 1 690 7
12 1893 6
13 2118 6
14 2367 6
15 2 644 5
16 2950 5
17 3290 5
18 3 668 4
19 4 086 4
20 4550 4

The frequencies in table 3.3 represent the harmonics used for an insertion depth of 25 mm.
When all the harmonics presented in table 3.3 and the fundamental frequency are summed
to reconstruct the speech signal, the speech signal will be less shrill. The higher harmonics
were included so that the period of the signal would be short enough to fit into the
simulation window. However, by doing this, more bands are introduced to the simulation
and it is not possible to simulate the effect that the number of spectral channels has on
speech recognition. There will always be more spectral channels present in the
reconstructed signal than the number of frequency bands used to analyse the speech signal.
For this study, the increased number of spectral channels does not have a significant
influence. All the simulations were done at a fixed number of channels, namely eight. It
was shown in Dorman et al. (2002) that six channels are adequate for good speech

understanding. With more than six channels, speech understanding stabilises even though
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the number of channels increases. With eight channels the plateau of speech understanding
has already been reached and it will not increase with more spectral channels. Figure 3.27
shows the noise bands with centre frequencies at the harmonics of the fundamental centre
frequency. The amplitudes of the noise bands are attenuated with increasing centre

frequency of the harmonics.

Amplitude in arbitrary units

Frequency (kHz)

Figure 3.27. Example of noise bands centred at the harmonics of a fundamental tone centred
at 1700 Hz

To demonstrate the effective simulation of the stimulation rate, a 4 160 Hz pure tonc was
modulated with the abovementioned scheme and analysed to determine the perceived
pitch. When listening to the modulated pure tone, there was a pitch sensation at two
frequencies — one for the modulating frequency (1 800 Hz) and one for the frequency of
the pure tone. In figure 3.28 it is shown that the modulated pure tone has energy content at
4 160 Hz, but also at (4 160 — 1 800) Hz and (4 160 + 1 800) Hz due to the 1 800 Hz
stimulation rate. The depth of the modulation determines which pitch will be most
prominent. The modulation depth refers to the difference between the maximum and
minimum level of the modulation signal. It has been found that a modulation depth of 0.5

produces a balanced pitch — both pitches can be heard distinctly.
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Figure 3.28. Modulation of a 4 160 Hz pure tone with the developed modulation scheme to

demonstrate the effect of the stimulation rate on the frequency components of the signal

Because a square wave is used for modulation, there will be frequency components (that
are 1 800 Hz apart) present in the whole frequency band, making the 1 800 Hz pitch very
prominent in the processed signal. This frequency spread is because of the sinc(f) FFT of
the square wave. This modulation signal can be adapted so that there will not be a wide
frequency spread, but a better choice for the modulation signal was not investigated in this

study.

The desired effect of hearing a pitch dependent on the stimulation rate is therefore
achieved by modulating the speech signals with a square wave and including the
harmonics of the fundamental noise band. Both the stimulation rate pitch and place pitch

have been simulated.

In figures 3.29 and 3.30 an example of the final output of the acoustic model is shown for

the time and frequency domain.
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Figure 3.29. Example of the final output of the acoustic model for the same speech signal as

in figure 3.5 (shown in the top right corner) in the time domain.
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Figure 3.30. Frequency representation for the same segment of speech as for figure 3.29; the
original spectrum is shown in the top right corner. The high-frequency components present
in the processed signal that are absent in the original signal is due to the use of harmonics for

the reconstructed signal

Finally, all the channels are simulated asynchronously to obtain the effect of activating

each channel separately in the cochlear implant.
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3.4 EXPERIMENTAL STUDY

3.4.1 Listeners

The processed speech segments were presented to seven female listeners and three male
listeners. All the listeners were normal-hearing persons between the ages of 19 and 26.

Experiments were done with native Afrikaans-speaking persons.

3.4.2 Stimuli

The acoustic model was used to process 12 vowels (in the context of /p/~-VOWEL-/t/) and
15 consonants (in the context /a/-CONSONANT-/a/). The original utterances, spoken by
an Afrikaans male speaker, were recorded at 44.1 kHz (16 bit resolution) at the University
of Pretoria. The outputs from the acoustic model were scaled to conform to .wav file
specifications, the amplitudes were normalised between -1 and 1, and these were then used

in the experiments.

The processed speech segments were also used in acoustic analyses to determine which
features of the segments are used for recognition of phonemes. From the results of the
analyses, predictions can be made on which speech segments will be confused in the

experiments.

The stimuli presented for the vowels are /ae/ (pat), /a/ (pad), /W (poet), /ce/ (put), /y/
(puut), /€/ (peet), /Q:/ (paat), /V (piet), /9/ (pit), /2/ (pot), /€:/ (pét) and /€/ (pet) and for the
consonants /k/ (aka), /b/ (aba), /p/ (apa), /n/ (ana), /m/ (ama), /1/ (ala), /r/ (ara), /s/ (asa), /z/
(aza), /t/ (afa), /v/ (awa), /t/ (ata), /d/ (ada), /j/ (aja), /x/ (aga).

To present the processed utterances, a software application called Baby Apex was used
(Pretorius et al., 2005). This application generates a matrix from specified .wav files and
presents the speech segments in random order. Every phoneme is played to the listener
through a loudspeaker and he or she must then choose the stimulus that he or she heard.

An example of the screen view is shown in figure 3.31. Each stimulus is repeated 10 times
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for each experiment. It is possible to give the listener feedback and the listener can also do
a few practice runs before the actual experiment. However, this was not permitted in these

experiments.

Figure 3.31. Screen view of choices for a vowel recognition experiment

The listener was introduced to the nature of the processed sound from the acoustic
simulation by playing eight English sentences® to the listener. Both the processed and
original sentences were played back. No practice sessions for the phoneme presentation
were scheduled. The speech tokens were presented inside a soundproof booth at an
average sound pressure level (dB SPL) of 70 dB. The utterances were presented through a
Yamaha MS101 II speaker approximately 1 m away from the listener. One session was

completed in approximately 30 minutes and included, on average, four experiments.

During the experiment, the speech segments are played back in random order and the
listener must choose the speech segment that he or she heard by clicking on the
corresponding block. Confusion matrices are generated according to the response to a

specific stimulus.

Normal-hearing persons do not use cochlear implants on a daily basis and will need to
become accustomed to the sound of the acoustic simulation. The subjects conducted more
experiments than the number used for the final results. A definite learning curve could be
observed from the first experiment to approximately the fourth experiment. The data for

the fourth and fifth experiments were used for the final results.

*Sentences were obtained from http://www.utdallas.edu/~loizouw/cimplants/tutorial/
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3.4.3 Experimental conditions investigated

Experiments were set up for conditions before and after dynamic range compression in a
quiet environment. For conditions after dynamic range compression, the processing step of
mapping the current levels between C and T was included as well as quantisation (refer to
sections 3.3.2.4 and 3.3.2.6). This was done to determine the effect of the dynamic range
compression on speech recognition. From the results it would also be possible to
determine what underlies speech recognition with cochlear implants. For the simulations,

eight channels were used at an insertion depth of 25 mm.

Experiments in noise were conducted to determine what underlies speech recognition
under noisy conditions. Initially, experiments were done with white Gaussian noise, but
the recognition proved to deteriorate very little, if at all. Other types of noise were

therefore implemented to simulate everyday conversational scenarios.

The speech tokens were mixed with speech-like noise (CCITT Recommendation 227)
(Fastl, 1987; Miiller et al., 2002; Zwicker and Fastl, 1999) and multi-talker babble
(Ferguson and Kewley-Port, 2002; Killion, Niquette, Gudmundsen, Revit and Banerjee,
2004; Nie, Stickney and Zeng, 2005) at signal-to-noise ratios (SNRs) of 40 dB, 20 dB and
0 dB before processing through the acoustic simulator. The SNR is defined as the 10log of
the ratio between the power in the speech segment as a whole and the power present in the
noise, measured in decibels. The speech tokens were normalised at a level of 70 dB and
the noise power adapted accordingly. For example, for 20 dB SNR, the noise signal's
power level was set to 50 dB SPL, giving a 20 dB difference of signal power to noise
power. The levels of noise were based on the results obtained in pilot experiments. For

the range of 0 — 40 dB SNR, the results varied from near chance to average recognition.

Vowel and consonant recognition was measured in the 10 normal-hearing persons at the
three different signal-to-noise ratios: 0 dB, 20 dB and 40 dB. The recognition of vowels
and consonants was determined in the presence of CCITT noise and multi-talker babble. A
total of 12 different experiments were conducted for recognition in noise, three sets of
experiments for vowels in CCITT noise (0 dB SNR, 20 dB SNR and 40 dB SNR), three
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sets for vowels in multi-talker babble (0 dB SNR, 20 dB SNR and 40 dB SNR), three sets
for consonants in CCITT noise (0 dB SNR, 20 dB SNR and 40 dB SNR) and three sets for
consonants in multi-talker babble (0 dB SNR, 20 dB SNR and 40 dB SNR).

Pilot experiments were done using vowels and consonants mixed with Gaussian white
noise (Pollack and Pickett, 1957), but no significant deterioration in speech recognition
was detected. At a SNR of 0 dB for vowels, the percentage of vowels recognised correctly
was 72 %, which is almost the same as for quiet conditions. This is ascribed to the fact
that white noise has energy over a very broad frequency band. Speech only has energy up
to approximately 5kHz. The acoustic simulation filters all the high-frequency noise
components so that there is little noise energy in the final speech token. The final SNR is

therefore not as high as initially intended.

Speech-like noise and multi-talker babble were used instead of Gaussian white noise
(Dubno, Horwitz and Ahlstrom, 2005; Ferguson and Kewley-Port, 2002; Friesen et al.,
2001; Fu et al.,, 1998; Killion et al., 2004; Miiller et al., 2002; Nie et al., 2005; ter Keurs et
al,, 1993b; Yang and Fu, 2005). Existing .wav files’ of noise signals were used with
permission from E Hennix. The CCITT noise and multi-talker babble have frequency
components in the same frequency bands as speech, thus simulating a more realistic

hearing environment for cochlear implant users.

The speech segments were presented at an average sound pressure level of 70 dB inside a
soundproof room, as for the experiments without noise. As for the earlier experiments,
confusion matrices were determined using the application Baby Apex. These confusion
matrices were analysed through multidimensional scaling to determine the effect of noise

on speech recognition, as will be discussed in the following chapter.

5 http://www.e.kth.se/ and http://www.mmk e-technik.tu-muenchen.de/
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3.5 SUMMARY

In this chapter, the method followed to develop the acoustic model was reported.
Considerations encountered during the development are recorded here as well as the
proposed solutions. The solutions implemented are explained in detail. This chapter also
presented the method followed to perform experiments with acoustic simulations. The
results from the experiments performed in quiet and the results from the experiments
performed in noisy conditions will be presented separately in the next chapter. An analysis
of the processed speech from the acoustic simulations will be done in order to predict

confusions between speech segments in terms of acoustic features.
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4.1 CHAPTER OBJECTIVES

The acoustic simulation is evaluated in this chapter. A comparison is made between the
electrodogram obtained from the NMT and the acoustic simulation. From the two
electrodograms it can be seen that the signal processing of the acoustic model is a good
approximation of the processing done in cochlear implants. Results from acoustic analyses
are used to explain confusion encountered in experiments with vowels and consonants.
The results from experiments before and after dynamic range compression will be given, as

well as the results of experiments done in noisy conditions.

4.2 RESULTS OF ACOUSTIC SIMULATION

The processing steps in the acoustic model were shown in chapter 3. The final outcome of
the model is a processed speech signal. It is evaluated here by comparing the spectrogram
of the acoustic simulation of a section of speech with the electrodogram of the same speech
processed with the SPEAK strategy. The NMT has the functionality of displaying the
current pulses used to stimulate a cochlear implant as a function of time and electrode.
This is called an electrodogram, which is similar to a spectrogram'. By plotting these
spectrograms for both the SPEAK strategy implemented in the NMT and the acoustic
simulation, a meaningful comparison can be done. From the comparisons, it can be
determined whether the processor part of the developed acoustic model produces the same
result as the SPEAK processor implemented in the NMT. This gives a measure of how

accurately the processor part has been implemented in the acoustic model.

The electrodogram from the NMT and spectrogram from the acoustic simulation are shown

in figures 4.2 and 4.3. The spectrogram for the original speech signal is shown in figure
4.1.

'A spectrogram gives the space-time stimulation pattern of an electrode array
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electrode already active in the acoustic simulation. The reason for the acoustic simulation
to be activated from the first electrode is the frequency-place mapping used in the acoustic

simulation, as described in section 2.4.

The electrodograms for the acoustic simulation and the SPEAK algorithm implemented in
the NMT appear very similar, indicating that the acoustic model may contain speech cues
similar to those found in the electrode space-time stimulation pattern. Take note of the
similar patterns marked on figures 4.1 to 4.3. The same stimulation patterns in the two
electrodograms can be observed, for example the high energy content around 500 ms, and
at 1 000 ms they have the same high frequency components. At 100 ms, there is more
energy content in the spectrogram of the acoustic simulation than in the electrodogram of
the SPEAK processing strategy implemented in the NMT. The same energy distribution
across electrodes is indeed expected, as the speech signal is divided into similar frequency

bands for both the acoustic simulation and the SPEAK strategy.

43 USING THE ACOUSTIC MODEL TO PREDICT CONFUSIONS AND
RESULTS FROM EXPERIMENTAL STUDY

By using the acoustic model, the characteristics of the processed speech segments can be
analysed in order to explain confusions of vowels and consonants. By identifying specific
characteristics of consonants and vowels, predictions can be made of possible speech
recognition trends. By using a Feature Information Transmission Analysis (FITA) (Miller
and Nicely, 1955; Van Tassel, Soli, Kirby and Widin, 1987; Wang and Bilger, 1973),
confusion matrices are analysed to determine the information transmitted and conclusions
are made as to which characteristics are transmitted most effectively with the acoustic
simulation. Some of the characteristics of vowels that are important for recognition are the
formant frequencies and duration of vowels. For consonants it is the duration, peak and
median energy levels, minimum to peak ratio of energy levels and the envelope variation
of individual speech segments (Pretorius et al., 2005; Van Wieringen and Wouters, 1999).
Consonants can also be classified according to manner, voicing, nasality, liquidity, place
and affrication (Miller and Nicely, 1955). These classifications give an indication of how

consonants are produced acoustically.
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43.1 Vowel confusions

4.3.1.1 Acoustic analysis of vowels at output of acoustic model

For the analysis of the vowels, specific signal characteristics were calculated. These
characteristics are typically used as cues to recognise speech (Borden and Harris, 1994).
For the vowels; the duration, F; and F, were determined using the program PRAAT, a
phonetic software package (Boersma and Weenink, 2004). In order to analyse the formant
frequencies of the vowels, linear predictive coding was performed on the speech segments
(Rabiner and Schafer, 1978). The first and second formant frequencies (F; and F;) of the
vowels were estimated by means of linear predictive coding (16" order, 25 ms time

windows) and by visual inspection. For example, the formants of /a/ are shown in figure

44.
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Figure 4.4. Formants for the vowel /a/ (as uttered by a male speaker). "Processed" refers to

the speech signal at the output of the acoustic model

The procedure for determining the formant frequencies of the vowels is as follows: the
vowel is extracted from the speech segment by visual inspection, then processed using a
linear predictive coding algorithm (Rabiner and Schafer, 1978) in PRAAT. Linear
predictive coding is performed on the vowel to obtain the envelope of the spectrum of the

vowel. Although PRAAT has a function that can determine mean formant frequencies
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over a period of time, this function was not used to determine the formant frequencies, as i{
proved to be unreliable and gave erroneous values in some tests. Rather, the first and
second formant frequencies were determined from both the LPC spectrum and visual
inspection of the spectrogram of the vowel. Table 4.1 summarises the results from these
analyses for the conditions before and after dynamic range compression. The analysis of
speech segments with processing before and after dynamic range compression is done in
order to determine the effect that dynamic range compression has on the acoustic signal
characteristics and recognition of speech segments. It is suspected that the inclusion of
dynamic range compression has a dramatic effect on speech recognition, as a significant

amount of information for recognition of speech is removed through this step.

Table 4.1. Values for duration (ms), F1 (Hz) and F2 (Hz) used to plot the vowel spaces

Without dynamic With dynamic range

Original vowels . .
range compression compression

Duration F, F, |Duration F, F, |Duration F; F,
(ms) (Hz) (Hz)| (ms) (Hz) Hz)| (ms) (Hz) (Hz)

pAAtl a: 218 765 1074 205 590 1016 226 747 1266
pIEt] i 87 258 2031 67 480 1920 70 540 1955
pOEtf Y 84 319 1057 67 450 1128 67 440 1120
pAd} 2 100 783 1143 88 720 1216 87 740 1174

pEt € 87 508 1966 85 583 1757 88 541 1941

pOt} ? 102 525 954 101 520 1066 118 540 1100
plt ° 73 479 1588 61 450 1473 69 598 1644
pPAt}| e 135 664 1506 111 648 1433 104 690 1430
pUt] 92 508 1524 70 480 1448 &4 526 1502
pEEt| e: 198 337 2104 137 460 1720 132 441 1955
pét | € 274 416 1904 225 509 1890 228 526 1756
pUUtl vy 91 285 2069 73 440 1919 71 484 2034

From figure 4.4, it can be seen that the first and second formants are displaced slightly
after processing. This is due to the fixed frequency bands used for the reconstruction of
the speech signal. It is notable though that the formant frequencies still have the same
pattern, even though it moved slightly in frequency. The formant patterns are retained

despite the low frequency resolution available. The two important formants are the first
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and second — the higher formants are less important in vowel recognition. From the figure
it can be seen that the third formant splits into two peaks during processing. It is assumed
that this will not have a great impact on vowel recognition. Another important result seen
in figure 4.4 is the reduced spectral contrast of the processed vowel. The spectral contrast
between the valleys and peaks is reduced significantly, which may contribute to a
reduction in recognition of vowels (Sidwell and Summerfield, 1985; ter Keurs et al.,
1993b).

The fact that the formant pattern maintains primary characteristics after processing through
the acoustic model is noteworthy. The modulated noise bands do indeed appear to convey
the important information of the speech signal, so that recognition of speech should be

possible.

4.3.1.2 Predictions of vowel confusion from acoustic analyses

When looking at the vowel space’ of the original, unprocessed speech, each vowel has
either its own formant space or belongs to a definite group of vowels having approximately
the same formant frequencies. Vowels are mostly recognised by the information that is
transmitted by the formant frequencies and the duration of the vowel (Borden and Harris,
1994; Van Wieringen and Wouters, 1999). Therefore, when different vowels' formant
frequencies (both F; and F,) are close together, there is the possibility that these vowels

can be confused with each other after processing.

In the following few paragraphs the formant frequency space of the processed speech will
be discussed so that predictions can be made as to which vowels will be confused. Firstly,
predictions will be made by visually inspecting the vowel spaces. Thereafter a physical
measure is introduced by which the predictions can be quantified. In this study, a three-
dimensional Euclidean distance is used for the predictions. The Euclidean distance is

measured between all the vowels using normalised F,, F, and the duration.

2 . c e .
A vowel space is defined as a multidimensional space where a number of vowels are plotted as a

function of their signal characteristics, specifically their formant frequencies F; and F»
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For the original speech, one can see a number of distinct groups of vowels in figure 4.5.
The vowels /ce/ (put) and /3/ (pit) are grouped very close together and when they are
processed through the acoustic model, they are expected to be confused regularly. Their

duration is also very similar, 92 ms and 73 ms respectively.

2200, \ : , . . _
2000 | .
1800} i

1600 - 9 .

F2 (Hz)
8
8

1400 - .
1200 - ]

1000 - 5

800 [ 1 1 I | 1
200 300 400 500 600 700 800

F1 (Hz)

Figure 4.5. First and second formant frequencies of original speech for a male speaker

The duration of /a/ (pad) and /a:/ (paat) differ notably, 100 ms and 218 ms respectively.
The time cue should result in reasonable differentiation between the two vowels, even

though they are very close together in the formant frequency space.

The group of vowels /V (piet), /y/ (puut), /¢/ (pet) and /€:/ (peet) are close together in the
vowel space and can potentially be confused. When looking at the time duration of the
vowels, it is 87 ms, 91 ms, 87 ms and 198 ms respectively. From these values and the
vowel space, it is clear that /i/ (piet), /€/ (pet) and /y/ (puut) should be confused regularly.
Their formant frequencies are very close together and their duration is almost the same.
The longer duration of /€:/ (peet) causes this vowel to be distinguished from the others in

the group more often.

Each of the cues of the vowels /£:/ (pét), /W (poet), /2/ (pot) and /&/ (pat) are distinct so
that it is not expected that they will be confused with one another. The duration of /U
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(poet) and /2/ (pot) are very similar, 84 ms and 102 ms respectively, making them the only
two vowels in this group that might possibly be confused.

The first and second formant frequencies of the processed and original vowels were
normalised using Lobanov's z-score transformation (Adank, Smits and van Hout, 2004).
This is necessary to be able to compare formant spaces across various conditions; with the
processor there might be an offset added to the formant frequencies of a specific vowel
space. These offsets will be removed by normalisation. It is possible to perform
comparisons between vowel spaces because the transformation normalises the formant
frequencies of a single vowel with respect to the average and standard deviation of the
formant frequencies of all the vowels. These normalised formant frequencies were plotted
to compare the vowel space of the original vowels and the processed vowels. The vowel
spaces without normalisation are shown in figures 4.6 and 4.8; the normalised vowel

spaces are shown in figures 4.7 and 4.9.

The use of the Lobanov z-score transformation was chosen because it is a vowel-extrinsic
procedure, taking into account the average and standard deviation of the formant
frequencies of all the vowels. The normalisation of a formant frequency, using a vowel-
extrinsic procedure, depends not only on the formant frequency of the relevant vowel, but
also on the formant frequencies of all the vowels in the set of vowels. Procedures that
include information across vowels and information within formants perform better at
normalising a set of formant frequencies than procedures that do not include these (Adank
et al, 2004). The Lobanov z-score transformation is an example of such a procedure.
Other vowel-extrinsic procedures that might also have been used and given the same
results are the Neareyl and Gerstman procedures (in contrast to the Neary2 procedure)
(Adank et al., 2004).

In Borden and Harris (1994), it is suggested that patterns are used for vowel identification
rather than absolute formant frequency values. This explains why a person can still
recognise vowels even when speakers’ vowel spaces are different, as is the case when the
speaker is a man, a woman or a child. A vowel space is defined by the point vowels; these

vowels are used as reference points to normalise formant frequency values. The point
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vowels are /i/, /a/ and /W. These three are on the edges of the processed vowel space.

When looking at the normalised vowel space of the processed and original vowels (figures
4.7 and 4.9) it can be seen that the vowel space is transformed to some degree. The
processed vowels have shifted around in the formant space. This is because of the fixed
centre frequencies of the bandpass filters used in the processor. The frequency bands are
fixed for the noise bands to reconstruct the output of the acoustic model. The processed
vowels still represent a vowel space similar to that of the original vowel space. This
transformation of the formant space might be the source of many confusions in the

experiments (discussed later). There are a few characteristics that are worth mentioning:

o the vowels /V, /y/ and /€:/ are still grouped together and are at the edge of the
vowel space, even though in the group itself they moved,

o the vowels /&e/, /ce/, /€:/ and /9/ remain approximately at the centre of the vowel
space, and

o the edges of the vowel space are still formed by the vowels /a/, /W, / V,/2/,/a:/ and
/yl.

Possible confusions might be among the point vowels in the initial experiments. The
vowel space may be foreign to the listener with the vowels moving significantly relative to
each other. For normal speech the vowel space is clearly defined and used by the listeners
on a daily basis. A new vowel space needs to be defined before the listener can recognise
other vowels relative to the point vowels. The listener therefore first has to become
accustomed to the new vowel space. Before this, the specific vowels that define this new
space might easily be confused with one another, for example /&/, /9/, /W and /V (Borden
and Harris, 1994). As the listener becomes familiar with this new vowel space, confusions

should decrease.

The vowels located in the centre of the vowel space would possibly be confused from the
start of the experiments, as they do not move as much relative to the point vowels. It can
be seen from figures 4.7 and 4.9, the normalised vowel spaces, that the /e/ and /9/ vowels

are clustered in the middle of the vowel space before and after processing.
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Figure 4.6. Vowel space of original (small italic font) and processed (large font) vowels with

dynamic range compression
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-1.5 -1 -0.5 0 0.5 1 1.5 2

Fl
Figure 4.7. Vowel space for formant frequencies normalised using the Lobanov algorithm,
processed with dynamic range compression. The processed vowels are larger than the

original vowels, which are also printed in italics
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Figure 4.8. Vowel space of original (small italic font) and processed (large font) vowels

without dynamic range compression
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Figure 4.9. Vowel space for formant frequencies normalised using the Lobanov algorithm,
processed without dynamic range compression. The processed vowels are larger than the

original vowels, which are also printed in italics

Up to now, F; and F, as cues for vowel recognition have been discussed. Another
important cue for vowel recognition, which is part of the three-dimensional vowel space, is

the duration of a vowel. A distinction can be made between longer and shorter vowels
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even though their formant frequencies are close together, for example /a:/ and /a/, which
have a very similar formant frequency space, are recognised correctly based on the

duration cue of the vowel.

The duration of the processed vowels is determined using PRAAT. The vowel must be
isolated from the consonants /p/ and /t/ to record the duration of the vowel alone. The
transition from the first consonant to the vowel is not very distinct. The transition is
determined subjectively by listening to the speech token and splitting the speech token into
separate parts. The duration is therefore an approximation, yet it still gives an accurate
enough measure for analysis of the vowel characteristics. For the FITA analysis (discussed
later), the vowels are separated into groups and classified as having either a longer or
shorter duration. With the FITA analysis, the information of a specific group that is
transmitted is determined according to these classifications. The exact duration is not
extremely important for the FITA analysis, as the information transmitted to the listener 1S
determined for groups of speech segments. Therefore, the vowels with a shorter duration
are put in a group and the longer vowels are also grouped together. When the analysis is
performed, the information transmitted for the groups with different durations is

determined, not for the exact duration of a vowel.

When the vowel space is viewed in terms of the duration and F; (figures 4.10 and 4.11),
one can predict a number of possible confusions. There is a specific group of vowels,
/u, ce, Yy, i, 9/, with approximately the same duration and with a first formant frequency
in the region of 440 Hz — 600 Hz. Based on the duration and F,, it is predicted that these

vowels will be confused often.

The duration of /ee/ and /a/ is very similar. Both the first and second formants are of the
same order. Based on this and the comparable duration, these two vowels may easily be

confused.

The vowel /€:/ has approximately the same duration as /€:/ and /Q:/ in the original vowel
space. In the processed vowel space the duration was considerably reduced, decreasing the

chance of confusion with the other two vowels with a longer duration. In the processed
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vowel space (figure 4.10), /€:/ and /9/ moved closer to each other, generating the

possibility of confusion between these two vowels.

2.5 T T T T T T
2 € (o
1.5¢ ) .

1k e ' -

0.5¢ . -

Normalised duration

0r ®
0.5+

iy :

-1 1 ! | L -
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Normalised F1

Figure 4.10. Normalised duration vs normalised F; for original (small italic font) and

processed (large font) vowels with dynamic range compression
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Figure 4.11. Normalised duration vs normalised F, for original (small italic font) and

processed (large font) vowels without dynamic range compression

In figures 4.12 to 4.17, the Euclidean distance matrices are shown. The distance measures

were obtained by determining an Euclidean distance between each vowel's normalised Fi,
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F, and duration measures with the compared vowels' normalised Fi, F» and duration
measures. The signal characteristics of the processed vowels, as summarised in table 4.1,
are normalised and used to determine the Euclidean distances. By examining the distance
measures, the vowels that are close to each other in the formant and duration spaces can be
identified. The shorter the distance between two vowels, the more likely they are to be

confused. These matrices serves as a prediction confusion matrix for vowels.

pAAt plEt pOEt pAd pEt pOt plt pAt pUt pEEt pét pUUL
a: i u a 3 d ) ® e e:. & y

pAAt a:| 00 39 40 24 36 28 33 22 33 39 25 43
plIEt i 00 25 29 03 25 10 21 13 14 28 06
pOEt U 00 29 25 13 21 26 14 26 34 26
pAd a 00 29 20 19 09 22 37 36 34
pEt ¢ 00 24 10 20 12 12 25 07
pOt 2 00 18 17 13 26 27 28
pit o 00 12 08 20 29 15
pAt = 00 16 28 28 27
pUt 00 17 26 16
pEEt e: 00 19 12
pét & 0.0 29
pUUt vy 0.0

Figure 4.12. Three-dimensional Euclidean distance for duration, F1 and F2 of vowels with

dynamic range compression
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pAAt pIEt pOEt pAd pEt pOt plt pAt pUt pEEt pét pUUt
a: i u a € > = ® e e & y

pAAt a:] 00 39 30 26 31 21 33 22 30 28 28 40
pIEt i 00 24 34 13 26 14 25 14 14 29 05
pOEt U 00 31 24 10 10 25 10 22 37 23
pAd a 00 22 23 32 11 28 34 40 38
pEt ¢ 00 22 18 13 15 1.7 27 1.7
pOt 2 00 16 18 13 21 33 27
pt s 00 24 04 16 33 13
pAt @ 00 20 23 29 28
pUt 00 15 31 1.5
pEEt e: 00 18 13
pét € 0.0 29
pUUt y 0.0

Figure 4.13. Three-dimensional Euclidean distance for duration, F1 and F2 of vowels without

dynamic range compression

pAAt plEt pOEt pAd pEt pOt plt pAt pUt pEEt pét pUUt

Q: i u a 3 3 ) ® e e: E: y
pAAt a: | 00 28 29 03 27 20 18 07 22 35 25 33
plEt i 00 25 29 00 24 10 21 13 09 06 0.6
pOEt U 00 28 25 09 21 25 13 24 20 26
pAd a 00 29 19 19 09 22 36 26 34

pEt ¢ 00 24 10 20 12 09 05 06

pOt 2 00 16 17 11 26 19 27
pit o 00 11 08 17 08 1.5
pAt @ 00 16 28 18 26
pUt @ 00 15 07 1.6
pEEt e: 00 10 05
pét & 0.0 0.9
pUUt vy 0.0

Figure 4.14. Two-dimensional Euclidean distance of F1 and F2 for vowels with dynamic

range compression
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Figure 4.15. Two-dimensional Euclidean distance of F1 and F2 for vowels without dynamic
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Figure 4.16

range compression

pAAt pIEt pOEt pAd pEt pOt plt pAt pUt pEEt pét pUUt
a: | u a € 2 ° =& ® e & y
00 33 40 24 31 27 31 22 32 33 21 37
00 09 19 03 08 05 15 03 14 28 05

00 29 10 13 15 25 09 11 29 04

00 19 20 14 06 20 29 32 24

00 05 06 14 02 12 24 06

00 10 14 06 10 19 10

00 1.1 07 18 29 11

00 16 24 27 20

00 12 25 05

00 19 11
00 28
0.0

. Duration-F1 distance measure between vowels with dynamic range compression
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pét pUUL
a: i u a 3 > = @ e e: £: y

pAAt a:] 00 28 30 26 22 20 31 18 28 19 1.0 29
pIEt i 00 03 27 12 08 04 20 01 13 29 05
pOEt U 00 30 15 10 01 24 03 13 30 02
pAd a 00 15 23 31 09 27 30 34 3.1
pEt € 00 08 16 09 12 17 27 16
pOt 23 00 11 14 07 09 23 10
pit o 00 24 04 14 31 02
pAt e 00 20 22 26 24
pUt 00 12 28 05
pEEt e: 00 1.7 12
pét € 0.0 29
pUUt vy 0.0

Figure 4.17. Duration-F1 distance measure between vowels without dynamic range

compression

When the matrices are normalised row by row, the distances between vowels can be
rounded to 0, 0.25, 0.5 and 0.75 (figures 4.18 and 4.19). For a distance of 0.75, the vowels

are expected to be confused more often than not. For a distance of 0.5, the vowels might

be confused often; for a distance of 0.25, the vowels are expected to be confused

sometimes and for a distance of 0, no confusions are expected. For the diagonal, the

distance measure gives an indication of how many times the vowel will not be confused

with other vowels. For a distance measure of 1, it is expected that the vowel will almost

never be confused with any other vowel.
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Figure 4.19. Summary of predictions of confusions for vowels processed without dynamic

range compression
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4.3.1.3 Results from experimental study on vowel confusions

Results from the experiments conducted with normal-hearing persons in the form of
confusion matrices are presented in this section. Section 3.4 explained the procedure
followed and the experimental parameters. A confusion matrix is compiled by recording
the response of a listener to a specific stimulus. The diagonal of the matrix represents the
stimuli recognised correctly, while incorrect responses are scattered across the matrix. By
examining these matrices, typical confusions between vowels are determined. The results
obtained with normal-hearing listeners are compared to results obtained with cochlear

implantees by comparing results for FITA analyses.

The recognition of vowels improved with the number of experiments completed, which is
expected because the normal-hearing listeners become accustomed to the sound of the
processed vowels. It can be seen from figures 4.20 and 4.21 that after about three or four
experiments, the percentage of correctly recognised vowels start to stabilise at a specific
value — the slope between experiments three and five is less than the slope between
experiments one and three. The percentage of correct scores is determined by the
summation of the diagonal of a confusion matrix and the division of this value by the total

number of stimuli.

The percentage recognised correctly is generally higher in cases where dynamic range
compression is not included — the recognition starts at a higher percentage and tends to

stabilise at a higher percentage.
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Figure 4.20. Learning curve over time for vowels with dynamic range compression
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Figure 4.21. Learning curve over time for vowels without dynamic range compression

When considering the recognition of individual vowels, in the earlier experiments the
vowels on the edges of the vowel space (figure 4.6) are often confused. As the listener
becomes accustomed to the sound of the speech tokens, these confusions decrease and

more confusions appear between vowels clustered together in the vowel space.

Because vowels are recognised according to the formant frequencies relative to one
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another, the processed vowels that lie close to the original vowels in the normalised vowel
space may possibly be confused. From the results of the earlier experiments (not shown
here), this does not appear to be the case; it is rather the vowels that lie on the edges of the
processed vowel space that are confused in the earlier experiments. In the later
experiments, it is the vowels that are clustered together in the Fy-F, and F;-duration spaces

that are confused, even though the clusters have moved relative to each other.

When comparing the trends of confusions for the vowels processed with dynamic range
compression and those without the compression, there are no notable differences. The
confusions have the same type of distribution, but with different magnitudes. The overall
percentage recognised correctly for the processing without dynamic range compression is
higher than for the vowels processed without dynamic range compression, indicating that
the individual vowels will also be recognised more accurately for the vowels without
compression. This is evident in the results. This indicates that the inclusion of dynamic
range compression does not change the type of confusions, it only reduces the overall

percentage of accurate recognition.

In the following paragraphs, all the confusions for the vowels with dynamic range
compression will be analysed and explained with respect to their F), F, and duration
characteristics. The discussion of vowels without dynamic range compression follows the
discussion of vowels with dynamic range compression. The confusion matrices for the
results of the experiments with the vowels before and after dynamic range compression are
presented in figures 4.22 to 4.23. The confusion matrices were obtained by pooling all the

participants' results for experiments four and five.
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Response
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Figure 4.22. Confusion matrix for vowels with dynamic range compression
Response
pAAt pIEt pOEt pAd pEt pOt plt pAt pUt pEEt pét pUUL
i u a £ 2 2 ® e e: £ y

pAAt a: 0 0 0 0 0 0 0 0 1

plEt i 0 0 0 0 0 2 0 0 26

pOEt U 0 052126 0 6 0 18 3 0 0 0

pAd 2 0 0 0 0 2 0 0 0 0 0
2 pEt ¢ 0 3 1 o0 @ 5 0 0 1
gEpot 2] o 0o o0 o o 0 0
@ plt ° o o0 2 1 o 0 1

pAt & 0 0 0 4 0 0 0

pUt ® 0 0 2 0 0 0 0

pEEt e: 1 0 0 0 0

pét £ 1 0 0 0 0 0 0 0 20

pUUt Yy 0 B8 16 0 0 0 0 0 2 0

Figure 4.23. Confusion matrix for vowels without dynamic range compression

In figures 4.24 and 4.25, the probability of a correct response is plotted against the

calculated Euclidean distance. As the Euclidean distance between two vowels increases,
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the probability of a correct response will increase. The procedure to determine the
probability of a correct response is as follows: firstly the confusion matrices from the
experiments are normalised so that the sum of each row is 1. The values in the normalised
matrices are used as the probabilities of an incorrect response for a specific stimulus. All
the probabilitics at a particular Euclidean distance are added together, this sum is
multiplied with the number of times the particular Euclidean distance occurred and divided
by the total number of Euclidean distances in the matrix. This is then subtracted from 1 to
reach the probability of a correct response. These probabilities are then plotted against the

corresponding Euclidean distance.

11— : ; : . : P
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Figure 4.24. Probability of correct response to stimuli as a function of normalised Euclidean

distance for vowels after dynamic range compression
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Figure 4.25. Probability of correct response to stimuli as a function of normalised Euclidean

distance for vowels before dynamic range compression

Vowels with dynamic range compression

The overall percentage that is correctly recognised for vowels with dynamic range
compression is 67 %, pooled over all listeners. For the processed vowels with dynamic
range compression, confusions were apparent, as seen from an inspection of figures 4.18
and 4.19. For every confusion a possible explanation is given. In section 4.3.2.1, possible
confusions were predicted by visually inspecting the formant spaces. In this section, the
actual confusions are explained in terms of a physical measure, the Euclidean distances

between vowels.

When /Q:/ is used as stimulus, it is confused with /a/. This can be ascribed to the very
short distance measure in the two-dimensional space F-F,. The vowels that are closest to
/Q:/ in the three-dimensional space of figure 4.12, are /@/ and /&/. There are a few
confusions with /a@/, which is natural, but there is none with /é&&/. When looking at the two-
dimensional space, figure 4.14, it can be seen that the distance between /Q:/ and /a/ is

significantly less than for /eg/, explaining the more regular confusion with /a/.

Electrical, Electronic and Computer Engineering 91



CHAPTER 4 RESULTS

The vowels /i, U, y, 9, ce, € all have approximately the same duration and also have
first formant frequencies that are grouped together, all with an Euclidean distance of less
than 1.5 between each other. In the Fi-duration vowel space they form a cluster. For the
stimulus /1, all these vowels are recorded as responses, with /y/ the main confusing vowel.
The two vowels /i/ and /y/ are not only close to each other in the F;-duration vowel space,

but also in the F,-F; vowel space.

For the stimulus /W, the response is often /2/. These two vowels have a small three-
dimensional Euclidean distance; it is the smallest distance between /W and any of the other
vowels, thus explaining the regular confusion. Other vowels that are also confused for /W/
are /a, ®, 9/. For these vowels it is the duration that causes the confusions. These
vowels all have a similar duration, as can be seen in the duration-F, distance measure
(figure 4.16).

The vowels /U, 2, a/ have similar second formant frequencies and are confused to a lesser
degree. The duration of /&e/ is close to that of /a/, which explains the confusion between
these two vowels. However, /a/ is not confused very often with /ee/, suggesting the
possibility that duration is not the most significant characteristic affecting vowel

recognition.

The most significant confusion for vowels with dynamic range compression is between
/€, 9, 2, &/, with only 31 % recognised correctly when /ce/ is used as stimulus. When
/y/ is used as stimulus, the response is /i/ almost 55 % of the time. When /i/ is used as
stimulus, 17 % of the time the response is /y/. These are significant figures. The other
vowels that are confused very often are /ce, 2, 9/ and for the stimulus /€/, the response is

often/i, y, 9, ce/.

Vowels without dynamic range compression

The confusions for the vowels without dynamic range compression are very similar to
those for the vowels with dynamic range compression. The overall percentage of vowels

recognised correctly are higher: 75 % as opposed to 67 % pooled over all the listeners.
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The vowels /i, y/ have a very short three-dimensional distance between them, 0.5,
explaining the confusions between these two vowels. The confusions are present whether

/V or /y/ is used as the stimulus.

For the stimulus /W, the response is often /a/. From the vowel spaces described here, it is
not clear why they are confused so regularly. The confusions with /ce/ and /J/ can be
explained by the small three-dimensional Euclidean distance between them. Other vowels
that are also confused for /W are /€/ and /9/. For these vowels it is also the short three-
dimensional distance that explains the confusions. These vowels all have a similar

duration, as can be seen in the duration vowel space, figure 4.17.

The significant confusions between /ce/ and /o/, for the stimulus /3/, can easily be
explained when looking at the three-dimensional distance matrix, figure 4.13. Together
with the confusion between /€/ and /3/, with /¢/ as stimulus, they are the most common.
The minimum distance between any two vowels is, not surprisingly, between /ce/ and /9/.

It is therefore not unexpected that these two vowels are confused regularly.

The confusions between /€:/ and /y/ can be explained by the short two-dimensional
duration-F; distance between them. The difference in duration for /€:/ and /a./ is almost
zero, contributing to the confusion between these two vowels. They are far removed in the

F1-F2 vowel space. This will explain why they are not confused regularly.

The most significant confusion, as for the vowels with dynamic range compression, is
between /€, 9, e/, the responses being almost evenly distributed when the stimulus is /€/.
When /y/ is used as stimulus, the response is /¥ more than 40 % of the time, similar to the

recognition of vowels with dynamic range compression.

4.3.1.4 FITA analysis

A FITA analysis was done for both the vowel and consonant recognition confusion
matrices in order to determine which cues are transmitted most effectively and to compare

data recorded for cochlear implant users. The output of the FITA analysis is a measure of
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covariance between input and output. This measure is calculated through the procedure
described next. If the input variable is x with probability p;, i = 1, 2, ..., k, the mean
logarithmic probability (MLP) is defined as

MLP(x) = E(-log p)==2 p,logp; . 4.1)

A similar expression is defined for the output y with probability p;, j = 1, 2, .., m. A

measure of covariance of input with output is given as

T(xy) = MLP(x) + MLP() - MLP(o) = 3 pylog ™22, (42)
i i
where pj; is the probability of the joint occurrence of input i and output j. T(x;y) 1s the
transmission from x to y. When a response is closely correlated with a specific stimulus,
the transmission of a specific feature is good and T(x;y) will be near unity (Miller and
Nicely, 1955). In this study, the stimulus for vowels is classified as in table 4.2 and the
response is a confusion matrix from the experimental study. T(x;y) is determined for each

of the features in table 4.2.

The characteristics of the vowels that were used were duration, F; and F,. The
classifications were different for the processed and original vowels (Pretorius et al., 2005).
They are classified as shown in tables 4.2 and 4.3. The classifications of the vowels are
determined using the guideline summarised in table 4.4. The vowels are grouped together
according to their classifications to determine the percentage information transmitted for a
specific characteristic. For example, /a:/ has a long duration (2), a high F; value (2) and a
medium F, value (2). The confusion matrices are analysed using these classifications to
determine whether long vowels are distinguished from short vowels, vowels with low F;

frequencies are distinguished from vowels with high F; frequencies and so forth.

Note that the classification of the duration of /ee/ and /2/ changed after processing. This is
due to the noise that causes the start and end of the vowels to be less apparent as before

processing.
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Table 4.2. Classification of processed vowels for FITA analysis
pAAtpIEt [pOEt/pAd [pEt [pOt |pIt |[pAt |[pUt |pEEtjpét |pUUt
Duration 2 1 1 1 1 2 1 2 1 2 2 1

F, 21 1 oy o2 2t o o 2 1 1p 11 1
F, 21 31 21 21 31 21 2 21 21 31 31 3

Table 4.3. Classification of original vowels for FITA analysis (Pretorius et al., 2005)

pAAt|pIEt [pOEt|pAd |pEt [pOt [pIt |[pAt [pUt |pEEtipét |pUUt
Duration 2 1 1 1 1 1 1 1 1 2 2 1
Fy 2l 1 1 2 2f 21 2 21 2 1 1 1
K 2f 3 1 o2p 3 1y 2 21 2 31 3 3

Table 4.4. Ranges of duration, F1 and F2 used for classification of processed vowels

Duration O F,
1] 0-100 0-540 0-960
2 >100[ 540 -900f 960 -1 700
3 > 900 >1700

The results of the FITA analyses for the vowels are summarised in tables 4.5 to 4.7. The
confusion matrices used for the FITA analyses were the pooled confusion matrices from all
the participants. The results for the cochlear implant users were obtained from Pretorius et
al. (2005). Nine post lingual deaf adults completed the vowel tests and eleven post lingual
deaf adults completed the consonant tests. All the participants used the Nucleus implant,
using either the SPEAK or ACE speech processor.

Table 4.5 . Results of FITA analysis for cochlear implant users listening to the original

vowels
Percentage information transmitted
Duration 63
F, 43
F, 50
Table 4.6. Results of FITA analysis for processed vowels with dynamic range compression
Percentage information transmitted
Duration 60
F, 43
F, 57
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Table 4.7. Results of FITA analysis for processed vowels without dynamic range compression

Percentage information transmitted
Duration 67
F, 55
F, 65

In figures 4.26 and 4.27 the percentage information transmitted for all the normal-hearing
listeners is shown. Figure 4.26 reflects the transmitted information for the vowels
processed with dynamic range compression and figure 4.27 reflects the vowels processed

without dynamic range compression.

100’

40+ 1

% Information transmitted

207t 1

0 L L
F1 F2 Duration
Feature
Figure 4.26. Indication of information transmitted to normal-hearing listeners for vowels
processed with dynamic range compression. The average and standard deviation percentage

information transmitted is shown for duration, ¥; and F;
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0 I3 t i
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Figure 4.27. Indication of information transmitted to normal-hearing listeners for vowels
processed without dynamic range compression. The average and standard deviation

percentage information transmitted is shown for duration, F; and F,

From the FITA analysis, it can be seen that for the acoustic simulation with dynamic range
compression, the results correspond very well with those found for the original vowels
presented to cochlear implant users. The information transmitted for F, is in both cases
only 43 %. Information transmitted for duration is 3 % less for the processed vowels with
dynamic compression than for the original vowels. The difference of 7 % for the
information transmitted for F, is less than 10 %. The feature that is transmitted most
effectively is the duration of a vowel. Referring to the low percentage of information
transmitted for Fy, it appears that a lot of the information of F is lost during the processing
of the vowels. This result is consistent for the experiments before and after dynamic range
compression and for experiments with cochlear implant listeners. This gives a strong
indication that duration of vowels is transmitted most effectively and F; information is
transmitted poorly for the processing of Afrikaans vowels when processed through the

acoustic model.

The vowels without dynamic range compression yield better results than either the original
vowels recognised by cochlear implant users or vowels recognised with the dynamic range

compression. The difference in FITA results between the original vowels and the vowels
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without the dynamic range compression is in the order of 10 % on average. This can be
seen in figure 4.28. This shows that more information is transmitted on average with the

acoustic simulation before dynamic range compression.

A linear fit was performed on the results from the FITA analysis for cochlear implantees
and for FITA analysis performed on the normal-hearing listeners' results (the confusion
matrices were not pooled). The curve fitting is shown in figure 4.28 for the FITA results
before and after dynamic range compression and for results found with cochlear implant
users. A t-test was performed between the results obtained before dynamic range
compression and results from cochlear implant users, and between the results obtained
after dynamic range compression and results from cochlear implant users. Three separate
t-tests were performed for Fy, F, and duration respectively. Each listener's results were
analysed separately through FITA and used in the t-test. From the results of the t-test, it
appears that only the results obtained after dynamic range compression belong to the same
probability density function as the results from the experiments done with the cochlear
implant users with a significance level of 5 %. The FITA results from the acoustic
simulation before dynamic range compression do not belong to the same pdf as those from

the experiments done with cochlear implant users.
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120 Q‘ After (liynamic rlclnge comipression | | |
(> Before dynamic range compression
100+ 18 Clresults 4
e Linear fit for "After"
Linear fit for "Before”
80 e Linear fit for "CI" 7

% Information transmitted

201 .

| 1
F1 F2 Duration
Acoustic feature

Figure 4.28. Linear fit for FITA results of vowels using the acoustic simulation with dynamic
range compression (r = 0.863), acoustic simulation without dynamic range compression (r =
0.858) and cochlear implant users (r = 0.985)

The linear fit and t-test suggests that the acoustic simulation with dynamic range
compression models cochlear implants slightly better than the simulation without the
dynamic range compression. This might be expected because of the presence of dynamic
range compression in cochlear implants; the compression should also be modelled in the

acoustic simulation.

4.3.2 Consonant confusions

4.3.2.1 Acoustic analysis of consonants at the output of the acoustic model

The results for the experiments with consonants were analysed using multidimensional
scaling. This is a procedure where coordinates according to confusions between the

consonants are determined. These coordinates give an indication of which consonants are
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confused most often. Coordinates for a number of dimensions are determined. These
coordinates, grouped according to a specific dimension, can then be correlated with
specific acoustic features and signal characteristics to determine which features or
characteristics are transmitted to the listener in order to recognise the consonants. In this
study, an Individual Differences Scaling (INDSCAL) (Carroll and Chang, 1970a) analysis

was performed on confusion matrices, using the software package PRAAT.

Consonants are classified according to specific features generated during the articulation
process, including duration and manner of articulation. By grouping the consonants
according to these features, predictions can be made as to which consonants might be
confused in actual experiments. Listeners recognise consonants based on these features
(Borden and Harris, 1994; Miller and Nicely, 1955). Consonants that are grouped
according to their acoustic features also have distinct signal characteristics. When a
consonant is presented acoustically to a listener, the consonant is recognised according to
the transmitted signal characteristics (acoustic cues), for example the envelope variation,
energy content and duration of consonants. Possible confusions include confusions

between the plosives, between the fricatives and between the nasals, glides and liquids.

An analysis of the confusion matrices can also be performed by dividing the consonants
into specific groups of stimuli and their respective responses (Rosen, 1992; Wang and
Bilger, 1973). This will give an indication of confusions within groups with similar
acoustic cues rather than confusions between groups with different acoustic cues. By
doing this, a smaller confusion matrix is formed and confusions can be analysed according
to the sets of acoustic cues. When a new score is calculated for the percentage correctly
recognised, it will be greater for the smaller matrix than for the original matrix. This is
because a high percentage of confusions occur within a specific group and all the

confusions within a group that were wrong originally, will now be considered 'correct'.

In the following section, the chosen set of acoustic features for the classification of
consonants are described in more detail. Thereafter the signal characteristics that are
linked to the acoustic features are discussed. Both the acoustic features and signal

characteristics can be correlated with the coordinates obtained from the INDSCAL analysis
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to determine what signal characteristics and acoustic features are responsible for the

recognition of consonants.

Articulatory features

Consonants are divided into groups with similar acoustic features. It is predicted that the
consonants within a group will be confused with one another because of the similar
production of the sounds. Different groups of acoustic features that can be used to classify

the consonants are described in this section.

There are different ways of producing a consonant; this is described as the manner of
articulation. Manners of articulation include nasal, plosive, fricative and liquid, as will be

discussed in more detail next (Borden and Harris, 1994; Miller and Nicely, 1955).

For consonants produced with a burst (plosive consonants), the flow of air is totally
blocked somewhere in the vocal tract. These consonants include /p/ and /b/. The
consonants /l/ and /1/ are both liquid consonants. They are voiced consonants produced by

constricting the vocal tract.

Voiced consonants are differentiated from voiceless consonants in articulatory terms
according to the manner in which the vocal cords are used. For the voiced consonants, /b,
d, m, n, 1,1, j, z, v, X/, the vocal cords vibrate and for the voiceless consonants, /p, t, k, s, f/,
the vocal cords do not vibrate (Miller and Nicely, 1955). In acoustic terms, the voiceless
consonants are aperiodic or noisy in character and the voiced consonants have a definite
periodic or line-spectrum component superimposed on the noise. Other characteristics that
are also worth mentioning is that voiceless consonants seem to have a higher signal
intensity. In speech segments presented as /a/-CONSONANT-/a/, the voiceless stops have
a kind of breathy noise between the release of pressure and the beginning of the following
vowel, they may also be a bit shorter than the voiced stops. Voiced stops include /b, d/, the

air is totally blocked before the consonant is produced using the vocal cords.
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When referring to a nasal consonant, the articulation can be described as the lips being
closed and the pressure released through the nose. This nasal articulation provides a
distinct acoustic feature by which a consonant can be recognised. The two nasal
consonants are /m/ and /n/. It also appears that the two nasals are longer in duration and
more intense than the stop or fricative consonants. These two consonants are periodic and

do not have the aperiodic component of noisiness.

When the articulators are brought close together and air is forced between them, a
turbulence or friction noise is produced. This friction noise distinguishes /s, z, f, v, x/ from
/p, t,k,b,d, m,n, 1,1, j/; for the latter the articulators are closed completely producing a
stop or nasal consonant. The turbulence is characteristic of the fricative consonants. The
stops are characterised by a silence followed by a pop and the nasals are characterised by a

periodic, almost vowel-like resonance.

Although the consonants /s, f, v, z/ are distinguished as long, intense, high-frequency
noises, the more important characteristic is their duration. They are somewhat longer than
the other consonants and it is believed that this feature sets them apart from the other

consonants.

The place in the mouth where the major constriction of the vocal passage occurs can be
divided into three positions: front, middle and back. The consonants can be grouped as /p,
b, f, v, m/ for the front, /t, d, s, z, n, 1, 1/ in the middle and /k, g, j/ at the back. It is difficult
for a listener to determine the place of articulation of a consonant by listening to speech,
the information transmitted through this feature is the most difficult to identify. For a
detailed explanation on how place of articulation is used as an acoustic feature, refer to
Miller and Nicely (1955).

The specific features of the consonants are summarised in table 4.8. The classifications
used to group the consonants are explained as follows: a consonant is either plosive (1) or
not (2), voiced (2) or voiceless (1), is produced in the front (1), middle (2) or back (3) of
the mouth, is either a nasal (2) or not (1), has liquidity characteristics (2) or not (1) and is

either a fricative (1) or not (2). The manner of articulation is classified as plosive (1),
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liquid, nasal or glide (2), or fricative (3). These classifications group the consonants
produced together in a similar way to analyse the consonants according to information

transmitted.

Table 4.8 is used to analyse the confusion matrices obtained from the experiments. When
the classifications from table 4.8 are applied to the confusion matrices, the percentage
information transmitted for each acoustic feature can be obtained from a FITA analysis. In
this way it can be determined whether information about a specific feature is transmitted

sufficiently or not.

Table 4.8. Classification of consonants for FITA and INDSCAL analysis

Burst | Voicing | Manner Place | Nasality | Liquidity JAffrication
aPa 1 1 1 1 1 1 2
aTa 1 1 1 2 1 1 2
aKa 1 1 1 3 1 1 2
aBa 1 2 1 1 1 1 2
aDa 1 2 1 2 1 1 2
aMa 2 2 3 1 2 1 2
aNa 2 2 3 2 2 1 2
aRa 2 2 3 2 1 2 2
al.a 2 2 3 2 1 2 2
aJa 2 2 3 3 1 1 2
aSa 2 1 2 2 1 1 1
aZa 2 2 2 2 1 1 1
aFa 2 1 2 3 1 1 1
aWa 2 2 3 3 1 1 2
aGa 2 2 2 3 1 1 1

Acoustic properties

In order to obtain non-arbitrary perceptual dimensions based on the confusions of
consonants that can be associated with signal characteristics, the multidimensional scaling
approach is followed. This is discussed later. To confirm the predictions made using the
acoustic features (refer to section 1), the results from the multidimensional scaling were

used in addition to the FITA analysis. Through this approach, it can be proven that
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articulatory features do represent valid perceptual dimensions (Wang and Bilger, 1973).7
The specific acoustic properties that were analysed for the speech tokens used in this study
are summarised in table 4.9. These acoustic properties were also correlated with the
acoustic features recorded in table 4.8 to determine the relationship between them. In
order to calculate the relevant signal characteristics that are used as acoustic cues, the

output of the acoustic model was used, as will be explained in the following paragraphs.

Both the consonants before and after dynamic range compression were analysed to
determine their acoustic properties (tables 4.9 and 4.10). These acoustic properties were
chosen based on those described in Van Wieringen and Wouters, (1999). The duration was
measured, using spectrograms in PRAAT, from the onset of the consonant, including the
silence of the voiceless plosives. The root-mean-square (RMS) of a sliding window was
calculated to determine the energy content of the consonant. The sliding window was used
for a smooth transition from one window to another. The energy in the consonants was
calculated using 512-sample time windows with 75 % overlap (implemented with a
Hanning window similar to the analysis explained in section 3.3.2.3) — this vector of values
was used to determine the peak, median and the ratio of minimum to peak energy of the

signal as in equation 4.3,

P =max(2010g(V )

M = median(20log(Vyys)) - 4.3)
M/P= min(Vy,,)
max(¥pus)
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Table 4.9. Acoustic properties of consonants with dynamic range compression — duration

(ms), peak and median level energy (dB), minimum to peak energy ratio, peak and median

level energy after low-pass filtering (dB) and envelope variation (dB) between 20 and 200 Hz

Minimum/| P-LPF | M-LPF
D(ms) | P(dB) | M(dB) peak (dB) (dB) EV (dB)
aPa 266 -15.98 -34.23 0.0889 -53.338 | -71.799 7.290
aTa 217 -16.05 -34.42 0.0938 -50.943 | -71.513 6.416
aKa 297 -15.86 -21.96 0.0998 -51.134 | -60.125 7.565
aBa 210 -14.85 -27.77 0.1321 -49.921 | -63.337 6.948
aDa 244 -14.82 -23.67 0.0938 -49.852 | -62.638 6.741
aRa 228 -17.04 -20.18 0.3259 -51.713 | -56.507 3.458
alLa 255 -16.05 -18.22 0.6161 -49.322 | -56.560 3.157
ajJa 187 -17.38 -20.09 0.6088 -51.580 | -57.457 3.579
aMa 283 -15.85 -18.47 0.5486 -50.690 | -56.482 3.732
aNa 237 -16.99 -19.63 0.5542 -48.387 | -57.616 3.821
aSa 223 -17.11 -19.85 0.5716 -50.919 | -59.592 3.951
aFa 326 -16.20 -21.53 0.4099 -51.953 | -60.418 3.671
aZa 253 -17.86 -20.56 0.5877 -50.704 | -58.415 3.810
aWa 236 -15.97 -22.27 0.2293 -51.507 | -60.909 5.090
aGa 279 -15.31 -18.22 0.5401 -48.269 | -56.506 3.820
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Table 4.10. Acoustic properties of consonants without dynamic range compression —
duration (ms), peak and median level energy (dB), minimum to peak energy ratio, peak and

median level energy after low-pass filtering (dB) and envelope variation (dB) between 20 and

200 Hz
Minimum/| P-LPF | M-LPF
D@ms) | P@B) | M@B) | peak (dB) (dB) | EV dB)

aPa | 245 1982 | -77.72 | 0.0007 | -55.553 | -111.570 | 20.863
aTa | 238 2310 | -78.92 | 0.0007 | -54.498 [-112.250 | 22.464
aKa | 226 2361 | -68.14 | 0.0007 | -57.595 | -103.610 | 22.532
aBa | 207 1587 | -55.58 | 0.0042 | -48.813 | -92.041 | 15.747
aDa | 206 21.08 | -5899 | 0.0008 | -58.780 | -94.958 | 19.139
aRa | 219 71978 | -30.79 | 0.0296 | -54.544 | -68.318 | 6.576
aLa | 210 1823 | -27.15 | 02674 | -53.066 | -65.600 | 4.776
aJa 235 71872 | 3230 | 00654 | -53.424 | -74.664 | 7.932
aMa | 222 1974 | 3652 | 00794 | -55.157 | -75.530 | 6.806
aNa | 225 71891 | -34.72 | 0.1000 | -55.707 | -73.375 | 6.300
aSa 257 3092 | -28.88 | 0.0628 | -57.340 | -70.085 | 4.920
aFa 315 2035 | -4299 | 00265 | -54.039 | -82.091 | 8.641
aZa | 234 2308 | 3645 | 00758 | -57.999 | -76.002 | 6.920
aWa | 1690 2116 | -46.72 | 00150 | -54.963 | -84.319 | 11.566
aGa | 292 1838 | -32.59 | 0.0838 | -56.191 | -70.786 | 5.143

Two analyses were developed (using Matlab) to determine possible candidates for a
physical measure of amplitude envelope. For the first analysis, each consonant was low-
pass filtered with a first-order Butterworth filter with a cutoff frequency of 20 Hz. By
doing this, most of the temporal information was preserved while the spectral information
was lost. From the envelope, the peak and median energy levels were determined by using
an equation similar to 4.3, where the Vrys is now calculated from the low-passed signal.
In the second analysis, the variation of the envelope was determined. The isolated
consonant was bandpass filtered between 20 and 200 Hz and full-wave rectified. From this
output the RMS was calculated using 512-sample time windows with 75 % overlap
(implemented with Hanning windows). The standard deviation from the RMS values (in

dB) gives an indication of the variation in the envelope, as calculated by

EV = Stdev(10g(Veps)) (4.4)
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where Vrus is the RMS voltage of the filtered signal, calculated similar to equation 3.4.

4.3.2.2 Predictions of consonant confusions from acoustic analyses

The acoustic properties of consonants calculated in the previous section can be used to
predict possible confusions. The acoustic properties were normalised using the Lobanov z-
score transformation (Adank et al., 2004), similar to the analysis of the vowels. Three of
the most important acoustic properties were chosen to calculate the Euclidean distances
between consonants; the three acoustic properties were chosen according to the results
found in Van Wieringen and Wouters (1999). The acoustic properties used for predicting
confusions were envelope variation, ratio of minimum to peak energy and the duration of
the consonant. The Euclidean distance measures between the consonants are shown in
figures 4.29 and 4.30.

aPa aTa aKa aBa aDa aMa aNa aRa ala aJa aSa aZa aFa aWa aGa
p t k b d m n r 1 ] s z f v X

aPa pfo00 15 09 16 07 28 35 39 31 31 32 31 3l 1.7 3.0
aTa t 00 23 04 08 21 33 30 32 27 26 37 29 11 31
aKa k 00 24 15 33 38 45 31 35 37 29 34 23 3l
aBa b 00 10 24 34 31 34 28 27 40 31 14 33
aDa d 00 23 32 34 30 28 28 33 29 12 29
aMa m 00 15 17 18 1.1 12 27 14 11 1.7
aNa n 00 19 09 07 10 22 04 22 08
aRa r 00 27 14 10 39 18 24 26
ala 1 00 13 17 13 08 21 0.1
ala j 00 04 25 05 1.7 12
aSa s 00 29 08 1.7 16
aZa z 00 22 28 14
aFa f 00 19 07
aWa v 00 20
aGa X 0.0

Figure 4.29. Three-dimensional Euclidean distance measures for envelope variation,

minimum to peak energy ratio and duration of consonants with dynamic range compression
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aPa aTa aKa aBa aDa aMa aNa aRa ala aJa aSa aZa aFa aWa aGa
p t k b d m n t 1 ] s vA f v X

aPa p|00 03 06 13 1.1 23 46 21 24 26 25 27 23 26 29
aTa t 00 03 13 1.0 24 47 23 26 28 28 30 25 25 32
aKa k 00 1.1 08 24 47 24 26 28 29 33 25 23 34
aBa b 00 05 14 41 17 18 20 23 33 1.8 12 3l
aDa d 00 19 44 21 22 24 27 35 22 15 34
aMa m 00 35 07 07 10 12 27 08 16 22
aNa n 00 30 28 25 33 46 29 40 35
aRa r 00 05 06 08 23 02 21 17
ala ] 00 03 11 28 03 19 20
aJa 00 11 28 04 22 19
aSa s 00 18 07 28 1.0
aZa z 00 24 42 12
aFa f 00 22 1.7
aWa v 0.0 3.7
aGa x 0.0

Figure 4.30. Three-dimensional Euclidean distance measures for envelope variation,
minimum to peak energy ratio and duration of consonants without dynamic range

compression

Following a similar procedure as for the vowels, these distance measures are translated into
a prediction confusion matrix. The Euclidean distance matrices are normalised row by row
and rounded to 0, 0.25, 0.5 and 0.75 (figures 4.31 and 4.32). Consonants are expected to
be confused almost always at a distance of 0.75; for a distance of 0.5 confusions might be
expected often; for a distance of 0.25, only a few confusions are expected and at a distance
of 0, no confusions are expected. The values for the diagonal are calculated slightly
differently. This distance measure gives an indication of how often the consonant will not

be confused with other consonants. A distance measure of 1 indicates that no confusions

are expected.

Electrical, Electronic and Computer Engineering 108



CHAPTER 4 RESULTS

aPa aTa aKa aBa aDa aMa aNa aRa ala aJa aSa aZa aFa aWa aGa
p t k b d m n r 1 J s z f v X

aPa  p[0.75 050 0.75 0.50 0.75 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
aTa t 0.75 025 0.75 0.75 0.25 0.00 0.00 0.00 025 0.25 0.00 0.00 0.50 0.00
aKa k 0.75 0.25 0.50 0.25 0.00 0.00 0.25 0.00 0.00 025 0.00 0.25 0.25
aBa b 0.50 0.75 025 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.50 0.00
aDa d 0.75 025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
aMa m 0.75 0.50 025 0.25 0.50 0.50 0.00 0.50 0.50 0.25
aNa n 0.75 0.25 0.75 0.75 0.50 0.25 0.75 025 0.75
aRa r 0.75 0.25 0.50 0.75 0.00 0.50 0.25 0.25
ala 1 0.75 0.50 0.50 0.50 0.75 0.25 0.75
ala 0.75 0.75 0.25 0.75 0.50 0.50
aSa s 0.75 0.00 0.75 0.50 0.50
aZa z 0.75 025 025 0.50
aFa f 0.75 025 0.75
aWa v 0.75 0.25
aGa x 0.75

Figure 4.31. Predictions of confusions for consonants processed with dynamic range

compression

aPa aTa aKa aBa aDa aMa aNa aRa ala aJa aSa aZa aFa aWa aGa
p t k b d m n r 1 j s z f v X

aPa p[0.50 075 0.75 050 0.75 050 0.00 0.50 025 025 0.25 025 025 025 025
aTa t 0.50 0.75 0.50 0.75 025 0.00 0.50 0.25 025 025 025 025 025 0.25
aKa k 0.50 0.75 0.75 025 0.00 025 025 025 025 025 025 0.50 0.25
aBa b 0.50 0.75 0.50 0.00 0.50 0.50 0.50 025 0.00 0.50 0.50 0.25
aDa d 0.50 0.50 0.00 0.50 0.50 0.25 0.25 0.00 025 0.50 0.00
aMa m 0.75 0.00 0.75 0.75 0.50 0.50 0.00 0.75 0.50 0.25
aNa n 1.00 025 025 025 025 0.00 0.25 0.00 0.25
aRa r 0.75 0.75 0.75 0.50 0.00 0.75 025 025
ala 1 0.75 0.75 0.50 0.00 0.75 0.25 0.5
ala. ) 0.75 0.50 0.00 0.75 0.00 025
aSa s 0.75 0.25 0.75 0.00 0.50
aZa z 0.75 025 0.00 0.50
aFa f 0.75 025 0.25
aWa v 0.75 0.00
aGa x 0.75

Figure 4.32. Predictions of confusions for consonants processed without dynamic range

compression
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4.3.2.3 Results from experimental study on consonant confusions

The recognition of consonants improved with the number of experiments completed,
similar to the results found for the recognition of vowels. It can be seen from figures 4.33
and 4.34 that after approximately three to four experiments, the percentage of consonants
recognised correctly start to stabilise at specific values — the slope between experiments
three and five is less than the slope between experiments one and three. The mean
percentage scores for the pooled consonants recognised are 63 % and 52 % for processing
before and after dynamic range compression respectively. The percentage recognised
correctly is higher in cases where the dynamic range compression is not included, similar
to the recognition of vowels. The confusion matrices for the consonants after dynamic
range compression and before dynamic range compression are given in figures 4.35 and

4.36 respectively.

100 - -

80r 1

Percentage correct
&

2071 1

0 1 ] ! 1
0 1 2 3 4 5 6

Number of experiments

Figure 4.33. Learning curve for recognition of consonants with dynamic range compression
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1 00 T T T T

Percentage correct

0 L 1 L L 1
0 1 2 3 4 5 6

Number of experiments
Figure 4.34. Learning curve for recognition of consonants without dynamic range

compression

Response
aPa aTa aKa aBa aDa aMa aNa aRa ala aJa aSa aZa aFa aWa aGa
p t k b d m n r 1 J s z f v

»

aPa p 9 25 9 0 0 0 o0 o0 0 0 23 16 1
aTa t 5 49 o0 0 0 o0 0 0 o0 6 2 1
aKa k| 19 26 240 0 1 o 0o o o0 5 1 0
aBa b} 31 0 ; 1 4 1 o0 o0 o0 ©0 o0 7 10 2
aba d| o0 30 31 Of o 1 06 1 0 o0 0 0 0

2 aMa m 0 0 0 0 0 26 2 0 0 0 36 0

£ aNa n 0 0 0 0 0 6 0 31 13 1 12 1 6 0

& aRa r 0 0 0 0 0 0 I o o o o 0 0 O
ala |1 0o 0 o0 o0 0 o0 5 1 1 9 0 5 12
ala  j 0 0 0 0 0 0 43 0 3 0 1 0
aSa s 0 0 0 o0 ©0 15 2 0 4 1 0 0
aZa  z 0 0 o0 1 0 5 3 0 15 303 12
aFa f| 0 o0 0o 0 o0 17 0 3 1 0
aWa v 0 0 o0 4 0 11 5 0 5 0
aGa x 0 0 o0 o0 o0 11 10 5 8 25 9 17 27

Figure 4.35. Confusion matrix obtained from experiments for the condition after dynamic

range compression
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Response
aPa aTa aKa aBa aDa aMa aNa aRa ala alJa aSa aZa aFa aWa aGa
t k b d m n T 1 j s z f v X

aPa p [ 72 18 32 o0 0 o0 o0 o0 0 O0 6 13 0
aTa t 0 717 06 1 0 0 o0 0 o0 O0 0 ©
aKa k| 19 1@ 0 0 0 0 0 0 0 0 0 0 0
aBa bl 41 o of o o0 1 o0 0 0 0 0 33 0
aDa d 0 53 1 0 o o o ©o O O O O 0 0
%2 aMa m 0 0 0 o0 oFEER 1 o0 0 0 0 52 25 0
E aNa n 1 8 0 0 7 2 1 17 1 4 0
& aRa 0 0 0 0 0 : 0 0 0 0 0
ala | 0 0 0 0 0 0o o0 0 10 11
ala j 0 1 0 0 19 1 42 0 0 0
aSa s o 0 o0 0 3 3 0 0 0
aZa z 0 0 0 0 6 0 0 1
aFa f 2 0 0 18 0 9 0
aWa v 9 0 1 1 0
aGa x 0o 0 0 0 0 2 11

Figure 4.36. Confusion matrix obtained from experiments for the condition before dynamic

range compression

The predictions made from the three-dimensional Euclidean distances give an indication of
what confusions to expect. When the predictions and actual results are compared, most of
the confusions are predicted reasonably well by the prediction confusion matrix. In figures
4.37 and 4.38, the probability of a correct response is plotted against the calculated
Euclidean distance. As the Euclidean distance between two consonants increases, the
probability of a correct response will also increase. The procedure to determine the
probability of a correct response is similar to that followed for the vowels: firstly the
confusion matrices from the experiments are normalised so that the sum of each row is 1.
The values in the normalised matrices are used as the probabilities of an incorrect response
for a specific stimulus. All the probabilities at a particular Euclidean distance are added
together, this sum is multiplied with the number of times the particular Euclidean distance
occurred and divided by the total number of Euclidean distances in the matrix. This is then
subtracted from 1 to reach the probability of a correct response. These probabilities are

then plotted against the corresponding Euclidean distance.
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Probability of correct response

0.8+ o
0.6} /‘/

0.4+ .J”’

021 -

O L I I H I L 1 1 L
02 03 04 05 06 07 08 09 1

Normalised Euclidean distance

Figure 4.37. Probability of correct response to stimuli as a function of normalised Euclidean

Probability of correct response

distance for consonants after dynamic range compression

08 3 .f"

0.61 ~

1 1

O Lo 1 H l
02 03 04 05 06

Normalised Euclidean distance

07 08 09 1

Figure 4.38. Probability of correct response to stimuli as a function of normalised Euclidean

distance for consonants before dynamic range compression
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Multidimensional scaling

An INDSCAL analysis (Carroll and Chang, 1970b) was performed on the consonant
confusion matrices and the acoustic features obtained from the acoustic analysis were
correlated with the results from the INDSCAL analysis. The INDSCAL analysis is a
multidimensional scaling technique that examines the relationship between specific stimuli
and their respective responses. By performing this analysis, it can be determined whether
the auditory and articulatory features discussed earlier are reflected by the important
perceptual dimensions as obtained by INDSCAL from the measured confusion matrices.
The analysis was performed on the pooled matrices from all the subjects using the software
package PRAAT (Boersma and Weenink, 2004). This was done for the consonants before

and after dynamic range compression.

The output of an INDSCAL analysis is coordinates for each of the consonants for a fixed
number of dimensions and the variance accounted for (VAF) for each dimension. The
VAF is an indication of how much of the variance in one variable is accounted for by the
variance in another. The coordinates within a specific dimension group the consonants
according to the information transmitted. By plotting two dimensions against each other,
the confusions of consonants can be interpreted by looking at the graphic representation.
For example, all the plosives are expected to be grouped together and the nasals are

expected to be grouped together.

For the consonant data to be subjected to INDSCAL analysis, there are a number of pre-
processing steps that need to be performed. All the pre-processing was done in PRAAT;
the program has the capability of performing INDSCAL analysis and all the pre-processing
needed for the analysis. The input confusion matrices are normalised to fractions by
dividing the responses by the total number of stimuli. These were then symmetrised using
the algorithm suggested by Houtgast (Klein, Plomp and Pols, 1970; Van Wieringen and
Wouters, 1999) and converted to dissimilarity matrices (symmetric tables representing
dissimilarities between responses). For the actual INDSCAL analysis, the number of
dimensions was increased until only small increases in VAF were observed. The number

of dimensions that still contribute more than 0.04 % (Van Tassel et al., 1987) was three for
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the consonants before and after dynamic range compression.

The coordinates of the dimensions for each consonant were correlated with the consonant
classifications using a Pearson correlation. By examining the correlation coefficients of
the dimension coordinates with the consonant classifications and speech production
features (or acoustic features), a specific dimension can be assigned to a corresponding
feature. For example, for the results shown in table 4.11, dimension 1 has the highest
correlation with the burst of the consonants. From this correlation, it appears that
dimension 1 from the INDSCAL analysis is represented by the presence or absence of

burst in the consonants.

Consonants with dynamic range compression

For the first dimension, the presence or absence of burst yielded the highest correlation (r =
0.92). The second dimension correlated well with the feature affrication (r = 0.75). Lastly,
the liquidity of consonants is the acoustic feature with the highest correlation with the third
dimension (r = 0.51). The burst dimension separates the stops, /p, t, k, b, d/, from the other
consonants. The fricative consonants, /s, z, f, X/, are separated from the other consonants
by the second dimension, affrication. Lastly, /r, l/, are separated from the consonants
without liquidity by the third dimension. These results assign the dimensions from the
INDSCAL analysis to specific acoustic features, as summarised in table 4.11. The
normalised dimension weights are determined during the INDSCAL analysis. This gives
an indication of the percentage contribution that each dimension makes to the recognition
of consonants. The results from the INDSCAL analysis for the acoustic features of
consonants are given in table 4.12.

Table 4.11. Total VAF, normalised dimension weights, highest correlating speech production

feature and correlation coefficient for consonants after dynamic range compression

Normalised
dimension | Highest correlating speech
VAF R? weights production feature r
1st Dimension 0.575 0.766 Burst 0.92
2nd Dimension 0.663 0.380  [Affrication 0.75
3rd Dimension 0.707 0.322 Liquidity 0.51
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Table 4.12. Total VAF, normalised dimension weights, highest correlating acoustic feature

and correlation coefficient for consonants after dynamic range compression

Normalised
dimension Highest correlating
VAF R? weights acoustic feature r
1st Dimension 0.575 0.766  |Envelope variation 0.897
2nd Dimension 0.663 0.380  |Peak energy level 0.361
3rd Dimension 0.707 0.322  |Median energy level 0.237

For each of the acoustic cues, the correlation with the consonant classifications was
determined to establish which signal property contributes primarily to a specific
classification. From these correlations, it can also be determined which acoustic cues
contribute most to the recognition of consonants. The acoustic cues that contribute most to
the recognition of consonants were found to be the envelope variation and the ratio of
minimum to peak energy in this study, similar to the results found in Faulkner and Rosen
(1999). For the classification of burst, a correlation coefficient of r = 0.957 was obtained
with envelope variation. For both affrication and liquidity the highest correlation was with
minimum to peak energy ratio, r = 0.450 and r = 0.389 respectively. These were the

acoustic cues with the highest correlations with the consonant classifications.

In figures 4.39 and 4.40, the consonants are plotted using the coordinates obtained from the
INDSCAL analysis. For the condition of processing after dynamic range compression, two
graphs are shown — dimension 1 (burst) vs. dimension 2 (affrication) and dimension 1
(burst) vs. dimension 3 (liquidity). The consonants that are confused regularly are
clustered together in the graphs. In the graph for dimension 1 vs. dimension 2, the groups
of consonants that are confused regularly are more clearly defined than in any of the other
graphs. This flows from the fact that dimension 1 represents the feature with the highest
VAF value, with dimension 2 and 3 contributing progressively less to the final VAF value.
The INDSCAL analysis gives a valuable graphical representation of the confusions of the
consonants. These confusions can be linked to the predicted confusions as discussed

earlier.
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Figure 4.39. Dimension 1 (burst) vs. dimension 2 (affrication) for consonants after dynamic
range compression. From the groupings shown, the plosives are separated from the fricatives
and the nasals, glides and liquids
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Figure 4.40. Dimension 1 (burst) vs. dimension 3 (liquidity) for consonants after dynamic
range compression. Dimension 1 clearly divides the consonants according to the plosive

feature

The results shown in figures 4.39 and 4.40 show the groupings of the consonants according
to the coordinates calculated from the confusion matrices. The consonants that are

confused regularly are grouped together.
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Consonants without dynamic range compression

The highest correlation for the first dimension was the classification of burst, (r = 0.735),
the same classification as for the consonants processed with dynamic range compression.
The second dimension correlated well with the feature of manner (r = 0.522), which
separates the nasals, fricatives and affricates. Lastly, the affrication of consonants
correlated highly with the third dimension (r = 0.484). As mentioned above, the burst
dimension separates the stops, /p, t, k, b, d/, from the other consonants. The fricative
consonants, /s, z, f, x/, are separated from the other consonants by the third dimension for
the consonants processed before dynamic range compression, as opposed to the second
dimension separating these consonants after dynamic range compression. It is interesting
to note that there are very similar features that separate the consonants for both processing
before and afier dynamic range compression. This should be expected as the processing is
similar except for the inclusion of the dynamic range compression. The results for the
consonants before dynamic range compression are summarised in table 4.13 (speech
production features) and table 4.14 (acoustic features).

Table 4.13. Total VAF, normalised dimension weights, highest correlating speech production

feature and correlation coefficient for consonants before dynamic range compression

Normalised
dimension | Highest correlating speech
VAF R? weights production feature r
1st Dimension 0.303 0.600 Burst 0.735
2nd Dimension 0.538 0.500 Manner 0.522
3rd Dimension 0.607 0.356  |Affrication 0.484

Table 4.14. Total VAF, normalised dimension weights, highest correlating acoustic feature

and correlation coefficient for consonants before dynamic range compression

Normalised
dimension Highest correlating
VAF R? weights acoustic feature r
1st Dimension 0.303 0.600  |Envelope variation 0.729
2nd Dimension 0.538 0.500  |Minimum/peak ratio 0.504
3rd Dimension 0.607 0.356  |Duration 0.465
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As for the consonants after dynamic range compression, each of the acoustic cues was
correlated with the consonant classifications to determine which signal property
contributes primarily to a specific classification. From these correlations, it can also be
determined which acoustic cues contribute mainly to the recognition of consonants. The
acoustic cues that contribute most to the recognition of consonants before dynamic range
compression are the envelope variation, the median energy level and the duration of the
consonants. For the classification burst, a correlation coefficient of r = 0.945 was obtained
with envelope variation, for manner the highest correlation was found with the median
energy level after low-pass filtering, r = 0.809 and for affrication, the highest correlation
was with the duration of the consonant, r = 0.729. These acoustic cues contribute primarily
to the recognition of consonants. This compares well with the results found in Van
Wieringen and Wouters (1999).

In the figures that follow, the consonants are plotted using the coordinates obtained from
the INDSCAL analysis. For the condition of processing before dynamic range
compression, two graphs are shown — dimension 1 (burst) vs. dimension 2 (manner) and
dimension 1 (burst) vs. dimension 3 (affrication). The consonants that are confused
regularly are clustered together in the graphs. As for the consonants after dynamic range
compression, the graph for dimension 1 vs. dimension 2 groups the consonants that are
confused regularly more clearly than any of the other graphs. This flows from the fact that
dimension 1 represents the feature with the highest VAF value, with dimension 2 and 3
contributing progressively less to the final VAF value. In figures 4.41 and 4.42, the
confusions of the consonants before dynamic range compression are displayed graphically

using the coordinates obtained from the INDSCAL analysis.
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Figure 4.41. Dimension 1 (burst) vs. dimension 2 (manner) for consonants before dynamic
range compression. Similar to results for consonants after dynamic range compression,

dimension 1 separates the consonants according to the plosiveness in the speech segment
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Figure 4.42. Dimension 1 (burst) vs. dimension 3 (affrication) for consonants before dynamic
range compression. The plosives are separate from the other consonants; the fricatives are

also separated from the other consonants, except for /r/

The point of the INDSCAL analysis was to show that the chosen cues for the recognition
of consonants are indeed meaningful choices. The confusions between consonants can be

explained by dividing the consonants according to these cues.
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4.3.2.4 FITA analysis

For the consonants, the classifications that have been used for the FITA analysis were
presented in table 4.8. These classifications were used together with the confusion
matrices obtained from the acoustic experiments to perform a FITA analysis. The results

for the FITA analysis are given in tables 4.15 to 4.17.

Table 4.15. Results of FITA analysis for original consonants — cochlear implantees

Percentage information transmitted
Burst 70
Voicing 54
Manner 76
Place 50
Nasality 54
Liquid 51
Affrication 82

Table 4.16. Results of FITA analysis for processed consonants after dynamic range

compression
Percentage information transmitted
Burst 72
Voicing 30
Manner 60
Place 22
Nasality 31
Liquid 44
Affrication 45

Electrical, Electronic and Computer Engineering 121



CHAPTER 4

RESULTS

Table 4.17. Results of FITA analysis for processed consonants before dynamic range

compression

Percentage information transmitted

Burst 74
Voicing 29
Manner 62
Place 40
Nasality 25
Liquid 51
Affrication 50

FITA analyses were also performed to determine the percentage information transmitted

for the acoustic properties, as listed in tables 4.9 and 4.10. According to the results in

tables 4.18 and 4.19, the acoustic property that is transmitted most effectively is the

envelope variation (72 % for both before and after dynamic range compression). This

confirms the result found with the INDSCAL analysis; the acoustic property that

corresponds to dimension 1 is also the envelope variation.

Table 4.18. Results of FITA analysis for processed consonants with dynamic range

compression; classifications are done according to acoustic properties, refer to table 4.9

Percentage information transmitted

D (ms) 33
P (dB) 36
M (dB) 39
Mmnimuny/peak 34
P-LPF (dB) 18
M-LPF (dB) 31
EV (dB) 72
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Table 4.19. Results of FITA analysis for processed consonants without dynamic range

compression, classifications are done according to acoustic properties, refer to table 4.10

Percentage information transmitted
D (ms) 49
P (dB) 28
M (dB) 45
Minimunv/peak 41
P-LPF (dB) 20
M-LPF (dB) 34
EV (dB) 72

The results from the FITA analysis confirm the results from the multidimensional scaling.
The four classifications of consonants with the highest information transmitted were burst,
manner, affrication and liquidity. These were also the four dimensions that were
associated with the dimensions for the multidimensional scaling. The data suggest that
these classifications are transmitted most effectively in the recognition of consonants

processed through the acoustic model.

In figures 4.43 and 4.44 the percentage information transmitted for consonants is shown.
The average and standard deviation of FITA scores are determined for all the listeners.
Error bars’ represent one standard deviation. Figure 4.43 reflects the transmitted
information for the consonants processed with dynamic range compression and figure 4.44

reflects the consonants processed without dynamic range compression.

3An error bar on the graphs has a length equal to two standard deviations and is centred at the

average of the relevant value
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Figure 4.43. Indication of information transmitted to normal-hearing listeners for
consonants processed with dynamic range compression. The percentage information
transmitted is shown for seven acoustic features; one error bar represents one standard

deviation
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Figure 4.44. Indication of information transmitted to normal-hearing listeners for
consonants processed without dynamic range compression. The percentage information

transmitted is shown for seven acoustic features

When comparing the results from the FITA analysis for the confusions obtained when
cochlear implant users listened to the original consonants with the processed consonants
that were recognised by normal-hearing listeners, the three classifications transmitting
most information was affrication, manner and burst. Even though the order of significance
differs for the processed consonants, the information transmitted most effectively for the
recognition of consonants is the same for the processed consonants and original

consonants.

As for the vowels, a linear fit was performed on the results from the FITA analysis for
cochlear implantees and for FITA analysis performed on the normal-hearing listeners'
results. The curve-fitting results are shown in figure 4.45. The error bars represent seven
acoustic features, similar to figures 4.43 and 4.44. A t-test was performed between the
results obtained before and after dynamic range compression; each normal-hearing
listener's results were analysed through FITA and used in the t-test. From the results of the
t-test, it appears that five of the seven features from the FITA results obtained before and
after dynamic range compression belong to the same probability density function with a

significance level of 5 %. They also belong to the same probability density function as the
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FITA results for cochlear implant users. The two features that do not belong to the same
probability density function are voicing and nasality. For the acoustic simulations, the
information transmitted through the nasality and voicing of the consonant is poor

compared to the cochlear implant.
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1001 e, Linear fit for "CI" .
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Figure 4.45. Linear fit for FITA results of consonants using the acoustic simulation with
dynamic range compression (r = 0.680), acoustic simulation without dynamic range

compression (r = 0.614) and cochlear implant users (r = 0.944)

With analysis of the output of the acoustic model, specific predictions were made as to
which speech segments would be confused (for either vowels or consonants). These
predictions appear to be good enough to gain an understanding of what underlies speech

recognition of vowels and consonants in electric hearing.
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The results found with the acoustic simulations were compared with the results found for
electric hearing. The results from the acoustic model with dynamic range compression
compared well with those found for electric hearing. From these results, we know that the

developed model is a good acoustic simulation of electric hearing.

The developed model can now be applied to various scenarios in order to investigate and
predict speech recognition under specific conditions. In this study, speech recognition in

noise was investigated further and the results are discussed next.

4.3.3 Experiments in noise

The material up to now suggests that the researchers understand which cues are needed for
vowel and consonant recognition and that the acoustic model is effective in predicting
measurements with cochlear implants. The model can now be used to investigate the
effect of noise on electric hearing using normal-hearing persons listening to the output of
the model. The relationship between the recognition of vowels and consonants and the

masking of the cues used for recognition can also be determined.

The approach followed for the experiments in noise is similar to that for the experiments
on the consonants and vowels, while the procedure followed for the analysis is the same as
for the consonants. Confusion matrices were obtained from the experiments with normal-
hearing persons and analysed with multidimensional scaling to determine which acoustic
features are transmitted amid noise. This was done for both the vowels and consonants, for
the conditions of speech-like noise (as standardised by CCITT Recommendation 227) and
multi-talker babble. The experimental set-up for the experiments is described in detail in

section 3.4.3.
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Figures 4.46 to 4.57 show the confusion matrices obtained for the experiments in noise, in

the following order:

vowels for 0 dB SNR multi-talker* babble and speech-like noise,

vowels for 20 dB SNR multi-talker babble and speech-like noise,

vowels for 40 dB SNR multi-talker babble and speech-like noise,
consonants for 0 dB SNR multi-talker babble and speech-like noise,
consonants for 20 dB SNR multi-talker babble and speech-like noise, and

consonants for 40 dB SNR multi-talker babble and speech-like noise.

The multi-talker has the same spectral characteristics as normal speech; the speech-like

noise is white Gaussian noise filtered to have the same spectral content as normal speech.

For all the confusion matrices, the stimulus is on the vertical axis and the response on the

horizontal axis.

*Multi-talker babble refers to babble originating from various speakers talking simultaneously
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Figure 4.46. Confusion matrix for vowels at 0 dB SNR — multi-talker babble
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Figure 4.47. Confusion matrix for vowels at 0 dB SNR — speech-like noise
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Figure 4.48. Confusion matrix for vowels at 20 dB SNR — multi-talker babble
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Figure 4.49. Confusion matrix for vowels at 20 dB SNR — speech-like noise
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Figure 4.50. Confusion matrix for vowels at 40 dB SNR — multi-talker babble
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Figure 4.51. Confusion matrix for vowels at 40 dB SNR — speech-like noise
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Figure 4.52. Confusion matrix for consonants at 0 dB SNR — multi-talker babble
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Figure 4.53. Confusion matrix for consonants at 0 dB SNR — speech-like noise
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Figure 4.54. Confusion matrix for consonants at 20 dB SNR — multi-talker babble
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Figure 4.56. Confusion matrix for consonants at 40 dB SNR — multi-talker babble
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Figure 4.57. Confusion matrix for consonants at 40 dB SNR — speech-like noise

The results from the confusion matrices are summarised in figures 4.58 to 4.61. In these
figures, the FITA scores for a number of features are plotted as a function of SNR. It is
clear that as the noise level increases, the information transmitted becomes less. This is
expected because the noise masks the information available to the listener; with increased
levels of noise, the available features become less prominent. At 0 dB, almost no

information is transmitted to the listener.
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A repeated-measures analysis of variance demonstrated a significant effect of noise (at
levels of 0 dB, 20 dB, 40 dB and quiet) on the information transmitted by the features. The
analysis was performed for vowels in multi-talker babble (F = 37.23, p < 0.0001), vowels
in speech-like noise (F = 31.91, p < 0.0001), consonants in multi-talker babble (F = 58.05,
p <0.0001) and consonants in speech-like noise (F = 50.21, p < 0.0001).
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Figure 4.58. Average FITA scores of vowels for experiments in multi-talker babble. Scores
were calculated for each listener separately. One error bar represents one standard deviation

in all listeners
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Figure 4.59. Average FITA scores of vowels for experiments in speech-like noise (CCITT
Recommendation 227). Scores were calculated for each listener separately. One error bar

represents one standard deviation in all listeners
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Figure 4.60. Average FITA scores of consonants for experiments in multi-talker babble. One

error bar represents one standard deviation in all listeners
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Figure 4.61. Average FITA scores of consonants for experiments in speech-like noise (CCITT

Recommendation 227); one error bar represents one standard deviation in all listeners

The mean percentage scores of vowels and consonants recognised compare well with those
reported in literature (Dubno et al., 2005; Fu et al., 1998; Killion et al., 2004; Nie et al.,
2005), ranging from near chance to average levels. Results for this study are shown in
figure 4.62 for all noise conditions. The SNRs were determined as described in section
3.4.3. It is not an easy task to determine the acoustic features that contribute to the
recognition of vowels and consonants in noise by inspecting the confusion matrices. The
formant frequencies are masked by the noise, making it difficult to determine these
frequencies. Because of the difficulty in determining the formant frequencies, a vowel
space cannot be determined for noisy conditions in the way it was for quiet conditions.
Multidimensional scaling was performed on the confusion matrices and correlated with
results obtained from acoustic analyses of the degraded speech segments to determine

which acoustic cues are transmitted most effectively.
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Figure 4.62. Results for vowel and consonant recognition in noise — multi-talker babble and
speech-like noise (CCITT Recommendation 227). One error bar represents one standard
deviation
The acoustic features that are used for the analysis of the vowels in noise are slightly
different from those used for the vowels in quict. For quiet, the vowel space obtained from
the values of F;, F, and duration were used to determine the acoustic features contributing
to the recognition of vowels. Identification of F; and F, becomes more difficult with the
addition of noise (Leek and Summers, 1996), owing to a reduction in spectral contrast,
which will decrease the probability of identifying F; or F,. The speech-like and babble
noise has the same formant structure as the vowels, causing the identification of the

formant frequencies to become more difficult.

It is reported in the literature that spectral contrast of processed vowels decreases
significantly, even more so in the presence of noise. LPC analysis (figure 4.63) confirmed
the decrease in spectral contrast of the processed vowels with decreasing SNR (Alcantara
and Moore, 1995; Loizou and Poroy, 2001; Summers and Leck, 1994; ter Keurs, Festen
and Plomp, 1993a; ter Keurs, Festen and Plomp, 1992). Limited spectral contrast will
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reduce the probability of a person identifying the formants used in vowel recognition.

The spectral contrast’ of F, for the example of figure 4.63 was calculated using the peak of
F, and the following valley. The spectral contrast for the original signal is 31 dB, for the
processed signal in quiet it is 14 dB, for the processed signal in 40 dB noise it is 13.5 dB
and for the processed signal in 20 dB noise, it is 4 dB. A steady reduction in spectral

contrast is obvious.
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Figure 4.63. Formants of the vowel /a/ to show reduction in spectral contrast with increasing

Ievel of noise. The four conditions displayed are for 20 dB SNR (babble noise), 40 dB SNR

(babble noise), processed in quiet and the original unprocessed vowel

Results from studies performed previously indicate that the minimum spectral contrast
needed for the recognition of vowels is 1 dB for normal-hearing persons (Leek and
Summers, 1996) and 4-6 dB for hearing-impaired persons (Loizou and Poroy, 2001).
Reduction in spectral contrast is therefore an important aspect that needs to be investigated
for acoustic simulations in noise.

*Spectral contrast is defined in Leek and Summers (1994) as the contrast between spectral peaks

and valleys of harmonic complexes
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Vowel features used in the multidimensional scaling analysis are the duration, spectral
contrast of F; (which corresponds to the probability of identifying F,), spectral contrast of
F, (which corresponds to the probability of identifying F), magnitude of the intensity of F;
and F, (obtained from the formant analysis of original vowels), height of peaks above
valleys for F; and F, and the -3 dB bandwidth of F, and F, LPC formant peaks. These
features were correlated with the coordinates obtained from the multidimensional scaling

to determine which of these are important for vowel recognition in noise.

The -3 dB bandwidth was determined to give an indication of the overlap of the formant
spaces of the individual vowels. Figure 4.64 shows, for example, the overlapping
bandwidths for the condition of multi-talker babble. Looking only at the graphic
representation does not give a good indication of the effect caused by the reduction in
spectral contrast. The formant spaces overlap completely for some of the vowels, yet they
are still differentiated from one another. In the processed vowel space without noise, some
of the vowels also overlap, but not as much as the processed vowels in noise. The -3 dB
bandwidth measure does not appear to be a meaningful characteristic to use for the

determination of the cause of increased vowel confusions with the increase in noise level.

Electrical, Electronic and Computer Engineering 140



CHAPTER 4 RESULTS
2500 25001
Quiet
2000 2000}
~ 1500 —~ 1500t
N N
<) <)
o o
= 1000 B 1000}
500 500+
0 L L il 1 ] 0 ! 1 1 L ]
0 200 400 600 800 1000 0 200 400 600 800 1000
F1 (Hz) F1 (Hz)
2500 2500
20 dB SNR
2000 2000
= 1500 J 1500
) =)
= 1000 & 1000
500 500}
0 L 2 ' 0 i ! L L —
0 200 400 600 800 1000 0 200 400 600 200 1000
F1 (Hz) F1 (Hz)

Figure 4.64. Vowel space of processed vowels in multi-talker babble with -3 dB bandwidths

indicated. The specific SNRs are shown in the top right corner

VAF obtained from the multidimensional scaling indicates that the number of significant

dimensions used for recognition decreases with increasing noise levels. Typically only one

feature transmits information for recognition of vowels/consonants in low SNRs. This is a

direct consequence of the presence of significant noise levels; SNRs of 0 dB have the least

number of dimensions. The results from the correlations between the acoustic features and

multidimensional scaling coordinates are shown in table 4.20.
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Table 4.20. VAF, normalised weights and correlations with important features obtained

from multidimensional scaling analysis for vowels

VAF R? ﬁﬁ:ﬁ:ﬁd Highest correlating r
: acoustic feature
weights
Vowels - 0 dB multi-talker babble
1st Dimension 0.726 0.855 Duration 0.717
2nd Dimension 0.914 0.482 F1 height above valley 0.305
3rd Dimension 0.878 0.135 -3 dB Bandwidth of F2 0.545
Vowels - 0 dB speech-like noise
1st Dimension 0.66 0.817 Duration 0.742
2nd Dimension 0.876 0.508 F2 height above valley 0.633
3rd Dimension 0.851 0.190 -3 dB Bandwidth of F1 0.388
Vowels - 20 dB multi-talker babble
1st Dimension 0.602 0.782 Duration 0.935
2nd Dimension 0.673 0.359 -3 dB Bandwidth of F1 0.506
3rd Dimension 0.723 0.330 Probability of identifying F2} 0.705
Vowels - 20 dB speech-like noise
1st Dimension 0.588 0.774 Duration 0.865
2nd Dimension 0.696 0.427 Magnitude of F2 peak 0.473
3rd Dimension 0.733 0.274 Probability of identifying F1] 0.552
Vowels - 40 dB multi-talker babble
1st Dimension 0.341 0.629 Probability of identifying F1] 0.726
2nd Dimension 0.594 0.516 Duration 0.522
3rd Dimension 0.67 0.365 F1 height above valley 0.491
Vowels - 40 dB speech-like noise
1st Dimension 0.524 0.734 Duration 0.915
2nd Dimension 0.709 0.480 Magnitude of F1 peak 0.636
3rd Dimension 0.771 0.346 F1 height above valley 0.685

The indication of spectral contrast for F; and F, was obtained using an algorithm written in

Matlab, using signal information extracted from the vowel. The LPC of the relevant vowel

was calculated and used to determine the height of F; and F, above the noise present in the
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rsignal. The standard deviations of these heights were determined to give an indication of
the power present in the specific formant peak (Proakis and Salehi, 2002). The mean of
the noise was determined as 0, with the mean of the peak calculated with reference to the
valley between the F; and F, peaks. To determine the probability of identifying Fy or Fa,
signal detection theory was used (Gelfand, 1990; Proakis and Salehi, 2002).

For the example of figure 4.65, the probability density function (pdf) on the left represents
the noise at 0 dB SNR and the pdf on the right represents the mean height of the F; peak
for /i/ at 0 dB multi-talker babble. If the intersection of the two graphs is at position r, the
probability of correctly detecting the presence of F; amid noise is Q(r) (assuming that the
listener places the detection criterion at r and that the pdfs have the same variance). Q) is
the error function defined in equation 4.5 for the upper bound and 4.6 for the lower bound
(Proakis and Salehi, 2002),

e&s#
Q@r) < Bl 4.5)
and
g 1—_1-) . 4.6
o(r) > Ny «/ﬁ( = (4.6)

By determining the probabilities, correct detection of F; and F, an indication of successful
identification of formant frequencies with reduced spectral contrast, can be determined.

Lower values for Q(r) indicate poorer detection of the formant peaks.
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Figure 4.65. Probability density functions for noise (lefthand side) and F1 (righthand side)

for the vowel /V/

From the multidimensional scaling, the acoustic feature that is transmitted most effectively
is the duration. Five out of six noise conditions have high correlation between the first
dimension’s coordinates and the duration of the vowel, with normalised dimension weights
approximately double those of the second most important feature, which is usually spectral
contrast. This means that, although spectral contrast is important for the recognition of
formants, the presence of noise masks spectral information and forces listeners to
concentrate on duration (the temporal information is more robustly transmitted). The
spectral contrast is used gradually to a lesser extent as noise levels increase. At low SNRs
there are only a few dimensions and features that are used to identify vowels. Duration is
therefore one of the acoustic features transmitted most effectively for the recognition of

vowels in noise, similar to that found for recognition in quiet.

The acoustic features extracted from the consonants in noise are the same as those
determined for the consonants in quiet, i.e. duration of consonant, peak level energy,
median level energy, minimum to peak energy ratio, peak and median level energy after
low-pass filtering (20 Hz cutoff) and envelope variation between 20 and 200 Hz.
Correlations between the multidimensional scaling coordinates and the acoustic features

and classifications were obtained to determine which feature or classification is responsible
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for recognition of consonants.

The correlations between the speech production features and multidimensional scaling
coordinates are shown in table 4.21, results from the acoustic analysis and

multidimensional scaling are summarised in table 4.22.

In contrast with the results of the vowels in noise, the number of significant dimensions in
the multidimensional scaling does not decrease with increasing noise levels. It seems that
there are still approximately three features that contribute to the recognition of consonants
in noise. For five out of the six noise conditions, burst (a temporal feature) plays the most
important role in recognition. This corresponds with the results found for quiet conditions,

showing that this feature is still present in noisy conditions.

For the lower SNRs, the other features that are important are nasality and liquidity. The
high percentage recognition of /t/ contributes to the fact that liquidity is transmitted
effectively. As the SNR increases, the speech segments' signal characteristics approach
those of consonants in quiet and at high SNRs, the same information should be transmitted
as in quiet. This is shown in the results; affrication, place and manner are transmitted

most effectively at higher SNR results, similar to the results in quiet conditions.
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Table 4.21. VAF, weights and correlations with important features obtained from

multidimensional scaling analysis for consonants (speech production feature)

VAF R? IZ?;::;‘:;? Highest corr'elating speech .
. production feature

weights
Consonants - 0 dB multi-talker babble
1st Dimension 0.483 0.708 Burst 0.267
2nd Dimension 0.658 0.470 Liquidity 0.694
3rd Dimension 0.697 0.316 Nasality 0.468
Consonants - 0 dB speech-like noise
1st Dimension 0.441 0.679 Affrication 0.482
2nd Dimension 0.624 0.478 Nasality 0.496
3rd Dimension 0.711 0.379 Place 0.166
Consonants - 20 dB multi-talker babble
1st Dimension 0.677 0.827 Burst 0.889
2nd Dimension 0.746 0.356 Nasality 0.594
3rd Dimension 0.792 0.325 Liquidity 0.714
Consonants - 20 dB speech-like noise
1st Dimension 0.425 0.669 Burst 0.812
2nd Dimension 0.610 0.480 Nasality 0.693
3rd Dimension 0.716 0.400 Manner 0.576
Consonants - 40 dB multi-talker babble
1st Dimension 0.635 0.802 Burst 0.936
2nd Dimension 0.700 0.351 Place 0.312
3rd Dimension 0.733 0.307 Affrication 0.597
Consonants - 40 dB speech-like noise
1st Dimension 0.43 0.672 Burst 0.937
2nd Dimension 0.660 0.520 Affrication 0.834
3rd Dimension 0.719 0.344 Voice 0.233
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Table 4.22. VAF, weights and correlations with importal;t features obtained from

multidimensional scaling analysis for consonants (acoustic feature)

VAF R? IZZ;I:I?;Z? Highest Forrelating c
. acoustic feature

weights
Consonants - 0 dB multi-talker babble
1st Dimension 0.483 0.708 Median LPF energy level | 0.287
2nd Dimension 0.658 0.470 Median energy level 0.381
3rd Dimension 0.697 0.316 Envelope variation 0.381
Consonants - 0 dB speech-like noise
1st Dimension 0.441 0.679 Median energy level 0.334
2nd Dimension 0.624 0.478 Median LPF energy level | 0.537
3rd Dimension 0.711 0.379 Envelope variation 0.346
Consonants - 20 dB multi-talker babble
1st Dimension 0.677 0.827 Minimum/Peak ratio 0.818
2nd Dimension 0.746 0.356 Duration 0.449
3rd Dimension 0.792 0.325 Median LPF energy level | 0.341
Consonants - 20 dB speech-like noise
1st Dimension 0.425 0.669 Median energy level 0.664
2nd Dimension 0.610 0.480 Median LPF energy level | 0.369
3rd Dimension 0.716 0.400 Peak energy level 0.250
Consonants - 40 dB multi-talker babble
1st Dimension 0.635 0.802 Envelope variation 0.870
2nd Dimension 0.700 0.351 Peak energy level 0.257
3rd Dimension 0.733 0.307 Peak LPF energy level 0.497
Consonants - 40 dB speech-like noise
1st Dimension 0.43 0.672 Median energy level 0.924
2nd Dimension 0.660 0.520 Duration 0.535
3rd Dimension 0.719 0.344 Envelope variation 0.466

Correlation coefficients for the lower SNRs are low and show that there are few features

that contribute significantly to recognition of consonants. With the increase in SNR, the

correlations approach 1, indicating stronger contributions to consonant recognition. It
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appears that the recognition of consonants at lower SNRs is at chance level (<10 %). The
multidimensional scaling also shows that there is no notable difference in speech

recognition in speech-like noise or multi-talker babble.

44 SUMMARY

In this chapter, the results of the experimental studies were given. Analysis of the output
from the acoustic simulation was used to predict possible confusions of vowels and
consonants. Important results recorded in this chapter that were used in the predictions and
explanations of confusions are the first and second formant frequencies (F; and F2) of the
vowels, the duration of the vowels and the signal properties of the consonants. All these

values were obtained from the processed vowels and consonants using PRAAT or Matlab.

Results from the acoustic simulation experiments were presented for both quiet and noisy
conditions. From these results, it can be seen that the model is a good simulation of
cochlear implants. Results reported for the experimental study are: confusion matrices for
vowels and consonants before and after dynamic range compression, Euclidean distance
matrices for vowels, FITA analyses, growth functions of percentage correctly recognised
and recognition of vowels and consonants in speech-like noise and multi-talker babble.
The results presented in this chapter were also discussed where necessary. The final
discussion of all the results will be done in the following chapter. Results obtained in this

study will be compared to those found in the literature.
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5.1 CHAPTER OBJECTIVES

In this chapter the results presented previously will be discussed and a general discussion
of all the results will be given. The results from the development of the model as well as
the results from the experimental study will be linked with the results from other studies
reported in the literature. The implication of the work and suggestions for future work will

also be presented.

5.2 CONTRIBUTIONS

A comprehensive acoustic model was developed, consisting of two distinct models, the
signal processing model and the biophysics model. It is especially the development of the

biophysics model that contributes to the current state of the literature.

In this study, the effect of dynamic range compression on speech recognition was
investigated and the confusions of speech segments were explained through the analysis of
the acoustic model. There appears to be a limited number of studies that examine the
effect of performing dynamic range compression on the amplitudes used for stimulation on

speech recognition (Fu and Shannon, 1998; Loizou, Dorman and Fitzke, 2000).

Another important contribution is the modelling of the effect of current spread on the area
of stimulated nerve fibres in the cochlea. This was simulated by changing the bandwidth

of the noise bands used for the reconstruction of a sound signal.

The modelling of the pitch and stimulation rate (which is also asynchronous) of electrodes
was effectively implemented in this study (using the harmonics of a speech signal). It is
possible to determine what the effect of the stimulation rate is on speech recognition by

analysing the acoustic simulation and results found through experimental studies.
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By performing acoustic analyses (multidimensional scaling and Euclidean distance
measures) on the processed speech segments, a connection can be established between the
acoustic properties of speech and the confusions among speech segments. The inclusion of
these acoustic analyses is an important part of this study and presents an effective method

of determining what underlies speech recognition.

Multidimensional scaling for both vowel and consonant recognition in noise gives an
indication of the acoustic features that contribute to the recognition of these speech
segments. Duration (temporal information) of vowels is transmitted well even in the
presence of noise. The multidimensional scaling indicated that for lower SNRs, this
feature is mostly used to recognise vowels. The spectral contrast of vowels is reduced
considerably in the presence of noise, contributing to a reduction in speech recognition in
noisy conditions. As the SNR decreases, so does the total number of features transmitted
for speech recognition. For consonants, at higher signal-to-noise ratios, the important
features are similar to those in quiet conditions, namely burst (again temporal information)
and affrication. At 0 dB multi-talker babble and speech-like noise, the major contributing
factor to recognition of consonants is burst, with nasality and liquidity also playing an
important role. It appears that temporal information is retained after processing and
transmitted effectively to the listener while spectral information is lost and not available to
the listener in order to recognise speech. The temporal characteristics of speech are robust

in the presence of noise.

As mentioned previously, a more comprehensive model has been developed that includes
the simulation of various aspects of a cochlear implant. This model can now be used in
different experiments to determine what the effect on speech recognition will be when

some of the parameters of the acoustic model are changed.

5.3 DISCUSSION OF RESEARCH QUESTIONS

With respect to the research questions posed in chapter 1, the following conclusions were

made:
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e For the successful implementation of an acoustic model, there are a number of
specific processing steps that need to be incorporated, including dynamic range
compression, current spread in the cochlea, stimulation rate and asynchronous

stimulation.

e A clearer understanding has been reached as to what underlies speech recognition
in cochlear implants; temporal information is transmitted effectively while spectral

information is lost through the processing of speech.

e The inclusion of dynamic range compression has a significant effect on vowel
recognition; there is a statistically significant difference between the results found
before dynamic range compression and after dynamic range compression. There is
no statistically significant difference between the results found with electric hearing
and simulations after dynamic range compression. For consonants, there is no
significant difference between any of the conditions, it appears that dynamic range

compression does not have a significant effect on consonant recognition.

e In the presence of speech-like noise, spectral information is lost while temporal
information is still present for the recognition of speech, which is also consistent

with the results found in quiet.

e The important acoustic cues used to recognise speech in the presence of dynamic
range compression and speech-like noise, are spectral contrast and duration for

vowels and burst for consonants.

5.4 COMPARISON WITH OTHER ACOUSTIC MODELS

The performance of normal-hearing persons listening to the acoustic simulations presented
in this study compare well with the results found for previously implemented acoustic
models. It has been found in previous studies that normal-hearing listeners adapt to the
sound of degraded speech (Throckmorton and Collins, 2002), as was shown in this study.
There are a number of experiments that serve as training, after which the recognition of

speech segments starts to stabilise.

The percentage correct scores for the acoustic simulations in this study compare reasonably

well with the results found using previously implemented acoustic models. The percentage
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scores for phonemes are plotted in Throckmorton and Collins (2002) for a number of
acoustic simulations. On average, the percentage scores are around 65 %, which compares
well with the scores of 67 % for vowels in this study. The percentage score for

consonants, 52 %, is lower than the percentage scores in Throckmorton and Collins (2002).

For a four-channel CIS strategy acoustic simulation (Fu and Shannon, 1999), the
percentage score for vowels compares well with that found in the present study. At an
insertion depth of 25 mm (used in this study as well), the percentage correct score is
around 62 %. The four-channel CIS strategy at 25 mm compares well with the SPEAK

strategy implemented in the current acoustic model, also at an insertion depth of 25 mm.

The percentage scores for acoustic simulations presented in Dorman et al. (2002) are
higher in general than the percentage scores obtained in this study. For an eight-channel
SPEAK processor (as implemented in this study), the percentage score for vowels is
approximately 90 %, which is high compared to the results found with electric hearing.
Also, in noise, the percentage scores do not degrade as much as was found in this study.
At -2 dB SNR, the percentage correct score is around 80 %, in contrast to an average of 10
% found in this study. It appears that the acoustic model developed in this study is more

realistic than the model implemented in Dorman et al., (2002).

For the results found in chapter 4, there is no literature that presents the results after each
processing step to enable a comparison with the results found in this study. Some of the
results can, however, be compared to those found with the NMT. One of the results that is

specifically important is the comparison of the spectrogram for the acoustic simulation and
the NMT.

The preprocessing of the speech signals (pre-emphasis filter, bandpass filters and full-wave
rectification) yielded the desired results. The pre-emphasis filter is a general processing
step found in the majority of existing models. The bandpass filters were implemented
similar to Dorman et al. (1997b), Loizou (1999b), Loizou (1998) and Shannon et al. (1995)
using Greenwood’s frequency-place equation (Greenwood, 1990). The original and

processed signals have the same shape in the time domain. The processed signals have a
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broader frequency spectrum owing to the use of noise bands and their harmonics. The next
processing step of calculating the RMS of the envelope of the signal was performed in a
similar manner to the procedure followed in other studies (Dorman et al., 1998; Dorman et
al., 1997b; Loizou, 1999a; Throckmorton and Collins, 2002), calculating the RMS every 8

ms with overlapping Hanning windows.

Conversion of the RMS values to current levels does not appear to be reported in the
literature. This is a necessary step to simulate the biophysical interaction between the
stimulating current and sound perception. Including this step in the acoustic model
expands models in the present literature. The quantised current levels are a good
approximation to the dynamic range compression present in cochlear implants. From the
results it can be seen that by including this step, the results compare better with those
obtained with cochlear implant users than when the dynamic range compression is not

included.

Most of the models implemented previously use either sinusoidal signals or noise bands for
the final summation of channels for the acoustic simulation (Dorman et al., 1998; Dorman
et al., 1997b; Dorman et al., 2002; Friesen et al., 2001; Fu et al., 1998; Loizou, 1999b).
None of the models implementing noise bands allocated the bandwidth of the noise bands
dynamically according to the magnitude of the stimulation current. In this study, the
bandwidths used for the noise bands are calculated according to the intensity of the
stimulating current. Initially, the bandwidths were calculated dynamically, but because of
processing overhead, this was removed for the acoustic simulations that were performed.
Tt was determined that the bandwidths do not change significantly for a fixed insertion
depth. This step is important, however, in cases where the insertion depth is varied. The
bandwidths will change owing to the change in the position of a specific electrode. The
dynamic allocation of bandwidths should be included when the insertion depth of an

electrode array is varied, which was not done in this study.

For the summation of all the channels using noise bands, the main contribution of this
model is the simulation of asynchronous stimulation and stimulation rate. In previous

studies, the asynchronous stimulation was modelled by simply introducing a time delay
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(Fu and Galvin III, 2001). This is not sufficient; the effect that stimulation rate has on
speech recognition is not simulated accurately. In this study, a more realistic
implementation of asynchronous stimulation was included in the model. One of the strong
points of this model is the simulation of the stimulation rate in such a way that low
frequency signals are presented at a high stimulation rate (Terhardt, 1979; Terhardt et al.,
1982). One weakness of this implementation is that the number of spectral channels
increases by adding the harmonics of the low frequency components, i.e. a more robust,
spread-spectrum-like representation is created. This is not desirable when the effect of the
number of channels is investigated. Because of the increased number of spectral channels,
this model cannot be used to simulate the effect of number of channels on speech
recognition. For simulating the effect of number of channels, the simulation of the

stimulation rate may need to be improved.

5.5 COMPARISON WITH COCHLEAR IMPLANT DATA

Before comparisons can be made between results found with the acoustic simulations and
electric hearing, it is important to understand which acoustic cues are used in the
recognition of phonemes. This was determined through the comparison of the predictions
from the acoustic model and results found with normal-hearing listeners. To make sure the
acoustic model is appropriate for modelling cochlear implants, data from experiments for
electric hearing were compared with the results found with the acoustic simulations in
quiet conditions. The results for electric hearing and the acoustic simulations compared
well, indicating that the implemented acoustic model is an appropriate model of cochlear
implants. Because the model is trustworthy in quiet conditions, it can now be applied to
various conditions. In this study speech recognition in noise was investigated. The output
of the model provides a means to gain access to measurements deeper inside the auditory
system than is possible without the simulation. With this in mind, the results from the
acoustic model are presented in this section and compared to results found for electric

hearing.

The acoustic model developed in this study was used to process vowels and consonants for

recognition under conditions of quiet (before and after dynamic range compression) and
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noise (only after dynamic range compression). The noise conditions were at 0 dB, 20 dB
and 40 dB SNR for multi-talker babble and speech-like noise (CCITT Recommendation
227) (Dubno et al., 2005).

The percentage recognised correctly for quiet conditions, 67 % for vowels and 52 % for
consonants (pooled across listeners), compare relatively well with the results found in
Skinner, Holden, Holden, Demorest and Fourakis (1997) (70 % for vowels and 66 % for
consonants). The percentage score for consonants is lower than most of the results found
previously. The acoustic model simulates the processing of speech in cochlear implants
better for vowels than for consonants. The scores are in the same range as found in
Pretorius et al. (2005), where the percentage recognised is 63 % and 72 % for vowels and
consonants respectively. In Van Wieringen and Wouters (1999), scores of 42 % and 33 %
were reported for Laura cochlear implantees. The results from this study compare well
overall with those found in the literature. Personal differences have been noted between
cochlear implant users previously. The variation in results between all the studies can be

ascribed to these differences between participating subjects.

Confusions of vowels are consistent with the results found in Pretorius et al. (2005),
Skinner et al. (1997) and Van Wieringen and Wouters (1999). FITA analyses show that
the same information is transmitted in this study using a model, as for the vowels
recognised in Pretorius et al. (2005) by cochlear implantees. Distance measures for Fi, F;
and duration have been shown to be important for analysis of the recognition of vowels
using the acoustic model. From the FITA analysis, the feature transmitting most

information for the vowels is the duration of the vowel followed by the value of F».

The recognition of consonants is poorer than for vowels when using the acoustic model,
similar to the results found in Van Wieringen and Wouters (1999) and Skinner et al. (1997)
for cochlear implant users. This is in contrast to the results found in Pretorius et al. (2005),
where the consonants were recognised at a significantly higher percentage in four subjects.
The consonant confusions are grouped, similar to those reported in Pretorius et al. (2005),
indicating that the same information is transmitted for both cases. This can also be seen

when comparing the results from the FITA analysis. From the multidimensional scaling
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analysis (Rosen, 1992; Wang and Bilger, 1973), the important signal characteristics found
in the present study are consistent with those found in Van Wieringen and Wouters, (1999)

for cochlear implant users.

From the multidimensional scaling, the features transmitted most effectively for the
consonants are burst and affrication. The SPEAK strategy does not convey temporal
information as effectively as the CIS strategy. It is surprising that the burst feature is
transmitted so effectively through the acoustic simulation (this is true for cochlear implants
as well). The signal characteristic of envelope variation is very important for the
recognition of consonants, being the most prominent acoustic feature for both the
conditions before and after dynamic range compression. In Van Wieringen and Wouters
(1999), envelope variation was the second most important feature after turbulence,
indicating that the same information is transmitted in the acoustic simulations as for

electric hearing.

Results for recognition in noise follow the same trend as the results reported in Killion et
al. (2004) and Nie et al. (2005). There is a definite improvement in recognition with an
increase in SNR. The percentage recognised correctly ranges from near chance to average
recognition; for the vowels the mean scores were 13 %, 45 % and 59 % for 0 dB, 20 dB
and 40 dB multi-talker babble noise respectively and 8 %, 42 % and 49 % for the
consonants in multi-talker babble respectively. In speech-like noise, the scores were 11 %,
44 % and 54 % for the vowels and 7 %, 42 % and 54 % for the consonants, for 0 dB, 20 dB
and 40 dB respectively. These results compare well with results obtained for Nucleus-22
cochlear implant listeners for various SNRs, showing that the acoustic model still
simulates electric hearing with increasing levels of noise (Dubno et al., 2005; Friesen et al.,
2001; Fu et al., 1998; Yang and Fu, 2005).

In general, it appears that speech recognition is similar in conditions of speech-like noise
and in multi-talker babble. This indicates that both types of noise degrade speech in a
similar way, which is expected, as both have spectral components in the same frequency
bands. Pilot experiments performed with white noise (Pollack and Pickett, 1957) showed

that speech recognition in white noise did not deteriorate as it did in the presence of
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speech-like noise. This may be ascribed to the fact that in the acoustic simulation the
spectral components are spread over a broad frequency band owing to the use of harmonics

(as explained in section 3.3.2.8).

5.6 CURRENT-LOUDNESS MAPPING

The difference between the percentage recognised correctly for the experiments before and
after dynamic range compression is on average 8 %, before compression resulting in higher
recognition scores. In general, the results for the experiments after compression compare
better with those reported in the literature. This indicates that the inclusion of the mapping
and quantisation of stimulation currents is necessary. There have been limited studies that
included the mapping of current in an acoustic model. Fu and Shannon (1998) and Loizou,
Dorman and Fitzke (2000) included the mapping of current in their model but did not

include the quantisation of the current levels.

5.7 GENERAL DISCUSSION

Results from the developed acoustic model and the experimental study compare well with
those found in literature and the NMT. Confusions for vowels and consonants are
consistent with those found in Pretorius et al. (2005) for quiet conditions and those found
in Dubno et al. (2005), Friesen et al. (2001), Fu et al. (1998) and Yang and Fu (2005) for
noisy conditions. The results suggest that the developed acoustic model is an appropriate

simulation of cochlear implants.

The model has a number of strong and weak points that merit discussion. The use of
harmonics in the summation of the final output to simulate the stimulation rate in the
cochlea is effective. This approach, however, will only be sufficient under conditions
making provision for a fixed number of channels. When the effect of number of
independent channels is investigated, other possible implementations need to be

considered.
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Furthermore, the acoustic simulation of the high stimulation rate would have to be
implemented differently for the CIS strategy than for the SPEAK strategy. Sufficient
information about the speech signal must be transmitted within a short simulation window.
To do this, an acoustic model for the CIS strategy should be considered that conveys low
frequency information in a small simulation window. It is specifically this higher
stimulation rate for the CIS speech processing strategy that makes it valuable (Wilson,
Lawson, Finley and Wolford, 1991). It was found that a meaningful implementation for

the CIS strategy needs to be investigated in future.

Models from other studies (Bruce et al., 1999; Hanekom, 2001) were used to determine the
spread of stimulation current inside the cochlea. The model that was developed
contributed to the present state of the literature by using the magnitude and spread of the
stimulation current to determine the bandwidth of simulation frequency bands. This is an
important aspect of cochlear implants incorporated into the current model. As mentioned
previously, the dynamic allocation of bandwidths was removed from this model owing to
processing overhead and the constancy of the bandwidths over a period of time. When the
insertion depth is changed for specific simulations, this processing step must be included to
calculate realistic bandwidths of the noise bands at specific places in the cochlea. By

improving the dynamic allocation in terms of processing time, the model can be improved.

In the processing of the acoustic models studied (Dorman et al., 1997a; Friesen et al.,
2001; Fu et al., 1998; Loizou, 1999a; Loizou, 1998), the magnitudes of the noise bands or
sinusoidal waves were determined directly from the RMS values. This is not exactly what
happens in the cochlear implant processor — the RMS values are transformed to quantised
current levels used for stimulation. In the model developed in this study, this step was

included for a more accurate acoustic simulation.

In the analysis of confusion matrices for the vowels, a multidimensional scaling approach
may have been appropriate. Through this approach, the recognition of vowels can be
linked to specific signal characteristics and an even better understanding of what underlies
speech recognition in cochlear implants can be reached. Multidimensional scaling was not

performed because it was possible to explain the confusions between vowels adequately
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with the distance measures determined. Various acoustic analyses were performed to
determine the underlying features responsible for successful vowel (FITA with Euclidean

distances) and consonant recognition (FITA and multidimensional scaling).

For the experiments in noise, only three different SNRs were used to process the speech
tokens. From the results it can be seen that there is no significant difference between
multi-talker babble and speech-like noise. The number of experiments can be reduced by

using only one of these noise sources.

In general, the results show that the implementation of this acoustic model was successful.
This model can now be used in further studies to determine the effect that various cochlear

implant parameters have on speech recognition.
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This final chapter will describe what has been done and what has been achieved and
making suggestions for future work. The literature study, methods, results and discussion

will be observed as a whole and the relevant conclusions will be made.

A literature study was performed on cochlear implants and existing acoustic models. From
this study, a number of research gaps were identified and some of these issues were
addressed in this dissertation. A thorough study was carried out to determine the exact
processing steps of a cochlear implant processor and the biophysics associated with

cochlear implants.

From the information gathered through the literature study, an acoustic model was
developed for the SPEAK strategy. The acoustic model consists of two parts: the speech
processing model (analogous to that of the cochlear implant processor) and the biophysical
model (simulation of the biophysical interaction between the cochlea and cochlear

implant).

The first objective of this study was completed by the implementation of the acoustic
model, incorporating the exact processing steps of the SPEAK speech processing strategy
and the biophysics of a cochlear implant. The similarity of the electrodograms for the
NMT and the acoustic simulation confirms the similar processing of speech with the

cochlear implant processor and the model that was developed.

With reference to the second objective, the effect of dynamic range compression was
determined using acoustic simulations from the acoustic model. Experiments were
conducted with normal-hearing persons for vowels and consonants before and after
dynamic range compression. Acoustic analyses were performed on the processed speech
segments in order to determine which features are transmitted most effectively for the
recognition of vowels and consonants. These analyses were completed together with
analyses of the confusion matrices, using either multidimensional scaling or FITA analysis.

By doing this, the underlying source of the recognition of vowels and consonants was
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determined in quiet and noisy conditions.

Finally, research was done on the recognition of vowels and consonants in the presence of

speech-like or multi-talker babble noise. The specific acoustic features of vowels and

consonants that are transmitted effectively for the recognition of speech segments in noise

were determined. Through analysis of the confusion matrices, it was possible to establish

which acoustic features are removed through the processing of speech and are not available

for the recognition of speech.

In summary, the following conclusions can be drawn from the results.

The acoustic model with the dynamic range compression mimics cochlear implants
more closely than the acoustic model without dynamic range compression. This

shows that dynamic range compression has an effect on speech recognition.

The information transmitted most effectively in quiet and noise is the duration of

vowels and burst of consonants.

The formants are not clearly defined for processed vowels (in quiet and noisy
conditions), reducing recognition of vowels, especially after dynamic range

compression.

Spectral contrast is important for the recognition of vowels; when spectral contrast

is reduced, the recognition of vowels becomes poor.

Temporal information, including duration and burst, is transmitted effectively by
the acoustic model and by the speech processor for cochlear implantees for both

vowels and consonants.

The information about manner of articulation is lost after processing, reducing the

number of features available for recognition of consonants.

Envelope variation is an important signal characteristic for consonant recognition in
quiet; in noise median energy levels is important.

The total number of features used for recognising vowels and consonants becomes

lower after processing, especially with dynamic range compression and in noisy

conditions.
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6.1 FUTURE WORK

The development of the acoustic model in this study answered many questions and raised a
number of questions as well. During the development of the model, a number of stumbling
blocks were encountered. Some of the problems were solved, while others were left
unanswered. One of the main areas where future research is necessary is in the
development of an acoustic model for the CIS speech processing strategy. It was found in
this study that the approach must be different for the development of a model for the CIS
speech processing strategy. An important characteristic of the CIS strategy is the
implementation of a high stimulation rate in contrast with the SPEAK strategy that focuses

on an increased number of spectral channels.

For the summation of the noise bands or sinusoidal waves, more research can be done to
find an efficient way to simulate the effect of the stimulation rate. The problem lies in the
fact that the period of stimulation is significantly shorter than the period of typical speech
signals, making it difficult to stimulate the cochlea acoustically using the output of the
model. With electric stimulation, there is no problem with stimulating high frequency
information with a short stimulation pulse, considering the fact that electric current is used
at a specific place in the cochlea to produce a sensation of a particular frequency. With the
implementation in this study, the increased number of spectral channels owing to the use of
harmonics does not have a significant effect on speech recognition. When specific studies
are performed on the effect of the number of available spectral channels on speech

recognition, this implementation will not be sufficient.

Acoustic simulations should be performed to determine the effect of insertion depth on
speech recognition. The simulations can be used to determine the difference in speech
recognition under two conditions: frequency-place mapping as opposed to the case where
a frequency band is fixed for a specific electrode. From these results, it is possible to
optimise the speech processor for an individual, if the insertion depth of the person's
cochlear implant is known. For these studies to be conducted, the dynamic allocation of

noise band bandwidths must be included.

Electrical, Electronic and Computer Engineering 162



CHAPTER 6 CONCLUSION

Although a number of important cues for speech recognition were identified, it is still not
clear if all the signal characteristics that are important for the recognition of vowels and
consonants have been identified. There may still be acoustic properties that are important
for recognition of speech that were not discussed in this study. The developed model can
be used to identify such acoustic properties by performing predictions of speech
recognition and performing analyses on the confusions and acoustic properties from the

output of the acoustic model.

The developed model can now be used to develop better maps for cochlear implants.
Various scenarios can be set up and the effect of changing a specific parameter can be

determined by analysing the output of the acoustic model.

A suggestion to improve current cochlear implant processors is to find a method to convey
frequency information more effectively. This should improve the transmission of
important acoustic cues such as F; and F, in the cochlear implant, which will in turn
improve recognition of vowels. By analysing the output of the acoustic model, other
possible improvements may also be identified. The developed model will therefore make a

contribution to the improvement of current cochlear implant processors.
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