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Abstract

Credit scoring is a mechanism used to quantify the risk factors relevant for an obligor�s ability and
willingness to pay. Credit scoring has become the norm in modern banking, due to the large number of
applications received on a daily basis and the increased regulatory requirements for banks. In this study,
the concept and application of credit scoring in a South African banking environment is explained, with
reference to the International Bank of Settlement�s regulations and requirements. The steps necessary
to develop a credit scoring model is looked at with focus on the credit risk context, but not restricted to
it. Applications of the concept for the whole life cycle of a product are mentioned. The statistics behind
credit scoring is also explained, with particular emphasis on logistic regression. Linear regression and its
assumptions are �rst shown, to demonstrate why it cannot be used for a credit scoring model. Simple
logistic regression is �rst shown before it is expanded to a multivariate view. Due to the large number
of variables available for credit scoring models provided by credit bureaus, techniques for reducing the
number of variables included for modeling purposes is shown, with reference to speci�c credit scoring
notions. Stepwise and best subset logistic regression methodologies are also discussed with mention to a
study on determining the best signi�cance level for forward stepwise logistic regression. Multinomial and
ordinal logistic regression is brie�y looked at to illustrate how binary logistic regression can be expanded
to model scenarios with more than two possible outcomes, whether on a nominal or ordinal scale. As
logistic regression is not the only method used in credit scoring, other methods will also be noted, but not
in extensive detail. The study ends with a practical application of logistic regression for a credit scoring
model on data from a South African bank.
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Chapter 1

Introduction

In 2004, at the start of my career, I was seconded to a leading international company in the USA and
Europe, which had a joint venture with a South African bank, with the speci�c purpose of obtaining
experience in credit scoring in a banking environment. The ultimate goal of this secondment was to
implement the methodology of credit scoring in the South African situation.

The objectives of this study are:

1. To research and study applications of categorical data analysis with speci�c reference to best prac-
tices in credit scoring,

2. To make an academic contribution in the �eld of credit scoring, and

3. To clarify the practical application of the methodology of credit scoring for the general banking
industry.

Banks and the overall banking system are critical components of any country�s economy and the world
economy at large. Banks primarily rely on taking in deposits from clients, consumers, businesses and
large companies, to fund the lending they then provide to a variety of clients and sectors in their economy
and globally.

The safety and soundness of the banking system is of paramount importance. The collapse of a large
bank could result in diminished con�dence in the banking system, and this could have dire consequences
for a country and have possible global impacts. This is due to the potential knock-on impact to other
banks. An example of this is the global �nancial crisis of September-October 2008. It began with failures
of large �nancial institutions in the United States, and then rapidly evolved into a global crisis resulting
in a number of European bank failures and sharp reductions in the value of stocks and commodities
worldwide. Clients panicked and abnormally withdrew their deposits. This lead to a liquidity problem
that further accelerated this crisis. This crisis has its roots in the subprime mortgage crisis in the US
and a¤ected the �nancial systems internationally.

It is for this reason that banks are highly regulated (in South Africa by the South African Reserve
Bank ) and that the Bank of International Settlements (BIS) �rst issued a comprehensive set of principles
and practices to help minimize this risk in 1988 (Basel I1). These mostly involve risk management, capital
management and corporate governance.

The New Basel Capital accord (Basel II), replaces Basel I and is a comprehensive response to the
signi�cant developments in banking over the past 20 years.

1BIS has its capital in Basel, Switserland.
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Some of the key criticisms of Basel I was that:

� It was risk insensitive as there was little di¤erentiation between high, medium and low risk taking
in a bank�s business activities.

� It didn�t reward good and penalized poor risk and capital management.

� It was generally out of touch with technological advancements in banking, �nancial markets and
risk management.

The South African Reserve Bank con�rmed an implementation date of 1 January 2008 for Basel II in
South Africa.

1.1 The New Basel Capital Accord (Basel II)

The New Basel Capital Accord, (known as Basel II) that was released in June 2004 is the latest initiative
by the BIS to regulate the global �nancial services industry. It tries to achieve this by more appropriate
aligning of bank capital requirements with underlying risks - credit risk, market risk and operational
risk. In short, the key objective of Basel II is to enhance the safety and soundness of the banking system
through vastly improved risk and capital management, tailored to each individual bank and banking
group.

Basel II is based on three mutually reinforcing pillars covering:

� Minimum capital requirements

� Supervisory review, and

� Market discipline.

Pillar 1 covers sophisticated risk measurement and management for large banks using internally de-
veloped models. Di¤erent approaches are available that varies in sophistication and complexity. It covers
di¤erent types of risk, including credit risk, investment risk, operational risk, market risk and more.

Implementation of Basel II resulted in a signi�cant increase in the regulatory role of the South African
Reserve Bank (SARB) in South Africa. The SARB reviews and evaluates each bank�s risk and capital
management in great detail and might require higher capital levels based on the quality thereof. Pillar 2
also requires assessment of all other major risks not covered in Pillar 1.

Under Pillar 3, banks are now required to release information publicly about their respective risk
pro�les. This includes increased public disclosure of risk measurement and management practices, capital
management and capital adequacy. This allows �nancial markets and investors to di¤erentiate a bank�s
investment potential, based on the quality of their risk and capital management.
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It is expected that disclosure of risks measured based on the Basel II requirements will strengthen
prudential aspects of �nancial stability. This study will be con�ned to the estimation of default probability
as a major component of credit risk provision for compliance with the Basel II standard. Estimation of
default probability is also more commonly known as credit scoring.

Credit risk is the risk that the borrower may be unable or unwilling to honor his obligations under the
terms of the contract for credit. A major part of the assets of a bank consists of a loan portfolio. Banks
su¤er maximum loss due to non-performing assets. Credit risk is thus a dominant concern to manage the
asset portfolio of any bank.

The �rst pillar (Basel II) proposes the following two approaches of credit risk and risk weights:

� Standardized approach

� Internal Rating Based (IRB) approach

The standardized approach is designed to be applicable for every bank. In this approach a portfolio
of bank loans will be characterized by a relatively small number of risk categories, and the risk weight
associated with a given category is based on an external rating institution�s evaluation of counterpart
risk.

The underlying idea of the IRB approach is to make further use of the information collected and
processed in the bank�s counterpart rating operation. Since banks make it a business to evaluate risks,
these evaluations ought to be reasonable basis for risk-contingent capital adequacy information (Car-
ling,Jacobson, Lindè, and Roszbach (2002)).

The major South African banks are using the IRB approach, as speci�ed by the Accord. The basic
requirement for this is to have a reliable estimate of the probability distribution of the loss for each type
of loan asset.

As per the Basel II requirements, expected loss is estimated using four components:

� Probability of default (PD), which will be the focus of this study

� Loss given default (LGD)

� Exposure at default (EAD) and

� Maturity of exposures (M)

Probability of default is the likelihood that a loan will not be repaid. Loss given default is the fraction
of the exposure at default that will not be recovered in the case of a default event. The exposure at
default is an estimation of the extent to which a bank may be exposed to a counterparty in the event of,
and at the time of, that counterparty�s default. These components are calculated for the minimum of a
year or the maturity of the loan.

Expected loss (EL) is not the risk, but the cost of providing credit and is calculated as follows:

EL = PD � LGD � EAD
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Unexpected loss (UL) represents the volatility of actual loss rates that occur around EL. It is the
presence of UL that creates the requirement for a capital "cushion" to ensure the viability of the bank
during the year when losses are unexpectedly high. Credit risk is not the risk from expected losses from
the credit but the risk of unexpected losses from credit. The entire focus of credit risk management under
Basel II is to predict and manage unexpected loss (Bhatia (2006)).

Under the IRB-approach, banks have the choice of application at either of two levels of sophistication.
The more advanced approach requires bank internally generated inputs on PD, LGD and EAD, whereas
the simpler, foundation approach only requires the bank to provide estimates of PD.

As the basic purpose of analysis of credit risk as part of Basel II is to provide for adequate capital as
a safety net against possible default, it is a method of quantifying the chance of default. Thus, it is the
frequency of default and the regularity with which it occurs that matters.

If a frequency function approach for estimation of probability is assumed, the probability density
function needs to be estimated based on the data to be in a position to estimate the probability of
default. This involves statistical science to �nd an empirically valid estimate of default probabilities
representative of the population under consideration (Barman (2005)). Several techniques can be used to
�nd the estimate of the default probabilities, such as discriminant analysis, neural networks and regression
techniques. This study will focus on the use of regression techniques to estimate this.

1.2 Multivariate analysis

Successful modeling of a complex data set is part science, part statistical methods, and part experience
and common sense.

Multivariate analysis is all statistical methods that simultaneously analyze multiple measurements on
each individual or object under investigation. It is any appropriate method of analysis when the research
problem involves a single dependent variable that is presumed to be related to one or more independent
variables. The objective is to predict the changes in the dependent variable, using the changes in the
independent variables.
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1.3 Credit scoring

Credit scoring is a method to assess risk. The meaning of credit scoring is to assign scores to the
characteristics of debt and borrowers and historical default and other loss experienced as an indication
of the risk level of the borrower. The aim of the credit score model is to build a single aggregated risk
indicator for a set of risk factors.

Prior to the application of formal methods in banking, decisions were made on judgmental basis: the
bank manager would assess the creditworthiness of an individual on the basis of personal knowledge of
the applicant. This had several shortcomings, in that it was unreliable (it can change from day to day
with the bank manager�s mood), not replicable (another manager may make a di¤erent decision, and
the reasoning behind the decisions may not be reproducible), di¢ cult to teach, unable to handle large
numbers of applicants, and, in general, subjective, with all the risks of irrational personal prejudice that
that implies.

Credit scoring as a method of credit evaluation has been used for more than 50 years. The �rst
successful application of credit scoring was in the area of credit cards. According to Anderson (2007),
the �rst retail credit scoring model for credit cards in the US was proposed in around 1941, based on the
following parameters for scoring credit card applications:

� The applicant�s job/position

� The number of years spent in the current position

� The number of years spent at the current address

� Details on bank accounts and life insurance policies

� Gender

� The amount of the monthly installment

The increase in the US credit card business mandated a reduction in the decision time. In 1956, Fair,
Isaac & Co. (FICO) was established to help consumer credit evaluation and in the 1960�s computers
were bought to process credit card applications. Anderson (2007) also notes that in 1963, Myers and
Forgy proposed the application of multivariate discriminant analysis for credit scoring. In 1975, with the
passing of the "US Equal Credit Opportunity Act I", credit scoring received complete acceptance.

The �rst UK credit card, Barclaycard, was launched in 1966. The dramatic growth in the number of
credit decisions needing to be made encouraged the development and growth of automated and objective
methods of making such decisions.

Legislation, like the South African Constitution, forbids the use of certain factors in the decision
making process. The Constitution of the Republic of South Africa (No. 108 of 1996) states in article 2,
section 9 the following:

(3) The state may not unfairly discriminate directly or indirectly against anyone on one or
more grounds, including race, gender, sex, pregnancy, marital status, ethnic or social origin,
colour, sexual orientation, age, disability, religion, conscience, belief, culture, language and
birth.

(4) No person may unfairly discriminate directly or indirectly against anyone on one or more
grounds in terms of subsection (3). National legistlation must be enacted to prevent or
prohibit unfair discrimination.
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This makes the use of formal methods inevitable, how else, other than having some decision-making
strategy explicitly articulated, can one ensure that some prescribed factor is not being used?

The modern age of computers provided the necessary tools to implement automated, objective pro-
cedures. These procedures are based on formal statistical models of customer behaviour.

Apart from the sheer impossibility of making decisions personally today, it has also become clear that
formal and objective methods yield superior decisions. At the very least, these procedures permit the
decision to take into account more potential factors than a human could. Of course, automated decision
making can go wrong and allowance is generally made for the system to be overridden in such cases,
although overrides need to be used with caution.

Although the �rst application of statistical methods was mainly for application processing, it can be
used in all stages of a product life cycle. It is also not just con�ned to credit risk, but is used to measure,
understand, predict, monitor and detect virtually all aspects of customer behaviour. Statistical models
used to predict these di¤erent behaviours are often referred to as scorecards.

The Credit Risk Management Cycle is split into �ve stages: marketing, application processing, account
management, collections and recoveries (Anderson (2007)).

In the marketing stage, scorecards can be used in several ways. For direct marketing campaigns,
response models are often used to predict which of the potential customers in the prospect pool is most
likely to respond. Those that are least likely to respond are not contacted, and the overall marketing cost
is lowered. Unfortunately, people who are most likely to respond are mostly those that are the riskiest.
Therefore response models are used in conjuction with a type of marketing stage credit risk model, to
only target those potential customers that are likely to be accepted for the marketed product.

Application processing involves making the accept/reject decision, as well as determining the amount
of money to be loaned to the customer, the interest rate that should be charged and the repayment terms
of the loan. As this process is now automated, decisions can be made almost instantly.

Behaviour scores used in the account management cycle are distinguished from
application scores because they include characteristics representing the borrower�s own payment pattern
on the loan. The number of times the borrower has gone delinquent, the seriousness of the delinquency,
and even the point during the month when payments are typically received are all very predictive of
future behaviour. They include variables related to the borrower�s demonstrated willingness and ability
to pay on the loan under consideration and tend to be more predictive than application scores, which, of
course, are only based on data available when the loan is originated.

Behaviour scores are often used to change limits or lines of credit. If a customer has a bad behaviour
score on its credit card, the bank can lower the credit limit and thereby reduce its exposure to the
customer.

Behaviour scores are also used for streamlined residential mortgage re�nancing programs. Customers
who have shown a pattern of paying on time and have excellent behaviour scores may be eligible to
re�nance without having to provide the income and asset documentation that is typically required.

Behaviour scores are also used to cross-sell products to existing customers. For example, a lender may
use a behaviour score generated for its mortgage portfolio to select customers for a favourable o¤er on a
credit card. On the �ip side, a bad behaviour score on one product might prevent the bank from lending
to the customer on another product.
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Scorecards are also used in the account management stages to help with customer retention. It is not
as expensive for a bank to retain clients as it is to acquire new clients. Models are developed to predict
the likelihood of attrition for clients and pro-active retention strategies can be implemented.

One of the most important uses of scorecards is in the collections stage to assist in collecting delinquent
accounts (early-stage collections). Customers with poor collection scores are contacted earlier in the
month and the method of contact (phone calls versus letters, etc.) may be varied with the score. Often
collections strategies uses collection scores in combination with outstanding balance (or loan amount
minus expected collateral values if the loans are secured) to decide whom to contact and how often.

Collection scores are also used to determine strategies for handling seriously delinquent accounts (late-
stage collections). Scores that predict the likelihood a customer can recover from serious delinquency may
be used to select loans for modi�cation programs or other special treatment.

Another application of scorecards, recovery scores, is used to estimate the likelihood that all or some
portion of a bad debt will be recovered. After an account has gone seriously delinquent or even been
charged o¤, recovery scores can be generated to rank accounts by the likelihood that some of the debt
will be collected. Recovery scores help lenders make sound decisions about which accounts to retain and
attempt to recover on themselves and which to sell to debt collection agencies or third parties.

It is clear that credit scoring, or more particular, scorecards can a¤ect every decision made on an
account at any stage in the credit life cycle. Credit scoring therefore forms part of the decision sciences.
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1.4 Brief outline of the study

In the second chapter, the steps in developing a credit scoring model will be outlined. It mainly focuses
on the application of scorecards for credit risk, but as explained above, can be generalized to almost any
decision in the life cycle of an account.

Chapter three will brie�y outline methods other than logistic regression that can be and is used for
credit scoring.

Chapter four brie�y recaps normal linear regression and its basic assumptions

Chapter �ve is an introduction to logistic regression. It shows why linear regression cannot be used
for binary outcomes as well as explain the basics of logistic regression.

Chapter six discusses multivariate/multiple logistic regression. The strength of a modeling technique
lies in its ability to model many variables, of which some are on a di¤erent measurement scales. The
logistic model will be expanded to the case of more than one independent variable.

For a typical credit scoring model, the possible factors may vary from as little as 20 to over 200!
Di¤erent strategies and associated methods for reducing the number of predictor variables are discussed
in chapter seven.

Chapter eight discusses methods and strategies that can be used to model a logistic regression.

Chapter nine presents a study that was conducted to �nd the best signi�cance level for a stepwise
logistic regression.

Chapter ten assumes that a model has been �t and shows procedures and methods to see how well
the model describes the dependent variable.

In the previous chapters the focus was on modeling where the outcome variable is binary. In chapter
eleven the model is extended to handle the cases where the outcome variable is nominal with more than
two levels. It will focus on the multinomial model and only give a brief introduction to the ordinal models.

In the last chapter, an example of an actual credit scoring model �tting will be shown.

 
 
 



Chapter 2

Steps in credit scoring model
development

Credit scoring is a mechanism used to quantify the risk factors relevant for an obligor�s ability and
willingness to pay. The aim of the credit score model is to build a single aggregate risk indicator for a
set of risk factors. The risk indicator indicates the ordinal or cardinal credit risk level of the obligor. To
obtain this, several issues needs to be addressed, and is explained in the following steps.

2.1 Step 1: Understanding the business problem

The aim of the model should be determined in this step. It should be clear what this model will be
used for as this in�uences the decisions of which technique to use and what independent variables will be
appropriate. It will also in�uence the choice of the dependent variable.

2.2 Step 2: De�ning the dependent variable

The de�nition identi�es events vs. non-events (0-1 dependent variable). In the credit scoring environment
one will mostly focus on the prediction of default. Note that an event (default) is normally referred to
as a "bad" and a non-event as a "good".

Note that the dependent variable will also be referred to as either the outcome or in traditional credit
scoring the "bad" or default variable. In credit scoring, the default de�nition is used to describe the
dependent (outcome) variable.

In order to get a default de�nition, it is important to de�ne default. Default risk is the uncertainty
regarding a borrower�s ability to service its debts or obligations. It is quanti�ed by measuring the
probability of default (PD). PD re�ects the probabilistic assessment of the likelihood that an obligor or
counterparty will default on its contractual obligation within a certain period of time.

Thus, a de�nition of a dependent variable in a credit scoring problem is two-fold: a delinquency
de�nition and a time period in which to reach that level of delinquency, which is generally known as the
outcome period. The outcome period is thus the period of time over which the loans in the sample is
observed to classify them as good or bad.

12
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Under paragraph 452 in the Basel Accord (Basel Committee on Banking Supervision (2004), default
is de�ned as:

A default is considered to have occurred with regards to a particular obligor when either or
both of the following two events have taken place:

� The bank considers that the obligor is unlikely to pay its credit obligations to the banking group
in full, without recourse by the bank to actions such as realizing security (if held).

� The obligor is past due more than 90 days on any material credit obligation to the banking group.
Overdrafts will be considered as being past due once the customer has breached an advised limit
or has been advised of a limit smaller than the current outstanding.

Paragraph 453 has de�ned unlikely to pay as follows:

� The bank puts the credit obligation on a non-accrued status.

� The bank makes a charge-o¤ or account speci�c provision, resulting from a signi�cant perceived
decline in credit quality subsequent to the bank taking on the exposure.

� The bank sells the credit obligation at a material credit-related economic loss.

� The bank consents to a distressed restructuring of the credit obligation where this is likely to
result in a diminished �nancial obligation, caused by the material forgiveness, or postponement of
principal, interest or fees (where relevant).

� The bank has �led for the obligor�s bankruptcy or a similar order in respect of the obligor�s credit
obligation ot the banking group.

� The obligor has sought or has been placed in bankruptcy or some similar protection where this
would avoid or delay payment of the credit obligation to the banking group.

Business and other restrictions should be considered here. As stated in the previous chapter, the
components for the EL are calculated for a one year time frame. The Basel II de�nition to be more than
90 days delinquent in a year might not be applicable for a certain model. Often, the choice of outcome
de�nition is limited by data constraints. The outcome period window should ideally be long enough to
cover the period of the peak of default for the product in question. Observing performance only over the
�rst 12 months of life, for example, for a product whose default rates do not peak until, say, 3 or 4 years,
may produce a development sample that does not re�ect the bad loans the scorecard is being designed
to identify. Because early defaulters may have characteristics di¤erent from late defaulters, the resulting
scorecard could misinterpret the importance of the characteristics exhibited by the late defaulters, who
make up the largest portion of total defaulted loans. Also, a lot of accounts can cure (move out of default
scenario) after being 90 days delinquent, which might not make this the most appropriate de�nition of
an �event�. Note that if the model was developed on a di¤erent default de�nition and the outputs of the
model will be used for Basel II capital calculations, one will have to calibrate the model to give the Basel
II default de�nition PD equivalent.

The amount of data available will also in�uence the de�nition. If data is an issue in terms of very few
events, a slightly more relaxed delinquency de�nition might render more events and can make the model
development possible.
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A practice which has been common in the credit industry, is to de�ne three classes of risk (good and
bad, as stated above and indeterminate), to design the scorecard using only the extreme two classes.
Indeterminants are loans that perform worse than a good loan but better than a bad loan. For example,
if goods are de�ned as loans that have been at most one cycle delinquent and bads as those that have been
three cycles delinquent, indeterminants would be those that went a maximum of two cycles delinquent.
Developers delete indeterminants from a sample with the hope that eliminating gray loans will produce a
scorecard that can better distinguish between goods and bads. To some, this practice seems curious and
di¢ cult to justify and speculated that the practice arose because �default�is a woolly concept. (Hand &
Henley (1997)). Other developers �nd this practice quite useful. Although these observations are removed
from the modeling, it is again considered in the post development analysis. The use of indeterminants
will mostly be the choice of the developer, dependent on the size of the percentage of the population that
will fall into the particular classi�cation. If the indeterminant part is more than 15% of the population,
it is common practice to rather change the indeterminant de�nition, or not use indeterminants at all.

2.3 Step 3: Data, segmentation and sampling

Few credit situations are absolutely perfect for modeling. Therefore trade-o¤s exist between what would
be ideal and what can be done. There are few data requirements that need to be considered before a
model can be developed:

2.3.1 Historical lending experience

Since development of a scoring system requires the analysis of past decisions, the creditor must have
o¤ered credit in the past. Therefore, no historical data equals no scoring system.

2.3.2 Data retention

Information used to support past decisions must have been retained in a usable form in order to build
a custom model. For example, the credit application and credit bureau report existing when a new
applicant was evaluated would be relevant as a database for model development, but not a more recent
credit report or updated application.

2.3.3 Known outcomes of past decisions

The outcomes of past decisions must be available in a quanti�able form. Account payment histories can
be used to classify outcomes as good or bad loans. The level of detail of historical payment records must
be examined, and data archiving and purging procedures are important. For instance, when creditors
purge charge-o¤accounts from the records, e¤orts must be made to recover information on these accounts.

2.3.4 Age of decision

The decisions must have aged enough to allow appropriate measurement and classi�cation of the outcomes.
For example, accounts approved three months previously are not old enough to be accurately classi�ed,
whereas accounts approved two years ago probably are. The appropriate time will vary with the product
and type of decision. At the other extreme, accounts approved 10 years ago are too old, since the
relationships between their historical credit applications and credit bureau reports and their outcomes
would not likely re�ect current relationships. Model developers will specify a sample time frame in which
decisions must have occurred if they are to be included in the development.
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2.3.5 Sample size

The number of credit decisions made must have been large enough to allow an appropriate sample size.
The least frequent outcome that must be predicted will often determine if a large enough sample can be
obtained. Since bad accounts should be the least frequent outcome, the number of available bad accounts
would be the limiting factor. In fact, sample availability may in�uence the sample time frame - a creditor
with fewer accounts might sample decisions made from two to four years ago, while a larger creditor
might only sample from two to three years ago.

Data selection is the most important step in the development process. This is also typically the step
that will require the most time and e¤ort. Having clean, accurate and appropriate data is extremely
important.

The type of model being developed as well as the position in the life cycle will in�uence the availability
of the data. This will also play a role in segmentation.

At acquisition stage, mostly external data is available and typically these models will not be very
predictive but is still used for the value that it can add. These types of models are mostly used for
direct marketing which is very expensive. The responsiveness to an o¤er is modeled to exclude the
least responsive people in the prospect pool. Note that a �wrong�classi�cation by the model is not so
expensive to the company. It might mean that a responsive prospect wasn�t contacted, which results in
lost opportunity, but credit wasn�t granted to a risky applicant that wouldn�t pay the company back and
thus resulting in a real monetary loss.

When applying for a credit product, an application form is �lled out. This is then typically combined
with data from the credit bureaus as well as information on other products held by the applicant at the
�nancial institution. Application models are more predictive than models at the acquisition stage, but
a more important decision rests on the output of these models. Firstly the decision needs to be made
whether to accept or reject the applicant and then how much credit to grant.

Another problem of particular relevance in credit scoring is that, in general, only those who are
accepted for credit will be followed up to �nd out if they really do turn out to be good or bad risks
according to the default de�nition adopted. This implies that the data available for future models will
be a biased (truncated) sample from the overall population of applicants. The design sample is the set
of applicants that were classi�ed as good risks by an earlier scorecard or a judgmental decision. Those
in the �reject� region were not granted credit and hence were not followed up to determine their true
risk status. This distortion of the distribution of applicants clearly has implications for the accuracy and
general applicability of any new scorecard that is constructed. Attempts to compensate for this distortion
in distribution, model developers use what information there is on the rejected applicants (their value on
the characteristics, but not their true classes) and this is called reject inference. It describes the practice
of attempting to infer the likely true class of the rejected applicants and using this information to yield
a new scorecard superior to the one built on only the accepts. The higher the rejection rate, the more
important the problem and the less e¤ective the compensation.

Instead of obtaining the actual performance on a set of what normally would be rejected loans or
using a surrogate for that performance based on credit accounts, other techniques for dealing with sam-
ple selection bias use statistical methods. Two such methods are the augmentation and extrapolation
methods.

With the augmentation method, only accepted accounts are include in the score development sample
but each is weighted by the inverse of its probability of being accepted. This probability is derived by
building a second logistic regression model that includes both accepted and rejected loans, but instead
of predicting which loans will be good or bad, it predicts whether an applicant will be approved or
rejected. The reciprocal of the probability derived from this regression model is used as the weight
in the credit scoring model. In this way the accepted applicants with a high probability of rejection
(which are presumably are more like those of actual rejects) are given more weight when the application
credit-scoring model is built.
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The extrapolation method actually uses the rejected applicants as part of the development sample
for the credit-scoring model. Typically a preliminary regression is estimated using only the accepted
applicants (for which the outcome is known), the rejects are scored with that model, and the model is
used to derive a good and bad probability for each. Finally, the regression is estimated again, this time
using both accepted and rejected applicants. Rejects are duplicated and then weighted based on their
estimated bad rate. If, for example, a rejected applicant has a 40 percent probability of being bad, it is
included as a bad risk with a weight of 0.4 and as a good risk with a weight of 0.6. The theory is that
this second model that includes rejects and their inferred performance as part of the development sample
should be free of sample selection bias.

Improved results could be produced if information was available in the reject region- if some applicants
who would normally be rejected were accepted. This would be a commercially sensible thing to do if the
loss due to the increased number of delinquent accounts was compensated for by the increased accuracy
in classi�cation. A related practice, increasingly common, is to obtain information on rejected applicants
from other credit suppliers (via the credit bureaus) who did grant them credit.

To reach the account management stage, an account is typically left for three to six months to build
up some sort of behaviour. This behaviour on the account is then used to predict an outcome, usually
over the next twelve months. Normally internal account behaviour data is enough to build a powerful
model, but in some instances external data can also be used. Accounts in this stage, will be scored
frequently through the model (typically monthly) and not just once as in the application stage.

Segmentation divides the population into groups and builds a separate scorecard for each. Three
types of reasons for segmenting scorecards have been identi�ed: (1) strategic, (2) operational, and (3)
statistical.

A lender may want to segment its scorecard strategically to target certain customer segments, such as
borrowers who already have a loan with that lender. It wants a separate scorecard for this group because
it wants to treat them di¤erently.

An operational reason for segmenting would arise where di¤erent data are available for di¤erent
customer segments. For example, di¤erent loan applications may be used for applicants applying for
credit in a bank branch, those phoning into a call center, or those applying through a website. This could
mean that certain predictive characteristics are available for some applicant segments but not for others,
necessitating segmented scorecards. Developing di¤erent models for applicants with information at the
credit bureaus versus those that don�t might also be a useful operational segmentation.

Finally, a statistical reason for segmentation arises when characteristics a¤ect the outcome variable
di¤erently for some subpopulations of the general applicant population than for others. For example,
applicants with other products already at the institution are less risky than applicants new to the or-
ganization, as they already had to pass a credit screening. The behaviour between these two groups is
normally di¤erent, as well as the time period needed for maturity.

One way to handle this is to build a single scorecard for all applicants but incorporate an interactive
e¤ect into the regression model. An interactive e¤ect is present when the e¤ect of a predictor on the
outcome variable varies depending on the e¤ect of a second predictor. This is accounted for in a regression
by creating a combination variable �an �interaction��from the two predictors. To continue with the
example, instead of including delinquency and the number of other products at the �nancial institution
in the regression as predictors, a new (interactive) variable would be created combining delinquency
level with number of products. Adding this variable to the regression model accounts for the fact that
delinquency on a score varies with the total number of products with the institution.
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There may be many other variables in the score whose a¤ects di¤er depending on the total number
of other accounts the applicant has. Rather than incorporating several interactive e¤ects into a single
scorecard, the applicant population might be segmented into those with other products with the �nancial
institution and those that don�t, building separate scorecards for each. Separate scorecards for these
two populations are more straightforward and easier to understand than a single scorecard with several
interactive variables.

Segmentation may or may not lead to a set of scorecards that is more predictive than a single scorecard,
depending on the situation. The �rst consideration in deciding whether or not to segment is where there
is a strategic, operational or statistical need to do so. If there is, the performance of the segment cards
should be compared to that of a single model to see which would be most bene�cial for the business.

The performance of segmented models should be signi�cantly better than a single model before seg-
mentation is adopted because there are drawbacks to using segmented scorecards. First, the incremental
costs of using multiple scorecards can be signi�cant- reviewing 10 sets of monitoring reports on the score-
cards is considerably more time consuming than reviewing a single set. Second, there may not be enough
bad loans within each segment for reliable scorecard validation. Finally, scorecard policies should be set
taking into consideration the characteristics that comprise the score. Drafting and maintaining policies
for 10 di¤erent scores within the same business can be both time consuming and confusing. The gain
from segmentation should be substantial before a developer opts for it.

Once the bad de�nition and the outcome period have been speci�ed, the relevant data collected and
the population segmented, the data set for scorecard development can be created. It is standard practice
to create both a development and a holdout sample. As the names imply, the development sample is
used to build the scorecards while the holdout sample is used to check the accuracy of the completed
scorecard on a set of loans that had no in�uence on generation of the point weights.

Scorecard building is a combination of art and science: The science lies in the statistical methods
at the core of scorecard development. The art lies in the many choices the scorecard developer must
make throughout the model building process. These choices have a major e¤ect on the �nal scorecard.
Uninformed or incorrect decisions can result in an important variable being excluded or an improper
variable being included. Some of the choices that must be mare are how to treat data errors, missing
values, and outliers (extreme values of the characteristics); whether to use continuous or transformed
variables or to make categorical (binned) variables out of continuous variables; and whether to include
variable interactions. Perhaps the most important, the modeler must choose which characteristics to
incorporate in the scorecard.

It is extremely important for the scorecard developer to have a good grasp of the business for which
the scorecard is being built, and a �rm command of the business�s data. Otherwise, he can make mistakes
in working with the data and interpreting the results of test runs.

2.4 Step 4: Fitting of a model and optimization of selected cri-
teria

Several techniques can be used to �t a model. Most scorecards are built by estimating a regression
model. Regression models examine how a particular variable (the outcome variable) is explained by
another variable- or, more typically, by a whole set of other variables. The output from a regression
model is a set of factors called regression coe¢ cients. Each of these can be interpreted as the correlation
between the outcome variable one is trying to predict and the explanatory variable or characteristic,
holding constant all other in�uences on the outcome variable.
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Irrespective of the technique used to �t the model, certain criteria should be set to determine the
goodness-of-�t and predictive ability of the model. These criteria indicate the scorecard�s ability to
perform the tasks it is intended to perform and permit comparisons of di¤erent model speci�cations,
pointing up the strength of the scorecard when it contains one set of characteristics rather than another
set. The most commonly used is the Gini index, calculated from the Lorenz curve. The di¤erent criteria
will be discussed later in greater detail.

2.5 Step 5: Generalization

In order for a credit scoring model to be useful, it must be applicable to the larger population and
not just on the development sample. Care must be taken not to over-�t the model to the development
data. Normally, a holdout sample of the same time period is used when developing the model. After
development, a completely independent sample from a di¤erent period can also be used to test if the
model is predictive. Thus, the intent of the validation sample is to insure that the score is robust across
di¤erent time periods.

2.6 Step 6: Ongoing monitoring

Once the model is developed and implemented, it is important that the model is monitored at regular
intervals. In a developing economy, it is especially important to monitor that the model still predicts and
the population hasn�t changed. If the population has changed, it doesn�t mean that the model doesn�t
predict anymore, it might just require a few changes. Monitoring the model also indicates when the
predictive power of the model is below acceptable levels and when the model should be redeveloped.

 
 
 



Chapter 3

Credit scoring methods

The methods generally used for credit scoring are based on statistical pattern-recognition techniques.
Historically, discriminant analysis and linear regression were the most widely used techniques for building
scorecards. Both have the merits of being conceptually straightforward and widely available in statistical
software packages. Typically the coe¢ cients and the numerical scores of the attributes were combined
to give single contributions which are added to give an overall score. Logistic regression is now probably
the most used technique for credit scoring.

Other techniques which have been used in the industry include probit analysis, nonparametric smooth-
ing methods, mathematical programming, Markov Chain Models, recursive partitioning, expert systems,
genetic algorithms, neural networks and conditional independent models. If only a few characteristics
are involved, with a su¢ ciently small number of attributes, an explicit classi�cation table can be drawn
up, showing classi�cation to be given to each combination of attributes. In this chapter, a short review
of some of the techniques/methods mentioned here will be given.

The concept of incurred cost associated with the probabilities of repayment of loans will be used to
illustrate some of the methods. For simplicity, assume that the population of loans consist of two groups
or classes G and B that denote loans that (after being granted) will turn out to be good or bad in the
future, respectively. Good loans are repaid in full and on time. Bad loans are subject to the default
de�nition chosen as explained in chapter 2.

Usually the class/group sizes are very di¤erent, so that for the probability that a randomly chosen
customer belongs to group G, denoted as pG, one has pG > pB . Let x be a vector of independent variables
(also called the measurement vector) used in the process of deciding whether an applicant belongs to group
G or B. Let the probability that an applicant with measurement vector x belongs to group G be p(Gjx),
and that of B be p(Bjx). Let the probability p(xjG) indicate that a good applicant has measurement
vector x. Similarly, for bad applicants the probability is p(xjB). The task is to estimate probabilities
p(:jx) from the set of given data about applicants which turn out to be good or bad and to �nd a rule
for how to partition the space X of all measurement vectors into the two groups AG and AB based on
these probabilities, so that in AG would be the measurement vectors of applicants who turned out to be
good and vice versa.
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It is usually not possible to �nd perfect classi�cation as it may happen that the same vector is given
by two applicants where one is good and the other is bad. Therefore it is necessary to �nd a rule that
will minimize the cost of the bank providing credit connected with the misclassi�cation of applicants. Let
cG denote the costs connected with misclassifying a good applicant as bad and cB the costs connected
with classifying a bad applicant as good. Usually cB > cG, because costs incurred due to misclassifying
a bad customer are �nancially more damaging than cost associated with the former kind of error. If
applicants with x are assigned to class G, the expected costs are cBp(Bjx) and the expected loss for
the whole sample is cB

P
x�AG

p(Bjx)p(x) + cG
P

x�AB
p(Gjx)p(x), where p(x) is a probability that the

measurement vector is equal to x. This is minimized when, into group G, such applicants are assigned
who have their group of measurement vectors

AG = fxjcBp(Bjx) <= cGp(GjX)g
which is equivalent to

AG = fxjp(Gjx) >=
cB

cG + cB
g:

Without loss of generality, the misclassi�cation costs can be normalized to cG + cB = 1. In this case,
the rule for classi�cation is to assign an applicant with x to class G of p(Gjx) > cB and otherwise to
class B.

An important task is to specify the cost of lending errors and to accurately as possible specify the
optimal cuto¤-score for credit scoring, as banks have to choose the optimal trade-o¤ between pro�tability
and risk. Credit policies that are too restrictive may ensure minimal costs in terms of defaulted loans,
but the opportunity costs of rejected loans may exceed potential bad debt costs and thus pro�t is not
maxmized. Conversely, policies that are too liberal may result in high losses from bad debt.

3.1 Linear discriminant analysis

The aim of Linear Discriminant Analysis (LDA) is to classify a heterogeneous population into homogenous
subsets and further the decision process on these subjects. One can assume that for each applicant there
are a speci�c number of explanatory variables available. The idea is to look for such a linear combination
of explanatory variables, which separates most subsets from each other. In a simple case of two subsets,
the goal is to �nd the linear combination of explanatory variables, which leaves the maximum distance
between means of the two subsets.

In a general case, consider the distributions p(xjG) and p(xjB) which are multivariate normal distri-
butions with common variance. Then the above equation reduces to

AG = xj
X

wixi> c

as follows from econometrics theory. Here xi are explanatory variables and wi are associated coe¢ cients
(weights) in the linear combination of explanatory variables. If one takes s(x) =

P
wixi then it is possible

to discriminate according to this "score" and thus to reduce the problem to only one dimension.

The need for multivariate normality is a common misconception. If the variables follow a multivariate
ellipsoidal distribution (of which the normal distribution is a special case), then the linear discriminant
rule is optimal (ignoring sampling variation). However, if discriminant analysis is regarded as yielding
that linear combination of the variables which maximizes a particular separation criterion, then clearly
it is widely applicable. The normality assumption only becomes important if signi�cance tests are to be
undertaken.

The advantages of the LDA method are that it is simple, it can be very easily estimated and it actually
works very well. The disadvantage is that LDA requires normally distributed data, but the credit data
are often non-normal (and categorized).
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3.2 Linear regression

Ordinary linear regression has also been used for the two-class problem in credit scoring. Since regression
using dummy variables for the class labels yields a linear combination of the predicting characteristics
which is parallel to the discriminant function, one might also expect this method to perform reasonably.
Linear regression is brie�y discussed in the next chapter, and it will be explained why logistic regression
is a better method to employ.

3.3 k-Nearest Neighbour Classi�cation

The k-nearest neighbour classi�er serves as an example of a non-parametric statistical approach. This
technique assessess the similarities between the pattern identi�ed in the training set and the input pattern.
One chooses a metric on the space of applicants and takes the k-nearest neighbour (k-NN) of the input
pattern that is nearest in some metric sense. A new applicant will be classi�ed in the class to which the
majority of the neighbours belong (in the case when the cost of misclassi�cation is equal) or according to
the rule expressed by the above equation This means that this method estimates the p(Gjx) or p(Bjx)
probability by the proportion of G or B class points among the k-nearest neighbours to the point x to
be classi�ed.

When performing the k-NN methodology, a very important step is the choice of metric used. A
commonly used metric is the standard Euclidean norm given by

�1(x;y) = [(x� y)0(x� y)]
1=2

where x and y are measurement vectors.

However, when the variables are in di¤erent units or categorized, it is necessary to use some appropriate
standardization of variables as well as to select some data-dependent version of the Euclidean metric such
as:

�2(x;y) = [(x� y)0A(x� y)]
1=2

where A is a n � n matrix with n number of variables. As matrix A can depend on x, two types of
metrics can be de�ned according to how A is selected: local metrics are those where A depends on x;
global metrics are those where A is independent of x.

The choice of the number of nearest neighbours to be chosen (k) determines the bias/variance trade-
o¤ in the estimator. The k has to be smaller than the smallest class. In problems where there are two
unbalanced classes, the fact that k is �nite (and thus asymptotic properties do not hold) results in a
non-monotonic relationship between the k and the proportion of each class correctly classi�ed. That
means, in general, that a larger k may not yield better performance than a smaller k. For example, if the
number of points from the smallest class is less than (1� cB)�1, the best classi�cation rule for predicting
class G membership is to use k = 1.

There is a lack of a formal framework for choosing the k and the method can only make discrete
predictions by reporting the relative frequencies which have no probabilistic interpretation. These dif-
�culties can possibly be overcome by using a Bayesian approach, which integrates over the choice of k.
Such approach leads to the conclusion that marginal predictions are given as proper probabilities.
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An advantage of this method is that the non-parametric nature of this method enables modeling of
irregularities in the risk function over the feature space. The k-NN method has been found to perform
better than other non-parametric methods such as kernel methods when the data are multidimensional.
It is a fairly intuitive procedure and as such it could be easily explained to business managers who would
need to approve its implementation. It can also be used dynamically by adding applicants when their
class becomes known and deleting old applicants to overcome problems with changes in the population
over time. Despite this, nearest neighbour models have not been widely adopted in the credit scoring
industry. One reason for this is the perceived computational demand: not only must the design set be
stored, but also the nearest few cases among maybe 100; 000 design set elements must be found to classify
each applicant.

3.4 Classi�cation and Regression Trees (CART)

Classi�cation and regression trees (CART) (Lewis (2000)) method is a non-parametric method. It is a
�exible and potent technique; however, it is used in credit scoring practice chie�y only as a supporting tool
to accompany parametric estimation methods. It serves, for example, in the process to select character-
istics with the highest explanatory power. The CART method employs binary trees and classi�es a data
set into a �nute number of classes. It was originally developed as an instrument for dealing with binary
responses and as such it is suitable for use in credit scoring where the default and non-default responses
are contained in the data. In most general terms, the purpose of analysis using tree-building methods is
to determine a set of if-then logical split conditions that permit accurate prediction or classi�cation of
cases.

CART analysis is a form of binary recursive partitioning. The term "binary" implies that each group
of observations, represented by a node in a decision tree, can be only split into two groups. Thus, each
node can be split into two child nodes, in which case the original node is called the parent node. The term
"recursive" refers to the fact that the binary partitioning process can be applied over and over again.
Thus, each parent node can give rise to two child nodes and, in turn, each of these child nodes themselves
can be split, forming additional children. The term "partitioning" refers to the fact that the dataset is
split into sections or partitioned.

Similarly as with the methodologies reviewed earlier, one makes the assumption of having a training
set of measurement vectors xT = fxig along with information whether an individual j defaulted or not
(yj is coded 1 or 0 respectively). The CART tree consists of several layers of nodes: the �rst layer consists
of a root node; the last layer consists of leaf nodes. Because it is a binary tree, each node (except the
leaves) is connected to two nodes in the next layer. The root node contains the entire training set; the
other nodes contain subsets of this set. At each node, the subset is divided into 2 disjoint groups based on
one speci�c characteristic xi from the measurement vector. If xi is ordinal, the split results from the fact,
related to a particular individual, as to whether xi > c , for some constant c. If the previous statement is
true, an individual j is classi�ed into the right node; if not, an individual is classi�ed into the left node.
A similar rule applies, if xi is a categorized variable.

The characteristic xi is chosen among all possible characteristics and the constant c is chosen so that
the resulting sub-samples are as homogenous in y as possible. In other words: xi and c are chosen to
minimize the diversity of resulting sub-samples. The classi�cation process is a recursive procedure that
starts at the root node and at each further node (with exception of the leaves) one single characteristic
and a splitting rule (or constant c) are selected. First, the best split is found for each characteristic.
Then, among these characteristics the one with the best split is chosen.
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The result of this procedure is that sub-samples are more homogenous than the parent sample. The
procedure ends when the node contains only individuals with the same yj or it is not possible to decrease
diversity further. For illustration purposes, let p(:jt) be the proportion of G and B groups present at
node t. The Gini index function can be used as an example of the diversity functions, which is de�ned as
d(t) = p(Gjt)p(Bjt). The value of constant c that is instrumental to splitting between nodes (i.e. nodes
to which the node t is parental). Formally, the aim is to choose c minimizes pLd(tL) + pRd(tR), where
pL and pR are the proportions of individuals going into nodes tL and tR respectively. The complete tree
is usually very large but algorithms exist for pruning it into a simpler, �nal tree. The most common
and e¢ cient pruning methods are based on the fact that if one tries to select a sub-tree of the maximal
tree that minimizes the misclassi�cation costs, a large number of trees yield approximately the same
estimated misclassi�cation costs. Therefore it is reasonable to stop the search for the best pruned tree
once a sub-tree with similar misclassi�cation costs to the maximal tree is found. Non-linearities and
characteristics can be included in what is super�cially a linear model.

The advantages of the CART method in credit scoring are that it is very intuitive, easy to explain to
management and it is able to deal with missing observations. The interpretation of results (in most cases)
summarized in a tree is very simple. This simplicity is useful not only for purposes of rapid classi�cation
of new observations, but can also often yield a much simpler "model" for explaining why observations
are classi�ed in a particular manner. As the �nal results of using tree methods for classi�cation can be
summarized in a series of logical if-then conditions, there is no implicit assumption that the underlying
relationships between the predictor variables and the dependent variable are linear, follow some speci�c
non-linear function or that they are even monotonic in nature. CART can handle numerical data that
are highly skewed or multi-modal, as well as catergorical predictors with either ordinal or non-ordinal
structures. Tree methods are particularly well suited for data mining tasks, where there are often little
prior knowledge or any coherent set of theories or predictions regarding which variables are related and
how. Tree methods can often reveal simple relationships between just a few variables that could have
easily gone unnoticed using other analytic techniques.

The major disadvantage is the computational burden in case of large datasets since at each node
every characteristic has to be examined. Very often the resulting tree is quite large so that the process of
model-learning becomes too time consuming. Some emperical studies also note that often the trees are
not stable since small changes in a training set may considerably alter the structure of the whole tree. A
signi�cant problem is also the fact that CART optimizes only locally on a single variable at a time and
thus may not minimize the overall costs of misclassi�cation.

3.5 CHAID Analysis

CHAID (Hoare (2004)), in one or other of its many forms, is a great way to sift certain kinds of data to
�nd out where interesting relationships are buried, especially when the relationships are more complex
than the linear or at least monotonic ones usually sought.

The acronym CHAID stands for Chi-squared Automated Interaction Detector. Although it can be
used for regression problems, it is mostly used to build classi�cation trees. The Chi- squared part of the
name arises because the technique essentially involves automatically constructing many cross-tabulations
and working out statistical signi�cance in the proportions. The most signi�cant relationships are used to
control the structure of a tree diagram.

Because the goal of classi�cation trees is to predict or explain responses on a categorical dependent
variable, the technique has much in common with the techniques used in the more traditional methods
such as discriminant analysis. The �exibility of classi�cation trees makes them a very attractive analysis
option, but it is not to say that their use is recommended to the exclusion of more traditional methods.
When the typically more stringent theoretical and distributional assumptions of more traditional methods
are met, the traditional methods may be preferable. As an exploratory technique, or as a technique of
last resort when traditional methods fail, classi�cation trees are, in the opinion of many, unsurpassed.
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CHAID will "build" non-binary trees (i.e. trees where more than two branches can attach to a single
root or node), based on a relatively simple algorithm that is particularly well suited for the analysis of
larger datasets. Both CHAID and CART techniques construct trees, where each (non-terminal) node
identi�es a split condition, to yield optimum prediction or classi�cation.

The basic algorithm used to contruct the tree relies on the Chi-square test to determine the best next
split at each step. Speci�cally, the algorithm proceeds as follows:

3.5.1 Preparing predictors

The �rst step is to create categorical predictors out of any continuous predictors by dividing the respective
continuous distribution into a number of categories with an approximately equal number of observations.
For categorical predictors, the categories (classes) are "naturally" de�ned.

3.5.2 Merging categories

The next step is to cycle through the predictors to determine for each predictor the pair of (predictor)
categories that is least signi�cantly di¤erent with respect to the dependent variable by calculating a
Pearson chi-square. If the test for a given pair of predictor categories is not statistically signi�cant as
de�ned by an alpha-to-merge value, then it will merge the respective predictor categories and repeat
this step (i.e. �nd the next pair of categories, which may now include previously merged categories).
If the statistical signi�cance for the respective pair of predictor categories is signi�cant (less than the
respective alpha-to-merge value), then (optionally) it will compute a Bonferroni adjusted p-value for the
set of categories for the respective predictor.

3.5.3 Selecting the split variable

The next step is to choose the split predictor variable with the smallest adjusted p-value, i.e. the
predictor variable that will yield the most signi�cant split. If the smallest Bonferroni adjusted p-value
for any predictor is greated than the alpha-to-split value, no further splits will be performend and the
respective node is a terminal node.

Continue this process until no further splits can be performed given the alpha-to-merge and alpha-to-
split values.

3.5.4 Exhaustive CHAID algorithms

A modi�cation to the basic CHAID algorithm, called Exhaustive CHAID, performs a more thorough
merging and testing of predictor variables, and hence requires more computing time. Speci�cally, the
merging of categories continues (without reference to any alpha-to-merge value) until only two categories
remain for each predictor. The algorithm then proceeds as explained above and selects among the
predictors the one that yields the most signi�cant split.

The advantages of the CHAID method is that it is simple to use and easy to explain. A general issue
that arises is that the �nal trees can become very large. When the input data are complex and contain
many di¤erent categories for classi�cation and many possible predictors for performing the classi�cation,
the resulting trees can become very large and presenting the trees in an easily accessible method becomes
a problem. Another major critism of CHAID is that it supresses the real underlying structure of the
data. Variables entered at an early stage may become insigni�cant, but no test is done to remove variables
already in the tree.
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3.6 Neural networks

A neural network (NNW) is a mathematical representation inspired by the human brain and its ability to
adapt on the basis of the in�ow of new information. Mathematically, NNW is a non-linear optimization
tool.

The NNW design called multilayer perceptron (MLP) is especially suitable for classi�cation. The
network consists of one input layer, one or more hidden layers and one output layer, each consisting of
several neurons. Each neuron processes its inputs and generates one output value that is transmitted
to the neurons in the subsequent layer. Each neuron in the input layer (indexed i = 1; 2; :::; n) delivers
the value of one predictor (or the characteristics) from vector x. When considering default/non-default
discrimination, one output neuron is satisfactory.

In each layer, the signal propagation is accomplished as follows. First, a weighted sum of inputs is
calculated at each neuron: the output value of each neuron in the proceeding network layer times the
respective weight of the connection with that neuron. A transfer function g(x) is then applied to this
weighted sum to determine the neuron�s output value. So, each neuron in the hidden layer (indexed
j = 1; :::; g) produces the so-called activation

aj = g(
X
i

wijxi):

The neurons in the output layer (indexed k = 1; :::;m) behave in a manner similar to the neurons of
the hidden layer to produce the output of the network:

yk = f(
X
j

wjkaj) = f(
X
j

wjkg(
X
i

wijxi))

where wij and wjk are weights.

The Sigmoid (or logistic) function f(x) = 1
1+ex or hyperbolic tangent function f(x) =

ex�e�x
ex+e�x is

usually employed in the above network output for functions f and g. The logistic function is appropriate
in the output layer if one has a binary classi�cation problem, as in credit scoring, so that the output can
be considered as default probability. According to the theory, the NNW structure with a single hidden
layer is able to approximate any continuous bounded integrable function arbitrarily accurately.

There are two stages of optimization. First, weights have to be initialized, and second, a nonlinear
optimization scheme is implemented. In the �rst stage, the weights are usually initialized with a small
random number. The second stage is called the learning or training of the NNW. The most popular
algorithm for training multilayer perceptrons is the back-propagation algorithm. As the name suggests,
the error computed from the output layer is back-propagated through the network, and the weights are
modi�ed according to their contribution to the error function. Essentially, back-propagation performs a
local gradient search, and hence its implementation; although not computationally demanding, it does
not guarantee reaching a global minimum. For each individual, weights are modi�ed in such a way that
the error computed from the output layer is minimized.

NNWs were described in the 1960s but their �rst use in the credit-scoring-related literature appears
only at the beginning of the 1990s. Research suggested that logistic regression is a good alternative to
neural models.
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The major drawback of NNWs is their lack of explanation capability. While they can achieve a high
prediction accuracy rate, the reasoning behind why and how the decision was reached is not available.
For example, in a case of a denied loan it is not possible to determine which characteristic(s) was exactly
the key one(s) to prompt rejection of the application.
The National Credit Act of 2005 states in article 62 the following:
�62. (1) On request from a consumer, a credit provider must advise that consumer in writing of the

dominant reason for �
(a) refusing to enter into a credit agreement with that consumer;
(b) o¤ering that consumer a lower credit limit under a credit facility than applied for by the

consumer, or reducing the credit limit under an existing credit facility;
(c) refusing a request from the consumer to increase a credit limit under an existing credit facility;

or
(d) refusing to renew an expiring credit card or similar renewable credit facility with that con-

sumer�

Consequently, it is almost impossible to use a neural network for a credit scoring model for application
decisioning and limit management and still comply with the National Credit Act.

3.7 Which method is best?

In general there is no overall "best" method. What is the best will depend on the details of the problem,
the data structure, the characteristics used, the extent to which it is possible to separate the classes
by using those characteristics and the objective of the classi�cation (overall misclassi�cation rate, cost-
weighted misclassi�cation rate, bad risk rate among those accepted, some measure of pro�tability, etc.)
The various methods are often very comparable in results. This fact can be partly explained by the
mathematical relationships between these models: for example, the NNW can be seen as a generalization
of the logit method. Often, there is no superior method for diverse data sets.

If the classes are not well separated, then p(Gjx) is a rather �at function, so that the decision surface
separating the classes will not be accurately estimated. In such circumstances, highly �exible methods
such as neural networks and nearest neighbour methods are vulnerable to over-�tting the design data and
considerable smoothing must be used (e.g. a very large value for k, the number of nearest neighbours).

Classi�cation accuracy, however measured, is only one aspect of performance. Others include the
speed of classi�cation, the speed with which a scorecard can be revised and the ease of understanding of
the classi�cation method and why it has reached its conclusion. As far as the speed of classi�cation goes,
an instant decision is much more appealing to a potential borrower than is having to wait for several days.
Instant o¤ers can substantially reduce the attrition rate. Robustness to population drift is attractive-
and, when it failes, an ability to revise a scorecard rapidly (and cheaply) is important.

Classi�cation methods which are easy to understand (such as regression, nearest neighbours and tree-
based methods) are much more appealing, both to users and to clients, than are methods which are
essentially black boxes (as neural networks). They also permit more ready explanations of the sorts of
reasons why the methods have reached their decisions.
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Neural networks are well suited to situations where there is a poor understanding of the data structure.
In fact, neural networks can be regarded as systems which combine automatic feature extraction with the
classi�cation process, i.e. they decide how to combine and transform the raw characteristics in the data,
as well as yielding estimates of the parameters of the decision surface. This means that such methods
can be used immediately, without a deep grasp of the problem. In general, however, if one has a good
understanding of the data and the problem, then methods which makes use of this understanding might be
expected to perform better. In credit scoring, where people have been constructing scorecards on similar
data for several decades, there is a solid understanding. This might go some way towards explaining why
neural networks have not been adopted as regular production systems in this sector, despite the fact that
banks have been experimenting with them for several years.

Because there is such a good understanding of the problem domain, it is very unlikely that new clas-
si�cation methodologies will lead to other than a tiny improvement in classi�cation accuracy. Signi�cant
improvements are more likely to come from including new, more predictive characteristics.

The logit method is the most favoured method in practice, mainly due to (almost) no assumptions
imposed on variables, with the exception of missing values and multicollinearity among variables. Con-
trary to this, non-parametric methods can deal with missing values and multicollinearity (or correlations)
among variables, but often are computationally demanding. The rules that are constructed on the basis of
some of these methods can be hard to explain to a business manager as well as a clients however. Logistic
regression produce models that are easy to explain and implement and ha s been widely accepted in the
banking industry as the method of choice. The focus of the rest of the study will therefore be logistic
regression�s application in credit scoring.

 
 
 



Chapter 4

Linear regression and its
assumptions

Linear regression is a statistical technique that can be used to analyze the relationship between a single
dependant variable and one or more independent (predictor) variables. This chapter provides an overview
of the basics of linear regression and in the next chapter it will be shown why it is not applicable for a
binary outcome variable, and thus for credit scoring.

4.1 Simple linear regression

Let there be a data sample, of which one wants to predict the value of one of the variables (the dependent
variable). If no independent variables were taken into account, there are several descriptive measures
that one can use to predict the value of the dependent variable, such as the average, median or mode.
The only question is then to determine how accurate each of these measures is in predicting. The sum
of squares of errors (SSE) can be used as an indication of the accuracy. The objective is to obtain the
smallest SSE, because this would mean that the predictions are most accurate.

For a single set of observations, the mean will produce the smallest sum of squared errors than any
other measure of centrality, e.g. the median, mode or any other more sophisticated statistical measure.
Thus, prediction using the mean is used as a baseline for comparison as it represents the best prediction
without using independent variables.

Example 1 Use an example of the number of credit cards a family holds:

Observation Number of credit cards
1 3
2 6
3 6
4 5
5 8
6 7
7 9
8 10
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Using these 8 observations, the mean, the median and the mode is calculated:

Mean 6:75
Median 6:50
Mode 6:00

Now, calculate the squared prediction errors, using each of these measures:

Observation Num of CC Mean (err)2 Median (err)2 Mode (err)2

1 3 14:0625 12:25 9
2 6 0:5625 0:25 0
3 6 0:5925 0:25 0
4 5 3:0625 2:25 1
5 8 1:5625 2:25 4
6 7 0:0625 0:25 1
7 9 5:0625 6:25 9
8 10 10:5623 12:25 16

SUM 35:5 36 40

The mean has the lowest prediction error of these three measures.

In simple linear regression, the aim is to predict the dependent variable, using a single independent
variable.

Without taking into account the independent variable, one can predict with the highest level of
accuracy that:

by = y:
By using other information, one could try and improve the predictions by reducing the prediction

errors, i.e. the sum of squared errors. To do so, a variable is needed that can be associated with (is
correlated to) the independent variable. Note that the conditional mean will now be estimated, given
the correlated variable. The correlation coe¢ cient is therefore fundamental to regression analysis and
describes the relationship between two variables.

Two variables are said to be correlated if changes in the one variable are associated with changes in
the other variable. In this way, as one variable changes, one would know how the other variable changes.
It is also often found that the prediction can be improved by adding a constant value.

Example 2 Following the previous example, a predictor variable, family size is now available. Now:
Predicted number of credit cards = (Change in the number of credit cards held associated with family

size)�family size.

by = b1x1
If a constant value is added in this example, the constant will represent the number of credit cards

held by a family, irrespective of its size. The equation now becomes:

by = b0 + b1x1:
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The regression equation as above, can also be expressed in terms of the conditional mean. The key
quantity in any regression problem is the mean value of the outcome variable, given the value of the
independent variable. Therefore, the above equation can also be expressed in terms of the conditional
mean of y, given x:

E(yjx) = �0 + �1x1
where b0 and b1 are estimates of �0 and �1.

If the constant term (intercept) does not help to make a better prediction, the constant term will be
removed.

The terms �0 and �1 are called the regression coe¢ cients. Their values are found by minimizing the
SSE:

SSE =
nX
i=1

(yi � �0 � �1xi)2

This gives the following results for b�0 and b�1:
b�0 = y � b�1x

and

b�1 = P
xiyi �

P
xi
P
yi=nP

x2i � (
P
xi)2=n

:

This can also be written as:

b�1 = P
(xi � x)(yi � y)P
(xi � x)2

:

Example 3 Returning to the earlier example around credit cards, assume that family size is available as
a predictor (independent variable).

Observation Number of credit cards Family size
1 3 2
2 6 3
3 6 4
4 5 4
5 8 5
6 7 5
7 9 6
8 10 6

Now, solving �0 and �1 with the equations derived above, the following is obtained:
Number of credit cards=0.2072+1.4955�Family size
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This equation results in the following prediction error (SSE):
Obs Number of credit cards Family size Prediction Squared error
1 3 2 3:1982 0:0392832
2 6 3 4:6937 1:70641969
3 6 4 6:1892 0:03579664
4 5 4 6:1892 1:41419664
5 8 5 7:6847 0:09941409
6 7 5 7:6847 0:46881409
7 9 6 9:1802 0:03247204
8 10 6 9:1802 0:67207204

Summing over the squared prediction errors for all the observations gives:

SSE = 4:46846847

The same criterion was used as in the earlier example, minimizing the squared prediction error. It
is clear that knowledge of family size improved the predicted number of credit cards held, compared to
when only the arithmetic mean was used. The SSE has decreased from 35.5 to 4.5, indicating that the
regression is better than just the average.
When interpreting the regression equation, it is clear that for each additional family member, the

number of credit cards held increases by 1.5.

4.2 Assumptions of linear regression

The validity of the results in the previous section is dependent on whether the assumptions of regression
analysis have been met. The question one asks is whether the error in prediction is a result of an actual
absence of a relationship among the variables or are they caused by some characteristics of the data not
accommodated by the regression model. The most used measure of prediction error is the residual, which
is the di¤erence between observed and predicted value.

The �rst and foremost assumption is that of correct functional form- is there a linear relationship
between the independent variable(s) and the dependent variable? If the functional form is incorrect, the
residual plots constructed by using the model will often display a pattern. This pattern can then give an
indication of what a more appropriate model would be.

The concept of correlation is based on a linear relationship, making it a critical issue in regression
analysis. Say there is dependent variable y and an independent variable x and a positive linear relationship
exists between them. Suppose that, instead of using a simple linear regression model, the mean is used
as the predictor.
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This can be shown by the following graph:
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Estimation using mean

This situation will lead to the following residual plot:
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Residual using mean

This clearly indicates that using the mean will not account for the linear relationship between the
dependent and independent variables.
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Residual plots can also be indicative of a nonlinear relationship that is not represented by the �tted
linear model, for example:
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Any consistent non-linear pattern in the residuals indicates that corrective action will increase both
the predictive accuracy of the model and the validity of the estimated coe¢ cients.

Note that in multivariate regression with more than one independent variable, the residual plot shows
the combined e¤ects of all the independent variables. To examine a single predictor variable, partial
regression plots are constructed, which show the relationship of a single independent variable to the
dependent variable.

The scatter plot of points depicts the partial correlation between the two variables, with the e¤ects
of the other independent variables held constant. This is particularly helpful in assessing the form of
a relationship (linear vs. nonlinear). Curvilinear patterns of the residuals are looked for, indicating a
nonlinear relationship between a speci�c independent variable and the dependent variable. This is the
most useful method when several independent variables are used as one can tell which speci�c variables
violates the assumption of linearity and apply corrective measures to them. Also, the outliers and/or
in�uential values can also be identi�ed, one independent variable at a time.

In addition to the above assumption of the correct functional form, the validity of the inference around
the regression (con�dence intervals, prediction intervals, hypothesis tests etc.) are dependent on a further
3 assumptions, called the inference assumptions.

The inference assumptions of a regression model:

1. Constant variance of the error terms

2. Independence of the error terms

3. Normality of the error term distribution

4.2.1 Constant variance of the error terms

For any value of the independent variable, the corresponding population of potential values of the de-
pendent variable has a variance �2 which is not dependent on the value of the independent variable.
Equivalently, the di¤erent populations of possible error terms corresponding to the di¤erent values of the
independent variable have equal variances.
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The presence of unequal variances (heteroscedasticity) is one of the most common assumption viola-
tions. Residual plots are used to assess the validity of the constant variance assumption. Residuals are
plotted against the predicted values and clear patterns are looked for.

The null plot is preferable, as it indicates that the assumption of constant variance is met. There
seems to be no pattern in the plot- the residuals are distributed randomly across the predicted values.
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Null plot

Perhaps the most common shape is the triangle-shape, either fanning out or funneling in.
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Residuals fanning out

This graph clearly indicates that the error variance increases with increasing values of the criterion.
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Residuals funneling in

This graph also shows non-constant variance of the error term as the error variance decreases with
increasing values of the predicted value.

If heteroscedasticity is present remedies are available. Once the independent variable(s) that causes
the heteroscedasticity is identi�ed, the easiest and most direct corrective measure is to apply a variance-
stabilizing transformation that allows the transformed variable(s) to be used directly in the regression
model.

Many times, more than one violation can occur at the same time, such as non-linearity and het-
eroscedasticity.
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Non-linear and heteroscedasticity

Remedies for one of the violations often correct problems in other areas as well.

4.2.2 Independence of error terms

Any one value of the dependent variable is statistically independent of any other value of the dependent
variable. Equivalently, any one value of the error term is statistically independent of any other value of
the error term.
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In regression, the assumption is that the predicted values are independent, in other words not related
to any other prediction and not sequenced by any variable. This assumption is therefore most likely
violated when the data being used in a regression problem is time series data (data collected in a time
sequence).

One of the ways to identify if this assumption is violated is to plot the residuals against any possible
sequencing variable (for example, time). If the assumption is not violated, the pattern should appear
random and similar to the null plot of residuals. Violations will be identi�ed by consistent patterns in
the residuals.

If the data has been collected in a time sequence, the time-ordered error terms might be autocorrelated.
If a positive (negative) error term in time period t is followed by another positive (negative) error term
in time t + k, the error terms have positive autocorrelation. The residuals will have a cyclical pattern
over time.
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Positive autocorrelation

Negative autocorrelation exists when positive error terms tend to be followed by negative error terms
and negative error terms tend to be followed by positive error terms. The residuals will have an alternating
pattern over time.
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Negative autocorrelation

One type of positive or negative autocorrelation in the error term is called �rst-order autocorrelation,
which says that the error term in time period t is related to the error term in time period t � 1. The
Durban-Watson test can be used to test for �rst-order positive or negative autocorrelation.
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4.2.3 Normality of the error term distribution

For any value of the independent variable, the corresponding population of potential values of the de-
pendent variable has a normal distribution. Equivalently, for any value of the independent variable, the
corresponding population of potential error terms has a normal distribution.

Important to note before checking this assumption, is that violations of the other two inference
assumptions as well as an incorrect functional form, can often cause that the error term distribution to
not be normal. It is therefore usually a good idea to use residual plots to check for incorrect functional
form, non-constant error variance, and positive or negative autocorrelation before attempting to validate
the normality assumption.

Several methods can be employed to validate the normality assumption. One can construct a bar
chart or histogram of the residuals. If the assumption holds, the histogram of the residuals should
look relatively bell-shaped and symmetric around zero. Note that one is looking for pronounced, rather
than subtle deviations from the normality assumption, as small deviations do not hinder the statistical
inferences. If one wishes to perform a formal test for normality, the chi-square goodness-of-�t test as well
as the Kolmogorov-Smirnov test can be used.

Another method is to use standardized residuals, which is calculated by dividing the residuals by
the standard error. One of the properties of the normal distribution is that 68.26% of the values in a
normal distribution are within 1 standard deviation from the mean and 95.44% of the values in a normal
distribution are within 2 standard deviations from the mean. Now, if the constant variance assumption
holds (and remember the mean for the error terms is zero) one can say the normality assumption is met if
about 68% of the standardized residuals lie between -1 and 1 and about 95% of the standardized residuals
lie between -2 and 2.

Another graphical technique is to construct a normal plot. The method requires the residuals to be
arranged from smallest to largest. Let e(i) be the i-th residual in the ordered list. Plot e(i) on the vertical
axis against the point z(i) on the horizontal axis. Here z(i) is the point on the standard normal curve so

that the area under this curve to the left of z(i) is
(3i�1)
(3n+1) . If the normality assumption holds, this plot

should have a straight line appearance.

If any of the assumptions are seriously violated, remedies should be employed. These remedies are
beyond the scope of this study.

 
 
 



Chapter 5

Simple logistic regression

The goal of an analysis using logistic regression is the same as that of any model-building technique used in
statistics - to �nd the best �tting and most parsimonious, yet reasonable model to describe a relationship
between a dependent and one or more independent variables. The primary di¤erence between normal
regression and logistic regression is the use of a binary or dichotomous dependent variable. This type
of variable is called a Bernoulli variable. The use of normal linear regression for this type of dependent
variable would violate several of the assumptions.

An extreme case is the following described. Note that each dot on the graph represents a data point.
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Binary outcome variable

If the dependent variable can only be a zero or a 1, the mean of the distribution of the dependent
variable is equal to the proportion of 1�s in the distribution. This is also the probability of having outcome
of 1. The mean of a binary distribution is denoted as p, which is the proportion of ones. The proportion
of zeros is then (1� p), which is also denoted as q. The variance of such distribution is pq.
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Fitting the least squares line to this data gives the following:
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It is quite clear from this illustration that the fundamental assumption of linear regression (i.e. correct
functional form) is already violated. The following are also reasons why linear regression cannot be used:

� If one uses linear regression, the predicted values will become greater than one or less than zero, if
moved far enough on the x-axis. These values are theoretically inadmissable.

� Another assumption that is violated is that of constant variance of the dependent variable across
the independent variables. If the dependent variable is binary, the variance is pq. Now, if 50% of
the observed sample has 1 as dependent variable, the variance is at its maximum of pq = 0:25. As
one moves to the extremes, the variance decreases. If p = 0:1, the variance is 0:1� 0:9 = 0:09 so as
p approaches 0 or 1, the variance approaches zero.

� The signi�cance tests of the parameters rest upon the assumption that the errors of the prediction
(residuals) are normally distributed. As the dependent variable takes the values of 1 and 0 only,
this assumption is very hard to justify, even just approximately.

Example 4 Using the credit card concept again, let the dependent variable be a 1 if the family defaults on
its credit card (event occurred) and 0 if the family does not default on its credit card. As an independent
variable, family size is used again.
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Plotting this on a graph gives the following (where the size of the circle is an indication of the number
of observations per family size). Note now that, since there is more than one observation per family size,
the dependent variable is now a binomial variable.
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Family size and default

As discussed earlier, �tting a simple linear regression line using least squares will violate several of
the assumptions of linear regression. Yet, looking at the above graph, there seems to be a relationship
between the family size and whether the client defaults or not. As the family size increases, it appears
that the proportion of clients that default on their credit cards increases.

In linear regression it is assumed that the conditional mean of the dependent variable (y), given the
independent variable (x) can be expressed as an equation linear in x.

E(yjx) = �0 + �1x:

This expression implies that it is possible for E(yjx) to take any value as x ranges between �1 and
1. With a binary dependent variable, this conditional mean must be greater or equal to 0 and less than
or equal to 1:

0 � E(yjx) � 1:

Example 5 In order to have the conditional mean bounded, the proportion of defaults at each family size
is taken. The proportion is now an estimate of this conditional mean.

Thus, for the example:

Default indicator
Family size 0 1 Proportion
1 9 1 0:1
2 13 2 0:13333
3 9 3 0:25
4 10 5 0:33333
5 7 6 0:4615
6 3 5 0:625
7 4 13 0:7647
8 2 8 0:8
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It can be seen from the graph that this proportion approaches 0 and 1 gradually. This type of curve is
said to be S-shaped.

The curve as in the above example, is de�ned by the equation

p = �(x) =
e�0+�1x

1 + e�0+�1x

where �(x) represents E(yjx), the proportion of 1s or the probability of a 1.

Rearranging this becomes:

�(x)

1� �(x)= e
�0+�1x:

Therefore:

ln

�
�(x)

1� �(x)

�
= �0 + �1x;

G(x) = ln

�
�(x)

1� �(x)

�
= �0 + �1x:

This transformation, G(x) is called the logit transformation. Now, G(x) have many of the desirable
properties of a linear regression model. It is linear in its parameters, may be continuous and may range
from �1 to 1, depending on the range of x.

In a linear regression model, it is assumed that the dependent variable can be expressed as y =
�0 + �1x + ". As seen in the previous chapter, the assumption in linear regression is that this " is
distributed with a mean of zero and a constant variance. With a binary variable, the dependent variable
given x is now expressed as y = �(x)+ ". The error " can now assume only one of two possible values. If
y = 1, then " = 1� �(x) with probability �(x), and if y = 0 then " = ��(x) with probability 1� �(x).
Thus, " is distributed with a mean of zero and a variance of �(x)

1��(x) : Now, since the error term has
this distribution, if follows that the conditional distribution of the dependent variable follows a binomial
distribution with a probability given by the conditional mean �(x):
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To �t a logistic regression model �(x) = e�0+�1x

1+e�0+�1x
to a set of data requires that the values for the

unknown parameters �0 and �1 be estimated. Recall that in the previous chapter, the least squares
approach was used to estimate the unknown parameters. The values of �0 and �1 were chosen that
minimized the sum of squared errors (SSE), in other words the sum of squared deviations of the observed
values and the predicted values based on the model. Now with some models, like the logistic curve,
there is no mathematical solution that will produce explicit expressions for least square estimates of the
parameters. The approach that will be followed here is called maximum likelihood. This method yields
values for the unknown parameters that maximize the probability of obtaining the observed set of data.
To apply this method, a likelihood function must be constructed. This function expressed the probability
of the observed data as a function of the unknown parameters. The maximum likelihood estimators of
these parameters are chosen that this function is maximized, hence the resulting estimators will agree
most closely with the observed data.

If y is coded as 0 or 1, the expression for �(x) = e�0+�1x

1+e�0+�1x
provides the conditional probability that

y = 1 given x, P (y = 1jx). It follows that 1� �(x) gives the conditional probability that y = 0 given x,
P (y = 0jx). For an observation (yi; xi) where yi = 1, the contribution to the likelihood function is �(xi)
and where yi = 0, the contribution to the likelihood function is 1� �(xi). Now this can be expressed for
the observation (yi; xi) as:

�(xi)
yi [1� �(xi)]1�yi :

The assumption is that the observations are independent, thus the likelihood function is obtained as
a product of the terms given by the above expression.

l(�) =
nY
i=1

�(xi)
yi [1� �(xi)]1�yi

where � is the vector of unknown parameters.

Now, � has to be estimated so that l(�) is maximized. It is mathematically easier to work with the
natural logarithm of this equation. The log likelihood function is de�ned as:

L(�) = ln(l(�)) =
nX
i=1

fyi ln [�(xi)] + (1� yi) ln [1� �(xi)]g :

In linear regression, the normal equations obtained by minimizing the SSE, was linear in the unknown
parameters that are easily solved. In logistic regression, minimizing the log likelihood yields equations
that are nonlinear in the unknowns, so numerical methods are used to obtain their solutions.

Example 6 How does this all relate to the example? Where did all of this come from? In the example,
the aim is to predic default, using family size. Assume that the probability of defaulting for a family of
size 8 is 0.8.

The odds of defaulting for a family of size 8 are then obtained by:

Odds = p
(1�p)

= 0:8=0:2
= 4

or odds of 4 to 1.
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Alternatively, odds are calculated by dividing the number of defaults by the number of non-defaults:

Odds = 8=2
= 4

or odds of 4 to 1.

The odds of not defaulting are 0:2=0:8 or 2=8 or 0:25.

The asymmetry is not appealing as one would want the odds of defaulting to be the opposite of the
odds of not defaulting. Using the natural log takes care of this. The natural log of 4 is 0.602 and the
natural log of 0.25 is -0.602. Now the log odds of defaulting are exactly the opposite to the log odds of not
defaulting.

Now, the logit transformation is used for logistic regression. This is just the natural log of the odds:

G(x) = ln

�
�(x)

1� �(x)

�
= �0 + �1x

G(x) = log(odds)

ln

�
�(x)

1� �(x)

�
= �0 + �1x

ln

�
p

1� p

�
= �0 + �1x

p

1� p= e
�0+�1x

p = �(x) =
e�0+�1x

1 + e�0+�1x

which is the same formula said to de�ne the speci�c s-shape curve earlier.

After estimating the coe¢ cients for the model, the �rst look at the model concerns an assessment
of the signi�cance of the variables in the model. This involves the formulation and testing of statistical
hypotheses to determine whether the independent variables in the model are "signi�cantly" related to the
dependent variable. Note that the question of whether the predicted values are an accurate representation
of the observed values - this is called goodness-of-�t - is not considered here. Goodness-of-�t will be
discussed at a later stage. The question here is more: Does the model that includes the variable in
question tell one more about the dependent variable than the model that does not include the variable?
Several techniques can be used to test for the signi�cance of the coe¢ cients and is discussed below.
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5.1 Deviance

In linear regression, the assessment of the signi�cance of the slope coe¢ cient is approached by forming an
analysis of variance table. This table partitions the total sum of squared deviations of observations about
their mean into two parts: the sum of squares of observations about the regression line SSE, and the
sum of squares of predicted values, based on the regression model, about the mean dependent variable
SSR. This is just a convenient way of displaying the comparison of observed and predicted values under
two models, one containing the independent variable and one using the mean as prediction. In linear
regression, interest focuses in the size of SSR. A large value of SSR suggests that the independent variable
is important, whereas a small value suggests that the independent variable is not helpful in predicting
the response variable.

The guiding principle with logistic regression is the same: Compare the observed values of the response
variable to predicted values obtained from models with and without the variable in question. In logistic
regression, comparison of observed to predicted values is based on the log likelihood function:

L(�) = ln(l(�)) =
nX
i=1

fyi ln [�(xi)] + (1� yi) ln [1� �(xi)]g :

To better understand this comparison, it is helpful conceptually to think of an observed value of the
response variable as also being a predicted value resulting from a saturated model. A saturated model is
one that contains as many parameters as there are data points.

The comparison of the observed to predicted values using the likelihood function is based on the
following expression:

D = �2 ln
�
likelihood(fitted)

likelihood(saturated)

�
:

The quantity inside the large brackets in the above expression is called the likelihood ratio. Using
minus 2 times the log is necessary to obtain a quantity whose distribution is known and can therefore be
used for hypothesis testing. Such a test is called the likelihood ratio test and is described fully below.

Substituting the likelihood function gives us the deviance statistic:

D = �2
nX
i=1

�
yi ln

�b�i
yi

�
+ (1� yi) ln

�
1� b�i
1� yi

��
:

This statistic will be used in some approaches to assessing goodness-of-�t, which will be discussed in
a later chapter. The deviance for logistic regression plays the same role that the residual sum of squares
plays in linear regression.

Where the values of the outcome variable are either 0 or 1, the likelihood of the saturated model is 1.
Speci�cally it follows from the de�nition of a saturated model that b�i = yi and the likelihood is:

l(saturated model) =
nY
i=1

yyii �(1� yi)
(1�yi)= 1:

Thus it follows that the deviance is:

D = �2 ln(likelihood(fitted)):
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5.2 Likelihood-ratio test

The likelihood-ratio test uses the ratio of the maximized value of the likelihood function for the full model
(L1) over the maximized value of the likelihood function for the simpler model (Lo). The full model has
all the parameters of interest in it. The simpler model is said to be a nested, reduced model, where an
independent variable is dropped from the overall model. The likelihood-ratio test tests if the logistic
regression coe¢ cient for the dropped variable can be treated as zero, thereby justifying the dropping of
the variable from the model. A non-signi�cant likelihood-ratio test indicates no di¤erence between the
full model and the reduced model, hence justifying dropping the given variable so as to have a more
parsimonious model that works just as well. The likelihood-ratio test statistic equals:

�2 log
�
L0
L1

�
= �2 [log(L0)� log(L1)] = �2(L0 � L1):

This log transformation of the likelihood function yields an appproximate chi-square statistic.

5.3 Wald Test

The Wald test is used to test the statistical signi�cance of each coe¢ cient (�) in the model. A Wald test
calculates a Z statistic which is:

W =
b�

SE(b�) :
This value is squared which yields a chi-square distribution and is used as the Wald test statistic.

(Alternatively the value can be directly compared to a normal distribution.)

Several statisticians have identi�ed problems with this statistic. For large logit coe¢ cients, the stan-
dard error is in�ated, lowering the Wald statistic and leading to Type II errors (false negatives: thinking
the e¤ect is not signi�cant, when it is).

5.4 Score Test

A test for signi�cance of a variable, which does not require the computation of the maximum likelihood
estimates for the coe¢ cients, is the Score test. The Score test is based on the distribution of the derivatives
of the log likelihood.

Let L be the likelihood function which depends on a univariate parameter � and let x be the data.
The score is U(�) where

U(�) =
@ logL(�jx)

@�
:

The observed Fisher information is:

I(�) =
@2 logL(�jx)

@�2
:
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The statistic to test H0 : � = �0 is:

S(�) =
U(�0)

2

I(�0)

which take a �2(1) distribution asymptotically when H0 is true.

Note that an alternative notation, in which the statistic S�(�) =
p
S(�) is one-sided tested against a

normal distribution can also be used. These approaches are equivalent and gives identical results.

Example 7 Expanding the earlier credit card example, the dependent variable is still whether the client
will default or not. Default is denoted by a 1. A di¤erent independent variable is now available: whether
the client has other products with the bank, where 1 denotes yes.

The data:

Client Default Other products
1 1 1
2 1 1
3 1 1
4 1 0
5 1 0
6 1 0
7 1 0
8 1 0
9 1 0
10 1 0
11 0 1
12 0 1
13 0 1
14 0 1
15 0 1
16 0 1
17 0 0
18 0 0
19 0 0
201 0 0

Note that the data table can be summarized to the following:
Other products

Default 1 0 Total
1 3 7 10
0 6 4 10
Total 9 11 20

Now, the odds of a client that has other products with the bank, to default is 3=6 = 0:5. Logistic
regression will now be used to test whether its prediction will be close to this.

The correlation matrix and some descriptive statistics:

Default Other products
Default 1
Other products �0:3 1
Mean 0:5 0:45
Standard deviation 0:51 0:51
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Note that half the clients have defaulted. If no other knowledge was available on the clients and a
prediction was to be made whether the client would default or not, one could just �ip a fair coin to make
the prediction. In order to make a better prediction, the use of independent variables becomes a necessity.
According to the above correlation matrix, the presence of other products with the bank is negatively
correlated with the default indicator. This shows that those clients with other products with the bank are
less likely to default.

The following is run in SAS:

proc logistic data=simple.one descending;
model default=Other_products;

run;

Note that the descending option is used so that the log(odds) of the event (1) is modeled.

SAS output:

Intercept
Intercept            and

Criterion          Only     Covariates
­2 Log L         27.726         25.878

The �rst log-likelihood is that of the model without the independent variable. The second is the log-
likelihood with the independent variable.

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq
Likelihood Ratio         1.8480        1         0.1740

The likelihood ratio is the di¤erence between the two above likelihoods. The test statistic has a chi-
square distribution with 1 degree of freedom. The p-value for the hypothesis is quite large so the null
hypothesis of no signi�cance of the variable is rejected.

Standard     Wald
Parameter         DF    Estimate Error    Chi­Square    Pr > ChiSq

Intercept          1      0.5596      0.6268        0.7971        0.3720
Other_products     1 ­1.2526      0.9449        1.7574        0.1850

The log odds are:

Log(odds) = 0:5596� 1:2528� otherproducts

Odds = e0:5596�1:2528�other products

Hence, if a client has other products with the bank, the predicted odds are:

Odds = 0:50007

which is close to the calculated odds of 0.5 above.

This implies that the probability of default for a client with other products at the bank is 33:34%.

 
 
 



Chapter 6

Multivariate logistic regression

In the previous chapter, univariate logistic regression was dicussed. As with linear regression, the strength
of a modeling technique lies in its ability to model many variables, of which some are on di¤erent
measurement scales. The logistic model will now be used where more than one independent variable is
available and this is called multivariate logistic regression.

Some variables used in models are discrete, categorical variables. It is inappropriate to include them
in the model as if they were interval scale variables if they are represented by numbers. The number
merely indicates the category and doesn�t have any numerical signi�cance. This necessitates the use of
dummy or design variables, a concept which is explained below.

As an illustration, suppose that a variable, education level, which have three categories; grade 12,
diploma and degree, is available. One option is to create a dummy variable for each of the categories:

� D1 = 1 if grade 12, else 0

� D2 = 1 if diploma, else 0

� D3 = 1 if degree, else 0

A problem arises due to the fact that D3 is a linear combination of D1 and D2 and will create
multicollinearity in the model. The existence of multicollinearity in�ates the variance of the parameter
estimates. That may result, particularly for small and moderate sample sizes, in lack of statistical
signi�cance of individual independent variables while the overall model may be strongly signi�cant. It
may also result in wrong signs and magnitudes of regression coe¢ cient estimates, and consequently in
incorrect conclusions about relationships between independent and the dependant variables. Note that if
D1 and D2 are both zero,this indicates that the category is degree, which means that an extra variable
for this category is not needed. The example can be summarized as follows:

Design/dummy variable
Education level D1 D2
Grade 12 1 0
Diploma 0 1
Degree 0 0

So in general, if a nominal scaled variable has k possible values, then k � 1 dummy variables will
be needed. Most logistic regression software, like SAS, will generate dummy variables and in SAS the
reference category can be speci�ed.

Consider a collection of p independent variables denoted by the vector x = (x1; x2; :::; xp). Denote
the conditional probability that the event is observed by: P (y = 1jx) = �(x).
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The logit of the multivariate logistic regression is then given by the equation:

g(x) = �0 + �1x1 + �2x2 + :::+ �pxp:

This means the logistic regression is given by

�(x) =
eg(x)

1 + eg(x)
:

Now, if the jth independent variable has kj levels, kj � 1 dummy variables will be needed. These
variables will be denoted by Djl and the coe¢ cients for these dummy variables will be denoted by �jl,
where l = 1; 2; :::; kj � 1. Thus the logit for a model with p variables and the jth variable being discrete
would be:

g(x) = �0 + �1x1 + �2x2 + :::+

kj�1X
l=1

�jlDjl + ::::+ �pxp:

Now, how is a multiple/multivariate logistic model �tted?

Assume that a sample of n independent observations (xi; yi), i = 1; 2; :::; n. The estimates of the
following vector need to be obtained:

�0 = (�0; �1; ::::�p):

The method of estimation in the multivariate case is also maximum likelihood. The likelihood function
will now be:

l(�) =

nY
i=1

�(xi)
yi [1� �(xi)]1�yi

with �(xi) de�ned as:

�(xi) =
eg(xi)

1 + eg(xi)
:

The p + 1 likelihood equations will be obtained by di¤erentiating the log likelihood function with
respect to the p+1 coe¢ cients. As with the univariate case, there is no easy solution for these equations
and solving them requires special software packages and numerical methods.

Let b� denote the solution to these equations. In the previous chapter, the standard error of the
estimate was used. It will now be considered in more detail.

The method of estimating the variances and covariances of the estimated coe¢ cients follows from the
theory that estimators are obtained from the matrix of second partial derivatives of the log likelihood
function.

Let the (p + 1) � (p + 1) matrix containing the negative of these partial derivatives be denoted by
I(�). This matrix is called the observed information matrix. The variances and covariances are obtained
from the inverse of the matrix, which is denoted by:

var(b�) = I�1(�):
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In most cases, if not always, it is not possible to write explicit expressions for the elements in this
matrix. var(b�j) will be used to denote the jth diagonal element of the matrix, which is the variance of b�j
and Cov(b�j ; b�i) to denote the covariance of b�j and b�i. The estimators of the variances and covariances
are obtained by evaluating var(�) at b�.
The estimated standard errors of the estimated coe¢ cients will mostly be used, which are:

SE(b�j) = var(b�j) 12
for j = 1; 2; :::; p.

A useful formulation of the information matrix is:

bI(b�) = X0VX

where

X =

0BB@
1 x11 x12 ::: x1p
1 x21 x22 ::: x2p
: : : ::: :
1 xn1 xn2 ::: xnp

1CCA
and

V =

0BBBB@
b�1(1� b�1) 0 0 ::: 0

0 b�2(1� b�2) 0 ::: 0
: : : ::: :
: : : ::: :
0 0 0 ::: b�n(1� b�n)

1CCCCA :

6.1 Testing signi�cance of the model

Once the multivariate logistic regression model has been �tted, the model assessment begins. The �rst
step is to assess the overall signi�cance of the p independent variables in the model, using the likelihood
ratio as in the univariate case. The likelihood of the �tted model is compared to the likelihood of a
constant only model.

The hypothesis test:
H0 : �i = 0; i = 1; 2; :::; p
or
H0 : There is no di¤erence between the �tted and full (/intercept only) model

The test statistic G :
G = �2 ln(likelihood constant only model=likelihood �tted model)

= �2 ln(L0=L1)
= �2 [ln(L0)� ln(L1)]
= �2(L0 � L1)

Under H0, G will have a chi-square distribution with p degrees of freedom.

Note that if H0 is rejected, the conclusion is that at least one or perhaps all p coe¢ cients are signi�-
cantly di¤erent from zero.
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Example 8 Building again on the concept of the credit card example, the dependent variable is still
whether the client will default or not. Default is denoted by a 1. Two independent variables are now
avaible, whether the client has other products with the bank, where 1 denotes yes, and family size.

The data

Client Default Other products Family size
1 1 1 4
2 1 1 5
3 1 1 1
4 1 0 5
5 1 0 5
6 1 0 4
7 1 0 4
8 1 0 3
9 1 0 3
10 1 0 2
11 0 1 4
12 0 1 2
13 0 1 3
14 0 1 3
15 0 1 5
16 0 1 1
17 0 0 4
18 0 0 3
19 0 0 3
20 0 0 2

The correlation matrix and some descriptive statistics:

Default Other products Family size
Default 1
Other products �0:3 1
Family size 0:24 �0:14 1
Mean 0:5 0:45 3:30
Standard deviation 0:51 0:51 1:26

According to the above correlation matrix, those clients with other products in the bank are less likely
to default. Also, family size is positively correlated with default, indicating that the higher the family size,
the more likely the client is to default.

SAS code given below:

proc logistic data=simple.multi descending;
model default=Other_products Family_size;

run;
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SAS output:

Intercept
Intercept            and

Criterion          Only     Covariates
­2 Log L         27.726         24.927

The �rst log-likelihood is that of the model without the independent variables. The second is the
log-likelihood with the independent variables.

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq
Likelihood Ratio 2.7987        2         0.2468

The likelihood ratio is the di¤erence between the two above likelihoods. This test statistic has a chi-
square distribution with 2 degrees of freedom, as two independent variables as well as the intercept are in
the model. The p-value for the hypothesis P (�2 > 2:7987) = 0:2468, is quite large so the null hypothesis
of no signi�cance of the variables is rejected.

Note that this test indicates that either one or both of the variables are signi�cant, but does not give
an indication of their individual signi�cance. Before concluding that any or all of the coe¢ cients are
nonzero, one needs to look at the univariate Wald test statistics:

Wj =
b�j

SE(b�j) :
Under the null hypothesis that the coe¢ cient is equal to zero, this statistic follows a standard normal

distribution. Alternatively, this statistic can be squared and will then follow a chi-square distribution
with 1 degree of freedom. Either way, it gives equivalent results.

Example 9 Following on the previous example, the Wald statistics are also given as standard output in
SAS:

Standard          Wald
Parameter         DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept          1 ­0.7737      1.5313        0.2553 0.6134
Other_products     1 ­1.1936      0.9697        1.5153        0.2183
Family_size        1      0.3919      0.4157        0.8888        0.3458

If signi�cance of 0:05 is used, the conclusion is that both independent variables are signi�cant.
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If a variable is found to not be signi�cant, a reduced model can be �tted and compared to the full
model. The aim is to get the best �tting model, while keeping the number of variables to a minimum.
The likelihood ratio test can again be used. If the null hypothesis is not rejected, the conclusion is
that the reduced model is just as good as the full model. Note that statistical signi�cance isn�t the only
consideration when variables are included or excluded in the model in practice. Sometimes business might
require a variable to be included or legally a variable must be excluded. These considerations might prove
to be more important than statistical signi�cance.

Example 10 Expanding the example again, to include a categorical independent variable, which has
more than 2 categories and therefore will require more than one dummy variable.

Education level is added, which has the following categories:

Education level Description
1 Grade 12
2 Diploma
3 Degree

The data:

Client Default Other products Family size Education level
1 1 1 4 1
2 1 1 5 1
3 1 1 1 2
4 1 0 5 1
5 1 0 5 1
6 1 0 4 3
7 1 0 4 1
8 1 0 3 1
9 1 0 3 2
10 1 0 2 2
11 0 1 4 1
12 0 1 2 3
13 0 1 3 3
14 0 1 3 2
15 0 1 5 1
16 0 1 1 2
17 0 0 4 2
18 0 0 3 3
19 0 0 3 3
20 0 0 2 3

The SAS code:

proc logistic data=simple.edumulti descending;
class Education_level (ref='3') /param=ref;
model default=Other_products Family_size Education_level;

run;
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The class statement allows use of the categorical variables in proc logistic. Note that the class
statement must appear before the model statement. The ref= allows the model developer to indicate the
reference category for the class variable. This is the category that will be left out; the dummy variables
for the remaining categories would be included in the model statement as independent variables. The
quotation marks are used for both numerical and character variables. The param option speci�es the
parameterization method for the classi�cation variable or variables. Design matrix columns are created
from class variables according to the di¤erent schemes. param=ref speci�es reference cell coding. This
results in the same analysis as including dummy variables for each category, except the reference category.
The default coding is param=e¤ect which results in the coding of �1, 0 and 1.

SAS gives the following output for the class variable to indicate how the dummy variables were created,
using the param=ref option:

Class Level Information

Design
Class               Value     Variables

Education_level     1          1      0
2          0      1
3          0      0

For interest, note the di¤erence of the design variable coding, when the param=e¤ect option (default
design variable coding option in SAS) is used:

Class Level Information

Design
Class               Value     Variables

Education_level     1 1      0
2          0      1
3 ­1 ­1

Whenever a categorical independent variable is included in a model, all of its design variables should
be included. To do otherwise, only means that one has recoded the variable. If only D1 is included, then
education level is only included as Grade 12 or not Grade 12. Now, if education level is included in the
model, the number of degrees-of-freedom added for the likelihood ratio test, is not 1, but k� 1, where k is
the number of categories in education level.
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SAS output:

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates
­2 Log L         27.726         18.045

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq
Likelihood Ratio         9.6811        4         0.0462

Note that adding education level increased the degrees-of-freedom from 2 to 4, as 2 dummy variables
were used to code it. Using the likelihood ratio test, the signi�cance of the coe¢ cients in the model might
be rejected under H0. In the previous example, the null hypothesis was clearly rejected. This indicates
that education level might not add to the signi�cance of the overall model.

Because of the multiple degrees-of-freedom, the Wald statistics must be used with caution to assess the
signi�cance of the coe¢ cients. If the W -statistics for both coe¢ cients (of the dummy variable) exceed 2,
the conclusion is that design variables are signi�cant. Alternatively, if one coe¢ cient has a W statistic
of 3:0 and the other of 0:1, one cannot be sure about the contribution of the variable to the model.

Standard          Wald
Parameter            DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept             1      0.6675      2.5327        0.0695        0.7921
Other_products        1 ­2.9948      1.7572        2.9044        0.0883
Family_size           1 ­0.6243      0.7813        0.6385        0.4242
Education_level 1     1      5.2975      2.8366        3.4876        0.0618
Education_level 2     1      2.2749      1.6365        1.9323        0.1645

Now, given that one of the coe¢ cients is barely signi�cant, and using the likelihood ratio test that
indicates that education level might not be signi�cant, education level is not a strong predictor in this
model.

The Wald test is obtained from the following matrix calculation:

M = b�0 hdvar(b�)i�1 b�
= b�0(X0VX)�1b�

which will be distributed as chi-square with p + 1 degrees-of-freedom under the hypothesis that each of
the p + 1 coe¢ cients is equal to zero. Tests for just the p slope coe¢ cients are obtained by eliminatingb�0 from b� and the relevant row and column from (X0VX). Since evaluation of this test requires the
capability to perform vector-matrix operations and to obtain b�, there is no gain over the likelihood ratio
test of the signi�cance of the model.
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The multivariate analog of the Score test for the signi�cance of the model is based on the distribution
of the p derivatives of L(�) with respect to b�.
Suppose that b� is the maximum likelihood estimate of � under the null hypothesis H0 : � = �0.

Then:

U 0
�b�0� I�1 �b�0�U �b�0� � �2(k)

asymptotically under H0, where k is the number of constraints imposed by the null hypothesis and

U
�b�0� = @ logL

�b�0jx�
@�

and

I
�b�0� = �@2 logL

�b�0jx�
@�@�`

:

The computation of this test has the same level of complexity as the calculation of the Wald test.

6.2 Interpretation of the �tted model

Even though the interpretation of the coe¢ cient of the model in the univariate case was brie�y looked
at, it will now be formally discussed here.
After �tting a model the emphasis shifts from the computation and assessment of signi�cance of

the estimated coe¢ cients to the interpretation of their values. It will now be assumed that the logistic
regression model has been �t, that the variables in the model are signi�cant in either a statistical or
business sense, and that the model �ts according to some statistical measure of �t.

The answer to the following question is now needed: �What do the estimated coe¢ cients in the model
tell one about the question that motivated the model?�Interpretation involves two issues: determining the
functional relationship between the dependent variable and the independent variable(s), and appropriately
de�ning the unit(s) of change for the independent variable(s).

The �rst step is to determine the link function, i.e. what function of the dependent variable yields a
linear function of the independent variables. In linear regression, it is the identity function, as the depen-
dent variable is by de�nition linear in its parameters. In logistic regression, it is the logit transformation:

G(x) = ln

�
�(x)

1 + �(x)

�
= �0 + �1x:

In linear regression, the slope coe¢ cient is equal to the di¤erence between the value of the dependent
variable at x+1 and the value of the dependent variable at x, for any value of x. Thus, the interpretation
of the coe¢ cient is relatively straightforward as it expresses the resulting change in the measurement
scale of the dependent variable for a unit change in the independent variable.

In the logistic regression model, the slope coe¢ cient represents the change in the logit corresponding
to a unit change in the independent variable, �1 = G(x + 1) � G(x). A meaning needs to be placed on
the di¤erence between the two logits, to interpret the coe¢ cient.
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A basic example will �rst be used, as this will provide the conceptual foundation for all other situations.
Assume that the independent variable x, is coded as either 1 or 0. The di¤erence in the logit for a subject
for x = 1 and x = 0 is:

G(1)�G(0) = [�0 + �1]� �0 = �1:

In this case the logit di¤erence is �1. In order to interpret this, a measure of association, called the
odds ratio needs to be introduced

The possible values of the logistic regression are displayed in the following table:

Independent variable (x)
Outcome variable (y) x = 1 x = 0

y = 1 �(1) = e�0+�1

1+e�0+�1
�(0) = e�0

1+e�0

y = 0 1� �(1) = 1
1+e�0+�1

1� �(0) = 1
1+e�0

Total 1:0 1:0

The odds of the outcome being present among individuals with x = 1 is de�ned as:

�(1)

1� �(1) :

Similarly, the odds of the outcome being present among individuals with x = 0 is de�ned as:

�(0)

1� �(0) :

The odds ratio, OR, is de�ned as the ratio of the odds for x = 1 and the odds for x = 0 and is given
by the equation:

OR =
�(1)= [1� �(1)]
�(0)= [1� �(0)] :

Substituting the expressions in the above table gives:

OR =
e�0+�1

1+e�0+�1
= 1

1+e�0+�1

e�0

1+e�0
= 1

1+e�0

= e�0+�1

e�0

= e(�0+�1)��0

= e�1

Hence, for a logistic regression with a dichotomous independent variable, coded zero and one, the
relationship between the odds ratio and the regression coe¢ cient is:

OR = e�1 :

The odds ratio is a measure of association which approximates how much more likely it is for the
outcome to be present among those with x = 1 than those with x = 0. For instance, if y indicates
whether a person defaults or not and x indicates whether the person has other products with the bank,
then dOR = 0:5 indicates that the occurrence of default is half as likely to occur for among those clients
who have other products with the bank and those who don�t.
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Example 11 Revisiting the earlier example used:

Other products
Default 1 0 Total
1 3 7 10
0 6 4 10
Total 9 11 20

SAS was used to obtain the estimates of �0 and �1:

Standard          Wald
Parameter         DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept          1      0.5596      0.6268        0.7971        0.3720
Other_products     1 ­1.2526      0.9449        1.7574        0.1850

The estimate for the odds ratio is:

dOR = eb�1 = e�1:2526 = 0:2858:
This odds ratio could have been obtained directly from the cross-product ratio from the data table,

namely:

OR =
3=6

7=4
= 0:2857:

Thus

b�1 = ln [(3=6)=(7=4)] = �1:2528:
The odds ratio (OR ) is usually the parameter of interest in a logistic regression due to its ease

of interpretation. Its estimate dOR tends to have a distribution that is skewed, due to the fact that
the possible values range between 0 and 1. Inferences are usually based on the sampling distribution
of ln(dOR) = b�1. A 100(1 � �)% con�dence interval estimate for the odds ratio is obtained by �rst
calculating the interval for the coe¢ cient, �1, then taking the exponent of these values. In general, the
endpoints are given by:

exp
hb�1 � z1��=2SE(b�1)i :

Because of the importance of the odds ratio as a measure of association, software packages, like SAS,
automatically provide point and con�dence interval estimates based on the exponent of each coe¢ cient
in a �tted logistic regression model.
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Example 12 SAS OR output for the previous example:

Odds Ratio Estimates

Point          95% Wald
Effect            Estimate      Confidence Limits
Other_products       0.286       0.045       1.821

It is also important to consider the e¤ect that coding of the variable has on the computation of the
odds ratio. It was noted that the estimate of the odds ratio was dOR = e

b�1 . This is correct when the
independent variable is coded as 0 or 1. Other coding requires that the value of the logit di¤erence for the
speci�c coding used is calculated and then this di¤erence exponent is taken to estimate the odds ratio.

The estimate of the log of the odds ratio for any independent variable at two levels, say x = a versus
x = b is the di¤erence between the estimated logits computed at these two values:

ln
hdOR(a; b)i = bG(a)� bG(b)

=
�b�0 + b�1 � a�� �b�0 + b�1 � b�

= b�1 � (a� b)
The estimate for the odds ratio is obtained by taking the exponent of the logit di¤erence:

dOR(a; b) = exp hb�1 � (a� b)i :
In this chapter, the concept of design/dummy variables was introduced. This is also referred to as

reference cell coding. Another coding method that is frequently used is referred to as deviation from
means coding (e¤ect in SAS). This method assigns -1 to the lower code and 1 to the higher code. If the
variable, other products, is recoded:

Other products Design variable
Yes 1
No -1

Estimate the odds ratio where this coding is used:

ln
hdOR(yes; no)i = bG(D = 1)� bG(D = �1)

=
�b�0 + b�1 � 1�� �b�0 + b�1 ��1�

= 2b�1
If the only the exponent of the coe¢ cient from the computer output is taken, one would have obtained

the wrong estimate of the odds ratio. The method of coding also in�uences the calculation of the endpoints
of the con�dence interval. In general it is given by:

exp
hb�1(a� b)� z1��=2ja� bj � SE(b�1)i :

This relationship between the logistic regression coe¢ cient and the odds ratio provides the foundation
of the interpretation of all logistic regression results.
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Now, how would one treat an independent variable with more than 2 categories, like education level
in the example?

Suppose the independent variable has k > 2 distinct values. The variables have a �xed number of
discrete values and a nominal scale. It cannot be treated as an interval scale and therefore a set of design
variables must be created.

Example 13 Referring back to the earlier example:

Education level
Default Grade 12 Diploma Degree Total
Yes 6 3 1 10
No 2 3 5 10
Total 8 6 6 20

Two design variables are needed to represent this variable:

Design/dummy variable
Education level D1 D2
Grade 12 1 0
Diploma 0 1
Degree 0 0

The extension to variables with more than 3 categories is not conceptually di¤erent.

For this example, k = 3, the category �Degree�was used as the reference group. The estimated odds
for Grade 12 is therefore:

(6=2)=(1=5) = (6=2)� (5=1) = 15:

Education level
Grade 12 Diploma Degree

Odds ratio 15 5 1
Ln(odds ratio) 2:708 1:609 0

The estimated odds ratio for the reference group is indicated by 1. The output is typically found in
literature and can be obtained from SAS by specifying the appropriate choice of design variables (as shown
earlier).

SAS output:

Odds Ratio Estimates

Point          95% Wald
Effect                    Estimate      Confidence Limits

Education_level 1 vs 3      14.998       1.031     218.245
Education_level 2 vs 3       4.999       0.344      72.748
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The estimated coe¢ cients from SAS:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter            DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept             1 ­1.6093      1.0954        2.1584        0.1418
Education_level 1 1      2.7079      1.3662        3.9285        0.0475
Education_level 2     1      1.6093      1.3662        1.3875        0.2388

A comparison of the estimated coe¢ cients to the log odds ratios shows that:

ln
hdOR(Grade12; Degree)i = b�1 = 2:708

and

ln
hdOR(Diploma;Degree)i = b�2 = 1:609:

This is not by chance, calculation of the logit di¤erence shows that it is by design.

ln
hdOR(Grade12; Degree)i = bG(Grade12)� bG(Degree)

=
hb�0 + b�1 � (D1 = 1) + b�2 � (D2 = 0)i�hb�0 + b�1 � (D1 = 0) + b�2 � (D2 = 0)i

=
hb�0 + b�1i� b�0

= b�1
A similar calculation would demonstrate that the other coe¢ cient estimated using logistic regression

is also equal to the log of odds ratios computed from the data.

Con�dence limits for odds ratios are obtained using the same approach as for a dichotomous indepen-
dent variable. One starts by computing the con�dence limits for the log odds ratio (the logistic regression
coe¢ cient) and then taking the exponent of these limits to obtain limits for the odds ratio. In general,
the limits for a 100(1� �)% con�dence interval for the coe¢ cients are of the form:

b�j � z1��=2SE(b�j):
Taking the exponent provides the corresponding limits for the odds ratios.

Reference cell coding (like used in the above example) is the most commonly employed coding method.
It has widespread use as it estimates the risk of an �experimental�group relative to a �control�group.
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There are other methods of coding the variables, like deviation from means coding. The interpretation
of the estimated coe¢ cients is not as easy or as clear as in the situation where a reference group is used.
Taking the exponent of the estimated coe¢ cients yields the ratio of the odds for the particular group to
the geometric mean of the odds. However, the estimated coe¢ cients obtained using deviation from means
coding may be used to estimate the odds ratio for one category relative to a reference category. The
equation for the logit di¤erence is just more complicated than the one obtained using the reference cell
coding. If the objective is to obtain odds ratios, the use of deviation from means coding is computationally
much more complex than reference cell coding.

When a logistic regression model contains a continuous independent variable, interpretation of the
estimated coe¢ cients depends on how it is entered into the model and the particular units of the variable.
For simplicity, assume that the logit is linear in the variable. Under this assumption, the equation for
the logit is G(x) = b�0 + b�1x.
The slope coe¢ cient �1 gives the change in the log odds for an increase of 1 unit in x: �1 = G(x +

1)�G(x) for any value of x.

Sometimes a unit change is not particularly interesting for the business. If household income is taken
in rands, a R1 di¤erence might not be interesting enough. A R1,000 di¤erence might be considered more
useful. To provide a useful interpretation for continuous scale covariates one needs to �nd a method
for point and interval estimation for an arbitrary change of c in the covariate. The log odds ratio for a
change of c units in x is obtained from the logit di¤erence G(x + c) � G(x) = c�1 and the associated
odds ratio is obtained by taking the exponent of this logit di¤erence, OR(c) = OR(x+ c; x) = exp(c�1).
An estimate is then obtained by replacing �1 with b�1. An estimate of the standard error needed for
con�dence interval estimation is obtained by multiplying the estimated standard error of b�1 by c. The
endpoints of the 100(1� �)% con�dence interval estimate of OR(c) are:

exp
h
cb�1 � z1��=2cSE(b�1)i :

If it is believed that the logit is not linear in the covariate, then grouping and the use of dummy
variables should be considered. Alternatively, use of higher order terms (e.g. x2; x3,...) or other nonlinear
scaling in the covariate (e.g. log(x)) could be considered. The scale in the logit is an important modeling
consideration for continuous covariates. The interpretation of the estimated coe¢ cients for a continuous
variable is similar to that of a nominal scale variable, using an estimated log odds ratio. The primary
di¤erence is that a meaningful scale must be de�ned for the continuous variable.

Fitting a series of univariate models does not provide an adequate analysis of the data and is not useful
in practice. The independent variables are usually associated with one another and may have di¤erent
distributions within levels of the outcome variable. One generally considers a multivariate analysis for
a more comprehensive modeling of data. One of the goals of such analysis is to statistically adjust the
estimated e¤ect of each variable in the model for di¤erences in distributions of and associations among
the independent variables. Each estimated coe¢ cient now provides an estimate of the log odds adjusting
for all other variables included in the model.

What does adjusting statistically for other variables mean? For example, there is a situation where
two independent variables are available � one binary and the other continuous. The primary focus is
on the e¤ect of the binary variable. In linear regression the analogous situation is called analysis of
covariance.
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Suppose one wants to compare the average spend on a credit card for two di¤erent products (normal
and platinum). Spend is associated with many characteristics, one which might be income. Assume that
on all characteristics except income, the two groups have nearly identical distributions. If the income
distribution is also the same for the two products, then a univariate analysis would su¢ ce and the mean
spend of the two groups can be compared. This comparison would provide one with the correct estimate
of the di¤erence in spend between the two groups. However, platinum products are mostly associated
with more wealthy individuals. A comparison of the two groups would now be meaningless as at least a
portion of the di¤erence would be likely due to which product they have. Hence, one is looking for the
partial e¤ect of product type given a certain income, in other words, income is kept constant. This is
di¤erent from the marginal e¤ect of product type, i.e.the e¤ect when income is ignored.

The situation is described graphically in the graph below:

Income

Sp
en

d

s1

s2

s3

s4

inc1 inc2inc

s=b0+b1+b2*inc

s=b0+b2*inc

Income vs. spend

In this �gure it is assumed that the relationship between income and spend is linear, with the same
signi�cant non-zero slope in each. Both these assumptions are usually tested in an analysis of covariance
before making inferences about group di¤erences. It is assumed that this has been checked and supported
by the data.

The statistical model that describes the situation in the above �gure states that the value of spend, s,
may be expressed as s = b0+ b1x+ b2inc, where x = 0 for group 1 and x = 1 for group 2 and inc denotes
income. In this model the parameter b1 represents the true di¤erence in spend between the two groups and
b2 is the rate of change in spend per unit change in income. Suppose the mean income is inc1 for group 1
and inc2 for group 2. Comparison of the mean spend of group 1 and the mean spend of group 2 amounts
to a comparison of s1 and s2. In terms of the model this di¤erence is (s2 � s1) = b1 + b2(inc2 � inc1).
Thus, the comparison involves not only the true di¤erence between the groups, b1, but a component,
b2(inc2 � inc1) which re�ects the di¤erences between the income of the groups.

The process of statistically adjusting for income, involves comparing the two groups at some common
value of income. The value used is the mean of the two groups which is denoted by inc in the above
graph. In model terms, this involves a comparison of s3 and s4, (s4 � s3) = b1 + b2(inc� inc) = b1, the
true di¤erence between the two groups. The choice of the overall mean makes sense, it is biologically
reasonable and lies within the range for which one believes that the association between income and
spend is linear and constant within each group.

 
 
 



64

Now consider the same situation as shown in the graph, but instead of spend being the dependent
variable, assume it is a dichotomous variable and that the vertical axis denotes the logit. Under the
model the logit is given by the equation:

g(x; inc) = b0 + b1x+ b2inc:

A univariate comparison obtained from 2� 2 table cross-classifying outcome and group would yield a
log odds ratio approximately equal to b2(inc2� inc1). This would incorrectly estimate the e¤ect of group
due to the di¤erence in the distribution of income. To account or adjust for this di¤erence, income is
included as a variable in the model and calculate the logit di¤erence at a common value of income, such
as the combined mean, inc. This logit di¤erence is g(x = 1; inc)� g(x = 0; inc) = b1. The coe¢ cient b1
is the log odds ratio that one would expect to obtain from a univariate comparison if the two groups had
the same distribution of income.

Exercise 14 Returning to the earlier example with dependent variable default (1=yes, 0=no). Also used
is the example of having other products with the bank (group1=no, group2=yes) and adding income as
a variable. The following table will be used as a basis example for interpreting the logistic regression
coe¢ cient for a binary variable when the coe¢ cient is adjusted for a continuous variable.

Other products=no Other products=yes
Variable Mean Standard deviation Mean Standard deviation
Default 0:64 0:504 0:33 0:5
Income 5850:00 2235:73 7922:22 1136:64

Using this table if follows that the univariate log odds ratio for group 2 vs. group 1 is:

ln(dOR) = ln(0:33=0:67)� ln(0:64=0:36) = 0:1135
and the unadjusted estimated odds ratio is dOR = 1:1429.
There is a considerable di¤erence in income distribution of the two groups. The people in group two�s

income is on average R2000 higher that those in group 1.

The data is analyzed with a bivariate model using �other_products�=0 for group 1 and �other_products�=1
for group 2. The model is �tted using the following code in SAS:

proc logistic data=simple.income descending;
model default=Other_products income;

run;

The output for the coe¢ cients:

Standard          Wald
Parameter         DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept 1     14.0079      6.6209        4.4762        0.0344
Other_products     1      0.6060      1.4966        0.1639        0.6856
Income             1 ­0.00199    0.000923        4.6676        0.0307

The income adjusted log odds ratio is given by the estimated coe¢ cient for �other_products� and is
0:6060. The income adjusted odds ratio is dOR = exp(0:6060) = 1:833. A lot of the apparent di¤erence
between the two groups is due to the di¤erence in income.
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Look at it now in terms of the previous graph. An approximation to the unadjusted odds ratio is
obtained by taking the exponent of the di¤erence s2 � s1: In terms of the �tted model, this is:

[14:0079 + 0:6060� 0:00199(7922:22)]� [14:0079� 0:00199(5850:00)]
= 0:6060� 0:00199(7922:22� 5850:00)
= �3:5177

The value of this odds ratio is:

e�3:5177 = 0:02967:

The discrepancy between 0:02967 and the actual unadjusted odds ratio, 1:1429 is due to the fact that the
above comparison is based on the di¤erence in the average logit while the crude odds ratio is approximately
equal to the calculation based on the average estimated logistic probability for the two groups. The income
adjusted odds ratio is obtained by taking the exponent of the di¤erence s4 � s3, which is equal to the
estimated coe¢ cient for �other_products�.

The di¤erence in the example is:
[14:009 + 0:6060� 0:00199(6782:5)]� [14:009� 0:00199(6782:5)]
= 0:6060

The method of adjustment when there is a mixture of variables (dichotomous, categorical, and contin-
uous) is identical to described above. For example, suppose that, instead of using income as continuous,
it was dichotomized into low and high income. To obtain the income adjusted e¤ect of �other_products�,
a bivariate model is �tted containing the two binary variables and the logit di¤erence at the two levels
of �other_products� and a common value of the dichotomous variable for income is calculated. The
procedure is similar for any number and mix of variables. Adjusted odds ratios are obtained by compar-
ing individuals who di¤er only in the characteristic of interest and have the values of all other variables
constant. The adjustment is statistical as it only estimates what might be expected to be observed had
the subjects indeed di¤ered only on the particular characteristic being examined, while all other variables
have identical distributions within two levels of outcome.

One important issue to keep in mind when interpreting statistically adjusted log odds ratios and odds
ratios is that the e¤ectiveness of the adjustment is entirely dependent on the adequacy of the assumptions
of the model: linearity and constant slope. Violations of these assumptions may render the adjustment
useless.

 
 
 



Chapter 7

Variable reduction and analysis in
credit scoring

7.1 Introduction

In the previous chapters the focus was on the estimation and interpretation of the coe¢ cients in a logistic
regression model. The examples used had only a few independent variables and there was perceived to
be only one possible model. In practice there are typically many more independent variables that could
potentially be included in the model. (For a typical credit scoring model, the possible factors may vary
from as little as 20 to over 200!). A strategy and associated methods for handling these complex situations
is thus needed.

In this chapter two important issues in scorecard development, variable analysis and variable reduction
is discussed. Variable analysis investigates the relationship between variables one wants to test for
predictive ability and the outcome variable one hopes to predict. Variable reduction narrows a large
number of variables that are candidates for inclusion in the scorecard to a smaller number that can be
more easily analyzed with the multivariate statistical techniques used to build scorecards. Not only does
the modeler want a smaller number of variables, but also retain only those that are most predictive of
the outcome variable.

The goal of any method is to select the variables that results in a �best�model within the context of
the problem. Irrespective of the method used, statistical model development involves seeking the most
parsimonious model that still explains the data. Minimizing the number of variables in the model has
most likely as a result a more stable and easily generalized model. The more variables in the model, the
greater the estimated standard errors become and it is more likely that there is over �tting on the data,
which means that the model will only be applicable to the speci�c data set.

The methods discussed in this chapter are not to be used as a substitute for, but rather as an addition
to, clear and careful thought.

Scorecard building is also a combination of art and science: The science lies in the statistical methods
at the core of scorecard development. The art lies in the many choices the scorecard developer must
make throughout the model building process. These choices have a major e¤ect on the �nal scorecard.
Uninformed or incorrect decisions can result in an important variable being excluded or an improper
variable being included. Some of the choices that must be made are how to treat data errors, missing
values, and outliers (extreme values of the characteristics); whether to use continuous or transformed
variables or to make categorical (binned) variables out of continuous variables; and whether to include
variable interactions. Perhaps the most important, the modeler must choose which characteristics to
incorporate in the scorecard.
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It is extremely important for the scorecard developer to have a good grasp of the business for which
the scorecard is being built, and a �rm command of the business�s data. Otherwise, he/she can make
mistakes in working with the data and interpreting the results.

There are a few inviolable rules on how characteristics should be chosen for inclusion in scorecards.
Here is a list of the primary factors to be considered.

Characteristics should be

� Logical.

� Predictive.

� If included, not create multicollinearity.

� Available and stable.

� Compliant.

� Customer related.

� If excluded, result in unacceptable levels of information loss.

7.1.1 Logical

It is important to remember that simpler is better. The ultimate goal is to provide a robust model that
works not only when implemented, but also for a signi�cant time period thereafter. This is aided if the
variables make logical sense, which also make the results easier to explain to the business.

7.1.2 Predictive

The variables of interest are those with a signi�cant degree of predictive power. Determining the predictive
power of the variables is explained later in this chapter.

7.1.3 Multicollinearity

In many instances, a lot of variables will be highly correlated with each other, especially those calculated
using the same, or similar, base inputs. This gives rise to potential multicollinearity, which can lead
to poor out-of-sample performance as the model is over-�tted to the data. Over-�tting is typically
characterized by extremely large coe¢ cients, high standard errors, or changes in coe¢ cient for some
variables that do not make logic sense. This issue can be dealt with by doing variable cluster analysis,
which will be brie�y discussed in this chapter. In instances where coe¢ cients in the model have the
"wrong" sign, a careful investigation of the relationships between the variables are necessary.

7.1.4 Available and stable

Variables should only be used if they will be available in future, have been stable since the sample was
taken and are expected to be stable in the future. They should be excluded if they will not be captured in
the future, are new and poorly populated, unstable due to infrastructure changes or problems, sensitive
to in�ation like income, or if they are easily manipulated by either the clients or sta¤.
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7.1.5 Compliant

If the models are to support decision-making, the developer must ensure that the variables used are
compliant with any legal, policy or ethical restrictions on their use. This was brie�y discussed in chapter
one.

7.1.6 Customer related

When rating clients� risk, the variables should relate to them and not the lender�s strategy. Lenders�
interest is in customer risk, independent of the decision made, so that the decision can be made. For
example, in application scoring, the customer demographics, indebtedness, loan purpose and payment
behaviour are acceptable variables, but the product o¤ered, loan term and the credit limit granted are
not.

7.1.7 Minimum information loss

When reducing the number of variables, it should be done with the minimum information loss. There
may be variables that are seemingly weak and highly correlated with other variables, whose exclusion
reduces the �nal model�s power.

Another issue to consider here is also the sources of inaccuracy that can in�uence the model and
ultimately the correctness of the prediction of one�s credit score.

A number of factors can lead to inaccuracy in the regression coe¢ cients. Inaccuracy means that if
one could observe the true and exact e¤ect of each predictor on the outcome, it would not be what the
regression coe¢ cients tell one it is. A predictor variable could have a greater or smaller e¤ect than the
coe¢ cient indicates. Even worse, a predictor variable that may not appear predictive could be excluded,
when it actually is predictive.

Some of the most signi�cant sources of inaccuracy in building scorecards are:

� Inaccuracy from omitting important predictive variables from the score model.

� Inaccuracy due to errors in the predictor variables.

� Sample selection inaccuracy.

Omitted-variables inaccuracy occurs when an important predictor is left out of the regression model.
Because many of the variables used to build scoring models are correlated with one another, excluding
one or more variables that actually do a¤ect the outcome can have an e¤ect on the coe¢ cients of the
predictors that are incorporated into the model. In leaving an important variable out, one may �nd
that the coe¢ cients for other variables are biased or some highly predictive variables may not appear
predictive at all.

The second source of possible inaccuracy in scorecard coe¢ cients arises when one or more of the
predictor variables are measured wrong. This can happen in a number of ways. The reliability of the
data depends both on the method used to collect the information and on the type of documentation,
if any, to evaluate its veracity. Carefully cleaning the model development sample may help avoid this
type of bias. Data is cleaned by looking at distributions of variables and determining how to deal with
outliers, data errors, and missing values.

Sample selection inaccuracy arises when a regression model is built using a subset of the population
that is not entirely representative of the full population. Sample selection inaccuracy was already dealt
with in chapter two and will not be repeated here.
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Which of the three inaccuracy issues described is the most serious or deserving of the scorecard
developer�s attention is likely to vary case by case. The best one can do is to deal with those that can
be dealt with and recognize that one may have to live with some degree of scorecard bias. Even though
the scorecard may not capture the exact relationship between the predictor variables and the outcome
variable, scorecards have proven themselves over and over again as reliable predictors. Even with some
inaccuracy, businesses are almost always better o¤ relying on a scorecard to making decisions than to
rely purely on a subjective method.

7.2 Bivariate analysis

The selection process should begin with careful bivariate analysis of each possible variable and the outcome
variable. For nominal, ordinal and continuous variables with few integer values, this can be done with a
contingency table of outcome (y = 0; 1) versus the k levels of the independent variable. The likelihood
ratio chi-square test with k� 1 degrees of freedom is equal to the value of the likelihood ratio test for the
signi�cance of the coe¢ cients for the k � 1 design variables in a logistic regression model that contains
that single independent variable.

7.2.1 Likelihood ratio test

The likelihood-ratio test uses the ratio of the maximized value of the likelihood function for the model
containing the variable (L1) over the maximize value of the likelihood function for the intercept-only
model (L0). The likelihood-ratio test tests if the logistic regression coe¢ cient for the added variable can
be treated as zero, and thereby can be excluded from the model development. A non-signi�cant likelihood
ratio test indicates no di¤erence between the model containing the variable and the intercept only model,
hence justifying dropping the given variable so as to have a more parsimonious model that works just as
well.

The likelihood-ratio test statistic equals:

�2 log
�
L0
L1

�
= �2 [log(L0)� log(L1)] = �2(L0 � L1):

This log transformation of the likelihood function yields a chi-square statistic.

The Pearson chi-square test is asymptotically equivalent to the likelihood ratio chi-square test and
can also be used.

7.2.2 Pearson chi-square test

The chi-square test looks for a linear relationship between two characteristics and the resulting p-value
provides a measure of reliability � the probability that the similarity (goodness-of- �t) or di¤erence
(independence) between them is not a chance occurrence. It is usually used to evaluate a theory or
hypothesis, by comparing observed (actual) and expected (estimated) distributions.
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There are several variations of the chi-square calculation, but the original and most commonly used
is Pearson�s chi-square test:

�2 =
nX
i=1

(Oi � Ei)2
Ei

where Oi is the observed frequency and Ei is the expected frequency for each class. A �2 value of zero
indicates perfect �t and �2 increases as the distributions become dissimilar, eventually becoming so high
that one can only conclude that the two distributions bear no relationship to each other (independent).

The associated p-value can be used�a percentage that indicates whether or not the �t is a random
occurrence. As �2 approaches zero, the p-value approaches 100% and as �2 increases, the p-value ap-
proaches zero. The conversion depends on the degrees of freedom (the number of independent pieces
of information contained in a statistic). The degrees of freedom is calculated as (n � 1 � a) where n
is the number of classes and a is the number of assumptions, if any, made in the null hypothesis. It
is recommended that variables with a p-value of greater than 0:05 be eliminated from further analysis.
Thus, the variable set would be reduced by excluding such variables from the multivariate analysis that
would follow.

Chi-squared statistics can be compared across variables for insight into which are most closely asso-
ciated with the outcome variable.. This statistic allows one to compare predictive variables and learn
which are most closely associated with the outcome variable. Note that the value of the chi-squared
statistic depends in part on the population default rate, the percentage in the sample experiencing the
event. Thus, while one may compare the chi-squared statistic across variables for a given model and data
set, one should not compare their values for di¤erent models or data sets.

Particular attention should be paid to any contingency table with a zero cell. This yields a point esti-
mate for one of the odds ratios of either zero or in�nity. Including such a variable in any logistic regression
program causes undesirable numerical outcomes. Strategies for handling the zero cells includes: collaps-
ing the categories of the independent variable in a sensible fashion, eliminating the category completely
or, if the variable is ordinal scaled, modeling the variable as if it were continuous.

Note that this chi-squared statistic is a test for a linear association between the candidate predictive
variable and the log-odds of the outcome variable. If there is a non-linear relationship, the chi-square
may lead one to believe the variables are not associated when in fact they are �though not in a linear
relationship.

7.2.3 Spearman rank-order correlation

The Spearman correlation statistic measures the correlation between the rankings of the predictive vari-
able and the outcome variable. That is, instead of looking at the association between the actual values
of the predictive and the binary outcome variables, in this calculation the rank assigned to each value of
the predictive variable replaces the actual value. It is recommended to use this correlation statistic for
binary analysis because it is less sensitive to outliers and nonlinear relationships between outcome and
the input variables than some other statistics.

The Spearman correlation coe¢ cient is calculated as:

S = 1� 6
P
(xR � yR)2

n3 � n
where (xR � yR) refers to the di¤erence in the respective ranks of the independent variable (x) and the
dependent variable (y) for the same observation, and n refers to the total number of cases that are being
ranked.
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Though the Spearman correlation, unlike the chi-squared statistic, does not require that a variable
have a linear relationship to the outcome variable to detect the relationship, the relationship must be
monotonic- that is, increasing values of a variable must generally be associated with a higher incidence of
being bad (or vice versa) in order for the Spearman correlation to be large. If the Spearman correlation
and the chi-square statistic give di¤erent indications of the strength of a variable, it is probably because
the variable does have a monotonic relationship to the outcome, though not a linear one and a variable
transformation may be in order.

An advantage of the Spearman correlation is that it shows the direction of the relationship of a
predictive variable with the outcome variable. If the correlation is negative, it indicates that higher
values of the predictive variable are associated with lower values of the outcome variable. One should
always evaluate whether the e¤ect of each variable on the outcome is consistent with the beliefs about
how that variable should a¤ect the outcome.

In credit scoring, variables are seldom used in their original form. Even continuous variables are
bucketed, i.e. variables are categorized into logical intervals, for ease of interpretation and implementation.
If continuous variables are used in its raw form, truncation is usually used, to reduce the e¤ect and
in�uence of outliers/ extreme values. Categorical variables are also seldom used with all the categories.
The weight of evidence (WOE) of the di¤erent categories are examined and grouped together if they have
similar relative risk (in this case, WOE is similar).

7.2.4 Weight of Evidence (WOE)

Each decision made is based on the probability of some event occurring. One assesses the circumstances
and determine a weight of evidence. The weight of evidence converts the risk associated with a particular
choice into a linear scale that is easier for the human mind to assess:

WOEi = ln

��
NiPn
i=1Ni

�
=

�
PiPn
i=1 Pi

��
where P is the number of occurrences, N is the number of non-occurrences and i the index of the attribute
being evaluated. The precondition is non-zero values for all Ni and Pi.

The WOE is used to assess the relative risk of di¤erent attributes for a characteristic and as a means
to transform characteristics into variables. It is also a very useful tool for binning.

The WOE formula discussed above is the one most often used. It can be restated as:

WOEi = ln(Ni=Pi)� ln(
nX
i=1

Ni=
nX
i=1

Pi)

which illustrates two components: a variable portion for the odds of that group and a constant portion
for the sample or population odds. The WOE for any group with average odds is zero. A negative
WOE indicates that the proportion of defaults is higher for that attribute than the overall proportion
and indicates higher risk.

For a characteristic transformation, the WOE variable has a linear relationship with the logistic
function, making it well suited for representing the characteristic when using logistic regression.

The WOE does not consider the proportion of observations with that attribute, only the relative risk.
Other tools are used to determine the relative contribution of each attribute and the total information
value.
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7.2.5 Information Value

The information value is used to rank order variables in terms of their predictive power. It is extended
in the credit scoring context by looking at the non-occurrence (N) as non-defaults (goods) and the
occurrence (P ) as defaults (bads). A high information value indicates a high ability to discriminate.
Values for the information value will always be positive and may be above 3 when assessing highly
predictive characteristics and is typically seen in behavioural scorecards. Characteristics with information
values less than 0:10 are typically viewed as weak, while values over 0:30 are sought after, and are likely
to feature in scoring models. Please note that weak characteristics may provide value in combination
with others or have individual attributes that could provide value as dummy variables. They should thus
not be discarded indiscriminately. It can be di¢ cult to interpret the information value, because there are
no associated statistical tests. As a general rule, it is best to use the information value in combination
with other measures for �nal selection.

The information value, as it is known in credit scoring, is technically referred to as the Kullback
divergence measure. It measures the di¤erence between two distributions. It is expressed as:

IV =

nX
i=1

��
NiPn
i=1Ni

� PiPn
i=1 Pi

�
�WOEi

�
where N is the number of non-occurrences, P is the number of occurrences, WOE is the weight of
evidence and i is the index of the attribute being evaluated and n is the total number of attributes.

Note that the information value is sensitive to how the variable is grouped and the number of groups.

Another bivariate measure that is used in credit scoring is to calculate the Gini coe¢ cient for each of
the variables.

7.2.6 Gini coe¢ cient

The Gini coe¢ cient had its �rst application in economics measuring the degree of inequality in income
distribution. It is explained here in the economical context and then extended it to its application in
credit scoring. It is calculated using the Lorenz curve (Mohr (1998).

The Lorenz curve (named after the American statistician Lorenz, who developed it in 1905) is a simple
graphic device which illustrates the degree of inequality in the distribution of the variable concerned. To
construct a Lorenz curve that re�ects the distribution of income among the individuals or households
in an economy, the latter �rst have to be ranked from poorest to richest. This is done on a cumulative
percentage basis. In other words, one starts with the poorest percent of the population, the second
poorest percent of the population and so on until one comes to the richest percent of the population.
The cumulative percentages of the population are plotted along the horizontal axis. The vertical axis
shows the cumulative percentage of total income. If the poorest percent of the population earns 0:1%
of the total income in the economy, that number will be plotted vertically above the �rst percent of
the population. If the second poorest percent of the population earns 0:2% of the total income in the
economy, it means that the �rst 2% earned a cumulative share of 0:3% (0:1%+0:2%) of the income. This
number 0:3% will be plotted vertically above the 2% on the horizontal axis.
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The following table shows a hypothetical distribution of income. To keep things simple for this
illustration, only income shares of each successive 20% of the population are shown:

Percentage of Cumulative percentage of
Population Income Population Income
Poorest 20% 4% 20% 4%
Next 20% 6% 40% 10%
Next 20% 10% 60% 20%
Next 20% 20% 80% 40%
Richest 20% 60% 100% 100%

The �rst two columns in this table contain the basic data. The last two columns are the cumulative
totals. These two columns show that the poorest 60% of the population earn 20% of the total income in
the economy. The last two columns are then plotted.

Lorenz curve and Gini

The �gure shows that the poorest 20% of the population earn 4% of the income; the poorest 60% of
the population earn 20% of the income and so on.

Note two other features of the diagram. The �rst is that the axes have been joined to form a square.
The second feature is the diagonal running from the origin 0 to the opposite point B (top right) of the
rectangle. The diagonal serves as a reference point. It indicates perfectly equal distribution of income.
Along the diagonal the �rst 20% of the population receives 20% of the income; the �rst 40% receives 40%
and so on. Like the diagonal, the Lorenz curve must start at the origin 0 (since 0% of the population will
earn 0% of the income) and end at B (since 100% of the population will earn 100% of the income). The
degree of inequality is shown by the deviation form the diagonal. The greater the distance between the
diagonal and the Lorenz curve, the greater the degree of inequality. The area between the diagonal and
the Lorenz curve has been shaded on the graph and is called the area of inequality. The greatest possible
inequality will be where one person earns the total income. If that is the case, the Lorenz curve will run
along the axes from A to B.
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Since only the bottom triangle in the above �gure has any real signi�cance, the Lorenz curve can be
presented simply in a triangle, instead of a square. The meaning and interpretation of the curve remains
unchanged. The nearer the position of the Lorenz curve to the diagonal of the triangle, the more even
the distribution. If the distribution is absolutely equal, the Lorenz curve will coincide with the diagonal.
The further away the curve lies from the diagonal, the less even the distribution. To compare di¤erent
distributions, di¤erent Lorenz curves have to be constructed and compared. Provided the curves do not
intersect, such a comparison will reveal whether one distribution is more (or less) equal than the other.
However, if they intersect, other criteria have to be considered. One of these is the Gini coe¢ cient.

The Gini coe¢ cient (or Gini ratio) is named after the Italian demographer Corrodo Gini, who invented
it in 1912. It is a useful quantitative measure of the degree of inequality, obtained by dividing the area
of inequality shown by the Lorenz curve by the area of the right-triangle formed by the axes and the
diagonal. (The triangle formed by points 0, A and B in the above graph).

The Gini coe¢ cient can vary between 0 and 1. If the incomes are distributed perfectly equally, the
Gini coe¢ cient is zero. In this case the Lorenz curve coincides with the line of perfect equality (the
diagonal) and the area of inequality is therefore zero. At the other extreme, if the total income goes
to one individual or household (i.e. if the incomes are distributed with perfect inequality), the Gini
coe¢ cient is equal to one. In this case the area of inequality will be the same as the triangle 0AB. The
Gini coe¢ cient can also be expressed as a percentage, in which case it is called the Gini index.

The Gini coe¢ cient is calculated using the following formula:

Gini =
nX
i=1

((cpYi � cpYi�1) (cpXi + cpXi�1))� 1

where cpY is the cumulative percentage of ranked income and cpX is the cumulative percentage of
population. Note that the result is a rank correlation coe¢ cient which is exactly the same as the Somer�s
D statistic provided by SAS. The Gini coe¢ cient is not used for hypothesis testing, but does provide a
powerful measure of separation, or lack of it.

Example 15 The Gini index is calculated for the example:

Cumulative percentage of
Population Income cpXi + cpXi�1(A) cpYi � cpYi�1(B) Zi(= A�B)
20% 4% 20% 4% 0:8%
40% 10% 60% 6% 3:6%
60% 20% 100% 10% 10%
80% 40% 140% 20% 28%
100% 100% 180% 60% 108%
Gini =

P
i Zi�1 = 50:4% 150:4%

Note that the calculation formula of the Gini is dependent on the ranking. In the above example,
the ranking was done from the poorest to the richest and resulted in the above formula for the Gini
calculation. If the ranking was from richest to poorest, the Gini calculation formula would be:

Gini = 1�
nX
i=1

((cpYi � cpYi�1) (cpXi + cpXi�1)) :

The calculation of the Gini index has been co-opted into a lot of other disciplines, including credit
scoring, where it is often referred to as an accuracy ratio or power ratio. The Gini coe¢ cient is used as
a measure of how well a scorecard or variable is able to distinguish between goods and bads.
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The cumulative distribution function F (x) for a logistic model can be expressed in the form:

HfF (x)g = �0 + �1 log(x) + �2(log(x))2

where HfF (x)g is a known function of F (x). Then the frequencies fi of the speci�c values or class
intervals of x follows a multinomial distribution that , in terms of n, the total number of observations,
have an asymptotically multinomial normal distribution. The estimation methods used for categorical
data, can be used to determine the �-coe¢ cients in the above equation. The expected frequency of the
ith class interval is mi and the probability that an observation falls in the ith class interval is �i, with
the observed probability pi = fi

n .

The generalized linear model of the above equation is:

HfF (x)g = A�:

As a measurement of the discrepancy of the model in terms of the observed frequencies, the statistic

D�2 = �2=n

is used, where n is the total number of observations and �2 is the Pearson goodness-of-�t test statistic.

If �1 is the coe¢ cient of the average di¤erence, it follows that

�1 =
R1
�1

R1
�1 jx� yjf(x)f(y)dxdy

= 2
R1
�1

R1
�1 xf(x)f(y)dxdy � 2

R1
�1

R1
�1 yf(x)f(y)dxdy

= 2�� 4
R1
�1f

R1
�1 yf(y)dygf(x)dx

= 2�f1�
R1
�1�(x)fxdxg

With a sample of size 2 from the distribution of x, it follows that the expected value of the smallest
order statistic is given by

�(1) = 2

Z 1

�1
f
Z 1

�1
yf(y)dygf(x)dx:

It then follows that the Gini -index is given by

G = 1� �
(1)

�
:

The Gini index is also de�ned by Kendall and Stuart (1958) as:

G =
�

2�
:
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The Gini index can also be calculated using the odds distribution (goods:bads)

Outcome Cumulative %
Score Goods Bads G/B odds Goods Bads
Low 5; 000 2; 000 2:5 2:0 33:3
Middle 45; 000 2; 000 22:5 20:0 66:7
High 200; 000 2; 000 100:0 100:0 100:0

250; 000 6; 000 41:7

Score
Low
Middle
High

cpNi+cpNi�1(%) cpPi�cpPi�1(%) Zi(%)
2:0 33:3 0:7
22:0 33:3 7:3
120:0 33:3 40:0
Gini index=(1�

P
i Zi) 52:0

The odds distribution for the above table is as follows:

f(x) = 1
3 when x = 2:5

= 1
3 when x = 22:5

= 1
3 when x = 100

For the distribution:
� = 41:67
� = 2

32 f20 + 97:5 + 77:5g = 43:33333

Gini = �
2� = 0:52

The cumulative distribution function of the smallest order statistic for a sample of size 2 is:

FX(1)(x) =0 when x < 2:5
=1� ( 23 )

2 = 5
9 when 2:5 � x � 22:5

=1� ( 13 )
2 = 8

9 when 22:5 � x < 100
=1 when x � 100

with the probability function

fX(1)(x) = 5
9 where x = 2:5

= 3
9 where x = 22:5

= 1
9 where x = 100

with �(1) = 20

Then the Gini index is:

Gini = 1� �
(1)

�
= 0:52:

The Gini index can also be used to determine the power of an individual variable. The attributes of
the variable is grouped from the best to the worst risk. The cumulative distribution is still plotted on the
x-axis, but the cumulative percentage of defaults (events) is plotted on the y-axis. A certain minimum
cut-o¤ can be set, depending on the model to be built, and variables can be chosen for inclusion in the
modeling process based on this cut-o¤. Note that the Gini-coe¢ cient is equivalent to the test statistic
in the Mann-Whitney-Wilcoxon nonparametric test, and also to the area under the Receiver Operating
Characteristic cuve. The latter will be explained later in more detail.
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Example 16 The WOE, Information Value and Gini index is now illustrated using an example.

The same data is used as in the previous examples, with the explanations of the categories also the
same and is given below:

Client Default Other Products Family Size Education Level
1 1 1 4 1
2 1 1 5 1
3 1 1 1 2
4 1 0 5 1
5 1 0 5 1
6 1 0 4 3
7 1 0 4 1
8 1 0 3 1
9 1 0 3 2
10 1 0 2 2
11 0 1 4 1
12 0 1 2 3
13 0 1 3 3
14 0 1 3 2
15 0 1 5 1
16 0 1 1 2
17 0 0 4 2
18 0 0 3 3
19 0 0 3 3
20 0 0 2 3

Weights of evidence

First, the WOE is calculated for each attribute for each variable:

Default
Other products 1 0 WOE
0 7 4 �0:5596158
1 3 6 0:6931472

Default
Family size 1 0 WOE
1 1 1 0:0000000
2 1 2 0:6931472
3 2 4 0:6931472
4 3 2 �0:4054651
5 3 1 �1:0986123

Note that the WOE for family size of 2 and 3 is identical. This indicates that there is bene�t in
grouping them together.

Default
Education level 1 0 WOE
1 6 2 �1:0986123
2 3 3 0:0000000
3 1 5 1:6094379

 
 
 



78

Information value

As the WOE does not give an indication of the overall power of a variable, the Information Value is
calculated.

Other products WOE Calculation
0 �0:5596158 0:1678847
1 0:6931472 0:2079442
Information Value 0:3758289

Family Size WOE Calculation
1 0:0000000 0:0000000
2 0:6931472 0:0693147
3 0:6931472 0:1386294
4 �0:4054651 0:0405465
5 �1:0986123 0:2197225
Information Value 0:4682131

What would happen to the Information Value if family size of 2 and 3 is combined?

Family Size WOE Calculation
1 0:0000000 0:0000000
2&3 0:6931472 0:2079442
4 �0:4054651 0:0405464
5 �1:0986123 0:2197225
Information Value 0:4682131

Note that the information value stayed the same. If this variable is used in the model, the number
of degrees-of-freedom can be reduced by combining the two categories, without loss of information. Also,
the calculation for the combined category is just the sum of the calculations for the individual categories.
This indicates the usefulness of WOE when binning.

Education level WOE Calculation
1 �1:0986123 0:4394449
2 0:0000000 0:0000000
3 1:6094379 0:6437752
Information Value 1:0832201

 
 
 



79

Gini index:

In order to know how to order the attributes from best to worst risk, one needs to know whether the
variable is positively or negatively correlated with the outcome variable. If there is a positive correlation,
the higher the values of the variable, the higher their levels of risk, and vice versa. The "slope" of the
WOE values is another way of determining how to order the values. If the values of the WOE go from
negative to positive, it indicates that smaller values of the variable indicate a higher proportion of defaults
and therefore higher risk.

Cumulative% of
Other products Goods Bads cpNi+cpNi�1 cpPi�cpPi�1 Z
1 60% 30% 60% 30% 18%
0 100% 100% 160% 70% 112%

Gini =
P
Z� 1 30% 130%

Cumulative % of
Family size Goods Bads cpNi+cpNi�1 cpPi�cpPi�1 Z
1 10% 10% 10% 10% 1%
2 30% 20% 40% 10% 4%
3 70% 40% 100% 20% 20%
4 90% 70% 160% 30% 48%
5 100% 100% 190% 30% 57%

Gini =
P
Z� 1 30% 130%

The categories with the same WOE (family size of 2 and 3) are again combined, to investigate the
e¤ect on the Gini index:

Cumulative % of
Family size Goods Bads cpNi+cpNi�1 cpPi�cpPi�1 Z
1 10% 10% 10% 10% 1%
2&3 70% 40% 80% 30% 24%
4 90% 70% 160% 30% 48%
5 100% 100% 190% 30% 57%

Gini =
P
Z� 1 30% 130%

Again, the Gini index is not in�uenced by the collapse of the two categories, so it is recommended that
the two categories are combined. This lowers the degrees-of-freedom of the variable, without information
loss.

Cumulative % of
Education level Goods Bads cpNi+cpNi�1 cpPi�cpPi�1 Z
3 50% 10% 50% 10% 5%
2 80% 40% 130% 30% 39%
1 100% 100% 180% 60% 108%

Gini =
P
Z� 1 52% 152%

The techniques used for the bivariate analysis will determine the inclusion criteria for multivariate
analysis. Any variable whose bivariate test has a p-value < 0:25 is a candidate for the multivariate model
along with all variables of known business importance. There is not a "statistical" cut-o¤ for the Gini
index, but a Gini index of 10% or more, or for sparse data (low default rate), 5% or more can be used
as cut-o¤s. In terms of the information value, characteristics with values of less than 0:1 are typically
viewed as weak, while values over 0:3 are sought after.
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One problem with a bivariate approach is that it ignores the possibility that a collection of variables,
each of which is weakly associated with the outcome, can become an important predictor of outcome
when taken together. If this is thought to be a possibility, one should choose a signi�cance level large
enough to allow the suspected variables to become candidates for inclusion in the multivariate model.

The issue of variable selection is made more complicated by di¤erent analytical philosophies as well as
by di¤erent statistical methods. One can argue for the inclusion of all scienti�cally relevent variables into
the multivariate model regardless of the results of the bivariate analysis. In general, the appropriateness
of the decision to begin the multivariate model with all the possible variables depends on the overall
sample size and the number in each outcome group relative to the total number of candidate variables.
When the data is adequate to support such analysis, it may be useful to begin the multivariate modeling
from this point. When the data is inadequate, however, this approach can produce a numerically unstable
multivariate model.

Although bivariate analysis can o¤er much insight into the prediction ability of variables and is an
important �rst step in scorecard development, it should be done with caution. Evaulating the association
between a positive predictor and the outcome variable without taking into account the in�uence of other
variables can sometimes be misleading. In short, bivariate analysis can lead one astray in certain cases
if proper care is not taken. The best approach is always to further analyze any variable whose statistics
run counter to expectations. On further analysis, one will often �nd that the relationship one expected
between predictors and the outcome is borne if one accounts for the in�uence of other variables that are
correlated with the predictor.

After all possible variables have been analyzed and those that appear to have no predictive ability
been eliminated, one can reduce the number of candidate variables further by eliminating those with
largely redundant information. It is important to do this, because including redundant variables in the
multivariate analysis can:

� Destabilize the parameter estimates

� Increase the risk of over-�tting the model

� Confound interpretation of the coe¢ cients

� Increase computation time

Variable redundancy occurs when two or more variables are predictive of the outcome variable are so
correlated with each other that one adds no predictive ability beyond that contained in the other. One
of the ways to deal with this issue is to use variable cluster analysis.

7.3 Variable cluster analysis

Dimension reduction is one of the most important data mining tasks to handle data sets with a very
large number of variables. Some easy and common supervised dimension reduction tasks can be achieved
through simple linear regression, that is, by using R2 between dependent and independent variables,
stepwise regression, and other variants of the regression method. Another popular method is an unsuper-
vised technique that uses principal component analysis. This technique gives very successful dimension
reduction results and remedies the multicollinearity problem. Principal component analysis is a popular
dimension reduction technique. It provides a good remedy for the multicollinearity problem, but inter-
pretation of the input space is not as good. To overcome the interpretation problem, cluster components
are obtained through variable clustering.
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There are two typical types of variable clustering techniques. One method is to apply common clus-
tering techniques to any distance matrix of the variables. This method is usually applied to observation
clustering. The other method is using variables structure from factor analysis or principal component
analysis. The former is widely used and very intuituve. Its performance depends largely on the type
of clustering algorithm that is used. The latter is a more expensive process than the former because it
requires eigenvalue decomposition and a certain iterative optimization process such as factor rotation.

Both methods of clustering variables are widely used: one is clustering based on a distance matrix,
and the other is using latent variables. Both methods are summarized below:

Method 1: Variable clustering that is based on a distance matrix

� Calculate any distance matrix of the variables (e.g. correlation matrix).

� Apply any (observational) clustering algorithm to the distance matrix.

� Obtain clusters that contain homogenous variables.

� (Optional) Calculate cluster components (or �rst principal components) from each cluster.

Method 2: Variable clustering that is based on latent variables

� Start with all variables to �nd the �rst two principal components.

� Perform an orthoblique rotation (quartimax rotation) on eigenvectors.

� Assign each variable to the rotated component with which it has the higher squared correlation.

� Variables are iteratively reassigned to clusters to try to maximize the variance accounted for by the
cluster components.

� Stop the iterative assignment when some criteria are met.

One of the latter methods is used with PROC VARCLUS in SAS. The procedure can be used to
tell if groups of variables among the total set of possible predictors are highly related. The clustering
technique divides variables up into smaller clusters that are as correlated as possible among themselves
and as uncorrelated as possible with variables in other clusters. The procedure generates variable cluster
structures, identi�es key variables within each cluster, and provides non-orthogonal principal components
that are called cluster components. The cluster components give much better interpretation than regular
principal components, because they consist of only the variables in each cluster.

The VARCLUS procedure attempts to divide a set of variables into non-overlapping clusters in such a
way that each cluster can be interpreted as essentially undimensional. For each cluster, PROC VARCLUS
computes a component that can be either the �rst principal component or the centroid component and
tries to maximize the sum across all clusters of the variation accounted for by the cluster components.

The VARCLUS procedure is used as a variable reduction method. A large set of variables can often
be replaced by a set of cluster components with little loss of information. A given number of cluster
components does not generally explain as much variance as the same number of principal components
on the full set of variables, but the cluster components are usually easier to interpret than the principal
components, even if the latter are rotated.

PROC VARCLUS is a very powerful data analysis tool that can identify clusters, where each variable
is assigned to a distinct cluster and provide an audit trail of how the clusters are derived. The resulting
formulae could be used to create new variables, but rather than using this directly, one or two variables
with the highest potential predictive power are chosen from each for credit scoring purposes.
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The VARCLUS algorithm is both divisive and iterative. By default, PROC VARCLUS begins with
all variables in a single cluster. The reassingment of variables to clusters occurs in two phases. The �rst
is a nearest component sorting phase. In every iteration, the cluster components are computed and each
variable is assigned to the component with which it has the highest squared correlation. The second phase
involves a search algorithm in which each variable in turn is tested to see if assigning it to a di¤erent
cluster increases the amount of variance explained. If a variable is reassigned during the search phase,
the components of the two clusters involved are recomputed before the next variable is tested.

By default, PROC VARCLUS begins with all variables in a single cluster. It then repeats the following
steps:

� A cluster is chosen for splitting. Depending on the options speci�ed, the selected cluster has either
the smallest percentage of variation explained by its cluster component (using the PERCENT=
option) or the largest eigenvalue associated with the second principal component (using the MAX-
EIGEN= option).

� The chosen cluster is split into two clusters by �nding the �rst two principal components, performing
an orthoblique rotation (raw quartimax rotation on the eigenvector), and assigning each variable
to the rotated component with which it has the higher squared correlation.

� Variables are iteratively reassigned to clusters to maximize the variance accounted for by the cluster
components. The reassignment may be required to maintain a hierarchical structure.

The procedure stops splitting when either:

� the maximum number of clusters as speci�ed is reached, or

� each cluster satis�es the stopping criteria speci�ed by the percentage of variation explained and/or
the second eigenvalue options.

By default, PROC VARCLUS stops when each cluster has only a single eigenvalue greater than one,
thus satisfying the most popular criterion for determining the su¢ ciency of a single underlying factor
dimension.

The iterative reassignment of variables to clusters proceeds in two phases. The �rst is a nearest
component sorting (NCS) phase, similar in principle to the nearest centroid sorting algorithms. In each
iteration, the cluster components are computed, and each variable is assigned to the component with
which it has the highest squared correlation. The second phase involves a search algorithm in which each
variable is tested to see if assigning it to a di¤erent cluster increases the amount of variance explained. If a
cluster is reassigned during the search phase, the components of the two clusters involved are recomputed
before the next variable is tested. The NCS phase is much faster than the search phase but is more likely
to be trapped by a local optimum.

One can have the iterative reassignment phases restrict the reassignment of variables such that hier-
archical clusters are produced. In this case, when a cluster is split, a variable in one of the two resulting
clusters can be reassigned to the other cluster resulting from the split, but not to a cluster that is not
part of the original cluster (the one that is split).

If principal components are used, the NCS phase is an alternating least-squares method and converges
rapidly. The search phase is very time consuming for a large number of variables and is omitted by default.
If the default initialization method is used, the search phase is rarely able to improve the results of the
NCS phase. If random initialization is used, the NCS phase may be trapped by a local optimum from
which the search phase can escape. If centroid components are used, the NCS phase is not an alternating
least-square method and may not increase the amount of variance explained; therefore, it is limited by
default, to one iteration.
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Lee, Duling, Latour (2008) proposes two-stage variable clustering for large data sets. They propose
to use a method that combines supervised and non-supervised methods to overcome the computational
di¢ culties. They propose a method that combines variable clustering that is based on a distance matrix
to get global clusters and variable clustering that is based on latent variables to get sub-clusters. Finally
a single tree of global clusters and sub-clusters is created. The combined method is described in two
stages below:

Stage 1: Variable clustering based on a distance matrix:

� Calculate the correlation matrix of the variables.

� Apply a hierarchical clustering algorithm to the correlation matrix.

� Using a prede�ned cluster number, assign cluster variables into homogenous groups. The cluster
number is generally no more than the integer value of (nvar=100) + 2. These clusters are called
global clusters.

Stage 2: Variable clustering based on latent variables:

� Run PROC VARCLUS with all variables within each global clusters as one would run a single-stage,
variable clustering task.

� For each global cluster, calculate the global cluster components, which are the �rst principal com-
ponent of the variables in its cluster.

� Create a global cluster structure using the global cluster components and the same method as the
�rst step in stage 2.

� Form a single tree of variable clusters from the above steps in stage 2.

7.3.1 Interpreting VARCLUS procedure output

The scoring coe¢ cients are coe¢ cients applied to the standardized variables to compute component
scores. The cluster structure contains the correlations between each variable and each cluster component.
A cluster pattern is not displayed because it would be the same as the cluster structure, except that zeros
would appear in the same places in which zeros appear in the scoring coe¢ cients. The intercluster
correlations are the correlations among cluster components.

PROC VARCLUS also displays a cluster summary and a cluster listing. The cluster summary gives
the number of variables in each cluster and the variation explained by the cluster component. It includes
contributions from only the variables in that cluster. The proportion variance explained is obtained by
dividing the variance explained by the total variance of the variables in the cluster. If the cluster contains
two or more variables and the CENTROID option is not used, the second largest eigenvalue of the cluster
is also printed.

The cluster listing gives the variables in each cluster. Two squared correlations are calculated for each
cluster. The output of PROC VARCLUS also displays the R2 value of each variable with its own cluster
and the R2 value with its nearest cluster. The R2 value for a variable with the nearest cluster should be
low if the clusters are well separated. The last column displays the ratio of (1�R2own)=(1�R2nearest) for
each variable. Small values of this ratio indicate good clustering.

Bivariate analysis and variable clustering can create useful e¢ ciencies in the scorecard building process
by helping one pare an unwieldy number of variables down to a more manageable size.

However, knowing the variables one is working with and the business for which the scorecard is
being developed should always take precedence over any "rules" of scorecard building. Any variable that
experts in the business consider important in explaining the outcome variable should be retained for
further analysis, no matter what the statistics and procedures says.

 
 
 



Chapter 8

Di¤erent modeling techniques for
logistic regression

The previous chapters focused on estimating, testing and interpreting the coe¢ cient in a logistic regression
model. The examples discussed were characterized by having few independent variables, and there was
perceived to be only one possible model. In the previous chapter, measures were discussed to reduce the
number of independent variables, but not methods for �tting the model and obtaining a �nal model.

Two methods of modeling as shown by Hosmer and Lemeshow (2000) will be discussed in this chapter:

� Stepwise logistic regression

� Best subsets logistic regression

Both of these methods are utilized in credit scoring methodologies and it is often the choice of the
developer which one is used.

8.1 Stepwise logistic regression

In stepwise logistic regression, variables are selected for inclusion or exclusion from the model in a
sequential fashion based solely on statistical criteria. The stepwise approach is useful and intuitively
appealing in that it builds models in a sequential fashion and it allows for the examination of a collection
of models which might not otherwise have been examined.

The two main versions of the stepwise procedure are forward selection followed by a test for backward
elimination or backward elimination followed by forward selection. Forward selection starts with no
variables and selects variables that best explains the residual (the error term or variation that has not yet
been explained.) Backward elimination starts with all the variables and removes variables that provide
little value in explaining the response function. Stepwise methods are combinations that have the same
starting point by consider inclusion and elimination of variables at each iteration. SAS has an option
that allows the modeler to perform this type of analysis.

84

 
 
 



85

Any stepwise procedure for selection or deletion of variables from a model is based on a statistical
algorithm that checks for the "importance" of variables and either includes or excludes them on the basis
of a �xed decision rule. The "importance" of a variable is de�ned in terms of a measure of statistical
signi�cance of the coe¢ cient for the variable. The statistic used depends on the assumptions of the model.
In stepwise linear regression an F-test is used since the errors are assumed to be normally distributed.
In logistic regression the errors are assumed to follow a binomial distribution, and the signi�cance of
the variable is assessed via the likelihood ratio chi-square test. At any step in the procedure the most
important variable, in statistical terms, is the one that produces the greatest change in the log-likelihood
relative to a model not containing the variable.

As discussed earlier, a polychotomous variable with k levels is appropriately modeled through its k�1
design/dummy variables. Since the magnitude of G depends on its degrees of freedom, any procedure
based on the likelihood ratio test statistic, G, must account for the possible di¤erences in degrees of
freedom between variables. This is done by assessing the signi�cance through the p-value for G.

The algorithm for forward selection followed by backward elimination in stepwise logistic regression is
described below. Any variants of this algorithm are simple modi�cations of this procedure. The method
is described by considering the statistical computations that a computer must perform at each step of
the procedure.

8.1.1 Step 0

Suppose that a total of p possible independent variables are available, all of which are judged to be
predictive in studying the outcome variable (using methods described in the previous chapter.) Step 0
starts with a �t of the "intercept only model" and an evaluation of its log-likelihood, L0. This is followed
by �tting each of the p possible univariate logistic regression models and comparing their respective
log-likelihoods. Let the value of the log-likelihood for the model containing the variable xj at step 0
be denoted by L(0)j . (The subscript j refers to the variable that has been added to the model and the
superscript (0) refers to the step and this notation will be used to keep track of both the step number
and the variable in the model.)

Let the value of the likelihood ratio test for the model containing xj versus the intercept only model
be denoted by G(0)j = �2(L0 � L(0)j ) and its p-value be denoted by p(0)j . This p-value is determined by
the tail probability

P [�2(�) > G
(0)
j ] = p

(0)
j

where � = 1 if xj is continuous and � = k � 1 if xj is polytochomous with k categories.

The most important variable is the one with the smallest p-value. If this variable is denoted by xe1 ,
then pe1 = min(p

(0)
j ), where min stands for selecting the minimum of the quantities enclosed in the

brackets. The subscript e1 is used to denote that the variable is a candidate for entry at step 1. For
example, if x2 had the smallest p-value, then p

(0)
2 = min(p

(0)
j ), and e1 = 2. Just because xe1 is the most

important variable, there is no guarantee that it is "statistically signi�cant". For example, if p(0)e1 = 0:83,
the most probable conclusion is that there is little point in continuing the analysis, because the "most
important" variable is not related to the outcome. On the �ip side, if p(0)e1 = 0:003, one would like to
look at the logistic regression containing this variable and see if there are any other variables that are
important, given that xe1 is in the model.

A crucial aspect of using stepwise logistic regression is the choice of an "alpha" (�) level to judge
the importance of the variables. Lee and Koval have done some research on the appropriate signi�cance
level for forward stepwise logistic regression and it will be discussed in the following chapter. Let pE
denote the signi�cance level chosen, where E stands for entry. Whatever the choice for pE , a variable is
judged important enough to include in the model if the p-value for G is less than pE . Thus, the program
proceeds to step 1 if p(0)e1 < pE , otherwise it stops.
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8.1.2 Step 1

Step 1 commences with a �t of the logistic regression model containing xe1 . Let L
(1)
e1 denote the log-

likelihood of this model. To determine whether any of the remaining p� 1 variables are important once
the variable xe1 is in the model, the p � 1 logistic regression models containing xe1 and xj are �tted,
where j = 1; 2; 3; :::; p and j 6= e1. For the model containing xe1 and xj , let the log-likelihood be denoted
by L(1)e1j , and let the likelihood ratio chi-square statistic of this model versus the model containing only

xe1be denoted by G
(1)
j = �2(L(1)e1 � L

(1)
e1j
). The p-value for this statistic is denoted by p(1)j . Let the

variable with the smallest p-value at step 1 be xe2where pe2 = min(p
(1)
j ). If this value is less than pE ,

proceed to step 2, otherwise stop.

8.1.3 Step 2

Step 2 begins with the �t of the model containing both xe1 and xe2 . It is possible that once xe2 has been
added to the model, xe1 is no longer important. Thus, step 2 includes a check for backward elimination.
In general this is accomplished by �tting models that delete one of the variables added in the previous
steps and assessing the continued importance of the variable removed.

At step 2, let L(2)�ej denote the log-likelihood of the model with xej removed. In similar fashion let the

likelihood ratio test of this model versus the full model at step 2 be G(2)ej = �2(L
(2)
�ej � L

(2)
e1e2) and p

(2)
�ej

be its p-value. To ascertain whether a variable should be deleted from the model, the program selects
that variable which, when removed, yields the maximum p-value. Denoting this variable as xr2 , then
p
(2)
r2 = max(p

(2)
�ej ; p

(2)
�e2). To decide whether xr2 should be removed, the program compares p

(2)
r2 to a second

pre-chosen "alpha" (�) level, pR, where "R" stands for remove. Whatever the value chosen for pR, it
must exceed the value of pE to guard against the possibility of having the program enter and remove the
same variable at successive steps. If one does not wish to exclude many variables once they have entered,
then one might choose pR = 0:9. A more stringent value would be used if a continued "signi�cant"
contribution were required. For example, if pE = 0:15 is used, then one might choose pR = 0:2. If the
maximum p-value to remove, p(2)r2 , exceeds pR then xr2 is removed from the model. If p(2)r2 is less than
pR, then xr2 remains in the model. In either case, the program proceeds to the variable selection phase.

At the forward selection phase, each of the p� 2 logistic regression models are �t containing xe1 , xe2
and xj , j = 1; 2; 3; :::; p, j 6= e1; e2. The program evaluates the log-likelihood for each model, computes
the likelihood ratio test versus the model containing only xe1 and xe2 and determines the corresponding
p-value. Let xe3 denote the variable with the minimum p-value, i.e., p(2)e3 = min(p

(2)
j ). If this p-value is

smaller than pE , p
(2)
e3 < pE , then the program proceeds to step 3, otherwise it stops.

8.1.4 Step 3

The procedure for step 3 is identical to that of step 2. The program �ts the model including the variable
selected during the previous step, performs a check for backward elimination followed by forward selection.
The process continues in this manner until the last step, step S.
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8.1.5 Step S

This step occurs when:

� All p-variables have entered the model, or

� All the variables in the model have p-values to remove that are less than pR, and the variables not
included in the model have p-values to enter that exceed pE .

The model at this step contains those variables that are important relative to the criteria pE and pR.
These may or may not be the variables reported in a �nal model. For instance, if the chosen values of
pE and pR correspond to the modeler�s belief for statistical signi�cance, then the model at step S may
well contain the signi�cant variables. However, if the modeler used values for pE and pR which are less
stringent, the business might choose to select the variables for a �nal model from a table that summarizes
the results of the stepwise procedure.

There are two methods that may be used to select variables from a summary table; these are compa-
rable to methods commonly used in a stepwise linear regression. The �rst method is based on the p-value
of entry at each step, while the second is based on a likelihood ratio test of the model at the current step
versus the model at the last step.

Let q denote the arbitrary step in the procedure. In the �rst method one compares p(q�1)eq to a pre-

chosen signi�cance level such as � = 0:15. If the value of p(q�1)eq is less than �, then one moves to step q.

When p(q�1)eq exceeds �, one stops. Consider the model at the previous step for further analysis. In this
method the criterion for entry is based on a test of the signi�cance of the coe¢ cient for xeq conditional
on xe1 ; xe2 ; :::; xeq�1 being in the model. The degrees-of-freedom for the test are 1 or k� 1, depending on
whether xeq is continuous or polychotomous with k categories.

In the second method, one compares the model at the current step, step q, not the model at the
previous step, step q-1, but to the model at the last step, step S. One evaluates the p-value for the
likelihood ratio test of these two models and proceed in this fashion until this p-value exceeds �. This
tests that the coe¢ cients for the variables added to the model from step q to step S are all equal to zero.
At any given step it has more degrees-of-freedom than the test employed in the �rst method. For this
reason the second method may possibly select a larger number of variables than the �rst method.

It is well known that the p-values calculated in stepwise selection procedures are not p-values in
the traditional hypothesis testing context. Instead, they should be interpreted as indicators of relative
importance among variables. It is recommended that one err in the direction of selecting a relatively rich
model following stepwise selection. The variables so identi�ed should then be subjected to more intensive
analysis, using similar methods as in variable selection.

A common modi�cation of the normal stepwise selection procedure is to begin with a model at step
0 which contains known important covariates. Selection is the performed from among other variables.

One disadvantage of the normal stepwise selection procedures is that the maximum likelihood esti-
mates for the coe¢ cients of all variables not in the model must be calculated at each step. For large
data sets with large numbers of variables this can be quite time consuming. An alternative to a full
maximum likelihood analysis is available in SAS which selects new variables based on the Score test for
the variables not included in the model. Another alternative which is also less time consuming is based
on a multivariate Wald test. Although these are di¤erent selection methods, it does seem likely that an
important variable will be identi�ed, regardless of the method used.

One must be cautious when considering a model with many variables as signi�cant regressions may
be obtained from "noise" variables, completely unrelated to the outcome variable. A thorough analysis
that examines statistical and business signi�cance is
essential following any stepwise method.
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8.2 Best subsets logistic regression

An alternative to stepwise selection of variables for a model is best subset selection. In this approach a
speci�ed number of "best" models containing one, two, and three up to all variables is �tted.

Best subsets logistic regression may be performed in a straight forward manner using any program
capable of best subsets linear regression. SAS have implemented a best subsets option in its logistic
regression modules.

Applying best subsets linear regression software to perform best subsets logistic
regression is most easily explained using vector and matrix notation. Let X denote the n� (p+1) matrix
containing the values of all p independent variables for each subject with the �rst column containing 1
to represent the constant term.

The p variables may represent the total number of variables, or those selected after univariate analysis
of the variables before model building. Let V denote a n � n diagonal matrix with general element
vi = b�i(1 � b�i), where b�i is the estimated logistic probability computed using the maximum likelihood
estimate b� and the data for the ith case xi.
The expression for X and V are as follows:

X =

0BBBB@
1 x11 x12 ::: x1p
1 x21 x22 ::: x2p
: : : ::: :
: : : ::: :
1 xn1 xn2 ::: xnp

1CCCCA
and

V =

0BBBB@
b�1(1� b�1) 0 0 ::: 0

0 b�2(1� b�2) 0 ::: 0
: : : ::: :
: : : ::: :
0 0 0 ::: b�n(1� b�n)

1CCCCA :

As noted before, the maximum likelihood estimate is determined iteratively. It can be shown that:

b� = (X0VX)�1X0Vz

where z = Xb� +V�1r and r is the vector of residuals, r = (y � b�).
This representation of b� provides the basis for using linear regression software. Linear regression

packages that allows weights, produce coe¢ cient estimates identical to b� when used with zi as the
dependent variable and case weights vi equal to the diagonal elements of V. To replicate the results of
the maximum likelihood �t from a logistic regression package using a linear regression package, one can
calculate for each case, the value of the dependent variable as follows:

zi = (1;x0i)
b� + (yi�b�i)b�i(1�b�i)

= b�0 +Pp
j=1

b�jxij + (yi�b�i)b�i(1�b�i)
= ln( b�i

1�b�i ) + (yi�b�i)b�i(1�b�i)
and a case weight

vi = b�i(1� b�i):
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Note that all one needs is access to the �tted values, b�i, to compute the values of zi and vi. Next,
run a linear regression program using the values of zi as the dependent variable, the values of xi for the
vector of independent variables and the values of vi as the case weights.

Proceeding with the linear regression, the residuals from the �t are:

(zi � bzi) = (yi � b�i)b�i(1� b�i)
and the weighted residual sum-of-squares produced is:

nX
i=1

vi(zi � bzi)2 = nX
i=1

(yi � b�i)2b�i(1� b�i)
which is �2, the Pearson chi-square statistic from a maximum likelihood logistic
regression program. It follows that the mean residual sum-of-squares is s2 = �2=(n�p�1). The estimates
of the standard error of the estimated coe¢ cients produced by the linear regression program are s times
the square root of the diagonal elements of the matrix (X0VX)�1. To obtain the correct values given

by SE(b�j) =qdV ar(b�j), one needs to divide the estimates of the standard error produced by the linear
regression by s, the square root of the mean square error (standard error of the estimate).

The subsets of variables selected for "best" models depend on the criterion chosen for "best". In best
subsets linear regression, three criteria have primarily been used to select variables. Two of these are
based on the the concept of the proportion of the total variation explained by the model. These are R2,
the ratio of the regression sum-of-squares to the total sum-of-squares, and adjusted R2 (or AR2), the
ratio of the regression mean squares to the total mean squares. Since the adjusted R2 is based on mean
squares rather than sums-of-squares, it provides a correction for the number of variables in the model. If
R2 is used, the best model is always the model containing all p variables, a result that is not very helpful.
An extension for best subsets logistic regression is to base the R2 measure on deviance, rather than the
Pearson chi-square.

However, the use of R2 is not recommended for best subsets logistic regression. The third measure
is a measure of predictive squared error, developed by Colin Mallows, Cq. It is normally denoted as Cp,
but here p refers to the total number of possible variables, so it is denoted as Cq where q refers here
to some subset of variables. Mallows proposed this statistic as a way of facilitating comparisons among
many alternative subset regressions in 1973.

For a subset q of p variables:

Cq =
�2 + ��

�2=(n� p� 1) + 2(q + 1)� n

where �2 =
P�

(yi � b�i)2= [b�i(1� b�i)]	, the Pearson chi-square statistic from the model with p variables
and �� is the multivariate Wald test statistic for the hypothesis that the coe¢ cients for the p�q variables
not in the model are equal to zero. Under the assumption that the model �t is the correct one, the
approximate expected values of �2 and �� are (n � p � 1) and p � q respectively. Substitution of these
approximate expected values into the expression for Cq yields Cq = q + 1. Hence, models with Cq near
q + 1 are candidates for the best model.

Use of best subset linear regression should help select, in the same way as its application in linear
regression does, a core of q important covariates from the p possible covariates.
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Some programs, like SAS Proc Logistic, provides best subsets selection of covariates based on the
Score test for the variables in the model. For example, the best two variable model is the one with the
largest Score test among all the two variable models. The output lists the covariates and Score test for
a user speci�ed number of best models of each size. The di¢ culty one faces when presented with this
output is that the Score test increases with the number of variables in the model. An approximation for
Cq can be obtained from Score test output in a survival time analysis. The �rst assumption is that the
Pearson chi-square test statistic is equal to its mean, e.g.�2 � (n� p� 1). The next assumption is that
the Wald test statistic for the p� q excluded covariates may be approximated by the di¤erence between
the values of the Score test for all p covariates and the Score test for q covariates, namely ��q � Sp � Sq:
This results in the following approximation:

Cq = �2+��

�2=(n�p�1) + 2(q + 1)� n
� (n�p�1)+(Sp�Sq)

1 + 2(q + 1)� n
� Sp � Sq + 2q � p+ 1

The value Sp is the Score test for the model containing all p covariates and is obtained from the
computer output. The value of Sq is the Score test for the particular subset of q covariates and its value
is also obtained from the output.

The advantage of best subsets logitic regression is that many more models can be quickly screened
than was possible with other modeling appproaches to variable identi�cation. There is, however, one
potential disadvantage with the best subset approach: one must be able to �t the model containing
all possible covariates. In analyses that include a large number of variables, this may not be possible.
Numerical problems can occur when one over-�ts a logistic regression model. If the model has many
variables, one runs the risk that the data are too thin to be able to estimate all the parameters. If the
full model proves to be too rich, then some selective weeding out of obviously unimportant variables with
univariate tests may remedy this problem. Another approach is to perform the best subset analysis using
several smaller "full" models.

As is the case with any statistical selection method, the business importance of all variables should
be addressed before any model is accepted as the �nal model.

8.3 Testing the importance of variables in the model

Following the �t of the multivariate model, the importance of each variable included in the model should
be veri�ed. This should include an examination of the Wald statistic for each variable and a comparison
of each estimated coe¢ cient with the coe¢ cient from the model containing only that variable. Variables
that do not contribute to the model based on these criteria should be elminated and a new model should
be �t. The new model should be compared to the old, larger model used in the likelihood ratio test.
Also, the estimated coe¢ cients for the remaining variables should be compared to those from the full
model. In particular, one should be concerned about variables whose coe¢ cients have changed markedly
in magnitude. This indicates that one or more of the excluded variables was important in the sense
of providing a needed adjustment of the e¤ect of the variable that remained in the model. The other
explanation could be that one or more of the excluded vairables have been highly correlated with the
variables in the model and multicollinearity occurred.

 
 
 



91

Another check is to look at the overall Gini index of the model and the Gini index when the speci�c
variable is excluded from the model. If there is not much of a di¤erence whether the variable is included
or not, it might indicate that the variable is not needed in the model. Keeping such variables in the
model might result in an unstable model that is over-�tted to the data sample. In credit scoring, it is
important that the model can be generalized, so a more parsimonious model is always preferred. This
process of deleting, re�tting and verifying continues until it appears that all of the important variables
are included in the model and those excluded are clinically and/or statistically unimportant.

Any variable that was not selected for the initial multivariate model can now be added back into the
model. This step can be helpful in identifying variables that, by themselves, are not signi�cantly related
to the outcome but make an important contribution in the presence of other variables.

8.4 Analysis of the variables in the model

Once a model has been obtained that is felt to contain all the essential variables, one should look more
closely at the variables in the model. The question of appropriate categories should be addressed at the
univariate stage. For continuous variables, one should check the assumption of linearity in the logit. It
is common in credit scoring though, that even continuous variables are bucketed and used as categorical
variables in the model. This eases implementation, which is a hugely important in credit scoring.

 
 
 



Chapter 9

Best signi�cance level in forward
stepwise logistic regression

The process of selecting a subset of variables from a large number of variables is called model-building.
The main purpose of model-building in credit scoring is prediction. Forward stepwise logistic regression
is widely used in credit scoring. This procedure, which was explained in detail in the previous chapter,
involves selection and stopping criteria. The standard stopping criterion is the �2 based on a �xed �
level. The usual conventional value for � has been 0:05. It is not known whether � = 0:05 is the best
value for the purpose of prediction in the logistic model. In this chapter research that was done by Lee
and Koval(1997) will be given. They used Monte Carlo simulations to determine the best signi�cance
level for the stopping criterion �2(�) in conjunction with forward stepwise logistic regression in terms of
the estimated true error rate of prediction ( dERR).
9.1 Performance criterion

Estimated true error rate of prediction ( dERR) is used as the performance criterion and is de�ned as:
( dERR) = ARR+ b!

where ARR is the apparent error rate of the prediction and b! is an estimate for the bias of ARR. The
apparent error rate is estimated by the resubstitution method and this tends to underestimate the true
error rate because the data is used twice, both to �t the model and to evaluate its accuracy.

There are several nonparametric methods of estimating ! including cross-validation, jack-kni�ng and
bootstrapping. However, estimates of ! must be computed at each step in the forward stepwise procedure.
Thus, these nonparametric methods of estimating ! are not always feasible as it requires a great deal of
computing time.

9.2 Selection criteria

Suppose k � 1 variables have been previously selected and the kth variable is considered for inclusion
in the model. The components of � can be partitioned as � = (�k�1; �k). The hypotheses of interest

are H0 : �k = 0 and H1 : �k 6= 0. Let b�0 denote the maximum likelihood estimation under the null

hypothesis (restricted MLE) and b�1 denote the maximum likelihood estimation under the alternative

hypothesis (unrestricted MLE), that is b�0 = (b�k�1,0) and b�1 = (b�k�1,b�k).
92
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Three selection criteria were used in this study. The likelihood ratio statistic (LR) is:

LR = 2
h
L(b�1)� L(b�0)i

= 2
h
L(b�k�1; b�k)� L(b�k�1; 0)i

where L is the log-likelihood function.

The Wald Statistic (WD) is de�ned as

WD = b�kC�1k�kb�k
where C is the variance-covariance matrix of b�.
The score statistic is

SC = U0(b�0)I�1(b�0)U(b�0)
= U0(b�k�1; 0)I�1(b�k�1; 0)U(b�k�1; 0)

where U(�) = @
@�L(�) is the e¢ cient score vector, and I(�) = �E

h
@
@�U(�)

i
is Fisher�s information

matrix.

These three criteria were used with the standard stopping criterion �2� in the forward stepwise logistic
regression. 19 possible values of � were considered, from 0:05 to 0:95 in steps of 0:05. The best � level
is de�ned to be that for which the grand mean of dERR over all sampling situations is a minimum.
9.3 Monte Carlo Experimental Design

The use of real data is of limited value in evaluating estimators, as they o¤er a limited range of sample
size, number of predictor variables and distribution of dependent and predictor variables. The choice of
the data set may in�uence the conclusions and limit the generalizability of the results. Simulation studies
can be used to obtain results over a wide range of sampling situations.

There are four steps in the general design of a simulation experiment:

9.3.1 Step 1:

The process starts with the generation of predictor variables, Xi, i = 1; 2; :::; N .
Generate (XijY = 0), i = 1; 2; :::n0 from population �0 and generate (XijY = 1), i = 1; 2; :::n1 from

population �1, with N = n0 + n1:

9.3.2 Step 2:

This step computes b�, the maximum likelihood estimates of �. b�i, i = 1; 2; :::; p are obtained iteratively
via reweighted least squares.
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9.3.3 Step 3:

Computations of estimated probabilities P (Y = 1jXi) = b�i(X). b�i(X), i = 1; 2; :::; N are computed
using Xi from step 1 and � from step 2.

9.3.4 Step 4:

In this step, the predicted dependent variable is generated,bYi. bYi is equal to 0 if b�i(X) � 1
2 and

bYi is
equal to 1 if b�i(X) > 1

2 .

Repeat steps 1 through 4 twenty times.

Two multivariate distributions were considered for the predictor variables, the multivariate normal
and the multivariate binary.

9.4 Multivariate normal case

Suppose that X � Np(0;�) in population �0 and X � Np(�;�) in population �1. The parameters �
and � are reparameterized in terms of four factors, P , V , �2 and D.

The �rst factor P is the number of predictor variables. The second factor V �(0; 1] determines the
eigenvalues �i, i = 1; 2; :::; P of � by the means of the expression

�i = aV
i�1 + �; for i = 1; 2; :::; P

where

a = f 0:9P (1� V )(1� V
P ) if 0 < V < 1

1� �, if V = 1 :

A value of � = 0:1 was chosen as a lower bound on the smallest eigenvalue �p to avoid the di¢ culties
of nearly singular matrices. The eigenvalues re�ect the degree of interdependence among the predictor
variables. The variables are highly dependent near V = 0 and highly independent near V = 1. Since
� = E�E0, where E is the matrix of eigenvectors of � and � is the diagonal matrix of eigenvalues �i,
then once the �i were speci�ed, a random orthogonal matrix E was generated and used to create �.

The third factor is the Mahalanobis distance between �0 and �1 de�ned by �2 = �0��1�. It
describes the separation of the two populations. The fourth factor D determines the elements �i of the
vector �. As D varies from 0 to 1, the rate of increase in �2 decreases as the number of included variables
increases from 1 to P . Let

��i = (bD
i�1)1=2 for i = 1; 2; :::; P and 0 < D � 1

where

b = f �
2(1�D)=(1�Dp) if 0 < D < 1

�2=P , if D = 1
:
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Elements �i of � were then obtained from � = R�� where � = RR0 is the Cholesky decomposition
of �.

For a P -variate observation X from Np � (�;�), P independent N(0; 1) values Z 0s were �rst gener-
ated. The vector Z was then transformed to the required vector X by X = �+RZ, with � = RR0 as
above.

The levels of the �ve factors P , V , �2, D and N must be speci�ed. In this study Lee and Koval
(1997) used a second-order central surface design. This design allows for the �t of a model with linear
and quadratic e¤ects in all factors and �rst-order interactions between all factors. The former was of
particular interest in this study because of the possibility of a linear trend of the best � in one or more
of the factors. In addition this design permitted the examination of �ve levels of all �ve factors using
only 48 sampling situations (combination of levels). The alternative of a 35 factorial design would only
evaluate three levels of each factor, yet demand 243 sampling situations. This is very time-consuming,
even on the fastest computer.

To describe the experimental design, each point in the factor space is regarded as a quintuplet of
factor levels, written symbolically as (P , V , �2, D, N). Each factor has �ve levels, which are taken to be
equally spaced on a suitable scale and are coded as (�2;�1; 0; 1; 2). These levels are termed "low star",
"low factorial", "center", "high factorial", and "high star" respectively. The values of the 5 factors for
this study is given in the table below:

Level (Code)
Low star Low factorial Center High factorial High star

Factor (�2) (�1) (0) (1) (2)
P 5 10 15 20 25
V 0:2 0:4 0:6 0:8 1
�2 1:0 1:5 2:0 2:5 3:0
D 0:2 0:4 0:6 0:8 1:0
N 100 150 200 250 300

The design consisted of 48 sampling situations or points of three types:

� 25 = 32 factorial points which were all possible combinations of the �1 levels for each factor

� 10 star points which have the �2 or +2 level, and

� 6 center points which have the 0 levels.

Note the following:

� The values of �2 follows a narrow range, because small values of �2 provide no discrimination
between populations and large values lead to complete separation which means that the likelihood
estimates are not unique.

� Logistic regression models require iterative solution, so the sample size must be a reasonable multiple
of the number of parameters.

� Two equal-sized samples were drawn from each population, that is n0 = n1 = N=2.
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9.5 Multivariate binary case

The multivariate binary variables were generated from the second-order Bahadur model. Let
X = (X1; X2; :::; XP ), where Xj is a Bernoulli random variable with pj = P (Xj = 1) and 1 � pj =
P (Xj = 0), j = 1; 2; :::; P . Set Zj = (Xj � pj)= [pj(1� pj)]1=2 and �(jk) = E(ZjZk). According to Lee
and Koval (1997), the second-order Bahadur model for each population is then given by

fi(x) = P (X = xj�i)

=
PY
j=1

p
xij
ij (1� pij)1�xij

h
1 +

P
j<k �i(jk)zijzik

i
, i = 0; 1

For simplicity, it was assumed that

�i(jk) = �i; for all j 6= k; i = 0; 1

and

pij = pi; for all j; i = 0; 1:

When higher-order correlations are set to zero in the original Bahadur model to yield to his second-
order model, severe limitations are placed on �i(jk) to ensure that the fi(x) is a proper density function.
Letting t =

PP
j=1 xj , Bahadur has shown that the second-order Bahadur model yields a valid probability

distribution if and only if

� 2

P (P � 1)Min(
p

1� p ;
1� p
p
) � � � 2p(1� p)

(P � 1)p(1� p) + 1=4� 
0
where


0 =Mint

n
[t� (P � 1)p� 1=2]2

o
� 1=4:

Let �uppi denote the upper bound of the above equation for population i. In any simulation in the
multivariate binary after having de�ned all the other parameters, Lee and Koval set �i = �uppi .

The simulations of the multivariate binary is made easier by the fact that the elements of the vector
x can be generated recursively. Suppose that x1; x2; :::; xk�1 have been generated. The conditional
distribution of xk can be expressed as

f(xkjxi; :::; xk�1) =
pxki (1� pi)1�xk

h
1 +

P
j<k �(jk)zjzk

i
h
1 +

P
j<(k�1) �(jk)zjzk

i :

If u is an observation from a uniform random distribution on [0; 1], then xk is de�ned according to
the rule

xk = f
0; if u � f(xk = 0jx1; :::; xk�1)
1; otherwise

:
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For the multivariate binary case, a full factorial design was de�ned with 3 levels for each of 4 factors.
For the factors which the multivariate binary share with the multivariate normal, the levels are those
central (rather than extreme) to the response surface design, that is, those denoted as low factorial, center
and high factorial. Thus, Lee and Koval used P = 10; 15 and 20; N = 150; 200 and 250. p0 and p1
was also taken such that p0 < p1; p0 = 0:2 with p1 = 0:3, 0:4 and 0:5; p0 = 0:4 with p1 = 0:5, 0:6 and
0:7; and p0 = 0:6 with p1 = 0:7, 0:8 and 0:9: These 9 pairs of (p0; p1) give rise to 3 levels of p0 (0:2; 0:4
and 0:6) and 3 levels of (p1 � p0) (0:1; 0:2 and 0:3): Let the symbols B and M denote p0 and (p1 � p0),
respectively.

9.6 Results of the simulations experiments

This section presents the results found by Lee and Koval (1997)of the sampling experiments in the
multivariate normal and multivariate binary cases. It has two main purposes: (1), to recommend the
best � level of signi�cance for the �2(�) stopping criterion; and (2), to investigate the e¤ects of the �ve
factors P; V; �2; D and N on the best � level in the multivariate normal case, and of the four factors P;
B; M and N on the best � level in the multivariate binary case.

9.6.1 Multivariate Normal Case

For each of the three selection criterion, the mean (over all 48 sampling situations) of ARR and of
Bias were plotted against the � level of signi�cance. This gave a monotonically decreasing ARR and a
monotonically increasing Bias function of the � level. In other words, ARR and Bias are monotonically
decreasing and increasing, respectively, functions of the number of predictor variables in the model.

The mean (over all 48 sampling situations) of dERR = (ARR+Bias) decreases from a value of 0:167
at � = 0:05 to a minimum of 0:164 at � = 0:20 increasing again to a maximum of 0:178 at � = 0:95: The
minimum value of dERR occurs at � = 0:20; for all three selection criteria. The best � levels are between
0:05 and 0:4; and are the same for all three selection criteria.

Analysis of variance was done on the response surface design. The lack-of-�t test was not signi�cant
(p = 0:308) and it was therefore concluded that the quadratic surface �ts the data well. Only the factor
P was statistically signi�cant (p < 0:01) while the factor D is marginally not signi�cant (p = 0:09). A
plot of the best � level against P showed a linear function of the form "best � = P=100".

9.6.2 Multivariate Binary Case

As for the multivariate normal case, the mean of ARR is an increasing function, and the mean of Bias is
a decreasing function of the � of the stopping criterion. Moreover, the mean of dERR = (ARR + Bias)
decreases from a value of 0:260 at � = 0:05 to a minimum of 0:257 at � = 0:15 and increasing again to
a maximum of 0:266 at � = 0:95: The minimum value of dERR occurs at � = 0:15 for all three selection
criteria. The best � level for 81 sampling situations were between 0:05 and 0:40 as in the multivariate
normal case.

An analysis of variance was employed to assess the e¤ects of the four factors P , B, M and N on
the best � levels. It was assumed that the e¤ects of third-order and fourth-order interactions could be
ignored.

The factor M and P were highly signi�cant (p < 0:001) and the factor B was moderately signi�cant
(p = 0:020), whereas the interaction PB was marginally non-signi�cant (p = 0:076).
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9.7 Conclusion

Lee and Koval (1997) studied the determinants of the best a level for the �2(�) stopping criterion for the
purpose of prediction. The best choice of � varies between 0:05 and 0:4 in both multivariate normal and
multivariate binary cases.

In the multivariate normal case, the choice of � depends upon the factor P . The result for the factor
P suggests that � should increase with the number of predictor variables; in particular, � should be set
at P=100, at least for P in the range 5 to 25. This increase of � with P is in agreement with the idea
that when there are many predictor variables, a particular variable has less chance of selection; in this
situation a larger � level should be used to give each variable a chance of being selected comparable to
that when there are a smaller number of variables.

In the multivariate binary case, the choice of � depends upon the factors P , M(= p1 � p0) and
B(= p0). For the factor P , the best � level increases with the number of predictor variables in the
data according to the formula best � = P=100; this agrees with the multivariate normal case. For the
factor M , the di¤erence between the means of the binary variables in population 1 and population 0,
the non-linearity of the change of best � with M makes it di¢ cult to formulate a rule. Similarly for the
factor B, the mean of the binary variables for the �rst population, although the best � changes with B,
it does so in a non-linear way.

These results imply that uniform speci�cation of the best � level for the standard �2(�) stopping crite-
rion cannot be made. However, if a recommendation had to be made, Lee and Koval would recommend
that 0:15 � � � 0:20 be used, with a further re�nement that, if 5 � P � 25, then � = P=100.

 
 
 



Chapter 10

Assessing the �t and predictive
power of the model

This chapter is started with the assumption that one is at least preliminarily satis�ed with the e¤orts at
the model building stage. Now the question is how e¤ectively the model one has describes the outcome
variable. This is referred to as its goodness-of-�t, or in credit scoring, as the predictive power of the
model.

If one intends to assess the goodness-of-�t of the model, then there should be some speci�c ideas
about what it means to say that a model �ts.

Suppose the observed sample values of the outcome variable in vector form is denoted as y where
y0= (y1; y2; y3; :::; yn). Denote the values predicted by the model, or the �tted values as by where by0 =
(by1; by2; by3; :::; byn).The conclusion is that the model �ts if summary measures of the distance between y
and by are small and the contribution of each pair (yi; byi), i = 1; 2; :::; n to these summary measures is
unsystematic and is small relative to the error structure of the model. A complete assessment of the
�tted model involves both the calculation of summary measures of the distance between y and by and a
thorough examination of the individual components of these measures.

When the model building stage has been completed, a series of logical steps may be used to assess the
�t of the model. This includes the computation and evaluation of overall measures of �t, examination of
the individual components of the summary statistics and examination of other measures of the di¤erence
or distance between the components of y and by.
10.1 Summary measures of Goodness-of-�t

This section is largely based on the work done by Hosmer and Lemeshow (2000). Summary measures are
routinely provided as output with any �tted model and give an overall indication of the �t of the model.
Summary statistics, by nature, may not provide information about the individual model components.
A small value for one of these statistics does not rule out the possibility of some substantial and thus
interesting deviation from �t for a few subjects. On the other hand, a large value for one of these statistics
is a clear indication of a substantial problem with the model.
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Before discussing speci�c goodness-of-�t statistics, one must �rst consider the e¤ect the �tted model
has on the degrees-of-freedom available for the assessment of model performance. The term �covariate
pattern� is used to describe a single set of values for the covariates in the model. For example, in a
data set containing values of age, spend, number of credit cards and other products with the bank, the
combination of these factors may result in as many di¤erent covariate patterns as there are observations.
On the other hand, if the model contains only number of credit cards and other products with the bank,
both coded at two levels each, there are only four possible covariate patterns. During model development,
it is not necessary to be concerned about the number of covariate patterns. The degrees-of-freedom for
tests are based on the di¤erence in the number of parameters in competing models, not on the number of
covariate patterns. However, the number of covariate patterns may be an issue when the �t of a model
is assessed.

Goodness-of-�t is assessed over the constellation of �tted values determined by the covariates in the
model, not the total collection of covariates. Suppose that our �tted model contains p independent
variables, x0 = (x1; x2; x3; :::; xp) and let J denote the number of distinct values of x observed. If some
observations have the same value of x, then J < n. Denote the number of observations with x = xj by
mj , j = 1; 2; :::; J .

It follows that
P
mj = n. Let yj denote the number of events, y = 1, among the mj subjects with

x = xj . It follows that
P
yj = n1, the total number of observations with y = 1:The distribution of

the goodness-of-�t statistics is obtained by letting n become large. If the number of covariate patterns
also increases with n then each value of mj tends to be small. Distributional results obtained under the
condition that only n becomes large are said to be n-asymptotics. If J < n is �xed and let n become
large then each value of mj also tends to become large. Distributional results based on each mj becoming
large are said to be based on m-asymptotics.

Initially assume that J � n. This presents the greatest challenge in developing distributions of
goodness-of-�t statistics.

10.1.1 Pearson Chi-square and Deviance

In linear regression, summary measures of �t as well as diagnostics for case-wise e¤ect on the �t, are
functions of a residual de�ned as the di¤erence between the observed and �tted value (y� by). In logistic
regression there are several possible ways to measure the di¤erence between the observed and �tted values.
To emphasize the fact that the �tted values in logistic regression are calculated for each covariate pattern
and depend on the estimated probability for that covariate pattern, denote the �tted value for the jth

covariate pattern as yj where

byj = mjb�j = mj
ebg(xj)

1 + ebg(xj)
where bg(xj) is the estimated logit
Consider two measures of of the di¤erence between the observed and �tted values: the Pearson residual

and the deviance residual. For a particular covariate pattern the Pearson residual is de�ned as follows:

r(yj ; b�j) = (yj �mjb�j)p
mib�j(1� b�j) :

The summary statistic based on these residuals is the Pearson chi-square statistic

�2 =
JX
j=1

r(yj ; b�j)2:
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The deviance residual is de�ned as

d(yj ; b�j) = ��2 �yj ln� yj
mjb�j

�
+ (mj � yj) ln

�
(mj � yj)
mj(1� b�j)

��� 1
2

where the � sign is the same sign as (yj�mjb�j). For covariate patterns with yj = 0 the deviance residual
is

d(yj ; b�j) = �q2mj j ln(1� b�j)j
and the deviance residual when yj = mj is

d(yj ; b�j) = �q2mj j ln(b�j)j:
The summary statistic based on the deviance residuals is the deviance:

D =

JX
j=1

d(yj ; b�j)2:
The distribution of the statistics �2 and D under the assumption that the �tted model is correct in

all aspects is supposed to be chi-square with degrees-of-freedom equal to J � (p + 1). For the deviance
this statement follows from the fact that is the likelihood ratio test statistic of a saturated model with J
parameters versus the �tted model with p+ 1 parameters. Similar theory provides the null distribution
of �2. The problem is that when J � n, the distribution is obtained under n-asymptotics, and hence the
number of parameters is increasing at the same rate as the sample size. Thus, p-values calculated for
these two statistics when J � n, using the �2(J � p� 1) distribution, are incorrect.

One way to avoid these di¢ culties with the distribution of �2 and D when J � n is to group the data
in such a way that m-asymptotics can be used. To understand the rationale behind the various grouping
strategies that have been proposed, it is helpful to think of �2 as the Pearson and D as the log-likelihood
chi-square statistics that result from a 2 � J table. The rows of the table correspond to the two values
of the outcome variable, y = 1; 0. The J columns correspond to the J possible covariate patterns. The
estimate of the expected value under the hypothesis that the logistic model in question is the correct
model for the cell corresponding to the y = 1 row and the jth column is mjb�j : It follows that the estimate
of the expected value for the cell corresponding to the y = 0 row and the jth column is mj(1� b�j). The
statistics �2 and D are calculated in the usual manner from this table.

Thinking of the statistics as arising from the 2 � J table gives some intuitive insight as to why one
cannot expect them to follow the �2(J � p� 1) distribution. When chi-square tests are computed from a
contingency table the p-values are correct under the null hypothesis when the estimated expected values
are �large�in each cell. This condition holds under m-asymptotics.

In the 2 � J table described above (J � n) the expected values are always quite small since the
number of columns increases as n increases. To avoid this problem the columns may be collapsed into
a �xed number of groups, g, and then observed and expected frequencies can be calculated. By �xing
the number of columns, the estimated expected frequencies become large as n becomes large and thus
m-asymptotics hold.

In credit scoring, continuous variables are mostly also bucketed, so a �xed number of covariate patterns
will exist. Therefore m-asymptotics will hold.
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10.1.2 The Hosmer-Lemeshow Tests

Hosmer and Lemeshow (2000) proposed grouping based on the values of the estimated probabilities.
Suppose that J = n. In this case the n columns are thought of as corresponding to the n values of the
estimated probabilities, with the �rst column corresponding to the smallest value, and the nth column to
the largest value. Two grouping strategies were proposed as follows:

� Collapse the table based on percentiles of the estimated probabilities, and

� Collapse the tables based on �xed values of the estimated probability

With the �rst method, use of g = 10 groups result in the �rst group containing the n1 = n=10
observations having the smallest estimated probabilities and the last group containing the n10 = n=10
observations having the largest estimated probabilities. With the second method, use of g = 10 groups
result in cut-o¤ points de�ned at the values k=10, k = 1; 2; : : : ; 9, and the groups contain all observations
with estimated probabilities between adjacent cut-o¤ points. For example, the �rst group contains all ob-
servations whose estimated probability is less than 0:1, while the tenth group contains those observations
whose estimated probabilities is greater than 0:9. For the y = 1 row, estimates of the expected values
are obtained by summing the estimated probabilities over all observations in a group. For the y = 0 row,
the estimated expected value is obtained by summing, over all observations in the group, one minus the
estimated probability.

For either grouping strategy, the Hosmer-Lemeshow goodness-of-�t statistic, bC, is obtained by calcu-
lating the Pearson chi-square statistic from the g�2 table of observed and estimated expected frequencies.
A formula de�ning the calculation of bC is as follows:

bC = kX
g=1

(ok � nk�k)2
nk�k(1� �k)

where nk is the total number of observations in the kth group, ck denotes the number of covariate patterns
in the kth decile,

ok =

ckX
j=1

yj

is the number of responses among the ck covariate patterns, and

�k =

ckX
j=1

mjb�j
nk

is the average estimated probability.

Hosmer and Lemeshow (2000) demonstrated that, when J = n and the �tted logistic regression model
is the correct model, the distribution of the statistic bC is well approximated by the chi-square distribution
with g � 2 degrees of freedom, �2(g � 2). It is also likely that �2(g � 2) approximates the distribution
when J � n:
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An alternative to the denominator shown in the above equation for bC, is obtained if one considers ok
to be the sum of independent non-identically distributed random variables. This suggests that one should
standardize the squared di¤erence between the observed and expected frequency, where the estimated
expected frequency is given by

ckX
j=1

mjb�j(1� b�j);
then

ckX
j=1

mjb�j(1� b�j) = nk�k(1� �k)� ckX
j=1

mj(b�j � �k)2:
Additional research has shown that the grouping method based on percentiles of the estimated prob-

abilities is preferable to the one based on �xed cut-o¤ points in the sense of better adherence to the
�2(g�2).distribution, especially when many of the estimated probabilities are small. Thus, unless stated
otherwise, bC is based on the percentile-type of grouping, usually with g = 10 groups. Most logistic regres-
sion software packages provide the capability to obtain bC and its p-value, usually based on 10 groups. In
addition many packages provide the option to obtain the 10� 2 table listing the observed and estimated
expected frequencies in each decile.

The distribution of bC depends on m-asymptotics, thus the appropriateness of the p-value depends on
the validity of the assumption that the estimated expected frequencies are large. In general, all expected
frequencies must be greater than 5.

When the number of covariate patterns are less than n, the possibility exists that one or more of the
empirical deciles will occur at a pattern with mj > 1. If this happens, the value of bC will depend, to some
extent, on how these ties are assigned to deciles. The use of di¤erent methods to handle ties by di¤erent
software packages is not likely to be an issue unless the number of covariate patterns is so small that
assigning all tied values to one decile results in a huge imbalance in decile size, or worse, considerably
fewer than 10 groups. In addition, when too few groups are used to calculate bC , there is the risk that
one will not have the sensitivity needed to distinguish observed from expected frequencies. When bC is
calculated from fewer than 6 groups, it will almost always indicate that the model �ts.

The advantage of a summary goodness-of-�t statistic like bC is that it provides a single, easily inter-
pretable value that can be used to assess the �t. The great disadvantage is that in the process of grouping
one may miss an important deviation from �t due to a small number of data points. Therefore, before
�nally accepting that a model �ts, it is advised to perform an analysis of the individual residuals and
relevant diagnostic statistics.

Tables listing the observed and estimated expected frequencies in each decile contain valuable de-
scriptive information for assessing the adequacy of the �tted model over the deciles. Comparison of the
observed to expected frequencies within each cell may indicate regions where the model does not perform
statistically.

A complete assessment of �t is a multi-faceted investigation involving summary tests and measures
as well as diagnostic statistics. This is especially important to keep in mind when using overall goodness-
of-�t tests. The desired outcome for most investigators is the decision not the reject the null hypothesis
that the model �ts. With this decision one is subject to the possibility of the Type II error and hence
the power of the test becomes an issue. It has been shown that none of the overall goodness-of-�t tests
is especially powerful for small to moderate sample sizes n < 400.
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The large sample normal approximation to the distribution of the Pearson chi-square statistic devel-
oped by Osius and Rojek(1992) may be easily computed in any statistical package that has the option to
save the �tted values from the logistic regression model and do a weighted linear regression. The essential
steps in the procedure when one has J covariate patterns are:

� Retain the �tted values from the model, denoted as b�j , j = 1; 2; 3:::J .
� Create the variable vj = mjb�j(1� b�j), j = 1; 2; 3; :::J .
� Create the variable cj = (1�2b�j)

vj
, j = 1; 2; 3; :::; J .

� Compute the Pearson chi-square statistic, namely:

�2 =
JX
j=1

(yj �mjb�j)2
vj

:

� Perform a weighted linear regression of c, de�ned above, on x, the model covariates, using weights
v, also de�ned above. Note that the sample size for this regression is J , the number of covariate
patterns. Let RSS denote the residual sum-of-squares from this regression. Some statistical packages
scale the weights to sum to 1. In this case, the reported residual sum-of-squares must be multiplied
by the mean of the weights to obtain the correct RSS.

� Compute the correction factor, denoted A as follows:

A = 2(J �
JX
j=1

1

mj
):

� Compute the standardized statistic

z =
[�2 � (J � p� 1)]p

A+RSS
:

� Compute a two-tailed p-value using the standard normal distribution.

To carry out the above analysis, it is necessary to form an aggregated data set. The essential steps
in any package are:

� De�ne as aggregation the main e¤ects in the model. This de�nes the covariate patterns.

� Calculate the sum of the outcome variable and the number of terms in the sum over the aggregation
variables. This produces yj and mj for each covariate pattern.

� Output a new data set containing the values of the aggregation variables, covariate patterns and
two calculated variables yj and mj .

A two degrees-of-freedom test was proposed that determines whether two parameters in a generalized
logistic model are equal to zero. The two additional parameters allow the tail of the logistic regression
model (i.e. the small and large probabilities) to be either heavier/longer or lighter/shorter that the
standard logistic regression model. This test is not a goodness-of-�t test since it does not compare
observed and �tted values. However it does provide a test of the basic logistic regression model assumption
and it is useful in adjunction to the Hosmer-Lemeshow and Osius-Rojek goodness-of-�t (1992) tests.
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This test can be easily obtained from the following procedure:

� Retain the �tted values from the model, denoted as b�j , j = 1; 2; 3; :::; J:
� Compute the estimated logit

bgj = ln( b�j
1� b�j ) = xj `b� ,j = 1; 2; 3; :::; J:

� Compute two new covariates:

z1j = 0:5� bg2j � I(b�j � 0:5)
and

z2j = 0:5� bg2j � I(b�j < 0:5)
j = 1; 2; 3; :::; J , where I(condition) = 1 if the condition is true and 0 if the condition is false. Note

that in a setting when all the �tted values are either less than or greater than 0.5 only one variable is
created.

� Perform the partial likelihood ratio test for the addition z1j and/or z2j to the model.

� Calculate a p-value from the partial likelihood ratio test using two degrees of freedom. The p-value
is then examined against a chosen signi�cance level for the null hypothesis.

10.1.3 Classi�cation tables

An intuitively appealing way to summarize the results of a �tted logistic regression model is via a
classi�cation table. This table is the result of cross-classifying the outcome variable, y, with a dichotomous
variable whose values are derived from the estimated logistic probabilities.

To obtain the derived dichotomous variable one must de�ne a cut-o¤ point, c, and compare each
estimated probability to c. If the estimated probability exceeds c then let the derived variable be equal
to 1; otherwise it is equal to zero. A classi�cation table is then drawn up:

Actual
Predicted y = 1 y = 0 Total
y = 1 a b a+ b
y = 0 c d c+ d
Total a+ c b+ d a+ b+ c+ d

The correctly classi�ed cases are called the true positives and true negatives. If they not correspond,
they are labeled the false positives (type I error: predicted y = 1, actual y = 0) and false negatives (type
II error: predicted y = 0, actual y = 1).

If the model predicts the true positives and negatives accurately, this is thought to provide evidence
that the model �ts. Unfortunately, this may or may not be the case.
The overall rate of correct classi�cation is calculated as (a + d)=(a + b + c + d) � 100%. Sensitivity

is calculated as a=(a + c) � 100% (percentage of y = 1 observed correctly predicted) and speci�city is
calculated as d=(b+ d)� 100% (percentage of y = 0 observed correctly predicted).
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The problem with using the misclassi�cation rate as a criterion is that it reduces a probabilistic model
where the outcome is measured on a continuum, to a dichotomous model where predicted outcome is
binary. For practical purposes there is little di¤erence between the values of b� = 0:48 and b� = 0:52, yet use
of a cut-o¤ point of 0:5 would establish these two observations as markedly di¤erent.The classi�cation
table is most appropriate when classi�cation is a stated goal of the analysis, otherwise it should only
supplement more rigorous methods of assessments of �t.

Classi�cation tables are rarely used as a measure in credit scoring. The purpose of a credit scoring
model is ranking, rather than classi�cation.

10.2 Separation statistics

What one expects of a scorecard/ credit scoring model is that it will assign di¤erent scores to loans
that have an undesirable outcome than to those that have a desirable outcome. In essence, bad loans
(according to the chosen default de�nition) should have lower scores than good loans.
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The above graph shows the score frequency distribution for a group of bad loans (on the left) and
group of good loans. Clearly, the distribution for the bad loans is centered over a lower scoring range
that the good loans. The further apart these two distributions are, the more successful the scorecard
has been in distinguishing bad loans from good. In fact, if a scorecard did a perfect job, there would be
no overlap at all in the distributions- they would be side by side. Conversely, a scorecard doing a poor
job would not be able to distinguish between the two groups of loans at all. At the extreme, the two
distributions would lie on top of one another.

When people talk about how well a scorecard �separates�, this is exactly what they are talking about
�separating the distributions of good and bad loans.
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10.2.1 Divergence statistic

The divergence statistic is very straightforward. It is simply the square of the di¤erence of the mean of
the goods and the mean of the bads, divided by the average variance of the score distributions.

The formula for the divergence statistic is:

D2 = (�G � �B)2=�2

where �G is the mean score of the goods, �B is the mean score of the bads, and �
2 = (�2G + �

2
B)=2 with

�2G the score variance of the goods and �
2
B the score variance of the bads

The square of the di¤erence in the means is divided by the average variance. For distributions that
are very spread out, there must be a large di¤erence in the means before the distributions are said to be
di¤erent.

The divergence statistic is closely related to the information value statistic described earlier, where
it was discussed as a statistic that could be used to evaluate the predictiveness of individual scorecard
characteristic. To evaluate separation ability, either the information value or the divergence statistic may
be calculated for any individual predictive variable or for the score itself. For a continuous predictive
variable, divergence and information value are equal if the scores of the good loans and the bad loans are
normally distributed and have equal variances.

One bene�t of the divergence is its simplicity and ease of interpretation. It does not, however, capture
all the important information about the shape of the distributions. It is important to recognize that
the statistics used to evaluate scorecards are simply summary measures of some aspect of the di¤erence
between the good and bad distributions. They do not, and cannot, tell everything on how well a scorecard
is doing its job. If one relies on summary statistics alone, there may be cases where it will be misleading.
It is therefore good practice to always generate plots of the distributions as well when reporting any
scoring statistics.

10.2.2 Area under the ROC curve

Sensitivity and speci�city as de�ned earlier in the section on classi�cation tables rely on a single cut-o¤
point to classify a test result as positive. A more complete description of classi�cation accuracy is given
by the area under the ROC (Receiver Operating Characteristic) curve. This curve, originating from
signal detection theory, shows how the receiver operates the existence of signal in the presence of noise.
It plots the probability of detecting true signal (sensitivity) and false signal (1-speci�city) for an entire
range of cut-o¤ points. Sensitivity is thus the ability to mark true positives and speci�city is the ability
to identify true negatives.

A plot of sensitivity versus 1-speci�city over all possible cut-o¤ points is shown below. The curve
generated by these points is called the ROC curve and the area under the curve provides a measure of
discrimination which is the likelihood that an observation who has y = 1 will have a higher P (y = 1)
than an observation who has y = 0.
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The ROC curve is also known as the trade-o¤ curve because it shows the trade-o¤ between goods and
bads - the percentage of total bads that must be accepted in order to accept a given percentage of total
goods. The 45 degree line on the graph shows a ROC curve for a score with no ranking ability. The point
below which 20% of the bads are found is the same score below which 20% of goods are found.

The area under the ROC curve, which ranges from zero to one, provides a measure of the model�s
ability to discriminate between those observations that experience the outcome of interest versus those
who do not. In credit scoring, this is called a measure of the model�s predictive power. This area under
the ROC curve is also referred to as the C statistic.

In this particular graph, at the score which 10% of the goods are found, about 55% of the bads are
found. One would like this curve to rise as quickly as possible because it means that more bad loans are
assigned low scores relative to good loans. The faster it rises, the greater the area under it and the larger
the C statistic. In practice the C statistic usually ranges from 0:3 to 0:9 for credit scorecards. Computer
algorithms are used to calculate this statistic, and SAS generates this by default every time a logistic
regression is run.

It is possible that a poorly �tting model (i.e. poorly calibrated as assessed by the goodness-of-
�t measures discussed earlier) may still have good discrimination. For example, if one added 0:25 to
every probability in a good �tting logistic regression model with a good ability to discriminate, the new
model would be poorly calibrated whereas the discrimination would not be a¤ected at all. Thus, model
performance should be assessed by considering both calibration and discrimination.

Another more intuitive way to understand the meaning of the area under the ROC curve is as follows:
recall that n1 denote the number of observations with y = 1 and n0 denote the number of observations
with y = 0. Pairs are then created: each observation with y = 1 is paired with each observation with
y = 0. Of these n1 � n0 pairs, determine the proportion of the time that the observation with y = 1 had
the higher of the two probabilities. This proportion is equal to the area under the ROC curve. Note that
when the probability is the same for both observations, 12 is added to the count.

10.2.3 KS statistic

Another measure of discrimination used in credit scoring, is the Kolmogorov-Smirnov statistic. It is
mainly used in measuring the predictive power of rating systems, but in other environments, the Gini or
area under the ROC curve seem to be more prevalent.
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Traditionally the KS statistic is used to compare an unknown, observed distribution to a known,
theoretical distribution. The maximum distance between the cumulative distributions are calculated and
measured against a critical value. If the maximum distance is less than the critical value, there is good
chance that the distributions are the same.

In credit scoring, it is mostly used as a data-visualization tool to illustrate the model�s e¤ectiveness.
The cumulative distributions of events and non-events are plotted against the score (output from the
model, transformed, can also be seen as the di¤erent covariate patterns, ranked in a way). The maximum
distance is then calculated between the two distributions. It is calculated as:

DKS = max[abs(cp1 � cp0)]

where cp1 is the cumulative percentage for events and cp0 is the cumulative percentage of non-events,
abs indicates taking the absolute value and the maximum is taken of all the di¤erences over all possible
scores.

KS is also referred to as the �sh-eye graph. It may make the calculation of separation and the KS
even more clear if one looks at the graph below, which plots the cumulative percentage of goods and
bads.

Cumulative Percent Distributions for Good and Bad loans
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KS graph

The bad distribution is the one on top. It rises more quickly than the good distribution because
more of the bads are found among the lowest-scoring loans. The vertical distance between the two is the
separation at each point. The maximum di¤erence occurs at a score of 305, where 68% of the bads lie
below that score, but only 18% of the goods. The KS is 68� 18 = 50.

There are no hard and fast rules on what the expected value of the KS should be or how big it should
be before we can be con�dent we have a good scorecard. The KS value expected to be achieved will vary
depending on the product the scorecard is developed for and on the data available. A relatively low KS
does not necessarily mean someone has done a poor job of building the scorecard �it may be the best
that can be obtained in that particular situation

While KS�s can theoretically range from 0 to 100, in practice the range is generally from about 20 to
about 70. If the KS is lower than 20, it would be reasonable to question whether the scorecard is worth
using. Above 70, it is probably too good to be true and one should suspect problems with the way it is
being calculated or with the scorecard itself.
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The KS is based on a single point on the good and bad distributions �the point where the cumulative
distributions are the most di¤erent. There may thus be cases where it would be a major mistake to
blindly rely on the KS to tell whether it is a good scorecard or not, without taking a careful look at the
distributions of goods and bads to see how well the scorecard is ranking them.

The following graph duplicates the above graph for the goods, but the bads have been rearranged.
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Undesirable KS graph

At 63:7, the KS is higher than it was before, but in this case the KS is misleading, because clearly
the scorecard is not ranking the loans well in the bottom of the score distribution. That is why, just as
with the divergence statistic, it is necessary to look at the distributions to get the whole story.

One �nal point should be made about the KS statistic. After a new scorecard is implemented and a
cut-o¤ score set, the lender may observe a decline in the KS when the score is validated compared to its
value in the model-building sample. This happens when the lender has adhered to the new cut-o¤ and
booked fewer low-scoring loans than in the past. The KS is thus calculated on a narrower distribution
of scored loans. That is, the newly-booked population is truncated compared to the lender�s booked
population before the new scorecard was implemented. The KS is sensitive to population truncation and
can fall from one sample to the next even though the ranking ability of the score may not have declined.

10.3 Logistic regression diagnostics

The goodness-of-�t measures described above provide a single number that summarizes the agreement
between observed and �tted values. The advantage of these statistics is that a single number is used
to summarize considerable information. It is therefore also a disadvantage of these measures. Thus,
before concluding that the model ��ts�, it is crucial that other measures be examined to see if the �t is
supported over the entire set of covariate patterns. This is accomplished through a series of specialized
measures falling under the general heading of regression diagnostics.

The derivation of logistic regression diagnostics will be described brie�y (Hosmer and Lemeshow
(2000)). In this development it was assumed that the �tted model contained p covariates and that they
form J covariate patterns. The key quantities for logistic regression diagnostics, as in linear regression,
are the concepts of the �residual sum-of-squares�. In linear regression a key assumption (as described in
an earlier chapter) is that the error variance does not depend on the conditional mean, E(Yj jxj).

 
 
 



111

However, in logistic regression one has binomial errors and, as a result, the error variance is a function
of the conditional mean:

var(Yj jxj) = mjE(Yj jxj)� [1� E(Yj jxj)]

thus var(Yj jxj) = mj�j � [1� �j ]:

Begin with the residuals de�ned in the previous section (Pearson and deviance) which have been
�divided�by estimates of their standard errors.

The Pearson residual is de�ned as follows and denoted it by rj :

r(yj ; b�j) = (yj �mjb�j)p
mjb�j(1� b�j) :

The deviance residual, denoted as dj is de�ned as:

d(yj ; b�j) = ��2 �yj ln( yj
mjb�j ) + (mj � yj) ln(

(mj � yj)
mj(1� b�j) )

�� 1
2

:

Thus rj and dj are the Pearson and deviance residuals for the covariate pattern xj . Since each
residual has been divided by an approximate estimate of its standard error, it is expected that if the
logistic regression model is correct, these quantities will have a mean approximately equal to zero and a
variance approximately equal to 1.

In addition to the residuals for each covariate pattern, other quantities central to the formation and
interpretation of linear regression diagnostics are the �hat�matrix and the leverage values derived from
it. In linear regression the hat matrix is the matrix that provides the �tted values as the projection of
the outcome variable into the covariate space.

Let X denote the J� (p+1) matrix containing the values for all J covariate patterns formed from the
observed values of the p covariates, with the �rst column being one to re�ect the presence of an intercept
in the model. The matrix X is also known as the design matrix. In linear regression, the hat matrix is
H = X(X

0
X)�1X0; for example by = Hy.

The linear regression residuals (y�by) expressed in terms of the hat matrix are (I�H)y where I is the
J � J identity matrix. Using weighted least squares linear regression as a model, a linear approximation
to the �tted values can be derived, which yields a hat matrix for logistic regression. This matrix is:

H = V1=2X(X
0
VX)

�1
X0V1=2

where V is a J � J diagonal matrix with general element

vj = mjb�(xj)[1� b�(xj)]:
In linear regression the diagonal elements of the hat matrix are called the leverage values and are

proportional to the distance from xj to the mean of the data. This concept of distance to the mean is
important in linear regression, as points that are far from the mean may have considerable in�uence on
the values of the estimated parameters. The extension of the concept of leverage to logistic regression
requires additional explanation.
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Let the quantity hj denote the jth diagonal element of the matrix H as de�ned above. It can be
shown that

hj = mjb�(xj)[1� b�(xj)]x0j(X0VX)�1x0j = vj � bj
where

bj = x
0
j(X

0VX)�1x0j

and x0j = (1; x1j ; x2j ; :::; xpj) is the vector of covariate values de�ning the j
th covariate pattern.

The sum of the diagonal elements of H is, as is the case in linear regression,
P
hj = (p + 1), the

number of parameters in the model. In linear regression the dimension of the hat matrix is usually
n� n and thus ignores any common covariate patterns in the data. With this formulation, any diagonal
element in the hat matrix has an upper bound of 1=k where k is the number of observations with the
same covariate pattern. If the hat matrix for logistic regression is formulated as an n � n matrix then
each diagonal element is bounded from above by 1=mj , where mj is the total number of observations
with the same covariate pattern. When the hat matrix is based upon data grouped by covariate patterns,
the upper bound for any diagonal element is 1.

It is important to know whether the statistical package being used calculates the diagnostic statistics
by covariate pattern. SAS�s logistic procedure computes diagnostic statistics based on the data structure
in the model statement. If one assumes that there are n covariate patterns (and the outcome is either 0 or
1) then diagnostic statistics are based on individual observations. However, if data have been previously
collapsed or grouped into covariate patterns and binomial trails input (yj=mj) is used, then diagnostic
statistics are by covariate pattern. It is recommended that diagnostic statistics are computed taking
covariate patterns into account. This is especially important when the number of covariate patterns, J ,
is much smaller than n, or if some values of mj are larger than 5.

When the number of covariate patterns is much smaller than n there is the risk that one may fail
to identify in�uential and/or poorly �t covariate patterns. Consider a covariate pattern with mj obser-
vations, yj = 0 and estimated logistic probability b�j . The Pearson residual de�ned above, computed
individually for each observation with this covariate pattern, is

rj =
(0�b�j)pb�j(1�b�j)

= �
q b�j

(1�b�j)
while the Pearson residual based on all observations with this covariate pattern is

rj =
(0�mjb�j)p
mjb�j(1�b�j)

= �pmj

q b�j
(1�b�j)

which increases negatively as mj increases.

If mj = 1 and b�j = 0:5 then rj = �1 which is not a large residual. On the other hand, if there
were mj = 16 observations with this covariate pattern, then rj = �4, which is quite large. Thus, if one
performs the analysis using the covariate patterns, the Pearson residual would be �4 for each of the 16
observations in the covariate pattern. If the analysis is performed with a sample size of n, ignoring the
covariate pattern, then the Pearson residual would be �1 for all 16 observations. Thus the diagnostic
statistics are di¤erent even though the same �tted model was used.

A major point that must be kept in mind when interpreting the magnitude of the
leverage is the e¤ect that vj has on hj in the equation

hj = mjb�(xj)[1� b�(xj)]x0j(X0VX)�1x0j = vj � bj :

 
 
 



113

It can be argued that the �t determines the estimated coe¢ cients and, since the estimated coe¢ cients
determine the estimated probabilities, points with large values of hj are extreme in the covariate space
and thus lie far from the mean. On the other hand, the term vj in the expression of hj cannot be ignored..
The following example demonstrates that, up to a point, both approaches are correct:
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Leverage graph

This above graph presents a plot of the leverage values versus the estimated probabilities for a sample
of 100 observations from a logistic model with g(x) = 0:8x and x � N(0; 9).

One can see that the leverage values increases as the estimated probability gets further from 0:5 (x
gets further from its mean, nominally zero) until the estimated probabilities become less than 0:1 or
greater than 0:9. At that point the leverage decreases and rapidly approaches zero. This example shows
that the most extreme points in the covariate space may have the smallest leverage. This is exactly the
opposite of the situation in linear regression, where the leverage is a monotonic increasing function of the
distance of the covariate pattern from the mean. The practical consequence of this is that to interpret a
particular value of the leverage in logistic regression correctly, one needs to know whether the estimated
probability is small (< 0:1) or large (> 0:9). If the estimated probability lies between 0:1 and 0:9, then
the leverage gives a value that may be thought of as distance. When the estimated probability lies outside
the interval 0:1 to 0:9, then the value of the leverage may not measure distance in the sense that further
from the mean implies a larger value.
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A quantity that does not increase with the distance from the mean is bj = x0j(X
0VX)�1x0j . Thus, if

one is only interested in the distance then one should focus on bj . A plot of the bj versus the estimated
probability for the same example is shown below:
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In the above graph it is clear that bj provides a measure of distance in the covariate space and, as
a result, is more like the leverage values in linear regression. However, since the most useful diagnostic
statistics for logistic regression are functions of the full leverage, hj , the distance portion, bj , is not
discussed further.

If the following linear regression-like approximation for the residual for the jth covariate pattern is
used, [yj �mjb�(xj)] � (1� hj)yj , then the variance of the residual is mjb�(xj) [1� b�(xj)] (1� hj) which
suggests that the Pearson residuals do not have a variance equal to 1 unless they are further standardized.
The standardized Pearson residual for the covariate pattern xj is

rsj =
rjp
1� hj

:

Another useful diagnostic statistic is one that examines the e¤ect that deleting all observations with
a particular covariate pattern has on the value of the estimated coe¢ cients and the overall summary
measures of �t, �2 and D. The change in the value of the estimated coe¢ cients is obtained as the
standardized di¤erence between b� and b�(�j), where these represent the maximum likelihood estimates
computed using all J covariate patterns and excluding the mj observations with pattern xj respectively,
and standardizing via the estimated covariance matrix of b�: To a linear approximation, this quantity for
logistic regression is:

4b�j = (b� � b�(�j))0(X0VX)(b� � b�(�j))
=

r2jhj
(1�hj)2

=
r2sjhj
(1�hj)
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Using similar linear approximations it can be shown that the decrease in the value of the Pearson
chi-square statistic due to the deletion of the observations with the covariate pattern xj is

4�2j =
r2j

(1�hj)
= r2sj

A similar quantity may be obtained for the change in the deviance,

4Dj = d2j +
r2jhj

(1� hj)
:

If r2j is replaced by d
2
j , it yields the approximation

4Dj =
d2j

(1� hj)
:

These diagnostic statistics are conceptually quite appealing, as they allow one to identify those co-
variate patterns that are poorly �t (large values of 4�2j and/or 4Dj), and those that have a great deal
of in�uence on the values of the estimated parameters (large values of 4b�j). After identifying these
in�uential patterns (observations), one can begin to address the role they play in the analysis.

So, what is expected to be learnt from the application of diagnostics? First, consider the measure of
�t, 4�2j . This measure is smallest when yj and mjb�(xj) are close. This is most likely to happen when
yj = 0 and b�(xj) < 0:1 or yj = mj and b�(xj) > 0:9. Similarly 4�2j is largest when yj is furthest from
mjb�(xj). This is most likely to occur when yj = 0 and b�(xj) > 0:9 or with yj = mj and b�(xj) < 0:1.
These same covariate patterns are not likely to have a large 4b�j since, when b�(xj) < 0:1 or b�(xj) > 0:9,
4b�j � 4�2jhj and hj is approaching zero. The in�uence diagnostic, 4b�j is large when both 4�2j and hj
are at least moderate. This is most likely to occur when 0:1 < b�(xj) < 0:3, or 0:7 < b�(xj) < 0:9. From
the above graph, where leverage is plotted against estimated probability (b�), it is known that these are
the intervals where the leverage, hj , is largest. In the region where 0:3 < b�(xj) < 0:7 the chances are not
as great that either 4�2j or hj is large. The following table summarizes these observations:

Diagnostic statisticb� 4�2 4b� h
< 0:1 Large or small Small Small
0:1� 0:3 Moderate Large Large
0:3� 0:7 Moderate to small Moderate Moderate to small
0:7� 0:9 Moderate Large Large
> 0:9 Large or small Small Small

Note that this table reports what might be expected, not what may actually happen in any particular
example. It should therefore only be used as a guide to further understanding and interpretation of the
diagnostic statistics.

In linear regression essentially two approaches are used to interpret the value of the diagnostics often
in conjunction with each other. The �rst is graphical. The second employs the distribution theory of
the linear regression model to develop the distribution of the diagnostics under the assumption that the
�tted model is correct. In the graphical approach, large values of diagnostics either appear as spikes or
reside in the extreme corners of plots. A value of the diagnostic statistic for a point appearing to lie
away from the balance of the points is judged to be extreme if it exceeds some percentile of the relevant
distribution.
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This may sound a little too hypothesis-testing orientated but, under the assumption of linear regression
with normal errors, there is a known statistical distribution whose percentiles provide some guidance as
to what constitutes a large value. Presumably, if the model is correct and �ts, then no values should be
exceptionally large and the plots should appear as expected under the distribution of the diagnostic.

In logistic regression one has to rely primarily on visual assessment, as the distribution of the diag-
nostics under the hypothesis that the model �ts is known only in certain limited settings. For instance,
consider the Pearson residual, rj . It is often stated that the distribution of this quantity is approximately
N(0; 1), when the model is correct. This statement is only true when mj is su¢ ciently large to justify
that the normal distribution provides an adequate approximation to the binomial distribution, a condi-
tion obtained under m-asymptotics. For example, if mj = 1 then rj has only two possible values and can
hardly be expected to be normally distributed. All of the diagnostics are evaluated by covariate pattern;
hence any approximations to their distributions based on the normal distribution, under binomial errors,
depends on the number of observations with the pattern. When a �tted model contains some continuous
covariates then the number of covariate patterns, J , is of the same order as n, and m-asymptotic results
cannot be relied upon. In practice, an assessment of �large�is, of necessity, a judgment call based on ex-
perience and the particular set of data analyzed. Using the N(0; 1), or equivalently, the �2(1) distribution
for squared quantities may provide some guidance as to what large is. However, these percentiles should
be used with extreme caution. There is no substitute for experience in the e¤ective use of diagnostic
statistics.

Seven diagnostic statistics have been de�ned, which may be divided into three categories:

� The basic building blocks, which are of interest in themselves, but are also used to form other
diagnostics, (rj ; dj ; hj).

� Derived measures of the e¤ect of each covariate pattern on the �t of the model, (rsj ;4�2j ;4Dj).

� A derived measure of the e¤ect of each covariate pattern on the value of the estimated parameters,
(4b�j).

Most logistic regression software packages provide the capability to obtain at least one of the measures
within each group.

A number of di¤erent types of plots have been suggested for use, each directed at a particular aspect
of �t. Some are formed from the seven diagnostics while others require additional computation, for
example they are based on grouping and smoothing. It is impractical to consider all possible suggested
plots, so only a few of the more easily obtained ones that are meaningful in logistic regression analysis
are considered. These can be seen as the core of an analysis of diagnostics. These consist of the following:

� Plot 4�2j versus b�j :
� Plot 4Dj versus b�j :
� Plot 4b�j versus b�j :
Other plots that are sometimes useful include:

� Plot 4�2j versus hj :

� Plot 4Dj versus hj :

� Plot 4b�j versus hj :
These allow direct assessment of the contribution of leverage to the value of the diagnostic statistic.
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Note that if the summary statistics indicated that the model �ts, one does not expect an analysis
of diagnostics to show large numbers of covariate patterns being �t poorly. One might uncover a few
covariate patterns which do not �t, or which have a considerable in�uence on the estimated parameters.

Note that it is preferable to plot the diagnostics 4�2 and 4D versus the estimated logistic probabil-
ities, instead of plots of rj and dj versus b�j . The reasons for this choice are as follows:
� When J � n, most positive residuals correspond to a covariate pattern where yj = mj (e.g.=1) and
negative residuals to those with yj = 0. Hence the sign of the residual is not useful.

� Large residuals, regardless of sign, correspond to poorly �t points. Squaring these residuals further
emphasizes the lack of �t and it removes the issue of sign.

� The shape of the plot allows one to determine which patterns have yj = 0 and which have yj = mj .

Covariate patterns that are poorly �t will generally be represented by points falling in the top left or
right corners of the plots. Look for points that fall some distance from the balance of the data plotted.
Assessment of the distance is partly based on numeric value and partly based on visual impression. The
range of 4�2 is much larger than 4D: This is a property of Pearson versus deviance residuals. Whenever
possible, it is preferable to use plots of both 4�2 and 4D versus b�.
One problem with the in�uence diagnostic 4b� is that it is a summary measure of change over all

coe¢ cients in the model simultaneously. For this reason it is important to examine the changes in the
individual coe¢ cients due to speci�c covariate patterns identi�ed as in�uential.

Suppose there is a model where the summary statistics indicate that there is substantial deviation
from �t. In this situation, there is evidence that for more than a few covariate patterns, yj di¤ers from
mjb�j : One or more of three things has likely happened:
� The logistic regression model does not provide a good approximation to the correct relationship
between the conditional mean, E(Y jxj) and xj .

� An important covariate in this model was not measured and/or included.

� At least one of the covariates in the model has not been entered in the correct scale.

The logistic regression model is remarkably �exible. Unless one is dealing with a set of data where
most of the probabilities are very small or very large, or where the �t is extremely poor in an identi�able
systematic manner, it is unlikely that any alternative model will provide a better �t. If one suspects, based
on clinical or other reasons (such as graphical representations or statistical tests) that the logistic model
is the wrong one, then careful thought should be given to the choice of the alternative model. Particular
attention should be given to the issues of interpretation. Are the coe¢ cients clinically interpretable? The
approach that tries all other possible models and selects the �best �tting�one is not recommended, as
no thought is given to the clinical implications of the selected model. In some situations, inadequacy of a
�tted logistic regression model can be corrected by returning to model building and rechecking variable
selection and scale identi�cation. Model �tting is an iterative procedure. One rarely obtains a �nal model
on the �rst pass through the data. In credit scoring, the �t of the model is not as important as its ranking
ability (ranking customers with worst to best risk). Even if the logistic model is not theoretically correct,
if the results make business sense and are easily interpretable and usable, it is unlikely that an alternative
modeling technique will be used.

 
 
 



118

When performing an analysis, one hopes that the study was designed carefully so that the data on all
major covariates were collected. However, it is possible that the risk factors associated with the outcome
variable are not well known and in this case a key variable may not be present in the observed data. The
potential biases and pitfalls of this oversight are enormous and little can be done in this case, except to
go back and collect the data, but this is often impractical. This problem is common in a credit scoring
environment. Typically, the users of the models are not the developers. The user tries to score the client
as quickly as possible and might not input all possible covariates that can be used in future modeling.
The data is therefore skewed and the modeler is restricted in terms of the available covariates. Luckily
the credit bureaus in South Africa have substantially increased their databases and data is normally
available from them retrospectively.

10.4 Assessment of �t via external validation

In some situations it may be possible to exclude a sub-sample of the observations, develop a model based
on the remaining observations, and then test the model on the originally excluded observations. This is
typically done in credit scoring, if enough events/defaults are available. The data is split into a build and
a holdout sample. The model is developed on the build sample and evaluated on the holdout sample.

In other situations it may be possible to obtain a new sample of data to assess the goodness-of-�t of
a previously developed model. This is also common in credit scoring, where the model is evaluated on
an out-of-time sample, usually from a more recent time period than the development data.

This type of assessment is often called model validation, and is it especially important when the
�tted model is used to predict outcome for future observations. The reason for considering this type
of assessment of model performance, is that the �tted model almost always performs in an optimistic
manner on the development data set. In credit scoring, this is referred to testing whether the model can
be generalized.

The use of validation data amounts to an assessment of goodness-of-�t where the �tted model is
considered to be theoretically known, and no estimation is performed. Some of the diagnostics discussed
earlier like ( 4�2;4D;4b�) mimic this idea by computing, for each covariate pattern, a quantity based
on the exclusion of the particular covariate pattern. With a new data set a more thorough assessment is
possible.

The methods for assessment of �t in the validation sample parallel those described earlier for the
development sample. The major di¤erence is that the values of the coe¢ cients in the model are regarded
as �xed constants rather than estimated values.

Suppose that the validation sample consists of nv observations (yi;xi); i = 1; 2; :::; nv; which may
be grouped into Jv covariate patterns. Let yj denote the number of positive responses among the mj

observations with covariate pattern x = xj for j = 1; 2; 3; :::; Jv. The logistic probability for the jth

covariate pattern is �j ; the value of the previously estimated logistic model using the covariate pattern,
xj from the validation sample. These quantities become the basis for the computation of the summary
measures of �t, �2; D and C, from the validation sample.

The computation of the Pearson chi-square follows directly from the equation:

�2 =

JvX
j=1

r(yj ; b�j)2
with the obvious substitution of quantities from the validation sample.
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In this case, �2 is computed as the sum of Jv terms. If each mj�j is large enough to use the normal
approximation to the binomial distribution, then �2 is distributed as �2(Jv) under the hypothesis that the
model is correct. If the observed numbers of observations are small within each covariate pattern, with
most mj = 1, m-asymptotics cannot be applied.In this case the Osius-Rojek goodness-of-�t test is used
to obtain a statistic that follows the standard normal distribution under the hypothesis that the model
is correct and Jv is su¢ ciently large. The procedure is similar to the one presented earlier. Speci�cally
one computes the standardized statistic

z =

�
�2 � Jv

�
�v

where

�v = 2Jv +

JvX
j=1

1

mj�j(1� �j)
� 6

JvX
j=1

1

mj
:

The test uses a two-tailed p-value based on z.

The same line of reasoning discussed earlier to develop the Hosmer-Lemeshow test may be used to
obtain an equivalent statistic for the validation sample. Assume that 10 groups composed of the deciles
of risk is used. Any other grouping strategy can be used with obvious modi�cations to the calculation.
Let nk denote the approximately nv=10 observations in the kth decile of risk. Let ok =

P
yj be the

number of positive responses among the covariate patterns falling in the kthdecile of risk. The estimate
of the expected value of ok under the assumption that the model is correct is ek =

P
mj�j where the

sum is over the covariate patterns in the decile of risk. The Hosmer-Lemeshow statistic is obtained as
the Pearson chi-square statistic computed from the observed and expected frequencies

Cv =

gX
k=1

(ok � ek)2
nk�k(1� �k)

where

�k =
X

mj�j=nk:

The subscript, v, has been added to C to emphasize that the statistic has been calculated from a
validation sample. Under the hypothesis that the model is correct, and the assumption that each ek is
su¢ ciently large for each term in Cv to be distributed as �2(1), it follows that Cv is distributed as �2(10).
In general, if g groups are used then the distribution is �2(g). In addition to calculating a p-value to
assess overall �t, it is recommended that each term in Cv be examined to assess the �t within each decile
of risk.

In credit scoring, validation of a model is not so focused on the �t of the model, but rather the
stability of the population and the model�s predictive power and accuracy. To track the stability of the
population, the distributions of the di¤erent covariates are compared to its distribution at development.
To determine whether the model retained its predictive power, the Gini coe¢ cient and/or ROC curve
can be used to compare to the development data. The Kolmogorov-Smirnov statistic can also be used
here.

 
 
 



Chapter 11

Multinomial and Ordinal Regression

11.1 The Multinomial Logistic Regression model

In the previous chapters, the focus was on the use of the logistic regression model when the outcome
variable is dichotomous or binary. The model can easily be extended and modi�ed to handle the case
where the outcome variable is nominal with more than two levels as shown by Hosmer and Lemeshow
(2000). For example, consider the choice of insurance plans on a credit card from among three plans
o¤ered to the customers of a bank. The outcome variable has three levels indicating which plan, A, B, or
C, is chosen. Possible covariates might include gender, age, income, family size and others. The goal is to
model the odds of plan choice as a function of the covariates and to express the results in terms of odds
ratios for choice of di¤erent plans. A model with these options is often referred to as a discrete choice
model, a multinomial, polychotomous or a polytomous logistic regression model. In this study, the term
multinomial will be used.

An outcome variable with any number of levels can be used to illustrate the extension of the model and
the methods. However, the details are most easily illustrated with three categories. Further generalization
to more than three categories is more a problem of notation than of concepts. For the remainder of this
study, only the situation where the outcome variable has three categories will be considered.

When one considers a regression model for a discrete outcome variable with more than two responses,
one must pay attention to the measurement scale. The logistic regression model for a case in which the
outcome is nominal scale will be discussed �rst. Later in this chapter logistic regression models for ordinal
scale outcomes will be discussed.

For this study, the assumption will be that the categories of the outcome variable, Y , are coded as 0,
1 or 2. Some software packages might not allow a zero code and might require the codes to begin with 1,
so it is worth checking before jumping into modeling.

The logistic regression model used for a binary outcome variable is parameterized in terms of the logit
of Y = 1 versus Y = 0. In the three outcome category model two logit functions are needed. One has to
decide which outcome categories to compare. The obvious extension is to use Y = 0 as the referent or
baseline outcome and to form logits comparing Y = 1 and Y = 2 to it. It will be shown later that the
logit function for Y = 2 versus Y = 1 is the di¤erence between these two logits.
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To develop the model, assume p covariates and a constant term denoted by the vector, x, of length
p+ 1 where x0 = 1, is available. The two logit functions is denoted as

g1(x) = ln
h
P (Y=1jx)
P (Y=0jx)

i
= �10 + �11x1 + �12x2 + :::+ �1pxp
= x0�1

and

g2(x) = ln
h
P (Y=2jx)
P (Y=0jx)

i
= �20 + �21x1 + �22x2 + :::+ �2pxp
= x0�2

It follows that the conditional probabilities of each outcome category given the covariate vector are

P (Y = 0jx) = 1

1 + eg1(x) + eg2(x)
,

P (Y = 1jx) = eg1(x)

1 + eg1(x) + eg2(x)

and

P (Y = 2jx) = eg2(x)

1 + eg1(x) + eg2(x)
:

Following the convention for the binary model, let �j = P (Y = jjx) for j = 0; 1; 2. Each probability
is a function of the vector of 2(p+ 1) parameters �0 = (�01;�

0
2):

A general expression for the conditional probability in the three category model is

P (Y = jjx) = egj(x)P2
k=0 e

gk(x)

where the vector �0 = 0 and g0(x) =0.

To construct the likelihood function three binary variables coded 0 or 1 need to be created, to indicate
the group membership of an observation. Note that these variables are introduced only to clarify the
likelihood function and are not used in the actual multinomial logistic regression analysis.

The variables are coded as follows:

� If Y = 0 then Y0 = 1, Y1 = 0 and Y2 = 0.

� If Y = 1 then Y0 = 0, Y1 = 1 and Y2 = 0.

� If Y = 2 then Y0 = 0, Y1 = 0 and Y2 = 1.

No matter what value Y takes on, the sum of these variables is
P2

j=0 Yj = 1. Using this notation it
follows that the conditional likelihood function for a sample of n independent observations is

l(�) =

nY
i=1

[�0(xi)
y0i�1(xi)

y1i�2(xi)
y2i ] :
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Taking the log and using the fact that
P
yij = 1 for each i, the log-likelihood function is:

L(�) =
nX
i=1

y1ig1(xi) + y2ig2(xi)� ln
h
1 + eg1(xi) + eg2(xi)

i
:

The likelihood equations are found by taking the �rst partial derivatives of L(�) with respect to each
of the 2(p+ 1) unknown parameters. To simplify the notation a bit, let �ji = �j(xi). The general form
of these equations is:

@L(�)

@�jk
=

nX
i=1

xki(yji � �ji)

for j = 1; 2 and k = 0; 1; 2; :::; p, with x01 = 1 for each subject.

The maximum likelihood estimator, b�, is obtained by setting these equations equal to zero and solving
for �. The solution requires the same type of iterative computation that is used to obtain the estimate
in the binary outcome case.

The matrix of second partial derivatives is required to obtain the information matrix and the estimator
of the covariance matrix of the maximum likelihood estimator. The general form of the elements in the
matrix of second partial derivatives is as follows:

@2L(�)

@�jk@jk0
= �

nX
i=1

xk0ixki�ji(1� �ji)

and

@2L(�)

@�jk@j0k0
=

nX
i=1

xk0ixki�ji�j0i0

for j and j0 = 1; 2 and k and k0 = 0; 1; 2; :::; p.

The observed information matrix, I(b�), is the 2(p + 1) � 2(p + 1) matrix whose elements are the
negatives of the values in the two above equations evaluated at b�. The estimator of the covariance
matrix of the maximum likelihood estimator is the inverse of the observed information matrix,

dVar(b�) = I(b�)�1:
A more concise representation for the estimator of the information matrix may be obtained by using

a form similar to the binary outcome case. Let the matrix X be the n � (p + 1) matrix containing the
values of the covariates for each subject, let the matrix Vj be the n � n diagonal matrix with general
element b�ji(1�b�ji) for j = 1; 2 and i = 1; 2; 3; :::; n, and let V3 be the n�n diagonal matrix with general
element b�1ib�2i. The estimator of the information matrix may be expressed as

bI(b�) = " bI(b�)11 bI(b�)12bI(b�)21 bI(b�)22
#

where

bI(b�)11 = (X0V1X);

bI(b�)22 = (X0V2X)

and

bI(b�)12 = bI(b�)21 = �(X0V3X):

 
 
 



123

11.1.1 Interpreting and Assessing the Signi�cance of the Estimated Coe¢ -
cients

To simplify the discussion of the estimation and interpretation of odds ratios in the multinomial outcome
setting, the generalization of the notation used in the binary outcome is needed to include the outcomes
being compared as well as the values of the covariate. Assume that the outcome labeled with Y = 0 is
the reference outcome. The subscript on the odds ratio indicates which outcome is being compared to
the reference outcome. The odds ratio of outcome Y = j versus the outcome Y = 0 for covariate values
of x = a versus x = b is

ORj(a; b) =
P (Y = jjx = a)=P (Y = 0jx = a)
P (Y = jjx = b)=P (Y = 0jx = b) :

In the special case when the covariate is binary, coded 0 or 1, the notation can be simpli�ed further
and let ORj = ORj(1; 0).

To explain the basic concepts, consider a model containing a single dichotomous covariate coded 0 or
1. In the binary outcome model, the estimated slope coe¢ cient is identical to the log-odds ratio obtained
from the 2 � 2 table cross-classifying the outcome and the covariate. As noted earlier in this chapter,
when the outcome has three levels, there are two logit functions. These functions are de�ned in such a
way that the two estimated coe¢ cients, one from each logit function, are equal to the log-odds ratios
from the pair of 2� 2 tables obtained by cross-classifying the y = j and y = 0 outcomes by the covariate
with y = 0 as the reference outcome value.

Refer to the earlier example of the insurance plan and suppose that gender is available as the inde-
pendent variable/ covariate. The data are in the below table:

Gender
Insurance product Male(0) Female(1) Total dOR
A(0) 220 14 234 1:0
B(1) 85 19 104 3:51
C(2) 63 11 74 2:74

Total 368 44 412

If insurance product=0 (A) is used as the reference outcome, the two odds ratios calculated from the
data in the above table are

dOR1 = 19� 220
85� 14 = 3:51

and

dOR2 = 11� 220
63� 14 = 2:74:
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Note in SAS there are two ways to �t the three-category logistic regression model using Proc Logistic,
dependent on the data. If the data is in a frequency table, as above the resulting SAS code is:

proc logistic data=combine;
freq f;
class gender/order=data param=ref ref=first;
model IP (ref='0')=gender/link=glogit

aggregate scale=none covb;
run;

where f refers to the cell frequencies in the above table.

If the data is in its raw form, i.e. using the example where the data set has 412 observations, the
needed SAS code is:

proc logistic data=multi;
class gender/order=data param=ref ref=first;
model IP (ref='0')=gender/ link=glogit

scale=none covb ;
run;

Note that, irrespective of which way the data set is constructed, if the same reference category is used,
the results from �tting the model will be the same.

The results from �tting a three-category logistic regression in SAS, gives the following output:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      IP    DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept      1      1 ­0.9510      0.1277       55.4474        <.0001
Intercept      2      1 ­1.2505 0.1429       76.5842        <.0001
gender    1    1      1      1.2564      0.3747       11.2448        0.0008
gender    1    2      1      1.0093      0.4275        5.5744        0.0182

Odds Ratio Estimates

Point          95% Wald
Effect           IP    Estimate      Confidence Limits

gender 1 vs 0    1        3.513       1.685       7.320
gender 1 vs 0    2        2.744       1.187       6.342
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The results are summarized in the following table:

Logit Variable Coe¢ cient Std error dOR 95% CI
1 Gender 1:256 0:3747 3:51 1:685, 7:321

Constant �0:951 0:1277
2 Gender 1:009 0:4275 2:74 1:187, 6:342

Constant �1:250 0:1429

The dOR in the above table is obtained by taking the exponent of the estimated slope coe¢ cients.
Note that they are identical to the values calculated and tabled above in the previous table. As is the
case in the binary outcome setting with a dichotomous covariate, the estimated standard error of the
coe¢ cient is the square root of the sum of the inverse of the cell frequencies. For example, the estimated
standard error of the coe¢ cient gender in the �rst logit is:

SE(b�11) = � 119 + 1

220
+
1

85
+
1

14

�0:5
= 0:3747

which is identical to the above table.

The endpoints of the con�dence interval are obtained in exactly the same manner as for the binary
outcome case. First the con�dence interval for the coe¢ cient is obtained, then the exponents of the
endpoints are taken to obtain the con�dence interval for the odds ratio. For example, the 95% CI for the
odds ratio of IP=1 versus IP=0 shown in the above tables is calculated as follows:

exp(1:256� 1:96� 0:3747) = (1:685; 7:321):

The endpoints for the con�dence interval for IP=2 versus IP=0 in the above table are obtained in a
similar matter.

Each estimated odds ratio and its corresponding con�dence interval is interpreted as if it came from
a binary outcome setting. In some cases is may further support the analysis to compare the magnitude
of the two estimated odds ratios. This can be done with or without the support tests of equality.

The interpretation of the e¤ect of gender on chosen insurance product is as follows:

� The odds among customers who are female choosing product B are 3:5 times greater than the odds
among customers who are male. In other words, customers who are female are 3:5 times more likely
to choose product B than customers who are male. The con�dence interval indicates that the odds
could be as little as 1:7 times or as much as 7:3 times larger with 95 percent con�dence.

� The odds among customers who are female choosing product C are 2:7 times greater than the odds
among customers who are male. Put in another way, customers who are female are 2:7 times more
likely to choose product C than customers who are male. The odds could be as little as 1:2 times
or as much as 6:3 times larger with 95 percent con�dence.

Thus, one can see that gender is a signi�cant factor in choice of insurance product.
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Note that the test of the equality of two odds ratios, OR1 = OR2, is equivalent to a test that the log-
odds for IP=2 versus IP=1 is equal to zero. The simplest way to obtain the point and interval estimate
is from the di¤erence between the two estimated slope coe¢ cients in the logistic regression model. For
example, using the above example:

b�21 � b�11 = 1:009� 1:256
= �0:247
= ln( 11�8519�63 )

The estimator of the variance of the di¤erence between the two coe¢ cients, b�21 � b�11, is
dV ar(b�21 � b�11) = dV ar(b�21) + dV ar(b�11)� 2dCov(b�21; b�11):

The values for the estimates of the variances and covariances are obtained from the estimated covari-
ance matrix, which is provided by most statistical software packages, like SAS:

Estimated Covariance Matrix

Intercept_      Intercept_
Parameter                 1               2      gender1_1      gender1_2

Intercept_1         0.01631        0.004545 ­0.01631 ­0.00455
Intercept_2        0.004545        0.020418 ­0.00455 ­0.02042
gender1_1 ­0.01631 ­0.00455        0.14037 0.075974
gender1_2 ­0.00455 ­0.02042 0.075974       0.182756

The estimates can also be calculated using the general formula:

dV ar(b�) = bI(b�)�1
where the variance matrix is the inverse of the information matrix and it is calculated as explained earlier.

The form of this matrix is a little di¤erent from the covariance matrix in the binary setting. There
are two matrices containing the estimates of the variances and covariances of the estimated coe¢ cients in
each logit and a third containing the estimated covariances of the estimated coe¢ cients from the di¤erent
logits.
The matrix for the above model is summarized from the SAS output and is shown in this next table,

where Logit 1 is the logit function for IP=1 versus IP=0 and Logit 2 is the logit function for IP=2 versus
IP=0.

Logit1 Logit2
Gender Constant Gender Constant

Logit1 Gender 0:1404
Constant �0:0163 0:0163

Logit2 Gender 0:0760 0:1828
Constant �0:0045 0:0045 �0:0204 0:0204
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Using the results from the above table the estimate of the variance of the di¤erence in the two
estimated coe¢ cients is obtained as

dV ar(b�21 � b�11) = 0:1404 + 0:1828� 2� 0:0760 = 0:1712:
The endpoints of a 95 percent con�dence interval for this di¤erence are

�0:247� 1:96�
p
0:1712 = (�1:058; 0:564):

Since the con�dence interval includes zero one cannot conclude that the log odds for IP=1 is di¤erent
from the log odds for IP=2. Equivalently, one can express these results in terms of odds ratios by
taking the exponent of the point and interval estimates. This yields an odds ratio for IP=2 versus IP=1
as dOR = 0:781 and a con�dence interval of (0:347; 1:758). Note that this con�dence interval includes
1, so one cannot conclude that the odds ratio for IP=1 is di¤erent from the odds ratio for IP=2. The
interpretation of the odds ratio is that the odds of product B is 22 percent lower than the odds of product
C for customers that are female, i.e. dOR2 � 0:78�dOR1.
In practice, if there was no di¤erence in the separate odds ratios over all covariates, the modeler

might consider pooling outcome categories 1 and 2 into a binary (product A versus not product A)
outcome. In a model with many covariates the extra computations for these additional comparisons
could become a burden. Luckily software packages like SAS, has the option to provide the modeler with
these comparisons.

An indication of the importance of the variable may be obtained from the two Wald statistics, but
as is the case with any multi-degree of freedom variable, one should rather use the likelihood ratio test
for the signi�cance of the coe¢ cients. For example, to test for the signi�cance of the coe¢ cients for
gender, the log-likelihood function from the model containing gender to the log-likelihood for the model
containing only the two constant terms is compared, one for each logit. Under the null hypothesis that
the coe¢ cients are zero, minus twice the change in log-likelihood follows a chi-square distribution with 2
degrees of freedom.

The output from SAS:

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

­2 Log L        805.198        792.340

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio        12.8581        2         0.0016
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The value of the likelihood test statistic is 12:8581, which yields a p-value of 0:0016. Thus, from a
statistical point of view, the variable gender is signi�cantly associated with the chosen insurance product.

In general, the likelihood ratio test for the signi�cance of the coe¢ cients for a variable has degrees
of freedom equal to the number of outcome categories minus one times the degrees of freedom for the
variable in each logit. For example, if one has a four category outcome variable and a covariate that is
modeled as continuous then the degrees of freedom is (4� 1)� 1 = 3. If one has a categorical covariate
coded at �ve levels then the covariate has 4 design variables within each logit and the degrees of freedom
for the test are (4 � 1) � (5 � 1) = 12. This is easy to keep track of if one can remember that one is
modeling one logit for comparing the reference outcome category to each other outcome category.

For a polytomous covariate the number of odds ratios is expanded to include comparisons of each
level of the covariate to a reference level for each to a reference level for each possible logit function. To
illustrate this, consider the variable �Underwriter�modeled via two design variables using the value of 1
(Company X) as the reference category.

The cross classi�cation of the insurance product (IP) by Underwriter (UW) is given in the below
table:

UW
IP X Y Z Total
A(0) 13 77 144 234
B(1) 1 12 91 104
C(2) 4 16 54 74
Total 18 105 289 412

Using the value of IP=0 as the reference outcome category and UW=1 as the reference covariate
value, the four odds ratios are as follows:

dOR1(2; 1) = 12� 13
77� 1 = 2:03;

dOR1(3; 1) = 91� 13
144� 1 = 8:22;

dOR2(2; 1) = 16� 13
77� 4 = 0:68;

and

dOR2(3; 1) = 54� 13
144� 4 = 1:22:
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Using the following SAS code, the logistic regression model was �tted. Note that the data was read
in as a frequency table (like the table above).

data combine;
input IP UW f;
datalines;
0 1 13
0 2 77
0 3 144
1 1 1
1 2 12
1 3 91
2 1 4
2 2 16
2 3 54
;

run;

proc logistic data=combine;
freq f;
class UW/order=data param=ref ref=first;
model IP (ref='0')=UW/link=glogit

aggregate scale=none covb;
run;

The freq f statement indicates that the data is in the form of a frequency/contingency table and the
data is aggregated (the option aggregate on the model statement).

Fitting the logistic regression model gives the following results:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      IP    DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept      1      1 ­2.5649      1.0377 6.1091        0.0134
Intercept      2      1 ­1.1787      0.5718        4.2494        0.0393
UW        2    1      1      0.7060      1.0831        0.4248        0.5145
UW        2    2      1 ­0.3926      0.6344 0.3830        0.5360
UW        3    1      1      2.1059      1.0463        4.0509        0.0441
UW        3    2      1      0.1978      0.5936        0.1111        0.7389
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The results are summarized in the following table:

Logit Variable Coe¢ cient Std error dOR 95% CI
1 UW_2 0:706 1:0831 2:03 0:242; 16:928

UW_3 2:106 1:0463 8:22 1:057; 63:864
Constant �2:565 1:0377

2 UW_2 �0:393 0:6344 0:68 0:195; 2:341
UW_3 0:198 0:5936 1:22 0:381; 3:901
Constant �1:179 0:5718

The odds ratios are obtained by taking the exponent of the estimated logistic regression coe¢ cients
for instance, e0:706 = 2:03.

These are equal to the odds ratios formed from the 2 by 2 tables obtained from the main 3 by 3
contingency table. The odds ratios for logit 1 are obtained from the 2 by 3 table containing the rows
corresponding to the IP=0 and IP=1 and the 3 columns. The odds ratios for logit 2 are obtained from
the 2 by 3 table containing the rows corresponding to IP=0 and IP=2 and the 3 columns.

To asses the signi�cance of the variable UW, the likelihood ratio test is used, with the following output
from SAS given:

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates
­2 Log L        805.198        778.401

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio        26.7969        4         <.0001

The test statistic for the likelihood ratio test has a value G = 26:7969 which, with 4 degrees of
freedom, yields a p-value of less than 0:001. Thus one can conclude that the choice of insurance product
is signi�cantly associated with the underwriter issuing the policy. Examining the estimated odds ratios
and their con�dence intervals one can see that the association is strongest when comparing insurance
product B to insurance product A, and comparing underwriter X to underwriter Z. The interpretation is
that the odds of choosing insurance product A when the underwriter is company Z, is 8:22 times larger
than the odds of choosing insurance product A when the underwriter is company X.
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The con�dence interval estimates for the logit of IP=1 versus IP=0 are quite wide. These estimates
are a function of the cell counts and for this particular case there is a cell with only one subject in (see
above table). It follows from the fact that the estimated standard errors are equal to the square root of
the sum of the inverse of the cell counts. For example, the estimated standard error of the coe¢ cient for
the log odds of UW=3 vs. UW=1 in the �rst logit is:

SE(b�12) = � 191 + 1

13
+

1

144
+
1

1

�0:5
= 1:0463:

Continuous covariates that are modeled as linear in the logit have a single estimated coe¢ cient in
each logit function. This coe¢ cient, when the exponent is taken, gives the estimated odds for a change
of one unit in the variable. Knowing what a single unit is, and estimation of odds ratios for clinically
meaningful change apply directly to each logit function in the multinomial logistic regression model.

11.1.2 Model building strategies for multinomial logistic regression

In principle, the strategies and methods for multivariate modeling with a multinomial outcome variable
is identical to those for the binary outcome variable discussed earlier.
Since a full multinomial logistic model can be approximated by separate binary logistic models, it

opens up the possibility of performing variable selection using the stepwise or best subsets approaches
discussed. Thus, in absence of software capable of �tting a multinomial logistic regression model, one
could use the results of individual logistic regressions, realizing of course that the resulting estimates are
approximations to the maximum likelihood estimates.

One problem that one was not faced with in the binary outcome case but which can be an issue in
a multinomial logistic regression model, occurs when a covariate is signi�cant for some but not all logit
functions. If one models using the principle that one would like to minimize the number of parameters,
then one should force the coe¢ cients to be zero in some logit functions and estimate their values for the
other logit functions. As in all modeling situations, clinical considerations should play an important role
in variable selection.

11.1.3 Assessing the �t and diagnostics for the multinomial logistic regression
model

As with any �tted model, before it is used to make inferences, its overall �t should be assessed and the
contribution of each subject to the �t examined. In multinomial logistic regression, the multiple outcome
categories make this a more di¢ cult problem than was the case with a model for a binary outcome
variable. When one models a binary outcome variable there is a single �tted value, the estimated logistic
probability of the outcome being present, P (Y = 1jx). When the outcome variable has three categories
there is two estimated logistic probabilities, the estimated probabilities of categories 1 and 2, P (Y = 1jx)
and P (Y = 2jx). There are extensions of the tests for goodness-of-�t and logistic regression diagnostics
to the multinomial logistic regression model, however these methods are not that easy to calculate and
not readily available with most of the available software. It is therefore recommended to assess the �t
and calculating the logistic regression diagnostics using the individual logistic regressions approach.
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For an outcome variable with three categories, it is suggested to assess the �t of the two logistic
regression models and then integrating the results, usually descriptively, to make a statement about the
�t of the multinomial logistic regression model. The procedure for assessing the �t of each individual
logistic regression model is described in an earlier chapter. Integration of the results requires thoughtful
consideration of the e¤ects of in�uential and poorly �t covariate patterns on each logit function. In
particular, covariate patterns that are in�uential for only one logit should be examined closely with due
consideration to business issues before they are excluded from analyses. While this process requires more
computation than for a single logistic regression model for a binary outcome variable, there is nothing
new conceptually.

Summary goodness-of-�t statistics are calculated using the observed covariate patterns generated by
the variables in the model. These summary statistics include the Hosmer-Lemeshow statistic and the
Pearson �2.

The leverage, h, and diagnostic statistics �b�;�X2 and �D de�ned earlier are calculated for each
covariate pattern for each of the individually �t logistic regression models. Plots of the diagnostic statistics
versus the estimated probabilities are then used to identify patterns with large values for one or more
of the statistics. Exclusions of observations in covariate patterns should be based on clinical plausibility.
Also, try not to discard data on a large number of observations representing a fairly common response
pattern without �rst trying to improve the model.

Note that individual logistic regressions are performed and the diagnostic statistics are examined for
each logit. Computations are done on separate data sets, thus if pattern numbers are assigned to covariate
pattern (to facilitate discussion of the values of the diagnostic statistics), the pattern numbers for the
di¤erent logits will not refer to the same covariate patterns.

The real challenge when �tting a multinomial logistic regression model is the fact that there are
multiple odds ratios for each model covariate. This certainly complicates the discussion. On the other
hand, using a multinomial outcome can provide more complete description of the process being studied.
If one combines two of the categories for a three category outcome variable, one might miss di¤erences
in odds ratios. Thus, from a statistical point of view, one should not pool the outcome categories, unless
the estimated coe¢ cients in the logits are not signi�cantly di¤erent from each other.

In summary, �tting and interpreting the results from a multinomial logistic regression model follows
the same basic paradigm as was the case for the binary model. The di¤erence is that the user should be
aware of the possibility that informative comparative statements may be required for the multiple odds
ratios for each covariate.

11.2 Ordinal logistic regression models

There are occasions when the scale of a multiple category outcome is not nominal but ordinal. Com-
mon examples of ordinal outcomes include variables such as extent of disease (none, some, severe), job
performance (very poor, poor, average, above average, outstanding) and opinions in a survey on some
issue (strongly disagree, disagree, agree, strongly agree). In such a setting one could use the multinomial
logistic model described in the previous section. This analysis, however, would not take into account the
ordinal nature of the outcome and hence the estimated odds ratios may not address the questions asked
of the analysis.

What complicates this model is that there are more than one logistic regression to choose from. Three
of the most commonly used models will be discussed: the adjacent-category, the continuation-ratio and
the proportional odds model.
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Assume that the ordinal outcome variable, Y , can take on K + 1 values coded 0; 1; 2; :::;K. Denote
a general expression for the probability that the outcome is equal to k conditional on the vector x of p
covariates as P [Y = kjx] = �k(x). If one assumes that the model is the multinomial logistic model in the
previous section, then �k(x) = �k(x). In the context of ordinal logistic regression models the multinomial
model is frequently called the baseline logit model. This term arisis from the fact that the model is usually
parameterized so that the coe¢ cients are log-odds comparing category Y = k to a �baseline�category,
Y = 0. The fully parameterized baseline logistic regression model has K � (p + 1) coe¢ cients. Under
this model the logits are:

gk(x) = ln

�
�k(x)

�0(x)

�
= �k0 + x

0�k

for k = 1; 2; :::K.

When moving to an ordinal model one has to decide what outcomes to compare and what the most
reasonable model is for the logit. For example, suppose that one wishes to compare each response to the
next larger response. This model is called the adjacent-category logistic model. If it is assumed that the
log odds does not depend on the response and the log odds is linear in the coe¢ cients then the adjacent
category logits are as follows:

ak(x) = ln

�
�k(x)

�k�1(x)

�
= �k + x

0�

for k = 1; 2; :::;K.

The adjacent-category logits are a constrained version of the baseline logits. To see this, express the
baseline logits in terms of the adjacent-category logits as follows:

ln
h
�k(x)
�0(x)

i
= ln

h
�1(x)
�0(x)

i
+ ln

h
�2(x)
�1(x)

i
+ :::+ ln

h
�k(x)
�k�1(x)

i
= a1(x) + a2(x) + :::+ ak(x)
= (�1 + x

0�)+(�2 + x
0�) + :::+(�k + x

0�)
= (�1 + �2 + :::+ �k) + kx

0�

Thus the model in the above equation is a version of the baseline model with intercept �0 = (�1 +
�2 + :::+ �k) and slope coe¢ cients �k = k�. An easy way to �t the adjacent-category model is thus via
a constrained baseline logistic model.

Suppose instead of comparing each response to the next larger response, one compares each response
to all lower responses, that is Y = k versus Y < k for k = 1; 2; :::;K. This model is called the continuation-
ratio logistic model. The logit for this model is de�ned as follows:

rk(x) = ln
h
P (Y=kjx)
P (Y <kjx)

i
= ln

h
�k(x)

�0(x)+�1(x)+:::+�k�1(x)

i
= �k + x

0�k

for k = 1; 2; :::;K.

Under the parameterization in the above equation, the continuation-ratio logits have di¤erent constant
terms and slopes for each logit. The advantage of this unconstrained parameterization is that the model
can be �t via K ordinary binary logistic regression models.
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The model given above can also be constrained to have a common vector of slope coe¢ cients and
di¤erent intercepts namely:

rk(x) = �k + x
0�

Note that it is also possible to de�ne the continuation ratio in terms of Y = k versus Y > k for
k = 1; 2; :::;K. Unfortunately the results from the two parameterizations are not equivalent. The
parameterization Y = k versus Y < k is usually preferred since, if K = 1 the model simpli�es to the
usual logistic regression model where the odds ratio compare response Y = 1 to Y = 0.

The third ordinal logistic regression model considered is the proportional odds model. With this
model one compares the probability of an equal or smaller response, Y � k, to the probability of a larger
response Y > k

ck(x) = ln
h
P (Y�kjx)
P (Y >kjx)

i
= ln

h
�o(x)+�1(x)+:::+�k(x)

�k+1(x)+�k+2(x)+:::+�K(x)

i
= �k � x`�

for k = 1; 2; :::;K.

Note that in the case when K = 1 the model as de�ned here simpli�es to the complement of the usual
logistic regression model in that it yields odds ratios of Y = 0 versus Y = 1.

The method used to �t each of the models, except the unconstrained continuation-ratio model, is
based on an adaptation of the multinomial likelihood and its log as shown here for K = 2:

L(�) =
nX
i=1

y1ig1(xi) + y2ig2(xi)� ln(1 + eg1(xi) + eg2(xi))

The basic procedure involves the following steps:

1. The expressions de�ning the model speci�c logits are used to create an equation de�ning �k(x) as
a function of the unknown parameters.

2. The values of a K + 1 dimensional multinomial outcome, z` = (z0; z1; :::; zK), are created from the
ordinal outcome as zk = 1 if y = k and zk = 0 otherwise. It follows that only one value of z is equal
to one.

The general form of the likelihood for a sample of n independent observations, (yi;xi), i = 1; 2; :::; n,
is

l(�) =
nY
i=1

[�0(xi)
z0i�1(xi)

z1i � :::� �K(xi)zKi ]

where � is used to denote both the p slope coe¢ cients and the K model-speci�c intercept coe¢ cients. It
follows that the log-likelihood function is

L(�) =
nX
i=1

z0i ln [�0(xi)] + z1i ln [�1(xi)] + :::+ zKi ln [�K(xi)] :

The MLE�s of the parameters are obtained by di¤erentiating the above equation with respect to each
of the unknown parameters, setting each of the K + p equations equal to zero and solving for b�. The
estimator of the covariance matrix of the estimated coe¢ cients is obtained by evaluating the inverse of
the negative of the matrix of the second partial derivatives at b�.
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An ordinal outcome can arise in a number of di¤erent ways. For example, an ordinal outcome
can be created by categorizing an observed continuous outcome variable. Alternatively, categories may
be observed that can be hypothesized to have come from categorizing a hypothetical and unobserved
continuous outcome. This is often a useful way to envision outcome scales in categories ranging from
strongly disagree to strongly agree. Another possibility is that the outcome is a composite of a number of
other scored variables. Common examples are health status or extent of disease, which arise from many
individual clinical indicators.

In general, the continuation-ratio model might be preferred over the baseline and adjacent-category
model when the conditioning used in de�ning and �tting the model makes clinical sense. A common
example is one where the number of attempts to pass a test or attain some binary outcome is modeled.
The �rst logit models the log odds of passing the test the �rst time it is taken. The second logit models
the log odds of passing the test on the second attempt, givent that it was not passed on the �rst attempt.
This process continues until one is modeling the Kth attempt.

The choice of what model to ultimately used in any problem should consider which odds ratios are
most informative for the problem as well as an assessment of model adequacy.

The baseline model will now be illustrated with an example to aid in the interpretation of the odds
ratios that result from it.

Example 17 As an example, form a four category outcome from household disposable monthly income
using the following cut-o¤ points: R4; 000, R8; 000 and R12; 000. This example is not typical of many
ordinal outcomes that use loosely de�ned �low�, �medium�or �high�categorizations of some measurable
quantity. Instead, here this variable was explicitly derived from a measured continuous variable.

First, one needs to give some thought to the assignment of codes to the outcome variable, as this has
implications on the de�nition of the odds ratio calculated by the various ordinal models. The obvious
choice is to use the naturally increasing sequence of codes: 0 if HMI (household monthly income)� 4; 000,
1 if 4; 000 < HMI � 8; 000, 2 if 8; 000 < HMI � 12; 000 and 3 if HMI > 12; 000. This coding is appropriate
if one wants low or lower income as the reference outcome.

However, say for instance that a decreasing sequence of codes makes more sense and one wants the
highest income to be the reference outcome. One will then code the variable as follows: 3 if HMI (household
monthly income) � 4; 000, 2 if 4; 000 < HMI � 8; 000, 1 if 8; 000 < HMI � 12; 000 and 0 if HMI > 12; 000.
This coding is used for HMI as the outcome variable for the example. The actual coding, for the most
part, does not make a di¤erence, as long as one is able to �gure out how to correct the signs of the
coe¢ cients obtained by software packages.

The data for the example:
Household Residential status (RS)
monthly income Own(0) Rent(1) TOTAL
0 : HMI > 12; 000 35 11 46
1 : 8; 000 < HMI � 12; 000 29 17 46
2 : 4; 000 < HMI � 8; 000 22 16 38
3 : HMI � 4; 000 29 30 59
TOTAL 115 74 189
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As a starting point, consider the cross-classi�cation of HMI versus residential status. The odds ratios
for the multinomial or baseline logit model de�ned by:

gk(x) = ln

�
�k(x)

�0(x)

�
= �k0 + x

0�k

is given by

dOR(1; 0) = 17� 35
29� 11 = 1:87;

dOR(2; 0) = 16� 35
22� 11 = 2:31

and

dOR(3; 0) = 30� 35
29� 11 = 3:29:

The increase in the odds ratio demonstrates an increase in odds of a progressively lower income among
people that rent their home/residence.

The adjacent-category model postulates that the log odds of each successively higher comparison of the
baseline log odds is a constant multiple of the log odds of Y = 1 versus Y = 0. Under the adjacent-
category model, the relationship required is ln [OR(k; 0)] = k� ln [OR(1; 0)] : The adjacent-category model
was �t via the constrained baseline model in SAS Proc IML, using a procedure proposed by Matthews and
Crowther (1995).

The frequencies are read into Proc IML as a vector and the matrix C is de�ned to compare each
category with the �rst, and the 3 logits are de�ned. The parameter estimates are determined under the
unconstrained model.

proc iml worksize=50;
options linesize=120;
reset nolog;

f={11,35,17,29,16,22,30,29};

C={­1 0 1 0 0 0 0 0,
0 ­1 0 1 0 0 0 0,
­1 0 0 0 1 0 0 0,
0 ­1 0 0 0 1 0 0,
­1 0 0 0 0 0 1 0,
0 ­1 0 0 0 0 0 1};

logitf=C*log(f);
A={1 1,

1 0};
A=block(A,A,A);
lambda=inv(A`*A)*A`*logitf;

print lambda;
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The unconstrained parameters are given by the vector lambda.

lambda

­0.188052
0.6233703
­0.464306
0.8389991
­0.188052
1.1913543

Two constraints are placed on the parameters, to obtain the relationship ln [OR(k; 0)] = k�ln [OR(1; 0)] :
This is done by using the matrix AH. The second slope parameter is constrained to be 2 times the �rst
slope parameter, and the third slope parameter is constrained to be 3 times the �rst slope parameter. The
constrained parameters are estimated iteratively:

AH=A*inv(A`*A);
AH=(AH[,4]­2#AH[,2])||(AH[,6]­3#AH[,2]);

gf=AH`*logitf;
do i=1 to 5;
f=f­C`*AH*ginv(AH`*C*diag(1/f)*C`*AH)*AH`*C*log(f);
ft=f`;
print i ft[format=8.4];
end;
lambdah=inv(A`*A)*A`*C*log(f);

print lambdah[format=8.4];

The constrained parameters are given by the vector lamdah:

lambdah

­0.1100
0.3696

­0.4414
0.7392

­0.1750
1.1087

In summary, the estimated coe¢ cients are given in the table below:
Logit Variable Coe¢ cient
1 RS 0:370

constant �0:110
2 RS 0:739

constant �0:441
3 RS 1:109

constant �0:175
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The equations for the adjacent-category logits are obtained by using the algebraic relationship between

the constrained baseline and adjacent-category models (ln
h
�k(x)
�0(x)

i
= (�1+�2+ :::+�k)+kx

0�). It follows

that the �rst estimated adjacent-category logit is identical to the �rst estimated baseline logit:

b�1(RS) = �0:110 + 0:370�RS:
The estimated coe¢ cient for RS in the second adjacent-category logit is the sames as in the �rst. The

estimated coe¢ cient for logit 2 in the above table is twice the value in logit 1 and re�ects the constraint
placed on the �tted baseline logit model. It follows that the estimate of the constant term for the second
adjacent-category logit is equal to the di¤erence between the two estimated constant terms in the above
table:

b�2 = b�20 � b�10 = �0:441� (�0:110) = �0:331:
Hence, the equation for the second adjacent-category logit is

b�2(RS) = �0:331 + 0:370�RS:
The equation for the third adjacent-category logit is obtained in a similar manner. In particular,

the estimated coe¢ cient for RS shown in the third logit in the above table is three times the estimated
coe¢ cient for the �rst logit. It follows that the estimate of the constant term is b�3 = b�30 � b�20 =
�0:175��(0:441) = 0:266: Hence the third estimated adjacent-category logit is

b�3(RS) = 0:266 + 0:370�RS:
Under the adjacent-category model the estimate of the odds ratio for residential status over the income

groups is

dOR(k; k � 1) = exp(0:370) = 1:45
for k = 1; 2; 3: The interpretation of this estimate is that the odds of income in the next lower income

category among those who rent their home are 1:45 times the odds for those who own their home.
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11.2.1 Model building strategies for Ordinal Logistic Regression Models

The steps in model building for an ordinal logistic model are the same as for the binary logistic model.
Unfortunately, however, a full array of modeling tools is not available in all software packages.

For ordinal models, a sensible approach to model building involves the following steps:

� Perform the usual purposeful or stepwise selection of main e¤ects.

� Check for the scale of continuous covariates using design variables in the ordinal model. In addi-
tion, one could check for nonlinearity using fractional polynomial analyses with K seperate binary
regressions of y = k versus y = 0. Any nonlinear transformation found should, of course, make
business/clinical sense, be reasonably similar across the separate logistic regressions and make a
signi�cant improvement over treating the covariate as linear in the ordinal model.

� Check to make sure all omitted covariates are neither signi�cant nor confounders of main e¤ects in
the model.

� Check the need to include interactions using the usual selection methods.

� Check any model assumptions of constant coe¢ cients by comparing the constrained model to its
unconstrained version. This can be done via a likelihood ratio comparison of the �tted model versus
the baseline model.

Diagnostic statistics and goodness-of-�t tests have not been extended for use with ordinal models.
Thus one has to use the separate binary regressions approach. The big disadvantage of this approach is
that one is really not checking the actual �tted model, only an approximation to it. However this method
may help identify in�uential and poorly �tted subjects. In general this approach is a bit ad-hoc and
all results should be checked by deleting identi�ed subjects and re�tting the ordinal model. Inferential
statements based on estimated odds ratios and their con�dence intervals should be worded in such a way
that it is clear which ordinal model has been used.
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Practical example

Data was obtained from a leading South African bank, to demonstrate the concepts presented in this
study. Note that, for con�dentiality purposes, none of the variable names can be disclosed. The variables
are typically delinquency indicators, payment behaviour, e.g. timing and sizes of payments. The variables
were measured over a period of six months.

The data set consists of 47 independent variables and 1 dependent variable. There are 83; 685 obser-
vations in the data set. Note that the dependent variable was coded as 1 to indicate default (according to
a default de�nition chosen by the bank) and 0 to indicate non-default. There are 1; 145 defaults (events)
and 82; 540 non-defaults in the data set and no indeterminants were used in this de�nition.

The data set has been cleaned to eliminate the e¤ect of outliers (a ceiling and a �oor was applied
to the data). Missing values in variables were coded as �#�for text variables and 99998 for numerical
variables. This allows the modeler to decide whether the missing values in the data are informative or
not.

After choosing the default de�nition, obtaining the data sample and cleaning the data, the next step
in the process is to do bivariate analysis of the independent variables. The purpose of this is to obtain
the most predictive variables that will be used in the model building process.

The following tests will be performed for each of the variables:

� Likelihood Ratio test

� Weight of evidence (WOE)

� Information Value (IV)

� Gini index

Note that the WOE and IV requires all the variables to be categorized. This will be manually done
for continues variables. Twenty buckets (if possible) will be created for each variable, with approximately
5% of the sample in each category if possible, except for the special category for missing values, which
will be kept in its own bucket to be able to decide whether it is informative or not.
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12.1 Initial bivariate analysis

The results of the initial bivariate analysis between each variable and the outcome variable (more detail
available in Appendix 1 of this chapter):

Variable IV Likelihood ratio DF p-value Gini index
var2 0.152775 171.3066 19 <0.0001 21.4
var3 0.112276 121.4153 19 <0.0001 17.9
var4 0.305701 362.527 16 <0.0001 28.7
var5 0.27684 396.8523 4 <0.0001 23.3
var6 1.66826 2286.7761 13 <0.0001 57
var7 0.380608 476.7248 16 <0.0001 29.4
var8 0.032222 37.9197 7 <0.0001 7.7
var9 0.046889 55.4253 7 <0.0001 8.1
var10 0.063771 68.4198 6 <0.0001 11.4
var11 1.474597 1925.1076 13 <0.0001 55.1
var12 0.774483 1058.5159 16 <0.0001 38.3
var13 0.314774 393.27 16 <0.0001 27.4
var14 1.670507 2232.554 19 <0.0001 58.8
var15 1.138026 1610.269 20 <0.0001 44.8
var16 0.445321 592.5461 20 <0.0001 31.1
var17 0.219975 209.5439 19 <0.0001 21.3
var18 0.173245 175.0854 20 <0.0001 20.5
var19 0.19469 206.7808 20 <0.0001 23.6
var20 1.456144 2022.4336 14 <0.0001 52.2
var21 0.674781 915.4379 14 <0.0001 36.9
var22 0.034826 38.5158 8 <0.0001 8.6
var23 0.044289 48.9257 7 <0.0001 9.9
var24 0.051586 53.725 7 <0.0001 10
var25 1.263112 1710.5847 14 <0.0001 49.7
var26 0.949072 1300.1428 15 <0.0001 42.5
var27 0.649905 876.2582 16 <0.0001 35.5
var28 1.466602 1999.9089 19 <0.0001 54.2
var29 1.164503 1649.7996 20 <0.0001 46.1
var30 0.786893 1095.3414 20 <0.0001 39.5
var31 0.109244 113.6209 19 <0.0001 16.6
var32 0.14109 146.8998 20 <0.0001 18.9
var33 0.121368 125.0006 20 <0.0001 16.9
var36 0.005603 6.4139 2 0.0405 3.5
var37 0.204883 244.7821 3 <0.0001 21.8
var38 0.417436 545.3355 19 <0.0001 30.9
var39 0.193634 223.6264 20 <0.0001 24.2
var40 1.127038 1686.6871 5 <0.0001 32.9
var41 1.400599 2046.1559 5 <0.0001 41.9
var42 0.204645 241.2851 9 <0.0001 22.8
var43 0.294919 425.734 5 <0.0001 13.7
var44 0.332201 473.1598 5 <0.0001 16.2
var45 0.255963 279.5701 7 <0.0001 27.2
var46 0.803913 979.8675 5 <0.0001 44.1
var47 0.183814 201.4935 4 <0.0001 21.9
var48 0.786852 996.4839 3 <0.0001 39.4
var49 0.112438 132.9193 9 <0.0001 15.4
var50 0.090889 101.2763 9 <0.0001 16.6
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Using the p-value of the likelihood ratio test, it can be seen that all the variables are signi�cant using
a 5% level of signi�cance. The information value and Gini index should therefore rather be used to
determine whether the variable should be kept to be considered for the model.

Recall from an earlier chapter, that buckets with the same WOE can be grouped together without
information loss, as measured by the IV. It is also common practice in credit scoring to have a minimum
of 5% of the sample distribution in a bucket (if possible). The buckets were combined using the WOE,
default rate per bucket and the distribution (graphs in Appendix 2). Note that business hypotheses were
also considered when the variables were bucketed again, as this is probably the most important factor to
consider when variables are bucketed for a credit scoring model.

Note that, once the variables are bucketed to combine groups with similar WOE�s and default rates, at
least 5% of the sample in the bucket and makes business sense, a lot of the variables might lose predictive
power. This will reduce the list of possible factors.
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12.2 Secondary bivariate analysis

The results of the secondary categorization of the variables: (more details can be found in Appendix 2)

Variable IV Likelihood ratio DF p-value Gini index
var4 0.240313142 287.3887 1 <.0001 22
var5 0.265610393 325.2883 1 <.0001 22.6
var6 1.568360138 2203.8668 3 <.0001 51.9
var7 0.237819024 278.0614 3 <.0001 26.4
var8 0.005697519 6.0743 1 0.0137 1.5
var9 0.011234185 11.6483 1 0.0006 2.1
var10 0.03090221 29.664 1 <.0001 3.1
var11 0.606281981 666.0219 1 <.0001 37.8
var12 0.314619163 375.237 2 <.0001 26.3
var13 0.166420533 199.7647 2 <.0001 19.4
var14 0.950569858 1128.2624 2 <.0001 47.7
var15 0.421124132 487.6195 2 <.0001 33.8
var16 0.25036743 291.0015 2 <.0001 26.5
var17 0.005395444 6.0418 1 0.014 3.5
var18 0.004633053 5.191 1 0.0227 3.2
var19 0.035196782 39.9684 2 <.0001 9.9
var20 0.723927083 825.5545 3 <.0001 43.9
var21 0.428299116 507.614 3 <.0001 33.9
var22 0.016497216 16.7275 1 <.0001 2.4
var23 0.019400381 19.4411 1 <.0001 2.6
var24 0.031001916 29.7534 1 <.0001 3.1
var25 0.56310624 636.2295 3 <.0001 38.4
var26 0.410149448 484.3302 3 <.0001 32.1
var27 0.232052083 263.0845 2 <.0001 24.9
var28 0.912158452 1106.7424 3 <.0001 47.7
var29 0.543302527 639.2373 3 <.0001 38.4
var30 0.451269613 540.333 3 <.0001 34.9
var31 0.011712311 13.2866 2 0.0013 3.7
var32 0.017544887 19.9812 2 <.0001 7.1
var33 0.034144706 38.6559 2 <.0001 9.9
var36 0.005223775 5.9435 1 0.0148 3.4
var37 0.200695023 238.6738 2 <.0001 21.4
var38 0.217676643 278.6626 2 <.0001 16.8
var40 1.011491911 1485.4551 1 <.0001 32.6
var41 1.227686419 1737.6879 1 <.0001 41.1
var42 0.144612036 181.5336 1 <.0001 13.9
var43 0.264186287 370.6593 1 <.0001 13.6
var44 0.295453208 407.5791 1 <.0001 16
var45 0.207702624 223.4275 1 <.0001 21.5
var46 0.752581537 910.9186 1 <.0001 40.6
var47 0.179410875 195.4425 1 <.0001 20.4
var48 0.786748063 995.9671 1 <.0001 39.3

As can be seen from the above table, a few variables were excluded from the analysis (variables 2, 3,
39, 49 and 50), as the statistics and business hypotheses could not be matched. The bucketing has also
caused the variables to lose some predictive power and information, but all the variables were bucketed
to make business sense and to reduce the chance of over �tting the model to the data.
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12.3 Variable clustering

Before any other exclusions were made, variable clustering was performed. Ten clusters were created
using the SAS VARCLUS procedure. For more detail on the clustering, please refer to the Appendix 3
at the end of this chapter.

Cluster Total var explained by cluster Prop of var explained by cluster
1 3.944637 0.0939
2 16.460871 0.3919
3 19.230147 0.4579
4 22.494613 0.5356
5 26.28778 0.6259
6 28.662154 0.6824
7 29.652482 0.706
8 30.869113 0.735
9 32.243267 0.7677
10 34.370544 0.8183

Cluster Min prop explained by cluster Min R2 for a var
1 0.0939 0.0031
2 0.3037 0.004
3 0.3783 0.0126
4 0.4519 0.0354
5 0.2379 0.1551
6 0.5054 0.1743
7 0.5295 0.1743
8 0.5641 0.1743
9 0.5659 0.1743
10 0.6706 0.5493

Cluster Max 1�R2 ratio for a var
1 1.1847
2 1.1044
3 1.1509
4 1.1052
5 1.1052
6 1.1052
7 1.1052
8 1.1052
9 1.1052
10 0.8089
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var7gg
var6gg
var38gg
var30gg
var29gg
var28gg
var27gg
var26gg
var25gg
var21gg
var20gg
var16gg
var15gg
var14gg
var13gg
var12gg
var11gg
var41gg
var40gg
var44gg
var43gg
var2gg
var4gg
var42gg
var37gg
var48gg
var46gg
var33gg
var32gg
var31gg
var19gg
var18gg
var17gg
var9gg
var8gg
var24gg
var23gg
var22gg
var10gg
var36gg
var47gg
var45gg

Proportion of Variance Explained

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Cluster results

12.3.1 Cluster 1

R2 with
Variable Own Next closest 1�R2 ratio
var11 0.5576 0.3485 0.6791
var12 0.809 0.2378 0.2506
var13 0.7633 0.3632 0.3717
var14 0.5747 0.4742 0.8089
var15 0.8607 0.3182 0.2043
var16 0.8057 0.2783 0.2693
var20 0.8623 0.3409 0.209
var21 0.8746 0.367 0.198
var25 0.8536 0.3535 0.2264
var26 0.8935 0.3684 0.1686
var27 0.785 0.215 0.2738
var28 0.7992 0.381 0.3244
var29 0.9176 0.3462 0.1261
var30 0.8693 0.3761 0.2096
var38 0.5493 0.1683 0.5418
var6 0.6784 0.3695 0.5101
var7 0.8136 0.3366 0.281
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12.3.2 Cluster 2

R2 with
Variable Own Next closest 1�R2 ratio
var10 0.7043 0.3016 0.4234
var22 0.8887 0.2021 0.1394
var23 0.9216 0.2165 0.1001
var24 0.8346 0.2658 0.2252
var8 0.8365 0.1851 0.2006
var9 0.9046 0.2123 0.1211

12.3.3 Cluster 3

R2 with
Variable Own Next closest 1�R2 ratio
var17 0.7138 0.3698 0.4542
var18 0.7906 0.3634 0.329
var19 0.7731 0.1925 0.281
var31 0.8857 0.3039 0.1643
var32 0.8903 0.2941 0.1555
var33 0.8602 0.2496 0.1862

12.3.4 Cluster 4

R2 with
Variable Own Next closest 1�R2 ratio
var45 0.9025 0.1187 0.1106
var47 0.9025 0.1674 0.1171

12.3.5 Cluster 5

R2 with
Variable Own Next closest 1�R2 ratio
var43 0.9261 0.0547 0.0782
var44 0.9261 0.0547 0.0782

12.3.6 Cluster 6

R2 with
Variable Own Next closest 1�R2 ratio
var37 0.6939 0.1888 0.3774
var42 0.654 0.156 0.4099
var4 0.6642 0.2004 0.42

12.3.7 Cluster 7

R2 with
Variable Own Next closest 1�R2 ratio
var2 1 0.0575 0
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12.3.8 Cluster 8

R2 with
Variable Own Next closest 1�R2 ratio
var36 1 0.0017 0

12.3.9 Cluster 9

R2 with
Variable Own Next closest 1�R2 ratio
var43 0.8892 0.1126 0.1248
var44 0.8892 0.1383 0.1285

12.3.10 Cluster 10

R2 with
Variable Own Next closest 1�R2 ratio
var46 0.8742 0.2676 0.1717
var48 0.8892 0.2393 0.1653

The results of the cluster analysis will be kept in consideration when the �nal model is chosen.

12.4 Stepwise logistic regression

12.4.1 Signi�cance levels

The signi�cance level for entry was set at 0.05 and the signi�cance level for removal was set at 0.1. The
signi�cance levels are low due to the large sample, to avoid over-�tting the model to the data.

12.4.2 Design/dummy variables

Design/dummy variables were created for all the variables considered for modelling. They were assigned
as follows, dependent on the number of buckets created for the variable:

Design/dummy variable
Number of buckets Value 1 2 3
2 1 1

2 0

3 1 1 0
2 0 1
3 0 0

4 1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 0

 
 
 



148

12.4.3 Stepwise summary

A summary of the stepwise procedure is presented here. Full output of the stepwise procedure (as well
as the SAS code used) is available in Appendix 4 of this chapter.

Step Variable DF Score �2 p-value
1 var6 3 6597.4182 <.0001
2 var4 1 227.9883 <.0001
3 var40 1 176.3495 <.0001
4 var42 1 48.5738 <.0001
5 var44 1 40.4273 <.0001
6 var28 3 41.5973 <.0001
7 var10 1 32.913 <.0001
8 var41 1 30.5176 <.0001
9 var27 2 31.216 <.0001
10 var38 2 24.4035 <.0001
11 var37 2 14.4028 0.0007
12 var29 3 16.1425 0.0011
13 var12 2 14.2426 0.0008
14 var26 3 12.0342 0.0073
15 var23 1 7.2224 0.0072
16 var7 3 11.4575 0.0095

Sixteen variables entered the model and no variables were removed during the procedure. The Gini
index for this model is 67.9.
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12.4.4 Model coe¢ cients

The coe¢ cients for the model, as given by the stepwise procedure:

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square Pr > ChiSq

Intercept       1 ­2.7707      0.2898       91.4271        <.0001
var10gg   1 1      1.0565      0.2651       15.8778        <.0001
var12gg   1     1      0.3575      0.1634        4.7883        0.0287
var12gg   2     1 ­0.1107      0.1396        0.6287        0.4278
var23gg   1     1      0.6477      0.2451        6.9852        0.0082
var26gg   1     1      0.1343      0.2955        0.2065        0.6495
var26gg   2     1 ­0.4591 0.2850        2.5951        0.1072
var26gg   3     1 ­0.4578      0.2042        5.0280        0.0249
var27gg   1     1      0.7376      0.2245       10.7939        0.0010
var27gg   2     1      0.5635      0.1616       12.1539        0.0005
var28gg   1     1 ­1.1418      0.2397       22.6895        <.0001
var28gg   2     1 ­0.4188      0.1380        9.2117        0.0024
var28gg   3     1 ­0.3962      0.1142       12.0338        0.0005
var29gg   1     1 ­0.8770      0.2634       11.0903        0.0009
var29gg 2     1 ­0.5576      0.2348        5.6388        0.0176
var29gg   3     1 ­0.00238      0.1690        0.0002        0.9888
var37gg   1     1      0.2150      0.0898        5.7329        0.0167
var37gg   2     1      0.4952      0.1336       13.7342        0.0002
var38gg   1     1 ­0.2154      0.1059        4.1411        0.0419
var38gg   2     1 ­0.4063      0.0906       20.0942        <.0001
var40gg   1     1 ­0.2683      0.1238        4.6964        0.0302
var41gg   1     1 ­0.6426      0.1287       24.9357        <.0001
var42gg   1     1      0.5058      0.0950       28.3642        <.0001
var44gg   1     1 ­0.4965      0.0942       27.7596        <.0001
var4gg    1     1      0.7111      0.0761       87.3460        <.0001
var6gg    1     1 ­2.4217      0.2298      111.0196        <.0001
var6gg    2     1 ­2.5763      0.1816 201.2410        <.0001
var6gg    3     1 ­1.9644      0.0974      406.3438        <.0001
var7gg    1     1 ­0.0818      0.1928        0.1800        0.6713
var7gg    2     1      0.3502      0.1617        4.6867        0.0304
var7gg    3     1      0.1199      0.1036        1.3388        0.2472

As can be seen from the above coe¢ cients, not all coe¢ cients were signi�cant. A more parsimonious
model can therefore be �t when collapsing some of the less signi�cant buckets within variables.
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12.4.5 Model re�nement

Note that all the changes to the stepwise model were not made at once, but the model was tested after
every one or two changes.

First, group 1 and group 2 of variable var12 was combined, as well as group 1 and group 2 of variable
var26.

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept 1 ­2.5930      0.2847       82.9632        <.0001
var10gg   1     1      1.0211      0.2688       14.4296        0.0001
var12gg   1     1      0.0403      0.1306        0.0951        0.7578
var23gg   1     1      0.4722      0.2427        3.7853        0.0517
var26gg   1     1 ­0.1441      0.2646        0.2964        0.5862
var26gg   2     1 ­0.4438 0.2012        4.8655        0.0274
var27gg   1     1      0.8010      0.2160       13.7498        0.0002
var27gg   2     1      0.5507      0.1600       11.8444        0.0006
var28gg   1     1 ­1.1433      0.2388       22.9229        <.0001
var28gg   2     1 ­0.5067      0.1367       13.7277        0.0002
var28gg   3     1 ­0.3934      0.1142       11.8646        0.0006
var29gg   1     1 ­0.7323      0.2539        8.3192        0.0039
var29gg   2     1 ­0.7255      0.2298        9.9642        0.0016
var29gg 3     1 ­0.0626      0.1701        0.1355        0.7128
var37gg   1     1      0.2263      0.0893        6.4223        0.0113
var37gg   2     1      0.4921      0.1333       13.6210        0.0002
var38gg   1     1 ­0.1810      0.1046        2.9924        0.0837
var38gg   2     1 ­0.4267      0.0907       22.1436        <.0001
var40gg   1     1 ­0.2550      0.1238        4.2436        0.0394
var41gg   1     1 ­0.6388      0.1288       24.5787        <.0001
var42gg   1     1      0.5412      0.0945       32.8185        <.0001
var44gg   1     1 ­0.4867      0.0942       26.7116        <.0001
var4gg    1     1      0.7277      0.0758       92.2220        <.0001
var6gg    1     1 ­2.3660      0.2301      105.7340        <.0001
var6gg    2     1 ­2.4197      0.1738      193.8959        <.0001
var6gg    3     1 ­1.9720      0.0974 410.0792        <.0001
var7gg    1     1      0.1734      0.1810        0.9179        0.3380
var7gg    2     1      0.3440      0.1593        4.6658        0.0308
var7gg    3     1      0.1115      0.1039        1.1515        0.2832

The Gini index decreased slightly from 67.9 to 67.5, but the degrees-of-freedom of the model also
decreased from 30 to 28.

Next, variable var12 was removed from the model as it had only 1 coe¢ cient that was not signi�cant
according to the Wald test. Also note that var12 forms part of the �rst cluster in the cluster analysis,
and that cluster is well represented by other variables in the current model.
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Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.5917      0.2846 82.9459        <.0001
var10gg   1     1      1.0227      0.2688       14.4761        0.0001
var23gg   1     1      0.4678      0.2422        3.7299        0.0534
var26gg   1     1 ­0.1182      0.2507        0.2222        0.6374
var26gg   2     1 ­0.4203      0.1861        5.0992        0.0239
var27gg   1     1      0.7931      0.2144       13.6857 0.0002
var27gg   2     1      0.5475      0.1597       11.7454        0.0006
var28gg   1     1 ­1.1418      0.2387       22.8849        <.0001
var28gg   2     1 ­0.5041      0.1365       13.6401        0.0002
var28gg   3     1 ­0.3951      0.1141       11.9978        0.0005
var29gg   1     1 ­0.7416      0.2519        8.6649        0.0032
var29gg   2     1 ­0.7342      0.2279       10.3759        0.0013
var29gg   3     1 ­0.0663      0.1695        0.1529        0.6958
var37gg   1     1      0.2250      0.0892        6.3629        0.0117
var37gg   2     1      0.4905      0.1333       13.5488        0.0002
var38gg   1     1 ­0.1786      0.1044        2.9292        0.0870
var38gg   2     1 ­0.4251      0.0905       22.0571        <.0001
var40gg   1     1 ­0.2576      0.1235        4.3500        0.0370
var41gg   1     1 ­0.6359      0.1285       24.4796        <.0001
var42gg   1     1      0.5430      0.0943       33.1843        <.0001
var44gg   1     1 ­0.4877      0.0941       26.8647        <.0001
var4gg    1 1      0.7281      0.0758       92.3624        <.0001
var6gg    1     1 ­2.3647      0.2300      105.7146        <.0001
var6gg    2     1 ­2.4171      0.1736      193.9588        <.0001
var6gg    3     1 ­1.9684      0.0967      414.7011        <.0001
var7gg    1     1      0.2013      0.1567        1.6511        0.1988
var7gg    2     1      0.3697      0.1357        7.4190        0.0065
var7gg    3     1      0.1225      0.0974        1.5831        0.2083

The Gini index of the above model is 67.7, which increased from the previous step as well as lowered
the degrees-of-freedom of the model to 27.
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The next step was to collapse groups 3 and 4 for both variables, var29 and var7.

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.5598      0.2832       81.7099        <.0001
var10gg   1     1      1.0406      0.2685       15.0194        0.0001
var23gg   1     1      0.4600      0.2419        3.6156        0.0572
var26gg   1     1 ­0.1170      0.2351        0.2479        0.6186
var26gg   2     1 ­0.4189      0.1494        7.8595 0.0051
var27gg   1     1      0.7864      0.2138       13.5227        0.0002
var27gg   2     1      0.5521      0.1600       11.9087        0.0006
var28gg   1     1 ­1.1396      0.2379       22.9447        <.0001
var28gg   2 1 ­0.5028      0.1323       14.4506        0.0001
var28gg   3     1 ­0.3917      0.1074       13.3018        0.0003
var29gg   1     1 ­0.7027      0.2150       10.6847        0.0011
var29gg   2     1 ­0.6880      0.1759 15.2896        <.0001
var37gg   1     1      0.2272      0.0892        6.4834        0.0109
var37gg   2     1      0.4956      0.1331       13.8636        0.0002
var38gg   1     1 ­0.1742      0.1042        2.7951        0.0946
var38gg   2     1 ­0.4195      0.0904       21.5469        <.0001
var40gg   1     1 ­0.2625      0.1234        4.5253        0.0334
var41gg   1     1 ­0.6338      0.1285       24.3207        <.0001
var42gg   1     1      0.5460 0.0942       33.5704        <.0001
var44gg   1     1 ­0.4919      0.0940       27.3592        <.0001
var4gg    1     1      0.7317      0.0757       93.4082        <.0001
var6gg    1     1 ­2.3665      0.2300      105.8521 <.0001
var6gg    2     1 ­2.4153      0.1736      193.6802        <.0001
var6gg    3     1 ­1.9708      0.0965      416.9984        <.0001
var7gg    1     1      0.1255      0.1447        0.7518        0.3859
var7gg    2     1      0.2844      0.1178        5.8292        0.0158

The Gini index of the above model is 67.7, which stayed the same from the previous version of the
model, but lowered the degrees-of-freedom in the model to 25. This means that two less parameters were
�tted to obtain the same predicitve power.

It is clear from the above regression coe¢ cients, that the �rst and second groups of the following
variables are not signi�cantly di¤erent and can therefore be combined: var26, var38 and var7.
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Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.5516      0.2829       81.3293        <.0001
var10gg   1     1      1.0435      0.2689       15.0590        0.0001
var23gg   1     1      0.4442      0.2412        3.3917        0.0655
var26gg   1     1 ­0.3890      0.1449        7.2118 0.0072
var27gg   1     1      0.9551      0.1839       26.9686        <.0001
var27gg   2     1      0.5423      0.1574       11.8724        0.0006
var28gg   1     1 ­1.1095      0.2366       21.9959        <.0001
var28gg   2     1 ­0.4643      0.1304       12.6797        0.0004
var28gg   3     1 ­0.3920      0.1073       13.3372        0.0003
var29gg   1     1 ­0.6953      0.1870       13.8280        0.0002
var29gg   2 1 ­0.5811      0.1626       12.7670        0.0004
var37gg   1     1      0.2233      0.0892        6.2739        0.0123
var37gg   2     1      0.4755      0.1328       12.8263        0.0003
var38gg   1     1 ­0.1626 0.1039        2.4501        0.1175
var38gg   2     1 ­0.4225      0.0903       21.8909        <.0001
var40gg   1     1 ­0.2570      0.1234        4.3394        0.0372
var41gg   1     1 ­0.6325      0.1285       24.2293        <.0001
var42gg   1     1      0.5532      0.0942       34.5183        <.0001
var44gg   1     1 ­0.4987      0.0939       28.2011        <.0001
var4gg    1     1      0.7286      0.0757       92.5676        <.0001
var6gg    1     1 ­2.3927      0.2284 109.7300        <.0001
var6gg    2     1 ­2.3971      0.1721      193.9137        <.0001
var6gg    3     1 ­1.9683      0.0964      416.5067        <.0001
var7gg    1     1      0.2270      0.1105        4.2223 0.0399

The Gini index of this model decreased slightly to 67.4, but less parameters were �t, so the degrees-of-
freedom decreased to 23.

From the above regression coe¢ cients and their respective p-values, it is clear that the variable, var23,
is no longer signi�cant. Var23 forms part of cluster 2, which is already represented in the model by var10.

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.3645      0.2598       82.8465        <.0001
var10gg   1     1      1.3067      0.2322       31.6808 <.0001
var26gg   1     1 ­0.3954      0.1450        7.4357        0.0064
var27gg   1     1      0.9356      0.1835       25.9926        <.0001
var27gg   2     1      0.5436      0.1575       11.9142        0.0006
var28gg   1 1 ­1.1117      0.2362       22.1548        <.0001
var28gg   2     1 ­0.4553      0.1304       12.1836        0.0005
var28gg   3     1 ­0.3851      0.1073       12.8924        0.0003
var29gg   1     1 ­0.6936      0.1869       13.7652        0.0002
var29gg   2     1 ­0.5731      0.1627       12.4022        0.0004
var37gg   1     1      0.2129      0.0891        5.7093        0.0169
var37gg   2     1      0.4683      0.1328       12.4365        0.0004
var38gg 1     1 ­0.1716      0.1038        2.7316        0.0984
var38gg   2     1 ­0.4229      0.0903       21.9356        <.0001
var40gg   1     1 ­0.2638      0.1234        4.5724        0.0325
var41gg   1     1 ­0.6304      0.1284       24.0880        <.0001
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The degrees-of-freedom for the above model has decreased to 22 and the Gini index is now 67.1.

The coe¢ cient of the �rst group of var38 in the above table is not signi�cant, it was therefore regrouped
to combine group 1 and 2.

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.3473      0.2599       81.5642        <.0001
var10gg   1     1      1.2600      0.2316       29.5992        <.0001
var26gg   1     1 ­0.4129      0.1451        8.0932        0.0044
var27gg   1     1      1.0419      0.1802       33.4361        <.0001
var27gg   2     1      0.5659      0.1576       12.8878        0.0003
var28gg   1     1 ­1.0777      0.2360       20.8474        <.0001
var28gg   2     1 ­0.4737      0.1303       13.2173        0.0003
var28gg   3     1 ­0.4016      0.1069       14.1233        0.0002
var29gg   1     1 ­0.6516      0.1865       12.2121        0.0005
var29gg   2     1 ­0.5855      0.1628       12.9348        0.0003
var37gg   1     1      0.2378      0.0887        7.1865 0.0073
var37gg   2     1      0.4873      0.1327       13.4823        0.0002
var38gg   1     1 ­0.3418      0.0851       16.1472        <.0001
var40gg   1     1 ­0.2715      0.1233        4.8491        0.0277
var41gg   1 1 ­0.6329      0.1286       24.2056        <.0001
var42gg   1     1      0.5701      0.0937       37.0057        <.0001
var44gg   1     1 ­0.4766      0.0934       26.0208        <.0001
var4gg    1     1      0.7443      0.0749       98.7501        <.0001
var6gg    1     1 ­2.3811      0.2285      108.5624        <.0001
var6gg    2     1 ­2.3447      0.1713      187.4182        <.0001
var6gg    3     1 ­1.9685      0.0965      415.7093        <.0001
var7gg    1     1      0.2156      0.1099        3.8499        0.0497

The Gini index of this model is now 66.6 and the degrees-of-freedom is now 21.

The coe¢ cient for var7 is barely signi�cant, so the model was tested when var7 is removed.
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Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept 1 ­2.3549      0.2600       82.0526        <.0001
var10gg   1     1      1.2751      0.2316       30.3095        <.0001
var26gg   1     1 ­0.4070      0.1448        7.9049        0.0049
var27gg   1     1      1.1434      0.1723 44.0489        <.0001
var27gg   2     1      0.6093      0.1556       15.3319        <.0001
var28gg   1     1 ­1.0906      0.2362       21.3127        <.0001
var28gg   2     1 ­0.4822      0.1303       13.6910        0.0002
var28gg   3     1 ­0.4136      0.1067       15.0200        0.0001
var29gg   1     1 ­0.5700      0.1827        9.7327        0.0018
var29gg   2     1 ­0.5000      0.1580       10.0111        0.0016
var37gg   1     1      0.2357 0.0888        7.0510        0.0079
var37gg   2     1      0.5004      0.1326       14.2448        0.0002
var38gg   1     1 ­0.3344      0.0850       15.4812        <.0001
var40gg   1     1 ­0.2785      0.1233        5.1049        0.0239
var41gg   1     1 ­0.6276      0.1288       23.7556        <.0001
var42gg   1     1      0.5707      0.0938       37.0206        <.0001
var44gg   1     1 ­0.4646      0.0933       24.7886        <.0001
var4gg    1     1      0.7459      0.0749       99.2429 <.0001
var6gg    1     1 ­2.3647      0.2288      106.7731        <.0001
var6gg    2     1 ­2.3342      0.1715      185.2251        <.0001
var6gg    3     1 ­1.9671      0.0967      413.9830        <.0001

The Gini index increased to 66.7 and the degrees-of-freedom also decreased. Hence, the model is more
predictive with less variables. As predictive power (as measured by the Gini index) is a more important
consideration in credit scoring than the signi�cance of individual variables, var 7 can be removed and it
will improve the predictive power of the model.

It is clear from the above coe¢ cients that they are all signi�cant.

Although all the coe¢ cients in the above output is signi�cant, each variable will be tested to make
sure it adds to the predictive power of the model. Note that the aim of the model is not to explain the
underlying data, but to make predictions about future observations.

Each variable was removed in turn from the model to assess the e¤ect of that particular variable on
the model�s predictive power.

Variable Gini index Di¤erence
All variables 66.7
Remove var10 65.7 -1
Remove var26 66.8 0.1
Remove var27 66.9 0.2
Remove var28 66 -0.7
Remove var29 66.7 0
Remove var37 67 0.3
Remove var38 66.7 0
Remove var40 66.8 0.1
Remove var41 66.8 0.1
Remove var42 66.7 0
Remove var44 66.6 -0.1
Remove var4 66.3 -0.4
Remove var6 65.3 -1.4
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It is clear from the above table that some variables does not add to the predictive power of the model,
because when removed, the Gini index stays the same. Some variables have a negative impact on the
predictive power of the model, as the Gini index increases as these variables are removed one at a time.
The variable that has the biggest in�uence on the power of the model is var37 and will be removed. Note
that var37 is part of cluster3, which is already represented by var42 and var4 in the model.

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.2675      0.2589       76.7118        <.0001
var10gg   1     1      1.2463      0.2315       28.9867        <.0001
var26gg   1     1 ­0.4053      0.1455        7.7573        0.0053
var27gg   1     1      1.2240      0.1714       50.9708        <.0001
var27gg   2     1      0.6466      0.1558       17.2195        <.0001
var28gg   1     1 ­1.1316      0.2361       22.9778 <.0001
var28gg   2     1 ­0.5155      0.1304       15.6204        <.0001
var28gg   3     1 ­0.4156      0.1068       15.1481        <.0001
var29gg   1     1 ­0.5331      0.1824        8.5429        0.0035
var29gg   2     1 ­0.5022      0.1581       10.0943        0.0015
var38gg   1     1 ­0.3216      0.0849       14.3681        0.0002
var40gg   1     1 ­0.3153      0.1227        6.6000        0.0102
var41gg   1     1 ­0.6698      0.1281       27.3546        <.0001
var42gg   1     1      0.6310      0.0870       52.5475        <.0001
var44gg   1     1 ­0.4120      0.0921       20.0132        <.0001
var4gg    1     1      0.8033      0.0720      124.4348        <.0001
var6gg    1 1 ­2.3775      0.2294      107.4166        <.0001
var6gg    2     1 ­2.3751      0.1715      191.6880        <.0001
var6gg    3     1 ­1.9822      0.0970      417.3622        <.0001

All the remaining coe¢ cients in the model are signi�cant. Again, each variable was removed from the
model to ascertain its e¤ect on the predictive power of the model.

Variable Gini index Di¤erence
All variables 67
Remove var10 65.5 -1.5
Remove var26 66.6 -0.4
Remove var27 66.1 -0.9
Remove var28 65.9 -1.1
Remove var29 66.5 -0.5
Remove var38 66.7 -0.3
Remove var40 66.7 -0.3
Remove var41 66.5 -0.5
Remove var42 66.2 -0.8
Remove var44 66.7 -0.3
Remove var4 64.6 -2.4
Remove var6 64.6 -2.4

The Gini index decreases when any of the remaining variables in the model is removed, hence all
the remaining variables add to the predictive power of the model. The next step is to analyze the
relationship between the default rate sloping and the coe¢ cients of the variables. As the default (model
def(event=�1�) in the SAS code) was modeled, one expects the coe¢ cients to have the same direction
as the bad rate sloping of the variables (univariately). If this is not the case, it might require further
analysis of the relationships between the variables in the model. If removing the variable from the model
does not drop the predictive power of the model too much, it might be argued that the variable rather be
removed than doing complex, time-consuming analysis of di¤erent relationships between the variables.
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For the variable var27, the coe¢ cients were counter to what was expected, as illustrated by the graph
below:
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The direction of the bad rate and the coe¢ cients are not the same, which indicates that the variable
is not predicting as expected if this was the only variable in the model. This might indicate that there is
an interaction between this variable and one or more of the other variables in the current model, which
would require in-depth analysis. Var27 forms part of the �rst cluster, which is already presented in the
model by �ve other variables. This variable will be removed from the model, to test whether exclusion
of this variable will have a big impact on the predictiveness of the model.If the variable does not have
a big impact on the predictive power of the model, it can be removed. If it does have a big impact on
the predictiveness of the model, in-depth analysis of the relationships between this variable and those
also in the model should be performed to explain why the variable is sloping the way it is. All the other
variables had the correct relationship between the default rate sloping and the coe¢ cients. The graphs
are presented in Appendix 5.
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Var27 was removed from the model:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.2188      0.2589       73.4670        <.0001
var10gg   1     1      1.2101      0.2316       27.3099        <.0001
var26gg   1     1      0.1958      0.1034        3.5846        0.0583
var28gg   1     1 ­1.1610      0.2371       23.9837        <.0001
var28gg   2     1 ­0.5569      0.1301       18.3100        <.0001
var28gg   3     1 ­0.5193      0.1077       23.2576        <.0001
var29gg   1     1      0.0639      0.1577        0.1641        0.6854
var29gg   2     1      0.0816      0.1280        0.4066        0.5237
var38gg   1     1 ­0.2720      0.0841       10.4720        0.0012
var40gg   1     1 ­0.3280      0.1223        7.1946        0.0073
var41gg   1     1 ­0.6924      0.1279       29.2973        <.0001
var42gg   1     1      0.6375      0.0870       53.7164        <.0001
var44gg   1     1 ­0.4054      0.0920       19.4079        <.0001
var4gg    1     1      0.8237      0.0719      131.1085        <.0001
var6gg    1     1 ­2.3649      0.2307      105.1125        <.0001
var6gg    2     1 ­2.3380      0.1710      186.9001        <.0001
var6gg    3     1 ­1.9880      0.0971      419.0391        <.0001

The Gini index has decreased from 67 to 66.1, which does not make a complex analysis worthwhile
in order to keep the variable.. From the above regression coe¢ cients it is clear that variable var29 has
lost its predictive power as both the coe¢ cients for this variable have large p-values. The variable will
be removed from the model.

Remove var29:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.2225      0.2588       73.7746        <.0001
var10gg   1     1      1.2125      0.2315       27.4317 <.0001
var26gg   1     1      0.2196      0.0954        5.3046        0.0213
var28gg   1     1 ­1.1361      0.2104       29.1577        <.0001
var28gg   2     1 ­0.5478      0.1266       18.7387        <.0001
var28gg   3     1 ­0.5273      0.1068       24.3892        <.0001
var38gg   1     1 ­0.2697      0.0839       10.3264        0.0013
var40gg   1     1 ­0.3281      0.1223        7.2039        0.0073
var41gg   1     1 ­0.6909      0.1279       29.1846        <.0001
var42gg   1     1      0.6373      0.0870       53.6979        <.0001
var44gg   1     1 ­0.4031      0.0919       19.2315        <.0001
var4gg    1     1      0.8246      0.0719      131.5345        <.0001
var6gg    1     1 ­2.3536 0.2304      104.3531        <.0001
var6gg    2     1 ­2.3005      0.1618      202.2352        <.0001
var6gg    3     1 ­1.9906      0.0971      420.2571        <.0001

The Gini index remained at 66.1, even though the variable was removed, which means that the variable
did not add to the predictive power of the model. All the coe¢ cients in the model is again signi�cant.
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Each variable�s e¤ect on the Gini index is again tested.

Variable Gini index Di¤erence
All variables 66.1
Remove var10 64.6 -1.5
Remove var26 65.9 -0.2
Remove var28 65.2 -0.9
Remove var38 65.5 -0.6
Remove var40 66 -0.1
Remove var41 65.6 -0.5
Remove var42 64.9 -1.2
Remove var44 65.8 -0.3
Remove var4 63.7 -2.4
Remove var6 64 -2.1

The Gini index decreases when any of the remaining variables in the model is removed, hence all the
remaining variables add to the predictive power of the model. The relationship between the default rate
sloping and the coe¢ cients of the variables is analyzed again. Recall that one expects the coe¢ cients to
have the same direction as the bad rate sloping of the variables (univariately).

Again, one variable had coe¢ cients that sloped in the di¤erent direction than the default rate, variable
26. This again might indicate interaction between this variable and one or more of the other variables in
the model. If the variable has a big impact on the overall power of the model, the relationships between
this model and all other variables in the model mus t be analyzed in order to explain why it is sloping
in a di¤erent way as it would univariately. All the other graphs for the other variables is available in
Appendix 6.
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Variable 26 was removed from the model, as it does not add too much to the model in terms of
predictive power and therefore does not warrant a complex analysis of variable relationships.

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.2184      0.2588       73.4956        <.0001
var10gg   1     1      1.2221      0.2316 27.8536        <.0001
var28gg   1     1 ­0.9741      0.1993       23.8870        <.0001
var28gg   2     1 ­0.3809      0.1051       13.1394        0.0003
var28gg   3     1 ­0.4677      0.1036       20.3960        <.0001
var38gg   1     1 ­0.2400      0.0828        8.4073        0.0037
var40gg   1     1 ­0.3224      0.1222        6.9657        0.0083
var41gg   1     1 ­0.6991      0.1280       29.8384        <.0001
var42gg   1     1      0.6341      0.0871       53.0630 <.0001
var44gg   1     1 ­0.4075      0.0919       19.6653        <.0001
var4gg    1     1      0.8296      0.0719      133.1734        <.0001
var6gg    1     1 ­2.3344      0.2309      102.1918        <.0001
var6gg    2     1 ­2.2835 0.1619      198.9078        <.0001
var6gg    3     1 ­1.9735      0.0972      412.5563        <.0001

The Gini index decreased from 66.1 to 65.9.

Again, the impact of each variable on the Gini index was determined.

Variable Gini index Di¤erence
All variables 65.9
Remove var10 64.5 -1.4
Remove var28 65.2 -0.7
Remove var38 65.9 0
Remove var40 66.3 0.4
Remove var41 65.8 -0.1
Remove var42 64.6 -1.3
Remove var44 66.2 0.3
Remove var4 64.2 -1.7
Remove var6 63.8 -2.1

Removing some of the variables increases the predictive power of the model. As the aim of the model
is to predict, rather than to explain the underlying data, this should be taken into consideration. When
Var40 is removed, the Gini index increases from 65.9 to 66.3. Var40 is part of cluster 9, which is also
represented by Var41 in the model.
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Variable 40 is removed from the model:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.2975      0.2571       79.8251        <.0001
var10gg   1     1      1.2228      0.2314       27.9150        <.0001
var28gg   1 1 ­1.0486      0.1971       28.2978        <.0001
var28gg   2     1 ­0.4206      0.1034       16.5585        <.0001
var28gg   3     1 ­0.5129      0.1015       25.5528        <.0001
var38gg   1     1 ­0.2504      0.0824        9.2488        0.0024
var41gg   1     1 ­0.9142      0.0955       91.7280        <.0001
var42gg   1     1      0.6587      0.0863       58.2651        <.0001
var44gg   1     1 ­0.4197      0.0914       21.0720        <.0001
var4gg    1     1 0.8356      0.0717      135.7759        <.0001
var6gg    1     1 ­2.2808      0.2301       98.2784        <.0001
var6gg    2     1 ­2.2510      0.1613      194.7284        <.0001
var6gg    3     1 ­1.9593      0.0965      412.3503 <.0001

All the coe¢ cients are signi�cant in the model and the Gini index increased from 65.9 to 66.3.

Again, the e¤ect of each variable on the overal predictive power of the model was tested using the
Gini index.

Variable Gini index Di¤erence
All variables 66.3
Remove var10 64.6 -1.7
Remove var28 65.2 -1.1
Remove var38 65.8 -0.5
Remove var41 65.6 -0.7
Remove var42 65.2 -1.1
Remove var44 66.1 -0.2
Remove var4 64.1 -2.2
Remove var6 63.8 -2.5

Removing all the remaining variables one by one decreases the Gini index. The relationship between
the default rate sloping and coe¢ cients were again checked.
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The coe¢ cient sloping for var28 does not correspond for group 2 and group 3 to the bad rate sloping.
These two groups will be combined as analysis of the reason why this occurred will be more complex
and time-consuming than the added predictive power of the extra category in the model can justify. The
graphs for all the other variables can be found in Appendix 7 of this chapter.

Combining group 2 and 3 for Variable 28:

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept       1 ­2.3018      0.2571       80.1487        <.0001
var10gg   1     1      1.2218      0.2315       27.8603        <.0001
var28gg   1     1 ­1.0633      0.1964       29.3067        <.0001
var28gg   2     1 ­0.4690      0.0852       30.2856        <.0001
var38gg   1     1 ­0.2416      0.0815        8.7876        0.0030
var41gg   1     1 ­0.9120      0.0954       91.4740        <.0001
var42gg   1     1      0.6616      0.0862       58.8482        <.0001
var44gg   1     1 ­0.4207 0.0914       21.1885        <.0001
var4gg    1     1      0.8331      0.0716      135.3132        <.0001
var6gg    1     1 ­2.2703      0.2299       97.5456        <.0001
var6gg    2     1 ­2.2113      0.1540      206.0595        <.0001
var6gg    3     1 ­1.9599      0.0964      413.0086        <.0001

The Gini index decreased from 66.3 to 65.9.

Again, the impact of each variable on the Gini index of the model was assessed:

Variable Gini index Di¤erence
All variables 65.9
Remove var10 64.9 -1
Remove var28 65.2 -0.7
Remove var38 65.9 0
Remove var41 65.5 -0.4
Remove var42 65.2 -0.7
Remove var44 66 0.1
Remove var4 64.1 -1.8
Remove var6 63.8 -2.1

Removing var44 will result in an increase in the Gini index of the model.

Analysis of Maximum Likelihood Estimates

Standard          Wald
Parameter      DF    Estimate       Error    Chi­Square    Pr > ChiSq

Intercept 1 ­2.5803      0.2503      106.2537        <.0001
var10gg   1     1      1.2627      0.2315       29.7472        <.0001
var28gg   1     1 ­1.0941      0.1961       31.1227        <.0001
var28gg   2     1 ­0.4760      0.0850 31.3450        <.0001
var38gg   1     1 ­0.3203      0.0791       16.4035        <.0001
var41gg   1     1 ­0.9533      0.0957       99.2501        <.0001
var42gg   1     1      0.6539      0.0864       57.3116        <.0001
var4gg    1 1      0.8388      0.0717      136.8091        <.0001
var6gg    1     1 ­2.2826      0.2296       98.8405        <.0001
var6gg    2     1 ­2.2412      0.1541      211.5099        <.0001
var6gg    3     1 ­2.0090      0.0963      435.4554        <.0001
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The Gini index for the above model is 66, which is an improvement on the previous Gini index of
65.9, although a variable was removed from the model.

The e¤ect of each variable on the predictive power of the model was determined again, using the Gini
index.

Variable Gini index Di¤erence
All variables 66
Remove var10(IBR)1 64.6 -1.4
Remove var28(AIR) 65 -1
Remove var38(BLR) 65.5 -0.5
Remove var41(DS1) 65.2 -0.8
Remove var42(PBR) 64.8 -1.2
Remove var4(PPM) 63.5 -2.5
Remove var6(DS2) 63.2 -2.8

From the above table, it is clear that each variable adds to the predictive power of the model. What
remains now is to assess the relationship between the default rate sloping and coe¢ cients of each variable.

Variable 10 (IBR):
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1Descriptions of the variable names can be found in the following section.
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Variable 28(AIR):

Variable 28
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Variable 38 (BLR):

Variable 38
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Variable 41:

Variable 41
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Variable 42 (PBR):

Variable 42
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Variable 4 (PPM):

Variable 4
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Variable 6 (DS2):

Variable 6
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As all the variables add to the model in terms of predictive power (measured by the Gini index) and all
the variables have the correct relationship between the coe¢ cients and the default rate sloping, one can
conclude that the �nal model has been reached that will be put forward to the business for consideration.
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12.5 Final model

The �nal model contains the following variables from the clusters as indicated:

Variable Cluster Description Sign of coe¢ cient
var10 2 Interest to balance ratio (IBR) Positive
var28 1 Arrears to instalment ratio(AIR) Negative
var38 1 Balance to Limit Ratio (BLR) Positive
var41 9 Delinquency status (DS1) Positive
var42 3 Payment to Balance Ratio (PBR) Negative
var4 3 Percentage Payment made (PPM) Positive
var6 1 Delinquency status (DS2) Negative

The variable with the highest positive coe¢ cient in the model is var10, interest to balance ratio. This
variable indicates that a client with a high value for interest to balance, is a higher risk than a client
with a low value. This is also an indicator of how long a person has been a client and how far he/she has
progressed with the loan. A high value for this ratio indicates that a high portion of the payment is still
for interest, rather than the principal of the loan. This means that the client probably is not far down
the loan term, with lots of potential to default.

The highest negative coe¢ cients in the model is for var6, deliquency status2. The lower the delin-
quency status, as measured in days past due (or number of payments missed), the less risky the client
is, and therefore a lower chance of default. As the client goes to more days past due, he/she gets riskier,
and that is also re�ected in the coe¢ cient assigned.
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The Hosmer-Lemeshow Goodness-of-Fit test

Partition for the Hosmer and Lemeshow Test

def = 1                 def = 0
Group       Total    Observed    Expected    Observed    Expected

1       13064          44       32.42       13020    13031.58
2        6322          14       20.01        6308     6301.99
3       10012          49       49.31        9963     9962.69
4        3484          10       20.61        3474     3463.39
5       26058         121      161.68 25937    25896.32
6        9129          83       85.06        9046     9043.94
7        8337         123      108.33        8214     8228.67
8        7279         701      667.58        6578     6611.42

Hosmer and Lemeshow Goodness­of­Fit Test

Chi­Square       DF     Pr > ChiSq

25.6567        6         0.0003

From the above SAS output one can conclude that the model �ts the data reasonably well.

Lorenz curve and Gini index

Lorenz curve
Gini index=66.05
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The above graph shows that the model has signi�cant predictive power.
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KS graph

KS graph
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The KS statistic is the maximum di¤erence between the distributions of the goods and the bads. The
KS for the above model is 55. The shape of the curves also indicate that the model predicts well over all
ranges of the predicted probability.

12.6 Next steps

The next step in the model development would be to present the model to business experts. The business
experts can then provide additional information regarding the expected impact of variables and their
sloping. The business can also add any variables that they deem important and the modeler will test
these. The experts can also decide to remove any of the variables.

Another important step is to assess the model on either a holdout sample, or a completely independent
sample from a di¤erent time period. This will determine whether the model can be generalized and
whether the model was over-�t on the development data. A drop in the Gini index of about 5% or more
is normally alarming.

The last remaining step, once a �nal model is chosen, is to calibrate the model to give the correct
prediction. Recall that a model can be developed on any default de�nition, but for capital purposes, the
Basel II default de�nition must be used. The model is then calibrated to re�ect this default de�nition.

12.7 Closing thoughts

From the above example, it should be clear that credit scoring model development is more than just
statistical methods. Careful thought should be applied to ensure that the statistics makes sense. It is
important that the modeler understands the business for which the model is developed, to be sure that
the trends can be explained. The development process involves checking several criteria at each step in
the model, and not to just accept the model from the stepwise process.

Although credit scoring will never be able to predict with absolute certainty the performance of an
individual borrower/loan, its bene�ts and usefulness have been proven time and time again. Therefore
credit scoring has become essential for any bank in the world.
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12.8 Appendix 1: Initial bivariate analysis

In order to avoid repitition, only the results of the bivariate analysis between the variable and the outcome
variable is shown for the variables that were selected in the stepwise procedure.

Variable 4:
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The following is considered for the secondary bucketing:

� The business hypothesis is that the higher the group number, the lower the risk.

� Group 1 to 3 will be combined.

� Bucket 17 represents missing observations and will be grouped with bucket 1 to 3 as it has a similar
WOE and default rate.

� Group 4 to 16 will be grouped together.

� The variable does support the business hypothesis, but not very clearly, so only 2 buckets will be
created.
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Variable 6:

Variable 6
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The following is considered for the secondary bucketing:

� The business hypothesis is that the higher the group number, the higher the default rate should be.

� Group 1 to 5 will be combined, based on the WOE.

� Group 6 to 8 will be grouped together.

� Group 10-12 will be added together.

� Group 13 and 14 are the only ones with negative WOE and will be combined.

� No missing observations were observed for this variable.
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Variable 7:

Variable 7
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The following is considered for the secondary bucketing:

� The business hypothesis is that the higher the group number, the higher the default rate should be.

� Group 1 to 6 will be combined, based on the WOE.

� Group 7 to12 will be added together.

� Group 13 and 14 are the only will be combined.

� Bucket 17 represents missing observations and will be grouped with bucket 13 to 14 as it has a
similar WOE and default rate.

� Group 15 and group 16 is combined.

� There will be some loss of predictive power and information, but the variable will be a lot more
stable and less chance of over-�tting on the data.
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Variable 10:

Variable 10
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The following is considered for the secondary bucketing:

� The business hypothesis is that the higher the group number, the lower the default rate should be.

� Group 1 to 5 will be combined

� Group 6 will be kept separately.

� Bucket 7 represents missing observations and will be grouped with bucket 1 to 5 as it makes the
most sense and does not have enough of the sample distribution in the bucket to be kept separately.

� There will be some loss of predictive power and information, but the variable will be a lot more
stable and less chance of over-�tting on the data and it supports the business hypothesis.
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Variable 12:

Variable 12
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The following is considered for the secondary bucketing:

� The business hypothesis is that the higher the group number, the higher the default rate should be.

� There is no business reason for groups 2 to 4 to be di¤erent from group 1 and 5, so groups 1 to 10
will be grouped together.

� Group 11 to 14 will be added together.

� Group 15 to 17 will be combined.

� Group 17 contains all the missing values and it does not seem to be informative, especially because
of the very low number of observations in the bucket.
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Variable 23:

Variable 23
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Figure 12.1: Var23 WOE

The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the lower the default rate
should be.

� Note that group 8 indicates missing values.

� The data does show the trend, but not clearly, so only 2 buckets will be created for this variable.

� Group 1 to 6 will be added together.

� Group 7 and 8 will be combined.
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Variable 26:

Variable 26
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 16 indicates missing values.

� Group 1 to 6 will be added together.

� Group 7 to 11 will be combined.

� Group 12 and 13 will form a new group.

� Group 14 to 16 will make up the �nal group.
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Variable 27:

Variable 27

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Group

D
is

tr
ib

ut
io

n
0%

10%

20%

30%

40%

50%

D
ef

au
lt 

ra
te

Distribution Default rate

Var27 Distribution and bad rate

Variable 27

­6 ­4 ­2 0 2

1

4

7

10

13

16

G
ro

up

woe

Var27 WOE

The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 17 indicates missing values.

� Group 1 to 11 will be added together.

� Group 12 to 14 will form a new group.

� Group 15 to 17 will make up the �nal group.
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Variable 28:

Variable 28
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 20 indicates missing values.

� Group 1 to 6 will be added together.

� Group 7 to 13 will be combined.

� Group 14 to 17 will form a new group.

� Group 18 to 20 will make up the �nal group.

 
 
 



179

Variable 29:

Variable 29
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 21 indicates missing values.

� Group 1 to 7 will be added together.

� Group 8 to 11 will be combined.

� Group 12 to 16 will form a new group.

� Group 17 to 21 will make up the �nal group.
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Variable 37:

Variable 37
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The following is considered for the secondary bucketing:

� Note that group 1 indicates missing values. As the default rate is the highest for this group, and
there is a substantial percentage of the sample in that group, this is a clear example of an informative
missing value.

� Group 1 and 2 will be combined.

� Group 4 will become group 2 and group 3 will remain group 3.
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Variable 38:

Variable 38
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 20 indicates missing values.

� Group 1 to 10 will be added together.

� Group 11 to 17 will be combined.

� Group 18 to 20 will form a new group.
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Variable 40:

Variable 40
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 6 indicates missing values.

� The distribution of the data is a concern as about 97% of the sample lies in the �rst group.

� Nevertheless, group 2 to 6 will be combined and group 1 will be its own group.
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Variable 41:

Variable 41
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 6 indicates missing values.

� The distribution of the data is a concern as about 95% of the sample lies in the �rst group.

� Nevertheless, group 2 to 6 will be combined and group 1 will be its own group.
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Variable 42:

Variable 42
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the lower the default rate
should be.

� Note that group 10 indicates missing values.

� Group 7 to 9 does not support the business hypothesis, so only 2 groups will be created for this
variable.

� Group 1 and 10 will be combined and the rest of the groups will be combined.
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Variable 44:
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The following is considered for the secondary bucketing:

� The variable�s business hypothesis is that the higher the group number, the higher the default rate
should be.

� Note that group 6 indicates missing values.

� The distribution of the data is a concern as about 96% of the sample lies in the �rst group.

� Nevertheless, group 2 to 6 will be combined and group 1 will be its own group.
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12.9 Appendix 2: Secondary bucketing of variables

Again, to avoid repitition, only the results of the bivariate analysis between the variable and the outcome
variable is shown for the variables that were selected in the stepwise procedure.
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Variable 6:
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Variable 7:
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Variable 10:
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Variable 12:
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Variable 23:
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Variable 26:
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Variable 27:
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Variable 28:
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Variable 29:
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Variable 37:
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Variable 38:
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Variable 40:
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Figure 12.2: Var40 Distribution and bad rate
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Variable 41:
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Variable 42:
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Variable 44:
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12.10 Appendix 3: Cluster analysis SAS code and output

The following SAS code was used to do the cluster analysis and to draw the cluster diagram:

proc varclus data=prac.bva5 outtree=tree centroid
maxclusters=10;

var var10gg var11gg var12gg var13gg var14gg
var15gg var16gg var17gg var18gg var19gg
var20gg var21gg var22gg var23gg var24gg
var25gg var26gg var27gg var28gg var29gg
var2gg var30gg var31gg var32gg var33gg
var36gg var37gg var38gg var40gg var41gg
var42gg var43gg var44gg var45gg var46gg
var47gg var48gg var4gg var6gg var7gg
var8gg var9gg;

run;

axis1 label=none;
proc tree data=tree horizontal vaxis=axis1;

height _propor_;
run;

Step 1:

Cluster Summary for 1 Cluster

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         42           42     3.944637        0.0939

Cluster 1 will be split because it has the smallest proportion of variation explained, 0.09392, which is
less than the PROPORTION=1 value.

Step 2:

Cluster Summary for 2 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         25           25     11.29849        0.4519
2         17           17      5.16238        0.3037

Total variation explained = 16.46087 Proportion = 0.3919

Cluster 2 will be split because it has the smallest proportion of variation explained, 0.303669, which
is less than the PROPORTION=1 value.
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Step 3:

Cluster Summary for 3 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         25           25     11.29849        0.4519
2          9            9     3.404679        0.3783
3          8            8     4.526977        0.5659

Total variation explained = 19.23015 Proportion = 0.4579

Cluster 2 will be split because it has the smallest proportion of variation explained, 0.378298, which
is less than the PROPORTION=1 value.

Step 4:

Cluster Summary for 4 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         25           25     11.29849        0.4519
2          6            6     5.080724        0.8468
3          8            8     4.526977        0.5659
4          3 3     1.588421        0.5295

Total variation explained = 22.49461 Proportion = 0.5356

Cluster 1 will be split because it has the smallest proportion of variation explained, 0.45194, which is
less than the PROPORTION=1 value.

Step 5:

Cluster Summary for 5 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         17           17     13.18809        0.7758
2          6            6     5.080724        0.8468
3          8            8     4.526977        0.5659
4          3            3     1.588421        0.5295
5          8            8     1.903571        0.2379

Total variation explained = 26.28778 Proportion = 0.6259

Cluster 5 will be split because it has the smallest proportion of variation explained, 0.237946, which
is less than the PROPORTION=1 value.
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Step 6:

Cluster Summary for 6 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         17           17     13.18809        0.7758
2          6            6     5.080724        0.8468
3          8            8     4.526977        0.5659
4          3            3     1.588421 0.5295
5          4            4     2.256519        0.5641
6          4            4     2.021426        0.5054

Total variation explained = 28.66215 Proportion = 0.6824

Cluster 6 will be split because it has the smallest proportion of variation explained, 0.505356, which
is less than the PROPORTION=1 value.

Step 7:

Cluster Summary for 7 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         17           17     13.18809        0.7758
2          6            6     5.080724        0.8468
3          8 8     4.526977        0.5659
4          3            3     1.588421        0.5295
5          4            4     2.256519        0.5641
6          3            3     2.011754        0.6706
7          1 1            1        1.0000

Total variation explained = 29.65248 Proportion = 0.7060

Cluster 4 will be split because it has the smallest proportion of variation explained, 0.529474, which
is less than the PROPORTION=1 value.
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Step 8:

Cluster Summary for 8 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         17           17     13.18809        0.7758
2          6            6     5.080724        0.8468
3          8            8     4.526977        0.5659
4          2            2     1.805052        0.9025
5          4            4     2.256519        0.5641
6          3            3     2.011754        0.6706
7          1            1            1        1.0000
8          1            1            1        1.0000

Total variation explained = 30.86911 Proportion = 0.7350

Cluster 5 will be split because it has the smallest proportion of variation explained, 0.56413, which is
less than the PROPORTION=1 value.

Step 9:

Cluster Summary for 9 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         17           17     13.18809        0.7758
2          6            6     5.080724        0.8468
3          8            8     4.526977        0.5659
4          2            2     1.805052        0.9025
5          2            2     1.852209        0.9261
6          3            3     2.011754        0.6706
7          1            1            1        1.0000
8          1            1            1        1.0000
9          2            2     1.778463        0.8892

Total variation explained = 32.24327 Proportion = 0.7677

Cluster 3 will be split because it has the smallest proportion of variation explained, 0.565872, which
is less than the PROPORTION=1 value.
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Step 10:

Cluster Summary for 10 Clusters

Cluster    Variation    Proportion
Cluster    Members    Variation    Explained     Explained
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1         17           17     13.18809        0.7758
2          6            6     5.080724        0.8468
3          6            6     4.905775        0.8176
4          2 2     1.805052        0.9025
5          2            2     1.852209        0.9261
6          3            3     2.011754        0.6706
7          1            1            1        1.0000
8          1            1            1        1.0000
9          2            2     1.778463        0.8892

10          2            2     1.748479        0.8742

Total variation explained = 34.37054 Proportion = 0.8183
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12.11 Appendix 4: Stepwise logistic regression SAS code and
output

The following SAS code was used for the stepwise logistic regression:

proc logistic data=prac.bva5 outest=betas covout;
class var10gg(ref='2') var11gg(ref='2') var12gg(ref='3')

var13gg(ref='3') var14gg(ref='3') var15gg(ref='3')
var16gg(ref='3') var17gg(ref='2') var18gg(ref='2')
var19gg(ref='3') var20gg(ref='4') var21gg(ref='4')
var22gg(ref='2') var23gg(ref='2') var24gg(ref='2')
var25gg(ref='4') var26gg(ref='4') var27gg(ref='3')
var28gg(ref='4') var29gg(ref='4') var30gg(ref='4')
var31gg(ref='3') var32gg(ref='3') var33gg(ref='3')
var36gg(ref='2') var37gg(ref='3') var38gg(ref='3')
var40gg(ref='2') var41gg(ref='2') var42gg(ref='2')
var43gg(ref='2') var44gg(ref='2') var45gg(ref='2')
var46gg(ref='2') var47gg(ref='2') var48gg(ref='2')
var4gg(ref='2')  var6gg(ref='4') var7gg(ref='4')
var8gg(ref='2') var9gg(ref='2') /param=ref;

model def(event='1')=var10gg var11gg var12gg var13gg
var14gg var15gg var16gg var17gg
var18gg var19gg var20gg var21gg
var22gg var23gg var24gg var25gg
var26gg var27gg var28gg var29gg
var30gg var31gg var32gg var33gg
var36gg var37gg var38gg var40gg
var41gg var42gg var43gg var44gg
var45gg var46gg var47gg var48gg
var4gg var6gg var7gg var8gg var9gg

/ selection=stepwise
slentry=0.05
slstay=0.1
details
lackfit;

output out=pred p=phat lower=lcl upper=ucl
predprob=(individual crossvalidate);

run;

Due to the vast amount of output generated by SAS, only selected output will be shown here:

Step 0: Intercept entered

The LOGISTIC Procedure

­2 Log L = 12102.152
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Step 1: Var6 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9906.285
SC            12113.487       9943.624
­2 Log L      12102.152       9898.285

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2203.8668        3         <.0001
Score                 6597.4182        3         <.0001
Wald                  2876.1125        3         <.0001

� The Gini index for the model is 51.9.

� No variables were eligible for removal at this stage.

Step 2: Var4 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9703.954
SC            12113.487       9750.628
­2 Log L      12102.152       9693.954

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2408.1977        4         <.0001
Score                 6837.0466        4         <.0001
Wald                  2997.8123        4         <.0001

� The Gini index for the model is 60.1.

� No variables were eligible for removal at this stage.
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Step 3: Var40 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9536.936
SC            12113.487       9592.945
­2 Log L      12102.152       9524.936

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2577.2163        5         <.0001
Score                 7811.9143 5         <.0001
Wald                  3200.0686        5         <.0001

� The Gini index for the model is 60.8.

� No variables were eligible for removal at this stage.

Step 4: Var42 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9493.516
SC            12113.487       9558.860
­2 Log L      12102.152       9479.516

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2622.6359        6         <.0001
Score                 7835.0139        6         <.0001
Wald 3189.5847        6         <.0001

� The Gini index for the model is 61.4.

� No variables were eligible for removal at this stage.
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Step 5: Var44 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9458.254
SC            12113.487       9532.933
­2 Log L      12102.152       9442.254

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2659.8979        7         <.0001
Score                 7875.1140        7         <.0001
Wald                  3206.9139        7         <.0001

� The Gini index for the model is 62.

� No variables were eligible for removal at this stage.

Step 6: Var28 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9421.751
SC            12113.487       9524.434
­2 Log L      12102.152       9399.751

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2702.4014       10         <.0001
Score                 7914.5486       10         <.0001
Wald 3224.9579       10         <.0001

� The Gini index for the model is 63.9.

� No variables were eligible for removal at this stage.
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Step 7: Var10 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9384.449
SC            12113.487       9496.467
­2 Log L      12102.152       9360.449

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2741.7027       11         <.0001
Score                 7995.7836       11         <.0001
Wald                  3244.5974       11         <.0001

� The Gini index for the model is 65.4.

� No variables were eligible for removal at this stage.

Step 8: Var41 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only Covariates

AIC           12104.152       9358.523
SC            12113.487       9479.875
­2 Log L 12102.152       9332.523

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2769.6292       12         <.0001
Score                 8003.5998       12         <.0001
Wald                  3260.5738       12         <.0001

� The Gini index for the model is 65.9.

� No variables were eligible for removal at this stage.
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Step 9: Var27 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9332.846
SC            12113.487       9472.869
­2 Log L      12102.152       9302.846

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2799.3058       14         <.0001
Score                 8023.1493       14         <.0001
Wald                  3261.7680       14         <.0001

� The Gini index for the model is 66.

� No variables were eligible for removal at this stage.

Step 10: Var38 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion Only     Covariates

AIC           12104.152       9312.669
SC            12113.487       9471.361
­2 Log L 12102.152       9278.669

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2823.4832       16         <.0001
Score                 8052.0655       16 <.0001
Wald                  3270.0117       16         <.0001

� The Gini index for the model is 65.8.

� No variables were eligible for removal at this stage.
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Step 11: Var37 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9302.965
SC            12113.487       9480.326
­2 Log L      12102.152       9264.965

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2837.1872       18         <.0001
Score                 8057.6232       18         <.0001
Wald                  3270.2604       18         <.0001

� The Gini index for the model is 66.3.

� No variables were eligible for removal at this stage.

Step 12: Var29 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9292.990
SC            12113.487       9498.356
­2 Log L      12102.152       9248.990

Testing Global Null Hypothesis: BETA=0

Test Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2853.1622       21         <.0001
Score                 8083.8395       21         <.0001
Wald                  3278.8370       21         <.0001

� The Gini index for the model is 67.3.

� No variables were eligible for removal at this stage.
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Step 13: Var12 entered

Model Fit Statistics

Intercept
Intercept and

Criterion          Only     Covariates

AIC           12104.152       9282.900
SC            12113.487       9506.935
­2 Log L      12102.152       9234.900

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2867.2524       23         <.0001
Score 8092.1424       23         <.0001
Wald                  3273.5799       23         <.0001

� The Gini index for the model is 67.6.

� No variables were eligible for removal at this stage.

Step 14: Var26 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9276.816
SC            12113.487       9528.856
­2 Log L      12102.152       9222.816

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2879.3360       26         <.0001
Score                 8098.2022       26         <.0001
Wald                  3267.7694       26         <.0001

� The Gini index for the model is 67.7.

� No variables were eligible for removal at this stage.
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Step 15: Var23 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9271.012
SC            12113.487       9532.386
­2 Log L      12102.152       9215.012

Testing Global Null Hypothesis: BETA=0

Test Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2887.1404       27         <.0001
Score                 8103.7566       27         <.0001
Wald 3268.2559       27         <.0001

� The Gini index for the model is 68.

� No variables were eligible for removal at this stage.

Step 16: Var7 entered

Model Fit Statistics

Intercept
Intercept            and

Criterion          Only     Covariates

AIC           12104.152       9265.756
SC            12113.487       9555.135
­2 Log L      12102.152       9203.756

Testing Global Null Hypothesis: BETA=0

Test                 Chi­Square       DF     Pr > ChiSq

Likelihood Ratio      2898.3961 30         <.0001
Score                 8126.6833       30         <.0001
Wald                  3275.1239       30         <.0001

� The Gini index for the model is 67.9.

� No variables were eligible for removal at this stage.

� No variables were eligible for entry any further.
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Hosmer-Lemeshow Goodness-of-�t test

Partition for the Hosmer and Lemeshow Test

def = 1                 def = 0
Group       Total    Observed    Expected    Observed    Expected

1        6054          10       11.20        6044     6042.80
2        8369          35       21.44        8334     8347.56
3        8455          26       28.63        8429 8426.37
4        8440          31       35.44        8409     8404.56
5        7818          25       39.99        7793     7778.01
6        8658          42       48.58        8616     8609.42
7 7845          43       52.24        7802     7792.76
8        8399          55       69.04        8344     8329.96
9        8368         108       89.60        8260     8278.40

10       11279         770 748.85       10509    10530.15

The LOGISTIC Procedure

Hosmer and Lemeshow Goodness­of­Fit Test

Chi­Square       DF     Pr > ChiSq

25.0492        8         0.0015
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12.12 Appendix 5: Default rate sloping and model coe¢ cients
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Variable 28:

Variable 28
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Variable 38:

Variable 38
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Variable 41:

Variable 41
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Variable 44:

Variable 44
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Variable 6:

Var6
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12.13 Appendix 6: Default rate sloping and model coe¢ cients
version 2
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Variable 38:

Variable 38
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Variable 41:
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Variable 44:

Variable 44
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Variable 6:
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12.14 Appendix 7: Default rate sloping and model coe¢ cients
version 3
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Variable 41:

Variable 41

0%
2%
4%
6%
8%

10%
12%
14%
16%

1 2

Group

B
ad

 ra
te

­1.0

­0.8

­0.6

­0.4

­0.2

0.0

C
oe

ffi
ci

en
t

Bad rate Coefficient

Var41

Variable 42:

Variable 42

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

1 2

Group

B
ad

 ra
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
oe

ffi
ci

en
t

Bad rate Coefficient

Var42

 
 
 



230

Variable 44:

Variable 44
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Variable 6:
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Chapter 13

Glossary

Bias: "Bias" as used in the �eld of statistics refers to directional error in an estimator. Statistical bias
is error you cannot correct by repeating the experiment many times and averaging together the results.

Bonferroni Correction: The Bonferroni correction is a multiple comparison correction used when
several dependent or independent statistical tests are performed simultaneously since, while a given �
may be appropriate for each individual comparison, it is not for the set of all comparisons. In order
to avoid a lot of spurious positives the alpha value needs to be lowered to account for the number of
comparisons being performed. The Bonferroni correction sets the alpha value for the entire set of n
comparisons equal to � by taking the alpha value for each comparison equal to �=n. Explicitly, given n
tests Ti for hypotheses Hi(1 � i � n ) under the assumption H0 that all hypotheses Hi are false, and if
the individual test critical values are � �=n, then the experiment-wide critical value is � �. In equation
form, if P (Ti passesjH0) � �=n for 1 � i � n, then P (some Ti passes) � � which follows from the
Bonferroni inequalities.

Cholesky decomposition: If X is a positive de�nite matrix with row and column dimensions n,
then X can be factored into an upper triangular matrix R (also of dimension n) such that: X = R0R
where R0 refers to the transpose of R.

Coe¢ cient of determination (R2): Measure of the proportion of variation in the dependent
variable about its mean that is explained by the independent variables. It varies between 0 and 1. If the
regression model is properly applied and estimated, one can assume that the higher the value of R2, the
greater the explanatory power of the regression equation and the better the predictions.

Con�dence limits: A statistical term for a pair of numbers that predict the range of values within
which a particular parameter lies for a given level of con�dence (probability).

Correlation coe¢ cient(r): Indicates the strength of association between the dependent and inde-
pendent variables. The sign (+ or -) indicates the direction of the relationship, The value range from
-1 to 1, with 1 indicating a perfect positive relationship, 0 indicating no relationship and -1 indicating a
perfect negative/reverse relationship.

Credit bureau: A Credit bureau is an organisation that keeps a record of a person�s credit infor-
mation. A credit record shows how that person manages his/her debts and is used by credit providers
and moneylenders to decide if the person can a¤ord to borrow money or pay back a new loan.

Credit policy: Guidelines that spell out how to decide which customers are sold on open account, the
exact payment terms, the limits set on outstanding balances and how to deal with delinquent accounts.

Credit risk: The risk that the borrower may be unable or unwilling to honor his obligations under
the terms of the contract for credit.
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Customer attrition: Also known as customer churn, customer turnover, or customer defection is a
business term used to describe loss of clients or customers.

Debt collection agency: A company hired by lenders to recover funds that are past due or accounts
that are in default. A collection agency is hired after a company has made multiple attempts to collect
what is owed to it. A collection agency usually earns a percentage of the funds or assets it recovers for
the lender. Some collection agencies will actually purchase the debts from the lender, in which case the
collection agency receives the full amount of whatever owed funds it manages to collect.

Delinquency: Failure to make a payment when due. Delinquency occurs when all or part of the
borrower�s monthly installment of principal and interest is unpaid after the due date.

Dependent variable: Variable being predicted or explained by the independent variables.

Euclidean distance: The straight line distance between two points. In a plane with p1 at (x1; y1)
and p2 at (x2; y2), it is

p
((x1 � x2)2 + (y1 � y2)2).

Factor analysis: Factor analysis is a correlational technique to determine meaningful clusters of
shared variance. Factor analysis begins with a large number of variables and then tries to reduce the
interrelationships amongst the variables to a few number of clusters or factors. Factor analysis �nds
relationships or natural connections where variables are maximally correlated with one another and
minimally correlated with other variables and then groups the variables accordingly.

Homoscedacity and heteroscedacity: When the variance of the error terms (e) appears constant
over a range of predictor data, the data are said to be homoscedastic. The assumption of equal variance of
the population error, " (estimated from e), is critical to the proper application of linear regression. When
the error terms have increasing or modulating variance, the data are said to be heteroscedastic. The term
means "di¤ering variance" and comes from the Greek "hetero" (�di¤erent�) and "skedasis" (�dispersion�).

Independent variables: Variables selected as predictors and potential explanatory variables of the
dependent variable.

Intercept: Value on the y-axis where the line de�ned by the regression equation. y = �0+�1x crosses
the axis. It is described by the constant term �0 in the equation. In addition to its role in prediction,
the intercept may or may not have a managerial interpretation. If the complete absence of the predictor
variable (independent variable) has meaning, then the intercept represents that amount. For example,
when estimating sales from the past advertising expenditures, the intercept represents the level of sales
expected if advertising is eliminated. But, in many instances, the intercept only has predictive value
because there might be no situation where all the predictor variables are absent.

Liquidity: The ability of an asset to be converted into cash quickly and without any price discount.

Mahalanobis distance: The Mahalanobis distance from a group of values with meanm = (�1; �2; :::; �N )
0

and covariance matrix� for a multivariate vector x = (x1; x2; :::; xN )0 is de�ned asDM (x) =
p
(x�m)0��1(x�m).

Mahalanobis distance (or �generalized squared interpoint distance�for its squared value) can also be de-
�ned as dissimilarity measure between two random vectors x and y of the same distribution with the
covariance matrix �: d(x;y) =

p
(x� y)0��1(x� y). If the covariance matrix is the identity matrix,

the Mahalanobis distance reduces to the Euclidean distance.

Maximum likelihood: The method of maximum likelihood yields values for the unknown parame-
ters which maximize the probability of obtaining the observed set of data.

Monte Carlo simulation: An analytical technique for solving a problem by performing a large
number of trail runs, called simulations, and inferring a solution from the collective results of the trial
runs. Method for calculating the probability distribution of possible outcomes.
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Multicollinearity: Condition that exists when independent variables are highly correlated with each
other. In the presence of multicollinearity, the estimated Regression Coe¢ cients may be unreliable. The
presence of multicollinearity can be tested by investigating the correlation (r) between the independent
variables.

Multivariate analysis: all statistical methods that simultaneously analyze multiple measurements
on each individual or object under investigation.

Null plot: Plot of residuals vs. predicted values that exhibit a random pattern. A null plot is
indicative of no identi�able violations of the assumptions underlying regression analysis.

Obligor: An individual or company that owes debt to another individual or company (the creditor),
as a result of borrowing or issuing bonds, also called debtor.

Odds ratio: The odds ratio is a way of comparing whether the probability of a certain event is the
same for two groups. An odds ratio of 1 implies that the event is equally likely in both groups. An odds
ratio greater than one implies that the event is more likely in the �rst group. An odds ratio less than
one implies that the event is less likely in the �rst group

Over-�tting: In statistics, over-�tting is �tting a statistical model that has too many parameters.
An absurd and false model may �t perfectly if the model has enough complexity by comparison to the
amount of data available. The model contains very speci�c random features of the data, that have no
causal relation to the independent variable.

Partial regression plots: Graphical representation of the relationship between the dependent vari-
able and a single independent variable. The scatter plot of points depicts the partial correlation between
the two variables, with the e¤ects of the other independent variables held constant.

Principal component analysis: Principal component analysis (PCA) involves a mathematical pro-
cedure that transforms a number of (possibly) correlated variables into a (smaller) number of uncorrelated
variables called principal components. The �rst principal component accounts for as much of the vari-
ability in the data as possible, and each succeeding component accounts for as much of the remaining
variability as possible.

Regression coe¢ cients: Numerical value of any parameter estimate directly associated with the
independent variables. In multiple predictor models, the regression coe¢ cients are partial because each
takes into account not only the relationship between that variable and the independent variable, but also
between the respective variables. The regression coe¢ cients are not limited in range, as it is based on
both the degree of association and the scale units of the predictor variable.

Residual (e or "): Error in prediction the sample data is called the residual. Predictions will seldom
be perfect. It is assumed that random error will occur, and the assumption is extended that this error is
an estimate of the true random error in the population ("), not just the error in prediction for the sample
(e). Another assumption is made that the error in the population that is being estimated is distributed
with a mean of zero and a constant variance.

Saturated model: A model that contains as many parameters as there are data points. This model
contains all main e¤ects and all possible interactions between factors. For categorical data, this model
contains the same number of parameters as cells and results in a perfect �t for a data set. The (residual)
deviance is a measure of the extent to which a particular model di¤ers from the saturated model.

Standard error of the estimate: Measure of the variation in the predicted values that can be used
to develop con�dence intervals around any predicted value. This is similar to the standard deviation of
a variable around the mean.
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Statistically signi�cant: Statistical signi�cance is a mathematical tool used to determine whether
the outcome of an experiment is the result of a relationship between speci�c factors or due to chance.

Sum of squared errors (SSE): The sum of the squared prediction errors (residuals) across all
observations. It is used to denote the variance in the dependent variable that is not yet accounted for by
the regression model.

Sum of squares regression: The sum of the squared di¤erences between the mean and the predicted
values of the dependent variable for all observations. This represents the amount of improvement when
using independent variables in prediction vs. only using the mean.

Total sum of Squares (SST): Total amount of variation that exists to be explained by the inde-
pendent variables. This �baseline� is calculated by summing the squared di¤erences between the mean
and the actual values for the dependent variable across all observations.

 
 
 



Chapter 14

References

Anderson, R. (2007). The Credit Scoring Toolkit : Theory and Practice for Retail Credit Risk Management
and Decision Automation

Barman, R.B. Estimation of Default Probability for Basel II on Credit Risk (2005)

Basel Committee on Banking Supervision International Convergence of Capital Measurements and
Capital Standards A revised Framework June 2004 (2004)

Bhatia, M. (2006).Credit Risk Management and Basel II, An Implementation Guide

Bowerman, B.L. and O�Connell ,R.T. (1990). Linear Statistical Models: an applied Approach Second
Edition

Carling, K; Jacobson, T; Linde, J and Roszbach, K. (2002). Capital Charges under Basel II: Corporate
Credit Risk Modeling and the Macro Economy Sveriges Riksbank Working Paper Series No. 142

Constitution of the Republic of South Africa No. 108 of 1996

Hair, J.F. ;Anderson, R.E. ; Tatham, R.L. and Black, W.C. (1995) Multivariate Data Analysis with
Readings Fourth Edition

Hand, D.J. and Henley, W.E. (1997). Statistical Classi�cation Methods in Consumer Credit Scoring:
a Review J.R. Statist. Soc. 160, Part3, pp523-541

Hand, D.J.(2001) Modeling Consumer Credit Risk, IMA Journal of Management Mathematics,12,137-
255

Hoare, R. (2004). Using CHAID for classici�cation problems

Hosmer, D.W. and Lemeshow, S. (2000). Applied Logistic Regression Second Edition

Kendall, M.G. and Stuart, A. (1958). The Advanced Theory of Statistics Volume 1, Distribution
Theory

Lee, K.I. and Koval, J.J. (1997). Determination of the best signi�cance level in forward stepwise
logistic regression. Communications in Statistics- Simulation and Computation, 26:2, 559-575

Lee, T. ;Duling, D. ;Lui, S. and Latour, D. (2008). Two-stage variable clustering for large data sets
SAS Global Forum 2008

236

 
 
 



237

Lewis, R.J. (2000). An Introduction to Classi�cation and Regression Tree (CART) Analysis

Matthews, G.B. and Crowther, N.A.S. (1995) A maximum likelihood estimation procedure when
modelling in terms of constraints. S.A. Statist. J.,29, 29-51

Mays, E. (2003) Credit Scoring for Risk Managers: The handbook for lenders

Mohr, P. (1998). Economic Indicators

National Credit Act (2005) Government Gazette, 15 March 2006, Act No 34, 2005

Ong, M.K. (2002). Credit Ratings, Methodologies, Rationale and Default Risk

Osius G, Rojek D (1992). Normal Goodness-of-Fit Tests for Multinomial Models With Large Degrees
of Freedom. JASA, 87:1145-1152, 1992.

Steyn, H.S.; Crowther, N.A.S.; Joubert, H.M. ; Barnardt, M. and Raath, E.L. (1990). Statistiese
modelle vir Inkomstestrukture Verslag nr.1 in die reeks oor inkomstestrukture, Verslag WS-47

Vojtek, M. and Koµcenda, E. (2005). Credit Scoring Methods

 
 
 



238

The following websites were also used:

http://ats.ucla.edu/stat/sas/output/sas_ologit_output

http://ats.ucla.edu/stat/sas/seminars/sas_logistic/logistic1

http://dictionary.babylon.com/Saturated%20model

http://en.wikipedia.org/wiki/Customer_attrition

http://faculty.chass.ncsu.edu/garson/PA765/cluster

http://�nancial-dictionary.thefreedictionary.com/Monte+Carlo+simulation

http://knowledgerush.com/kr/encyclopedia/Over�tting/

http://lesswrong.com/lw/ha/statistical_bias/

http://luna.cas.usf.edu/~mbrannic/�les/regression/Logistic

http://online.sfsu.edu/efc/classes/biol710/logistic/logisticreg

http://wilderdom.com/research/factoranalysis.html

http://wordnetweb.princeton.edu/perl/webwn?s=delinquency

http://www.answers.com/topic/collection-agency

http://www.answers.com/topic/multicollinearity

http://www.blacksash.org.za/index.php?option=com_content&view=
article&id=967&Itemid=182

http://www.childrens-mercy.org/stats/de�nitions/or.htm

http://www.entrepreneur.com/encyclopedia/term/82124.html

http://www.everythingbio.com/glos/de�nition.php?word=con�dence+limits

http://www.fon.hum.uva.nl/praat/manual/Principal_component_analysis.html

http://www.investorwords.com

http://www.investorwords.com/3375/obligor.html

http://www.itl.nist.gov/div897/sqg/dads/HTML/euclidndstnc.html

http://www.itl.nist.gov/div898/software/dataplot/refman2/ch4/cholesky.pdf

http://www.statsoft.com/textbook/stchaid

http://www.statsoft.com/textbook/stcluan

 
 
 




