Chapter 6

Sizing Design of Truss Structures

6.1 Overview

In this chapter the application of the constriction and dynamic inertia and maximum velocity
variants to the optimal sizing design of truss structures are studied. A simple methodology
is proposed to accommodate the stress and displacement constraints during initial iterations,
when a large number of particles may be infeasible. In this approach, increased social or
peer pressure is exerted on infeasible particles to increase their rate of migration to feasible
regions.

The development of this chapter is as follows: Firstly, the optimal size and shape design
problem is formulated, whereafter the method for accommodating constraints into the PSOA
is outlined. This is followed by the application of the PSOA to several well known problems
in size optimization with dimensionality of up to 21.

6.2 Problem formulation

In the optimal sizing design of truss structures, the cross-sections of structural members are
selected as the design variables . The minimum attainable structural weight is selected
as the objective function, subject to allowable stress, displacement and linear buckling con-
straints. The optimal design problem detailed in Section 4.2 is then reformulated to include
constraints as follows: Find the minimum weight f* such that

f*=f(z*) = min f(z) =a’x, (6.1)
subject to the general inequality constraints
A e L W N ) (6.2)

where @ and x are column vectors in IR" and f and g; are scalar functions of the design
variables . The inequality constraints g; represent the stress, strain, displacement or linear
buckling constraints. The finite element method (FEM) may be used to approximate the
objective function f and the constaint functions g;.
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6.3 Accommodation of constraints

To facilitate the inclusion of the constraints (6.2) in the PSOA, (6.1) is modified to become

F=Fflz)+ Z Milgi ()P 15(95) (6.3)
with " "
3 (95) :{ g ;f ng% 58 * (6.4)

and penalty parameters A; > 0, prescribed. In a typical search, the ); parameters are
increased linearly with the number of function evaluations. This prevents undue enforcement
of the constraints in early stages of the search, while ensuring that the final constraint
violations are sufficiently small.

6.3.1 Social pressure

To increase the likelihood of particles migrating to feasible regions in the initial stages of
the search, increased social or peer pressure is exerted, at the cost of cognitive learning. In
this approach, the best particle value pf ., and best swarm value gy.q; are only updated if
‘the normalized infeasibility (NI*) is smaller than a to be specified tolerance NI,j,,. Hence
cognitive learning of an initially infeasible bird, represented by ¢; and pi, is sacrificed. Only
social pressure, represented by ¢; and pj, is retained.

This simple idea is implemented as follows: Steps 2(b) and 2(c) in the formal algorithm
presented in Section 3.3 are replaced by:

ERN(L) If L < pi., and NI* < N, then pt.. = fi, ph = @i, elsec; =0
(¢) If fi < gpest and NIt < Nyiow then gess = f,i, P = 58}

Selecting ¢; = 0 is not necessarily optimal, and superior approaches will doubtless be sug-
gested in future.

6.4 Stopping criteria

A number of logical stopping criteria may be specified for the PSOA. Amongst others,
the algorithm can be terminated when the average swarm velocity or momentum reaches
a prescribed fraction of the initial velocity and momentum. The algorithm can also be
terminated when a specific number of iterations or function evaluations S occur without
improvement in the best position p{ < gues, Within a prescribed tolerance .

In constructing stopping criteria, it is important to develop criteria which protect against
over sampling of the objective function. Simultaneous, the competing objective of prema-
ture convergence should be prevented. While not necessarily optimal, two criteria here are
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considered here, namely the a priory condition, and the logical condition. They are selected
here solely for their simplicity and illustrative powers.

A number of additional stopping criteria may be constructed. For instance, the algorithm
can be terminated when the average momentum of the swarm reaches a prescribed fraction
of the initial average momentum. A similar argument may off course be used for the average
velocity of the swarm.

6.4.1 A priori stopping condition

The algorithm is terminated once it obtains the a priori known optimum within a prescribed
tolerance. This stopping condition is commonly used in the training of neural networks [23],
where the output error is minimized. In general, this is not a sensible stopping criterion for
structural optimization. However, numerical results are included herein, since the ecriterion
gives a good indication of how fast the algorithm converges to the region of the optimum, and
presents a useful guide in estimating the required overhead in terms of number of function
evaluations required by other stopping methods.

6.4.2 Logical stopping condition

In this condition, the swarm best value f£ , is monitored as the search progresses. If there
is no improvement for .S specified function evaluations within a specified threshold tolerance
€, the search is stopped.

6.5 On swarm parameters

As shown by [15], the PSOA is sensitive to, in particular, the parameters w, ¢; and cy,
although dynamic inertia reduction reduces this sensitivity as opposed to constriction, as
shown in Chapter 5.

In this study, unless otherwise stated, all results are generated using swarms consisting of
20 agents, with the cognitive and social scaling factors ¢; and ¢y both set to 2. In each case,
the allowable normalized infeasibility NI, is set to 0.02, and the penalty parameters A;,
j=1,2,...,m, are linearly scaled from 10® to 10° in 4000 function evaluations, whereafter
A; Is constant.

6.6 Numerical results

The test set under consideration is tabulated in Table 6.1. The table gives the dimension n,
the number of constraints m and the nature of the problems under consideration.

For the numerical results presented in Appendix B.2 each problem is analyzed 10 times, with
the normalized infeasibility NI, the average fitness value fg,., standard deviation & and cost
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Problem Problem

Name Nature w m
10-Bar Convex 10" 32
10-Bar Non-Convex 10 34
25-Bar  Non-Convex 8 84
36-Bar Convex 21 95

Table 6.1: Structural test problems

Ny, being reported for each problem. For the sake of completeness, the best fitness value
with its position and the associated number of function evaluations is also given.

In the following discussions, €, represents the tolerance in the a priori stopping condition,
and ‘Reliability’ the number of times the algorithm converged within 10000 function evalua-
tions. S represents the number of function evaluations elapsed without improvement in best
function value, within a tolerance e,, before termination.

6.6.1 Convex 10-bar truss

The structure is depicted in Figure B.1, and is described in, amongst others, [43]. For the a
prior: stopping condition, tabulated results are presented in Table B.1. (In the table, social
pressure is not exerted on initially infeasible birds.) The table reveals that the function eval-
uations Ny, required for convergence is relatively low. In addition, the cost does not increase
dramatically as ¢, is decreased from 0.05 to 0.01. However, the reliability decreases as ¢,
becomes stricter, while the normalized infeasibility also decreases. Even so, the normalized
infeasibility is some 6% for ¢, = 1%.

Upon the introduction of social pressure, (Table B.9), the reliability becomes 100%, while
the decrease in constraint violations (from 16% to zero) is significant. Simultaneously, the
computational effort Ny, decreases. (In Table B.1, the cost of unconverged searches is not
reflected in the average cost.)

Finally, the high overhead of the logical stopping criterion is reflected by a comparison
between Tables B.10 and B.6. In both cases, social pressure is exerted, while the latter table
uses the logical stopping criterion, with S = 2000, 1000 and 500. Apparently, S = 1000 is
adequate. Nevertheless, the the results indicate that the development of improved stopping
criteria in future is of interest.

6.6.2 Non-convex 10-bar truss

This problem is also depicted in Figure B.1, and is amongst others, described in [43, 44].
The physical geometry for this problem is identical to the convex 10-bar truss, the only
difference being a modified loading condition which induces multiple local minima in the
fitness function [45, 46]
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For the sake of brevity, extensive results regarding the influence of the a priori stopping
condition and social pressure are not given in tabulated form for this (and the following)
problems. It suffices to state that the same trend as for the convex 10-bar truss is observed.

Numerical results for the logical stopping criterion and social pressure are presented in
Table B.14. Once again, requiring S = 1000 is adequate. The normalized infeasibility upon
convergence is acceptably small (approximately 0.1%).

6.6.3 Non-convex 25-bar truss

This structure is depicted in Figure B.2 [43, 47], and numerical results for the logical stopping
criterion combined with social pressure are presented in Table B.7. For this problem. there
is a more pronounced sensitivity to the value of S, and S = 500 would suffice.

6.6.4 Convex 36-bar truss

The final test problem is depicted in Figure B.3 [43, 45]. This convex problem is relatively
difficult, with 21 design variables, and 95 constraints present. Numerical results using the a
priori stopping criterion are presented in Table B.4, and using the logical stopping criterion
in Table B.8.

The solutions obtained by using the a priori stopping condition (Table B.4) are all slightly
nfeasible, indicating that a higher value for A\; would be beneficial. Nevertheless, in all cases
the constraint violations are less than 1%.

In comparison with the a priori stopping criteria results, the logical stopping method per-
forms very poorly, both in terms of cost and constraint violations. This poor performance
was the main motivation for the introduction of the social pressure operator, for which
numerical results are presented in the following section.

6.6.5 Effect of social pressure

The effect of social pressure is investigated for all of the structural test problems, and re-
sults with different a priori stopping values are summarized in Appendix B.2.3. Dramatic
improvements in cost and normalized infeasability can be observed for all of the problems in
this summary. When considering the logical stopping condition a similar trend is observed
(compare Tables B.8 and B.16).

6.6.6 Comparison between PSOA-C and PSOA-DIV variants

Table B.17 illustrates the difference in performance between the constriction factor and
dynamic inertia and velocity reduction. The average (f,..) and best (frest) fitness values
obtained compare closely for the two methods, with the standard deviation & for dynamic
inertia and velocity reduction roughly 1/3 of the value for the constriction factor. The cost
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(Ny.) associated with the average and best fitness values for dynamic inertia and velocity
reduction are roughly half the respective costs with constriction. (The same trend is observed
for the other problems studied.)

6.6.7 Fitness history

Typical fitness histories, comparing the constriction and dynamic inertia and maximum
velocity variants are presented in Figures B.4, B.5, B.6, and B.7. In terms of convergence
rate, it is clear that the PSOA-DIV variant outperforms the PSOA-C variant.

6.7 Summary

The derivative free particle swarm optimization algorithm can effectively be used for the
optimal sizing design of truss structures. While few results for constrained functions using
the PSOA have previously been presented, social pressure is used herein to increase the
likelihood of migration to feasible regions during the initial phases of the swarm search,
thereby sacrificing the cognitive learning ability of initially infeasible particles. Use of the
social operator leads to reduced cost with the logical stopping criteria, as well as limiting the
constraint violations within a specified tolerance in all of the structural test problem cases.
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