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In this work, the particle swarm optimization algorithm (PSOA) is implemented, evaluated
and studied. A number of recently proposed variations on the PSOA are also considered. The
algorithm and it’s variants are applied to, firstly, an extended Dixon-Szego bound constrained
global test set, and secondly, the sizing design of truss structures.

Using the extended Dixon-Szego test set, it is shown that the constriction variant as proposed
by Clerc, and the dynamic inertia and maximum velocity reduction variant proposed by
Fourie and Groenwold, represent the main contenders from a cost efficiency point of view.

In the interests of finding a reliable general purpose ‘off-the-shelf” PSOA for global opti-
mization, a parameter sensitivity study is then performed for the constriction and dynamic
inertia and maximum velocity reduction variants. In doing so, it is shown that inclusion of
dynamic inertia renders the PSOA relatively insensitive to the values of the cognitive and
social scaling factors.

The constriction and dynamic inertia and maximum velocity reduction variants are then
applied to the optimal sizing design of truss structures. While few results with the PSOA
for constrained problems have previously been presented, a simple approach is proposed
herein to accommodate the stress and displacement constraints during the initial stages of
the swarm searches. Increased social (peer) pressure, at the cost of cognitive learning, is
exerted on infeasible birds to increase their rate of migration to feasible regions.
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Extensive numerical results are presented for the extended Dixon-Szego test set, as well as a
number of well known truss structures with dimensionality of up to 21. The results indicate
the suitability of the gradient free PSOA for the two programming classes considered.
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Opsomming

Titel: Partikel Swerms in Afmetingsontwerp en Globale Optimering
Auteur: Jaco. . Schutte
Leier: Prof. A.A. Groenwold

Departement: Departement van Meganiese Ingenieurswese
Graad: Meester van Ingenieurswese

Sleutelwoorde: Partikel swerm optimimering, kunsmatige lewe, gradiéntlose metodes,
globale optimering, strukturele optimering

In hierdie verhandeling word die partikel swerm optimeringsalgoritme (PSOA) geimple-
menteer, ge-evalueer en bestudeer. Verskeie onlangs voorgestelde variasies op die PSOA
word ook beskou. Die algoritme en die variasies daarop word dan toegepas op, eerstens, 'n
uitgebreide Dixon-Szegd stel rand begrensde globale toetsprobleme, en tweedens, die afme-
tingsontwerp van stangstrukture.

Met behulp van die uitgebreide Dixon-Szego toetsprobleme word aangetoon dat die inkrimp-
ing variant, voorgestel deur Clerc, en die dinamiese momentum en maksimum snelheid ver-
mindering variant voorgestel deur Fourie en Groenwold, die belangrikste mededingers is
vanuit 'n oogpunt van koste effektiwiteit.

In belang van die formulering van 'n betroubare, algemeen toepasbare PSOA vir globale
optimering, word 'n parameter sensitiwiteit studie gedoen vir die inkrimping en die dinamiese
momentum en maksimum snelheid vermindering variante. Hierdie studie toon aan dat die
insluiting van dinamiese momentum vermindering die PSOA onsensitief maak vir waardes
van die kognitiewe en sosiale skaleringsfaktore.

Die inkrimping en dinamiese momentum en maksimum snelheid vermindering variante word
dan toegepas op die probleem van optimale ontwerp van stang strukture. Alhoewel min
resultate voorheen met die PSOA vir begrensde probleme bereken is, word 'n eenvoudige be-
nadering hierin voorgestel om spanning- en verplasingsbegrensings gedurende die aanvanklike
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stadiums van die swerm soektog te hanteer. Verhoogde sosiale druk (groepsdruk) word ten
koste van kognitiewe leer op ontoelaatbare partikels toegepas. Hiermee word gepoog om die
migrasie tempo na gunstige gebiede te bespoedig.

Omvattende numeriese resultate word voorgelé vir die uitgebreide Dixon-Szegd toetspro-
bleme, asook 'n paar bekende stangstrukture met dimensionaliteit van tot 21. Die resultate
toon die toepaslikheid van die gradiéntlose PSOA vir die twee programmeringsklasse onder
beskouing aan.
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Chapter 1

Introduction

1.1 Motivation

Traditional single trajectory algorithms based on the simple gradient descent algorithm,
when applied to global optimization problems, all have one great common drawback, namely
the tendency to become ‘stuck’ in a local minima during the search. Numerous approaches
have been formulated to overcome this drawback. A good review of global optimization
algorithms is presented by Torn and Zilinskas [1]. Recently, multi-start methods [2] have
been proposed to overcome this drawback, where parallel or sequential searches are executed
with each trajectory origin randomly positioned in the search space. This is done in the
hope that at least one of the search trajectories will terminate at the global optimum. A
major drawback however is that information gathered by each search trajectory is usually
unavailable to the others, or discarded in subsequent searches.

With population based methods it is attempted to retain and share the fitness information
that has been obtained previously and, by using this information, direct subsequent function
evaluations in a more intelligently coordinated search pattern to improve performance and
avoid entrapment in local minima.

The most commonly used population-based evolutionary methods are based on, or inspired
by, phenomena found in nature. Several different types of evolutionary search methods
were developed independently. These include genetic programming (GP) [3], which evolve
programs, evolutionary programming (EP) [4], which focus on optimizing continuous func-
tions without recombination, evolutionary strategies (ES) [5], which focus on optimization
of continuous functions with recombination, and genetic algorithms (GAs) [6], which focus
on optimizing general combinatorial problems. (For a brief description of these and other
related methods, see Appendix C).

While population based methods compare badly in terms of cost effectiveness with finely
tuned gradient based trajectory methods, they do tend to be more robust (i.ec more resistant
to being trapped in a local minima) in complex global optimization problems, especially
those with excessive numerical ‘noise’, when the use of gradient methods become an ‘art’
indeed.




CHAPTER 1. INTRODUCTION

)

In this dissertation such a recently introduced population based method, namely the particle
swarm optimization paradigm, is implemented, analyzed and applied to a number of global
and structural optimization problems.

1.2 Objectives

The objective of this work is to contribute to the development of a reliable and efficient
global optimization algorithm based on the the particle swarm optimization algorithm. It
is also the intention to analyse the various variants which have recently been proposed to
improve upon the PSOA’s performance on a common test set, as they have previously been
studied in isolation by their respective authors, and usually for different problems.

In addition, the developed algorithm is to be applied to an engineering problem of prac-
tical importance, namely the optimal design of truss structures. To accomplish this, the
accomodation of constraints into the PSOA is to be studied.

The final objective is to obtain a general purpose particle swarm algorithm which will strike
an acceptable balance between reliability and cost.

1.3 Thesis overview

In Chapter 2 a brief historical overview of the particle swarm optimization algorithm is
presented, followed by a discussion of the benefits of population based algorithms. The
formal mathematical formulation of the PSOA is then detailed, with the remainder of the
chapter taken up by an analysis and identification of shortcomings of the PSOA.

Chapter 3 is concerned with a number of variants on the original PSOA, which were pro-
posed in order to improve performance in terms of reliability and cost. These variants are
formulated and discussed.

Chapter 4 introduces the global programming problem and the extended Dixon-Szegd test
set, which is used in a comparative study of the abovementioned variants.

In Chapter 5 a detailed parameter sensitivity study is performed on the most successful of
the PSOA modifications.

In Chapter 6 the results of the parameter study are used in applying the selected PSOA
variants with optimized parameters to a set of structural truss design problems.

Finally, conclusions and recommendations for future study are made in Chapter 7.
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Chapter 2

Particle swarm optimization

2.1 Particle swarm optimization: A brief history

Computer simulations of the movement and behavior patterns of bird flocks and fish schools
were first presented by Reynolds [7], and Heppner (a zoologist) and Grenander [8]. These
simulations attempted to define the underlying rules of the movement dynamics of bird
flocking and fish schooling, and were mainly reliant on the manipulation of inter-individual
distances. These studies were the precursors to the particle swarm paradigm.

The particle swarm optimization algorithm (PSOA), was first introduced by Kennedy and
Eberhart in 1995 [9, 10|, and, compared to other well established population based evolu-
tionary methods such as genetic algorithms, is still in it’s infancy. It finds its roots in a
variety of fields, which, among others, include artificial life and collective intelligence, chaos
theory, fuzzy computing, sociobiology and, interestingly enough, psychology.

Kennedy and Eberhart inferred a likeness of the swarm behavior to human social behavior.
This deduction followed on the observation that, like individual fish or birds adjust their
movement patterns to maintain their position in a school or flock, humans tend to adjust
their beliefs and attitudes to conform to their peers.

The PSOA models the exploration of a problem space by a population of agents or particles;
the agents’ success history influence their own search patterns and those of their peers.
The search is focused toward promising regions by biasing each particle’s velocity vector
toward their own remembered best position as well as the communicated best ever swarm
location. The importance of these two positions are weighed by two factors, aptly called
the cognitive and social scaling parameters [11]. These two components are the among the
main governing parameters of swarm behavior (and algorithm efficiency), and have been the
subject of extensive study [12, 13, 14].

As various studies [11, 15, 16] have revealed, there are a number of shortcomings and limi-
tations to the ‘standard’ PSOA as first proposed by Kennedy and Eberhart. Subsequently
the PSOA has undergone rapid development, with several adaptations to improve perfor-
mance and to apply the algorithm to other types of problems have been proposed. These
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adaptations or variants will be discussed and analyzed in Chapter 3.

Particle swarm optimization, while also being a population based method, differs from other
similar methods such as genetic algorithms, evolutionary programming and evolutionary
strategies, (for a brief discussion of these and other related approaches see Appendix C), in
the respect that the primary operator which drives the algorithm is not evolutionary based,
but rather a set of rules which dictate the social interaction between members of the swarm.
This interaction takes the form of the exchange of information regarding the fitness history
of the swarm which is used to influence decisions relating to areas to be explored. There
are however a number of similarities between evolutionary approaches and the PSOA, which
were studied by Angeline [17] and Eberhart [18].

Furthermore, the PSOA is simpler, both in formulation and computer implementation, than
the GA. In addition, the PSOA seems to outperform the GA for a number of difficult
programming classes, notably the unconstrained global optimization problem [12, 16].

Previously, the PSOA has been applied to analytical test functions, mostly univariate or
bivariate without constraints, by Shi and Eberhart [15] and Kennedy [19]. Kennedy also ap-
plied the algorithm to multimodal problem generators and used the PSOA as an optimization
paradigm to simulate the ability of human societies to process knowledge [12].

Notwithstanding it’s recent popularity, the PSOA has a number of drawbacks, one of which
is the presence of problem dependent parameters. Previously, a number of workers have

attempted to find ‘universal’ values for the PSOA parameters, the most recent being Carlisle
and Dozier [20].

2.2 PSOA Applications

2.2.1 Neural network training via particle swarm optimization

The PSOA has been applied with success in the field of neural network (NN) training, with
this type of problem among one of the first to be addressed by Kennedy and Eberhart
[9]. The "training” of a neural network involves the minimization of the fitness error in
the forward propagated result through the network by adjusting the weights of the network
components.

Extensive research by others have been done in this field, some of the more notable the work
by Van den Bergh and Engelbrecht who have applied several modifications to the algorithm
which involve dividing the swarm into sub-components and using them in a cooperative
manner to solve the NN training problem [21, 22]. Other examples where the PSOA has
been used in a neural network context include the training of a NN to identify the presence
of Parkinson’s disease in patients [23] and the extraction of rules from a fuzzy neural network
[24].
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2.2.2 Structural optimization

Lately, the PSOA was successfully applied to the optimal shape and size design of structures
by Fourie and Groenwold [25, 26], where the design variables represent geometric properties
of the structure and certain constraints are enforced (e.g. displacement limits or maximum
allowed stress). The optimal topological design of problems is also addressed by Fourie and
Groenwold [27].

2.2.3 Other applications

The PSOA has also been applied to a variety of other types of problems, among others the
optimization of reactive power and voltage control in electrical distribution networks [28] and
the practical distribution state estimation thereof [29]. It has also been applied successfully
to the field of process biochemistry [30].

2.3 Particle swarm optimization algorithm formulation

We will now formulate the particle swarm algorithm as proposed by Kennedy and Eberhart
9, 10]. The algorithm is constructed as follows: Let us consider a flock of p particles or
birds, each representing a possible solution point in the problem space D). For each particle
i, Kennedy and Eberhart originally proposed that the position ! is updated in the following
manner:

ah = wl e 2Ll
with the velocity v’ calculated as follows:

U2:+I = U;;: + Clrrl(p}% ¥ I.U;'.) £ Cg'.'"g(p}z - m:'r) (22)
Here, subscript k& indicates an (unit) pseudo-time increment. p}:C represents the best ever
position of particle i at time k, with pj representing the global best position in the swarm
at time k. 7, and ry represent uniform random numbers between 0 and 1. Kennedy and
Eberhart proposed that the cognitive and social scaling parameters ¢; and ¢y are selected
such that ¢; = ¢ = 2, in order to allow a mean of 1 (when multiplied by the random
numbers r; and r3). The result of using these proposed values is that the particles overshoot
the target half the time.

et us denote the best ever fitness value of a particle at pi as fi , and the best ever fitness
Let us denote the best fit lue of a particle at pi as fi ., and the best fit
s T iz -9 agq £9

value of a particle at pj as fj. ;-

The particle swarm optimization algorithm is now outlined as follows:

1. Imitialize

(a) Set constants kpqz, €1, Co.

(b) Randomly initialize particle positions =), € D in IR™ for i = 1,...,p.
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(c) Randomly initialize particle velocities 0 < v) < v for i = 1,...,p.
(d) Set k=1

2. Optimize

(a) Evaluate function value f} using design space coordinates zi.
(b) It i < fi, then flo, = fi, o =2}

(c) If fi < fi,; then fi., = fi, pi =z},

(d) If stopping condition is satisfied then goto 3.

(e) Update all particle velocities vi for i = 1,...,p with rule (2.1).
(f) Update all particle positions @, for i = 1, ..., p with rule (2.2).
(g) Increment k.

(h) Goto 2(a).

3. Terminate
The above algorithm is also represented by the flow diagram depicted in Figure 2.1.

2.4 Analysis of velocity rule

The manner in which the velocity rule influences an individual particle’s position can be
explained at the hand of Figures 2.2, 2.3, 2.4 and 2.5. If we examine the velocity rule (2.2),
we note that the cognitive contribution to calculating the velocity is:

c1T (13;L — 33;) (23)
with ¢; the cognitive parameter, r; a random number between 0 and 1, and pi and xi the
best fitness and current positions of particle 7 respectively.

If we consider a 2-dimensional search space (Figure 2.2) we can determine the search area
to which the particle can possibly move in the next update of (2.1). Replacing the time
increment k£ with a dimensional index for the moment, we see that the distances between
p' and z' are (pi — z) and (p, — x%) for dimension 1 and 2 respectively. By virtue of
difference calculated in (2.3), the direction the particle will move will always be toward p' if
we neglect the previous velocity vy. Since r; varies between 0 and 1, the maximum possible
travel distance (with vp = 0) for the particle during a single timestep for both dimensions
are ¢;(pt — 2%) and ¢;(ps — x2) as indicated. The possible positions that can be occupied
by the particle during the next timestep will form a line from the current particle position
(r, = 0) toward p' as r; is increased. This line will extend beyond p' if ¢; > 1, allowing for
the possibility of the particle overshooting.

Similarly, if we consider the social component of (2.2):

cora(p] — T},), (2.4)
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Figure 2.1: Flow analysis of the classical particle swarm optimization algorithm
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Figure 2.3: Social component search space contribution for 2-D problem
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we see that the maximum distance in this case becomes co(p? — 1) and ¢a(p§ — x3), depicted
by Figure 2.3. The possible positions the particle ¢ could occupy in the next timestep &
is again a line originating from the current position toward p9. This line will also extend
beyond p? if ¢; > 1.

If we combine the cognitive and social search contributions we obtain the search area in
Figure 2.4. This search area will form a parallelogram in 2-dimensional space if p?, p* and
z* are not in line, in which case the possible search space will be a line. Any point within
this quadrangle can be occupied by particle 7, depending on which values are taken on by
the two random numbers r; and 7s.

From this analysis we can make a number of important observations:

(a) Disregarding the previous velocity vy, the updated position for a particle in the next
timestep will always be in a region centered around a point equidistant beyond the
midpoint between pj, and p] and the particle current position i, i.e. the center of the
parallelogram in Figures 2.4 and 2.5.

(b) Disregarding the previous velocity v, when we consider the distances between the
current particle position z} and p}, and i and p{ as calculated by (2.3) and (2.4),
we note that the closer the particle is to either one of these positions. the smaller the
distance becomes it can possibly traverse (per timestep) in those respective directions
and vice versa.

(¢) If a particle should arrive near the midpoint between i and p} after a large distance
was traversed in the previous timestep k — 1, it will overshoot almost exactly the same
distance beyond this point by virtue of the vy, term in (2.2), with only a minor deviation
because of the observation made in (b).

2.5 Particle swarm behavior

To study the behavior of the particles during a search, the PSOA is implemented using
software written in C which visually displays the particle positions, their own best remem-
bered values and the swarm best value as different colored markers on a computer screen.
These positions are then updated in real-time as the search progresses, giving the user the
opportunity to observe swarm behavior. (For a more detailed description of the software,
see Appendix D).

For the original PSOA, as formulated in this chapter, it was observed herein that the swarm
best position p] usually settles very quickly near the global optimum after jumping around
in the problem space D) during the initial timesteps. Any outlying particles then quickly
distribute themselves evenly around this position. Depending on the nature of the problem
either one of the following scenario’s take place:

For convex optimization problems, such as the sphere function, the group best position p{
will start moving downslope as individual particles in the immediate region around pf find
improved fitness values and their best values pj, become pj. Throughout this movement
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of p} the swarm redistributes itself around this centerpoint. Once pt reaches the minima’s
immediate neighborhood the particle best remembered positions pi rapidly start converging
toward p{, and the overall swarm diameter contracts. This leads to a progressively smaller
area being searched, and the eventual convergence of the swarm toward the minima.

For non-convex functions or functions with excessive numerical noise however, the contrac-
tion rate of p} toward pj is either extremely slow or nonexistent. This causes the PSOA
either to become very expensive in terms of computational effort (cost), and sometimes
prevents convergence.

2.6 Summary

From the swarm behavior discussed in the foregoing, it is clear that some artificial means of
contracting the particle swarm diameter needs to be effected by modifying or introducing a
new operator into the standard PSOA. This enforcement of a progressively smaller search
space for multi-modal or non-convex problems will force a localized search around the best
remembered particle position and ultimately lead to convergence. Several methods of forcing
progressively smaller search spaces with PSOA will be investigated in the next chapter.

An alternative is to hybridize the particle swarm with an efficient gradient based search
algorithm which will perform the local search after the PSOA has found the approximate
region of the minima. However, then another difficulty then arises, that of deciding when
the particle swarm should be stopped and the local search algorithm started. On one side, a
premature transition may lead to the gradient based algorithm converging in a local minima
where more extensive search by the PSOA may have found the approximate region of the
global minima, and on the other a late transition will lead to wasted function evaluations.

For the purpose of this thesis the PSOA will be used during both the global and local search
phases, because it has the ability to perform adequately, and in some cases very well, for
both stages. Also, since it is the intent of the author to obtain a comparison of the different
variants of the PSOA in the next chapter, it will be desireable to do so without the influence
of a gradient based method incorporated in the optimizer.




Chapter 3

Particle swarm variants

3.1 Overview

As with any newly proposed optimization algorithm, the original PSOA displayed several
shortcomings, which we hinted at in the previous chapter. We will now elaborate on these
shortcomings. Furthermore, a number of variants which have been proposed to improve the
performance of Kennedy and Eberhart’s original PSOA are also presented.

3.2 On ‘local’ search capability

The original PSO algorithm displays great initial efficiency at converging to the approximate
location of the minima during the global search phase (e.g. see Figure 3.1 for a typical
example), but after this the convergence rate decreases rapidly when the refined search
phase is entered [11, 15]. This decrease in efficiency is caused by the velocity (2.2) not
being reduced adequately, leading to detrimentally large distances between sampling points
in (2.1). Large velocities also cause the particles to overshoot the search area, a desireable
property for the initial global search, but detrimental in the refined search stage. In order to
improve the performance during this final phase it is thus necessary to implement methods for
decreasing the distance between successive sampling points, by reducing the velocity during
the search. This will result in more finely spaced evaluation points and less overshoot. The
reduced overshoot will have the effect of concentrating the swarm in a smaller overall search
volume. A number of ways have previously been proposed by which the PSO algorithm
could be improved.

3.3 Sequential particle swarm algorithm

The following is an outline of the sequential algorithm structure. The original algorithm is
modified and implemented in a sequential or asynchronous manner, implying that particle

13
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function values, velocities, cognitive and social best remembered positions are updated on a
per individual particle basis, rather than a per swarm basis.

Numerical studies by Carlisle and Dozier [20] indicate that the asynchronous method is in
general less costly than the synchronous method. The asynchronous method yields improved
reaction time to changes in the overall best fitness value and limits unnecessary function
evaluations when the stopping condition is satisfied.

This modification was previously proposed by Carlisle and Dozier to limit computational
expenses for large swarms [20]. If, for instance, the optimum is found halfway through the
swarm’s individual particle function value evaluations, the algorithm is stopped without
performing the remaining fitness evaluations. Also, if there is an improvement in the swarm
best value f7 ,, the remainder of the swarm reacts immediately to the swarm best value.
(With the classic particle swarm algorithm the improved swarm best value information is
only available after the entire swarm’s particles have been evaluated in a single pseudo
timestep.)

The original position (2.1) and velocity (2.2) rules remain unchanged with this modification.

The asynchronous algorithm becomes:

1. Initialize

(a) Set constants kpmaz, €1, C2

(b) Randomly initialize particle positions j € D in R" fori =1, ...,p
(¢) Randomly initialize particle velocities 0 < v} < v for i =1,...,p
)

(d) Set k=1

2. Optimize



OHAPTER 3. PARTICLE SWARM VARIANTS 15
(a) Evaluate function value f; using design space coordinates i
(6) Tt fi < finy then fip = i p' = af
(©) Tt £§ < £, then ff, = fi, p? = ai.
(d) If stopping condition is satisfied then goto 3.
(e) Update particle velocity vector v}, using Rule (2.1).
(f) Update particle position vector x}_, using Rule (2.2).
(g) Increment . If i > p then increment k, 7 = 1.
(h) Goto 2(a).

3. Report results

4. Terminate
The asynchronous (sequential) algorithm is also depicted in Figure 3.2.

3.4 Variants on Kennedy and Eberhart’s PSOA

The variants on the original PSOA of Kennedy and Eberhart are detailed in this section. By
no means are the modifications listed in the following exhaustive. However, they probably
represent the most significant and most commonly used variants. In the implementations of
the modifications that follow, an asynchronous method for updating the swarm best value
p{ and particle best value p} is used. A global neighborhood [14, 31] is used throughout
when exchanging information about the swarm best values and positions.

3.4.1 Introduction of constant inertia weight

This variant, due to Shi and Eberhart [11], constitutes the first significant variation on the
original particle swarm algorithm. An inertia term w is introduced into the original velocity
rule (2.2) as follows:

Vip = W, + a1y (B), — @) + cor2 (P) — ) . (3.0
The scalar w performs a scaling operation on the velocity vy, analogous to introducing ‘mo-
mentum’ to the particle. Higher values for w results in relatively straight particle trajectories,
with significant ‘overshooting’ or ‘overflying’ at the target, resulting in a good global search
characteristic. Lower values for w result in erratic particle trajectories with a reduction in
overshoot, both desireable properties for a refined localized search.

The most serious drawback of the introduction of constant inertia is the problem dependency
of w. In a typical implementation, an intermediate value for w is selected, resulting in a
search that is unoptimal during both the ‘global’” and ‘local’ phases of the search.
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3.4.2 Linear inertia reduction

Linear inertia reduction, also proposed by Shi and Eberhart [11, 15], is a variation on the
introduction of constant inertia as discussed in Section 3.4.1 above. This variation attempts
to eliminate some of the drawbacks of constant inertia, and entails the linear scaling of the
inertia parameter w during the search, usually between 1.0 and 0.4, in a specified number of
function evaluations. This ensures that the PSOA gradually transitions from an algorithm
suitable for a global search to an algorithm suiteable for refining an optimum in a local
search. The optimum rate for reducing w is still problem dependent, and constitutes the
main drawback of this variation.

3.4.3 Limitation of maximum velocity

In this variation, Shi and Eberhart [15, 32] limit the velocity of each particle to a specified
maximum velocity v™%. This represents an attempt to reduce excessively large step sizes
in the position rule (2.1). The maximum velocity is calculated as a specified fraction ~y of

the distance between the bounds of the search domain:

v = y(xyp — TLB) (3.2)
where rpyp and zp g respectively represent the upper and lower bounds of the domain D. This
once again prevents excessively large steps during the initial phases of a search. Previously,
Carlisle and Dozier [20] and Eberhart and Shi [32] showed that this variation increases
reliability and reduces cost.

3.4.4 Constriction factor

A notable recent variation on the original velocity rule (2.2) is the introduction of the con-
striction factor proposed by Clerc [33], in his swarm and queen approach, as further explored
by Eberhart and Shi [32]. This method introduces a constriction factor K into velocity rule
(2.2), which has the effect of reducing the velocity of the particles as the search progresses,
thereby contracting the overall swarm diameter. This in turn results in a progressively
smaller domain being searched.

The value of the constriction factor K is calculated as a function of the cognitive and social
parameters ¢; and c;:

Vi = Kx [v) +ar (p) — ) + cors (P — )], (3.3)

K

where p=c1+ Cy, @ >4 (3.4)

2
12— ¢ — ¢? — 44|

In their search for an ‘off-the-shelf’ PSOA, Carlisle and Dozier [20] show that cognitive and
social values of ¢; = 2.8 and ¢, = 1.3 yield good results for their test set.
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3.4.5 Dynamic inertia and maximum velocity reduction

This variation, proposed by Fourie and Groenwold [25], aims to reduce the sensitivity to
problem dependent parameters associated with previous implementations of inertia [15, 32].
In this approach, a simultaneous dvnamic reduction in inertia and maximum velocity is
implemented to decrease the swarm domain in a controlled fashion. The approach is outlined
as follows: Firstly, the initial inertia wq is prescribed, while the initial maximum velocity
vector v™** is again calculated as a fraction of the domain using (3.2). The swarm domain
is then effectively reduced by decreasing the inertia and maximum velocity by fractions a
and [ respectively, if no improvement in the swarm fitness values p{ and pj occur after a to
be specified number of iterations h:

if f(py) 2 f(Pi_p): then wy = awy, v = fop™, (3.5)

with 0 < «,f < 1, prescribed. Rather than reducing the inertia and maximum velocity
in a linear fashion, dynamic inertia reduction allows for the adjustment of the algorithm
parameters according to the success history of the swarm. For reasons of clarity, we will
denote h the ‘dynamic delay period’ in the remainder of this work.

3.5 Other variants

Several other modifications to the PSOA have been proposed which will be briefly mentioned
but not analysed, since they fall outside the scope of this thesis.

3.5.1 Discrete binary particle swarm

A discrete binary particle swarm optimizer was proposed by Kennedy and Eberhart [34],
which was benchmarked with a multi modal problem generator against genetic algorithms
[19] by Kennedy and Spears. This work was subsequently generalized and applied to the
well known traveling salesman problem by Clerc.

3.5.2 Tracking moving extrema
Recently, a modification was proposed by Carlisle and Dozier [35, 36] and Eberhart and Shi
[37], whereby a moving extrema in a dynamic problem environment could be tracked.

3.5.3 Hybridizing with other types of algorithms

A number of workers have attempted to improve the PSOA’s performance by hybridizing it
with other well known methods such as clustering [38|, and evolutionary methods [39, 40].
In addition, the PSOA can of course be hybridized with efficient gradient based methods.
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Chapter 4

Global optimization

4.1 Introduction

In this chapter the PSOA variants formulated in Chapter3 are applied to an extended Dixon-
Szego test. Numerical results are presented in Appendix A.

4.2 Problem formulation

Firstly, we formally define the global optimization problem: Consider the unconstrained
(or bounds constrained) mathematical programming problem represented by the following:
Given a real valued objective function f(zx) defined on the set € D in IR", find the point
z* and the corresponding function value f* such that

f* = f(@*) = min {f(a)|e € D} , (4.1)

if z* exists and is unique. Alternatively, find a low approximation f to f*.

If the objective function and/or the feasible domain D are non-convex, then there may be
many local minima which are not optimal. Hence, from a mathematical point of view, prob-
lem (4.1) is essentially insolvable, due to a lack of mathematical conditions characterizing the
global optimum, as opposed to a strictly convex continuous function, which is characterized
by the Karush-Kuhn-Tucker conditions at the minimum.

The problem of globally optimizing a real valued function is inherently intractable (unless
hard restrictions are imposed on the objective function) in that no practically useful charac-
terization of the global optimum is available. Indeed the problem of determining an accurate
estimate of the global optimum is mathematically ill-posed in the sense that very similar
objective functions may have global optima very distant from each other [41]. Nevertheless,
the need in practice to find a relative low local minimum has resulted in considerable research
over the last decades to develop algorithms that attempt to find such a low minimum. A
comprehensive survey of global optimization is presented by Térn and Zilinskas [1].

19
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Acronym Name n €0
G1 Griewank G1 2. 100061
G2 Griewank G2 10 0.1
GP (Goldstein-Price 2l (RG] L
C6 Six-hump camelback 2 0.001
SH Shubert, Levi No. 4 2 0.001
RA Rastrigin 2 0.001
BR Branin 2 0.001
H3 Hartman 3 3 0.001
H6 Hartman 6 6 0.001
85 Shekel 5 5 0.001
H7 Shekel 7 7 0.001
S10 Shekel 10 10 0.001

Table 4.1: The extended Dixon-Szegd test set.

Acronym  Name

PSO-CI  PSOA with constant inertia

PSO-CIV PSOA with constant inertia and maximum velocity limiting
PSO-LI PSOA with linear inertia

PSO-LIV  PSOA with linear inertia and maximum velocity limiting
PSO-C PSOA with constriction factor

PSO-DIV  PSOA with dynamic inertia and maximum velocity limiting

Table 4.2: Acronyms used to denote algorithm variants.

4.3 The extended Dixon-Szego test set

The set of well known problems (e.g. see [42]) presented in Table 4.1 will be used to obtain
comparative numerical results for the variants of the PSOA under consideration. The ¢,
values given in the table are the allowable errors used as convergence criteria in the a priori
stopping condition (discussed later). A mathematical description of the test set is detailed
in Appendix A.
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4.4 Numerical results for the different PSOA variants

In this section numerical results are presented for the extended Dixon-Szego test set presented
in Table 4.1. Acronyms used to denote the different PSOA variations are tabulated in Table
42. Each problem is analyzed n = 50 times and the group best fitness value f. . at
termination is reported. The best run n is classified in terms of the best fitness value found
between all of the runs. However, similar results can be obtained using the least amount of
function evaluations Ny, as criteria, since the standard deviation @ compare closely for all
of the problems, as defined by:

T

Z (flist 4 -}[A‘n‘f{s:st)2

p=1

n

with

n
fS'
best §
=

Fg _ 1 7

fbest - 4_7:1_ (43)
The reader is cautioned however, when interpreting the best f, and average values _ﬂqest
reported in the tables because they are highly volatile even for a high number of repeated
searches due to the stochastic nature of the algorithm.

Since it is not the objective to test the performance of different stopping methods, but rather
the algorithm itself, a simple a priori stopping criteria is used. This method compares the
known solution value with the swarm best value and stops the algorithm when the swarm
fitness converges to within a certain prescribed absolute error ¢, (see Table 4.1).

The maximum allowable function evaluations is set to 30000. If the a priori stopping con-
dition is not satisfied within this period the search is deemed not to have converged. Unless
otherwise stated, a swarm of 20 particles is used, with the cognitive and social constants ¢;
and ¢y both set to 2 for all but the constriction factor variant. For the constriction factor
variant the ¢; and ¢, parameters are set to 2.8 and 1.3 respectively, as recommended by
Carlisle and Dozier [20]. For the dynamic inertia and maximum velocity modification pa-
rameter values a = 8 = 0.99 and A = 10 are used. These are arbitrarily chosen as numerical
experimentation has indicated that the algorithm is relatively insensitive to these parameter
values, as will be shown later. v = 1.0 is used for all problems where the maximum velocity
limitation is applied.

In the interest of obtaining a robust and versatile algorithm no exhaustive attempt is made
to optimize the algorithm parameters for individual problems. For the sake of brevity, all of
the results in the following sections are summarized in Figure A.1.
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44,1 Standard PSOA

The numerical results obtained with the original PSOA indicates that this search method
converged for only 3 out of the 12 problems, and then only with very poor reliability. Hence,
no numerical results will be presented in tabulated form.

4.4.2 Constant inertia weight variant

Numerical results are obtained for this method with the inertia weight w varied between 0.1
and 1.0 at 0.1 increments (Figure A.2). Reliability is defined as the amount of times out of
the total number of searches (n) the algorithm converges to the optimum value within an
allowable error value ¢,. From Figures A.2(a) and A.2(b) it can be seen that the optimum
value for w, when considering the average cost (Figure A.2(a)) and the optimum reliability
(Figure A.2(b)) for the test set lies in the region of w = 0.5 to 0.7. Reliability decreases
outside this region, more pronounced for the higher values of w than for the lower values.
The average cost also increases rapidly above w = 0.7. It is interesting to note that for
w = 1, which reduces the velocity rule (2.2) to the original implementation of the PSOA by
Kennedy and Eberhart, none of the runs on any of the problems in the set converged to the
required error values.

With the above in mind tabulated results are presented with w = 0.6. Very good results are
obtained for most of the problems in the set.

The enforcement of a maximum velocity limitation marginally improves the average required
function evaluations for most of the problems with the exception of the Shekel 7 problem
(Table A.11). This enforcement also worsens the reliability for the Shekel 5 and Shekel 10
problems (Tables A.10, A.12).

4.4.3 Linearly decreasing inertia weight variant

For these results the the inertia weight w is scaled linearly between 0.8 and 0.4 during the
first 4000 function evaluations of the search. This variation yields improvements in terms
of average cost over the PSO-CIV variation for the Shekel group of problems (Tables A.10,
A.11, A.12), with the reliability remaining more or less the same. For most of the other
problems however, the average cost increases, indicating that the optimum rate of inertia
reduction could be problem dependent.

With a maximum velocity limitation both the average cost and the reliability are improved
for all of the problems, with the exception of Shekel 5 (Table A.10), where only the reliability
is improved.

4.4.4 Constriction factor variant

Numerical experimentation and work done by others [20] indicate that the maximum allow-
able velocity modification does not contribute to an increased efficiency for this variant if
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bounds constraints are enforced as in our case. Numerical results are very impressive non-
withstanding, with a vast increase in convergence rates over the fixed and linearly decreasing
inertia variants. For some of the more difficult higher dimensional problems however, the
algorithm reliability decreases noticeably (Tables A.10, A.11, A12).

4.4.5 Dynamically decreasing inertia weight and maximum veloc-

ity variant

This method is marginally slower in converging than the constriction factor method for most
of the lower dimensional problems (Tables A.1, A.3, A.4, A.6, A.7, A.8, A.9) but for the
more difficult higher dimensional problems (Tables A.2, A.10, A.11, A.12) a reduced cost,
and in some cases improved reliability compared to constriction is obtained. By using this
method of adjusting the inertia parameter w, the inertia modification regains equal footing
with the constriction factor method.

4.4.6 Synchronous vs. asynchronous particle swarm algorithm

Finally, the synchronous and asynchronous particle swarm algorithm variants are compared
for all of the problems in the test set with all the PSOA variants. From the numerical results
presented in Tables A.13, A.14, A.15, (summarized in Figures A.3-A.8), the synchronous
method is shown to be less costly and more reliable for all of the problems in the set,
supporting the findings of Carlisle and Dozier [20].

4.5 Fitness history

For the difficult G2 problem, a typical history plot for all of the variants is presented in Fig-
ure 4.1. From this figure it can clearly be seen that the constriction and dynamic variants
are superior to the other variants when considering convergence rates. In terms of reliabil-
ity however, the linear inertia reduction variant outperforms the constriction and dynamic
methods by a small margin.

If we use a points system with equal marks awarded for both the best average number of
function evaluations and reliability, and pick the best out of the six variants for each problem
the PSOA-CI, PSOA-CIV and PSOA-DIV variants rank highest.

4.6 Summary

From the numerical results presented in this chapter is obvious that the constant-inertia,
constriction, and the dynamic inertia/velocity reduction variants are the main contenders
when both reliability and cost are considered. Although the linear inertia reduction variation
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Figure 4.1: PSOA variants comparison: Swarm fitness history

e PSOA delivers high reliability, this advantage is offset by the high cost for the more
ult problems.



Chapter 5

Parameter sensitivity analysis

5.1 Overview

In this chapter the two most promising variants of the PSOA, namely the constriction method
of Clerc and the dynamic inertia and maximum velocity reduction method of Fourie and
Groenwold, are subjected to a parameter sensitivity analysis. The main objective of this
study is to ascertain what parameter values will result in a general purpose algorithm which
will perform well for the entire test set.

5.1.1 Cognitive/social ratio

While it is noted that linear inertia reduction yields good reliability, the results presented
in Section 4.4 indicate that constriction and the dynamic inertia/velocity reduction variants
are the main contenders when both reliability and cost are considered. Choosing between
these two contenders seems difficult, and should probably be judged in future on problems
with higher dimensionality than considered herein.

Previously, Kennedy asserted that the sum of the cognitive and social values ¢; and ¢ should
approximately equal 4.0, [13], if the cognitive and social ratio is adjusted in the constriction
factor method. Carlisle and Dozier [20] have shown that it is advantageous to adjust the
cognitive/social ratio to favor cognitive learning (an individualistic swarm). They report
that values of 2.8 and 1.3 respectively for the cognitive and social components yield the best
performance for the test set they consider.

In the following subsections, it is investigated whether this is true for the extended Dixon-
Szegd test set under consideration. Numerical results presented in Figures A.10(a), A.10(b),
A.11(a), A.11(b) are obtained by varying the cognitive value ¢; between 0 and 4.1, with the
social value calculated in each case as ¢ = 4.1 — ¢y, as suggested by Carlisle and Dozier [20].
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Constriction

Figure A.10(a) indicates that the optimum cognitive value for the extended Dixon-Szegd test
set tends to be in the region between 1.5 and 3, indicating that the recommended setting
of 2.8 by Carlisle and Dozier is also appropriate for the problems in the extended Dixon-
Szegd test set when considering cost. Figure A.10(b) shows the optimum value for reliability
to reveal a greater problem dependency, with graphs of the Hartman and Shekel family of
problems peaking at ¢; values in the region of 3.5. The Griewank G2 problem however shows
a sharp decrease in reliability for values of ¢; above 3. Again, a value of 2.8 would probably
be a realistic compromise to ensure reasonable reliability.

Dynamic inertia reduction and maximum velocity limitation

Results with dynamic inertia reduction and maximum velocity limitation (Figure A.11) in-
dicates that this variant of the PSOA is relatively insensitive to the cognitive/social ratio.
The cost remains low throughout the range of variation of the ¢; parameter, with the sharp
increase to 30000 function evaluations at values above 3.8, indicating that none of the itera-
tions converged. The reliability is also relatively insensitive to the cognitive parameter ¢; for
the majority of the problems, with a drop in reliability at values above 3. The insensitivity
to low values of cognitive learning indicates the successfullness of the purely ‘social’ swarm
(e.g. see [12]). A reasonable value for this variant is 2.0, which was initially suggested by
Kennedy and Eberhart [9] for the ‘standard” PSOA.

To further investigate the sensitivity to cognitive/social ratio, the study is repeated, but
with ¢; = ¢y (Figure A.12). The results again indicate a relatively low sensitivity, with only
the Griewank G2 and Shekel problems revealing a slight increase in cost for ¢; = ¢y > 2.

5.1.2 Swarm population size

The effect of swarm population size on constriction has been extensively studied by Carlisle
and Dozier [20], Eberhart and Shi [32], and Shi and Eberhart [16].

For constriction, our findings closely supports the findings of Carlisle and Dozier, who main-
tain that, while an increase in population tends to lessen the required swarm iterations, the
accompanying cost (Ny.) increases. This is reflected in Figure A.13. Although populations
of as little as 5 particles find the optimum at low cost, the sharp decrease in reliability
with small population sizes dictate a lower bound when reliability is considered. A swarm
population of 20-30 seems a reasonable compromise between cost and reliability.

For dynamic inertia reduction, very similar results to those of constriction are obtained
(Figure A.14). A swarm size of 20 seems sufficient as a threshold value to prevent reduced
reliability at the low end of the graph, while retaining reasonable cost.
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5.1.3 Dynamic delay period and reduction parameters

The effect of the dynamic delay period & on the cost and reliability is depicted in Figure
A.15. Both cost and reliability are quite insensitive to the value of h. The only exception
to this is the Griewank G2 problem, which reveals a reduction in reliability for values of h
above 10.

The effect of the reduction parameters a and f in (3.5) are studied in Figure A.16. For the
sake of simplicity, 0.95 < a = 3 < 1 is selected. The study reveals a rapid increase in cost
for a = B > 0.99 (Figure A.16(a)), since the algorithm approximates the constant inertia
variant as a, 8 approach 1. For values of & = f < 0.99, the reliability decreases sharply
(Figure A.16(b)), suggesting an optimal value of 0.99 for the extended Dixon-Szegd test set.

5.1.4 Initial velocity fraction

Dynamic inertia reduction is rather insensitive to the value of the initial velocity fraction ~
(Figure A.17), although the reliability decreases sharply below v = 0.3. A practical setting
would probably be v = 0.5.

5.2 Recommendations

It is proposed that either the constriction or the dynamic inertia reduction variants of the
PSOA are used in global optimization. For constriction, the previously proposed values of
¢, = 2.8 and ¢; = 1.3 are supported. For dynamic inertia reduction, it is proposed that
¢ =cy =20, h =10, and « = 3 = 0.99. As far as swarm population size is concerned,
both variations scale well, with a population size of 20 particles being optimal.

5.3 Summary

The PSOA and some of its variants have been applied to an extended Dixon-Szegd test set
in global optimization. It is shown that constriction and dynamic inertia reduction are the
main contenders when considering both reliability and cost.

For problems of low dimensionality, dynamic inertia reduction is marginally outperformed
by constriction. For problems of higher dimensionality, dynamic inertia reduction seems
slightly superior.

Dynamic inertia reduction is shown to be less sensitive to parameter variations than con-

striction, for which the optimum choice of cognitive ¢; and social ¢, scaling parameters tends
to be problem dependent.



Chapter 6

Sizing Design of Truss Structures

6.1 Overview

In this chapter the application of the constriction and dynamic inertia and maximum velocity
variants to the optimal sizing design of truss structures are studied. A simple methodology
is proposed to accommodate the stress and displacement constraints during initial iterations,
when a large number of particles may be infeasible. In this approach, increased social or
peer pressure is exerted on infeasible particles to increase their rate of migration to feasible
regions.

The development of this chapter is as follows: Firstly, the optimal size and shape design
problem is formulated, whereafter the method for accommodating constraints into the PSOA
is outlined. This is followed by the application of the PSOA to several well known problems
in size optimization with dimensionality of up to 21.

6.2 Problem formulation

In the optimal sizing design of truss structures, the cross-sections of structural members are
selected as the design variables . The minimum attainable structural weight is selected
as the objective function, subject to allowable stress, displacement and linear buckling con-
straints. The optimal design problem detailed in Section 4.2 is then reformulated to include
constraints as follows: Find the minimum weight f* such that

f*=f(z*) = min f(z) =a’x, (6.1)
subject to the general inequality constraints
A e L W N ) (6.2)

where @ and x are column vectors in IR" and f and g; are scalar functions of the design
variables . The inequality constraints g; represent the stress, strain, displacement or linear
buckling constraints. The finite element method (FEM) may be used to approximate the
objective function f and the constaint functions g;.
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6.3 Accommodation of constraints

To facilitate the inclusion of the constraints (6.2) in the PSOA, (6.1) is modified to become

F=Fflz)+ Z Milgi ()P 15(95) (6.3)
with " "
3 (95) :{ g ;f ng% 58 * (6.4)

and penalty parameters A; > 0, prescribed. In a typical search, the ); parameters are
increased linearly with the number of function evaluations. This prevents undue enforcement
of the constraints in early stages of the search, while ensuring that the final constraint
violations are sufficiently small.

6.3.1 Social pressure

To increase the likelihood of particles migrating to feasible regions in the initial stages of
the search, increased social or peer pressure is exerted, at the cost of cognitive learning. In
this approach, the best particle value pf ., and best swarm value gy.q; are only updated if
‘the normalized infeasibility (NI*) is smaller than a to be specified tolerance NI,j,,. Hence
cognitive learning of an initially infeasible bird, represented by ¢; and pi, is sacrificed. Only
social pressure, represented by ¢; and pj, is retained.

This simple idea is implemented as follows: Steps 2(b) and 2(c) in the formal algorithm
presented in Section 3.3 are replaced by:

ERN(L) If L < pi., and NI* < N, then pt.. = fi, ph = @i, elsec; =0
(¢) If fi < gpest and NIt < Nyiow then gess = f,i, P = 58}

Selecting ¢; = 0 is not necessarily optimal, and superior approaches will doubtless be sug-
gested in future.

6.4 Stopping criteria

A number of logical stopping criteria may be specified for the PSOA. Amongst others,
the algorithm can be terminated when the average swarm velocity or momentum reaches
a prescribed fraction of the initial velocity and momentum. The algorithm can also be
terminated when a specific number of iterations or function evaluations S occur without
improvement in the best position p{ < gues, Within a prescribed tolerance .

In constructing stopping criteria, it is important to develop criteria which protect against
over sampling of the objective function. Simultaneous, the competing objective of prema-
ture convergence should be prevented. While not necessarily optimal, two criteria here are
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considered here, namely the a priory condition, and the logical condition. They are selected
here solely for their simplicity and illustrative powers.

A number of additional stopping criteria may be constructed. For instance, the algorithm
can be terminated when the average momentum of the swarm reaches a prescribed fraction
of the initial average momentum. A similar argument may off course be used for the average
velocity of the swarm.

6.4.1 A priori stopping condition

The algorithm is terminated once it obtains the a priori known optimum within a prescribed
tolerance. This stopping condition is commonly used in the training of neural networks [23],
where the output error is minimized. In general, this is not a sensible stopping criterion for
structural optimization. However, numerical results are included herein, since the ecriterion
gives a good indication of how fast the algorithm converges to the region of the optimum, and
presents a useful guide in estimating the required overhead in terms of number of function
evaluations required by other stopping methods.

6.4.2 Logical stopping condition

In this condition, the swarm best value f£ , is monitored as the search progresses. If there
is no improvement for .S specified function evaluations within a specified threshold tolerance
€, the search is stopped.

6.5 On swarm parameters

As shown by [15], the PSOA is sensitive to, in particular, the parameters w, ¢; and cy,
although dynamic inertia reduction reduces this sensitivity as opposed to constriction, as
shown in Chapter 5.

In this study, unless otherwise stated, all results are generated using swarms consisting of
20 agents, with the cognitive and social scaling factors ¢; and ¢y both set to 2. In each case,
the allowable normalized infeasibility NI, is set to 0.02, and the penalty parameters A;,
j=1,2,...,m, are linearly scaled from 10® to 10° in 4000 function evaluations, whereafter
A; Is constant.

6.6 Numerical results

The test set under consideration is tabulated in Table 6.1. The table gives the dimension n,
the number of constraints m and the nature of the problems under consideration.

For the numerical results presented in Appendix B.2 each problem is analyzed 10 times, with
the normalized infeasibility NI, the average fitness value fg,., standard deviation & and cost
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Problem Problem

Name Nature w m
10-Bar Convex 10" 32
10-Bar Non-Convex 10 34
25-Bar  Non-Convex 8 84
36-Bar Convex 21 95

Table 6.1: Structural test problems

Ny, being reported for each problem. For the sake of completeness, the best fitness value
with its position and the associated number of function evaluations is also given.

In the following discussions, €, represents the tolerance in the a priori stopping condition,
and ‘Reliability’ the number of times the algorithm converged within 10000 function evalua-
tions. S represents the number of function evaluations elapsed without improvement in best
function value, within a tolerance e,, before termination.

6.6.1 Convex 10-bar truss

The structure is depicted in Figure B.1, and is described in, amongst others, [43]. For the a
prior: stopping condition, tabulated results are presented in Table B.1. (In the table, social
pressure is not exerted on initially infeasible birds.) The table reveals that the function eval-
uations Ny, required for convergence is relatively low. In addition, the cost does not increase
dramatically as ¢, is decreased from 0.05 to 0.01. However, the reliability decreases as ¢,
becomes stricter, while the normalized infeasibility also decreases. Even so, the normalized
infeasibility is some 6% for ¢, = 1%.

Upon the introduction of social pressure, (Table B.9), the reliability becomes 100%, while
the decrease in constraint violations (from 16% to zero) is significant. Simultaneously, the
computational effort Ny, decreases. (In Table B.1, the cost of unconverged searches is not
reflected in the average cost.)

Finally, the high overhead of the logical stopping criterion is reflected by a comparison
between Tables B.10 and B.6. In both cases, social pressure is exerted, while the latter table
uses the logical stopping criterion, with S = 2000, 1000 and 500. Apparently, S = 1000 is
adequate. Nevertheless, the the results indicate that the development of improved stopping
criteria in future is of interest.

6.6.2 Non-convex 10-bar truss

This problem is also depicted in Figure B.1, and is amongst others, described in [43, 44].
The physical geometry for this problem is identical to the convex 10-bar truss, the only
difference being a modified loading condition which induces multiple local minima in the
fitness function [45, 46]
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For the sake of brevity, extensive results regarding the influence of the a priori stopping
condition and social pressure are not given in tabulated form for this (and the following)
problems. It suffices to state that the same trend as for the convex 10-bar truss is observed.

Numerical results for the logical stopping criterion and social pressure are presented in
Table B.14. Once again, requiring S = 1000 is adequate. The normalized infeasibility upon
convergence is acceptably small (approximately 0.1%).

6.6.3 Non-convex 25-bar truss

This structure is depicted in Figure B.2 [43, 47], and numerical results for the logical stopping
criterion combined with social pressure are presented in Table B.7. For this problem. there
is a more pronounced sensitivity to the value of S, and S = 500 would suffice.

6.6.4 Convex 36-bar truss

The final test problem is depicted in Figure B.3 [43, 45]. This convex problem is relatively
difficult, with 21 design variables, and 95 constraints present. Numerical results using the a
priori stopping criterion are presented in Table B.4, and using the logical stopping criterion
in Table B.8.

The solutions obtained by using the a priori stopping condition (Table B.4) are all slightly
nfeasible, indicating that a higher value for A\; would be beneficial. Nevertheless, in all cases
the constraint violations are less than 1%.

In comparison with the a priori stopping criteria results, the logical stopping method per-
forms very poorly, both in terms of cost and constraint violations. This poor performance
was the main motivation for the introduction of the social pressure operator, for which
numerical results are presented in the following section.

6.6.5 Effect of social pressure

The effect of social pressure is investigated for all of the structural test problems, and re-
sults with different a priori stopping values are summarized in Appendix B.2.3. Dramatic
improvements in cost and normalized infeasability can be observed for all of the problems in
this summary. When considering the logical stopping condition a similar trend is observed
(compare Tables B.8 and B.16).

6.6.6 Comparison between PSOA-C and PSOA-DIV variants

Table B.17 illustrates the difference in performance between the constriction factor and
dynamic inertia and velocity reduction. The average (f,..) and best (frest) fitness values
obtained compare closely for the two methods, with the standard deviation & for dynamic
inertia and velocity reduction roughly 1/3 of the value for the constriction factor. The cost
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(Ny.) associated with the average and best fitness values for dynamic inertia and velocity
reduction are roughly half the respective costs with constriction. (The same trend is observed
for the other problems studied.)

6.6.7 Fitness history

Typical fitness histories, comparing the constriction and dynamic inertia and maximum
velocity variants are presented in Figures B.4, B.5, B.6, and B.7. In terms of convergence
rate, it is clear that the PSOA-DIV variant outperforms the PSOA-C variant.

6.7 Summary

The derivative free particle swarm optimization algorithm can effectively be used for the
optimal sizing design of truss structures. While few results for constrained functions using
the PSOA have previously been presented, social pressure is used herein to increase the
likelihood of migration to feasible regions during the initial phases of the swarm search,
thereby sacrificing the cognitive learning ability of initially infeasible particles. Use of the
social operator leads to reduced cost with the logical stopping criteria, as well as limiting the
constraint violations within a specified tolerance in all of the structural test problem cases.
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Chapter 7

Closure

7.1 Conclusions

The studies performed herein, as well as work previously performed by other workers, reveals
the potential of the gradient free PSOA for a wide variety of problems. This includes neural
network training, discrete optimization, and the tracking of an optimum of which the position
changes with time. In addition, this study demonstrates the suitability of the PSOA for the
global programming problem, and constrained sizing design of truss structures.

7.2 Recommendations

[t is proposed that either the constriction variant or the dynamic inertia and maximum
velocity reduction variants are used in global or structural optimization. For the constriction
variant, it is proposed that cognitive and social parameters of 2.8 and 1.3 respectively, should
be used. While the dynamic inertia and maximum velocity variant is shown to be relatively
insensitive to the cognitive and social parameters, it is recommended that ¢; and ¢, both be
set to 2.0, as originally proposed by Eberhart and Kennedy. The dynamic delay period h
should be approximately 10, with the velocity and inertia reduction parameters (o and /)
both between values of 0.990 and 0.999, preferably 0.99. A swarm population of 20 particles
delivers satisfactory results for both the constriction and dynamic variants in terms of cost
and reliability.

7.3 Directions for future studies

Although the PSOA is now an accepted algorithm receiving wide acknowledgment, the al-
gorithm is still in it’s infancy. As such there is still scope for improvement. A number of
topics that deserve attention in the near future include the following:

34
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1. The stopping criteria used herein are very basic. In order to minimize undue expense
in function evaluations (without invoking premature convergence in global searches),
a detailed investigation of suitable stopping criteria is required.

2. Hybridizing with other methods has recently been proposed, in an effort to combine
the good global search capabilities of the PSOA with the refined search capability of
gradient based methods. This promises to be a fruitful line of research, in particular
for structural applications, where cost efficiency is extremely important.

3. Since the structure of the PSOA allows for easy parallelization, it is proposed that the
algorithm be implemented on the existing Beowulf cluster at the University of Pretoria.
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Appendix A
The extended Dixon-Szego test set

Problems G1 and G2 (Griewank G1 and G2 functions, respectively) [48].

OBJECTIVE FUNCTION: } )
flx) = Zzszd— Hcos (a",/\ﬂ) a1
i=1 i=1

For G1. n = 2 and d = 200; for G2, n = 10 and d = 4000.

SpAarRcH DoMaIN FoR Gl1:

D = {(z1,7) € R? : —100.0 < =; < 100.0, i =1,2}.

SEARCH DOMAIN FOR G2:

D = {(z1,Z2,*,%10) € R . —600.0 < z; <600.0, i=1,2,---,10}.

SOLUTION:

z* = (0.0,---,0.0) f*=0.0.
Problem GP (Goldstein-Price) [42]. ODL.B6-28
OBIJECTIVE FUNCTION:

flx)= [1+(m:+z2+ 1)2- (19 — 14z + 3z} — 1dmp + 6172 + 3z3)]x
[30 + (211 < 3562)')(18 — 32$1 -+ 121‘% + 48172 — 36;2311'2 =+ 27I%n

SEARCH DOMAIN:
D= {(z1,%0) € R¥:—2.0<z;<20,i=1,2}

SOLUTION:
z* = (0.0,-1.0) f*=3.0.

Problem C6 (Six-hump Camelback) [49]. ODL.B2-7

OBJECTIVE FUNCTION:

| . -
flz) = (4—2.1a7 + gm‘%)x‘f + zyx0 + (—4 + 4x3) )

43
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SEARCH DOMAIN:
D={z; € R":-3.0< z; <3.0}

D={z; € R': -2.0 <y < 2.0}

SOLUTION:

= (0.0898,—-0.7126) a5 = (—0.0898,0.7126) f* = —1.0316285
Problem SH (Shubert function, Levi no. 4) [49].
OBJECTIVE FUNCTION:

flx) = {Zv cos[(¢ + 1)xy + a]}{Zvcoq i+ 1)wa + 1]}

=1 i=1

SEARCH DOMAIN:
D = {(z1,22) € R?: -10.0 € z; €10.0, i =1,2}

SOLUTION:
x = (5.48289, —1.426531) f* = —186.73001
Problem RA (Rastrigin) [50]
OBJECTIVE FUNCTION:
f(x) = 27 + 23 — cos(18z;) — cos(18z5)
SEARCH DOMAIN:

D={(z;,12) e R*: -1.0<2; <10, i =1,2}.

SOLUTION:
=(0.0,0.0) f*=-20
Problem BR (Branin) [51]

OBJECTIVE FUNCTION:

d g 1
f(gg): (.’,(32 2 Tl—i-gQJl—G) + 10 (I*S_T)(Oq(ﬁﬂ)_“lo

42

SEARCH DOMAIN:
D={n ¢ R':-50<z < 10.0}

D= {zy € R :0.0 <z <15.0}

SOLUTION:
) A (3.142,2.275) f* ~0.398

Problem H3, H6 (Hartman 3, 6) [42]

OBIECTIVE FUNCTION:
m n
f(‘T) e Z C; €Xp Z a?? pz; ,
=1 i=l1

where © = (x1,...,%,), and
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i Qa5 C;i Dij
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 =2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3:2 0.03815 0.5743 0.8828
H6: m=4,n=26

% 7 Cy

1 10.0 3.0 17.0 3:5 j liErg 8.0 1.0

2 0.05 10.0 17.0 0.1 8.0 14.0 1:2

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0

4 17.0 8.0 0.05 10.0 0.1 14.0 32
i Pij
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 (0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

SEARCH DOMAIN:
D={(x1,...,7y) ER":00<2; <10, i=1,...,n}

SOLUTIONS:

H3:
z™ = (0.11461478,0.55564892, 0.85254688), f* = —3.8627821.

H6:
z* = (0.20168955, 0.15000963, 0.47687211, 0.27533377,0.31165102, 0.65730111),
[T = -3.322368.

Problem S5, S7, S10 (Shekel 5. 7, 10) (SQRIN) [42]

OBJECTIVE FUNCTION:

m

1
== e o’

i=1

where:
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APPENDIX A. THE EXTENDED DIXON-SZEGO TEST SET

7 a; Ci
1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 140 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

SEARCH DOMAIN:

SOLUTIONS:
B5:

=" = (4.00003727,4.00013375,4.00003730, 4.00013346) f* = —10.153200.

Silfs

z” = (400057280, 4.00069020, 3.99948997, 3.99960620) f* = —10.402941.

S10:

z” = (4.00074671,4.00059326, 3.99966290, 3.99950981) f* = —10.536410.

46

A.1 Numerical results for the extended Dixon-Szego

test set
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Optimum PSO variant

solution PSO-CI PSO-CIV PSO-LI PSO-LIV PSO-C PSO-DIV

) 0.001 0.001 0.001 0.001 0.001 0.001
e, 0.00053  0.00054 0.00049  0.00053 0.00054  0.00050
g 0.00025 0.00031  0.00030 0.00027 0.00032 0.00032
Ny (ave.) 1081 1089 2789 2443 918 1197
Reliability 49/50 49/50 50/50 50/50 49/50 50/50
e 0.00000  0.00007 0.00001  0.00002 0.00000 0.00003 0.00000
x 0.00000 -0.00223 0.00099  0.00626 0.00091 0.00387 0.00023
T 0.00000 0.01617  -0.00643 -0.00361 0.00119 0.00944 -0.00066
Ny, 842 2093 4171 2512 831 932

Table A.1: Griewank 1
Optimum PSO variant

solution PSO-CI PSO-CIV  PSO-LI PSO-LIV  PSO-C PSO-DIV

€a 0.1 0.1 Bl 0.1 0.1 0.1
. 0.09439 0.09514  0.09550 0.09493  0.09375 0.09501
a 0.00497 0.00622  0.00726 0.00581  0.00725 0.00943
Nye (ave.) 9084 8450 5826 6131 4743 2451
Reliability 35/50 37/50 44 /50 40/50 41/50 35/50
i 0.00000 0.07962  0.07326 0.06626  0.07801 0.06853  0.05242
T 0.00000 -3.07656 0.06871 -0.07063  -3.12687 -6.25902  -0.08723
To 0.00000 0.07963  -0.00104 0.00018 4.75444 -4.43530 4.45253
T3 0.00000 -10.9494 5.42670  5.43029 0.03736  5.45368 0.00068
T 0.00000 0.08763  -12.5407 -0.02418 6.07357 -0.17799 0.00950
Ts 0.00000 -0.25870 0.10766 -7.00124  -0.14234 7.17090 0.12157
T 0.00000 0.19254  -0.04966 0.02699 -7.69208 0.00288 0.00710
T7 0.00000 -8.25078  -0.05076 8.20641 0.05870 0.03646  -0.07244
Tg 0.00000 -0.02052 0.00009 0.00001  -0.12609 -0.11542  -0.08604
Ty 0.00000 -0.35799 9.39031  0.08981 0.20924 -0.17104 0.01753
T1g 0.00000 0.3992 -0.0937  -10.046 0.4659 -9.8733 9.30478
Ny, 4867 11574 11806 4646 8519 2417

Table A.2: Griewank 2



APPENDIX A. THE EXTENDED DIXON-SZEGO TEST SET 49
Optimum PSO variant

solution PSO-CI PSO-CIV PSO-LI PSO-LIV  PSO-C PSO-DIV
En 0.001 0.001 0.001 0.001 0.001 0.001
e 3.00049 3.00049  3.00050  3.00050  3.00053 3.00047
a 0.00032 0.00027  0.00030  0.00030  0.00028 0.00029
Ny, (ave.) 641 602 2295 2086 679 824
Reliability 50/50 50/50 50/50 50/50 50/50 50/50
. 3.0000  3.00000 3.00006  3.00004  3.00001  3.00001 3.00001
T 0.0000 -0.00000  -0.00051 -0.00014 -0.00013 0.00020 0.00023
i) -1.0000 -0.99994  -1.00020 -0.99974 -0.99999 -0.99999 -0.99993
Nie 537 715 2280 2105 747 904

Table A.3: Goldstein-Price
Optimum PSO variant

solution PSO-CI PSO-CIV  PSO-LI PSO-LIV ~ PSO-C PSO-DIV
Eq 0.001 0.001 0.001 0.001 0.001 0.001
i -1.03112  -1.03113 -1.03123 -1.03123 -1.03117 -1.03113
a 0.00031 0.00028  0.00027 0.00027  0.00029 (0.00028
N;. (ave.) 402 348 1687 1566 452 584
Reliability 50/50 50/50  50/50  50/50  50/50 50/50
i -1.03163 -1.03162  -1.03160 -1.03162 -1.03162 -1.03161 -1.03162
151 +0.0898 -0.08906  -0.09086 -0.08921 0.09167 -0.09179 0.09126
i) F0.71260  0.71339 0.71428 0.71347 -0.71272 0.71221 -0.71294
Ny¢e 682 218 1796 1621 627 609

Table A.4: Six-hump Camelback
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Optimum PSO variant

solution PSO-CI PSO-CIV  PSO-LI PSO-LIV  PSO-C PSO-DIV
e 0.001 0.001 0.001 0.001 0.001 0.001
2 -186.730  -186.730 -186.730 -186.730 -186.730  -186.730
] 0.00030 0.00029  0.00029 0.00027  0.00032 0.00032
Ny, (ave.) 1422 1332 3184 2990 1572 1197
Reliability 50/50 50/50 50/50 50/50 50/50 50/50
b -186.731 -186.730  -186.730 -186.730 -186.730 -186.730 -186.730
Ty 0.48289 -7.70838  -7.70830 -0.80040 -7.70836 -7.08355 4.85802
To -1.42653 -0.80027  -0.80037 4.85812 -0.80023 -1.42511 -0.80027
DS 1372 685 3167 3295 1144 1255

Table A.5: Schubert, Levi no. 4
Optimum PSO variant

solution PSO-CI PSO-CIV  PSO-LI PSO-LIV  PSO-C PSO-DIV
€a 0.001 0.001 0.001 0.001 0.001 0.001
. -1.99952  -1.99947 -1.99951 -1.99942 -1.99949  -1.99947
53 0.00031 0.00028  0.00031 0.00030  0.00030 0.00029
Ny, (ave.) 790 624 2122 1965 713 814
Reliability 50/50 50/50 50/50 50/50 50/50 49/50
B -2.00000 -1.99998  -1.99998 -1.99998 -1.99999 -1.99997  -1.99999
Ty 0.00000 0.00034  -0.00024 -0.00036 0.00005 0.00044  -0.00013
To 0.00000  0.00004 0.00022 -0.00009  -0.00028 -0.00006 0.00027
Ny, 867 697 1844 1439 948 836

Table A.6: Rastrigin
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Optimum PSO variant

solution PSO-CI PSO-CIV  PSO-LI PSO-LIV  PSO-C PSO-DIV
(o 0.001 0.001 0.001 0.001 0.001 0.001
i 0.39845 0.39840 0.39850  0.39848 (.39848 0.39847
a 0.00033 0.00034 0.00034 0.00032 0.00033 0.00030
Ny, (ave.) 643 658 1997 1838 645 743
Reliability 49/50 48/50 50/50 50/50  50/50 47 /50
. 0.398  0.39790 0.39791 0.39793  0.39791 0.39791 0.39789
i 3.142  -1.86969 2.17809 2.18510 2.17763 2.18814 2.18117
T 2.275  9.42601 3.14254 3.13868 3.14319 3.14061 3.14232
Ny, 381 458 1986 1848 487 708

Table A.7: Branin

Optimum PSO variant
solution PSO-CI PSO-CIV  PSO-LI PSO-LIV  PSO-C PSO-DIV

e 0.001 0.001  0.001 0.001  0.001 0.001
7. -3.86218  -3.86218 -3.86220 -3.86216 -3.86218  -3.86221
& 0.00028  0.00022 0.00028  0.00027 0.00025  0.00026
Nye (ave.) 425 374 1827 1567 451 625
Reliability 50/50 50/50  50/50 50/50  50/50 49/50
e, -3.86278 -3.86270  -3.86267 -3.86275 -3.86277 -3.86272  -3.86274
7 0.11461 0.11882  0.10160 0.11875  0.11606 0.11021  0.12257
T 0.55565 0.55419  0.55604 0.55493  0.55549 0.55605  0.55531
T3 0.85255 0.85263  0.85279 0.85240  0.85284 0.85185  0.85262
Nye 343 354 1441 852 219 743

Table A.8: Hartman 3
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Optimum PSO variant

solution PSO-CI PSO-CIV PSO-LI PSO-LIV ~ PSO-C PSO-DIV

€ 0.001 0.001 0.001 0.001 0.001 0.001
2., 13.32159 -3.32158 -3.32161 -3.32162 -3.32161  -3.32160
o 0.00016 0.00016  0.00019 0.00020  0.00019 0.00017
N¢. (ave.) 1075 1013 2908 2675 787 997
Reliability 35/50 34/50 23/50 30/50 39/50 28/50
. -3.32237 -3.32202 -3.32198 -3.32207 -3.32202 -3.32217 -3.32196
T 0.20169  0.20192 0.20187  0.19887 0.19938  0.20075 0.20118
T 0.15001  0.14500 0.15094  0.14956 0.14827 0.15239 0.15542
T3 0.47687 0.47733 0.47345  0.48056 0.47493  0.47399 0.47839
T4 0.27533  0.27666 0.27517 0.27563 0.27617 0.27548 0.27594
s 0.31165 0.31124 0.31114  0.31242 0.31345 0.31160 0.31159
Tg 0.65730 0.65719 0.65420 0.65875  0.65640 0.65618 0.65863
Ny, 1250 1141 3057 2425 853 1051

Table A.9: Hartman 6
Optimum PSO variant

solution PSO-CI PSO-CIV  PSO-LI PSO-LIV  PSO-C PSO-DIV

G5 0.001 0.001 0.001 0.001 0.001 0.001
2, (101524 -10.1525 -10.1524 -10.1524 -10.1524  -10.1525
g 0.00020 0.00023 0.00020  0.00019 0.00018 0.00023
Ny (ave.) 2772 2672 3700 4046 2020 1262
Reliability 21/50 15/50  21/50  35/50  22/50 26,50
- -10.1532 -10.1529  -10.1529 -10.1529 -10.1528 -10.1527 -10.1530
5 4.00004 3.99934  4.00039 3.99977  4.00137 3.99991 4.00035
T 4.00013  4.00098 3.99873 4.00033 4.00113 4.00111 4.00097
T3 4.00004  3.99882 4.00037  4.00150 3.99950 3.99819 4.00060
Tq 4.00013  3.99990 4.00075  3.99942 3.99970 4.00014 4.00084
Nye 1216 1293 3295 3319 972 1267

Table A.10: Shekel 5
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Optimum PSO variant
solution PSO-CI PSO-CIV PSO-LI PSO-LIV  PSO-C PSO-DIV
€, 0.001 0.001 0.001 0.001 0.001 0.001
., -10.4022  -10.4021 -10.4022 -10.4022 -10.4021  -10.4022
a 0.00024 0.00018  0.00027 0.00024  0.00021 0.00023
N¢. (ave.) 2449 Fr31 5094 4497 2036 1280
Reliability 27/50 25/50  32/50 42/50  33/50 35/50
-ff:Je.st -10.4029 -10.4027  -10.4026 -10.4027 -10.4028 -10.4028 -10.4028
T 4.00057 4.00017 4.00175  4.00076 4.00070  4.00035 4.00033
Ty 4.00069  4.00188 4.00107  4.00160 4.00040  4.00045 4.00124
T3 3.99949  4.00023 4.00038  3.99888 3.99945  4.00039 3.99930
Ty 3.99961  3.99952 3.99909  3.99910 3.99876  3.99915 4.00010
e, 1808 1432 3279 3156 1297 1849
Table A.11: Shekel 7
Optimum PSO variant
solution PSO-CI PSO-CIV  PSO-LI PSO-LIV ~ PSO-C PSO-DIV
€q 0.001 0.001 0.001 0.001 0.001 0.001
i -10.5357  -10.5356 -10.5357 -10.5357 -10.5356  -10.5357
J 0.00025 0.00018  0.00022 0.00023  0.00023 0.00024
Ny, (ave.) 3317 2231 4654 4532 3451 1296
Reliability 36/50 30/50 37/50 49/50 33/50 33/50
- -10.5364 -10.5363  -10.5360 -10.5362 -10.5363 -10.5361 -10.5362
T 4.00075 4.00120 4.00137 3.99971 4.00052  4.00173 4.00160
To 4.00059  4.00097 4.00119  4.00149 4.00022  4.00018 4.00021
T3 3.99966  3.99907 3.99814  3.99958 3.99987  3.99875 4.00019
T4 3.99951  3.99984 3.99915  3.99921 3.99886  3.99896 3.99961
Nye 1392 1730 3373 2857 1212 1155
Table A.12: Shekel 10
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Figure A.2: PSOA-CI variant: Cost and reliability as a function of the inertia weight w
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A.2 Asyncronous vs. syncronous PSOA
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Figure A.3: PSOA-CI variant: Cost and reliability comparison bestween asynchronous and
synchronous variants
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Figure A.4: PSOA-CIV variant: Cost and reliability comparison bestween asynchronous and
synchronous variants
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Figure A.5: PSOA-LI variant: Cost and reliability comparison bestween asynchronous and
synchronous variants
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Figure A.6: PSOA-LIV variant: Cost and reliability comparison bestween asynchronous and
synchronous variants
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Figure A.7: PSOA-C variant: Cost and reliability comparison bestween asynchronous and
synchronous variants
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\PPENDIX A. THE EXTENDED DIXON-SZEGO TEST SET
PSO-CI PSO-CIV
Asyncronous Synchronous Asyncronous Synchronous
Cost  Reliability Cost Reliability Cost  Reliability Cost Reliability
1097 49 1163 46 1036 49 1108 50
9173 35 7809 35 8831 35 8365 34
611 o0 675 50 670 o0 G666 50
384 50 383 50 366 50 381 50
1366 20 1478 50 1389 50 1460 50
772 49 891 a0 844 50 707 49
772 49 705 50 721 50 630 48
423 50 454 50 431 50 436 50
1099 39 1088 35 1035 34 1086 26
4143 21 1503 15 2844 17 2505 26
3278 27 2419 19 3055 27 2417 28
4523 34 2753 27 4056 24 3393 a2

[able A.13: PSOA-CI and PSOA-CIV variants: Cost and reliability comparison for asyn-

‘hronous and synchronous algorithm variants
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PSO-LI PSO-LIV
Asyncronous Synchronous Asyncronous Synchronous
Cost  Reliability Cost  Reliability Cost  Reliability Cost Reliability
989 50 995 49 1112 49 973 47
8158 38 7682 39 8229 39 7601 40
678 50 635 50 667 50 606 50
367 a0 390 50 422 o0 37T 50
1402 50 1339 50 1389 50 1337 50
870 50 896 49 742 50 796 50
836 47 729 50 674 47 603 48
420 50 443 50 464 20 420 50
1093 29 1061 32 1093 28 1032 30
4684 16 1709 23 4351 23 3373 14
3566 29 2775 29 1678 26 1893 24
4380 30 4047 32 4256 30 3030 30

Table A.14: PSOA-LI and PSOA-LIV variants: Cost and reliability comparison for asyn-
chronous and synchronous algorithm variants

PSO-C PSO-DIV
Asyncronous Synchronous Asyncronous Synchronous
Cost  Reliability Cost  Reliability Cost  Reliability Cost Reliability
1021 49 978 a0 1026 50 847 47
0452 46 3687 43 7728 37 2674 28
734 50 712 50 607 50 532 50
419 50 415 a0 37T 50 299 50
173 50 1835 50 1276 50 905 50
758 50 731 50 909 50 559 49
959 50 574 50 506 48 468 47
449 50 493 50 409 30 362 o0
821 31 845 35 986 30 22 24
5587 24 3236 28 2587 221008 16
4855 33 2217 36 3955 28 1215 24
3687 40 4335 40 2715 26 1246 25

Table A.15: PSOA-C and PSOA-DIV variants: Cost and reliability comparison for asyn-
chronous and synchronous algorithm variants
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A.3 Numerical results for the parameter sensitivity

study
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Figure A.11: Dynamic inertia reduction: Cost and reliability as a function of the cognitive

parameter ¢;
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Figure A.12: Dynamic inertia reduction: Cost and reliability as a function of cognitive and
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RSITEIT VAN PRETORIA
RSITY OF PRETORIA
ESITHI YA PRETORIA

APPENDIX A. THE EXTENDED DIXON-SZEGO TEST SET

30000

25000

20000

T

15000

Required function evaluations

10000

- G1

BR
H3
HE
S5
87
S10

VEs=e————— e e i
wo - =T
/7y i -
45 L 4
0 /
1\ / \./ = '3 % 3
40+ v N =1
b4 N i
/ T J.‘ A -
35+ -I/‘ ) & e . \‘ ,\\ S
5 b 2 - sy \,’ ‘,/’\ v
@ 30k ! ) 7 . - "_-\ L e d
D | \
S h B 2 \ o
2 e 5, Ve = 7 —y—
w25- * ~ 4 =
i % 4 “ ) &
/ [ -~
20y ¥ - ’ 1
1 ~ = 7
r !
18¢ 7 4
i \
10 b,
5r, -
0 - Y Il L L
5 10 15 20 25 30 35
Population

(b) Reliability as a function of population size

40

- SH

BR
H3
HE
S5
§7

S10

69

Figure A.13: Constriction: Cost and reliability as a function of swarm population size p
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Figure A.15: Dynamic inertia reduction: Cost and reliability as a function of the dynamic

delay period h
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Figure A.16: Dynamic inertia reduction: Cost and reliability as a function of the reduction

parameters « and (3
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Figure A.17: Dynamic inertia reduction: Cost and reliability as a function of the initial

velocity fraction ~
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Structural test problems

B.1 Test problem geometries
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Material: E =107 psi
Density: 0.1 Ibm/in®
Yield stress: 25000 psi
Displacement limit: 2 in
Length: L =360 in
Load: P =100 kip

Figure B.1: 10-bar truss
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Material: E =107 psi
Density: 0.1 Ibm/in?
Stress limit: 40000 psi
Displacement limit: 0.35 in
Length: L=25in

Figure B.2: 25-bar truss
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Material:
Density: 0.1 Ibm/in?
Loads: P; = 100 kip

Py =100 kip
Displacement limit: 2 in

Figure B.3: 36-bar truss

~

~J
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B.2 Numerical results

B.2.1 Penalty constraint method without social pressure
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Optimum PSO-DIV variant

solution solution
s (%) 5 2 1
£l (bs) 4781.55 4682.07 4643.86
a 34.75 10.32 6.66
Ny, (ave.) 781 949 1185
Reliability 10/10  9/10 8/10
Best found f; , (Ibs) 4607.1 4713.56  4665.98 4632.90
NI 0 0.1628  0.0426  0.0604
T 25.358 19.674 21.142  24.528
T 5.000 5.706 5.039 5.326
T3 17.839 18.897 19.904 15.263
Ty 11.238 7.655 10.988  14.938
T5 5.000 5.094 6.901 5171
T 5.000 6.442 6.125 5.524
T7 5.000 10.601  5.469 5.493
Tg 15.501 14.787 14.801  14.552
Tg 15.893 9.400 13.410  13.297
T1g 5.000 9.837 6.249 6.104
Nye 492 1177 888

Table B.1: Convex 10-bar truss results with a priori stopping criterion
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Optimum PSO-DIV variant

solution solution
e (%) 5 > 1
£ . (lbs) 529240 5153.62 .5105.78
a 15.120 5.776 4.818
N¢. (ave.) 1304 1609 2019
Reliability 10/10 10/10 10/10
Best found f;_, (Ibs) 5060.85 5260.94 5144.22 5094.34
NI 0 0.0784 0.129 0.0886
ey 30.522 29.208 27.461 29.148
To 0.100 0.462 0.787 0.35h
T3 23.200 22,853 24337 23.354
L 15.223 11.717  12.868  13.999
Ts 0.100 0.344 0.336 0.130
Tg 0.551 0.833 0.971 0.327
Ty 7457 10.230 7.614 9.086
Tg 21.036 26.118 23.568  19.466
Zg 21.528 18.619  20.730  21.847
T1g 0.100 1.135 0.105 0.650
Ny 1034 1002 1541

Table B.2: Non-convex 10-bar truss results with a priori stopping criterion

80
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Optimum PSO-DIV variant

solution solution
es (%) 5 2 1
f., (Ibs) 569.22  555.08 550.29
g 3.639 1.144 3.639
Ny, (ave.) 1324 1941 2528
Reliability 10/10 10/10 10/10
Best found f,, (Ibs) 545.04 559.556 552.32 549.30
NI 0 0.000  0.000 0.00996
Ty 0.010 0.268 0.525 0.085
) 2.042 1.741 2134 1.960
T3 3.002 3.341 2,705  3.087
T4 0.010 0.226  0.019  0.063
Tk 0.010 0.154 0.021 0.073
Tg 0.683 0.679  0.672 0.756
Z7 1.623 1.881  1.737  1.675
Tg 2.671 2.486 2.740  2.533
Nye 1322 2787 2083

Table B.3: 25-bar truss results with a prior: stopping criterion
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Optimum PSO-DIV variant

solution solution
es (%) 5 2 1
£, (Ibs) 37457.34 36415.98 36078.53
a 44.012 37.836 4.740
Ny (ave.) 2970 5833 7438
Reliability 10/10 10/10 10/10
Best found f , (lbs) 35726 37375.39 36325.53 35602.03
NI 0 0.00836  0.000 0.0192
T 38.715 29.886 34.809 48.914
T 24.111 39.694 25.539 16.455
T3 7.138 6.318 10.703 8.539
T4 95.047 93.355 94.658 97.451
Ts 59.794 47.074 54.997 64.444
Tg 14.435 13.139 15.291 14.104
Ty 5.000 7213 5.240 5.056
Tg 5.000 7.962 6.816 5.380
Tg 14.564 17.831 16.800 15.543
T10 5.000 5.263 6.162 5.075
T11 5.000 5.492 5.966 5.058
T1o 5.000 7.800 5.264 5.043
T13 28.042 38.046 36.440 23.952
T1q 28.042 27.796 27.225 28.301
T1s 27.684 36.206 25.934 27.852
T16 27.684 18.230 29.674 28.017
Tt 28.653 31 ATH 29.977 30.275
T1g 28.653 30,193 23.198 24.458
T1g 5.000 5.940 5.159 5.072
Tag 5.000 5.154 5.183 5.033
Top 5.000 5.409 5:663 5.012
Ny, 2421 6546 10374

Table B.4: Convex 36-bar truss results with @ priori stopping criterion
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Optimum PSO-DIV variant

solution solution
Stopping Ny, 2000 1000 500
€a 0.01 0.01 0.01
f2 ., (1bs) 4606.26  4611.13 4606.56
o3 0.2540 5.590 0.794
Ny, (ave.) 26193 16298 7048
Reliability 10/10  10/10  10/10
Best found f, (lbs) 4607.1 4606.06  4607.19 4606.04
NI 0 0.001040 0.00433 0.00102
i 25.358 25.269 24956  25.311
Ty 5.000 5.000 5.001 5.000
T3 17.839 17.898 18.256  17.919
T 11.238 11312 11.204  11.200
T5 5.000 5.000 5.000 5.000
g 5.000 5.000 5.000 5.000
7 5.000 5.000 5.209 5.000
Ty 15.501 15.478 15.132  15.495
Tg 15.893 15.842 16.046  15.859
T10 5.000 5.000 5.000 5.000
Ny, 18984 19131 8167

Table B.5: Convex 10-bar truss results with logical stopping criterion
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Optimum PSO-DIV variant
solution solution

Stopping Ny 2000 1000 500

€a 0.01 0.01 0.01
72 (lbs) 5064.05 5064.36 5064.70
o 7.306 5.119 7.986
Ny, (ave.) 23242 13219 6688
Reliability 10/10  10/10  10/10
Best found f_, (Ibs) 5060.85  5059.89 5060.10 5060.06
NI 0 0.0175  0.000 0.00131
T 30.522 29.992  29.880  29.997
To 0.100 0.100 0.100 0.100
T3 23.200 23.088  23.505  23.629
Ty 15.223 15.329  15.281 15.232
5 0.100 0.100 0.100 0.100
Tg 0.551 0.570 0.564 0.552
T 7.457 7.459 7.426 7.419
T 21.036 21.169 21.193 21.166
Ty 21.528 21.708 21.546  21.450
T 0.100 0.100 0.100 0.100
Ny¢. 21824 16991 8537

Table B.6: Non-convex 10-bar truss results with logical stopping criterion
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Optimum PSO-DIV variant

solution solution
Stopping Ny 2000 1000 500
€a 0.01 0.01 0.01
f . (Ibs) 546.56  547.67  547.11
o 1.092 1.501 1.402
Ny (ave.) 9914 6520 3003
Reliability 10/10  10/10  10/10
Best found f7,, (Ibs) 545.04 545.33 545.77  545.89
NI 0 0.000136 0.00007 0.0100
I 0.010 0.010 0.010 0.010
T9 2.042 2.025 2.093 2.143
T3 3.002 2.995 3.140 2.962
oy 0.010 0.010 0.010 0.010
Tx 0.010 0.010 0.010 0.010
Tg 0.683 0.641 0.672 0.614
T7 1.623 1.645 1.525 1.564
Tg 2.671 2.729 2.675 2.793
N¢e 6436 2659 4122

Table B.7: 25-bar truss results with logical stopping criterion
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Optimum PSO-DIV variant

solution solution
Stopping Ny, 2000 1000 500
€q 0.01 0.01 0.01
[ (Ibs) 35743.58 35726.16 35673.95
a 65.370 116.551  0.445
N¢e (ave.) 39886 23577 14666
Reliability 9/10 10/10 10/10
Best found f , (Ibs) 35726 35672.98 35673.23 35673.12
NI 0 0.167 0.028 0.008
<28 38.715 38.577 38.691 39.184
T 24.111 24.273 24.310 23.735
Ty 7.138 7.226 7.048 7.154
L4 95.047 94.594 94.604 94.536
T 59.794 59.825 59.597 59.624
T 14.435 14.318 14.478 14.410
Xy 5.000 5.000 5.000 5.000
Tg 5.000 5.000 5.000 5.000
Ty 14.564 14.453 14.559 14.501
Z10 5.000 5.000 5.000 5.000
1 5.000 5.000 5.000 5.000
Z12 5.000 5.000 5.001 5.000
13 28.042 28.039 28.118 27.880
T14 28.042 27.969 27.691 28.055
Z1s 27.684 27.525 27.460 27.667
T16 27.684 27.550 27.790 27.497
T17 28.653 28.533 28.515 28.501
T1g 28.653 28.522 28.565 28.618
T1g9 5.000 5.000 5.000 5.000
T 5.000 5.000 5.000 5.000
o1 5.000 5.000 5.001 5.000
Nge 37506 22427 12329

Table B.8: Convex 36-bar truss results with logical stopping criterion
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B.2.2 Social pressure modification method
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Optimum PSO-DIV variant

solution solution
es (%) 5 2 1
f,f’est (Ibs) 4819.40 4694.14 4650.74
a 14.042  5.206 1.882
Ny, (ave.) 425 936 1302
Reliability 10/10 10/10 10/10
Best found f7_, (Ibs) 4607.1 4790.98 4682.30 4647.62
NI 0 0.0000  0.0000  0.0000
] 25.358 24.761  25.665 24.181
To 5.000 5.701 5.122 5.032
T3 17.839 19.879  21.799  21.096
47 11.238 11.817  8.908 11.449
T 5.000 6.231 0.286 5071
Tg 5.000 6.904 0.242 5.063
7 5.000 7.290 7.832 6.155
Tsg 15.501 10.476  13.130 12.456
Tg 15.893 16.221 13.696  15.765
T10 5.000 6.876 6.365 5.913
Ny, 610 954 1180

38

Table B.9: Social pressure modified PSOA: Convex 10-bar truss results with a prioristopping

criterion
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Optimum PSO-DIV variant
solution solution

& (%) 5 2 1

fo., (Ibs) 5293.93 5153.06 5108.54
a 11401 8142 3.451
N;. (ave.) 803 1083 1366
Reliability 10/10  10/10  10/10
Best found f, (Ibs) 5060.85 5277.19 5134.86 5100.52
NI 0 0.0066  0.0000  0.0032
Ty 30.522 26.401 28.174  29.812
T 0.100 0.184 0.480 0.186
T3 23.200 22.034 23.646  25.610
Ty 15:223 17.376  14.359  16.452
Ts 0.100 0.497 0.139 0.128
Tg 0.551 1.355 0.245 0.496
T7 7.457 6.992 8.497 7.422
Ts 21.036 25.164  23.827 20.411
Tg 21.528 22.834 21.015 20.741
Z1g 0.100 0.491 0.113 0.153
Ny 897 969 1206

Table B.10: Social pressure modified PSOA: Non-convex 10-bar truss results with a prior:
stopping criterion
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Optimum PSO-DIV variant

solution solution

e (%) 5 9 1

f2 .. (Ibs) 569.24 554.56 550.26
a 3.034 1.893 0.204
Ny, (ave.) 1029 1329 2616
Reliability 10/10 10/10 10/10
Best found fi ., (Ibs) 545.04 561.42 550.38 549.82
NI 0 0.000  0.000  0.000
i) 0.010 0.292 0.092 0.055
To 2.042 1.964 2.208 2.012
T3 3.002 3.014 3.165 2.744
Ty 0.010 0.142 0.051  0.025
i 0.010 0.433 0.068  0.039
Tg 0.683 0.621 0.726  0.735
T7 1.623 1.809 1.452 1.823
Tg 2.671 2.683 2.616 2.638
Ny 1062 765 3069

Table B.11: Social pressure modified PSOA: 25-bar truss results with a priori stopping
criterion
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Optimum PSO-DIV variant
solution solution

& (%) 5 ) 1

fi .. (1bs) 37450.93 36489.65 36074.39
a 59.918 67.874 11.952
Ny (ave.) 1232 1973 2431
Reliability 10/10 9/10 10/10
Best found f ., (Ibs) 35726 37340.09 36385.04 36044.45
NI 0 0.0144 0.012 0.011
in) 38.715 31.449 41.804 35.538
Zo 24.111 27.103 21.082 22.024
3 7.138 16.533 6.752 18.632
Ty 95.047 86.386 97.298 90.770
Ts 59.794 51.480 64.502 60.527
Tg 14.435 18.869 15.385 14.742
X7 5.000 5.674 5.510 5.214
Tg 5.000 6.386 7.810 5.518
Tg 14.564 19.458 15:522 17323
T1o 5.000 16.851 5.298 5.191
rn 5.000 16.223 5.944 5.450
12 5.000 5.160 5.316 5.646
Z13 28.042 33.090 35.448 27.734
T4 28.042 25.307 15.944 30.645
Tis 27.684 27.160 26.140 27.238
T16 27.684 30.415 29.242 27.214
T 28.653 29.223 29.592 30.169
T1g 28.653 31.422 27.427 25.223
Tig 5.000 5.342 5.249 5.147
T2 5.000 5.77 5.803 5.065
Toy 5.000 5.505 5.110 2.136
Ny, 1091 1778 1490

Table B.12: Social pressure modified PSOA: Convex 36-bar truss results with a prior: stop-
ping criterion
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Optimum PSO-DIV wvariant
solution solution

Stopping Ny, 2000 1000 500

€q 0.01 0.01 0.01
[ (bs) 4606.11 4606.12 4612.72
a 0.163 0.077 15.733
Ny, (ave.) 9505 8552 6269
Reliability 10/10 10/10 10/10
Best found f, (Ibs) 4607.1 4606.03 4606.04 4606.03
NI 0 0.000 0.000 0.000
T 25.358 25.342  25.337  25.313
T 5.000 5.000 5.000 5.000
T3 17.839 17.843 17.817 17.854
£ 11.238 11.244 11.234 11.245
& 5.000 5.000 5.000 5.000
T 5.000 5.000 5.000 5.000
Tr 5.000 5.000 5.000 5.000
Tg 15.501 15.467  15.541 15.470
Tg 15.893 15.886 15.842  15.893
T10 5.000 5.000 5.000 5.000
Niye 7392 6379 5866

Table B.13: Social pressure modified PSOA: Convex 10-bar truss results with logical stopping

criterion
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Optimum PSO-DIV variant

solution solution
Stopping Nye 2000 1000 500
€g 0.01 0.01 0.01
fl.. (Ibs) 5067.51 5062.33 5066.69
a 17.509  5.121 7.309
Ny, (ave.) 10194 8011 4885
Reliability 10/10 10/10 10/10
Best found f , (Ibs) 5060.85 5059.85 5059.89 5060.16
NI 0 0.00128 0.001 0.001
T 30.522 29.999 29.998  29.901
T 0.100 0.100 0.100 0.100
T3 23.200 23.268 23.323 23.484
T4 15.223 15,129 15320 15.171
Ty 0.100 0.100 0.100 0.100
T 0.551 0.554 0.553 0.545
T7 T7.457 7.454 7.456 7.445
g 21.036 21.232  21.280 21.320
Tg 21:523 21.670 21.448  21.494
T10 0.100 0.100 0.100 0.100
Ny, 10260 8212 6569

Table B.14: Social pressure modified PSOA: Non-convex 10-bar truss results with logical
stopping criterion
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Optimum PSO-DIV variant

solution solution

Stopping Ny, 2000 1000 500

€q, 0.01 0.01 0.01

T2, (1bs) 546.84 547.95 550.34
g 1.478 2371  3.223
Ny, (ave.) 9596 6301 3277

Reliability 10/10 10/10 10/10
Best found fZ, (lbs) 545.04 545.21 545.55 545.58
NI 0 0.000  0.000  0.000
i 0.010 0.010 0.010 0.018
Z9 2.042 2121 2138 2.139
T3 3.002 2.893 3.052 2.878
T4 0.010 0.010  0.010  0.018
b 0.010 0.010  0.010 0.014
T 0.683 0.671  0.663 0.667
Ty 1.623 1.611 1.527 1.604
T3 2.671 2017 2704 2.727
Ny 7126 6774 3492

Table B.15: Social pressure modified PSOA: 25-bar truss results with logical stopping crite-
rion
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Optimum PSO-DIV variant
solution solution

Stopping Ny, 2000 1000 200

€a 0.01 0.01 0.01

Ji . (Ibs) 38983.18 35742.00 35762.24
o3 70.389 60.567 56.896
Ny, (ave.) 9287 7844 5102
Reliability 10/10 10/10 10/10
Best found f£, (Ibs) 35726 35673.91 35673.90 35674.71
NI 0 0.00829  0.00826  0.00837
vl 38.715 38.607 38.109 38.178
Ty 24.111 24.665 24.890 25.031
T3 7.138 6.811 7.077 6.885
T4 95.047 94.767 94.926 94.320
Ts 59.794 09.637 59.424 59.633
Ze 14.435 14.391 14.432 14.520
T 5.000 5.000 5.000 5.000
xg 5.000 5.000 5.000 5.000
Tg 14.564 14.514 14.549 14.539
T1g 5.000 5.000 5.000 5.000
Z11 5.000 5.000 5.000 5.000
T19 5.000 5.000 5.000 5.000
T3 28.042 28.087 27.902 27.588
T14 28.042 27.806 28.011 28.233
Z1s 27.684 27.220 27.611 27.737
T1g 27.684 27.721 27.413 27.571
Z1i7 28.653 28.756 28.612 28.563
T1g 28.653 28.455 28.496 28.571
T1g 5.000 5.000 5.000 5.000
Ta0 5.000 5.000 5.000 5.000
Ta1 5.000 5.000 5.000 5.000
Nie 18846 12802 10250

Table B.16: Social pressure modified PSOA: Convex 36-bar truss results with logical stopping
criterion
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Optimum  Constriction

Dynamic inertia

solution  factor and velocity red.
es (%) 1 Ii
Fi 36054.13 36074.39
a 29.991 11.952
Nye (Ave.) 4442 2431
Reliability 10/10 10/10
Joest 35726 35975.82 36044.45
NI 0 0.00291 0.011
x 38.715 34.040 35.538
T 24.111 32.391 22.024
Ty 7.138 6.479 18.632
T4 95.047 100.794 90.770
T 59.794 61.501 60.527
Tg 14.435 13.427 14.742
T7 5.000 5.227 5.214
xg 5.000 2.119 5.518
Tg 14.564 12,137 17.328
T1g 5.000 5.291 5.191
Z1 5.000 5.bT1 5.450
T19 5.000 5.070 5.646
13 28.042 27.526 27.734
T14 28.042 27.858 30.645
T3 27.684 29.411 27.238
T 27.684 24.788 27.214
T17 28.653 26.359 30.169
218 28.653 30.316 25.223
T19 5.000 5.119 5.147
Zag 5.000 5.265 5.065
T 5.000 5.020 5.136
Ny, 4436 1490

96

Table B.17: 36-bar truss: Comparison between constriction factor and dynamic inertia /

velocity reduction variants
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B.2.3 Summary of standard penalty method vs. penalty method
with social pressure
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Standard penalty method

Penalty with social pressure

€. —5%
72 (Ibs) 4781.55 4819.40
G 34.746 14.04
Ny, (ave.) 780 425
Convergence ratio 10/10 10/10
Best found fZ, (lbs) 4713.56 4790.98
Normalized infeasability 0.1628 0.0000
Nte 492 610

e; = 2%
[ (Ibs) 4682.07 4694.14
o 10.322 5.206
Ny (ave.) 949 936
Convergence ratio 9/10 10/10
Best found f2 ., (Ibs) 4665.98 4682.30
Normalized infeasability 0.0426 0.0000
Ny, 1177 954

es = 1%
fi., (1bs) 4643.86 4650.74
o 6.659 1.882
Ng. (ave.) 1185 1302
Convergence ratio 8/10 10/10
Best found fi,, (Ibs) 4632.90 4647.62
Normalized infeasability 0.0604 0.0000
Ny 888 1180

Table B.18: Convex 10-bar problem: Comparison between constraint implementations
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Standard penalty method

Penalty with social pressure

e —nh
fi., (Ibs) 5292.40 5293.94
o 15.120 11.401
Ny, (ave.) 1304 803
Convergence ratio 10/10 10/10
Best found f7,,, (Ibs) 5260.94 527712
Normalized infeasability 0.0784 0.0066
Nie 1034 897

&= 2%
f2., (1bs) 5153.62 5153.06
o 5.776 8.142
Ny, (ave.) 1609 1083
Convergence ratio 10/10 10/10
Best found f7.,, (Ibs) 5144.22 5134.86
Normalized infeasability 0.129 0.000
Ny, 1002 969

es = 1%
[, (Ibs) 5105.78 5108.54
o 4.818 3.451
Ny, (ave.) 2019 1366
Convergence ratio 10/10 10/10
Best found f7 , (Ibs) 5094.34 5100.52
Normalized infeasability 0.0886 0.0032
Ny, 1541 1206

Table B.19: Non-convex 10-bar problem: Comparison between constraint implementations
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Standard penalty method

Penalty with social pressure

€s = 5%
T2, (Ibs) 569.22 569.24
a 3.639 3.034
Nje (ave.) 1324 1029
Convergence ratio 10/10 10/10
Best found f, (1bs) 559.55 561.42
Normalized infeasability 0.000 0.000
N 1322 1062

es = 2%
[ (Ibs) 555.08 554.56
o 1.144 1.893
Ny (ave.) 1041 1329
Convergence ratio 10/10 10/10
Best found f7,, (Ibs) 552,32 550.38
Normalized infeasability 0.000 0.000
Nye 2787 765

& =1%
72 (Ibs) 550.29 550.26
a 3.639 0.204
Ny, (ave.) 2528 2616
Convergence ratio 10/10 10/10
Best found £, (1bs) 549.30 549.82
Normalized infeasability 0.0099 0.000
Nyo 2083 3069

Table B.20: Non-convex 25-bar problem: Comparison between constraint implementations
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Standard penalty method Penalty with social pressure

€s = 5%
fl.. (1bs) 37457.34 37450.93
o 44.012 59.918
Ny, (ave.) 2970 1232
Convergence ratio 10/10 10/10
Best found fZ _, (Ibs) 37375.39 37340.09
Normalized infeasability 0.0083 0.0144
Ny 2421 1091

e = 2%
fl.. (Ibs) 36415.98 36489.65
a 37.836 67.874
Ny, (ave.) 5833 1973
Convergence ratio 10/10 9/10
Best found f£ _, (Ibs) 36325.53 36385.04
Normalized infeasability  0.000 0.0120
N¢. 6546 1778

&= 1%
fi.. (bs) 36078.53 36074.39
a 4.740 11.952
Ny, (ave.) 7438 2431
Convergence ratio 10/10 10/10
Best found fZ_, (Ibs) 35602.03 36044.45
Normalized infeasability 0.0192 0.0114
Ny, 10374 1490

Table B.21: Convex 36-bar problem: Comparison between constraint implementations
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Figure B.4: Convex 10-bar truss: Typical history plot for contriction and dynamic inetia

and maximum velocity variants
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Figure B.5: Non-convex 10-bar truss: Typical history plot for contriction and dynamic inetia

and maximum velocity variants
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Figure B.6: Non-convex 25-bar truss: Typical history plot for contriction and dynamic inetia
and maximum velocity variants
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Figure B.7: Non-convex 36-bar truss: Typical history plot for contriction and dynamic inetia
and maximum velocity variants



Appendix C

Population and evolutionary based
methods

C.1 Introduction

In this appendix a brief overview of various adaptive stochastic approaches to global opti-
mization are detailed. This presentation is by no means exhaustive and is meant only as
an introduction to other related approaches to global optimization, some of which are, like
particle swarms, inspired by phenomena found in nature.

The algorithms listed are all based on random sampling in the feasible region. Some of these
approaches can be applied to both continuous and discrete global optimization problems.

C.1.1 Evolutionary computation

The evolutionary computation approach mimics the process of natural evolution by which
superior individuals are selected from a population to generate offspring, which inherit
disturbed parental genetic information. By this process of evolution simulation it is at-
tempted to obtain individuals with above-average fitness. Reproduction of individuals is
non-deterministic, allowing for the continual production of new genetic information (muta-
tion).

Evolutionary computation can be subdivided into three strongly related but independently
developed approaches [52], namely genetic algorithms, evolutionary programming and evo-
lutionary strategies.

Genetic algorithms

Genetic algorithms (GA’s) were first introduced by Holland [53, 54, 55| and subsequently
studied by De Jong [56, 57, 58], Goldberg [59, 60, 61, 62], and others.
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The genetic algorithm approach entails a ‘population’ of candidate solution points which is
sequentially ‘evolved’” in a heuristic process which mimics biological evolution as found in
nature. The adaptive search consists of a competitive selection process where the least fit
candidates in the population have a low probability of survival. The remainder are then
‘recombined’ or ‘paired’ with other candidates by exchanging components or ‘genes’. There
is also a ‘mutation’ operator which may (randomly) adjust one or more set of genes in
a candidate. Since this process of recombination and mutation occurs sequentially, each
generation of candidate solution points will be biased toward regions in the problems space
of increased fitness. Genetic ‘drift’, caused by mutation, prevents the search from stagnating
and provides a means for refined ‘local’ search during the terminal phase of the search.

Evolutionary programming

Evolutionary programming (EP) was first introduced by Fogel [63, 64], and further studied
by Atmar [65], Burgin [66, 67] and others.

Evolutionary programming was initially offered as an ambitious means of creating artificial
intelligence. It involved the evolution of finite state machines to predict events on the basis
of former observations. A finite state machine is an abstract machine which takes a sequence
of symbols as an input and transforms them by means of a finite set of transition rules with
finite states to a sequence of output symbols. The performance of this machine is usually
gauged by its ability to predict events correctly.

Evolutionary strategies

Evolutionary strategies (ES) were first developed by Rechenberg (68, 69] and Schwefel [70,
71], and extended by Herdy [72], Kursawe [73] and others.

This approach was originally designed with the objective of solving difficult discrete and
continuous parameter optimization problems. The main difference between ES and GA'’s lie
in the calculation of fitness of a specific genotype, and the manner in which the operators
(mutation, recombination and selection) manipulate this genotype. More specifically, while
mutation is only used in GA’s to avoid stagnation, this operator becomes the primary means
of ‘evolving’ toward a solution in ES. A further difference is the manner in which selection is
applied. Selection in the case of ES is absolutely deterministic, whereas this is not the case
in the context of GA’s. Therefore, arbitrary small differences in fitness can play a large role
in deciding on the survival of a individual in ES.

C.1.2 Simulated annealing

This Monte Carlo based approach to global optimization is inspired by a physical analogy
of the atomic structure in a crystalline material which strives to arrive at a stable configu-
ration (minimum potential energy, globally or locally). This approach was first applied by
Metropolis et al. [74] and subsequently developed further by van Laarhoven and Aarts [75]
and Webb [76], amongst others.
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In the analogy the current energy state of the thermodynamic system is equivalent to the
current solution to the combinatorial problem; the energy equation for the thermodynamic
system is analogous to the objective function, and the ground state is analogous to the
global minimum. The major difficulty in implementation of the algorithm is that there is no
obvious analogy for the temperature T with respect to a free parameter in the combinatorial
problem. Furthermore, avoidance of entrapment in local minima (quenching) is dependent
on the "annealing schedule”, i.e. the choice of initial temperature, how many iterations are
performed at each temperature, and how much the temperature is decremented at each step
as cooling proceeds.

The simplified working of the algorithm is as follows: A random step in the problem space is
taken and the energy state (objective function) evaluated at this position. Any step which
yields a overall decrease in the overall energy state is accepted. The step size is reduced as
the search progresses to facilitate a more refined search as the minima is approached.

C.1.3 Ant colony optimization

The ant colony optimization approach was first introduced by Dorigo et al. [77] and extended
by Stutzle and Hoos [78, 79] among others.

The ant colony optimization (ACO) meta-heuristic takes it’s inspiration from the foraging
behavior of ants, in particular their ability to find the shortest routes between their nests and
food sources. While traveling to and from these food sources ants deposit a pheromone trail
which serves as markers, to aid themselves and other ants to return to the nest or to find the
route to the food source. The ants are able to find the shortest route to their food supply
when presented with a set of alternate routes by information inherent in the pheromone
trail. Shorter routes get a higher density of pheromone deposit, because ants which choose
this route, per chance, will more rapidly reconstitute the interrupted pheromone trail than
those who choose the longer path. Because ants tend to choose, by probability, to follow
the strongest pheromone trail, the pheromone will accumulate more rapidly on the shorter
routes. This reinforces the use of shorter paths by process of positive feedback. This method
of optimization has been successfully applied to the well known traveling salesman problem,
among others.

C.1.4 Tabu Search

This method was first introduced by Glover [80] and studied further by Laguna [81]. The
motivation behind this type of approach is to ‘forbid’ search moves to previously explored
search points in the (usually discrete) solution space. With the tabu search philosophy it
is sometimes allowable to temporarily accept new inferior solutions to avoid paths already
investigated. This approach can lead to exploring new regions of D, with the goal of avoiding
local minima and ultimately finding a solution by ‘globalized’ search.

Tabu search has traditionally been applied to combinatorial optimization (e.g., scheduling,
routing, and traveling salesman) problems.The technique can be adapted to include contin-
uous problems by discrete approximation (encoding) of the continuous problem (in a similar
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fashion as done in genetic algorithms).

C.2 Clustering methods

The clustering method among others, was first presented by Becker and Lago [82] and
remained unexploited until the work of T6rn [83, 84]. It was further developed by a variety
of authors (Dixon and Szegd [42]). Clustering global optimization methods can be viewed
as a modified form of the standard multi-start approach, which performs a local search from
several points distributed over the entire search domain. A drawback of multi-start is that
when many starting points are used, the same local minimum may be identified several
times, thereby leading to an inefficient global search. Clustering methods attempt to avoid
this inefficiency by carefully selecting points at which the local search is initiated. The three
main steps of clustering methods are:

(1) Sample points in the search domain D,
(2) Transform the sampled point to group them around the local minima, and
(3) Apply a clustering technique to identify groups that (hopefully) represent neighbor-

hoods of local minima.

If this procedure successfully identifies groups that represent neighborhoods of local minima.,
then redundant local searches can be avoided by simply starting a local search at some point
within each cluster.




Appendix D

Particle swarm optimization software

D.1 Users guide

D.2 OEPSA

In this appendix the OEPSA (Optimization Environment for Particle Swarm Algorithms)
software is presented.

D.2.1 Overview

During the investigation into the particle swarm paradigm, an environment was developed
which had to comply with the following requirements:

(a)

Portability - The software had to be developed with multiple platforms and operating
systems as target environments in mind. ANSI C was the language of choice because
of it’s common usage and ease of portability.

Visualization - In order to be able to study particle behavior during a search, some
means of realtime visualization of the swarm was required. The standard Linux graph-
ics library, svgalib, was used for this purpose.

Batch processing - For the benchmarking of multiple problems with varying algorithm
parameters an efficient batch processor was needed.

Postprocessing of results - In order for the results of test runs to be reported (with
minimal extra effort) in tables and graphs, the results had to be processed and stored
in a structured manner.

Ability to interface with external programs - The software also had to be able to
interact with extenal programs such as the finite element solver used in optimizing
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the truss structures. This interaction typically entails the passing of design variables
to the solver and receiving a fitness value and constraint values from the solver after
analysis.

(f) Script file - In order to change the algorithm parameters without recompiling code,
and to ease batch processing of large number of problems with varying parameters, a
script file reader which accepts values specified in an external human readable text file
was implemented.

All of the numerous algorithm modifications to the particle swarm detailed in this thesis

have been incorporated into the program, and can be selected by changing the appropriate
setting in the script file (see Section D.3.1).

D.3 Visual interface

The visual interface is one of the most important aspects of the software since it allows the
user to observe particle behavior. During parameter sensitivity studies it is also useful to
observe any behavioral changes brought about by parameter variations.

The visual interface only allows two user defined dimensions to be displayed at any time.

The screen is divided into two sections, the left section displays the particle swarm in real-
time moving through the problem space. The solution point is indicated by a light blue circle
and particles are indicated as white dots. Individual particle’s best remembered positions
p}. are represented by yellow dots and the overall swarm best coordinates p_f; by a red circle
with the corresponding fitness value displayed next to it.

The right section of the screen display continually updates information in the best fitness
coodinates and varying parameter values. The top right section displays the current coordi-
nates of the swarm best value pg together with the swarm best fitness value gpes;. The center
right section displays the solution coordinates and optimim fitness value, and the inertia
weight w and maximum allowable velocity v™**. The bottom section is taken up by a graph
which displays the fitness history as the search progresses.

D.3.1 Input script file

An example script file with typical values for parameters is presented below, followed by
explanations of the various applicable settings. On/off implies that either a 1 or 0 should be
used respectively.

first_problem = 1 First problem in batch set.
last_problem = 16 Last problem in batch set.
problem_repeats = 50 Number of problem repetitions.

use_display = 0 Realtime visualization (on/off).
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display_refresh = 20

history_output = 0

output_filename = result

respawn_in_feasable = 0

modification = 3

bounds_method = 3

stopping_method = 1

tolerance_method = 1

tolerance = 0.001

inertia_stop = 0.01

no_improvement_stop = 1000

no_improvement_tolerance = 0.01
velocity_stop = 0.01
limit_max_velocity = 1
amount_of_particles = 20
max_function_evaluations = 30000

allowable_infeasability = 0.02

velocity_fraction = 1
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Number of function evaluations between
display updates.

Write fitness history to file (on/off).
Batch result output filename.
Re-initialize infeasable particle until
feasable (on/off).

Type of PSOA to use:

0 = Standard pso (w = 1),

1 = Linearly decreasing momentum (w),
2 = Constriction factor (K),

3 = Dynamic inertia + velocity.

Type of bounds to enforce:

1 = No bounds,
2 = Respawn,
3 = Bounce.

Type of stopping criterion:

1 = Error minimization.

2 = Inertia stopping method,

3 = No-improve stopping method,

4 = Maximum velocity.

If stopping_method = 1, specify
tolerance method to be:

1 = stop when value comes within
absolute tolerance,

2 = stop when value comes within
percentage value of solution,

Specify either an absolute or percentile
tolerance (see above).

If stopping_method = 2, the value

of inertia weight to be stopped upon.
If stopping_method = 3, the number
of Nfe with no improvement in f(py),
within no_improvement_tolerance
before algorithm is stopped.

Absolute value to be used as stopping
criteria if stopping_method = 4.
Maximum velocity enforcement on/off.
Swarm population.

Maximum allowed function evaluations.
Normalized infeasability value which
is acceptable to user.

Initial fraction of bounds to be taken
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initial_inertia = 1.0
final_inertia = 0.5
inertia_change_end = 4000

wait_for_improvement = 10
inertia_reduction_fraction = 0.01

velocity_reduction_fraction = 0.01

initial_lambda = 1000
final_lambda = 1000000
lambda_change_end = 4000

personal_scaler = 2.0
group_scaler = 2.0

as maximum step size or "velocity”.
Linear inertia reduction initial value.
Linear inertia reduction final value.
Ny. at which to stop linear inertia
reduction.

Number of function evaluations to wait
before reducing velocity and inertia.
Absolute increment by which to reduce
inertia.

Absolute increment by which to reduce
velocity.

A penalty initial value

A penalty final value

Number of function evaluations N fe
where final_lambda is reached
Cognitive value c;

Social value ¢,

D.4 Source code

In this section selected fragments of the software developed are detailed and discussed. For
the sake of brevity only sections directly responsible for the PSOA’s workings are presented.
and the remainder (visual interface, batch processor, output postprocessor etc.) are ignored.

DA4.1

Particle swarm initialization

The following functions are responsible for initializing swarm positions @, initial velocities
g, and inertia values wy. Function values are calculated for particle positions xj. The best
swarm value f7  is selected from these, with p} set equal to the appropriate coordinate.
The maximum allowable velocity ©v™% is also calculated.

void initialize particle_positions(void)

{

/% this function initializes all the particle positions %/

int i,j,test;
int randominteger;
float randomfloat;
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float range[MAXDIMENSIONS];

for (i = 0; i < problem data.problem dimensions; ++i)
range[i] = problem_data.position upperbound[i] -

problem_data.position lowerbound[i];

if (problem_data.respawn_in_ feasable == ()

{

for (i = 0; i < problem_data.amount_of_ particles; ++i)

{

for (j = 0; j < problem data.problem dimensions; ++j)
{
randominteger = rand();
randomfloat = (float) randominteger/RAND_MAX;
particle[i].coordinates[j] = randomfloatsrangel[j] +

problem data.position_lowerbound[j];

} /+ for j x/

} Sx for i &/

}

else

{

printf (> \nRespawning particles into feasable region’?) ;
for (i = 0; i < problem_data.amount_of_particles; ++i)
do

{

test = O;

for (j = 0; j < problem_data.problem dimensions; ++j)

{

randominteger = rand();

randomfloat = (float) randominteger/RAND_MAX;

particle[i].coordinates[j] = randomfloatxrange[j] +
problem data.position_lowerbound[j];

¥

/* test if initialized position is within constraints %/

function result =
evaluate problem(problem data.problem number,problem data.problem dimensions,

particle[i].coordinates);

if (function result.normalized_infeasability >

problem data.allowable_infeasability)

{

test = 1;

printf (* ?\nRe-initializing particle %i which violates constraints by %f’°,

function_result.normalized_infeasability);

i!
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} while (test == 1);
printf (’ ?\nParticle %i normalized infeasability = %f’?, i,

function result.normalized infeasability);

particle[i].constraints_violated = 0;
} /% for i %/
b /% if else x/
} /% initialize_particle_positions %/

void initialize_particle_velocities(void)

{

/+ this function initializes all the particle velocities %/
iht 4,73

int randominteger;

float randomfloat;

float velocity_range[MAXDIMENSIONS] ;

/* Init velocity bounds x/
for (j = 0; j < problem_data.problem dimensions; ++j)
{
velocity_range[j] = velocity fraction *
(problem data.position_upperbound[j]-problem data.position lowerbound[j]);

}

for (i = 0; i < problem data.amount_of_particles; i++)

{

for (j = 0; j < problem_data.problem _dimensions; ++j)
{
randominteger = rand();
randomfloat = (float)randominteger / RAND_MAX;
particle(i] .velocity[j] = randomfloat * velocity range[j]l -

(velocity_range[j] % 0.5);

} /% for j =/

} /% for i x/

} /% initialize particle velocities */

void initialize particle_inertia_values(void)
/+ this function sets up all the particle inertia values */
im%: s
int randominteger;
float randomfloat;
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float range;

/% Init all at specified initial_inertia value */
for (i = 0; i < problem data.amount_of_particles;i++)
particle[i].inertia = problem data.initial inertia;

} /+ initialize particle inertia values %/

void initialize_particle_function_values(void)

{

/+ This function initializes all the particle function values */
s« £ il ) 6

int infeasable_particles = 0;

for (i = 0; i1 < problem data.amount_of_particles; ++1)

{

function_result =

evaluate_problem(problem_data.problem number,problem data.problem dimensions,

particle[i].coordinates);

particle[i].current_value = function result.value;

particle[i] .best_value = function_result.value;

114

particle[i] .normalized_infeasability = function result.normalized infeasability;

for (j = 0; j < problem data.problem dimensions; ++j)

{

particle[i] .best_value coordinates[j] = particle[i].coordinates[j];

}

/* feasability check */

if (particle[i].normalized infeasability >= problem data.allowable infeasability)

{

particle[i] .constraints_violated = 1;
printf (’ ?\nConstraints violated =

%f?’ ,function_result.normalized_infeasability);
++infeasable_particles;

}

else

{

particle[i] .constraints violated = 0;

}

/+ Initialize best swarm value (get lowest value of the particle[}.best.valué

array and store it and its coordinates in the comm_data struct)

/% initialize swarm best if NI < NI_tol, and search for better one x/
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if (particle[i].constraints_violated == 0)
comm_data.swarm_best_value = particle[i].best_value; /* for temporary
comparison #/
comm_data.swarm_best_normalized_infeasability =

particle[i] .normalized _infeasability;

}

} /* for particle i x/

printf (? ’\nParticles outside feasable region =
%i/%i’’ ,infeasable_particles,problem data.amount of_ particles);

/* search for best particle fitness value */
for (i = 0; i < problem data.amount_of particles; ++i)
if ( (particle[i].best_value < comm_data.swarm best_value) &&
(particle[i] .constraints_violated == 0) )
comm_data.swarm best_value = particle[i].best_value;
comm_data.swarm best_normalized infeasability =

particle[i] .normalized_infeasability;

for (j = 0; j < problem_data.problem dimensions; ++j)
{
comm_data.swarm_best_coordinates[j] = particle[i] .best_value_coordinates[j];
} /% for j %/
} /% for i x/
Y /% if %/

} /% initialize_particle function_values %/

void initialize swarm max_velocity(void)

{

/% This function initializes the swarm maximum velocity */
double range;

int 95

for (j = 0; j < problem_data.problem dimensions; ++j)

{

comm_data.swarm max_velocity[j] = velocity_fraction *
(problem data.position_upperbound[j]-problem data.position_lowerbound[jl);

}

} /* initialize_swarm
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D.4.2 Search

The following code implements the velocity (2.2) and position (2.1) rules. Allowance for the
limitation of maximum velocity in the velocity update function and bounds implementation
in the position update function are also implemented. Additional functions required during
the search are detailed, which update particle inertia values, maximum allowed velocities
and fitness values.

void update_particle_velocity(int i)

{

/% This function is used to update a single particle velocity during the search %/
int j;

int randomintegerl;

double randomdoublel;

int randominteger2;

double randomdoubleZ;

double range;

double personal_scaler problem data.personal_scaler;

double group_scaler
double old;

double personal;

problem data.group scaler;

double group;

double varphi;

for (j = 0; j < problem data.problem dimensions; ++j)
{
randomintegerl = rand();
randomdoublel = (double) randomintegerl/RAND MAX;
randominteger2 = rand();
randomdouble2 = (double) randominteger2/RAND MAX;

old = particle[i].velocity[j]l;

/% social pressure %/
if ( (particle[i].constraints_violated == 1) &&
(problem_data.use_social_pressure == 1) )

{

personal = 0;

}
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else
{
personal =

randomdoublelx(particle[i].best_value_coordinates[j]-particle[i].coordinates[j]);

}

group =
randomdouble2x(comm data.swarm best_coordinates[j]-particle[i].coordinates[j]);

if (problem data.modification != 2)
{
particle[i].velocity[j] = particle[i].inertiaxold + personal_scalerspersonal
+ group scalerxgroup;
}
else /* constriction factor */
{
varphi = personal_scaler + group_scaler;
constriction factor = 2/(fabs(2 - varphi - sqrt(SQUARE(varphi) - 4*varphi)
));
particle[i].velocity[j] = constriction factorx(old + personal scalerxpersonal
+ group_scalerxgroup) ;

}

/* max speed check =/
1f (problemfdata.1imit_max_velocity == 1)

{

if (particle[i].velocity[j] > comm_data.swarm max velocity[j]l)

1}

particle[i] .velocity[j] comm_data.swarm max_velocity[j];

if (particle[i].velocity[j] < -comm data.swarm max_velocity[j])

1}

particle[i].velocity[j]
O Y ¢
} /% for j =/
} /% update_particle_velocity %/

-comm_data.swarm max_velocity[j];

void update particle_position(int i)

{

/* This function is used to update a particle position during the search */
int Ljiyles

int randominteger;

float randomfloat;

double range[MAXDIMENSIONS];

double temp;

double temp2;

double upperbound, lowerbound;
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switch(problem data.bounds method)
{
case 1:
/% no bounds method */

for (j = 0; j < MAXDIMENSIONS; ++j)
{
particle[i].coordinates[j] = particle[i].coordinates[j] +
particle[i] .velocity[j];

}

break;

case 2:

/* random respawn position if out of bounds method */

for (j = 0; j < problem data.problem dimensions; ++j)
{
particle[i].coordinates[j] = particle[i].coordinates[j] +
particle[i].velocity[j];

if ((particle[i].coordinates[j] < problem data.position lowerbound[j]) ||
(particle[i].coordinates[j]l>problem data.position upperbound[j]))
{
randominteger = rand();
randomfloat = (float) randominteger/RAND MAX;
particle[i].coordinates[j] = randomfloatsrange[j] +
problem data.position lowerbound[j];

} /& if %/

} /xfor j x/
break;
case 3:

/* bounce off boundaries method (velocity reversal/sign changover)*/

for (j = 0; j < problem data.problem dimensions; ++j)
1
particle[i].coordinates[j] = particle[i].coordinates[j] +
particle[i] .velocity[j];
if (particle[i].coordinates[j] < problem data.position_lowerbound[j])
{
particle[i].velocity[j] = fabs(particle[i].velocity[jl);
particle[i].coordinates[j] = particlel[i].coordinates[j] +
particle[i] .velocityl[j];
Y SE AT %/
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else if (particle[i].coordinates[j] > problem data.position upperbound[j])
{
particleli] .velocity[j] = -fabs(particle[i].velocity[j]);
particle[i].coordinates[j] = particle[i].coordinates[j] +
particle[i].velocity[j];
} /% else %/
} /% for j %/
break;
} /* case %/
} /* update_particle position */

void update particle_function value(int i)

{

/* This function updates a particle function value during search #/

function result =
evaluate_problem(problem‘data.problem_number,problemﬁdata.problem_dimensions,
particle[i].coordinates);

particle[i].currentﬁvalue = function_result.value;

particle[i].normalized_infeasability = functionfresult.normalizedginfeasability;

/* Infeasability check */

it (particle[i].normalizediinfeasability > problem data.allowable infeasability)
{
particle[i].constraints_violated = 1;
printf (’ ?\nconstraints violated = %f",function_result.normalized_infeasability);
} o/ Af w/

else

{

particle[i].constraints_violated = 0;
} /% else %/
} /* update_particle_function value #/

void update_inertia max_velocity(void)

{

/* Function to alter modification parameters, eg. article inertia, velocity etc #/
double inertia range;

double velocity range;

double temp;

double fraction;

int 19

inertia range = problem data.initial inertia - problem data.final inertia;
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velocity_range = problem data.initial velocity - problem data.final velocity;

switch(problem data.modification)
case 0:

/*standard pso */

for (i = 0; i < problem data.amount_of_particles; ++i)

particle[i].inertia = 1;

}

break;

case 1:

/* linearly decreasing inertia */

if (comm_data.function evaluations < problem data.inertia change_end)
{
temp = (double) (problem data.inertia change end -
comm_data.function_evaluations);
temp = (double) (temp / problem data.inertia change end);
for (i = 0; i < problem_data.amount_of_particles; ++i)
{
particle[i].inertia = problem data.final inertia + inertia rangextemp;
} /# for i x/
} /% if %/
else

{

for (i = 0; i < problem data.amount_of_particles; ++i)

{

particle[i].inertia = problem data.final inertia;
} /% for i %/
} /% else =/

break;

case 2:

/* constriction factor x/
/* nothing done to either inertia or velocity #*/
break;

case 3:

/* Dynamic inertia and velocity reduction modification */

if (no_improvement_iteration >= problem data.wait_for_improvement)
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{

no_improvement_iteration = 0;

for (i = 0; i < problem data.amount_of_particles; ++i)
particle[i].inertia = particle[i].inertia * (1 -
problem data.inertia_reduction fraction);

} x for w/

for (j = 0; j < problem_data.problem dimensions; ++j)

{

121

comm_data.swarm_max_velocity[j] = comm data.swarm max_velocity[j] * (1 -

problem data.velocity_reduction_fraction);
Y I for &/
s ik

break;
} /% end switch %/

} /* end update_inertia_max_velocity */

void update_best_function value(int i)

{

/* Updates particle_best_value and swarm_best_value and their coordinates =/

int j;

if ((particle[i].current_value < particle[i].best_value) &&
(particle[i] .constraints_violated != 1))

{

particle[i] .best_value = particle[i].current _value;

for (j = 0; j < problem data.problem dimensions; ++j)

{

particle[i] .best_value_coordinates[j] = particle[i].coordinates[j];

} /% For § %/
Y} /e Aif =/

if ((particlel[il].current_value < comm data.swarm best_value) &&
(particle[i].constraints_violated != 1))

{

if ( (particle[i].current value + problem data.noc_improvement tolerance) <

comm_data.swarm_best_value)
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{

no_improvement = 0;

}

comm_data.swarm_best_value = particle[i].current_value;
comm_data.swarm best_normalized infeasability =
particle[i] .normalized_infeasability;

no_improvement_iteration = O;

for (j = 0; j < problem_data.problem_dimensions; ++j)

{

comm_data.swarm_best_coordinates[j] = particle[i].coordinates[j];
ik o j ey
Y /% if %/

} /% update_best_function_value x*/

D.4.3 Termination

The following functions implement several stopping methods, among them the logical and a

priort stopping criteria.

void check_for_stop(FILE xoutputfilepointer, int stopping method)

{

/* Function to check if stopping condition is satisfied %/
int j;

double temp max velocity;

switch(stopping method)

{

case 1:
/* Absolute (error minimization) %/

if ((comm_data.swarm_best_value <= (problem data.solution_func value +

comm_data.tolerance) )&&(found_solution_flag == 0))

{

found_solution_flag = 1;

result[problem iteration].converged flag = 1;
result[problem iteration].function evaluations =

comm_data.function evaluations;
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result[problem_iteration] .normalized infeasability =
comm_data.swarm best_normalized_infeasability;

result [problem_iteration].swarm best_value = comm_data.swarm_best_value;

for (j = 0; j < problem_data.problem dimensions; ++j )

{

result [problem iteration] .swarm best_coordinates[j] =

comm_data.swarm_best_coordinates[j];

}

++comm_data.times_converged;
display_results();
write_outputfile(outputfilepointer,problem iteration);
} /% end if x/

break;

case 2:

/* Inertia */

if (particle[0].inertia <= problem_data.inertia_stop)

{

found_solution_flag = 1;

result [problem_iteration].converged flag = 1;

result [problem_iteration].function evaluations =
comm data.function evaluations;

result[problem_iteration] .normalized infeasability =
comm_data.swarm best normalized infeasability;

result[problem iteration].swarm best_value = comm_data.swarm best_ value;

for (j = 0; j < problem_data.problem dimensions; ++j )

{

result[problem_iteration] .swarm best_coordinates[j] =
comm_data.swarm_best_coordinates[j];

}

++comm_data.times_converged;
display_results();

write_outputfile(outputfilepointer,problem iteration);
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} /* end if =/
break;

case 3:
/* No improvement x/

if (no_improvement >= problem data.no_improvement_stop)

{

found_solution flag = 1;

result[problem iteration].converged flag = 1;

result[problem iteration].function evaluations =
comm_data.function_evaluations;

result[problem iteration] .normalized_infeasability =
comm_data.swarm _best_normalized_infeasability;

result[problem_iteration].swarm best value = comm_data.swarm best_value;

for (j = 0; j < problem data.problem dimensions; ++j )

{

result[problem iteration].swarm best_coordinates[j] =

comm data.swarm_best_coordinates[j];

}

++comm_data.times#converged;
display_results();
write outputfile(outputfilepointer,problem iteration);
} /* end if %/
break;

case 4:
/% Velocity #/

temp_max_velocity = 0;

/% check if velocity vector magnitude is smaller than velocity _stop */

for (j = 0; j < problem data.problem dimensions; ++j)

{

temp_max_velocity = SQUARE(comm_data.swarm max_velocity[j]l);

} S for § o/

if ( (sqrt(temp max velocity)) <= problem data.velocity_stop)

124
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{

found_solution_flag = 1;

result[problem iteration].converged flag = 1;

result[problem iteration].function evaluations =
comm_data.function_evaluations;

result[problem iteration] .normalized infeasability =
comm_data.swarm_best_normalized infeasability;

result[problem_iteration].swarm best_value = comm_data.swarm best_value;

for (j = 0; j < problem_data.problem dimensions; ++j )

{

result[problem_iteration].swarm best_coordinates[j] =
comm_data.swarm_best_coordinates[j];

Y E ] s
++comm_data.times_converged;
display_results();
write_outputfile(outputfilepointer,problem iteration);
1 St sy

break;
} /+ switch */
} /% check_for stop */

D.4.4 Main program

The initial part of the main program is presented below (with the postprocessing section
removed). The sequential algorithm is implemented herein, but this can easily be changed
to an asynchronous implementation by updating on a per swarm basis.

int main(void)
{

FILE sinputfilepointer, soutputfilepcinter, *historyfilepointer, *bestfilepointer,

xparameterfilepointer;
int stopping_condition flag = 0;
int counter = 0;
int iteration = 0;
int pcle;

int repeat;
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int kij=,t,..]4
int updatecount;
int random_init;

int temp_converged;

/* Seed random number generator using current time */
time_t curr time;
srand( (unsigned) time(&curr_time));

comm_data.times_converged = 0;

if ( (inputfilepointer = fopen(’’script’’,’’r’?) ) == NULL)

{

printf (* ’\a\nCould not open input script file \n’’) ;
exit (1);

}

read_inputfile(inputfilepointer);

/* Open file for problem data and solutions found output */

if ( (outputfilepointer = fopen(output_filename,’’w’’) ) == NULL)

{

printf (’ ?\a\nCould not open problem data output file \n??);
exit(1);

¥

/% Open file for problem data parameter variation output */

if ( (parameterfilepointer = fopen(’’parameter’’,’’w’’) ) == NULL)

{

printf (’ ?\a\nCould not open parameter results output file \n??);
exit(1);

}

/* Open file for function value history output =/

if (history_output == 1)
{
if ( (historyfilepointer = fopen(’’history’’,’’w+’’) ) == NULL)
{
printf (’’\a\nCould not open history file for reading/writing\n’’) ;
exit(1);

}

26
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if ( (bestfilepointer = fopen(’’best history’’,?*w?’) ) == NULL)

{

printf (’ ’\a\nCould not open best_history file for writing\n*?);
exit (1) ;

}

for (test_problem = first_problem; test_problem <= last_problem; ++test_problem)

{

problem_data.problem number = test_problem;
initialize problem set_variables(problem data.problem_number);
set_tolerance();

write_outputfile header (outputfilepointer);

for (¢t = 0; t < problem data.problem dimensions; ++t)
{
total length[t] = (problem_data.position upperbound[t]-
problem data.position_lowerbound[t]);

}

print_problemdata screen();
/* start problem iterations %/

for (problem iteration = 0; problem iteration < problem data.problem repeats;
++problem iteration)
{
found_solution flag = 0;

comm_data.function _evaluations = 0;
iteration = 0;

random_init = 0;

no_improvement_iteration = 0;

no_improvement = Q;

/% print history start indicatorx/
if (history_output == 1)

{

fprintf (historyfilepointer,’’\nstart#%i&%i’’ ,problem_data.problem number,

problem iteration+1);
} /% end if %/

/% initialize display %/

~1
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if (use_display == 1)
{
vga init(); /% initialize graphics mode x/
cleardisplay();

vga setmode (VGAMODE); /% set to appropriate mode #*/
gl setcontextvga(VGAMODE) ;

physicalscreen = gl_allocatecontext();

gl _getcontext(physicalscreen);

setcustompalette(); /+ initialize custom palette */
/% initfont() here caused trouble with planar 256 color modes. */

gl_setcontextvgavirtual (VGAMODE) ;
backscreen = gl_allocatecontext();
gl _getcontext(backscreen) ;
initfont();
gl_setcontextvgavirtual (VGAMODE) ;
background = gl_allocatecontext();
gl_getcontext(background) ;
drawbackground () ;
framerate = 0;
framecount = 0;
frameclock = clock();
} /% if usedisplay %/
/% swarm initialization */
initialize particle_positions();
initialize particle_velocities();
initialize particle_inertia_values();
initialize particle function_values();
initialize swarm max_velocity();
/% start sequential swarm iteration loop */

pcle = 0;

do

/# run through all the particles in sequence %/
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if (use_display == 1)
{
if (updatecount > display refresh)
{
drawscreen() ;
drawgraph();
updatecount = 0;

}

if (use_craziness == 1)
if (random_init > craziness_period)
initialize_particle velocities();
random_init = 0Q;

}

++random init; /% craziness counter %/
++no_improvement iteration;

++no_improvement;

update_particle velocity(pcle);

update_particle_position(pcle);

update particle_function_value(pcle);
update best_function_value(pcle);

update_inertia max_velocity();

if (history_output == 1)

{

fprintf(historyfilepointer,’’\n%f’’,comm data.swarm best value);
P y P

}

/* Stopping condition %/

check for stop(outputfilepointer,problem data.stopping method) ;

if (use_display == 1)
{
/* Update frame rate every 3 seconds. %/
framecount++;
if (clock() - frameclock >= CLOCKS_PER_SEC)

{

framerate = framecount * CLOCKS_PER_SEC / (clock() - frameclock);

framecount = 0Q;

129



&+

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef YUNIBESITHI YA PRETORIA

APPENDIX D. PARTICLE SWARM OPTIMIZATION SOFTWARE 130

frameclock = clock();
} /% end if */

++updatecount;

if (pcle == (problem data.amount_of_particles - 1))
{
pcle = 0;
}

else

{
++pcle;
}
} /% while pcle < p - 1 %/
while ((comm data.function_evaluations <=
problem data.max function_evaluations)&&(found sclution flag == 0));

if (comm data.function_evaluations == problem data.max_function evaluations)
result[problem iteration].swarm best value = 0;
result[problem_iteration].function evaluations = 0;

result [problem_iteration].converged flag = 0;

}

/* print history end indicatorx/
if (history_output == 1)

{

fprintf (historyfilepointer,’’\nend#%i&%i’ * ,problem data.problem number,
P ¥ P P P

problem_iteration+1);
} /% end if x/

found solution_flag = 0;

comm_data.function _evaluations = 0;

} /* end problem iteration #/



