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Summary

The LULU operators, Ln and Un, are smoothers, that is they smooth data
received as a signal. They are nonlinear and this nonlinearity makes them
more robust but also more complicated to study since the projection theorem
does not hold. Their smoothing action is aimed at removing the impulsive
noise present in any received signal. A signal can be of one or two dimen-
sions, or of any higher dimension. In one dimension a signal is represented
as a sequence and in two dimensions as an image. Higher dimensions include
video feed and other more complex data streams. Carl Rohwer developed
the LULU smoothers for sequences over the last three decades and the need
for an extension to higher dimensions became more and more obvious as the
applications of these smoothers were investigated. Perhaps the most impor-
tant application is that of the Discrete Pulse Transform which is obtained
via recursive application of the smoothers. In this dissertation the exten-
sion to dimensions higher than one is presented. All the essential properties
developed for the one dimensional smoothers are replicated in this work.
In addition, the Discrete Pulse Transform is used to illustrate some simple
applications to image smoothing and feature detection.
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Chapter 1

Introduction

The LULU operators, Ln and Un, are smoothers, that is they smooth data
received as a signal. They are nonlinear and this nonlinearity makes them
more robust but also more complicated to study since the projection theorem
does not hold. Their smoothing action is aimed at removing the impulsive
noise present in any received signal. A signal can be in one or two dimen-
sions, or of any higher dimension. In one dimension a signal is represented
as a sequence and in two dimensions as an image. Higher dimensions include
video feed and other more complex data streams. Carl Rohwer developed
the LULU smoothers for sequences over the last three decades. Their char-
acterization as smoothers and separators, shape preservation properties and
total variation preservation property make them powerful smoothers. The
need for an extension to higher dimensions became more and more obvious
as the applications of these smoothers were investigated, which included a
possible use on images. Perhaps the most important application in that of
the Discrete Pulse Transform which is obtained via recursive application of
the smoothers. It results in a multiresolution decomposition of the sequence,
that is into a number of resolution layers. At each layer, the respective res-
olution is represented, or in other words structures of the sequence at that
resolution are represented. These powerful operators, their properties, as
well as the Discrete Pulse Transform, now receive attention in higher di-
mensions, specifically for application in image processing. All the properties
developed for the one dimensional smoothers are replicated making use of the
morphological concept of a connection, [108]. In addition, the Discrete Pulse
Transform is used to illustrate some simple applications to image smoothing
and feature detection.
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CHAPTER 1. INTRODUCTION 7

The nonlinearity of the LULU smoothers, as mentioned above, make theo-
retical development more complicated than for linear operators. However,
taking on the additional complexity is justified since in two dimensions an
image is basically the transformation of data by a human eye or measuring
instrument. This transformation is significantly complicated to be consid-
ered nonlinear, [95]. Thus the analysis of images via nonlinear operators is
more logical than that of linear.

We present first the background of Carl Rohwer and his collaborators’ work
on the LULU smoothers. This is presented in Chapter 2. Their connection
with the field of Mathematical Morphology is also presented. In Chapter 3
we present the extension of the one dimensional operators on Z to higher
dimensions, namely Zd, and in Chapter 4 the Discrete Pulse Transform in
two dimensions, with applications to image processing, as well as the imple-
mentation and distributions of the operators in two dimensions.
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Chapter 2

Carl Rohwer’s LULU Theory

2.1 Introduction

Carl Rohwer’s work on the so-called LULU theory began around 1983 while
working on practical work at the Institute for Maritime Technology in Simon-
stown, South Africa. His work on these operators continued while he was at
the BMI in Stellenbosch and has now been developed into an extensive the-
ory, with collaborators such as Wild (theory) and Laurie (implementation),
of which the two main resources are [93] and [95]. The first work on the
LULU operators is presented in [86], the properties of these operators in
[87], [88], [90], [91], [135], [92], [93] [29], [95], [28] and [26], a comparison with
the median filters in [89] and [85], the resulting Discrete Pulse Transform in
[38], [64], [66] and [63], the statistical distributions and properties in [56], [94]
and [27], and the LULU operators on a continuous domain are dealt with in
[73], [4] and [3]. An application of Rohwer’s LULU operators for images in
dealt with in [58].

LULU theory is based on two operators Ln and Un which represent the words
‘lower’ and ‘upper’. These operators are smoothers and are applied to a bi-
infinite sequence of real numbers, x = (xn)n∈Z with the assumption that the
`1 norm is finite, i.e. ‖x‖1 =

∑
n |xn| < ∞. This sequence is more commonly

referred to as a signal. It can also be viewed as a time series. Let the space
of all such sequences be

X = {x = (xn)n∈Z : ‖x‖1 < ∞}. (2.1)

In applications x is not usually bi-infinite i.e. is finite, but zeros are ap-

8
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CHAPTER 2. CARL ROHWER’S LULU THEORY 9

pended to the left and right so that the subscript n goes from −∞ to ∞.
A complication arises when we have to smooth at the two ends of the finite
sequence. There are a number of options, some of which are

(1) Copy-on end-value rule, [115] [49]: For those points which do not
fit in a required window size, leave the values as they are.

(2) Replicate end-value rule, [49]: Replicate the end points with re-
spect to the required window size so that all original sequence values
are smoothed. This is the most common method.

(3) Extrapolation end-value rule, [115]: Linear extrapolation is used
on the smoothed values to get the smoothed values outside of the se-
quence values.

(4) Cyclic end-value rule, [49]: For periodic data a cycle of values may
be known in which case end points can be predicted using values at the
some cycle point which have been smoothed.

(5) Step-down end-value rule, [49]: Decrease the window size near the
end points so that only values in the sequence are used.

(6) Omit end-point rule, [49]: Simply remove the point which cannot
be smoothed due to insufficient window size.

(7) Velleman’s end-value rule, [123]:

T (x)i = median{3Txi+2 − 2Txi+1, xi, Txi+1}

As will be seen in Chapter 3, the definition for the multidimensional LULU
operators allows for all possible windows (connected neighbourhoods) of size
n of a specific point. In higher dimensions there are numerously more possible
windows thus lessening the effect dealt with above at edge points. As a side
note, the elements in the sequence need not be spaced evenly as nonlinear
operators perform well in this situation, [123], that is, the underlying mesh
need not be uniform.

The data for a signal is obtained from a specific practical application and
as with most real-world collected data sets there will be inherent noise in-
termingled with each true data value. Some examples, see [93], are the
transmission of data from an instrument in outer space, the measurement of
a specific pixel’s intensity via a video camera, the measurement of a missiles
trajectory via radar, the measurements of a speedometer of a small boat on
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CHAPTER 2. CARL ROHWER’S LULU THEORY 10

rough seas (the waves will toss the boat into the air adding noise into the
speed measurement), the measurement of speech, voice or sound, as well as
numerous medical applications. As can be seen from these examples the
inherent noise is usually added or introduced by the measuring instrument,
whether it be a camera, speedometer, radar, sound recorder or simply human
measurement. The following (artificial) example shows first, a pure signal un-
contaminated by noise and then, the same signal with added random noise,
to illustrate noise removal via the LULU operators. A noiseless parabola
is shown in Figure 2.1(a). In Figure 2.1(b) we see the same parabola but
with uniform noise added to it. The total variation (see Definition 40 later
in this chapter) indicates how the noise adds to the data. The respective
total variation in Figures 2.1(a) and (b) is 1000 and 1441. By applying the
one-dimensional LULU operator P5 ◦ P4 ◦ ... ◦ P1 where Pn = Un ◦ Ln we
smooth the noisy data, see Figure 2.1(c). The total variation is also reduced
close to the original total variation, namely 1001.

(a) Noiseless Parabola (TV = 1000) (b) Noisy Parabola (TV = 1441)

(c) Smoothed Parabola i.e. L5 ◦ U5 (TV = 1001)

Figure 2.1. Noise Removal via One-Dimensional LULU Operators
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CHAPTER 2. CARL ROHWER’S LULU THEORY 11

To get an indication of the pattern of the true data, smoothers are used to
eliminate the noisy phenomena. The distribution of the noise can be assumed
to be Gaussian or non-Gaussian. This process is known as linear smoothing or
linear signal extraction when the smoothed values are a linear transformation
of the observed values. Recall that a linear transformation [62] T : `1 → `1

is one which, for all scalar sequences r and sequences u, v ∈ `1, (1) preserves
addition,

T (u + v) = T (u) + T (v), (2.2)

and (2) preserves scalar multiplication,

T (ru) = rT (u). (2.3)

A smoother (linear or nonlinear) does, however, not provide a perfect process
for noise removal as the true nature of the noise will usually be unknown or
only known to a certain degree. Thus the hope is that the noise is removed,
whatever its form, to the best of our ability with the smoother concerned
and this is therefore a mechanism in which different smoothers’ capabilities
can be compared. When comparing smoothers the following should be taken
into consideration, [49],

1. The effectiveness of the smoothers ability to reduce the noise present
while maintaining the true signal.

2. The smoother’s response to outliers and large changes in the signal.

Let us look at a well known linear smoother, namely the Haar wavelets. The
Haar wavelets were introduced in 1910 by the Hungarian mathematicain
Alfred Haar, [51]. They form part of the larger theory of wavelet analysis
which began in the 1980’s as an improvement of Fourier analysis, [120]. The
Fourier expansion involves an infinite series of sines and cosines, but provides
only frequency resolution and not time resolution in the expansion. Wavelet
analysis, however, provides both resolutions, thus belonging to the larger
field of the aptly termed multiresolution analysis, [120].

A family of wavelets constructed from a function Ψ(t) (called the ‘mother
wavelet’), is given by

Ψa,b(t) = |a|−1/2Ψ

(
t− b

a

)
(2.4)
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CHAPTER 2. CARL ROHWER’S LULU THEORY 12

where a is a the scaling parameter, b a translation parameter and the fraction
|a|−1/2 the normalization constant, [120] [134]. The wavelet for a function f
is then given by, [134],

WΨ(f)(a, b) =
1√
a

∫ ∞

−∞
f(t)Ψ

(
t− b

a

)
dt.

If Ψ(t) satisfies the following admissibility criterion,
∫ |Ψ(ω)|2

|ω| dω < ∞

where Ψ is the Fourier transform of Ψ, then Ψ can be used to analyze and
reconstruct the signal without loss of information, [109]. This complete recon-
struction is an important result which should be compared with the Discrete
Pulse Transform’s complete reconstruction, see Section 2.4.

The Haar wavelet is the simplest and oldest orthogonal wavelet and has
applications in image coding [113] [110], edge extraction [113] [110], binary
logic design [113] and multiplexing [110], amongst others. The Haar wavelets
are obtained when Ψ is the following function,

Ψ(x) =





1 0 ≤ x < 1/2
−1 1/2 < x ≤ 1
0 otherwise,

so the wavelet family is given by what follows below.

The Haar wavelet family on [0, 1] is given by the following,

Ψ0(t) = 1 on 0 ≤ t ≤ 1

Ψ1
1(t) =

{
1, 0 ≤ t ≤ 1/2
−1, 1/2 < t ≤ 1

= Ψ(t)

Ψ1
2(t) =





√
2, 0 ≤ t ≤ 1/4

−√2, 1/4 < t ≤ 1/2
0, 1/2 < t ≤ 1

Ψ2
2(t) =





0, 0 ≤ t < 1/2√
2, 1/2 ≤ t ≤ 3/4

−√2, 3/4 < t ≤ 1

...

Ψm
n (t) =





2(n−1)/2, m−1
2n−1 ≤ t < m−1/2

2n−1

−2(n−1)/2, m−1/2
2n−1 ≤ t < m

2n−1

0, on the rest of the interval [0, 1]
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CHAPTER 2. CARL ROHWER’S LULU THEORY 13

Note that we use the notation Ψm
n = Ψa,b with a = 2n−1 and b = m − 1.

Figure 2.2 illustrates the first few Haar wavelets.

(a)

(b)

(c)

Figure 2.2. (a) Ψ0 (b) Ψ1
1 (c) Ψ1

2

The Haar wavelets are orthogonal, [51], in the sense that

∫ 1

0

Ψm1
n1

(t)Ψm2
n2

(t)dt = δ(n1,m1),(n2,m2),

where δij is the Kronecker-Delta function. Any continuous function f can
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CHAPTER 2. CARL ROHWER’S LULU THEORY 14

then be written as a series expansion, [110],

f(t) = c0 +
∞∑

n=0

2n−1∑
m=0

cm
n Ψm

n (t),

where

cm
n =

∫ 1

0

f(t)Ψm
n (t)dt.

The partial sums are then represented by SN ,

SN(t) = c0 +
N∑

n=0

2n−1∑
m=0

cm
n Ψm

n (t).

If f is continuous then SN converges to f uniformly and if f is discontinuous,
but with all discontinuities as binary-rational points, the uniform convergence
still holds, [110]. (A point x is binary-rational if there exist integers k and
P such that x = k/2P where k = 0, 1, ..., 2P .) Since the partial sum SN is a
step function with 2N steps, the value of SN at t is the mean value of f on
the step interval containing t. The equation

d

dα

∫ t2

t1

|f(t)− α|2dt = 0

has the solution

α =
1

t2 − t1

∫ t2

t1

f(t)dt,

showing that SN is the best approximation to f on the space spanned by
{Ψm

n ,m = 0, 1, ..., 2n − 1, n = 1, 2, ..., N} in the mean-square-error sense,
[110].

A signal x is a sampling of some function f and is thus discrete. It also has a
Haar wavelet expansion. We express this in terms of the Haar scaling function
Ψ0(t), [93], [38]. The sequence x = {x0, x1, ..., x2N} = {f(0), f(1), ..., f(2N)}
has the following representation

x =

N0∑
i=0

α0,iΨ0(t− i),

where N0 = 2N .

We can see then that α0,i = xi for each i. Let B0 = span{Ψi : Ψi(t) =
Ψ0(t − i), i = 0, 1, ..., N0} and Bj = span{Ψi : Ψi = Ψ0(2

−jt − i), i =
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CHAPTER 2. CARL ROHWER’S LULU THEORY 15

0, 1, ..., Nj where Nj = 2Nj−1}. Then x ∈ B0 and the Haar wavelets Ψm
k ,

m = 1, ..., 2n−1, obtain the best least squares estimate for x(k) ∈ Bk from
x(k−1) ∈ Bk−1. Let Pk represent this operation into Bk. Then we have the
smoothed sequence,

x(k) = Pk(x
(k−1)) =

Nk∑
i=0

αk,iΨ0(2
−kt− i),

with coefficients αk,i = 1
2
(αk−1,2i + αk−1,2i+1), and with Nk = 2Nk−1. The

part which was removed is

(I − Pk)(x
(k−1)) =

Nk∑
i=0

βk,iΨ
1
1(2

−kt− i)

where

βk,i = αk−1,2i − αk,i

= αk−1,2i − 1

2
(αk−1,2i + αk−1,2i+1)

=
1

2
(αk−1,2i − αk−1,2i+1).

Note that we are smoothing the sequence in the opposite direction away from
f , from which the original sampling was taken. For example, if there were
originally 8 elements in the sequence there will be 4 elements in P1(x), 2 ele-
ments in P2(P1(x)) etc. This allows a comparison with the LULU operators
and their resulting Discrete Pulse transform.

This Haar smoother is linear and has a number of disadvantages. Firstly,
the signal may be contaminated when large impulsive noise is involved. In
Figure 2.3(a) an impulsive noise spike can be seen. By applying P1 the spike is
reduced but spread out, see Figure 2.3(b). In Figure 2.3(c) further reduction
and spreading out can be seen. This indicates that the noise is actually not
removed but rather spread out to contaminate the signal. The neighbour
trend preservation property of the LULU operators prevent this disadvantage
in their application, see Section 2.3. In addition the LULU operators allow
for removal of such a pulse without contaminating the signal. Secondly, the
total variation is not preserved. The total variation in the original sequence
x is 2, however the total variation in P1(x) is 1 and in (I − P1)(x) = 2. This
gives us a total variation of 3 indicating an increase in variation and not
variation preservation. Similarly the total variation in P2(P1(x)) is 0.5, and
in (I − P2)(P1(x)) is 1, again greater than 1, the original total variation.
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CHAPTER 2. CARL ROHWER’S LULU THEORY 16

(a) (b)

(c)

Figure 2.3. (a) Original Sequence x (b) P1(x) (c) P2(P1(x))

In Figure 2.4 we see another disadvantage of the Haar operators. In (I−P )x
we see that anomalies are removed at the two far edges of x which are not
there. The LULU decomposition extracts pulses which represent information
which is present in the signal.

A smoother can be classified as low-pass, high-pass and bandpass which
respectively refer to those which remove high-frequency noise, low frequency
noise and noise within two specified frequencies, [56]

A nonlinear smoother is one which is not required to satisfy equations 2.2
and 2.3 in general. Some examples of nonlinear smoothers are:

• Recursive Filters (specifically exponential smoothing), [75]:
(
T (x)

)
n

= α
(
T (x)

)
n−1

+ (1− α)xn.
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CHAPTER 2. CARL ROHWER’S LULU THEORY 17

Figure 2.4. Figure 7.2 from [93]: Original sequence x (top) decomposed into
Px (middle) and (I − P )x (bottom).

• Reroughing, [122]: For a general nonlinear smoother, T we obtain the
smoothed sequence T (x) and the removed rougher part (I − T )x. In
reroughing the rough part is smoothed i.e. T (I−T )x and added to the
smoothed sequence obtaining T (x) + (T (I − T )x).

• Median smoother, [115]:

(
Mn(x)

)
i
= median{xi−n, ..., xi, ...xi+n},

as well as other order statistic smoothers. A number of modifications of
the median smoothers have also been proposed, [115]: M2,M

2
1 , 2Mn −

M2
n, the recursive application of Mn: Mk

n , and the limiting median
smoother

R(x) = lim
n→∞

Mn(x).

The weighted median filters have also been extensively investigated,
[137]:

(M(x))i = median{wi ¦ xi, ..., wn ¦ xn}

where k ¦ xi =
k times︷ ︸︸ ︷

xi, ..., xi. In [137], another version of the recursive
median is presented:

(R∗(x))i = median{(R∗(x))i−n, ..., (R
∗(x))i−1, xi, ..., xi+n}.
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CHAPTER 2. CARL ROHWER’S LULU THEORY 18

• ‘53H twice’ smoother, [115]:

(
T1(x)

)
i

= median{xi−2, xi−1, xi, xi+1, xi+2}(
T2(x)

)
i

= median{(T1(x)
)

i−1
,
(
T1(x)

)
i
,
(
T1(x)

)
i+1
}

(
T3(x)

)
i

=
1

4

(
T2(x)

)
i−1

+
1

2

(
T2(x)

)
i
+

1

4

(
T2(x)

)
i+1

and then(
T (x)

)
i

=
(
T3(x)

)
i
+

(
T3(x− T3(x))

)
i
.

• Cosine Bell of length v, [122]:

(
T (x)

)
[(y+1)/2]+1−i

= 1 + cos

(
πi

v/2 + 1

)
for i = 0, 1, 2, ..., [v/2]

where [w] is the largest integer not exceeding w.

Specifically, our LULU operators Ln and Un are nonlinear smoothers. They
will be the focus of the rest of this chapter.

The strength of nonlinear smoothers over linear smoothers is that their ap-
plication for signals and images is generally more powerful since most of the
useful nonlinear smoothers are more robust (the output is not significantly
affected by small changes in the input) and consistent (signal is mapped to
signal and noise is mapped to noise) than linear smoothers. In an image or
signal an edge is an impulse in the derivative i.e. a sharp change in the signal
or image value in a certain direction. The edges and constant regions are im-
portant as they affect the image or signal quality and linear smoothers do not
preserve these well, whereas nonlinear smoothers do, see Figure 2.5. Nonlin-
ear smoothers also preserve image details and are insensitive to outliers, [75],
which is termed resistance.

Linear smoothers aren’t well suited to removing noise which arises from
a long-tailed probability distribution, [122], which is characteristic when
there are outliers present, (see Figure 2.6 for the effectiveness of the LULU
smoothers), nor noise which is signal dependent, [26].
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(a)

(b)

(c)

Figure 2.5. (a) Original Signal x with a Distinct Edge (b) U1 ◦ L1x
(c) U2 ◦ L2 ◦ U1 ◦ L1x

There are numerous applications in image processing to improve image qual-
ity by enhancing the edges and constant regions i.e. image enhancement, see
[79], [117], [70], [50], [84], [103], [114] to name a few.

The theory and analysis of nonlinear smoothers has proven to be difficult up
until LULU theory was developed, [122], [123]. In [75], a method is shown
to develop a resistant nonlinear smoother which is almost linear. Here, Mal-
lows shows that a nonlinear smoother is made up of a linear part and an
orthogonal nonlinear residual part and measures its performance based on
how linear it is i.e. how closely the operator resembles a linear operator,
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(a)

(b)

Figure 2.6. (a) Original Signal x as in Figure 2.5 with isolated noise pulses
(b) U1 ◦ L1x

with the mean squared error. His construction is quite strict on the allowed
components though, bringing in statistical distributions for the various com-
ponents. Mallows also proposes axioms for a smoother T . The operator E is
called the shift operator. It is acts on sequence x as follows: (Ex)i = xi+1.

A1 T is stationary: T (Ex) = E(Tx)

A2 T is location invariant: T (x + c) = Tx + c

A3 T is centered: T (0) = 0 where 0 is the zero sequence.

A4
(
T (x)

)
i
depends only on finitely many components of x.

A5 variance
(
(T (x))i

)
is finite

Axiom A1 relates to translation invariance in higher dimensions. In Axiom
A4 he assumes variance(x) is finite. These axioms are used as a starting
point by Rohwer for developing the nonlinear theory of the LULU operators.
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We will first provide some basic operator theory to set the background for
the LULU operators, see [93]. Firstly we assume that a partial order exists
for X.

Definition 1 A relation T is a partial order on a set A if for s, t ∈ A,

1. T is reflexive: (t, t) ∈ T ,

2. T is anti-symmetric: (s, t) ∈ T and (t, s) ∈ T implies s = t,

3. T is transitive: (s, t) ∈ T and (t, v) ∈ T implies (s, v) ∈ T .

Definition 2 The relation T is a total order if in addition to the properties
in Definition 1, the following property also holds:

∀ s, t ∈ A, either (s, t) ∈ T or (t, s) ∈ T.

This additional property for a total order is also known as comparability
or the Trichotomy Law, [53].

Commonly, the partial order is denoted by ‘≤’. Then s ≤ t refers to (s, t) ∈
T .

Definition 3 A partially ordered set L is a lattice if any `1, `2 ∈ L admit
a least upper bound `1 ∨ `2 and a largest lower bound `1 ∧ `2. A lattice is
complete if every subset of L has a least upper bound and a largest lower
bound.

It is well known that the set X which is under consideration, see (2.1), is
a lattice with respect to the coordinate-wise defined partial order. More
precisely, for x = (xn), y = (yn) ∈ X we have x ≤ y ⇐⇒ xn ≤ yn ∀ n ∈ Z.

Definition 4 For two operators A and B on X, we have A ≤ B ⇐⇒
Ax ≤ Bx, ∀ x ∈ X.

Definition 5 An operator S is called syntone if x ≤ y implies Sx ≤ Sy.
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This concept is also referred to as increasing, specifically in the field of
mathematical morphology. We will expand more on this in Section 2.2.1.
Below are some useful and easy to prove properties, from [93].

Theorem 6 If A and B are two syntone operators then A◦B is also syntone.

Theorem 7 For operators A, B and C on X where A is syntone, B ≤ C
implies A ◦B ≤ A ◦ C.

We consider four criteria that are useful in the design and comparison of
smoothers, [93], and in the sequel we denote the identity operator by I. The
criteria are:

• EFFECTIVENESS: A smoother should separate a signal x into it’s
noise component (I − P )x and its true signal Px.

• CONSISTENCY: Once the true signal and noise are extracted they
should each be preserved i.e. P (Px) = Px and (I − P )((I − P )x)) =
(I − P )x. These two properties are referred to as idempotent and co-
idempotent respectively. This means that the smoother separates x
consistently.

• STABILITY: This criterion requires the smoother to be robust, that is,
a small change in x should not result in a large change in the output,
so that the signal is recovered well.

• EFFICIENCY: The computations should be economical as the desire
is usually to have computations done in real time.

Based on these criteria and Mallows’ axioms A1 - A5, now introduce the
axioms for a smoother as well as a separator, developed by Rohwer.

Definition 8 Smoother Axioms An operator P on X is a smoother if:

1. PE = EP

2. P (x+c) = P (x)+c for each x and where c ∈ X is a constant sequence.

3. P (αx) = αP (x) for each x and scalar α ≥ 0.
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Figure 2.7. The Actions of a Separator

In [75] axiom 3 above is different in that α < 0 is also allowed. The restriction
introduced in Definition 8 is necessary as we have Ln(−x) 6= −Ln(x) but
rather that Ln(−x) = −Un(x) so that Ln and Un are dual operators.

Definition 9 Separator Axioms An operator P is a separator if it satisfies
the smoother axioms as well as the following two axioms:

4. P 2 = P (Idempotence)

5. (I − P )2 = (I − P ) (Co-Idempotence)

Figure 2.7 illustrates the effect of a separator. We have the following result,
which can be seen from Figure 2.7.

Lemma 10 An operator P is co-idempotent if and only if P (I − P ) = 0.

In Lemma 10 the operator 0 is the one which maps x onto the 0 sequence.

An important result is that any separator has only two eigenvalues, namely 0
and 1. Thus any sequence has the form x = α0e0 + α1e1 where e0 and e1 are
the eigenvectors for the two eigenvalues. So we see that any sequence can be
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split into two eigensequences namely ‘noise’ (α0e0) and ‘signal’ (α1e1). This
is called the Fundamental Separator Theorem, [95]. Note that an idempotent
linear operator (a projection, [43]) is automatically co-idempotent, thus in
linear signal processing there is no need for the concepts of a separator and
co-idempotence. Since the operators Ln and Un are nonlinear the opposite
is true for them.

A simple class of examples of smoothers are those which select the output
value via rank or order. They are applied to a n-window of subscripts from
the sequence i.e. looking at the subscripts {i − n, i − n + 1, ..., i, ..., i + n −
1, i + n}, thus we look at the set of values Wi,n = {xi−n, ..., xi, ..., xi+n} from
the sequence x. By using only this window of values the operator becomes a
local operator because it only acts on values in the sequence close by.

Definition 11 An operator S is a rank order selector if S acts on x such
that (Sx)i = r(Wi,n) ∈ Wi,n, where r(Wi,n) is a fixed pre-chosen rank position
in Wi,n. Operator S is an rank based selector if it also makes use of the
ranked values in Wi,n and other information to select r(Wi,n).

Theorem 12 A rank order selector satisfies the smoother axioms.

Proof
Axiom 1: SE = ES

(SEx)i = (Sx)i+1 = r(Wi+1,n) ∈ Wi+1,n

and
(ESx)i = E(r(Wi,n)) = r(Wi+1,n) ∈ Wi+1,n.

Axiom 2: S(x + c) = S(x) + c

(S(x + c))i = r(Wi,n + {ci−n, ..., ci, ..., ci+n}) = r(Wi,n) + cj

where j ∈ {i− n, ..., i, i + n} and

(Sx)i + ci = r(Wi,n) + ci = r(Wi,n) + cj

since c is constant.
Axiom 3: S(αx) = αS(x)

(S(αx))i = r(αWi,n) = αr(Wi,n)
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and
α(Sx)i = αr(Wi,n).

An order selector is also syntone. For a proof see [93].

Due to the smoother axioms we have that the smoothers form a semi-group
[95] with respect to composition. This will be dealt with in more detail later
in this chapter. For now we will introduce some semi-group theory, [95].

Definition 13 A semigroup (H, ∗) is a set H endowed with an associative
binary operation ∗, i.e. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ H.

We simplify the notation a ∗ b to ab. A semigroup H is a band if Id(H) :=
{a ∈ H : a2 = a} = H. A left zero semigroup H is one for which a ∗ b = a
for all a, b ∈ H and a right zero semigroup is one for which a ∗ b = b for
all a, b ∈ H. The LULU semigroup discussed later on is a band but is not a
left or right zero semigroup.

Definition 14 An ordered semigroup is a semigroup endowed with a par-
tial order, ≤, which is compatible with the semigroup operation i.e. for all
a, b, c ∈ H, a ≤ b ⇒ (ca ≤ cb and ac ≤ bc).

For an element b ∈ H, where H is an ordered semigroup, b is the inverse of
a ∈ H if a = aba and b = bab. An identity element for a semigroup is an
element, 1, such that 1a = a1 = a for all a ∈ H.

Theorem 15 For an ordered semigroup (H, ∗,≤), any g ≤ f in Id(H) gen-
erates an at most six-element semigroup.

Proof
Since g and f belong to Id(H) we have g2 = g and f 2 = f . Also, fg ≤ f 2 = f
and gf ≥ g2 = g since f ≤ g. The idempotence of fg is proven as follows:

(fg)(fg) ≤ f(fg) = fg

and f(gf)g ≥ fgg = fg
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so that (fg)2 = fg. Similarly, (gf)2 = gf . The idempotence of fgf is proven
as follows:

(fgf)(fgf) = (fg)(ffgf) ≤ f(ffgf) = fgf

and (fgf)(fgf) = f(gf)(fg) ≥ fg(gf) = fgf

so that (fgf)2 = fgf . Similarly, (gfg)2 = gfg. Thus any composition of
f, g, fg, gf, fgf, gfg will reduce to one of these original elements, producing
an at most 6-element semigroup.

Criterion 6.6 in [78] provides the conditions for this 6-element semigroup to
reduce to a 4-element semigroup. This will occur if we have fgf = gf and
gfg = fg, or gf ≥ fg.

We will refer to this theorem later on again when we introduce the LULU
semigroup.

Theorem 16 The set of smoothers is a semi-group with respect to composi-
tion.

Definition 17 For two posets (partially ordered sets) P and Q, an increas-
ing map δ : P → Q is residuated if for each y ∈ Q there exists a biggest
element in P , say ε(y), that is mapped below y. Then ε is a map from Q to
P , is also increasing and for each x ∈ P there is a smallest element in Q,
namely δ(x) which is mapped above x i.e.

(∀ x ∈ P )(∀ y ∈ Q) δ(y) ≤ y ⇐⇒ x ≤ ε(y).

We call ε the residual of δ. The pair (δ, ε) is then a Galois connection
between P and Q, [95].

Clearly the roles of δ and ε is a Galois connection are interchangeable.

Definition 18 An operator A is called extensive if I ≤ A and anti-extensive
if A ≤ I.

Definition 19 An operator (set of operators) is called a closing if it (they)
is 1) increasing (syntone), 2) extensive, and 3) idempotent.
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Definition 20 An operator (set of operators) is called an opening if it
(they) is 1) increasing (syntone), 2) anti-extensive, and 3) idempotent.

We have the following result regarding a Galois connection, [95].

Theorem 21 If (δ, ε) is a Galois connection between P and Q then,

1. δεδ = δ, εδε = ε, δε ≤ I is an opening on P and εδ ≥ I is a closing on
Q.

2. Any product of equally many δ’s and ε’s is idempotent.

An example of a Galois connection is the pair erosion and dilation, see Section
2.2.1. We will define some specific operators before we continue to the LULU
operators.

Definition 22 Operators A and B are called dual operators if AN = NB
where Nx = −x is the negation operator. An operator is self-dual if AN =
NA.

Definition 23 The median operator is given by

(Mnx)i = median{xi−n, ..., xi, ..., xi+n},
for any nonnegative integer n.

Theorem 24 The Mn operator is a smoother.
Proof
MnE = EMn:

(MnEx)i = Mn(Ex)i

= median{xi−n+1, ..., xi+1, ..., xi+n+1}
= (Mnx)i+1

and

(EMnx)i = E(median{xi−n, ..., xi, ...., xi+n})
= median{xi−n+1, ..., xi+1, ...., xi+n+1}
= (Mnx)i+1.
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Mn(x + c) = Mn(x) + c:

(Mn(x + c))i = median{xi−n + ci−n, ..., xi + ci, ..., xi+n + ci+n}
= median{xi−n, ..., xi, ..., xi+n}+ ci

= (Mnx)i + ci

Mn(αx) = α(Mnx):

(Mn(αx))i = median{αxi−n, ..., αxi, ..., αxi+n}
= αmedian{xi−n, ..., xi, ..., xi+n}
= α(Mnx)i

Definition 25 A sequence x is n-monotone if {xi, xi+1, ..., xi+n+1} is mono-
tone for each i.

Definition 26 Mn is the set of all sequences x which are n-monotone.

This idea of local monotonicity has been a concept of smoothness in real
analysis for a while, [98]. Obviously any sequence is 0-monotone i.e. belongs
to M0, and then M0 ⊃M1 ⊃M2 ⊃ ....

The popularity of the median smoother is due to its good performance and
logical simplicity, [47] [55] [7] [82] [60] [130] [139]. In addition a lot of the-
oretical background has been developed, [115] [7] [8] [46] [57] [116] [80] [11]
[20] [81] [138] [42] [5] [68] [54] [137] [6]. It is also stable with respect to
large impulse noise, since it does not distort the output excessively and has
very good edge preservation, [56]. The output variance of the smoothed se-
quence is used to measure the capability of Mn under various white noise
and non-white noise assumptions in [56] and the good edge preservation is
shown using the mean squared error.

Definition 27 The root of a smoother P is a sequence x which remains
unchanged after smoothing, that is Px = x, [56].

The roots of the median smoother Mn are those sequences x which are n-
monotone i.e. x ∈ Mn. Any non-root sequence of length L will become a
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root after a maximum of 1
2
(L − 2) passes of the median smoother with any

window size, [45]. The window should not be too large though as important
details may then be lost. This also means that the median smoother is
not idempotent and is thus less computationally efficient than the LULU
smoothers.

However, Mn is statistically unbiased [95] but it is not a separator. Thus Mn

is iterated until convergence [115] to obtain M∞
n , and in fact for x ∈ Mn−1,

Mnx does not generally map into Mn although M∞
n does, [95]. It also has a

lack of theory for the important aspects i.e. no Parseval identity or resolution
level structure, and it is less economical computationally since to obtain the
median of numbers is more complex than a max or min operation, [95].

We are now ready to introduce the LULU smoothers.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. CARL ROHWER’S LULU THEORY 30

2.2 The LULU Operators in One Dimension

We first define the ‘atoms’ which make up the LULU smoothers.

Definition 28 The operators
∨

and
∧

are defined as

∨
x = max{xi, xi+1}

∧
x = min{xi−1, xi}.

We can relate
∨

to a union of sets because the union of a collection of sets
represents the maximum set covered by the collection. Similarly, we can
relate

∧
to an intersection of sets because the intersection of sets results in

the minimum set covered by the collection.

(a) The original sequence x (b)
∨

x

(c)
∧

x (d)
∧∨

x

(e)
∨∧

x

Figure 2.8. Action of
∨

and
∧
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In fact the operators are more useful when applied together i.e. by applying∨∧
or

∧∨
, since

∨
will remove downward pulses and

∧
will remove up-

ward pulses. To illustrate this we use an example, see Figure 2.8. Consider
the sequence {2, 7, 3, 0, 2, 5, 1}. (In reality we are considering the bi-infinite
sequence {..., 0, 0, 0, 2, 7, 3, 0, 2, 5, 1, 0, 0, ...} ∈ `1 by appending 0’s to the left
and right of the nonzero values.) The sequence is displayed in Figure 2.8(a).
In Figure 2.8(b) we can see what happens when we apply

∨
to x. Notice

how the sequence seems smoothed already. Compare Figure 2.8(b) to Fig-
ure 2.8(c). We now apply the opposite operator to the results in Figure
2.8(b) and Figure 2.8(c) and obtain

∧∨
x and

∨∧
x respectively, see Fig-

ures 2.8(d) and (e). Notice that
∧∨

x and
∨∧

x produce different results
and that

∨∧
x ≤ ∧∨

x.

We have the following results regarding these ‘max’ and ‘min’ operators (for
the proofs see [93]). Note that

∨n = max{xi, ..., xi+n} and similarly
∧n =

min{xi−n, ..., xi}.
RESULT 1

∨
and

∧
are syntone operators.

RESULT 2
∧ ≤ I ≤ ∨

and
∨∧ ≤ I ≤ ∧∨

.

Result 2 can be seen in Figure 2.8.

RESULT 3
∨n+1 ∧n+1 ≤ ∨n ∧n and

∧n+1 ∨n+1 ≥ ∧n ∨n.

RESULT 4 For n ≤ m, we have
∧n ∨n ∧m ∨m =

∧m ∨m and
∨n ∧n ∨m ∧m =∨m ∧m.

Result 4 is referred to in [93] as the First Swallowing Theorem as the
repeated application of smaller number of operators will have no effect. If
n = m then it is called the Idempotence Theorem since then we have that
P 2 = P where P =

∧m ∨m or
∨m ∧m.

RESULT 5
∨n ∧n ≤ ∨n ∧n

( ∧n ∨n

) ∨n ∧n ≤ ∨n ∧n

( ∧n ∨n

)
and

∧n ∨n ≤
∧n ∨n

( ∨n ∧n

) ∧n ∨n ≤ ∧n ∨n

( ∨n ∧n

)
.

RESULT 6

[ ∨n ∧n

( ∧n ∨n

)]2

=
∨n ∧n

( ∧n ∨n

)
and

[ ∧n ∨n

( ∨n ∧n

)]2

=

∧n ∨n

( ∨n ∧n

)
.
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Result 6 is called the Second Idempotence Theorem.

RESULT 7
( ∨n ∧n )( ∧n ∨n )( ∨n ∧n ) ≤ ( ∧n ∨n )( ∨n ∧n )( ∧n ∨n )

.

RESULT 8

[( ∨n ∧n )( ∧n ∨n )(∨n ∧n )]2

=
( ∨n ∧n )( ∧n ∨n )( ∨n ∧n )

and[( ∧n ∨n )(∨n ∧) ( ∧n ∨n )]2

=
( ∧n ∨n )( ∨n ∧n )(∧n ∨n )

.

This result is called the Third Idempotence Theorem.

Definition 29 We define the LULU operators as those finite compositions
of the operators

Ln =
n∨ n∧

and Un =
n∧ n∨

,

where
∨n = max{xi, xi+1, ..., xi+n} and

∧n = min{xi−n, xi−n+1, ..., xi}. For
example, L2 ◦ U3 ◦ L1 ◦ U4 is a LULU operator.

The operators Ln and Un are applied as compositions because Un smooths
from below and Ln from above and thus are biased if not used together. The
LULU operators are nonlinear operators. Consider the following counter-
example to their linearity: For a sequence x such that Lnx 6= Unx, let y = −x.
Then Ln(x+y) = Ln(0) = 0 but Lnx+Lny = Lnx−Un(−y) = Lnx−Unx 6=
0. This also implies that all compositions of the LULU operators will be
nonlinear. The LULU operators are however smoothers since Un ◦ Ln and
Ln ◦ Un are smoothers.

Theorem 30 Un ◦ Ln and Ln ◦ Un are smoothers.

Results 1 to 8 then imply the following results for Ln and Un. Note that we
use the notation A ◦B = AB in what follows.

1. Ln and Un are syntone: Ln+1 ≤ Ln ≤ L0 = I = U0 ≤ Un ≤ Un+1 (by
results 1,2 and 3).

2. LnLm = Lm and UnUm = Um for m ≥ n (by result 4)

3. (Ln)2 = Ln and (Un)2 = Un (by result 4 with m = n). Thus Ln and Un

are idempotent.
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4. Ln ≤ LnUnLn ≤ LnUn and UnLn ≤ UnLnUn ≤ Un (by result 5).

5.
(
LnUn

)2
= LnUn and

(
UnLn

)2
= UnLn (by result 6). Thus the compo-

sition operators LnUn and UnLn are both idempotent.

6. LnUnLn ≤ UnLnUn (by result 7).

7.
(
LnUnLn

)2
= LnUnLn and

(
UnLnUn

)2
= UnLnUn (by result 8). Thus

we also have that LnUnLn and UnLnUn are idempotent operator com-
positions.

Because the LULU operators are nonlinear we do not have the projection
theorem available for a near-best approximation in the range in any norm
via the Lebesgue inequality. However a projection has only two eigenvalues,
0 and 1, which simplistically correspond to the ‘signal’ and ‘noise’, and we
have shown in the previous section this holds for a separator as well. Thus
separators are nearly projections in this sense. The LULU operators can
satisfy the same objectives as those when making use of a projection, [95]:

1. Our operators have useful ranges which help with the choice of opera-
tors. This range is that of Mn.

2. The mappings onto this range are good approximations since a Lebesgue-
type inequality exists. Recall that for a subspace S of a normed space
X, the Lebesgue inequality for a linear mapping P into S such that
Ps = s ∀ s ∈ S, is

‖Px− x‖ ≤ (‖P‖+ 1
)‖x− s‖ ∀x ∈ X, s ∈ S.

In order to get a similar inequality for the LULU operators we associate
Mn with S and use a Lipchitz constant get around the linearity. We
can prove the following inequality, [93],

‖Px− x‖p ≤
(
1 + (2n + 1)1/p

)‖s− x‖p,

for P = Ln ◦ Un or Un ◦ Ln and s ∈Mn.

3. A preservation law exists, namely that of total variation: T (x) =
T (Px) + T (Px− x) where P is either Ln ◦ Un or Un ◦ Ln, [93].

4. The operators act nearly linearly, [93, Theorem 6.20].
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We also have the following further results for the LULU operators Ln and
Un.

RESULT 9 Ln and Un are dual operators i.e. Ln ◦N = N ◦ Un. Note then
that neither Ln nor Un are self-dual. We also have that Ln ◦ Un and Un ◦ Ln

are duals since

Ln ◦ (Un ◦N) = (Ln ◦N) ◦ Ln = (N ◦ Un) ◦ Ln,

and Ln ◦ Un ◦ Ln and Un ◦ Ln ◦ Un are duals since

Ln ◦Un ◦Ln ◦N = Ln ◦Un ◦ (N ◦Un) = Ln ◦ (N ◦Ln)◦Un = N ◦Un ◦Ln ◦Un.

RESULT 10 Un is an extensive operator and Ln is an anti-extensive op-
erator, see Definition 18.

RESULT 11 Un is a closing and Ln is an opening, see Definitions 19 and
20.

RESULT 12 For each n, Lnx = x = Unx iff x is n-monotone and (Ln◦Un)x =
x = (Un ◦ Ln)x iff x is n-monotone.

RESULT 13 For each n, Ln ◦ Unx and Un ◦ Lnx are n-monotone.

RESULT 14 For each n, we have that Un ◦ Ln ≤ Mn ≤ Ln ◦ Un. This is an
extremely important result as we then have that

Ln ≤ Un ◦ Ln ≤ Ln ◦ Un ≤ Un. (2.5)

This provides the fully ordered (w.r.t. Definition 4) 4-element LULU semi-
group, namely {Ln, Un, Ln ◦Un, Un ◦Ln}. Note that although Mn belongs to
the LULU-interval (see result 15 below) it does not replicate all of the nice
properties of the LULU operators. The next result provides this reduction
from the 6-element semigroup, see Lemma 15, to the 4-element semigroup
displayed in Table 2.1.

RESULT 15 Un ◦ Ln ◦ Un = Ln ◦ Un and Ln ◦ Un ◦ Ln = Un ◦ Ln. This
means that any composition of the operators Ln and Un results in one of
the following operators {Ln, Un, Ln ◦ Un, Un ◦ Ln} so that the set is closed
with respect to composition with the ordering indicated with ‘≤’. The 4-
element LULU semigroup with respect to composition is displayed in Table
2.1. The interval [Un ◦ Ln, Ln ◦ Un] is referred to as the LULU-interval and
any smoothers that fall within this interval are called n-LULU similar.
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Ln Un Un ◦ Ln Ln ◦ Un

Ln Ln Ln ◦ Un Un ◦ Ln Ln ◦ Un

Un Un ◦ Ln Un Un ◦ Ln Ln ◦ Un

Un ◦ Ln Un ◦ Ln Ln ◦ Un Un ◦ Ln Ln ◦ Un

Ln ◦ Un Un ◦ Ln Ln ◦ Un Un ◦ Ln Ln ◦ Un

Table 2.1. The LULU semi-group

Thus we see also that there is a bias between the operators Un ◦ Ln and
Ln ◦ Un which increases as n increases. This bias will be significant when a
piece of Nyquist frequency is present, [95]. The Nyquist frequency is half the
sampling frequency of the signal concerned. It should be greater than than
the maximum frequency component in the signal in order to avoid aliasing.
Aliasing refers to not being able to reconstruct the original signal due to the
sampling, [52]. The semigroup {Ln, Un, Ln ◦ Un, Un ◦ Ln} is a band as its
elements are all idempotent. See [73] for a full discussion on the reduction
from a non-ordered 6 element to the fully ordered 4 element semigroup. We
refer back to the inequality Un ◦ Ln ≤ Mn ≤ Ln ◦ Un in Result 14. The
median operator is thus LULU similar. Due to it’s spurious roots however,
it has associated odd behavior, [95].

RESULT 16 Un, Ln, Un ◦ Ln and Ln ◦ Un are co-idempotent.

Definition 31 We define the operator Cn,

C1 = L1 ◦ U1, Cn+1 = Ln+1 ◦ Un+1 ◦ Cn

and the operator Fn as

F1 = U1 ◦ L1, Fn+1 = Un+1 ◦ Ln+1 ◦ Fn.

The ‘C’ and ‘F’ refer to ‘ceiling’ and ‘floor’ respectively.

Definition 31 provides a better smoother than when using Ln◦Un or Un◦Ln for
a fixed n, as we successively remove the pulses, see Result 17 which follows.
Figure 2.9 shows this property. In Figure 2.9(c) we see the application of
F2. Compare this with the non-recursive application in Figure 2.9(d). It can
clearly be seen that Figure 2.9(c) is the smoother result.

In [56], [38] and [93] we also find the following smoothers derived from Ln

and Un,
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(a) (b)

(c) (d)

Figure 2.9. (a) Original signal x (b) U1 ◦ L1x (c) F2x = U2 ◦ L2 ◦ U1 ◦ L1x
(d) U2 ◦ L2x

1. Gn = 1
2
[Ln ◦ Un + Un ◦ Ln]

2. G∞
n is obtained by repeated application of Gn until convergence.

3.

(Anx)i =

{
xi if xi ∈ [(Un ◦ Lnx)i, (Ln ◦ Unx)i]

(Gnx)i otherwise

4. A Winsorised smoother:

W ∗
n(x)i =





xi if xi ∈ [(Un ◦ Lnx)i, (Ln ◦ Unx)i]
(Un ◦ Lnx)i if xi < (Un ◦ Lnx)i

(Ln ◦ Unx)i if xi > (Ln ◦ Unx)i

Then we have W ∗
n ∈ [Un ◦ Ln, Ln ◦ Un].

5. And it’s compound smoother:

(Wnx)i =





(Wn−1x)i if (Wn−1x)i ∈ [(Un ◦ Lnx)i, (Ln ◦ Unx)i]
(Un ◦ Lnx)i if (Wn−1x)i < (Un ◦ Lnx)i

(Ln ◦ Unx)i if (Wn−1x)i > (Ln ◦ Un)i

with W0 = I.
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6. Another Winsorised smoother:

B∗
n(x)i =





xi if xi ∈ [(Fnx)i, (Cnx)i]
(Fnx)i if xi < (Fnx)i

(Cnx)i if xi > (Cnx)i

7. And it’s related compound smoother:

Bn(x)i =





(Bn−1x)i if (Bn−1x)i ∈ [(Fnx)i, (Cnx)i]
(Fnx)i if (Bn−1x)i < (Fnx)i

(Cnx)i if (Bn−1x)i > (Cnx)i

where B0 = I.

8. The strange operator Qn = Un + Ln − I ∈ [Ln, Un].

9. The alternating bias smoothers:

Z−
n+1 =

{
Ln+1 ◦ Un+1Z

−
n if n is even

Un+1 ◦ Ln+1Z
−
n if n is odd

Z+
n+1 =

{
Ln+1 ◦ Un+1Z

+
n if n is odd

Un+1 ◦ Ln+1Z
+
n if n is even

These are used to balance the bias present between Ln◦Un and Un◦Ln.

RESULT 17 For each n, Un ◦ Ln ≤ Fn ≤ Cn ≤ Ln ◦ Un. This means that by
using Fn or Cn we reduce the ambiguity present when using only Ln and Un.

RESULT 18 Cm ◦ Ck = Cn and Fm ◦ Fk = Fn where n = max{m, k}.
RESULT 19 Cn and Fn are co-idempotent as well as idempotent.

RESULT 20 Ln ≤ Gn ≤ Un, Gn ◦ Ln = Un ◦ Ln, Gn ◦ Un = Ln ◦ Un,
(Ln ◦Gn)2 = (Ln ◦Gn)3 and (Un ◦Gn)2 = (Un ◦Gn)3.

RESULT 21 Fn ≤ Bn ≤ Cn, Un ◦ Ln ≤ Fn ≤ Bn ≤ Cn ≤ Ln ◦ Un.

RESULT 22 Wn,W
∗
n , Bn, B∗

n are all idempotent and co-idempotent.

RESULT 23 For each n,

• Lnx = Unx = x

• Ln ◦ Unx = Un ◦ Lnx = x
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• W ∗
nx = x

• Wnx = x

• Cnx = Fnx = x

• B∗
nx = x

• Bnx = x

if and only if x is n-monotone.

Let us re-look at the LULU operators and the criteria mentioned earlier.

Let P represent a LULU operator.

• EFFECTIVENESS The LULU operators are required to separate x
into the true signal, Px, and the noise (I − P )x, thus the output Px
will contain less noise. From Result 13 we know that P maps into Mn.

• EFFICIENCY The computations should be economical. We will in-
troduce the Roadmaker’s algorithm in Section 2.4 which greatly sim-
plifies the computations.

• CONSISTENCY The LULU operators in the LULU semi-group are
idempotent and co-idempotent, from results 4, 6 and 16. The co-
idempotency of longer compositions than those in the semi-group re-
mains an open problem, but the idempotent of all LULU operators
holds, [95].

• STABILITY The stability of the LULU operators is shown in [93]
since they have a Lipschitz constant.

2.2.1 The LULU Operators as Morphological Filters

Morphological filters belong to the field of Mathematical Morphology. This
field has its origins with Matheron while he was investigating porous media
and Serra while looking into petrography of iron ore in 1964. It is a nonlinear
branch of signal processing and is basically the application of set theory
to image analysis, [31]. The basic morphological operators are the erosion
and dilation, [104]. We first give the definitions based on binary sets. A
structuring element is simply a set used to probe the set we wish to
investigate. See Figure 2.10 for examples of some structuring elements.
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Definition 32 The erosion of a set X is the locus of centers x of structuring
element Bx that are included in the set X. Here Bx is the translation of the
structuring element B so that it is centered at x. So the erosion is given by

εB(X) =
⋂

b∈B

X−b = {x : Bx ⊂ X}.

Here x + b ∈ X ⇐⇒ x ∈ X−b.

(a) (b) (c)

Figure 2.10. (a) A cross structuring element (4-connectivity) (b) A square
structuring element (8-connectivity) (c) A line structuring element

Definition 33 The dilation of a set X is the locus of centers x of struc-
turing element Bx which hit the set X. So the dilation is given by

δB(X) = (
⋂

b∈B

(X−b)
c)c = {x : Bx

⋂
X 6= ∅}

The morphological opening and closing are then the compositions of these
two basic operators, [104].

Definition 34 A morphological opening is given by

γB(X) = δB̌ ◦ εB(X) =
⋃

By⊂X

By.

This is the domain swept out by all the translates of B which are included in
the grains of X.
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Definition 35 A morphological closing is given by

ρB(X) = εB̌ ◦ δB(X) =
( ⋃

By⊂Xc

By

)c
.

A point z will belong to the closing if all the translates of B, By, containing
z hit X.

The morphological opening and closing are also algebraic openings and clos-
ings (see Definitions 19 and 20).

Definition 36 An operator Φ is an (algebraic) opening if it is

(i) Anti-extensive: Φ(X) ⊂ X∀X
(ii) Increasing: X ⊂ Y ⇒ Φ(X) ⊂ Φ(Y )

(iii) Idempotent: Φ(Φ(X)) = Φ(X)

Definition 37 An operator Φ is an (algebraic) closing if it is

(i) Extensive: X ⊂ Φ(X)∀X
(ii) Increasing: X ⊂ Y ⇒ Φ(X) ⊂ Φ(Y )

(iii) Idempotent: Φ(Φ(X)) = Φ(X)

Definition 38 A morphological filter is an increasing, idempotent mor-
phological operator.

A morphological opening and closing are thus also morphological filters.

For grey-scale operations we have the following equivalent formulas for the
morphological opening and closing, since εB(f)(x) = minb∈B f(x + b) and
δB(f)(x) = maxb∈B f(x + b).

γB(f)(x) = max
y∈B̌x

min
z∈By

f(z). (2.6)
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ρB(f)(x) = min
y∈B̌x

max
z∈By

f(z). (2.7)

Consider a line structuring element of length n + 1,

B = 0 1 · · · n

Then εB(f)(i) = min{f(i), f(i + 1), ..., f(i + n)} and δB̌(f)(i) = max{f(i−
n), f(i− n + 1), ..., f(i)} so that,

γB(f)(i) = δB̌

(
εB(f)(i)

)

= max{εB(f)(i− n), ..., εB(f)(i)}
= max{min{f(i− n), f(i− n + 1), ..., f(i)}, ...

..., min{f(i), f(i + 1), ..., f(i + n)}}.
So if we replace f(i) with xi, the ith element in the sequence x, then we have
(γB(x))i = max{min{xi−n, ..., xi}, ..., min{xi, ..., xi+n}} = (Ln(x))i. Sim-
ilarly, (ρB(x))i = min{max{xi−n, ..., xi}, ..., min{xi, ..., xi+n}} = (Un(x))i.
Thus in one dimension Ln is an opening and Un is a closing with the specific
structuring element B, and the properties of anti-extensivity, extensivity,
increasingness and idempotence follow automatically.

We have the following additional morphology concepts.

Definition 39 A filter is an operator, F , which is syntone and idempotent.
If F 2 ≤ F then the filter is called an underfilter or if F 2 ≥ F then the filter
is called an overfilter. A

∨
-filter is one for which F (F

∨
I) = F and a∧

-filter if F (F
∧

I) = F . If F is a
∨

-filter as well as a
∧

-filter, then it is
called a strong filter.

RESULT 24 The operators Ln, Un, Ln ◦ Un and Un ◦ Ln are strong filters.
Proof

Ln(Ln

∨
I) = Ln(I) since Ln ≤ I

= Ln and

Ln(Ln

∧
I) = Ln ◦ Ln

= Ln by the idempotence of Ln.

The result holds similarly for Un. Since Un and Ln are attribute filters (see
Chapter 3.3), the compositions Un◦Ln and Ln◦Un are also strong by Property
8 in [34].
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2.3 Smoothing with LULU and Total Varia-

tion

By increasing the monotonicity of the sequence x, or equivalently by decreas-
ing the variation within the sequence, are both methods which smooth the
sequence x. This can also be viewed as improving the continuity (in the
classical sense) of the sequence. Other measures of continuity are differentia-
bility, integrability, measurability, bounded variation and the usual classical
continuity. A function which is of bounded variation is differentiable almost
everywhere, has only a countable number of discontinuities and is Riemann
integrable, [98]. The LULU smoothers make use of monotonicity and total
variation to measure the level of continuity of the original sequence as well
as resulting sequences once the LULU operators are applied. We defined
the monotonicity of a sequence in Definitions 25 and 26, and now define the
concept of total variation for a sequence.

Definition 40 The total variation for a sequence x is given by,

T (x) = ‖∆x‖1 =
N∑

i=−N

|xi+1 − xi|,

where the sum is from −N to N since xi = 0 for i < −N and i > N . Note
that since x ∈ `1 we have ∆x ∈ `1 so T (x) is well-defined.

Total variance is a semi-norm (1. T (x) ≥ 0, 2. T (αx) = |α|T (x), and 3.
T (x + y) ≤ T (x) + T (y)) but becomes a norm since T (x) ≤ 2‖x‖1. It is
therefore a natural norm to use in our theory since x ∈ `1, [95].

From [93] we have the following results:

RESULT 25 Tx ≥ T
( ∨

x
)

(Theorem 6.2 in [93]) thus
∨

is a total variation
diminishing operator. Similarly, Tx ≥ T

( ∧
x
)

(Corollary on page 54 in [93])
thus

∧
is also a total variation diminishing operator.

RESULT 26 We also have that any composition of
∨

and
∧

is also total
variation diminishing, so that the LULU operators are total variation dimin-
ishing.

RESULT 27 T
( ∧∨

x
)

= T
( ∨

x
)

and T
( ∨∧

x
)

= T
( ∧

x
)
. Thus we do

not achieve any further reduction in total variation.
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RESULT 28 Tx = T (Ux)+T (x−Ux) and Tx = T (Lx)+T (x−Lx). We also
have Tx = T (L ◦Ux)+T (x−L ◦Ux) and Tx = T (U ◦Lx)+T (x−U ◦Lx).
Thus the LULU smoothers preserve total variation.

The following definitions provide us with shape preservation properties.

Definition 41 An operator P is neighbour trend preserving (ntp) if
for each x,

xi+1 ≤ xi ⇒ Pxi+1 ≤ Pxi

and
xj+1 ≥ xj ⇒ Pxj+1 ≥ Pxj

Definition 42 An operator P is difference reducing if for each x and
subscript i,

|Pxi+1 − Pxi| ≤ |xi+1 − xi|.

Definition 43 An operator P is fully trend preserving (ftp) if it is
neighbour trend preserving and difference reducing.

Some important properties of ftp operators are:

1. For a ftp operator P we have that for each x,

Tx = T (Px) + T (x− Px).

The converse of this also holds, [95]. This means that a ftp operator is
also total variation preserving, and vice versa.

2. For two ftp operators A and B,

a) A ◦B and B ◦A are ftp (in fact any composition of ftp operators
is ftp),

b) αA + (1− α)B is ftp for α ∈ [0, 1], and

c) I − A is ftp.

Statement (c) is in fact true if and only if.

3. A ftp operator also preserves n-monotone sequences.
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RESULT 29
∨∧

,
∧ ∨

and all compositions of them are neighbour trend
preserving. Note that

∨
and

∧
are however not ntp.

RESULT 30 For each n, the LULU operators Ln and Un are neighbour trend
preserving and difference reducing. The LULU operators are therefore fully
trend preserving. Consequently, the results in Result 28 are then proved
in an alternative way. This means that our LULU smoothers never change
the order of neighbours in the sequence. This is not a common result for
linear operators, [95]. An alternative method for proving the neighbour trend
preservation of Ln and Un is presented in Theorem 12 of [136], since the LULU
operators are also stack filters (although we will not present the proof of it
here).

RESULT 31 Ln and Un preserve n-monotone sequences.

The median smoother Mn is trend preserving in the sense that if any window
{xi−n, ..., xi, ..., xi+n} is monotone then (Mn(x))i = xi. The local property in
Definition 41 is much stronger than this property of the median operators
enforcing the strength of the LULU operators.

If a measured signal is considered to be composed of the true signal s and
the noise n, such that x = s + n, then in order to ‘clean up’ or smooth
the signal we wish to remove the variation due to noise. We should be able
to assume that T (n) ¿ T (x) i.e the signal-to-noise ratio (SNR), is not too
high. If we use the LULU smoothers to remove the noise there should be an
indication of when x is sufficiently smooth and an indication of this is when
large reductions in variation stop, as this would mean we have removed the
noise adequately. The variation spectrum will help in this regard.

Definition 44 The variation spectrum of a sequence x ∈ `1 is given by
t(x) = {ti = T (ri(x)), i ∈ Z}.

In Figure 2.11 and Table 2.2 we illustrate this method. Notice the large
proportion of total variation removed with F1 (C1 would give a similar re-
sult). The total variation subsequently removed reduces drastically at each
step. We can see that as the total variation approaches the original total
variation of the non-noisy original signal, the variation spectrum tapers off.
A reduction in variation is indicative of a smoother signal.

A good indication of when sufficient noise has been removed is when the total
variation reaches the expected total variation i.e. the variation we expect in
the true signal. This true variation is obviously unknown but can perhaps
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be estimated? This has been looked into in [94]. Another approach is to fit a
distribution to the removed pulses to acquire an indication of what has been
removed.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.11. (a) Original Signal x (b) Signal with Added Noise x + n
(c) U1 ◦ L1(x + n) (d) F2(x + n) (e) F3(x + n) (f) F4(x + n) (g) F5(x + n)

Total Variation Total Variation Still Present (%) ti

x 400 - -
x + n 1486.82933 100 0

F1(x + n) 505.2859 33.98 981.5434
F2(x + n) 455.2960 30.62 49.9899
F3(x + n) 422.1903 28.40 33.1057
F4(x + n) 413.9632 27.84 8.2271
F5(x + n) 413.9632 27.84 0

Table 2.2. Total Variation Reduction and the Variation Spectrum for
Figure 2.11.
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We end this section with two comments from [93]:

“Philosophically, we know that smoothing destroys information, unless that
which is removed is stored separately.”

Thus we will introduce the Discrete Pulse Transform in the next section. It
involves the use of Px (the smoother part) and (I − P )x (the noise compo-
nent) when a LULU operator P is applied. The question to answer, once
the transform has been applied, will be when to stop smoothing. A simple
logical approach was shown in Figure 2.11, however,

“If some form of automated selection of degree of smoothing of data is re-
quired, it seems natural to smooth recursively, until come selected criterion
is met.”

The selection criterion chosen could be analogous to convergence, that is,
when the variation reduction drops below a specified threshold the signal is
considered sufficiently smooth.
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2.4 The Discrete Pulse Transform in One Di-

mension

The Discrete Pulse Transform (DPT) is an application in Multiresolution
analysis (MRA). It results in a decomposition of the sequence x, or when
moving to two dimensions, an image f . The aim of this thesis is the inves-
tigation of reconstructing an image using the LULU operators and from the
following quote in [93] we already feel on the right track.

“The claim is made that MRA is well suited when image reconstruction is
done from a subset of the (additive-) decomposition for purposes of restora-
tion, compression and partial reconstruction.”

Definition 45 The Discrete Pulse Transform is a mapping of a sequence
x into a vector

DPT (x) = [D1(x), D2(x), ..., DN(x), D0(x)].

DPT (x) is a decomposition of x obtained using either Un ◦ Ln or Ln ◦ Un.
If using Un ◦Ln, the decomposition is obtained as followed (and similarly for
Ln ◦ Un):

1. Apply U1 ◦ L1 to x. Then

x = (U1 ◦ L1)x + (I − U1 ◦ L1)x = S1(x) + D1(x).

So S1 is the ‘smoother’ sequence and D1(x) is the noise removed by
U1 ◦ L1. The first component of the DPT is then D1.

2. Apply U2 ◦ L2 to S1(x). Then

S1(x) = (U2 ◦ L2)S1(x) + (I − U2 ◦ L2)S1(x) = S2(x) + D2(x).

Again S2 is the ‘smoother’ sequence (even smoother than S1(x)) and
D2(x) is the noise removed by U2 ◦ L2. The second component of the
DPT is then D2.

3. Continue this decomposition until UN ◦ LN is applied where N is the
size of the signal x. This last application will result in

SN−1(x) = (UN ◦LN)SN−1(x)+(I−UN ◦LN)SN−1(x) = SN(x)+DN(x).
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DN is then the second to last member of the DPT and SN is a constant
sequence so we denote it by D0(x). This is so that the decomposition
contains all the information in the original sequence and the original
sequence can be reconstructed using the DPT.

The original sequence x can then be reconstructed using the DPT as follows:

x =
N∑

n=1

Dn(x) + D0(x).

The Discrete Pulse Transform for LULU operators is defined in [93] but its
properties are particularly discussed in [63].

Each Di is a discrete pulse which is made up of upward and downward pulses
of size i which the LULU operator Ui ◦ Li removed at the ith iteration.

Definition 46 A blockpulse of size n is such that xi = k, a constant, for
i = j, j + 1, ..., j + n − 1 but xj−1 = k∗ 6= k and xj+n = k∗ 6= k. The
blockpulse is called upward if k > k∗ is positive or downward if k < k∗ is
negative.

The name blockpulse is perfectly descriptive as these are simply upward or
downward blocks appearing in a sequence, see Figure 2.12.

(a) (b)

Figure 2.12. (a) An Upward Pulse (b) A Downward Pulse

Blockpulses are important as the LULU operators act directly on them. This
has been termed the Roadmaker’s Algorithm, [66]. The operator Ln removes
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all upward blockpulses of size n or less and Un removes all downward block-
pulses of size n or less. In addition, Ln does not remove downward pulses
and Un does not remove upward pulses. Thus when applying Ln ◦ Un all
blockpulses of size n or less are removed or sliced off. If we apply Ln ◦ Un

successively from n = 1, 2, .., N , as is explained in the DPT algorithm above,
it means that Ln◦Un will have removed a collection of upward and downward
blockpulses of size n and none of size less than n. These would have already
been removed by the previous applications L1◦U1, L2◦U2, ... and Ln−1◦Un−1.
We present an illustration of the DPT on a sequence x in Figure 2.13. Notice
that when we sum D1(x), D2(x) and D3(x) we obtain the original sequence
x.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.13. (a) Original sequence x (b) U1 ◦L1x (c) D1(x) (d) U2 ◦ ... ◦L1x
(e) D2(x) (f) U3 ◦ ... ◦ L1x (g) D3(x)
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Recall that the LULU operators are consistent i.e. they are idempotent and
co-idempotent. We in fact have a more powerful result for the DPT, proven
in [63], namely

The Highlight Result If z =
∑N

n=1 α−n D−
n (x) + α+

n D+
n (x) + D0(x), so that

each resolution level is multiplied by it’s own non-negative constant, and
where Dn(x) = D−

n (x) + D+
n (x) is separated into it’s positive and negative

pulses, then z is decomposed consistently i.e. D+
n (z) + D−

n (z) = α+
n D+

n (x) +
α−n D−

n (x).

(a)

(b)

(c)

Figure 2.14. For x + n from Figure 2.11: (a) D+
1 (x + n) (b) D−

1 (x + n)
(c) D1(x + n)

In a simpler manner we can also write the above result as follows: If z =∑N
n=0 αnDn(x) then Dn(z) = αnDn(x). This is a very important result be-

cause it means that multiples of pulses within a resolution level will appear in
the same resolution level without distortion, enabling us to highlight certain
pulses. Rohwer comments in [93] that this could have applications in image
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analysis, specifically feature detection.

Let us return to the smoothing of a sequence. Ultimately we wish to make
use of the DPT to separate a sequence into its noise component and its
true component. So how can we make use of the DPT? We need to decide
which resolution levels contain the true information and then we are able
reconstruct the signal with only those discrete pulses rendering a truer picture
of the nature of the data. Noise usually occurs in lower resolution levels,
thus the reason for applying Ln ◦ Un from n = 1, 2, ..., N rather than as
n = N,N − 1, ..., 2, 1. The noise in a signal can be removed when the lower
resolution levels have been detected via the LULU operators for ‘small’ n. In
[95] it is suggested that a distribution is fitted to the first resolution layer r(1)

to determine the appropriate thresholding to remove the noise significantly.
In Figure 2.14, this first resolution layer can be seen. We will look at this in
more detail in the next section. We also know that T (r(n)) = 2

n
‖r(n)‖, [95],

so we can use total variation to decide on the required resolution levels we
keep.

An alternative method for using the LULU smoothers for removing noise is
presented in [61]. There a LULU-filtration method is proposed by using the
3-point filtration operator

(S(x))i =
1

2

(
(L1 ◦ U1(x))i + (U1 ◦ L1(x))i

)

and on the edges (end points) of the signal the operations are (L1x)0, (U1x)0,
(L1x)N and (U1x)N . They also propose a 5-point filtration operator by using
L3 and U3 similarly to above and by using windows of size 2 on the edges.
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2.5 Distributions of the LULU Operators

In [27] the exact and asymptotic distributions (as n goes to infinity) of Ln, Un,
Ln◦Un and Un◦Ln are derived for one dimension. The first case considered is
for a sequence of random variables ..., X−1, X0, X1, ... which are independent
and identically distributed with distribution function FX(x) = P [X ≤ x].
They are as follows for n = 1, 2, 3, ...,

FLn◦Un(X)(x) = F n+1
X (x) + n(1− FX(x))F n+1

X (x) + (1− FX(x))F
2(n+1)
X (x)

1

2
(n− 1)(n + 2)(1− FX(x))2F

2(n+1)
X (x)

FUn◦Ln(X)(x) = 1− [
1− FX(x)

]n+1 − nFX(x)
[
1− FX(x)

]n+1

− FX(x)
[
1− FX(x)

]2(n+1)

− 1

2
(n− 1)(n + 2)F 2

X(x)
[
1− FX(x)

]2(n+1)

FUn(X)(x) = F n+1
X (x) + n(1− FX(x))F n+1

X (x)

FLn(X)(x) = 1− [
1− FX(x)

]n+1 − nFX(x)
[
1− FX(x)

]n+1
.

In [56] it is also stated that work is being done on determining the joint
distribution of Ln ◦ Un and Ln ◦ Un.

The second case considered was for ..., X−1, X0, X1, ... independent but no
longer identically distributed i.e. each Xj has distribution function Fj(x) for
j = 0,±1,±2, ..., [56]. Then we have

FLn◦Un(X)i
(x) = 1− qi−n(x) +

i∑
r=i−n

dr,n(x) +
i+n−1∑
r=i+1

dr,n(x)
[
qi−n(x)−

r−n−2∑
s=i−n

ds,n(x)
]

−
i+n−1∑

k=i

dk,n(x)
[
qk−2n(x)−

k−n−2∑

r=k−2n

dr,n(x)
]

where

qk(x) = 1−
k+n∏

j=k

Fj(x)

and

dk,n(x) = (1− Fk(x))
k+n+1∏

j=k+1

Fj(x),
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and

FUn◦Ln(X)i
(x) = q∗i−n(x))−

i∑
r=i−n

d∗r,n(x) +
i+n−1∑
r=i+1

d∗r,n(x)
[
q∗i−n(x)−

r−n−2∑
s=i−n

d∗s,n(x)
]

+
i+n−1∑

k=i

d∗k,n(x)
[
q∗k−2n(x)−

k−n−2∑

r=k−2n

d∗r,n(x)
]

where

q∗k(x) = 1−
k+n∏

j=k

(1− Fj(x))

and

d∗k,n(x) = Fk(x)
k+n+1∏

j=k+1

(1− Fj(x)).

Lastly, they consider the asymptotic distributions i.e. as n tends to infinity.
Since the LULU operators are based on the extreme values they make use of
results from Extreme Value Theory. In this direction they make use of the
Fisher-Tippett theorem, [133].

Theorem 47 Fisher-Tippett For sequences of constants (an), an > 0 and
(bn) such that

1

an

(X(n) − bn)D−→H

as n → ∞ where X(n) = max{X1, ...Xn} and H is a non-degenerate distri-
bution function which can be either of the type Frechet, Gumbel or Weibull,
[39]. If this holds FX is said to belong to the maximum domain of attraction
of H or FX ∈ MDA(H).

The asymptotic distributions are then given by

FUn(anx + bn) D−→ H(x)−H(x)logH(x),

FLn◦Un(anx + bn) D−→ H(x)−H(x)logH(x) +
1

2

[
H(x)logH(x)

]2
,
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FLn(anx + bn) D−→ 1− (1−H(x))(1− log(1−H(x)))

and

FUn◦Ln(anx + bn) D−→ 1−H(x)− (1−H(x))(log(1−H(x)))

− 1

2

[
(1−H(x))log(1−H(x))

]2

where an and bn are normalizing constants determined by FX .

They make use of the above distributions to detect an edge by looking at a
jump as the result of two different underlying distribution functions. In other
words, if the distributions suddenly change it means there is a difference in
the characteristics of the data at that point perhaps indicating an edge of
some object of interest. By extending this into two dimensions it will be use-
ful to detect an object in an image by looking at the changes in distribution
in the vicinity of an suspected object or target.

In [94] and [38] a procedure is investigated in which the variance of the noise
is estimated. It is assumed that the noise forms part of the first resolution
level and comes from a symmetric distribution. The average height of the
negative pulses in the first resolution level using L1 ◦ U1 is made use of.
A third of the pulses are negative in this first level. The symmetry of the
distribution may not always be the case in applications thus a more general
method is required.
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2.6 Conclusion

In this chapter we have presented a summary of the state of the art of the one
dimensional LULU smoothers developed by Carl Rohwer and his collabora-
tors. The properties of idempotence, total variation preservation, fully trend
preserving, and the resulting Discrete Pulse Transform provide a framework
for these nonlinear filters in which the benefits of linear filters are main-
tained and the disadvantages rectified. In one dimension these operators are
applicable to sequences in `1. We quote from [93],

“The LULU-decompositions [in one dimension] are an alternative to the
prevalent median transform of the same type. These seem generally to be
good in the two-dimensional case of image processing, [9]. A disadvantage
listed is the computational complexity. A more serious disadvantage seems
to be the lack of theory.”

The above mentioned lack of theory will be addressed in this thesis in the
next two chapters. Digital images are discrete and are represented on a two
dimensional integer grid. Can we extend the LULU operators to such a grid
in a natural way, maintaining the properties developed by Rohwer as well as
the all important Discrete Pulse Transform with its Highlighting Result? The
implications for image processing will then provide numerous new insights
into the multiresolution structure of images. We provide this extension, in a
natural way, in the next chapter.
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Chapter 3

LULU Theory on
Multidimensional Arrays

3.1 Introduction

David Marr, [76], specifies the following as important for image analysis, [95]:

1. There exists a science of vision that must be developed for the under-
standing of human and robotic vision. The foundation must be found.
Algorithms involved should be physiologically realistic.

2. The doubt in iterative loops, and the belief that the choice of represen-
tation of an image is crucial.

The extension of the LULU theory to multidimensional arrays has obvious
implications in image processing, and in three dimensions, video processing.
The algorithms and representation developed should thus receive attention
when developing such a theory. The LULU theory, when extended precisely
from one dimension, does provide a realistic algorithm, Section 4.3 and rep-
resentation, Section 4.2.

In [95] the one-dimensional LULU operators are applied to an image by first
decomposing each row separately, then each column separately and then fi-
nally taking averages to get a single resulting image. This implies a rotational
symmetry of only π radians so we do not have a complete extension into two
dimensions, [95]. Also see [87] for a proposed definition of L1 and U1 in two

56
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dimensions. Here their idempotence and co-idempotence are proven. How-
ever, for n > 1 there have previously been no results. In [58] an extension to
two dimensions using 8-connectivity is proposed, but the construction does
not satisfy the idempotence of the LULU operators. This chapter will pro-
vide the extension of the LULU operators to higher dimensions thus solving
this problem of lack of theory. The need for this extension is also emphasized
in the conclusion of [38].

The LULU operators are morphological filters, which are increasing, idempo-
tent operators. However, unlike mainstream mathematical morphology, see
Section 2.2.1, the emphasis in LULU theory is on what one may call struc-
ture preserving properties, like: consistent separation (separation of noise
from signal) (Section 3.4), total variation (Section 3.6) and shape preserva-
tion (Section 3.5), and consistent hierarchical decomposition (Section 3.7).
We discuss these properties briefly.

Consistent Separation

The issue of consistency of nonlinear filters is not easy to address in a straight-
forward manner. In fact, one may note that there is no established approach
to this issue, with some authors only providing empirical evidence on the
quality of their considered filters. Characterization of the quality of nonlin-
ear filters is discussed at length in [75]. The concept of a smoother introduced
there is based on preserving some linearity, namely, these are operators which
are shift, location and scale invariant.

A common requirement for a filter P , linear or nonlinear, is its idempotence,
i.e. P ◦P = P , for example, a morphological filter. As mentioned in Chapter
2, for linear operators the idempotence of P implies the idempotence of the
complementary operator I−P . For nonlinear filters this implication generally
does not hold so the idempotence of I−P , also called co-idempotence, [135],
can be considered as an essential measure of consistency.

The above mentioned properties are all discussed in [93], [64], and in the
previous chapter, where they are considered to collectively constitute what
the we call a consistent separation and are absorbed into the concept of
a separator. We will give the definition of a separator for operators on real
functions defined on a domain with a group structure. Let Ω be an abelian
group, so that commutativity always holds. Denote by A(Ω) the vector
lattice of all real functions defined on Ω with respect to the usual point-wise
defined addition, scalar multiplication and partial order. For every a ∈ Ω
the operator Ea : A(Ω) → A(Ω) given by Ea(f)(x) = f(x − a), x ∈ Ω, is
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called a shift operator.

Definition 48 An operator P : A(Ω) → A(Ω) is called a separator if

(i) P ◦ Ea = Ea ◦ P, a ∈ Ω (Horizontal shift invariance)
(ii) P (f + c) = P (f) + c, f, c ∈ A(Ω), c -constant function

(Vertical shift invariance)
(iii) P (αf) = αP (f), α ∈ R, α ≥ 0, f ∈ A(Ω)

(Scale invariance)
(iv) P ◦ P = P (Idempotence)
(v) (I − P ) ◦ (I − P ) = I − P. (Co-idempotence)

Total Variation and Shape Preservation

The total variation is a semi-norm on A(Ω), as in Chapter 2. In the prac-
tically significant case of signals (Ω = Z), dealt with in Chapter 2, the
total variation is a generally accepted measure for the amount of information
present. Note that any separation of sequences may only increase the total
variation. More precisely, for any operator P : A(Z) → A(Z) we have

TV (f) ≤ TV (P (f)) + TV ((I − P )(f)). (3.1)

Hence it is natural to expect that a good separator P should not create new
variation, that is we have (in one dimension)

TV (f) = TV (P (f)) + TV ((I − P )(f)). (3.2)

An operator P satisfying property (3.2) is called total variation preserv-
ing, [88].

Shape preservation generally refers to the preservation of edges in the input,
since the edges define shapes. Total variation preservation is closely linked
to the shape preservation properties of the filter. In the case of signals the
preservation of shape is actually preservation of trend. It is shown in [93]
that a fully trend preserving operator on sequences is also total variation
preserving. We will show that this is also true for images, that is, in two
dimensions.

Consistent Hierarchical Decomposition

Similarly to the consistency of separation, characterizing the quality of hi-
erarchical decompositions by nonlinear filters is also problematic. Indeed,
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as mentioned in [63], a decomposition by linear operators should typically
recover the coordinates of any given linear combination of basis vectors, a
property not at all applicable to the nonlinear case. A measure of the quality
of any hierarchical decompositions is introduced in [63], namely:

A nonnegative linear combination of the output of the

decomposition is decomposed into the same components. (3.3)

This was introduced in Chapter 2 as the Highlight Result. The aim of this
chapter is to generalize the LULU operators to functions on Ω = Zd in such
a way that their essential properties, mentioned above, are preserved.
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3.2 Connectivity

The one-dimensional LULU operators act on sequences in the space `1. In
this space one can see that we have an obvious ordering of the elements,
namely xi+1 follows xi and xi−1 precedes xi. It is then natural to consider
the elements xi+1 and xi−1 as the neighbours of xi. The one-dimensional
LULU operators act specifically on the n-neighbourhoods of each xi, that is,

{xi−n, xi−n+1, ..., xi}, ..., {xi, xi+1, .., xi+n}. (3.4)

So the order in a sequence in `1 is inherent in the definition of Ln and Un

in one dimension (Definition 29), since Z is totally ordered (see Definitions
1 and 2). Consider the case of images defined on a discrete grid in Z2.

Figure 3.1. Discrete image grid in Z2 with pixel x at position (i, j).

Although it is natural to consider the 8 surrounding pixels for a pixel x as the
neighbours, see Figure 3.1, there is no immediate ordering of the neighbours
as is the case in one dimension. This is because Z2 is only partially ordered.
In addition the n-neighbourhoods which contain the pixel x are numerous.
In Figure 3.2 we see some possible 4-neighbourhoods, but there are obviously
many more.

The ordering of these neighbourhoods cannot be done in a natural way, con-
trary to the natural ordering in (3.4). We could apply a raster scan to the
grid, that is, starting with the first row move left to right from pixel to
pixel and then repeat at next row and subsequent rows. This would however
mean we have reduced the grid in Z2 to a sequence in `1 and we won’t have
achieved anything. Thus we see that the one dimensional ordering cannot
be extended to two dimensions (or higher dimensions). We are aiming for a
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natural extension of the one-dimensional LULU operators into two dimen-
sions, specifically images, and more generally onto an arbitrary dimensions
Zd. When we take d = 1 the extended LULU operators should reduce to
the one-dimensional LULU operators exactly. In addition, taking d = 2 we
would like to have operators which naturally and logically extend from one
dimension by preserving all the properties present in one dimension and hav-
ing the equivalent higher dimensional concepts. We make use of the concept
of connectivity to aid us in the extension.

Figure 3.2. Possible 4-neighbourhoods of pixel x at position (i, j).

The concept of morphological connectivity was introduced by J. Serra and
G. Matheron in the 1980’s. They recognised the need for the concept of an
axiomatic connectivity. There were two main connectivity concepts before
they set up the axiomatic approach. These were arcwise connectivity and
topological connectivity, both defined on a topological space E. Arcwise
connectivity is based on paths, [129].

Definition 49 A path in E joining two points p, q ∈ E is a continuous
mapping f : [0, 1] → E such that f(0) = p and f(1) = q.

Definition 50 A subset D of E is arcwise connected if ∀ p, q ∈ D there
exists a path in D joining p and q.

Graph connectivity, [40], has a similar concepts to arcwise connectivity al-
though it is defined on a graph and not a topological space. The two concepts
cannot be shown to be equivalent.

Definition 51 A graph G = (V,E) is (graph-)connected if there exists a
path p = {v1, ..., vn} between every set of vertices. A path is a sequence of
vertices in which each pair of consecutive vertices is joined by an edge.
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Topological connectivity, [129], is the weaker form of connectivity since ar-
cwise connectivity implies topological connectivity, see Theorem 17 in [129,
Chapter III, Section 4].

Definition 52 Topological set E is (topologically) connected if there do
not exist two open sets A and B such that A ∩ E and B ∩ E are disjoint,
non-empty and have union E.

Arcwise connectivity and topological connectivity are not in general equiva-
lent. However, in Rd they are equivalent, [107]. Consider an arbitrary V ∈ Rd

which is topologically connected, and let p = (y1, ..., yd) and q = (z1, ..., zd)
be points in V . Define f : [0, 1] → V such that f(t) = (x1(t), ..., xd(t)) where
xi(t) = (1 − t)yi + tzi. Then since V is topologically connected, there do
not exist open sets A and B such that A ∪ B = V but A ∩ V and B ∩ V
are disjoint. Thus f is continuous, and f(0) = p and f(1) = q, so that V is
arcwise connected. By [129, Theorem 17, Chapter III] an arcwise connected
space is topologically connected. However 8-connectivity in Z2, which is a
kind of graph-connectivity, has no related topology for which its topology is
equivalent to 8-connectivity, [96].

Thus the axiomatic approach to connectivity was introduced. In 1988 Serra,
[105], and Matheron in 1985, [78], introduced the concept of a connectivity
class, for use in Mathematical Morphology.

Definition 53 C is a connectivity class or a connection on P(E) if the
following axioms hold:

(i) ∅ ∈ C
(ii) {x} ∈ C for each x ∈ E

(iii) For each family {Ci} in C such that
⋂

Ci 6= ∅, we have
⋃

Ci ∈ C.

A set C ∈ C is called connected.

Note that the intersection of connected sets is not necessarily connected. For
example, consider Figure 3.3 which shows two connected sets (with respect
to 4-connectivity). The intersection shown by the highlighted cells is clearly
not 4-connected.
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Figure 3.3. Intersection of connected sets

Axiom (iii) is required so that if we consider Cx = {C : x ∈ C,C ∈ C}, any
union of a non-empty family in Cx is again in Cx. Then the point-connected
opening

γx(A) = ∪{C : C ∈ C, x ∈ C ⊂ A} (3.5)

has the invariant set βγx = Cx ∪ {∅}. The point-connected opening extracts
the connected component of the set A which contains x. The point x is
referred to as the point marker. Note that from this we can now extract a
connected subset containing a specified point from a connected set.

The point-connected opening is an opening according to Definition 20 in
Chapter 2. It is increasing since if A ⊆ B then the connected component of
B containing x will contain the connected component of A which contains x
i.e. γx(A) ⊆ γx(B). It is also anti-extensive, since the extracted connected
component is contained in A, and idempotent, because the extracting the
connected component a second time will not give a different connected com-
ponent. In [59] an algorithm is presented, to determine γx(A) in which x is
dilated by a structuring element B but restricted to A, until convergence.
The structuring element used is an elementary one, either the 6-pixel hexagon
or 9-pixel square.

The following important result is proved in [105].

Theorem 54 A connectivity class C on P(E) is equivalent to the family
{γx : x ∈ E} of openings such that

(iv) γx({x}) = {x} ∀ x ∈ E

(v) ∀ A ⊆ E, ∀ x, y ∈ E, γx(A) and γy(A) are either equal or disjoint.
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(vi) ∀ A ⊆ E, ∀ x ∈ E, x /∈ A ⇒ γx(A) = ∅.

The dual operation of γx is the closing ρx, [31],

ρx(A) = E\γx(A
c), A ∈ P(E) (3.6)

Indeed, ρx(A
c) = E\γx((A

c)c) = E\γx(A) = (γx(A))c. The point-connected
closing ρx is a closing. It is increasing: If A ⊆ B, then

γx(A) ⊆ γx(B)

⇒ (γx(A))c ⊇ (γx(B))c

⇒ ρx(A
c) ⊇ ρx(B

c)

where Bc ⊆ Ac,

it is extensive:

γx(A
c) ⊆ Ac

(ρx(A))c ⊆ Ac

so that ρx(A) ⊇ A,

and ρx is idempotent:

ρx(ρx(A)) = E\γx((ρx(A))c)

= E\γx(γx(A
c))

= E\γx(A
c)

= ρx(A).

Figure 3.4 illustrates how the point-connected opening and closing work.

The concept of connectivity given in Definition 53 is applicable only for binary
images, although it has been applied to grey scale and colour images, see [33]
[100] [119]. Serra wanted to provide a unified concept which could be directly
applied to whatever the application. He thus extended the connectivity class
for lattices, specifically for lattices of functions. Recall from Chapter 2 that a
complete lattice L is a set of ordered (partial or total) elements for which each
family of elements possesses a supremum and an infimum. On binary images
we consider the lattice of sets where the order is inclusion ⊂, the supremum
is the intersection ∪ and the infimum is the union ∩. On greyscale images
we consider a lattice of functions with the order as the inequality ≤, the
supremum as ∨ and the infimum as ∧. We let the elements of L be denoted
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Figure 3.4. Operations of γx and ρx

by little letters a, b, ... and families in L be denoted by capital letters A,B, ....
Let 0 be the smallest element in L and m be the largest element in L. Then
for a ∈ L, let Ma = {x : x ∈ L, x ≤ a} be the lower bound for a and
Ma = {x : x ∈ L, x ≥ a} be the upper bound for a.

Definition 55 A family X in L is a sup-generator if for each a ∈ L, a is
the supremum of the elements of X that is majorates:

a =
∨ (X ⊂ Ma

)
=

∨
{x ∈ X : x ≤ a.}

We can now introduce the expanded definition for a connectivity class on
lattices. The connectivity theory provided thus far is sufficient to allow for
the extension in Section 3.3, so will only provide the expanded definition on
lattices to indicate the full scope of the work that has been done by others.

Definition 56 C ⊂ L is a connectivity class or a connection on a lattice
L if
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(I) 0 ∈ L
(II) C is sup-generating for L: ∀ a ∈ L, a =

∨ (C⋂
Ma

)

(III) C is conditionally closed under supremum: X ⊆ C,∧X 6= 0 ⇒ ∨X ∈
C.

Definitions 53 and 56 are equivalent. Indeed, axioms (1) and (3) in both
cases are obvious, but axiom (2) needs some more thought. In Definition 56
axiom (II) implies that the connectivity class can represent any element of the
whole lattice L as the supremum of elements belonging to the connectivity
class and those which are lower bounds for the element. This brings to mind
the concept of a dense subset. In Definition 53 axiom (ii) is more trivial, and
simply implies that every individual element is in the connection, so that the
connection makes up the whole space.

As before, we require axiom (III) so that for Cx = {c : x ≤ c, c ∈ C} =
C⋂

Mx, the supremum of each nonempty family of elements in Cx is in C.
Thus the connected opening of origin x,

γx(a) =
∨
{c : c ∈ C, x ≤ c ≤ a}, a ∈ L, (3.7)

has invariant set Cx

⋃{0}. We have a similar equivalence result as well.

Theorem 57 If C is a sup-generator in L, then C is a connectivity class
⇐⇒ C coincides with the family {γx : x ∈ C\{0}} of openings such that

(IV) ∀ x ∈ C\{0}, γx(x) = x

(V) ∀ a ∈ L, ∀ x, y ∈ C\{0}, γx(a) and γy(a) are equal or disjoint

(VI) ∀ a ∈ L, ∀ x ∈ C\{0}, x � a ⇒ γx(a) = 0.

The connected sets that the LULU operators are applied to are the supports
of certain sets so it is sufficient that we use the connectivity class presented
in Definition 53. The extension of LULU operators for the connectivity in
Definition 56 will be investigated in future work. For images we consider
E = Z2 in Definition 53. However, a connectivity class may not contain sets
of every size. For example, {∅} ∪ {{x} : x ∈ Zd} and {∅} ∪ {{x} : x ∈
Zd} ∪ {Zd} are connections on Zd but neither of them contain sets of finite
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size other than 0 and 1. In the definition of the operators Ln and Un we need
sets of every size. We therefore assume that Zd is equipped with a connection
C which satisfies the following conditions

• Zd ∈ C (3.8)

• For any a ∈ Zd, Ea(C) ∈ C whenever C ∈ C (3.9)

so that C is translation invariant (3.10)

• If V ( W, V, W ∈ C, then there exists x ∈ W \ V

such that V ∪ {x} ∈ C (3.11)

Condition 3.8 ensures that the whole space is connected, condition 3.9 ensures
that the connected sets are translation invariant, and condition 3.11 ensures
that the addition of a single point in the connection to a connected set
preserves the connectivity. The aim of the conditions (3.8)–(3.11) is to define
a connection which is sufficiently rich in connected sets. Suppose we have
two connected sets V and W with V ( W . Then k1 = card(V ) < k <
card(W ) = k2, for some k. By condition 3.11 there exists x1 ∈ W\V such
that V

⋃{x1} ∈ C. Then card(V
⋃{x1}) = k1 + 1 ≤ k. Continue this

application of condition 3.11 until you obtain S = V
⋃{x1}

⋃
...

⋃{xm} such
that card(S) = k1+1+ ...+1 = k < k2. Thus we have the following property:

Let V ( W, V,W ∈ C. For every k ∈ N such that

card(V ) < k < card(W ) there exists S ∈ C (3.12)

such that V ⊆ S ⊆ W and card(S) = k.

As usual, card(V ) is the number of the elements in the set V . Given a point
x ∈ Ω and n ∈ N we denote by Nn(x) the set of all connected sets of size
n + 1 that contain point x, that is,

Nn(x) = {V ∈ C : x ∈ V, card(V ) = n + 1}. (3.13)

In addition to (3.8) – (3.11) we assume that the connection C is such that

card(Nn(x)) < ∞, ∀n ∈ N, ∀x ∈ Zd. (3.14)

We should note that if a connection on Zd is defined via graph connectivity,
where all vertices are of finite degree, then it is trivial to see that properties
(3.11), (3.13) and (3.14) hold automatically. In image analysis (d = 2) the
connectivity is a graph connectivity defined via a neighbour relation, e.g.
4-connectivity, 8-connectivity, see Figure 3.5.
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Figure 3.5. 4-Connectivity and 8-Connectivity.

In this case all properties (3.8) - (3.13) and (3.14) hold. However, in order
to have maximum generality for the extension of the LULU operators to
higher dimensions we adopt the present axiomatic approach with Zd as the
underlying space and with an arbitrary connection C satisfying the axioms
in Definition 53 and the additional axioms (3.8)-(3.14).

3.2.1 Extended Results for Connectivity Classes

In addition to the Connectivity class introduced in Definitions 53 and 56,
a number of additional concepts have been investigated in the literature.
These are mostly for use in image processing. In [12], [13], [16], [17] and
[18], σ-connectivity and multiscale connectivity are discussed. If the degree
of connectivity with respect to a connectivity measure is at least σ then
σ-connectivity holds.

In [112] and [30] constrained connectivity is investigated. Here, two pixels
are considered connected if they satisfy a series of constraints. In [15] a
type of greyscale connectivity is introduced. A greyscale image is considered
connected if all the level sets below a predefined threshold are connected,
termed level-k connectivity. In [14], fuzzy τ -connectivity is discussed, in [107]
and [14] hyperconnectivity and hypoconnectivity, in [97] partial connectivity,
and in [102] pseudo-connectivity.
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3.3 The Multidimensional LULU Operators

We are now ready to define the operators Ln and Un on A(Zd) as follows.
Recall that A(Zd) is the vector lattice of all real functions defined on Zd

with respect to the usual point-wise defined addition, scalar multiplication
and partial order (see Section 3.1).The extension to an arbitrary domain Ω
should also be looked at in the future.

Definition 58 Let f ∈ A(Zd) and n ∈ N. Then

Ln(f)(x) = max
V ∈Nn(x)

min
y∈V

f(y), x ∈ Zd, (3.15)

Un(f)(x) = min
V ∈Nn(x)

max
y∈V

f(y), x ∈ Zd. (3.16)

Let us confirm that Definition 58 generalizes the definition of Ln and Un for
sequences. Suppose d = 1 and let C be the connection on Z generated by the
pairs of consecutive numbers. Then all connected sets on Z are sequences of
consecutive integers and for any i ∈ Z we have

Nn(i) = {{i−n, i−n+1, ..., i}, {i−n+1, i−n+2, ..., i+1}, ..., {i, i+1, ..., i+n}}

Hence for an arbitrary sequence considered as a function on Z the formulas
(3.15) and (3.16) are reduced to Definition 29.

The operators Ln and Un in Definition 58, as well as their one-dimensional
counterparts (see Definition 29), can also be presented in the general setting
of Mathematical Morphology. Within this theory Ln is an area opening and
Un is an area closing, where the area of a set refers to the number of points
in it. Let us recall that a morphological opening (closing) is a composition of
an erosion and a dilation (dilation and erosion) with a specified structuring
element, see Definitions 34 and 35. We introduce the area opening and
closing, [111] to show the relationship between them and the LULU operators.

Definition 59 An area opening is the union of all openings with connected
structuring elements whose size (area) is λ pixels, namely

γλ =
∨
i

{γBi
|Bi is connected and area(Bi) = λ}.
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An area opening removes all connected components whose area is smaller
than λ. The area closing is the dual operation of the area opening, so that
γλ(f) = −ρλ(−f), thus it removes the same connected components in the
background (that is those negative of the input).

Definition 60 An area closing is given by

ρλ =
∧
i

{ρBi
|Bi is connected and area(Bi) = λ}.

It is important to notice that here the structuring elements can take on any
shape as the only restriction is on their size. This is the important differ-
ence between the LULU operators, which are only concerned about size, and
morphological filters, which operate in conjunction with a specified structur-
ing element with a specified size. In the situation of an application which
requires a specifically shaped structuring element, this can be taken into ac-
count in the Discrete Pulse Decomposition as all the connected components
are obtained and their shapes or shape similarity can be determined.

Due to the simple structure of Z the one-dimensional Ln and Un are mor-
phological opening and closing, respectively, where the structuring element
is a line segment of length n + 1. This is trivial to see. However, the seg-
ments are the only connected sets under the considered connectivity and the
considered dimension. In this sense, all connected sets have the same shape.
One may consider morphological opening and closing as a generalization of
the one-dimensional Ln and Un to operators on A(Zd). However, an essential
property of Ln and Un for sequences is that they form a Matheron pair [95],
that is we have

Ln ◦ Un ◦ Ln = Un ◦ Ln and Un ◦ Ln ◦ Un = Ln ◦ Un. (3.17)

It is easy to see by examples that for a general structuring element on Zd, d >
1, one can find f ∈ A(Zd) such that (3.17) is violated. For example the
morphological opening and closing by a structuring element B do not in
general satisfy equation 3.17.

This motivates the proposed definition of Ln and Un, when d > 1, which
is independent of shape. We obtain the proof of (3.17) from known results
on attribute filters of which Ln and Un are particular cases, [32]. Firstly,
an attribute opening is defined in terms of a trivial opening, [19]. We first
provide the definitions for binary images and then show the extensions to
grayscale images.
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Definition 61 For a connected set C ⊂ Ω and an increasing criterion T , a
trivial opening ΓT is given by

ΓT (C) =

{
C if C satisfies criterion T
∅ otherwise

and ΓT (∅) = ∅.

Examples of an increasing criterion are (1) C must have an area (number of
pixels) of at least λ, (2) the diagonal of the minimum enclosing rectangle in
a given direction must be of length at least λ, and (3) the area of the largest
circle that can fit inside the region must be at least λ. So these illustrate
that a criterion T is increasing if every superset of C also satisfies T if C
satisfies T . The maximum geodesic distance, [111], of the connected region
is an example of a nonincreasing criterion.

Definition 62 The geodesic distance between two pixels p and q in a
connected set A is,

dA(p, q) = min{L(P) : p1 = p, p` = q and P ⊆ A},
the minimum of the length L of path(s) P = (p1, p2, ..., p`) joining p and q in
A.

Indeed, as discussed in [19], any criterion that is used to define shape is
nonincreasing. Thus it is more adequate to use criterions which involve size.
This is an important observation in relation to the LULU operators. It con-
cretes the method of using only the size of the connected neighbourhoods and
at a later stage (after the Discrete Pulse decomposition has been applied)
shape attributes can be taken into account as well. For the increasing crite-
rion given in (1) above, one obtains the area opening, see (59), [125] [126].
An attribute opening preserves only those connected regions that satisfy the
criterion T .

Definition 63 For any set X ⊂ Ω and an increasing criterion T , the at-
tribute opening of X is given by,

ΓT (X) =
⋃
x∈X

ΓT

(
Γx(X)

)

where Γx is the connected opening from Equation 3.5.
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It is proven in [19] that an attribute opening is indeed an algebraic opening,
see Definition 20, so that it is increasing, idempotent and anti-extensive.
Because attribute openings work wholely on the connected components they
preserve the shape of regions. An attribute thinning is defined similarly in
[19]. First an trivial thinning.

Definition 64 For a connected set C ⊂ Ω and a criterion T (not necessarily
increasing), a trivial thinning ΦT is given by

ΦT (C) =

{
C if C satisfies criterion T
∅ otherwise

and ΦT (∅) = ∅.

Note that the only difference when compared to the trivial opening is that
the criterion is not required to be increasing for a trivial thinning. Then an
attribute thinning is defined by the following.

Definition 65 For any set X ⊂ Ω and any criterion T , the attribute
thinning of X is given by,

ΦT (X) =
⋃
x∈X

{ΦT

(
Γx(X)

)

where Γx is the connected opening from Equation 3.5.

The attribute thinning is not an algebraic closing but it does satisfy the
two properties of idempotence and anti-extensivity. This is not ideal as we
would like an algebraic closing to correlate with the attribute opening. This
is simple to obtain by taking duals. Thus we define an attribute closing as
follows.

Definition 66 An attribute closing ΨT is defined as the dual of the at-
tribute opening, that is

ΨT (X) =
(
ΓT (XC)

)C
.

The attribute closing is then an algebraic closing, see Definition 19.

For gray-scales images the corresponding definitions of the preceding concepts
are as follows, [19].
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Definition 67 For a grayscale image f and an increasing criterion T , the
grayscale attribute opening is given by

γT (f)(x) = max{t : x ∈ ΓT

[Ht(f)
]}

where Ht(f) = {x ∈ Ω : f(x) ≥ t} is the threshold set.

Definition 68 For a grayscale image f and any criterion T , the grayscale
attribute thinning is given by

φT (f)(x) = max{t : x ∈ ΦT

[Ht(f)
]}

where Ht(f) = {x ∈ Ω : f(x) ≥ t} is the threshold set.

Definition 69 A grayscale attribute closing is defined as the dual of the
grayscale attribute opening,

ψT (f)(x) = −γT (−f)(x).

We can now present the very important result introduced in (3.17). We first
prove the duality of the LULU operators and the ordering of the elements
{Ln, Un, Ln ◦ Un, Un ◦ Ln, Un ◦ Ln ◦ Un, Ln ◦ Un ◦ Ln}.

Theorem 70 The operators Ln and Un are duals.

Proof
For an arbitrary f ∈ A(Zd),

Ln(−f) = max
V ∈Nn(x)

min
y∈V

(−f(y))

= max
V ∈Nn(x)

(−max
y∈V

f(y)
)

= − min
V ∈Nn(x)

max
y∈V

f(y)

= −Un(f).

Corollary 71 The operators Ln ◦ Un and Un ◦ Ln are duals.
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Proof
For an arbitrary f ∈ A(Zd),

Un ◦ Ln(−f) = Un ◦ (−Un(f))

= −Ln ◦ Un(f).

The area opening and closing are then special cases of the attribute opening
and closing and are therefore algebraic openings and closings respectively,
[111]. Thus since the operators Ln and Un are respectively an area opening
and closing, the following holds,

Increasingness: f ≤ g =⇒ ( Ln(f) ≤ Ln(g), Un(f) ≤ Un(g) )(3.18)

Idempotence: Ln ◦ Ln = Ln, Un ◦ Un = Un (3.19)

Anti-Extensivity and Extensivity: Ln(f) ≤ f ≤ Un(f) (3.20)

An alternative for the idempotence of Ln and Un can be proven directly as
well. The inequality

Ln ◦ Ln ≤ Ln

is an immediate consequence of (3.20). Then it is sufficient to prove the
inverse inequality. Let f ∈ A(Zd) and x ∈ Zd. We have

Ln(Ln(f))(x) = max
W∈Nn(x)

min
y∈W

max
V ∈Nn(y)

min
z∈V

f(z). (3.21)

But y ∈ W ∈ Nn(x) implies W ∈ Nn(y). Therefore for every W ∈ Nn(x)
and y ∈ W we have

max
V ∈Nn(y)

min
z∈V

f(z) ≥ min
z∈W

f(z).

Using that the right hand side is independent of y we further obtain

min
y∈W

max
V ∈Nn(y)

min
z∈V

≥ min
z∈W

f(z), W ∈ Nn(x).

Then it follows from the representation (3.21) that

Ln(Ln(f))(x) ≥ max
W∈Nn(x)

min
z∈W

f(z) = Ln(f)(x).

This holds similarly for Un. A similar method of proof is provided in [95,
Corollary 28]. Here we see that Ln is idempotent if and only if

∀ x ∈ Zd, ∀ W ∈ Nn(x), ∀ y ∈ W, then W ∈ Nn(y).

Furthermore, it is easy to see that these operators are monotone with respect
to n.
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Theorem 72 For n1 < n2 we have that

Ln1 ≥ Ln2 and Un1 ≤ Un2 . (3.22)

Proof
It follows from (3.13) that for every x ∈ Zd and V ∈ Nn2(x) there exists a
set W ∈ Nn1(x) such that W ⊆ V . Therefore

min
y∈V

f(y) ≤ min
y∈W

f(y) ≤ max
S∈Nn1(x)

min
y∈S

f(y) = Ln1(f)(x).

Hence
Ln2(f)(x) = max

V ∈Nn2(x)
min
y∈V

f(y) ≤ Ln1(f)(x), x ∈ Zd.

The inequality for Un is proved in a similar way.

For next result we require the d-dimensional median operator. In one dimen-
sion the median smoother is given by

Mn(x)i = median{xi−n, ..., xi, ..., xi+n}. (3.23)

Notice that the neighbourhood is {xi−n, ..., xi, ..., xi+n} which includes all the
n-neighbourhoods of xi, namely {xi−n, ..., xi}, {xi−n+1, ..., xi+1}, ..., {xi, ..., xi+n},
which are involved in the operators Un and Ln in one dimension. The median
smoother in two dimensions has been investigated in [36],

M(f)(xij) = median{f(xi,j−1), f(xi,j+1), f(xij), f(xi−1,j), f(xi+1,j)}. (3.24)

The formulation in (3.24) does not allow for variation in the neighbourhood
size over n ∈ N. Another alternative is presented in [83],

M(f)(xij) = median{f(xi+r,j+s) : (r, s) ∈ I} (3.25)

where I = {(r, s) ∈ Z2} ⊂ Z2. The formulation in (3.25) doesn’t specify
the neighbourhood over which the median is taken, that is the index set I,
though. A possible neighbourhood is investigated in [55]. Here they use a
neighbourhood of size n×m (where m, n are odd integers) and the median
operation is the median of the gray levels of the picture elements lying in
this m × n neighbourhood with the neighbourhood centered at the element
xij. This allows for different neighbourhood sizes but is still restrictive since
ideally the neighbourhood formulation should depend on the connectivity
used. We thus propose the following formulation for the d-dimensional me-
dian operator, which incorporates the requirement that the neighbourhood
should contain every possible connected set in Nn(x).
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Definition 73 For f ∈ A(Zd), the d-dimensional median smoother is
given by,

Mn(f)(x) = median{f(y) : y ∈ B}
where B = ∪V {V ∈ Nn(x)}.

Definition 73 is equivalent to (3.23) since then

B =
⋃
V

{V ∈ Nn(xi)}

=
⋃
{{xi−n, ..., xi}, {xi−n+1, ..., xi+1}, ..., {xi, ..., xi+n}}

= {xi−n, ..., xi, ..., xi+n}.

In two dimensions, using 4-connectivity, the neighbourhoods for n = 1, 2, 3
are given in Figure 3.6.

We can show that for each n ∈ N we have that Un ◦ Ln ≤ Mn ≤ Ln ◦ Un,
similar to the one dimensional case presented in [93, Theorem 3.4]. This
would prove the inequality

Un ◦ Ln ≤ Ln ◦ Un. (3.26)

We rather use the next result to prove (3.26).

(a) (b) (c)

Figure 3.6. Neighbourhoods for the d-dimensional median operator for
(a) n = 1 (b) n = 2 (c) n = 3.
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Theorem 74 For n ∈ N,

Ln ◦ Un ◦ Ln = Un ◦ Ln and Un ◦ Ln ◦ Un = Ln ◦ Un. (3.27)

Proof It follows from (3.20) that

Ln ◦ Un ◦ Ln ≤ id ◦ Un ◦ Ln = Un ◦ Ln. (3.28)

Assume that Ln ◦Un ◦Ln = Un ◦Ln is violated. In view of (3.28), this means
that there exists f ∈ A(Zd) and z ∈ Zd such that

Ln(Un(Ln(f)))(z) < Un(Ln(f))(z).

It follows from Theorem 78 (which follows in Section 3.4) that there exists
k ≤ n and V ∈ Nk(z) such that V is a local maximum set for Un(Ln(f))(z).
Then, by Theorem 81, there exists W ⊆ V such that W is a local maximum
set of the function Ln(f). We have card(W ) ≤ k ≤ n. However, Ln(f) does
not have any local maximum sets of size less than or equal to n, see Theorem
79. This contradiction completes the proof. The second equality is proven
in a similar manner.

The result

Un ◦ Ln ≤ Ln ◦ Un ⇐⇒ (
Ln ◦ Un ◦ Ln = Un ◦ Ln

and Un ◦ Ln ◦ Un = Ln ◦ Un

)
(3.29)

can be easily proven, see [93, Theorem 2.9]. We then also have that Un ◦
Ln ≤ Ln ◦ Un. The main consequence of Ln and Un comprising a Matheron
pair, as originally introduced by Matheron [78], is that Ln, Un and all their
compositions form a four element semi-group with respect to composition.
This will be dealt with in the next section in more detail.

Next we relate the multidimensional Un and Ln to the concept of a separa-
tor given in Definition 48. Indeed, conditions (i), (ii) and (iii) of Definition
48 hold for all openings and closings, [111, Chapter 2]. The idempotence
was given in (3.19). Thus only the co-idempotence remains. We can remark
that co-idempotence is seldom discussed in the standard literature on Math-
ematical Morphology. However, Ln and Un are also min-max operators as
defined by Wild, [135], since they are respectively a morphological opening
and closing. As such, their co-idempotence follows from [135, Corollary 11].
Therefore,

Ln, Un are separators for every n ∈ N. (3.30)
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3.4 The LULU Semigroup

Due to Theorem 74 a four-element semi-group, similar to the one shown in
Chapter 2, is obtained

{Un, Ln, Un ◦ Ln, Ln ◦ Un}.

The composition table is given in Table 2.1. Moreover, it follows from (3.18)
- (3.20) that this semi-group is fully ordered as it is in the one-dimensional
case i.e. we have

Ln ≤ Un ◦ Ln ≤ Ln ◦ Un ≤ Un. (3.31)

Similar to their counterparts for sequences the operators, the multidimen-
sional operators Ln and Un smooth the input function by removing sharp
peaks (the application of Ln) and deep pits (the application of Un). The
smoothing effect of these operators is made more precise by using the con-
cepts of a local maximum set and a local minimum set given below.

Definition 75 Let V ∈ C. A point x /∈ V is called adjacent to V if V ∪
{x} ∈ C. The set of all points adjacent to V is denoted by adj(V ), that is,

adj(V ) = {x ∈ Zd : x /∈ V, V ∪ {x} ∈ C}.

An equivalent formulation of the property (3.11) of the connection C is as
follows:

V, W ∈ C, W ( V =⇒ adj(W ) ∩ V 6= ∅. (3.32)

We introduce the following simple Lemma.

Lemma 76 a) Given V,W ∈ C with W ⊂ V . Then for x /∈ V but x ∈
adj(W ), we have x ∈ adj(V ).
b) Given distinct V,W ∈ C with V ∩W 6= ∅, there exists an x ∈ V \W such
that x ∈ adj(W ).

Proof
a) V and W +{x} are connected and have a nonempty intersection thus their
union V ∪ {x} is also connected. Then by Definition 75, x ∈ adj(V ).
b) Applying (3.32) to V ∪ W , since V ( V ∪ W , we get adj(W ) ∩ V =
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(a) (b)

Figure 3.7. (a) A Local Maximum Set (b) A Local Minimum Set

adj(W ) ∩ (V ∪W ) 6= ∅. Thus there exists x ∈ V \W such that x ∈ adj(W ).

It follows further from condition (3.14) that

card(V ) < ∞ =⇒ card(adj(V )) < ∞. (3.33)

Indeed if card(V ) = n then for an arbitrary x ∈ V we have {{a} ∪ V : a ∈
adj(V )} ⊂ Nn+1(x), so that card(adj(V )) ≤ card(Nn+1(x)) < ∞.

Definition 77 A connected subset V of Zd is called a local maximum set
of f ∈ A(Zd) if

sup
y∈adj(V )

f(y) < inf
x∈V

f(x).

Similarly V is a local minimum set if

inf
y∈adj(V )

f(y) > sup
x∈V

f(x).

The next four theorems deal with different aspects of the application of Ln

and Un to functions in A(Zd). They are followed by a discussion on their
cumulative effect. All theorems contain statements a) and b). Due to the
similarity we present only the proofs of a).

Theorem 78 Let f ∈ A(Zd) and x ∈ Zd. Then we have
a) Ln(f)(x) < f(x) if and only if there exists a local maximum set V of f
such that x ∈ V and card(V ) ≤ n;
b) Un(f)(x) > f(x) if and only if there exists local minimum set V of f such
that x ∈ V and card(V ) ≤ n.
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Proof
a) Implication to the left. Suppose that there exists a local maximum set
V ∈ Nk(x), k < n. Consider an arbitrary W ∈ Nn(x) and let S be a
connected component of W ∩ V . Then W\V 6= ∅ since card(S) < card(W )
by (3.13) and by (3.32) we have adj(S) ∩ W 6= ∅. Let z ∈ adj(S) ∩ W . If
z ∈ V then this means z ∈ V ∪W , and so S ∪ {z} is connected. This is a
contradiction on S being a connected component of V ∩W . So z /∈ V . Then
using also that V is a local maximum set we obtain

min
y∈W

f(y) ≤ f(z) < min
t∈V

f(t) ≤ f(x).

Since the set W ∈ Nn(p) is arbitrary, this inequality implies that Ln(f)(x) <
f(x).

Implication to the right. Suppose Ln(f)(x) < f(x). Let V be the greatest
(in terms of ⊆) connected set containing x such that

f(y) ≥ f(x), ∀ y ∈ V. (3.34)

The set V is obviously unique and can be constructed as V = γx(Y ), where
γx is the morphological point connected opening generated by x, see [106] or
[108], and Y = {y ∈ Zd : f(y) ≥ f(x)}.
Assume that card(V ) > n. It follows from (3.13) that there exists W ∈ Nn(x)
such that W ⊂ V . Then

Ln(f)(x) = max
S∈Nn(x)

min
y∈S

f(y) ≥ min
y∈W

f(y) ≥ min
y∈V

f(y) = f(x).

This contradicts the assumption Ln(f)(x) < f(x). Therefore, card(V ) ≤ n.

We have f(z) < f(x), for all z ∈ adj(V ), because otherwise (3.34) is satisfied
on the larger connected set {z} ∪ V . Then, also using (3.33), we obtain

max
z∈adj(V )

f(z) < f(x) = min
y∈V

f(y).

Hence V is a local maximum set.

Theorem 79 Let f ∈ A(Zd). Then
a) the size of any local maximum set of the function Ln(f) is larger than n;
b) the size of any local minimum set of the function Un(f) is larger than n.
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Proof
a) Assume the opposite, that is, there exists a local maximum set V of Ln(f)
such that card(U) ≤ n. By Theorem 78 we have that

Ln(Ln(f))(x) < Ln(f)(x), x ∈ V.

Since Ln is idempotent, see (3.19), this implies the impossible inequality
Ln(f)(x) < Ln(f)(x), which completes the proof.

Theorem 80 Let V ∈ C and let x ∈ adj(V ).

a) If f(x) ≤ inf
y∈V

f(y) then Ln(f)(x) ≤ inf
y∈V

Ln(f)(y);

b) If f(x) ≥ sup
y∈V

f(y) then Un(f)(x) ≥ sup
y∈V

Un(f)(y).

Proof
a) For any W ∈ Nn(x) the set W ∪ V is connected and of size at least n + 1.
Therefore, by (3.13), for every y ∈ V there exists Sy ∈ Nn(y) such that Sy ⊂
W∪V . Then, using also the given inequality and since infz∈V ∪{x} f(z) = f(x),
for every y ∈ V and W ∈ Nn(x) we have

min
z∈W

f(z) = inf
z∈W∪V

f(z) ≤ min
z∈Sy

f(z) ≤ Ln(f)(y).

Hence
Ln(f)(x) = max

W∈Nn(x)
min
z∈W

f(z) ≤ inf
y∈V

Ln(f)(y).

Theorem 81 Let f ∈ A(Zd) and let V be a finite connected set.
a) If V is a local minimum set of Ln(f) then there exists a local minimum
set W of f such that W ⊆ V .
b) If V is a local maximum set of Un(f) then there exists a local maximum
set W of f such that W ⊆ V .

Proof
a) Let V be a finite connected set which is a local minimum set of Ln(f).
Then by (3.33) the set adj(V ) is finite and we have

min
y∈adj(V )

f(y) ≥ min
y∈adj(V )

Ln(f)(y) > Ln(f)(x) ∀ x ∈ V.
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Let q ∈ adj(V ) be such that f(q) = min
y∈adj(V )

f(y) and let

Y = {y ∈ V : f(y) < f(q)}.
Note that Y 6= ∅, since if Y = ∅, then f(q) ≤ infy∈V f(y) and by Theorem
80 we have

Ln(f)(q) ≤ inf
y∈V

Ln(f)(y).

This is a contradiction since V is a local minimum set of Ln(f). Nevertheless,
this result is an essential ingredient of the proof not least due to the fact
that this is the only point where we use that V is a local minimum set of
Ln(f). Let t ∈ Y and let W be the largest connected component of Y
containing t so that W = γt(Y ) as in the proof of Theorem 78. For every
z ∈ adj(W ), since W ⊆ V then z ∈ adj(V ) as well, by Lemma 76. So we
have f(z) ≥ f(q) > maxy∈W f(y). Therefore W is a local minimum set of f .

Theorems 78–81 provide the following characterization of the effect of the
operators Ln and Un on a function f ∈ A(Zd):

1. The application of Ln (Un) removes local maximum (minimum) sets of
size smaller or equal to n.

2. The operator Ln (Un) does not affect the local minimum (maximum)
sets in the sense that such sets may be affected only as a result of the
removal of local maximum (minimum) sets. However, no new local
minimum (maximum) sets are created where there were none. This
does not exclude the possibility that the action of Ln (Un) may enlarge
existing local minimum (maximum) sets or join two or more local min-
imum (maximum) sets of f into one local minimum (maximum) set of
Ln(f) (Un(f)).

3. Ln(f) = f (Un(f) = f) if and only if f does not have local maximum
(minimum) sets of size n or less.

Furthermore, as an immediate consequence of Theorem 79 and Theorem 81
we obtain the following corollary.

Corollary 82 For every f ∈ A(Zd) the functions (Ln ◦ Un)(f) and (Un ◦
Ln)(f) have neither local maximum sets nor local minimum sets of size n or
less. Furthermore,

(Ln ◦ Un)(f) = (Un ◦ Ln)(f) = f
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if and only if f does not have local maximum sets or local minimum sets of
size less than or equal to n.

Theorem 83 For f ∈ A(Zd),
a) Ln(f) is constant on any local maximum set W of f with card(W ) ≤ n+1
b) Un(f) is constant on any local minimum set W of f with card(W ) ≤ n+1

Proof
We only prove (a). Result (b) is proven by duality. Let Let W be a local
maximum set of f with card(W ) ≤ n + 1 and take arbitrary p, q ∈ W .
Consider V ∈ Nn(p) such that V 6= W . Then V ∪ W is connected and so
by Lemma 76(b) there exists x ∈ V with x ∈ adj(W ). Since W is a local
maximum set of f we have

f(x) ≤ inf
z∈W

f(z),

and hence
inf
z∈V

f(z) = inf
z∈V ∪W

f(z).

By (3.13) there exists U ∈ Nn(q) such that U ⊂ V ∪W . Thus

inf
z∈V

f(z) = inf
z∈V ∪W

f(z) ≤ inf
z∈U

f(z),

and since U ∈ Nn(q) we have

inf
z∈V

f(z) ≤ inf
z∈U

f(z) ≤ Ln(f)(q). (3.35)

We we consider V ∈ Nn(p) such that V = W , we have

inf
z∈V

f(z) = inf
z∈W

f(z) ≤ Ln(f)(q)

since q ∈ W means that W ∈ Nn(q). Thus since (3.35) holds for all V ∈
Nn(p) we have Ln(f)(p) ≤ Ln(f)(q). By interchanging the role of p and q
we obtain the other inequality and thus have equality.

We should remark that in the one dimensional setting, the sequences without
local maximum sets or local minimum sets of size less than or equal to n are
exactly the so-called n-monotone sequences. Hence Corollary 82 generalizes
the respective results in the LULU theory of sequences, [93, Theorem 3.3].
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3.5 Preservation Properties of the LULU Semi-

group

The preservation of shape presented in Theorem 78 to Theorem 81 can be
made more precise by generalising to A(Zd) the concepts of neighbour trend
preserving and fully trend preserving introduced in [93, Chapter 6] for se-
quences.

Definition 84 An operator P is neighbour trend preserving if for any
points p, q ∈ Ω, such that {p, q} ∈ C, and for f ∈ A(Zd) we have

f(p) ≤ f(q) =⇒ P (f)(p) ≤ P (f)(q).

The operator P is fully trend preserving if both P and I−P are neighbour
trend preserving.

In Definition 84, for P to be fully trend preserving the requirement on I−P ,
that is the neighbour trend preserving property, can be equivalently formu-
lated as:

|P (f)(p)− P (f)(q)| ≤ |f(p)− f(q)|. (3.36)

In the context of sequences the property (3.36) is called difference reduc-
ing.

Theorem 85 The operators Ln, Un, n = 1, 2, ..., and their compositions,
are all fully trend preserving.

Proof We prove the result for Ln. The case for Un is dealt with similarly.
Furthermore, it is easy to obtain that compositions of fully trend preserving
operators are fully trend preserving, which proves the rest of the theorem,
see [93, Theorem 6.10].

Since, the neighbour trend preserving property of Ln follows directly from
Theorem 80, we only need to prove the neighbour trend preserving property
of I −Ln or equivalently, the inequality (3.36). Consider p, q ∈ Zd such that
{p, q} ∈ C. We may assume without loss of generality that f(p) ≥ f(q).
Then Ln(f)(p) ≥ Ln(f)(q) by the neighbour trend preservation. By (3.20)
we have either (i) Ln(f)(q) = f(q) or (ii) Ln(f)(q) < f(q). If (i) holds then,

Ln(f)(p)− Ln(f)(q) = Ln(f)(p)− f(q) ≤ f(p)− f(q),
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again due to (3.20), so that |Ln(f)(p) − Ln(f)(q)| ≤ |f(p) − f(q)|. If (ii)
holds, by Theorem 78, q must belong to the support of a local maximum set,
say W , of size at most n of f . Since f(p) ≥ f(q) and {p, q} ∈ C, q must
also belong to the support of W . This means that by Theorem 83 we have
Ln(f)(p) = Ln(f)(q) so that

|Ln(f)(p)− Ln(f)(q)| = 0 ≤ |f(p)− f(q)|.

So Ln is difference reducing and thus fully trend preserving.

The next theorem generalizes the properties of Ln and Un in Theorem 81 to
arbitrary neighbor trend preserving operators.

Theorem 86 Let A : A(Zd) → A(Zd) be a neighbor trend preserving oper-
aror and let f ∈ A(Zd). For every finite local minimum (maximum) set V of
A(f) there exists a local minimum (maximum) set W of f such that W ⊆ V .

Proof Let V be a finite local minimum set of A(f). Let q ∈ adj(V ) be
such that f(q) = min

y∈adj(V )
f(y). It follows from (3.11) that there exists p ∈ V

such that {p, q} is connected. By the local minimality of V we have

A(f)(p) < A(f)(q). (3.37)

Due to the fact that A is neighbor trend preserving the inequality f(p) ≥
f(q) implies that A(f)(p) ≥ A(f)(q) which contradicts (3.37). Therefore,
f(p) < f(q). Let Y = {x ∈ V : f(x) < f(q)}. Clearly, p ∈ Y . Denote by
W the largest connected component of Y which contains p. In terms of the
notations used in the proof of Theorem 78, we have W = γp(Y ). We will
show that W is a local minimum set of f . Let z ∈ adj(W ). It follows from
the construction of W that f(q) > max

x∈W
f(x). Hence it is enough to show

that f(z) ≥ f(q). By the Lemma 76a) we have two possibilities:

(i) z ∈ V . Then z /∈ Y . Indeed, if z ∈ Y then W ∪ {z} is a connected
component of Y which contains W . This is impossible since W is the largest
such component of Y . Since z /∈ Y , then it violates the defining inequality
of Y , that is we have f(z) ≥ f(q).

(ii) z ∈ adj(V ). Then f(z) ≥ min
y∈adj(V )

f(y) = f(q).

The proof for local maximum sets is carried out in a similar way.
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3.6 Total Variation Preservation

Recall that we are assuming that the connection C on Zd is defined via the
so-called graph connectivity. More precisely, the points of Zd are considered
as vertices of a graph with edges connecting some of them. Equivalently, the
connectivity of such a graph can be defined via a relation r ⊂ Zd×Zd, where
p ∈ Zd is connected (by an edge) to q ∈ Zd iff (p, q) ∈ r.

The relation r reflects what we consider neighbours of a point in the given
context. For example, in image analysis (d = 2), it is common to use 4-
connectivity (neighbours left, right, up and down) and 8-connectivity (in
addition, the diagonal neighbours are considered). Let r be a relation on
Zd. We call a set C ⊆ Zd connected, with respect to the graph connec-
tivity defined by r, if for any two pixels p, q ∈ C there exists a set of pixels
{p1, p2, ..., pk} ⊆ C such that each pixel is neighbour to the next one, p is
neighbour to p1 and pk is neighbour to q. Here we assume that,

• r is reflexive, symmetric and shift invariant (3.38)

• (p, p + ek) ∈ r, for all k = 1, 2, ..., d and p ∈ Zd (3.39)

where ek ∈ Zd is defined by (ek)i =

{
0 if i 6= k
1 if i = k

Conditions (3.38) and (3.39) ensure that the set of connected sets C defined
through this relation is a connection in terms of Definition 53 and satisfies
the conditions (3.8)–(3.11). Condition (3.39) is essential to the definition of
total variation as will be seen in the sequel.

Since the information in an image is in the contrast, the total variation of
the luminosity function is an important measure of the quantity of this infor-
mation. Image recovery and noise removal via total variation minimization
are discussed in [99], [121], [10], [67], [128], [35], [124], [23] [72], [22], [24] and
[44]. It should be noted that there are several definitions of total variation for
functions of multi-dimensional argument, namely Arzelá variation, Fréchet
variation, Vitali variation, Pierpont variation, Hardy variation and Tonelli
variation which are discussed in [1] and [25]. These definitions of total vari-
ation date back to the 1930’s. However, in most of the applications cited
above the total variation is the L1 norm of a vector norm of the gradient of
a function u defined on Ω, namely

TV (u) =

∫

Ω

| 5 u|dΩ. (3.40)
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Note that defining total variation using the L2 norm requires the function
u to be smooth. This is unrealistic for our application in image processing
as the image will always be in part noise and thus not smooth. In [22]
the corresponding discretization of (3.40) in two dimensions is considered,
leading us to the following definition.

Definition 87 The Total Variation of f ∈ A(Z2) if given by

TV (f) =
∑

(i,j)∈Z2

(|f(xi,j+1)− f(xij)|+ |f(xi+1,j)− f(xij)|
)

and

Definition 88 The Total Variation of f ∈ A(Zd) is given by

TV (f) =
∑

p∈Zd

d∑
i=1

|f(p + (ek)i)− f(p)|.

If TV (f) < ∞, then f ∈ Zd is said to be of bounded variation.

Table 3.1 gives the total variation of a few sample image seen in Figure 3.8.
Notice that the pure noise image has the highest total variation and as the
images become more homogenous their total variation reduces.

Image in Figure 3.8 Total Variation (standardized)
(a) 109173
(b) 132527
(c) 167011
(d) 193650
(e) 213530
(f) 235908
(g) 386408
(h) 703707

Table 3.1. Standardized Total Variation of Some Sample Images

As mentioned in Chapter 2, the LULU operators for sequences are total
variation preserving. We show here that their d-dimensional counterparts

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. LULU THEORY ON MULTIDIMENSIONAL ARRAYS 88

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8. Sample Images

considered have the same property with respect to the total variation as
given in Definition 88.

Let us denote by BV (Zd) the set of all functions of bounded variation in
A(Zd). Clearly, all functions of finite support are in BV (Zd). For example,
the luminosity functions of images are in BV (Z2). Note that when d = 1 the
Definition 88 gives that total variation of sequences as discussed in Chapter
2. Similar to sequences the total variation in Definition 88 is a semi-norm so
we have that for a operator P

TV (f) ≤ TV (P (f)) + TV ((I − P )(f)).

Definition 89 An operator P on BV (Zd) is called total variation pre-
serving if

TV (f) = TV (P (f)) + TV ((I − P )(f)).

There is a close connection between the property of total variation preserva-
tion and that of fully trend preserving.

Theorem 90 If an operator P : BV (Zd) → BV (Zd) is fully trend preserving
then it is also total variation preserving.
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Proof
For p, q ∈ Ω such that {p, q} ∈ C, we have

|f(p)− f(q)| ≤
∣∣P (f)(p)− P (f)(q)

∣∣ +
∣∣f(p)− P (f)(p)− (

f(q)− P (f)(q)
)∣∣.

(3.41)
If f(p) ≥ f(q) then P (f)(p) − P (f)(q) ≥ 0 since P is neighbour trend
preserving. Then

∣∣f(p)−P (f)(p)−(
f(q)−P (f)(q)

)∣∣ =
(
f(p)−f(q)

)−(
P (f)(p)−P (f)(q)

) ≥ 0

since P is difference reducing, see (3.36). Thus Equation (3.41) holds as an
equality. Hence

TV (f) =
∑

p∈Zd

d∑
i=1

∣∣f(
p + (ek)i

)− f(p)
∣∣

=
∑

p∈Zd

d∑
i=1

(∣∣P (f)
(
p + (ek)i

)− P (f)(p)
∣∣ +

∣∣f(
p + (ek)i

)

−P (f)
(
p + (ek)i

)− (
f(p)− P (f)(p)

)∣∣
)

= TV
(
P (f)

)
+ TV

(
(I − P )(f)

)
.

Thus as an easy consequence of Theorem 85 and Theorem 90 we have

Theorem 91 The operators Ln, Un, n = 1, 2, ..., and all their compositions,
are total variation preserving.

Note that if an operator P is total variation preserving then the complemen-
tary operator I − P is also total variation preserving by (3.2). Similarly to
the case for compositions of fully trend preserving operators, it is easy to
show that compositions of operators which individually preserve the total
variation maintain the preservation as well.
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3.7 Conclusion

In this chapter we have extended the LULU operators Ln and Un from one
dimension, where they act on sequences, to higher dimensions, specifically
for multidimensional arrays. The extension is done via the morphological
concept of a connection due to the loss of order from one dimension, Z, to
higher dimensions, Zd. The extended operators are smoothers and separa-
tors, and are fully trend preserving and total variation preserving. In the
next chapter we will present the application of this theoretical work to two
dimensions for use in image processing.
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Chapter 4

Applications to Image
Processing

4.1 Introduction

In Chapter 3 we presented the extension of Carl Rohwer’s LULU operators
for sequences onto multidimensional arrays, namely Zd. The first and most
obvious application after sequences is image processing thus the applications
of this work are focused on images, that is for d = 2. Note that in the
vast majority of fields in mathematics the nontrivial results and properties
appear in two dimensions as this is generally considered the most important
application domain. It thus seems logical to start the investigation of applica-
tions of our extension in two dimensions. We thus now present the extension
for the Discrete Pulse Transform, its implementation and the distributional
properties of the LULU operators in two dimensions. We also provide some
illustrations of the use of the DPT in image processing.

91
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4.2 The DPT

The Discrete Pulse Transform based on the LULU operators for sequences
was derived in [93], [63], [95] and discussed in detail in Section 2.4. Multires-
olution Analysis is effective for analyzing the information content in images,
[74]. This is because varying structure sizes within an image make it difficult
to analyze the content from only the grey-level pixel intensities. Using the
extension of the LULU operators to functions on Zd in the preceding sections
we derive the DPT for functions in A(Zd) now. Following the success of the
DPT for sequences in signal processing one may expect that the DPT on
A(Zd) can play an important role in the analysis of these functions, due to
the ability to represent the image (when d = 2) at all the resolution levels.

Similar to the case of sequences we obtain a decomposition of a function
f ∈ A(Zd), with finite support. As usual supp(f) = {p ∈ Zd : f(p) 6= 0}.
Let N = card(supp(f)). We derive the DPT of f ∈ A(Zd) by applying
iteratively the operators Ln, Un with n increasing from 1 to N as follows

DPT (f) = (D1(f), D2(f), ..., DN(f)), (4.1)

where the components of (4.1) are obtained through

D1(f) = (I − P1)(f) (4.2)

Dn(f) = (I − Pn) ◦Qn−1(f), n = 2, ..., N, (4.3)

and Pn = Ln ◦Un or Pn = Un ◦Ln and Qn = Pn ◦ ...◦P1, n ∈ N. We will show
that this decomposition retains the properties of the decomposition (45) in
the sense that each component Dn in (4.1) is a sum of discrete pulses with
disjoint supports of size n, where in this setting a discrete pulse is defined as
follows.

Definition 92 A function φ ∈ A(Zd) is called a pulse if there exists a
connected set V and a real number α such that

φ(x) =

{
α if x ∈ V
0 if x ∈ Zd \ V .

The set V is the support of the pulse φ, that is supp(φ) = V .

Note that a pulse as defined in Definition 92 is similar to the idea of a flat
zone from mathematical morphology, [101]. It should be remarked that the

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. APPLICATIONS TO IMAGE PROCESSING 93

 

 
 

 
 

 
 

Figure 4.1. A Pulse

support of a pulse may generally have any shape, the only restriction being
that it is connected.

It follows from (4.2)–(4.3) that

f =
N∑

n=1

Dn(f). (4.4)

The usefulness of the representation (4.4) of a function f ∈ A(Zd) is in the
fact that all terms are sums of pulses as stated in the theorem following the
next lemma.

In the results that follow we will use the next lemma.

Lemma 93 Let f ∈ A(Zd), supp(f) < ∞, be such that f does not have local
minimum sets or local maximum sets of size smaller than n, for some n ∈ N.
Then we have the following two results.

a)

(I − Pn)f =

γ−(n)∑
i=1

φni +

γ+(n)∑
j=1

ϕnj, (4.5)

where Vni = supp(φni), i = 1, 2, ..., γ−(n), are local minimum sets of
f of size n, Wnj = supp(ϕnj), j = 1, 2, ..., γ+(n), are local maximum
sets of f of size n, φni and ϕnj are negative and positive discrete pulses
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respectively, and we also have that

• Vni ∩ Vnj = ∅ and adj(Vni) ∩ Vnj = ∅, i, j = 1, ..., γ−(n), i 6= j, (4.6)

•Wni ∩Wnj = ∅ and adj(Wni) ∩Wnj = ∅, i, j = 1, ..., γ+(n), i 6= j,(4.7)

• Vni ∩Wnj = ∅ i = 1, ..., γ−(n) , j = 1, ..., γ+(n). (4.8)

b) For every fully trend preserving operator A

Un(I − AUn) = Un − AUn,

Ln(I − ALn) = Ln − ALn.

Proof
a) Let Vn1, Vn2, ..., Vnγ−(n) be all local minimum sets of size n of the function
f . Since f does not have local minimum sets of size smaller than n, then
f is a constant on each of these sets, by Theorem 83. Hence, the sets are
disjoint, that is Vni ∩ Vnj = ∅, i 6= j. Moreover, we also have

adj(Vni) ∩ Vnj = ∅, i, j = 1, ..., γ−(n). (4.9)

Indeed, let x ∈ adj(Vni)∩Vnj. Then there exists y ∈ Vni such that (x, y) ∈ r.
Hence y ∈ Vni ∩ adj(Vnj). From the local minimality of the sets Vni and
Vnj we obtain respectively f(y) < f(x) and f(x) < f(y), which is clearly a
contradiction. For every i = 1, ..., γ−(n) denote by yni the point in adj(Vni)
such that

f(yni) = min
y∈adj(Vni)

f(y). (4.10)

Then we have

Unf(x) =





f(yni) if x ∈ Vni, i = 1, ..., γ−(n)

f(x) otherwise (by Theorem 78)

Therefore

(I − Un)f =

γ−(n)∑
i=1

φni (4.11)

where φni is a discrete pulse with support Vni and negative value (down
pulse).

Let Wn1,Wn2, ...,Wnγ+(n) be all local maximum sets of size n of the function
Unf . By Theorem 81(b) every local maximum set of Unf contains a local
maximum set of f . Since f does not have local maximum sets of size smaller
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than n, this means that the sets Wnj, j = 1, ..., γ+(n), are all local maximum
sets of f and f is constant on each of them. Similarly to the local minimum
sets of f considered above we have Wni∩Wnj = ∅, i 6= j, and adj(Wni)∩Wnj =
∅, i, j = 1, ..., γ+(n). Moreover, since Un(f) is constant on any of the sets
Vni ∪ {yni}, i = 1, ..., γ−(n), see Theorem 83, we also have

(Vni ∪ {yni}) ∩Wnj = ∅, i = 1, ..., γ−(n), j = 1, ..., γ+(n), (4.12)

which implies (4.8).

Further we have

LnUnf(x) =





Unf(znj) if x ∈ Wnj, j = 1, ..., γ+(n)

Unf(x) otherwise

where znj ∈ adj(Wnj), j = 1, ..., γ+(n), are such that Unf(znj) = max
z∈adj(Wnj)

Unf(z).

Hence

(I − Ln)Unf =

γ+(n)∑
j=1

ϕnj (4.13)

where ϕnj is a discrete pulse with support Wnj and positive value (up pulse).
Thus we have shown that

(I − Pn)f = (I − Un)f + (I − Ln)Unf =

γ−(n)∑
i=1

φni +

γ+(n)∑
j=1

ϕnj.

b) Let the function f ∈ A(Zd) be such that it does not have any local
minimum or local maximum sets of size less than n. Denote g = (I−AUn)(f).
We have

g = (I − AUn)(f) = (I − Un)(f) + ((I − A)Un)(f). (4.14)

As in a) we have that (4.11) holds, that is we have

(I − Un)(f) =

γ−(n)∑
i=1

φni, (4.15)

where the sets Vni = supp(φni), i = 1, ..., γ−(n), are all the local minimum
sets of f of size n and satisfy (4.6). Therefore

g =

γ−(n)∑
i=1

φni + ((I − A)Un)(f). (4.16)
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Furthermore,

Un(f)(x) =





f(x) if x ∈ Zd \
γ−(n)⋃
i=1

Vni

vi if x ∈ Vni ∪ {yni}, i = 1, ..., γ−(n),

where vi = f(yni) = min
y∈adj(Vni)

f(y). Using that A is fully trend preserving,

for every i = 1, ..., γ−(n) there exists wi such that ((I − A)Un)(f)(x) = wi,
x ∈ Vni∪{yni}. Moreover, using that every adjacent point has a neighbour in
Vni we have that min

y∈adj(Vni)
((I−A)Un)(f)(y) = wi. Considering that the value

of the pulse φni is negative, we obtain through the representation (4.16) that
Vni, i = 1, ..., γ−(n), are local minimum sets of g.

Next we show that g does not have any other local minimum sets of size
n or less. Indeed, assume that V0 is a local minimum set of g such that

card(V0) ≤ n. Since V0 ∪ adj(V0) ⊂ Zd \
γ−(n)⋃
i=1

Vni it follows from (4.16)

that V0 is a local minimum set of ((I−A)Un)(f). Then using that (I−A) is
neighbour trend preserving and using Theorem 86 we obtain that there exists
a local minimum set W0 of Un(f) such that W0 ⊆ V0. Then applying again
Theorem 86 or Theorem 81 we obtain that there exists a local minimum set
W̃0 of f such that W̃0 ⊆ W0 ⊆ V0. This inclusion implies that card(W̃0) ≤ n.
Given that f does not have local minimum sets of size less than n we have
card(W̃0) = n, that is W̃0 is one of the sets Vni - a contradiction. Therefore,
Vni, i = 1, ..., γ−(n), are all the local minimum sets of g of size n or less.
Then using again (4.11) we have

(I − Un)(g) =

γ−(n)∑
i=1

φni (4.17)

Using (4.15) and (4.17) we obtain

(I − Un)(g) = (I − Un)(f)

Therefore

(Un(I − AUn))(f) = Un(g) = g − (I − Un)(f)

= (I − AUn)(f)− (I − Un)(f)

= (Un − AUn)(f).

This proves the first identity. The second one is proved in a similar manner.
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Theorem 94 Let f ∈ A(Zd).

a) For every n ∈ N the function Dn(f) is a sum of discrete pulses with
disjoint support, that is, there exist γ(n) ∈ N and discrete pulses φns,
s = 1, ..., γ(n), such that

Dn(f) =

γ(n)∑
s=1

φ∗ns =

γ−(n)∑
i=1

φni +

γ+(n)∑
j=1

ϕnj, γ(n) = γ−(n) + γ+(n), (4.18)

and
supp(φ∗ns1

) ∩ supp(φ∗ns2
) = ∅ for s1 6= s2. (4.19)

b) Let n1, n2, s1, s2 ∈ N be such that n1 < n2, 1 ≤ s1 ≤ γ(n1) and 1 ≤
s2 ≤ γ(n2). Then

supp(φ∗n1s1
) ∩ supp(φ∗n2s2

) 6= ∅ =⇒ supp(φ∗n1s1
) ⊂ supp(φ∗n2s2

) (4.20)

Proof
a) Dn(f) is applied to the function Qn−1(f) which, by Corollary 82, does not
have local maximum or minimum sets of size less than n. Thus by Lemma
93(a) we have that Dn(f) = (I − Pn)Qn−1(f) is a sum of disjoint discrete
pulses as given in (4.6) and (4.7).

b) Let supp(φ∗n1s1
) ∩ supp(φ∗n2s2

) 6= ∅. It follows from the construction of
(4.18) derived in (a) that the functions Qn(f) and Ln+1(Qn(f)), n ≥ n1, are
constants on the set supp(φ∗n1s1

). Furthermore, the set supp(φ∗n2s2
) is a local

maximum set of Qn2−1(f) or a local minimum set of Ln2(Qn2−1(f)). From
the definition of local maximum set and local minimum set it follows that
supp(φ∗n1s1

) ⊂ supp(φ∗n2s2
).

Using Theorem 94, the identity (4.4) can be written in the form

f =
N∑

n=1

γ(n)∑
s=1

φns. (4.21)

The equality (4.21) is a decomposition of the image which we call the Dis-
crete Pulse Transform of f , where the pulses have the properties (4.19) –
(4.20).

Although the importance of total variation preservation for separators can-
not be doubted, it is even more so for hierarchical decompositions like the
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Discrete Pulse Transform, due to the fact that they involve iterative appli-
cations of separators. Using Theorem 91 it is easy to obtain the statement
of the following theorem, which shows that, irrespective of the length of the
vector in (4.1) or the number of terms in the sum (4.21), no additional total
variation, or noise, is created via the decomposition.

Theorem 95 The discrete pulse decomposition (4.1) is total variation pre-
serving, that is

TV (f) =
N∑

n=1

γ(n)∑
s=1

TV (φns). (4.22)

(a) (b) (c)

(d) (e) (f)

Figure 4.2. Sample Images

We should remark that representing a function as a sum of pulses can be done
in many different ways. However, in general, such decompositions increase
the total variation, that is, we might have strict inequality in (4.22) instead of
equality. The variation spectrum of the decomposition also provides useful
information in analyzing the image content. In Figure 4.3 the variation
spectrum of the images in Figure 4.2 are shown. The total variation at each
resolution level is standardized to a 100× 100 image and a log scale is used
to make the variation spectrum more obvious. Notice that the noise image
in Figure 4.2(f) has a spectrum where all the variation is in the lower half of
the resolution levels. The images in Figure 4.2(a)-(d) all can be seen to have
variation in the lower half of the spectrum as well as ‘scattered’ variations
amongst the rest of the spectrum as well. This is an indication of underlying
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noise in the images as well as features of interest. In the image in Figure
4.2(e) we see a large amount of variation in the lower and upper halves of
the spectrum. This is indicative of random noise (lower resolution levels) as
well as larger noise features or the presence of many features in the upper
half of the spectrum.

(a) (b) (c)

(d) (e) (f)

Figure 4.3. Variation Spectrums of Images displayed in Figure 3.9.

As discussed in the introduction of this chapter, the quality of a nonlinear
hierarchical decomposition, such as the Discrete Pulse Transform given in
(4.1), can be characterized through the concept of consistent decomposi-
tion (also called strong consistency [63]) given in (3.3). Whether or not
the multidimensional Discrete Pulse Transform in (4.1) is strongly consistent
is still an open problem. However, the next theorem shows that the Discrete
Pulse Transform in (4.1) satisfies a slightly weaker form of strong consistency
involving only the sums of the input layers, that is, a linear combination.

Theorem 96 Let f ∈ A(Zd). For any two integers m and n such that m < n
the function g = Dm(f) + Dm+1(f) + ... + Dn(f) decomposes consistently,
that is

Dj(g) =

{
Dj(f) for m ≤ j ≤ n
0 otherwise
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The proof uses the following Lemma.

Lemma 97 Let Qn = PnPn−1...P1 where Pk = LkUk or Pk = UkLk. We
have

a) QnQm = Qmax{n,m}

b) Qm(I − Qn) = Qm − Qn = (I − Qn)Qm for all integer m,n such that
m ≤ n.

Proof
We consider only Pk = LkUk as the other case is dealt with by symmetry.
Let f ∈ A(Zd).

a) It follows from Corollary 82 that Qn(f) does not have any local minimum
or local maximum sets of size n or less. Hence Pk(Qn(f)) = Qn(f) for
k = 1, ..., n. For m ≤ n this implies that Qm(Qn(f)) = Qn(f). If m > n then
we have (QmQn)(f) = (Pm...Pn+1Pn...P1)(Qn(f)) = (Pm...Pn+1)(Qn(f)) =
Cm(f).

b) We use induction on j as in the proof of this property in the one dimen-
sional case, see [92]. Let j = 1. Using the result in Lemma 93b), the full
trend preservation property of the LULU operators established in Theorem
85 and the absorbtion property in a) we have

Q1(I −Qn) = L1(U1(I −QnL1U1)) = L1(U1 −QnL1U1)

= L1(I −QnL1)U1 = (L1 −QnL1)U1 = Q1 −Qn = (I −Qn)Q1.

Assume now that the statement is true for some m = j < n. From the
inductive assumption we have

Qj+1(I −Qn) = Pj+1Qj(I −Qn) = Pj+1(Qj −Qn)

= Pj+1(Qj −QnQj) = Pj+1(I −Qn)Qj.

Using Lemma 93b), Theorem 85 and a) as for j = 1 we obtain further

Pj+1(I −Qn)Qj = Lj+1(Uj+1(I −QnLj+1Uj+1)Qj

= (Lj+1Uj+1 −QnLj+1Uj+1)Qj = Qj+1 −Qn = (I −Qn)Qj+1.
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Proof of Theorem 96. Using Lemma 97, function g can be written in the
following equivalent forms

g = ((I − Pm)Qm−1 + (I − Pm+1)Qm + ... + (I − Pn)Qn−1)(f)

= (Qm−1 −Qn)(f) = (I −Qn)Qm−1 = Qm−1(I −Qn) (4.23)

It follows from Corollary 82 and Theorem 86 that g does not have any local
maximum or local minimum sets of size less than m. Hence Pk(g) = g for
k = 1, ..., m− 1 and therefore Qk(g) = g for k = 1, ..., m− 1. Then it follows
from (4.23) that Dj(g) = (I − Pj)(g) = 0 for j < m. Let m ≤ j ≤ n. Then
using again Lemma 97 we obtain

Dj(g) = (Qj−1 −Qj)(g) = (Qj−1(I −Qn)Qm−1 −Qj(I −Qn)Qm−1)(f)

= ((I −Qn)Qj−1Qm−1 − (I −Qn)QjQm−1)(f)

= ((I −Qn)Qj−1 − (I −Qn)Qj)(f) = (Qj−1 −Qn −Qj + Qn)(f)

= (Qj−1 −Qj)(f) = Dj(f).

Finally, for k ≥ n we have

Qk(g) = (Qk(I −Qn)Qm−1)(f) = (QkQn(I −Qn)Qm−1)(f) = 0,

which implies that Dj(g) = 0 for j > n.

It is instructive to look at the connection between the DPT and mathe-
matical morphology. We know that Ln and Un are attribute filters, specifi-
cally area openings and closings. In [127] granulometries, anti-granulometries
and granulometric curves are discussed. Granulometries also incorporate the
scale inherent in an image in their mechanism. First introduced by Math-
eron in 1967, [77], and investigated further in [111, Chapter 4.6], [36], [37],
[127], [119] using morphological reconstruction and area openings and clos-
ings, they provide a pattern spectrum with which texture analysis, feature
extraction, object recognition and shape analysis, to mention a few, can be
investigated. A granulometry is defined as follows.

Definition 98 A granulometry (of openings) {γλ} with size parameter
λ, is an antiextensive, increasing and absorbing (γλ1 ◦ γλ2 = γλ2 ◦ γλ1 =
γmax {λ1,λ2}) set of operators, [111, Chapter 4.6]. The first two properties are
also those of an opening. An anti-granulometry (of closings) differs only
in the first property in that it is instead extensive, thus specifying a closing
with the first two properties.
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The Ln and Un operators are respectively the area opening and closing. They
therefore form a granulometry and anti-granulometry with scale parameter
n respectively. In order to preserve contours, edges and thus shapes, within
the image, the operator used as the granulometry should be connected, [118].
This means that the operator acts on flat zones (connected components with
constant value) and not the individual pixels, [100]. The area granulometries
provided by Ln and Un provide this property, since they work directly on the
connected local maximum and local minimum sets. In [118] a more effective
method is introduced by defining the degree of connectedness, which will also
be looked into in the future. The area granulometry is however more efficient
to apply computationally.

(a) (b) (c)

(d) (e) (f)

Figure 4.4. Granulometries (Pattern Spectrum) of the
Images Displayed in Figure 4.2.

As mentioned before, using either Ln or Un individually introduces a bias
as Ln removes connected components of area n with positive height and Un

removes those with negative height, namely peaks and valleys respectively.
We thus use either Pn = Ln ◦ Un or Pn = Un ◦ Ln. We then construct the
pattern spectrum as the loss between Pn and Pn−1 vs. n. The volume is
the sum of the volumes of all the pulses (negative and positive) extracted
by Pn from Qn−1(f). The individual pulse volumes are simply the area
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(n) multiplied by the height (relative luminosity). A large impulse in the
resulting pattern spectrum indicates the presence of many structures at that
scale. Figure 4.4 give the pattern spectrum for the images in Figure 4.2.
Notice that the granulometries in Figure 4.4 are very similar to the variation
spectrums in Figure 4.3.

Another option to extract information in a similar manner to the pattern
spectrum is to plot the total variation TV (Pn(f) − Pn−1(f)) vs. n. This is
exactly the variation spectrum dealt with before.

In Figures 4.5-4.10 we have reconstructed the images in Figure 4.2 using only
certain pulses obtained via the Discrete Pulse Transform of the respective
image. We note the connection between the partially reconstructed images
and the corresponding pattern spectrums in Figure 4.4. Figures 4.11-4.16
provide the number of pulses of each size in the decomposition. It can clearly
be seen that the numbers taper off as n increases. At certain values of n there
may be an increase in the numbers of pulses of that size. This indicative of
many (important) features at that scale.

(a) (b) (c)

Figure 4.5. Reconstruction via DPT of Figure 4.2(a): Only pulses of size
(a) 1 to 2500 (b) 2501 to 7000 (c) 7001 to 57478
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(a) (b) (c)

Figure 4.6. Reconstruction via DPT of Figure 4.2(b): Only pulses of size
(a) 1 to 100 (b) 101 to 53000 (c) 53001 to 130678

(a) (b) (c)

Figure 4.7. Reconstruction via DPT of Figure 4.2(c): Only pulses of size
(a) 1 to 50 (b) 51 to 8000 (c) 8001 to 130139

(a) (b) (c)

Figure 4.8. Reconstruction via DPT of Figure 4.2(d): Only pulses of size
(a) 1 to 1000 (b) 1001 to 28000 (c) 28001 to 121447
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(a) (b)

Figure 4.9. Reconstruction via DPT of Figure 4.2(e): Only pulses of size
(a) 1 to 1000 (b) 1001 to 132370

(a) (b) (c)

Figure 4.10. Reconstruction via DPT of Figure 4.2(f): Only pulses of size
(a) 1 to 100 (b) 101 to 1000 (c) 1001 to 1660
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Figure 4.11. Number of Pulses of each Size for Figure 4.2(a).

Figure 4.12. Number of Pulses of each Size for Figure 4.2(b).
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Figure 4.13. Number of Pulses of each Size for Figure 4.2(c).

Figure 4.14. Number of Pulses of each Size for Figure 4.2(d).
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Figure 4.15. Number of Pulses of each Size for Figure 4.2(e).

Figure 4.16. Number of Pulses of each Size for Figure 4.2(f).
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4.3 The Roadmaker’s Algorithm and its Im-

plementation

The implementation of the LULU smoothers for sequences was developed in
[63], [64] and [66] and is termed the Roadmaker’s algorithm due to the
removal of peaks and filling of valleys. The application of Ln ◦Un or Un ◦Ln

to obtain the DPT from first principles, requires O(n3) time where n is the
length of the sequence. The Roadmaker’s algorithm however requires only
O(n) time.

The hope is thus to obtain an algorithm to extract the DPT of images in
O(nm) time where the size of the image is n ×m. This algorithm is under
development with Stéfan van der Walt from Stellenbosch University. We
include our current working code (using MATLAB) for completeness, which
has also been converted to C++ code by B Anguelov in [2].

Function dpt obtains the DPT of image ff (of type double)

function [dp,background]=dpt; global ff N M global set csind setlum

undo adj cset ancestors

%detecting the prime critical sets:

tic k=0; cset=[]; [N,M]=size(ff); csind=zeros(N,M); for i=1:N

for j=1:M

if csind(i,j)==0

pnbr=nbr([i j]);

setlum=ff(i,j);

v=[];

for p=1:size(pnbr,1)

v(p)=ff(pnbr(p,1),pnbr(p,2));

end

minv=min(v);

maxv=max(v);

if setlum<=minv|setlum>=maxv

k=k+1;

set=[i j];

csind(i,j)=k;

adj=[];

undo=[];

rgrow(pnbr);
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for s=1:size(undo,1)

csind(adj(s,1),adj(s,2))=undo(s,1);

end

cset(k).set=set;

cset(k).adj=adj;

cset(k).alife=1;

cset(k).ancestors=[];

end

end

end

end active=([1:k])’;

%pulse extraction by size

size(cset,2) dp=[]; dpcounter=0; n=0; while size(active,1)>1

n=n+1;

newactive=[];

for u=1:size(active,1)

k=active(u);

if cset(k).alife>0;

if size(cset(k).set,1)<=n

set=cset(k).set;

setlum=ff(set(1,1),set(1,2));

v=[];

for i=1:size(cset(k).adj,1)

v(i)=ff(cset(k).adj(i,1),cset(k).adj(i,2));

end

minv=min(v);

if minv>setlum

dpcounter=dpcounter+1;

dp(dpcounter).set=set;

dp(dpcounter).adj=cset(k).adj;

dp(dpcounter).rellum=setlum-minv;

dp(dpcounter).cumlum=setlum;

ancestors=cset(k).ancestors;

for s=1:size(ancestors,1)

dp(ancestors(s)).heir=dpcounter;

end

dp(dpcounter).ancestors=ancestors;

cset(k).ancestors=dpcounter;

for s=1:size(set,1)
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ff(set(s,1),set(s,2))=minv;

end

newactive=[newactive;k];

setlum=minv; adj=[]; undo=[];

ancestors=cset(k).ancestors;

rgrow(cset(k).adj);

for s=1:size(undo,1)

csind(adj(s,1),adj(s,2))=undo(s,1);

end

cset(k).adj=adj;

cset(k).set=set;

cset(k).ancestors=ancestors;

else

maxv=max(v);

if maxv<setlum

dpcounter=dpcounter+1;

dp(dpcounter).set=set;

dp(dpcounter).adj=cset(k).adj;

dp(dpcounter).rellum=setlum-maxv;

dp(dpcounter).cumlum=setlum;

ancestors=cset(k).ancestors;

for s=1:size(ancestors,2)

dp(ancestors(s)).heir=dpcounter;

end

dp(dpcounter).ancestors=ancestors;

cset(k).ancestors=dpcounter;

for s=1:size(set,1)

ff(set(s,1),set(s,2))=maxv;

end

newactive=[newactive;k];

setlum=maxv; adj=[]; undo=[];

ancestors=cset(k).ancestors;

rgrow(cset(k).adj);

for s=1:size(undo,1)

csind(adj(s,1),adj(s,2))=undo(s,1);

end

cset(k).adj=adj;

cset(k).set=set;cset(k).ancestors=ancestors;

else

cset(k).alife=0;

end
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end

else

newactive=[newactive;k];

end

end

end

active=newactive;

end background=ff(1,1); toc

Function nbr obtains the neighbours for pixel p with respect to 4-connectivity
(called by dpt).

function y=nbr(p) global N global M k=0; i=p(1,1); j=p(1,2); if i>1

k=k+1;

y(k,1)=i-1;

y(k,2)=j;

end if j>1

k=k+1;

y(k,1)=i;

y(k,2)=j-1;

end if i<N

k=k+1;

y(k,1)=i+1;

y(k,2)=j;

end if j<M

k=k+1;

y(k,1)=i;

y(k,2)=j+1;

end

Function rgrow is used to obtain the n-neighbourhoods (is called by dp).

function rgrow(new) global ff setlum k

%input

global set undo adj global ancestors

%cumulative output

global cset csind

%input and update

for s=1:size(new,1)
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switch csind(new(s,1),new(s,2))

case 0

if ff(new(s,1),new(s,2))==setlum;

set=[set;new(s,:)];

csind(new(s,1),new(s,2))=k;

rgrow(nbr(new(s,:)));

else

adj=[adj;new(s,:)];

csind(new(s,1),new(s,2))=k;

undo=[undo;0];

end

case k

otherwise

kk=csind(new(s,1),new(s,2));

if ff(new(s,1),new(s,2))==setlum;

set=[set;cset(kk).set];

ancestors=[ancestors;cset(kk).ancestors];

for q=1:size(cset(kk).set,1)

csind(cset(kk).set(q,1),cset(kk).set(q,2))=k;

end

cset(kk).alife=0;

rgrow(cset(kk).adj);

else

adj=[adj;new(s,:)];

csind(new(s,1),new(s,2))=k;

undo=[undo;kk];

end

end

end

end

Function reconstructandscale reconstructs the image with only pulses of size
minsize to maxsize.

function rec=reconstructandscale(dp,minsize,maxsize,N,M)

rec=zeros(N,M); k=1; while (size(dp(k).set,1)<minsize)

k=k+1;

end while (k<=size(dp,2))&(size(dp(k).set,1)<=maxsize)

for i=1:size(dp(k).set,1)

rec(dp(k).set(i,1),dp(k).set(i,2))=
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rec(dp(k).set(i,1),dp(k).set(i,2))+dp(k).rellum;

end

k=k+1;

end l=min(min(rec)); u=max(max(rec));

rec=20+round((rec-l)*200/(u-l));
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4.4 Image Processing

In this section we will expand on the application of the DPT to feature
detection in images. We will investigate the images in Figure 4.17 in the
order they appear.

(a) (b)

(c) (d)

(e) (f)

Figure 4.17. Sample Images

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. APPLICATIONS TO IMAGE PROCESSING 116

The variation spectrum for Figure 4.17(a), the ‘Potatoes’ image, is given in
Figure 4.18.

Figure 4.18. The Variation Spectrum of Figure 4.17(a).

The first thing to note in Figure 4.18 is that there is a decrease in the variation
as n increases. We thus naturally assume noise in the image appears in the
lower resolution layers (n small). This phenomenon can be seen in all the
variation spectrums of the images in Figure 4.17. Recall also that the graphs
of the variation spectrums are on a log scale so the variation decrease with
n is less pronounced than it is in reality. The reduction is so drastic on a
non-log scale that the higher resolution layers (n large) can barely be seen.

There seems to be three clusters of variation in Figure 4.18: (1) 1 to 22000,
(2) 25000 to 45000 and (3) 50000 to 57478. If we reconstruct the image into
only these three groups pulse sizes we obtain the results in Figure 4.19. We
see that the potatoes feature very clearly in Figure 4.19(a) and without the
background illumination seen in Figure 4.17(a). Figures 4.19(b) represents
the illumination pulses and Figure 4.19(c) represents larger noise pulses. Fig-
ure 4.20 shows the further separation of Figure 4.19(a) into the noise (Figure
4.20(a)) and the features, namely the potatoes (Figure 4.20(b)).
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(a) (b)

(c)

Figure 4.19. Reconstruction via DPT of Figure 4.17(a) with only pulses of size
(a) 1 to 22000 (b) 22001 to 45000 (c) 45001 to 57478

(a) (b)

Figure 4.20. Reconstruction via DPT of Figure 4.17(a) with only pulses of size
(a) 1 to 2500 (b) 2501 to 22000
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The variation spectrum for Figure 4.17(b), the ‘Veggies’ image, is given in
Figure 4.21.

Figure 4.21. The Variation Spectrum of Figure 4.17(b).

There seems to be three clusters of variation in Figure 4.21: (1) 1 to 53000,
(2) 60000 to 70000 and (3) 120000 to 130678. If we reconstruct the image
into only these three groups pulse sizes we obtain the results in Figure 4.22.

We see that the full ‘Veggies’ image in Figure 4.22(a). The respective varia-
tion clusters for Figures 4.22(b) and (c) are relatively small indicating there
isn’t a lot of information in those resolution layers. They only represent the
larger noise pulses. This veggies image do not have a lot of noise in it. See
Figure 4.23 for the further separation of Figure 4.22(a) into the noise (Figure
4.23(a)) and the rest of the image (Figure 4.23(b)).
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(a) (b)

(c)

Figure 4.22. Reconstruction via DPT of Figure 4.17(b) with only pulses of size
(a) 1 to 53000 (b) 60000 to 70000 (c) 120000 to 130678

(a) (b)

Figure 4.23. Reconstruction via DPT of Figure 4.17(b) with only pulses of size
(a) 1 to 100 (b) 101 to 53000

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. APPLICATIONS TO IMAGE PROCESSING 120

The variation spectrum for Figure 4.17(c), the ‘Tank’ image, is given in
Figure 4.24.

Figure 4.24. The Variation Spectrum of Figure 4.17(c).

There seems to be four clusters of variation in Figure 4.24: (1) 1 to 43000,
(2) 50000 to 60000, (3) 75000 to 100000 and (4) 120000 to 130139. If we
reconstruct the image into only these three groups pulse sizes we obtain the
results in Figure 4.25.

We see that the full ‘Tank’ image in Figure 4.25(a). The respective vari-
ation clusters for Figures 4.25(b) and (c) represent the illumination in the
image, and Figure 2.25(d) represents the larger noise pulses. We can separate
the reconstruction in Figure 4.25(a) - see Figure 4.26. Figure 4.26(a) shows
the underlying noise, Figure 4.26(b) shows the tank, but not in its entirety,
and Figure 4.26(c) the rest of the tank from Figure 4.25(a). This image is
very interesting because we are dealing with a camouflaged target. What
is camouflage? It’s simply obtained by adding the background pattern onto
the feature. The image analysis technique thus finds it difficult to distin-
guish between background and the feature. From Figures 4.25 and 4.26 it is
clear that we can’t pick out the tank separately from other resolution layers.
Further analysis for a camouflaged image is thus required.
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(a) (b)

(c) (d)

Figure 4.25. Reconstruction via DPT of Figure 4.17(c) with only pulses of size
(a) 1 to 43000 (b) 50000 to 60000 (c) 75000 to 100000 (c) 120000 to 130139

(a) (b) (c)

Figure 4.26. Reconstruction via DPT of Figure 4.17(b) with only pulses of size
(a) 1 to 50 (b) 51 to 8000 (c) 8001 to 43000
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We turn to using shape analysis to detect the tank as a feature due to the
camouflage in the image. The most logical choice for a shape descriptor is
rectangularity as this is the distinguishing characteristic between the cam-
ouflaged tank and the background. Rectangularity is measured as the ratio
between the pulse and its minimum bounding rectangle i.e. the number of
pixels in the pulse divided by the number of pixels in the pulse’s minimum
bounding rectangle. This then gives a measure of how rectangular the pulse
is. In Figure 4.27 we show how the rectangularity measure, applied to pulses
of size 51 to 8000, picks out only the tank (although not in it’s entirety) as
the measure increases towards one, but removes the background.

(a) (b) (c)

(d) (e) (f)

Figure 4.27. Restricting the Rectangularity of the Pulses represented in
Figure 4.26(b) to (a) ≥ 0.3 (b) ≥ 0.4 (c) ≥ 0.5 (d) ≥ 0.6 (e) ≥ 0.7 (f) ≥ 0.8

In Figure 4.28 we apply the same approach to pulses of size 8001 to 43000.
Notice that again the tank is singled out and the large illumination pulses
are removed.

To illustrate the importance of first removing the ‘noise’ and singling out the
resolution layers which contain the feature of interest, we investigated the
effect of the rectangularity measure on pulses 1 to 43000 (Figure 4.29) and
on the original image (Figure 4.30). In both these figures we see that the
tank is ‘lost’, thus illustrating the strength of the Discrete Pulse Transform
in separating the features of interest from the rest of the image.
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(a) (b) (c)

Figure 4.28. Restricting the Rectangularity of the Pulses represented in
Figure 4.26(c) to (a) ≥ 0.5 (b) ≥ 0.6 (c) ≥ 0.7

(a) (b) (c)

Figure 4.29. Restricting the Rectangularity of the Pulses in Figure 4.25(a)
to (a) ≥ 0.5 (b) ≥ 0.6 (c) ≥ 0.7

(a) (b) (c) (d)

Figure 4.30. Restricting the Rectangularity of all the Pulses
to (a) ≥ 0.5 (b) ≥ 0.6 (c) ≥ 0.7 (d) ≥ 0.8

The variation spectrum for Figure 4.17(d), the ‘Three Vehicles’ image, is
given in Figure 4.31. There seems to be three clusters of variation in Figure
4.31: (1) 1 to 41000, (2) 50000 to 60000 and (3) 100000 to 121447. If we
reconstruct the image into only these three groups pulse sizes we obtain the
results in Figure 4.32.

We can further remove the noise in Figure 4.32(a), see Figures 4.33 and 4.34.
Notice that removing the smaller pulses removes the detail in the image but
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keeps the features of interest in tact.

Figure 4.31. The Variation Spectrum of Figure 4.17(d).

(a) (b) (c)

Figure 4.32. Reconstruction via DPT of Figure 4.17(d) with only pulses of size
(a) 1 to 41000 (b) 50000 to 60000 (c) 100000 to 121477
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(a) (b)

Figure 4.33. Reconstruction via DPT of Figure 4.17(d) with only pulses of size
(a) 1 to 100 (b) 101 to 41000

(a) (b)

Figure 4.34. Reconstruction via DPT of Figure 4.17(d) with only pulses of size
(a) 1 to 1000 (b) 1001 to 41000

The variation spectrum for Figure 4.17(e), the ‘Ocean’ image, is given in
Figure 4.35. There seems to be three clusters of variation in Figure 4.31: (1)
1 to 45000, (2) 60000 to 70000 and (3) 80000 to 132370. If we reconstruct the
image into only these three groups pulse sizes we obtain the results in Figure
4.36. An ocean image such as this one produces interesting complications.
The glint on this water is considered noise when working at detecting a
feature on the surface of the ocean. We thus would like to remove it prior to
feature detection. We are able to separate the glint from the ocean, see Figure
4.37, by detecting the pulses which are the correct size as well luminosity.
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Figure 4.35. The Variation Spectrum of Figure 4.17(e).

(a) (b) (c)

Figure 4.36. Reconstruction via DPT of Figure 4.17(e) with only pulses of size
(a) 1 to 45000 (b) 60000 to 70000 (c) 80000 to 132379
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(a) (b)

Figure 4.37. (a) Reconstruction via DPT of Figure 4.17(e) with only pulses of size
1 to 1000 and luminosity less than 25 (b) Removal of (a) from the original image.

We now apply this same method to an ocean image with glint and a target of
interest. See Figure 4.38(a). We first detect the pulses small enough (in this
case 1 to 500 as the image is a different size) and then restrict the luminosity
to 25, see Figure 4.38(b). In Figure 4.38(c) we subtract (b) from the original
to obtain the boat.

(a) (b) (c)

Figure 4.38. (a) Original Image (b) Reconstruction via DPT of Figure 4.38(a)
with only pulses of size 1 to 500 and luminosity less than 25

(c) Removal of (b) from the original image.

The variation spectrum for Figure 4.17(f), the ‘Noise’ image, is given in
Figure 4.39.
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Figure 4.39. The Variation Spectrum of Figure 4.17(f).

There seems to be only one cluster of variation which gives a good indication
of the structure of noise in general. We can however separate the noise into
small noise, medium-sized noise and larger noise pulses, see Figure 4.40.

(a) (b) (c)

Figure 4.40. Reconstruction via DPT of Figure 4.17(f): Only pulses of size
(a) 1 to 100 (b) 101 to 1000 (c) 1001 to 1660
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4.5 Distributions of the LULU Operators

All the results of Section 2.5 (from [27]) can be extended into 2 dimensions
(or more). We consider the cases

(i) {Xij}∞i,j=−∞ independent and identically distributed with distribution
function FX .

(ii) {Xij}∞i,j=−∞ independent and each with distribution function FXij
.

(iii) The asymptotic results are applied to the notation in case (i).

Figure 4.41. The ordering construction of the n-neighbourhoods

The order in the sequence ..., X−1, X0, X1, X2, ... is often made use of in the
proofs for the one dimensional distributions thus we need to incorporate an
‘order’ to the two dimensional theory. This could easily done by ordering the
neighbours in an n-neighbourhood in order of increasing distance away from
the principal point, where distance is measured by the number of pixels be-
tween the two points along a connected set of neighbours. This method will
introduce ambiguities though, as some points may lie at the same distance
in a different direction. Thus, we can also order the N n-neighbourhoods in
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Nn(i, j) by listing them in an order so that any two consecutive neighbour-
hoods in the order differ only by 1 element i.e. the ‘movement’ of one pixel.
Note that for a fixed n, N will remain constant over each pixel (i, j). In
Figure 4.41 we see that a single pixel in each neighbourhood is changed from
one set to the next.

Figure 4.42. Structure of the n-neighbourhoods

Let {(i, j)r
1, (i, j)

r
2, ..., (i, j)

r
n} be the n points in the connected neighbourhood

Vr with principal point (i, j) (with X
(1)
ijr

, X
(2)
ijr

, ..., X
(n)
ijr

as the function values
at these points), and V1, V2, ..., VN be the N neighbourhoods ofNn(i, j). Also,
let (i, j)(V +

r ) be the element in Vr that is not present in the next set Vr+1 and
(i, j)(V −r ) be the element in Vr that is not present in the previous set Vr−1.
For convenience we let (i, j)r

1 = (i, j)(V +
r ) and (i, j)r

n = (i, j)(V −r ), see Figure
4.42.

Now, let the observed points in the image be denoted by xij where (i, j) is
the row and column position. Then the LULU operators are given by

(Lnx)ij = max
V ∈Nn(i,j)

min
(k,l)∈V

xkl,

(Unx)ij = min
V ∈Nn(i,j)

max
(k,l)∈V

xkl.
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The proofs for the distributions of Ln(X), Un(X), Ln◦Un(X) and Un◦Ln(X),
then follow similarly as in [27], but with some slight changes in the results
and some changes in the notation to indicate the two-dimensionality. Note
that we are not incorporating the concept of connectivity in the development
of this theory. As a first step we work with the ordering developed above.

4.5.1 Exact Distributions of the LULU Operators

In this section we derive the distributions for Ln(X), Un(X) and their com-
positions for an image of random variables Xij where the Xij’s are indepen-
dent and identically distributed with distribution given by FX(x) i.e. where
X = Xij ∀ (i, j). In [21] the exact distributions for Cn and Fn where n ≤ 6
are derived. We first define the following random variables. For an arbitrary
pixel (i, j), consider Vs ∈ Nn(i, j) and let,

Y
(Vs)
ij = max{X(1)

ijs
, X

(2)
ijs

, ..., X
(n)
ijs

: (i, j)(m) ∈ Vs,m = 1, 2, ..., n},
and then let

Zij = min{Y (V1)
ij , Y

(V2)
ij , ..., Y

(VN )
ij : Vs ∈ Nn(i, j), s = 1, 2, ..., N}

For each Vs ∈ Nn(i, j) let

A
(Vs)
ij = min{Z(1)

ijs
, Z

(2)
ijs

, ..., Z
(n)
ijs

: (i, j)(m) ∈ Vs,m = 1, 2, ..., n}
(here Z represents the new two dimensional data after the application of max
and min) and then let

Bij = max{A(V1)
ij , A

(V2)
ij , ..., A

(VN )
ij : Vs ∈ Nn(i, j), s = 1, 2, ..., N)}.

These definitions mean then that (Ln ◦ Un(X))ij = Bij. This is the first
difference for the procedure in [27] as there is only one possible forward
window of size n in 1D for element Xi. The result for Un ◦ Ln(X) can
be derived from the result obtained for Ln ◦ Un(X) since Ln ◦ Un(−X) =
−Un ◦ Ln(X) because Ln and Un are dual operators, Theorem 70,

FUn◦Ln(X)(x0) = P [Un ◦ Ln(X) ≤ x0]

= P [−Ln ◦ Un(−X) ≤ x0]

= P [Ln ◦ Un(−X) ≥ −x0]

= 1− P [Ln ◦ Un(−X) ≤ −x0]

= 1− FLn◦Un(−X)(−x0). (4.24)
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We will make use of the following definitions as well.

mY
r (x) = P [Y

(V1)
ij > x, Y

(V2)
ij > x, ..., Y

(Vr−1)
ij > x, Y

(Vr)
ij ≤ x]

dn(x) = (1− FX(x))[FX(x)]n

qY
r (x) = P [Y

(V1)
ij > x, Y

(V2)
ij > x, ..., Y

(Vr)
ij > x],

These are thus for r of the N n-neighbourhoods, V1, V2, ..., Vr, in their order as
mentioned before. (Note that the order is periodic since the neighbourhood
relation is symmetric.) The Y in the definitions above can just as easily be
replaced by Z, A or B. To get the distribution of Ln ◦ Un(X) we first prove
two lemmas.

Lemma 99

mY
r (x) =

{
dn(x) if r = 2
qY
r−2(x)dn(x) if r ≥ 3.

Proof
We have that

{Y (Vr)
ij ≤ x} ∩ {Y (Vr−1)

ij > x} = {Y (Vr)
ij ≤ x} ∩ {X(1)

ijr−1
> x}

= {X(2)
ijr−1

≤ x,X
(3)
ijr−1

≤ x, ..., X
(n)
ijr−1

≤ x,X
(1)
ijr−1

> x}

Since the element (i, j)
(1)
r−1 is present in Vk for k = r − n− 1, ..., r − 1,

{X(1)
ijr−1

> x} ⊂ {Y (Vk)
ij > x} for k = r − n− 1, ..., r − 1.

Thus we have

{Y (Vr−n−1)
ij > x, ..., Y

(Vr−1)
ij > x} ∩ {X(1)

ijr−1
> x} = {X(1)

ijr−1
> x}.

So

{Y (V1)
ij > x, ..., Y

(Vr−1)
ij > x, Y

(Vr)
ij ≤ x}

= {Y (V1)
ij > x, ..., Y

(Vr−n−2)
ij > x} ∩ {Y (Vr−n−1)

ij > x, ..., Y
(Vr−2)
ij > x}

∩{X(1)
ijr−1

> x} ∩ {Y (Vr)
ij ≤ x}

= {Y (V1)
ij > x, ..., Y

(Vr−n−2)
ij > x}

∩{X(2)
ijr−1

≤ x, ..., X
(n)
ijr−1

≤ x,X
(1)
ijr−1

> x}. (4.25)
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So we have by (4.25) that for r ≥ 3, mY
r (x) = qY

r−n−2(x)dn(x). For r = 2,

{Y (V1)
ij > x, Y

(V2)
ij ≤ x} = {X(2)

ijr−1
≤ x, ..., X

(n)
ijr−1

≤ x,X
(1)
ijr−1

> x},

so that mY
r (x) = dn(x).

NOTE: For any events A1, A2, ..., Ar

{A1 ∩ ... ∩ Ar}\{A1 ∩ ... ∩ Ar−1 ∩ AC
r }

= {A1 ∩ ... ∩ Ar} ∩ {A1 ∩ ... ∩ Ar−1 ∩ AC
r }C

= {A1 ∩ ... ∩ Ar} ∩ {AC
1 ∪ ... ∪ AC

r−1 ∪ Ar}
= {A2 ∩ ... ∩ Ar} ∪ {A1 ∩ A3 ∩ ... ∩ Ar−1}

∪... ∪ {A1 ∩ ... ∩ Ar}
= {A1 ∩ ... ∩ Ar}. (4.26)

This result is in fact trivial because A1 ∩ ... ∩ Ar−1 ∩ AC
r is disjoint from

A1 ∩ ... ∩ Ar.

Lemma 100 For n = 1, 2, ...

qY
r (x) = P [Y

(V1)
ij > x, ..., Y

(Vr)
ij > x]

=





1− [FX(x)]n for r = 1
qY
1 (x)− dn(x) for r = 2

qY
2 (x)− dn(x)

∑r−2
k=1 qY

k (x) for r ≥ 3.

Proof
For r = 1,

qY
r (x) = P [Y

(V1)
ij > x] = 1−P [Y

(V1)
ij ≤ x] = 1−P [X

(1)
ij1
≤ x, ..., X

(n)
ij1
≤ x] = 1−[FX(x)]n.

For r ≥ 2

{Y (V1)
ij > x, ..., Y

(Vr)
ij > x}\{Y (V1)

ij > x, ..., Y
(Vr−1)
ij > x, Y

(Vr)
ij ≤ x}

= {Y (V1)
ij > x, ..., Y

(Vr)
ij > x} by (4.26),

thus
qY
r (x) = qY

r−1(x)−mY
r (x)

and we recursively obtain

qY
r (x) = (qY

r−2(x)−mY
r−1(x))−mY

r (x) = . . . = qY
s (x)−

r∑

k=s+1

mY
k (x)
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where s ≤ r − 1. For r = 2 we take s = 1:

qY
r (x) = qY

1 (x)−mY
2 (x) = qY

1 (x)− dn(x) by 4.25

and for r ≥ 3 take s = 2, and again by 4.25,

qY
r (x) = qY

2 (x)−
r∑

k=3

qY
k−2(x)dn(x) = qY

2 (x)− dn(x)
r−2∑

k=1

qY
k (x)

And now for the main result. The result looks different to that obtained by
[27] as Lemma’s 99 and 100 are slightly different.

Theorem 101 For n = 1, 2, ...

FLn◦UN (X)(x) = 1− qY
2 (x)−Ndn(x)

nN+N−2∑

k=nN−1

qY
k (x) + dn(x)

nN+N−2∑

k=1

qY
k (x)

where N = 4(3n−2).

Proof

FLn◦Un(X)(x) = P [Bij ≤ x]

= P [A
(V1)
ij ≤ x,A

(V2)
ij ≤ x, ..., A

(VN )
ij ≤ x, for Vs ∈ Nn(i, j), s = 1, 2, ..., N ]

= pA
N(x), say.

Now

pA
N(x) = P [A

(V1)
ij ≤ x,A

(V2)
ij ≤ x, ..., A

(VN )
ij ≤ x]

= P [A(V1) ≤ x,A(V2) ≤ x, ..., A(VN ) ≤ x]

for each (i, j) since they are identically distributed

= P [A(V1) ≤ x,A(V2) ≤ x, ..., A(VN−1) ≤ x]

− P [A(V1) ≤ x,A(V2) ≤ x, ..., A(VN−1) ≤ x,A(VN ) > x] by (4.26)

= pA
N−1(x)− P [A(V2) ≤ x,A(V3) ≤ x, ..., A(VN−1) ≤ x,A(VN ) > x]

+ P [A(V1) > x, A(V2) ≤ x, ..., A(VN−1) ≤ x,A(VN ) > x] by (4.26).

The last term is equal to 0 by looking at the definition of A. Therefore,
applying this recursively,

pA
N(x) = pA

N−1(x)− P [A(VN−1) ≤ x,A(VN ) > x].
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Now applying this recursively,

pA
N(x)

= pA
N−2(x)− P [A(VN−2) ≤ x, AVN−1 > x]− P [A(VN−1) ≤ x,A(VN ) > x]

= pA
1 (x)−

N−1∑

k=1

P [A(Vk) ≤ x,A(Vk+1) > x]

= 1− P [A(V1) > x]−
N−1∑

k=1

P [Z
(1)
ijk
≤ x, Z

(1)
ijk+1

> x, ..., Z
(n)
ijk+1

> x]

= 1− P [A(V1) > x]−
N−1∑

k=1

P [Z
(1)
ij1
≤ x, Z

(1)
ij2

> x, ..., Z
(n)
ij2

> x]

since they are identically distributed

= 1− qZ
n (x)− (N − 1)P [Z

(1)
ij1
≤ x, Z

(1)
ij2

> x, ..., Z
(n)
ij2

> x]

= 1− qZ
n (x)− (N − 1)

(
P [Z

(1)
ij2

> x, ..., Z
(n)
ij2

> x]

− P [Z
(1)
ij1

> x, Z
(1)
ij2

> x, ..., Z
(n)
ij2

> x]
)

= 1− qZ
n (x)− (N − 1)qZ

n (x) + (N − 1)qZ
n+1(x)

= 1−NqZ
n (x) + (N − 1)qZ

n+1(x).

Now qZ
n (x) = P [Z

(1)
ijs

> x, ..., Z
(n)
ijs

> x]

i.e. for n data points in the sth neighbourhood of (i, j)

= P [Y
(1,V1)
ij > x, ..., Y

(1,VN )
ij > x, ..., Y

(n,V1)
ij > x, ..., Y

(n,VN )
ij > x]

= qY
nN(x)

and similarly qZ
n+1(x) = qY

(n+1)N(x). So by Lemma 100

pA
N(x) = 1−NqY

nN(x) + (N − 1)qY
(n+1)N(x)

= 1−N [qY
2 (x)− dn(x)

nN−2∑

k=1

qY
k (x)]

+ (N − 1)[qY
2 (x)− dn(x)

nN+N−2∑

k=1

qY
k (x)]

= 1− qY
2 (x)−Ndn(x)

nN+N−2∑

k=nN−1

qY
k (x) + dn(x)

nN+N−2∑

k=1

qY
k (x).

Since dY
1 (x) = 1 − [FX(x)]n and qY

2 (x) = qY
1 (x) − dn(x) these terms are

known. The summations are functions of qY
r (x) for r ≥ 3 and can be found

recursively using Lemma 4.25 since nN + N − 2 is finite.
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Theorem 102 For n = 1, 2, ...

FUn◦Ln(X)(x) = 1− g(1− FX(x))

where g(FX(x)) = FLn◦Un(X)(x).

Proof

FUn◦Ln(X)(x) = 1− FLn◦Un(−X)(−x) = 1− g(F−X(−x))

and
F−X(−x) = P [−X ≤ −x] = P [X ≥ x] = 1− FX(x).

Corollary 103 For n = 1, 2, ...

FUn(X)(x) = 1− qY
N(x) and FLn(X)(x) = 1− FUn(−X)(−x).

Proof

FUn(X)(x) = P [Zij ≤ x] = 1−P [Zij > x] = 1−P [Y
(V1)
ij > x, ..., Y

(VN )
ij > x] = 1−qY

N(x)

where qY
N(x) can be obtained recursively by Lemma 100. Then, we also have

FLn(X)(x) = P [−Un(−X) ≤ x] = P [Un(−X) ≥ −x] = 1− FUn(−X)(−x).

Thus we have the distributions of Ln◦Un(X) and Un◦Ln(X) and the marginal
distributions for Un(X) and Ln(X).

As an illustration we show the distribution for Un(X), n = 2, 3, ..., 6.
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Figure 4.43. Distribution of Un for n = 2, 3, ..., 6.

From Figure 4.43 we can see that the distribution becomes more vertical as
n increase, indicating the smoothing nature of the nonlinear operator Un.

4.5.2 General Distributions of the LULU Operators

For the case where {Xij}∞i,j=−∞ are independent but non-identically dis-
tributed so that P [Xij ≤ x] = FXij

(x) = Fij(x), say, for i, j = 0,±1, ...,
a more sophisticated method than that used in the previous section is re-
quired to extend the results from [56] into two dimensions. This will be
investigated in future research work.

4.5.3 Asymptotic Distributions of the LULU Opera-
tors

We now look at the asymptotic distributions. They are asymptotic in that
n → ∞ i.e. in the sense that we apply the LULU operators infinitely many
times. The results from the one dimensional case are applied to the ex-
treme order statistic X(n) = max{X(1)

ij , ..., X
(n)
ij } where X

(1)
ij , ..., X

(n)
ij are the

n neighbours of Xij some neighbourhood of Xij and the Xij’s are i.i.d. The
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Fisher-Tippett theorem can then be applied to X(n) in the same manner as
in the one dimensional case so that if there exists sequences (an), an > 0 and
(bn) such that

1

an

(X(n) − bn)D−→H

(where H is a non-degenerate distribution) then H is one of three types:
Fréchet, Gumbel or Weibull. The necessary and sufficient conditions for these
three types are given in [71] and [48]. The Gumbel types have distribution

HG(y) = e−e−y

,

the Fréchet types have distribution

HF (y) = e−y−α

for y > 0 and α > 0

and the Weibull types have distribution

HW (y) =

{
e−(−y)α

for y ≤ 0 and α < 0
1 for y > 0

for some constant α which is the shape parameter and reflects the weight of
the tail for FX . The Fisher-Tippett theorem is to maxima what the Central
limit theorem is to averages. The most common type are the Gumbel types
which have (normalized) density function, [133],

hG(x) =
1

b
e

a−x
b
−e

a−x
b

and distribution function

HG(x) = e−e
a−x

b ,

where a is the location parameter and b is the scale parameter, see Figure
4.44, [133].

Figure 4.44. Density Function hG(x) and Distribution Function HG(x).

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. APPLICATIONS TO IMAGE PROCESSING 139

The distribution function of Xij, namely FX , is said to then belong to the
maximum domain of attraction of H, i.e. FX ∈ MDA(H). The asymp-
totic distribution H has mean a + bγ, where γ is the Euler-Mascheroni

constant, variance 1
6
b2π2, skewness (degree of symmetry) 12

√
6ξ(3)

π3 , where
ξ(3) = 1.2020569032 is Apéry’s constant correct to 10 decimal places, [131],
and kurtosis (degree of peakedness) 12

5
. The Euler-Mascheroni constant is

the limit of
n∑

k=1

1

k
− ln n

as n → ∞ and correct to 10 decimal places is given by 0.5772156649, [132].
So the result in [27] holds in two dimensions as well.

Theorem 104 If FX ∈ MDA(H), and sequences (an), an > 0 and (bn)
exist, then as n →∞ we have

Jn(x) = FUn(X)(anx + bn)D−→J(x) = H(x)−H(x)logH(x)

and

Gn(x) = FLn◦Un(X)(anx+bn)D−→H(x)−H(x)logH(x)+
1

2
[H(x)logH(x)]2 = G(x)
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4.6 Conclusion

The Discrete Pulse Transform was derived for two dimensions and applica-
tions of it on images presented. The separation of an image into noise and
signal is clearly presented in Section 4.4. In fact, throughout Section 4.4 we
emphasized target or feature detection. This was achieved by two means,
namely extracting pulses of the desired size and using shape descriptors. In
the first method, the feature size must then be known to some degree, and
in the second, similarly, the shape of what we are looking for needs to be
known. Automatic target detection will be looked at in the future, as the
obvious extension of these initial findings. In each of the examples presented
we could additionally highlight the desired pulses (or whole resolution layers)
to emphasize the detected features. When the Highlight result from Section
2.4 is extended to two dimensions (this will, to our knowledge, be published
soon) it will provide further advantages for image processing, although the
applications already available, presented in this work, provide powerful re-
sults.
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Chapter 5

Conclusion

We have presented the extension of Carl Rohwer’s LULU theory in higher
dimensions than that of sequences, specifically for multidimensional arrays.
Prior to this, we did a review of Rohwer’s one dimensional theory from the
point of view of our extension, that is, the theory developed in one dimen-
sion which we extended to higher dimensions. This included the following:
the basic definitions and their relationship with Mathematical Morphology,
the smoother and separator properties and the resulting action on signal
due to these properties, the LULU semigroup, the preservation properties
of fully trend preserving and total variation preserving, the distributions of
the operators, and finally the Discrete Pulse Transform. All these concepts
were extended in Chapters 3 and 4 and are new results and original work.
Specifically, the new results are

• The Multidimensional LULU Operators (Section 3.3)

• The LULU Semigroup (Section 3.4)

• Preservation Properties of the LULU Semigroup (Section 3.5)

• Total Variation Preservation (Section 3.6)

• The DPT (Section 4.2)

• The Roadmaker’s Algorithm and it’s Implementation (Section 4.3)

• Image Processing (Section 4.4)

• Distributions of the LULU Operators (Section 4.5)

141
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The importance and need of the extension has been mentioned extensively
in the literature, as mentioned at many places in the previous chapters.

The applicability of the extension for images, and more complex domains
e.g. video, is now open for investigation. We provided simple applications
of the Discrete Pulse Transform to images in Chapter 4, but there are many
image processing ideas that have sprung up during this research which will
be further investigated in the near future.

We have one publication thus far from this work, namely [41] and in addition
the following future research will be investigated:

1. The extension of the DPT onto Zd will be investigated. This will
most likely be achieved with the definition of total variation on Zd as
defined in [65] on a graph. The extension of the distributions on Zd

could also be investigated in the setting of a graph, possibly removing
the requirement of independence between pixels. In addition, the new
method introduced in [21] for deriving the distributions of the output of
the LULU operators on sequences will be investigated for an extension
to Zd.

2. The distributions of the LULU operators for the non-identically dis-
tributed case will be investigated. The distribution theory and results
will also be applied to image processing applications such as edge de-
tection.

3. The extension of the LULU theory to an arbitrary domain Ω, which
could be discrete or continuous, will provide an even wider field of
applications.

4. Various image processing applications, making use of the DPT, can
be looked into. The most important relationship with existing image
techniques may be that of scale spaces. We will investigate in what
manner we can cast the DPT in the setting of scale-space theory, [69].
This setting is suitable since there exists a natural scale space structure
that can be associated with the extensive current theory on scale spaces.
Making use of scale spaces or multi-resolution methods to analyze an
image for feature detection allows the use of more information than
the pixel luminosity only. The most commonly used scale space is
the Gaussian scale space. One drawback of the Gaussian scale space
is that it removes small scale features (noise) very well but results in
spatial distortions as scale increases, i.e. reduced sharpness of edges

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5. CONCLUSION 143

and shapes. The DPT is expected to avoid this disadvantage due to
the shape preservation properties of the LULU operators. Other image
processing applications that should be looked into are

• Further applications of the DPT to important problems in image
segmentation: Will segmentation making use of the DPT provide
better results than ordinary segmentation?

• Granulometries: This was discussed in this work but more detailed
work will be looked into.

• Image Compression: Can the DPT reduce the storage space re-
quired for an image?

• Pattern Recognition and template matching: The DPT contains
more information from the image than the original image. Can
this be exploited? Pattern recognition should also be looked into
by investigating shape descriptors and their relationship with the
pulses. A pattern should be able to be described with a specific
shape, which in turn should differentiate it from another pattern.

There are numerous image processing techniques which investigate the
above applications. The aim would thus be to compare the DPT’s
effectiveness with known techniques and to indicate where it is superior.
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