+
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef YUNIBESITHI YA PRETORIA

Chapter 2

Particle swarm optimization

2.1 Particle swarm optimization: A brief history

Computer simulations of the movement and behavior patterns of bird flocks and fish schools
were first presented by Reynolds [7], and Heppner (a zoologist) and Grenander [8]. These
simulations attempted to define the underlying rules of the movement dynamics of bird
flocking and fish schooling, and were mainly reliant on the manipulation of inter-individual
distances. These studies were the precursors to the particle swarm paradigm.

The particle swarm optimization algorithm (PSOA), was first introduced by Kennedy and
Eberhart in 1995 [9, 10|, and, compared to other well established population based evolu-
tionary methods such as genetic algorithms, is still in it’s infancy. It finds its roots in a
variety of fields, which, among others, include artificial life and collective intelligence, chaos
theory, fuzzy computing, sociobiology and, interestingly enough, psychology.

Kennedy and Eberhart inferred a likeness of the swarm behavior to human social behavior.
This deduction followed on the observation that, like individual fish or birds adjust their
movement patterns to maintain their position in a school or flock, humans tend to adjust
their beliefs and attitudes to conform to their peers.

The PSOA models the exploration of a problem space by a population of agents or particles;
the agents’ success history influence their own search patterns and those of their peers.
The search is focused toward promising regions by biasing each particle’s velocity vector
toward their own remembered best position as well as the communicated best ever swarm
location. The importance of these two positions are weighed by two factors, aptly called
the cognitive and social scaling parameters [11]. These two components are the among the
main governing parameters of swarm behavior (and algorithm efficiency), and have been the
subject of extensive study [12, 13, 14].

As various studies [11, 15, 16] have revealed, there are a number of shortcomings and limi-
tations to the ‘standard’ PSOA as first proposed by Kennedy and Eberhart. Subsequently
the PSOA has undergone rapid development, with several adaptations to improve perfor-
mance and to apply the algorithm to other types of problems have been proposed. These

P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

CHAPTER 2. PARTICLE SWARM OPTIMIZATION 4

adaptations or variants will be discussed and analyzed in Chapter 3.

Particle swarm optimization, while also being a population based method, differs from other
similar methods such as genetic algorithms, evolutionary programming and evolutionary
strategies, (for a brief discussion of these and other related approaches see Appendix C), in
the respect that the primary operator which drives the algorithm is not evolutionary based,
but rather a set of rules which dictate the social interaction between members of the swarm.
This interaction takes the form of the exchange of information regarding the fitness history
of the swarm which is used to influence decisions relating to areas to be explored. There
are however a number of similarities between evolutionary approaches and the PSOA, which
were studied by Angeline [17] and Eberhart [18].

Furthermore, the PSOA is simpler, both in formulation and computer implementation, than
the GA. In addition, the PSOA seems to outperform the GA for a number of difficult
programming classes, notably the unconstrained global optimization problem [12, 16].

Previously, the PSOA has been applied to analytical test functions, mostly univariate or
bivariate without constraints, by Shi and Eberhart [15] and Kennedy [19]. Kennedy also ap-
plied the algorithm to multimodal problem generators and used the PSOA as an optimization
paradigm to simulate the ability of human societies to process knowledge [12].

Notwithstanding it’s recent popularity, the PSOA has a number of drawbacks, one of which
is the presence of problem dependent parameters. Previously, a number of workers have

attempted to find ‘universal’ values for the PSOA parameters, the most recent being Carlisle
and Dozier [20].

2.2 PSOA Applications

2.2.1 Neural network training via particle swarm optimization

The PSOA has been applied with success in the field of neural network (NN) training, with
this type of problem among one of the first to be addressed by Kennedy and Eberhart
[9]. The "training” of a neural network involves the minimization of the fitness error in
the forward propagated result through the network by adjusting the weights of the network
components.

Extensive research by others have been done in this field, some of the more notable the work
by Van den Bergh and Engelbrecht who have applied several modifications to the algorithm
which involve dividing the swarm into sub-components and using them in a cooperative
manner to solve the NN training problem [21, 22]. Other examples where the PSOA has
been used in a neural network context include the training of a NN to identify the presence
of Parkinson’s disease in patients [23] and the extraction of rules from a fuzzy neural network
[24].

P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

CHAPTER 2. PARTICLE SWARM OPTIMIZATION 5

2.2.2 Structural optimization

Lately, the PSOA was successfully applied to the optimal shape and size design of structures
by Fourie and Groenwold [25, 26], where the design variables represent geometric properties
of the structure and certain constraints are enforced (e.g. displacement limits or maximum
allowed stress). The optimal topological design of problems is also addressed by Fourie and
Groenwold [27].

2.2.3 Other applications

The PSOA has also been applied to a variety of other types of problems, among others the
optimization of reactive power and voltage control in electrical distribution networks [28] and
the practical distribution state estimation thereof [29]. It has also been applied successfully
to the field of process biochemistry [30].

2.3 Particle swarm optimization algorithm formulation

We will now formulate the particle swarm algorithm as proposed by Kennedy and Eberhart
9, 10]. The algorithm is constructed as follows: Let us consider a flock of p particles or
birds, each representing a possible solution point in the problem space D). For each particle
i, Kennedy and Eberhart originally proposed that the position ! is updated in the following
manner:

ah = wl e 2Ll
with the velocity v’ calculated as follows:

U2:+I = U;;: + Clrrl(p}% ¥ I.U;'.) £ Cg'.'"g(p}z - m:'r) (22)
Here, subscript k& indicates an (unit) pseudo-time increment. p}:C represents the best ever
position of particle i at time k, with pj representing the global best position in the swarm
at time k. 7, and ry represent uniform random numbers between 0 and 1. Kennedy and
Eberhart proposed that the cognitive and social scaling parameters ¢; and ¢y are selected
such that ¢; = ¢ = 2, in order to allow a mean of 1 (when multiplied by the random
numbers r; and r3). The result of using these proposed values is that the particles overshoot
the target half the time.

et us denote the best ever fitness value of a particle at pi as fi , and the best ever fitness
Let us denote the best fit lue of a particle at pi as fi ., and the best fit
s T iz -9 agq £9

value of a particle at pj as fj. ;-

The particle swarm optimization algorithm is now outlined as follows:

1. Imitialize

(a) Set constants kpqz, €1, Co.

(b) Randomly initialize particle positions =), € D in IR™ for i = 1,...,p.

&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

CHAPTER 2. PARTICLE SWARM OPTIMIZATION 6

(c) Randomly initialize particle velocities 0 < v) < v for i = 1,...,p.
(d) Set k=1

2. Optimize

(a) Evaluate function value f} using design space coordinates zi.
(b) It i < fi, then flo, = fi, o =2}

(c) If fi < fi,; then fi., = fi, pi =z},

(d) If stopping condition is satisfied then goto 3.

(e) Update all particle velocities vi for i = 1,...,p with rule (2.1).
(f) Update all particle positions @, for i = 1, ..., p with rule (2.2).
(g) Increment k.

(h) Goto 2(a).

3. Terminate
The above algorithm is also represented by the flow diagram depicted in Figure 2.1.

2.4 Analysis of velocity rule

The manner in which the velocity rule influences an individual particle’s position can be
explained at the hand of Figures 2.2, 2.3, 2.4 and 2.5. If we examine the velocity rule (2.2),
we note that the cognitive contribution to calculating the velocity is:

c1T (13;L — 33;) (23)
with ¢; the cognitive parameter, r; a random number between 0 and 1, and pi and xi the
best fitness and current positions of particle 7 respectively.

If we consider a 2-dimensional search space (Figure 2.2) we can determine the search area
to which the particle can possibly move in the next update of (2.1). Replacing the time
increment k£ with a dimensional index for the moment, we see that the distances between
p' and z' are (pi — z) and (p, — x%) for dimension 1 and 2 respectively. By virtue of
difference calculated in (2.3), the direction the particle will move will always be toward p' if
we neglect the previous velocity vy. Since r; varies between 0 and 1, the maximum possible
travel distance (with vp = 0) for the particle during a single timestep for both dimensions
are ¢;(pt — 2%) and ¢;(ps — x2) as indicated. The possible positions that can be occupied
by the particle during the next timestep will form a line from the current particle position
(r, = 0) toward p' as r; is increased. This line will extend beyond p' if ¢; > 1, allowing for
the possibility of the particle overshooting.

Similarly, if we consider the social component of (2.2):

cora(p] — T},), (2.4)

&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
WP YUNISESITHI YA PRETORIA

CHAPTER 2. PARTICLE SWARM OPTIMIZATION

(Start

Y

Initialize algorithm
constants k, ci, ¢2

h i

Randomly initialize all
particle positions xj,

A

Randomly initialize all
particle velocities v},

-
1
A

Evaluate objective function
f(z) for all particles

Y
Update particle and swarm

best values fieop, fios

A
Update velocity v}
for all particles

Increment k

A

A
Update position xj,
for all particles

Y

no

Stopping criterion
satisfied?

| ves
Y

Qutput results

A\

Figure 2.1: Flow analysis of the classical particle swarm optimization algorithm

~I

CHAPTER 2. PARTICLE SWARM OPTIMIZATION

c1(ph —)

e1(pi —)

Ao

c2(p§ — z3)

|

T

Figure 2.3: Social component search space contribution for 2-D problem

P

UNIVERSITEIT VAN PRET
UNIVER
Q= YUNIBE 1

CHAPTER 2. PARTICLE SWARM OPTIMIZATION

Lo,

c1(ps — zh)

ca(pd — xh)

ar(pi — 2i)

'?“2:].

\‘n—U

c2(pi — 1)

Figure 2.4: Combined cognitive and social search space

CHAPTER 2. PARTICLE SWARM OPTIMIZATION

c1(pi —) ca(pf — 1)

e (ph — ah)

ca(pf§ — 3)

Figure 2.5: Alternative case of combined cognitive and social search space

r1

10

CHAPTER 2. PARTICLE SWARM OPTIMIZATION il

we see that the maximum distance in this case becomes co(p? — 1) and ¢a(p§ — x3), depicted
by Figure 2.3. The possible positions the particle ¢ could occupy in the next timestep &
is again a line originating from the current position toward p9. This line will also extend
beyond p? if ¢; > 1.

If we combine the cognitive and social search contributions we obtain the search area in
Figure 2.4. This search area will form a parallelogram in 2-dimensional space if p?, p* and
z* are not in line, in which case the possible search space will be a line. Any point within
this quadrangle can be occupied by particle 7, depending on which values are taken on by
the two random numbers r; and 7s.

From this analysis we can make a number of important observations:

(a) Disregarding the previous velocity vy, the updated position for a particle in the next
timestep will always be in a region centered around a point equidistant beyond the
midpoint between pj, and p] and the particle current position i, i.e. the center of the
parallelogram in Figures 2.4 and 2.5.

(b) Disregarding the previous velocity v, when we consider the distances between the
current particle position z} and p}, and i and p{ as calculated by (2.3) and (2.4),
we note that the closer the particle is to either one of these positions. the smaller the
distance becomes it can possibly traverse (per timestep) in those respective directions
and vice versa.

(¢) If a particle should arrive near the midpoint between i and p} after a large distance
was traversed in the previous timestep k — 1, it will overshoot almost exactly the same
distance beyond this point by virtue of the vy, term in (2.2), with only a minor deviation
because of the observation made in (b).

2.5 Particle swarm behavior

To study the behavior of the particles during a search, the PSOA is implemented using
software written in C which visually displays the particle positions, their own best remem-
bered values and the swarm best value as different colored markers on a computer screen.
These positions are then updated in real-time as the search progresses, giving the user the
opportunity to observe swarm behavior. (For a more detailed description of the software,
see Appendix D).

For the original PSOA, as formulated in this chapter, it was observed herein that the swarm
best position p] usually settles very quickly near the global optimum after jumping around
in the problem space D) during the initial timesteps. Any outlying particles then quickly
distribute themselves evenly around this position. Depending on the nature of the problem
either one of the following scenario’s take place:

For convex optimization problems, such as the sphere function, the group best position p{
will start moving downslope as individual particles in the immediate region around pf find
improved fitness values and their best values pj, become pj. Throughout this movement

CHAPTER 2. PARTICLE SWARM OPTIMIZATION 12

of p} the swarm redistributes itself around this centerpoint. Once pt reaches the minima’s
immediate neighborhood the particle best remembered positions pi rapidly start converging
toward p{, and the overall swarm diameter contracts. This leads to a progressively smaller
area being searched, and the eventual convergence of the swarm toward the minima.

For non-convex functions or functions with excessive numerical noise however, the contrac-
tion rate of p} toward pj is either extremely slow or nonexistent. This causes the PSOA
either to become very expensive in terms of computational effort (cost), and sometimes
prevents convergence.

2.6 Summary

From the swarm behavior discussed in the foregoing, it is clear that some artificial means of
contracting the particle swarm diameter needs to be effected by modifying or introducing a
new operator into the standard PSOA. This enforcement of a progressively smaller search
space for multi-modal or non-convex problems will force a localized search around the best
remembered particle position and ultimately lead to convergence. Several methods of forcing
progressively smaller search spaces with PSOA will be investigated in the next chapter.

An alternative is to hybridize the particle swarm with an efficient gradient based search
algorithm which will perform the local search after the PSOA has found the approximate
region of the minima. However, then another difficulty then arises, that of deciding when
the particle swarm should be stopped and the local search algorithm started. On one side, a
premature transition may lead to the gradient based algorithm converging in a local minima
where more extensive search by the PSOA may have found the approximate region of the
global minima, and on the other a late transition will lead to wasted function evaluations.

For the purpose of this thesis the PSOA will be used during both the global and local search
phases, because it has the ability to perform adequately, and in some cases very well, for
both stages. Also, since it is the intent of the author to obtain a comparison of the different
variants of the PSOA in the next chapter, it will be desireable to do so without the influence
of a gradient based method incorporated in the optimizer.

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010

