Chapter 3

Particle swarm variants

3.1 Overview

As with any newly proposed optimization algorithm, the original PSOA displayed several
shortcomings, which we hinted at in the previous chapter. We will now elaborate on these
shortcomings. Furthermore, a number of variants which have been proposed to improve the
performance of Kennedy and Eberhart’s original PSOA are also presented.

3.2 On ‘local’ search capability

The original PSO algorithm displays great initial efficiency at converging to the approximate
location of the minima during the global search phase (e.g. see Figure 3.1 for a typical
example), but after this the convergence rate decreases rapidly when the refined search
phase is entered [11, 15]. This decrease in efficiency is caused by the velocity (2.2) not
being reduced adequately, leading to detrimentally large distances between sampling points
in (2.1). Large velocities also cause the particles to overshoot the search area, a desireable
property for the initial global search, but detrimental in the refined search stage. In order to
improve the performance during this final phase it is thus necessary to implement methods for
decreasing the distance between successive sampling points, by reducing the velocity during
the search. This will result in more finely spaced evaluation points and less overshoot. The
reduced overshoot will have the effect of concentrating the swarm in a smaller overall search
volume. A number of ways have previously been proposed by which the PSO algorithm
could be improved.

3.3 Sequential particle swarm algorithm

The following is an outline of the sequential algorithm structure. The original algorithm is
modified and implemented in a sequential or asynchronous manner, implying that particle

13

CHAPTER 3. PARTICLE SWARM VARIANTS 14

6200 .
6000
5800
5600
5400
5200
5000
4800

4600 ; ; ' :
0 1000 2000 3000 4000 5000 6000

Function evaluations

T T]
Convergence History

-fgest

1
1

Figure 3.1: Typical history plot

function values, velocities, cognitive and social best remembered positions are updated on a
per individual particle basis, rather than a per swarm basis.

Numerical studies by Carlisle and Dozier [20] indicate that the asynchronous method is in
general less costly than the synchronous method. The asynchronous method yields improved
reaction time to changes in the overall best fitness value and limits unnecessary function
evaluations when the stopping condition is satisfied.

This modification was previously proposed by Carlisle and Dozier to limit computational
expenses for large swarms [20]. If, for instance, the optimum is found halfway through the
swarm’s individual particle function value evaluations, the algorithm is stopped without
performing the remaining fitness evaluations. Also, if there is an improvement in the swarm
best value f7 ,, the remainder of the swarm reacts immediately to the swarm best value.
(With the classic particle swarm algorithm the improved swarm best value information is
only available after the entire swarm’s particles have been evaluated in a single pseudo
timestep.)

The original position (2.1) and velocity (2.2) rules remain unchanged with this modification.

The asynchronous algorithm becomes:

1. Initialize

(a) Set constants kpmaz, €1, C2

(b) Randomly initialize particle positions j € D in R" fori =1, ...,p
(¢) Randomly initialize particle velocities 0 < v} < v for i =1,...,p
)

(d) Set k=1

2. Optimize

OHAPTER 3. PARTICLE SWARM VARIANTS 15
(a) Evaluate function value f; using design space coordinates i
(6) Tt fi < finy then fip = i p' = af
(©) Tt £§ < £, then ff, = fi, p? = ai.
(d) If stopping condition is satisfied then goto 3.
(e) Update particle velocity vector v}, using Rule (2.1).
(f) Update particle position vector x}_, using Rule (2.2).
(g) Increment . If i > p then increment k, 7 = 1.
(h) Goto 2(a).

3. Report results

4. Terminate
The asynchronous (sequential) algorithm is also depicted in Figure 3.2.

3.4 Variants on Kennedy and Eberhart’s PSOA

The variants on the original PSOA of Kennedy and Eberhart are detailed in this section. By
no means are the modifications listed in the following exhaustive. However, they probably
represent the most significant and most commonly used variants. In the implementations of
the modifications that follow, an asynchronous method for updating the swarm best value
p{ and particle best value p} is used. A global neighborhood [14, 31] is used throughout
when exchanging information about the swarm best values and positions.

3.4.1 Introduction of constant inertia weight

This variant, due to Shi and Eberhart [11], constitutes the first significant variation on the
original particle swarm algorithm. An inertia term w is introduced into the original velocity
rule (2.2) as follows:

Vip = W, + a1y (B), — @) + cor2 (P) —) . (3.0
The scalar w performs a scaling operation on the velocity vy, analogous to introducing ‘mo-
mentum’ to the particle. Higher values for w results in relatively straight particle trajectories,
with significant ‘overshooting’ or ‘overflying’ at the target, resulting in a good global search
characteristic. Lower values for w result in erratic particle trajectories with a reduction in
overshoot, both desireable properties for a refined localized search.

The most serious drawback of the introduction of constant inertia is the problem dependency
of w. In a typical implementation, an intermediate value for w is selected, resulting in a
search that is unoptimal during both the ‘global’” and ‘local’ phases of the search.

CHAPTER 3. PARTICLE SWARM VARIANTS

Start

4

Initialize algorithm
constants k, c1, ez

¥
Randomly initialize all
particle positions =z},

Y

Randomly initialize all
particle velocities v},

4 Y

Evaluate objective function
f(x) for particle

Seti=1,
Increment k

\i

Update particle ¢ and swarm
T‘yes best values fy ., fi.

Y

7 > total number
of particles?

T ‘ Update position xi
Increment @ for particle ¢

| |

no

Update velocity v},
for particle ¢

Y

Stopping condition
satisfied?

l yes
/ Output results

v

Stop

Figure 3.2: Flow diagram for the sequential particle swarm optimization algorithm

CHAPTER 3. PARTICLE SWARM VARIANTS 17

3.4.2 Linear inertia reduction

Linear inertia reduction, also proposed by Shi and Eberhart [11, 15], is a variation on the
introduction of constant inertia as discussed in Section 3.4.1 above. This variation attempts
to eliminate some of the drawbacks of constant inertia, and entails the linear scaling of the
inertia parameter w during the search, usually between 1.0 and 0.4, in a specified number of
function evaluations. This ensures that the PSOA gradually transitions from an algorithm
suitable for a global search to an algorithm suiteable for refining an optimum in a local
search. The optimum rate for reducing w is still problem dependent, and constitutes the
main drawback of this variation.

3.4.3 Limitation of maximum velocity

In this variation, Shi and Eberhart [15, 32] limit the velocity of each particle to a specified
maximum velocity v™%. This represents an attempt to reduce excessively large step sizes
in the position rule (2.1). The maximum velocity is calculated as a specified fraction ~y of

the distance between the bounds of the search domain:

v = y(xyp — TLB) (3.2)
where rpyp and zp g respectively represent the upper and lower bounds of the domain D. This
once again prevents excessively large steps during the initial phases of a search. Previously,
Carlisle and Dozier [20] and Eberhart and Shi [32] showed that this variation increases
reliability and reduces cost.

3.4.4 Constriction factor

A notable recent variation on the original velocity rule (2.2) is the introduction of the con-
striction factor proposed by Clerc [33], in his swarm and queen approach, as further explored
by Eberhart and Shi [32]. This method introduces a constriction factor K into velocity rule
(2.2), which has the effect of reducing the velocity of the particles as the search progresses,
thereby contracting the overall swarm diameter. This in turn results in a progressively
smaller domain being searched.

The value of the constriction factor K is calculated as a function of the cognitive and social
parameters ¢; and c;:

Vi = Kx [v) +ar (p) —) + cors (P —)], (3.3)

K

where p=c1+ Cy, @ >4 (3.4)

2
12— ¢ — ¢? — 44|

In their search for an ‘off-the-shelf’ PSOA, Carlisle and Dozier [20] show that cognitive and
social values of ¢; = 2.8 and ¢, = 1.3 yield good results for their test set.

CHAPTER 3. PARTICLE SWARM VARIANTS 18

3.4.5 Dynamic inertia and maximum velocity reduction

This variation, proposed by Fourie and Groenwold [25], aims to reduce the sensitivity to
problem dependent parameters associated with previous implementations of inertia [15, 32].
In this approach, a simultaneous dvnamic reduction in inertia and maximum velocity is
implemented to decrease the swarm domain in a controlled fashion. The approach is outlined
as follows: Firstly, the initial inertia wq is prescribed, while the initial maximum velocity
vector v™** is again calculated as a fraction of the domain using (3.2). The swarm domain
is then effectively reduced by decreasing the inertia and maximum velocity by fractions a
and [respectively, if no improvement in the swarm fitness values p{ and pj occur after a to
be specified number of iterations h:

if f(py) 2 f(Pi_p): then wy = awy, v = fop™, (3.5)

with 0 < «,f < 1, prescribed. Rather than reducing the inertia and maximum velocity
in a linear fashion, dynamic inertia reduction allows for the adjustment of the algorithm
parameters according to the success history of the swarm. For reasons of clarity, we will
denote h the ‘dynamic delay period’ in the remainder of this work.

3.5 Other variants

Several other modifications to the PSOA have been proposed which will be briefly mentioned
but not analysed, since they fall outside the scope of this thesis.

3.5.1 Discrete binary particle swarm

A discrete binary particle swarm optimizer was proposed by Kennedy and Eberhart [34],
which was benchmarked with a multi modal problem generator against genetic algorithms
[19] by Kennedy and Spears. This work was subsequently generalized and applied to the
well known traveling salesman problem by Clerc.

3.5.2 Tracking moving extrema
Recently, a modification was proposed by Carlisle and Dozier [35, 36] and Eberhart and Shi
[37], whereby a moving extrema in a dynamic problem environment could be tracked.

3.5.3 Hybridizing with other types of algorithms

A number of workers have attempted to improve the PSOA’s performance by hybridizing it
with other well known methods such as clustering [38|, and evolutionary methods [39, 40].
In addition, the PSOA can of course be hybridized with efficient gradient based methods.

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006

