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Global Climate Models (GCMs) and Regional Climate Models (RCMs) 

represent the atmospheric processes that are nonlinear by nature and are 

therefore sensitive to small perturbations. The RCMs are provided time 

dependent Lateral Boundary Conditions (LBCs) either from the GCM or the 

reanalyses and hence the RCMs are not expected to deviate much from the 

forcing fields as expected for a free non-linear system. If a GCM is used in a 

nested system, the nested solutions will be subject to the internal variability of 

both the GCM and the RCM. The study aims to investigate the variability 

caused by the internal variability of the GCM and the RCM. The study then 

looks into the contribution of the RCM’s internal variability to the total 

variability of the different nested system solutions. In this study four solutions 

obtained through perturbing the wind fields at initialisation for the ECHAM4.5 

are used to force an RCM, the RegCM3, over South Africa. The solutions that 

are obtained are functions of the internal variability of the ECHAM4.5 as well 

as of the RegCM3. To determine the amount of the variability that is 

introduced by the RCM’s internal variability, four other RegCM3 simulations 

are made through initialising the RegCM3 on different days but using a single 

realisation from the GCM. The rainfall variability associated with the combined 

internal variability of both the models is high to an extent that ensemble 

members produce anomalies that have opposite signs in the same season. 

However, the sign of the ensemble average anomaly generally corresponds 
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with the observed anomaly. The variability associated with the internal 

variability of the RCM is negligible when seasonal totals are analysed while 

with the daily rainfall totals the variability is larger. The variability in areas 

where small amounts of rainfall occur is smaller than that of the high rainfall 

regions. The number of events that fall into the three rainfall categories (i.e. 

below-normal, normal and above-normal) for the RegCM3 ensemble 

members are close to one another however the timing of the events is 

different. The results suggest that in operational forecasting making ensemble 

members associated with the internal variability of an RCM is not necessary 

because the information obtained from the ensemble members is almost 

similar. 
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PREFACE 

The Global Climate Models (GCMs) have been found to have skill in 

predicting seasonal total rainfall and average temperature over large forecast 

areas using a low resolution of about 300 km. The low resolution makes it 

impossible for the models to represent the land surface characteristics that 

lead to large small scale variations in the climate variables adequately. The 

Regional Climate Models (RCMs) are used to produce detailed high resolution 

simulations with lesser computer resources than those required for a GCM 

with the same resolution. 

The atmosphere is chaotic and therefore the equations that represent the 

atmospheric processes in the models are nonlinear. As a result the models, 

especially the GCMs are sensitive to the initial conditions. Two simulations 

started with slightly different initial conditions will diverge from one another 

substantially after a few days of simulation. In regional climate modelling, the 

RCMs are nested within the reanalyses or GCM solutions and therefore the 

RCM solutions are restricted at the boundaries. Although the RCMs are 

restricted at the boundaries, they are also nonlinear and are therefore 

expected to exhibit a certain level of the internal variability. 

The main aim of the study is to investigate the internal variability of an RCM. 

In a nested system where a GCM is used the final solutions of the system will 

be subject to the internal variability of the GCM and of the RCM. The 

variability caused by the internal variability of both the models will be 

analysed. The contribution of the RCM’s internal variability to the total 

variability of the nested system solutions will then be investigated. 

Chapter 1 of the dissertation gives the background of the study. The climate 

of South Africa is described and how it varies according to different seasons 

and it is noted that it is important that seasonal forecasts are produced. The 

predictability problem is then discussed with concentration on the 

characteristic of the atmosphere. Different methods that have been used to 

associate the atmospheric circulations with the boundary conditions of sea-

surface temperatures (SSTs) are discussed. Some of these are numerical 

V



(GCMs) and statistical models. Due to the problem of the coarse resolution of 

the GCMs, the downscaling procedure is discussed. The inter-annual 

variability as simulated by the RCMs has been studied over many parts of the 

world but the studies are limited over South Africa. The status of seasonal 

forecasting at the South African Weather Service is discussed and it is noted 

that RCMs are not yet operational in the organisation. When operational 

forecasts are made researchers have to get the best possible simulations 

using the available models. The problem of the internal variability of the 

models is then discussed because understanding the problem will help in 

obtaining the best possible simulations from the RCMs for operational 

forecasting purposes. 

Chapter 2 describes all the data, the models and the methods used in the 

study. Chapter 3 discusses the differences in the nested system solutions due 

to the internal variability of the GCM and the RCM. Chapter 4 discusses 

comparisons between the results that are discussed in the Chapter 3 with 

observations. Chapter 5 discusses the inter-annual variability in the 

simulations that is associated with the internal variability of the RCM. Chapter 

6 discusses the intra-seasonal variability in the simulations that is associated 

with the internal variability of the RCM. Chapter 7 is summary and conclusion. 
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CHAPTER 1: INTRODUCTION 

1.1. The Rainfall patterns over South Africa 

1.1.1. The general rainfall pattern in South Africa 

The precipitation of South Africa generally increases from west to the east, 

except along the southern coast (Figure 1.1; Taljaard, 1986). Most of the 

regions experience their rain during austral summer; however, over the 

southern coast the rainfall occurs throughout the year. The Western Cape 

normally has its highest rainfall during the winter months (Figure1.1; Taljaard, 

1986). The east coastal belt receives slightly more rainfall in winter than the 

adjacent interior (Taljaard, 1986). Most of the rainfall received in the eastern 

part of the country is of convective origin (Harrison, 1984a; Tyson and 

Preston-Whyte, 2000) while the rainfall received in the Western Cape is due 

mainly to cold fronts (Tyson and Preston-Whyte, 2000). 

 
 
 

1.1.2. Major controls of rainfall in South Africa 

1.1.2.1. Ocean temperatures and Topography 

The east-west total rainfall gradient over South Africa is due to amongst 

others, the temperatures in the oceans adjacent to the country (Van Heerden 

and Taljaard, 1998; Tyson and Preston-Whyte, 2000). The Agulhas Current 

drives warm water to the east coast while the water to the west coast is cold 

as a result of the cold Benguela Ocean Current (Van Heerden and Taljaard, 

1998). Another major controller of rainfall is the topography ( Van Heerden 

and Taljaard, 1998). The interior of South Africa is characterised by an 

elevated plateau with altitudes of more than 1,000m above sea level 

(Engelbrecht et al, 2002, Van Heerden and Taljaard, 1998; Joubert et al, 

1999). The coastal margins along the east and south-east coast of South 

Africa are narrow and are followed by steep topographic gradients into the 

interior of the country (Joubert et al, 1999). 
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Figure 1.1: Average total monthly rainfall in mm from January until December 

calculated using 44 years of station data from 1960 to 2004. 

 
 
 

1.1.2.2. Mean atmospheric circulation 

The rainfall of South Africa is also controlled to a large extent by the mean 

circulation of the atmosphere (Taljaard, 1995a; Taljaard, 1994; Van Heerden 

and Taljaard, 1998). South Africa is located in the subtropics and therefore it 

is affected by circulation systems prevailing in the tropics, the subtropics and 

the temperate or middle latitudes (Tyson and Preston-Whyte, 2000). 

1.1.2.2.1. Subtropical control 

The subtropical control is effected by the anticyclones: the Indian Ocean High 

(IOH), the continental high and the Atlantic Ocean High (AOH). The 

anticyclones are a part of a discontinuous high pressure belt that circles the 

southern hemisphere at about 30° S (Taljaard, 1995b;c; Joubert et al, 1999; 

Tyson and Preston-Whyte, 2000). The near-surface circulation at 850hPa is 

characterised by a heat low over the interior in summer (Taljaard, 1995c; 
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Joubert et al, 1999) while in winter a high pressure cell dominates (Tyson and 

 
 
 

Preston-Whyte, 2000). 

The AOH and IOH vary significantly in position throughout the year (Taljaard 

and Steyn, 1991; Van Heerden and Taljaard, 1998). The monthly zonal shifts 

in position of the AOH are twice that of the latitudinal variation. The 

longitudinal variations of the AOH do not materially affect the weather of the 

subcontinent (Tyson and Preston-Whyte, 2000). The AOH may, however, 

ridge eastward and to the south of the continent, on a scale of days and 

therefore affect the weather. The IOH varies on a half-yearly basis in its 

meridional movement while the longitudinal displacement is annually. The 

IOH variations influence the weather and climate of the northern and eastern 

parts of South Africa. 

1.1.2.2.2. Tropical control 

The easterly flow that may be accompanied by the occurrence of easterly 

waves and lows is a characteristic of the tropical atmosphere which affects 

the climate of South Africa. The mean circulation of the atmosphere is evident 

in the tropical easterly flows that converge in the region called the Inter-

tropical Convergence Zone (ITCZ) (Van Heerden and Taljaard, 1998). 

Throughout the year the ITCZ is located in the northern hemisphere in the 

eastern Pacific and Atlantic regions. Over Africa, the Indian Ocean and 

western Pacific regions the ITCZ migrates from the southern to the northern 

hemisphere between January and July (Tyson and Preston-Whyte, 2000). 

The cloud bands that are associated with most of the rainfall in late summer 

are a result of the ITCZ. 

1.1.2.2.3. Temperate control 

Temperate or middle latitude control is effected over South Africa through 

travelling perturbations in the westerlies (Harrison, 1984b). The frequent 

occurrence of fronts is a characteristic of middle latitudes throughout the year. 

Whenever two air masses with different temperature characteristics come into 

contact, a zone of discontinuity and temperature gradient will exist between 
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them. The zone of discontinuity is called a front. Cold fronts usually occur 

south of the country due to discontinuities between polar and subtropical air. 

The cold fronts form part of the mid-latitude cyclones and they are a major 

cause of the winter rainfall over the south-western and south coast because of 

their northward migration in the winter season (Tyson and Preston-Whyte, 

2000). 

1.1.3. Rainfall oscillations 

The rainfall of South Africa varies around the mean values. There exists an 

oscillation with a periodicity of about 18 years over the summer rainfall region 

of South Africa (Tyson and Preston-Whyte, 2000). Three to five of the 18 

years in a full cycle usually have rainfall anomalies with an opposite sign to 

that required by the phase of the oscillation. The opposite sign is usually due 

to phenomena such as the El Niño - Southern Oscillation (Ropelewski and 

Halpert, 1987) that affect the circulation systems (Taljaard, 1986). 

1.1.4. Mean circulation perturbations 

 
 
 

The perturbation from the mean circulation of the atmosphere influences the 

climate and weather of South Africa. The perturbations from the mean 

circulation are the synoptic and smaller scale disturbances that constitute 

individual weather systems. The seasonal perturbations may be as a result of 

forcing factors such as the sea-surface temperatures (SSTs) that determine 

the seasonal rainfall and temperature anomalies (Tyson and Preston-Whyte, 

2000). The seasons vary considerably from year to year because they are 

affected by the day to day statistics within the season (Tyson and Preston 

Whyte, 2000). 

1.1.5. Circulation patterns 

The studies conducted over southern Africa have shown that the mean 

circulation patterns are different during wet and dry years (Taljaard, 1989; 

Miron and Lindesay, 1983 a;b; Harrison, 1984; Rautenbach, 1998; Van 

Heerden and Taljaard, 1998) and forecast models have been proposed (Jury 
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et al, 1998; Landman and Mason, 1999a). Climatological pressure anomaly 

 
 
 

fields give an idea of the frequency of occurrence of specific perturbations in 

the atmosphere. They show opposite characteristics between wet and dry 

conditions on time scales ranging from months to seasons and years (Miron 

and Tyson, 1984). The surface pressure anomaly fields during dry years are 

negative south, and positive east and west of the African continent (Miron and 

Tyson, 1984; Taljaard and Steyn, 1991). The negative surface pressure 

anomalies to the south are associated with weak ridging anticyclones, while 

positive anomalies over the east and west of the African continent are 

associated with shallow surface troughs. 

When the convective activity across equatorial Africa, north-eastern 

Madagascar and the south-west Indian Ocean is above-normal, southern 

Africa is characterised by below-normal convective activity. During wet 

conditions over South Africa the air mostly ascends over the subcontinent and 

sinks east of Madagascar. During dry conditions over the subcontinent the 

mean vertical circulation reverses (Taljaard, 1986). Surface air flow patterns 

over South Africa have a more northerly or easterly component during the wet 

years and a more westerly component during dry years (D’Abreton and 

Lindesay, 1992). 

1.1.6. Moisture fluxes 

The vapour fluxes change between October and January and these are 

important for the rainfall of South Africa (Makarau and Jury, 1997). The zonal 

fluxes are more important in October while the meridional fluxes are important 

in January (D’Abreton and Lindesay, 1992). Wet October (January) months 

are characterised by enhanced zonal (meridional) flow and reduced 

importance of these flows in the dry months (D’Abreton and Lindesay, 1992). 

The moisture that contributes to rainfall over the summer rainfall region of 

South Africa is largely imported from other areas. During dry synoptic spells 

there is usually inflow from the mid-latitude ocean regions to the south. 

Increased moisture flux from the tropical or subtropical south-west Indian 

Ocean tends to occur during wet synoptic spells (Cook et al, 2004). 
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1.1.7. Percent of rainfall caused by tropical systems 

The statistics of central South African rainfall for a number of rain-bearing 

synoptic systems was analysed for the period 1967 to 1997 (Harrison, 1994a). 

Tropical systems accounted for about 60% of the rainfall events over central 

South Africa. In January this contribution exceeded 80%. Cloud bands linking 

the tropical and temperate circulations were the major contributors. The 

December rainfall is caused mainly by the circulation over tropical Africa. 

Temperate systems made an important contribution to the late season rainfall 

maximum over the central South Africa (Harrison, 1994a). 

1.1.8. The importance of seasonal predictions 

More than 80% of the annual rainfall over most parts of South Africa is 

received between October and March (Tyson and Preston-Whyte, 2000; 

Taljaard, 1986). It was found that the summer rainfall in the period 1980-1999 

was closely associated with the Gross Domestic Product (GDP) (Jury, 2002). 

The management of environmental and financial resources in the country 

would be greatly improved by the availability of seasonal rainfall forecasts at 

least one season in advance, if the forecasts are accurate enough (Jury, 

2001). The summer season defined as December-February (DJF) is important 

meteorologically because during this part of the season tropical circulations 

dominate over South Africa (Harrison, 1984a; Landman and Goddard, 2002). 

The reason why this season is important is that seasonal predictability is 

derived from the characteristic of the tropical atmosphere (Shukla, 1998). 

 
 
 

1.2. The atmospheric characteristic and seasonal 

predictability 

1.2.1. Chaos in the atmosphere and models 

The earth’s atmosphere is a chaotic system (Shukla, 1998) and hence the 

models representing the atmospheric processes are comprised of nonlinear 
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equations (Giorgi and Bi, 2000). Simulations started with initial conditions that 

 
 
 

are slightly different from one another will diverge substantially after a few 

days of simulation (Giorgi and Bi, 2000; Chervin et al, 1974). The divergence 

of the simulations is an issue of concern because of the lack of observations 

and errors in observations that are available for the initial conditions (Shukla, 

1998). The forecast becomes useless after a finite amount of time because of 

the uncertainty in the initial conditions which will grow exponential as 

expected for a nonlinear system (Giorgi and Bi, 2000). 

1.2.2. Limit of weather forecasts 

Weather forecasts are usually fairly accurate for 1 to 2 days ahead (Shukla, 

1998). However, the accuracy of weather forecasts decreases as the lead 

time increases. A forecast for a few days in the future often needs to be 

revised as that day approaches. The forecast at these time ranges is said to 

be an initial value problem. Beyond a week or two there is little or no accuracy 

in the forecasts. The correspondence between modelled precipitation 

distributions and observational evidence was found to be best within the first 3 

days after the initial conditions were introduced in a study conducted over 

Brazil (Druyan et al, 2002). Simulated precipitation rates became unrealistic 

after about 5 days and into the second week. 

1.2.3. Tropical atmosphere and sea-surface temperatures 

The tropical atmosphere is not as chaotic as the extra-tropical one (Shukla, 

1998). The tropical flow patterns and rainfall are strongly determined by the 

SSTs since they show little sensitivity to changes in the initial conditions of the 

atmosphere (Shukla, 1998; Anderson et al, 1999). When large changes in the 

atmospheric ICs were introduced in previous studies, the resulting large scale 

wind patterns and rainfall in certain tropical regions did not diverge as would 

be the case for a chaotic system. Instead, they converged to nearly identical 

values determined by SST anomalies. It is impossible to make accurate 

forecasts of the day-to-day sequence of weather events beyond 1 or 2 weeks. 

The predictability of the large scale seasonal tropical circulation is however 
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made possible by the characteristic of the tropical atmosphere (Shukla, 1998; 

Robertson et al, 2004; AMS, 2000). 

1.2.4. Extra-tropical atmosphere 

The predictability of seasonal mean circulation in certain extra-tropical regions 

is enhanced by the high predictability of the tropical rainfall for a given SST 

(Shukla, 1998). Prediction of regional climate anomalies for lead times beyond 

the limit of deterministic predictability (Fennessy and Shukla, 1999) even 

outside the tropics would be possible given accurate predictions of surface 

boundaries. The natural internal atmospheric variability of the extra-tropical 

atmosphere limits the impact of tropical SST forcing. However, strong 

evidence that the statistics of the extra-tropical climate still depend on the 

tropical SSTs, especially when these SSTs are strongly anomalous, has been 

demonstrated (Anderson et al, 1999). The most understood tropical SST – 

atmospheric relation is a phenomenon called the El Niño Southern Oscillation 

(ENSO) (Philander, 1990). 

 
 
 

1.2.5. The El Niño - Southern Oscillation 

The ENSO phenomenon is a free oscillation of the ocean-atmosphere system 

(AMS, 2001; Ropelewski and Halpert, 1987). The southern oscillation 

describes the large east-west shifts of mass in the tropical atmosphere. El 

Niño occurs when the SSTs over the eastern tropical Pacific Ocean are 

anomalously high. During an El Niño event the trade winds are weak and the 

pressure is low over the eastern and high over the western tropical Pacific 

(Philander, 1990). La Niña is the opposite phase of El Niño when SSTs in the 

central and eastern tropical Pacific are unusually low and when the trade 

winds are very intense. The ENSO phenomenon is important to the inter-

annual climate variability worldwide including southern Africa (Jury et al, 1998; 

Philander, 1990). 
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1.2.5.1. ENSO influence on South African rainfall 

 
 
 

The southern oscillation affects the rainfall of South Africa through affecting 

the location of the major cloud bands that lead to most of the summer rainfall 

(Tyson and Preston-Whyte, 2000). During the El Niño low phase of the 

oscillation the cloud band convergence zone moves offshore of South Africa 

and hence the country receives generally below-normal rainfall (Ropelewski 

and Halpert, 1989; Tyson and Preston-Whyte, 2000). During the high phase 

cloud bands locate over southern Africa and rainfall is higher. The ENSO 

phenomenon explains about 30% of the southern African rainfall variability 

(Tyson and Preston-Whyte, 2000). The association between ENSO and South 

African rainfall is strongest in a north-west to south-east line across the South 

African central summer rainfall region (Kruger, 1998; Landman and Mason, 

1999a). 

1.2.6. Atlantic and Indian Ocean SSTs 

1.2.6.1. The role of the oceans adjacent to South Africa 

The rainfall over South Africa is not only influenced by the SSTs in the 

equatorial Pacific Ocean. SSTs in the oceans adjacent to South Africa, the 

Indian and the Atlantic also play a role (Reason and Lutjeharms, 1998; 

Landman and Mason, 1999(b); Allan et al, 1994). On synoptic time scales, the 

atmosphere may be influenced by the surface fluxes and moisture that result 

from the variability of the SSTs in the adjacent oceans. The evolution of rain 

producing systems over southern Africa may be affected by the fluxes. The 

background atmospheric circulation in which synoptic rain-producing systems 

evolve, and changes in the preferred locations of large scale convection may 

be caused by the regional SST variability on longer time scales (Reason and 

Lutjeharms, 1998). 

1.2.6.2. The Indian Ocean SSTs, ENSO and rainfall over South Africa 

There is a high correlation between the SST variability in the Indian Ocean 

with that of the tropical Pacific, with the tropical Pacific leading by 
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approximately 3 months. The atmospheric changes associated with the ENSO 

 
 
 

events have been found to influence the Indian Ocean (Goddard et al, 2001). 

Since the late 1970s the ENSO signal in the Indian Ocean has weakened 

(Landman and Mason, 1999 (b)). The weakened signal has introduced 

important changes between the Indian Ocean SSTs and DJF rainfall 

variability over South Africa. Warm (cold) events in the tropical western Indian 

Ocean have become associated with wet (dry) conditions over the north-

eastern half of South Africa since the late 1970s. This positive association is 

inconsistent with the influence of ENSO warm events on southern African 

rainfall (Landman and Mason, 1999(b)). 

1.2.6.3. The Indian Ocean SSTs and rainfall over South Africa 

The association between SSTs surrounding South Africa and South African 

rainfall are located distant from land in the tropical Indian Ocean east of 50°E, 

but with the strongest rainfall/SST association in the western equatorial Indian 

Ocean (Mason, 1995; Landman and Mason; 1999(b)). The correlation 

between the changes in the SSTs in the western tropical Indian Ocean to the 

north of Madagascar and rainfall over South Africa is negative (Tyson and 

Preston-Whyte, 2000). Wetter conditions over eastern and central South 

Africa tend to be linked to warmer SSTs in the south-west Indian Ocean 

(Reason and Mulenga, 1999). 

An atmospheric general circulation model was used to investigate the 

sensitivity of the regional circulation and rainfall over southern Africa to the 

dipole SST anomalies in the subtropical south Indian Ocean (Reason, 2001). 

Increased rainfall over South Africa occurred when the model was forced with 

positive SST anomalies in the west and negative SST anomalies in the east. 

The increased rainfall was as a result of the enhanced convergence of 

moister than average air over the region. When SST poles were reversed in 

sign, decreased precipitation occurred over south-eastern Africa. The 

decreased precipitation was a result of drier than average air and increased 

low-level divergence (Reason, 2001) 
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There is a weak positive correlation between the SST changes in the Agulhas 

system and late summer rainfall. Warmer (cooler) than average SSTs in the 

Agulhas system are associated with wetter (drier) than average rainfall over 

parts of the summer rainfall region of South Africa (Landman and Mason, 

1999(b); Tyson and Preston-Whyte, 2000). The potential influence of the 

Agulhas Current on the regional atmosphere was studied using two 

ensembles of an atmospheric general circulation model simulated over a one 

year period (Reason, 2000). In the first ensemble, the monthly climatology of 

the SST forcing was used. In the second ensemble, the signature of the 

Agulhas current was smoothed out so that the waters of the region only show 

a latitudinal variation in SST. In the smoothed SST ensemble, a near-surface 

cold anticylonic anomaly was generated over the greater Agulhas Current 

region. Cyclonic systems were weaker in this ensemble compared to 

climatology with significant reductions in rainfall over South Africa (Reason, 

2000). 

1.2.6.4. The Atlantic Ocean SSTs and rainfall over South Africa 

 
 
 

The strongest association between South African rainfall and the Atlantic 

Ocean SSTs is in the central South Atlantic Ocean (Mason, 1995). The South 

African rainfall correlates negatively with the SST anomalies in the eastern 

South Atlantic Ocean off Namibia (Tyson and Preston-Whyte, 2000). SST 

gradient intensity in both the far south-western and the south-eastern Atlantic 

Ocean varies closely in phase with the annual rainfall totals of the summer 

rainfall region (Mason, 1995). A number of models to represent the response 

of the atmosphere to the SST forcing have been developed and are discussed 

next. 
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1.3. Seasonal modelling 

 
 
 

1.3.1. Introduction to modelling 

The future behaviour of the climate system can be determined through 

knowledge of its present state, and past behaviour from the first principles of 

the processes governing the climate system (Lau, 1992). The procedure 

described above is known as ocean or atmospheric modelling. The first 

principles are represented through the basic non-derived equations (primitive 

equations) describing the state of the atmosphere (Tyson and Preston-Whyte, 

2004). The equations are believed to represent the physical, chemical and 

biological processes governing the climate systems (Lau, 1992). Global 

models to represent the processes governing the climate system are more 

generally called general circulation models (AMS, 2001). The general 

circulation models used for climate studies are called global climate models 

(GCMs) (Leung et al, 2002). 

1.3.2. Seasonal forecasting 

The atmospheric response to SST forcing is being predicted using a variety of 

methods. These methods include numerical and statistical models (Anderson 

et al, 1999). Measurable predictive skill has been demonstrated by statistical 

and dynamical models on seasonal timescales. The statistical and dynamical 

models are routinely used to predict SST anomalies. Links between the 

predicted SST anomalies and seasonal temperature and precipitation 

anomalies over the globe are then made. Seasonal forecasts are less specific 

than weather forecasts because the dynamics of the climate system are 

chaotic. The evolution of the individual weather events cannot be explicitly 

forecast on long-term time scales with any confidence. The predictands in 

existing operational seasonal are as a result aggregated (seasonal average 

temperature and seasonal total precipitation) (Fenessy and Shukla, 2000). 

The internal variability of the atmospheric system introduces uncertainty into 

seasonal statistics. Seasonal climate predictions are probabilistic because of 
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the weather noise and the lack of understanding of all of the components of 

 
 
 

the climate system (AMS, 2001). The predictions are commonly expressed in 

terms of three-category probabilities: below-normal, normal and above-normal 

with quantiles computed from a climatological period (Robertson et al, 2004). 

Some potential useful information has been demonstrated from past seasonal 

forecasts when compared with corresponding observed outcomes (Wilks, 

2001). Much of the aggregated forecasts’ predictive ability is a result of the 

effects of ENSO on other parts of the climate system (Goddard et al, 2001). 

However, the operational forecasts have demonstrated predictive skill during 

non-ENSO periods as well (Shukla, 1998; Landman and Mason, 1999a). 

1.3.3. Statistical seasonal modelling 

In statistical modelling, techniques that relate the atmospheric conditions to a 

set of independent variables such as SSTs are used. The statistical models 

are generally less expensive to develop and to run than the numerical models, 

but are dependent upon the quality and quantity of historical observations 

(Anderson et al, 1999). 

The skill of a statistical model to make monthly SST anomaly forecasts using 

the evolution of the SSTs as predictors was investigated (Landman and 

Mason, 2001). The model forecasts for an 18-year independent period 

(1982/1983-1999/2000), outscored forecasts of persisted anomalies beyond 6 

months’ lead time over the eastern Pacific Ocean. The model predictions also 

outscored persistence in the tropical Indian Ocean during the March-May 

spring season, but the skill was poor during the autumn months from 

September to November. The tropical Atlantic Ocean forecast skill was found 

to be generally poor (Landman and Mason, 2001). 

Multivariate regression models were used over southern Africa to estimate 

summer rainfall and climate impact one season in advance. The preliminary 

statistical formulations included many variables influenced by the ENSO such 

as tropical SST in the Indian and Atlantic Ocean. Atmospheric circulation 

responses to ENSO that were noted include the alternation of tropical zonal 
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winds over Africa and changes in convective activity within oceanic monsoon 

 
 
 

troughs (Jury et al, 1998). 

A statistical model that provides operational rainfall forecasts of austral 

summer rainfall over South Africa was developed (Landman and Mason, 

1999a). The model used global-scale SSTs as the only predictors. The most 

important contribution of the predictive skill came from the equatorial Pacific 

Ocean, with weaker predictability from the equatorial Indian Ocean and 

Atlantic Ocean. Low to modest skill was found with the model (Landman and 

Mason, 1999a). The model was highly successful during ENSO years, and 

had a success hit rate of 40% for the non-ENSO years. 

1.3.4. Dynamical seasonal modelling 

GCMs are used at several centres as part of a two-tiered system for making 

seasonal climate forecasts up to several seasons in advance. The SSTs are 

predicted first, and these are then used as surface boundary conditions for 

ensembles of predictions with GCMs (Robertson et al, 2004). GCMs simulate 

precipitation and temperature and other atmospheric variables, with a 

resolution of about 300 km across the globe. It is necessary that multiple 

realisations are made for each model to make the predictions more robust 

and to quantify the uncertainty. 

The multiple realisations can be produced by perturbing the initial conditions 

used in each model and repeating the model integration with each perturbed 

initial state (Fenessy and Shukla, 2000). Lagged average forecasting (LAF) 

can also be used to produce ensemble members (Hoffman et al, 1982). Each 

LAF ensemble member is started from the initial conditions observed at a time 

lagging the start of the forecast period by a different amount. The differences 

among the ensemble members give forecasts some measure of the likelihood 

that a particular seasonal climate state will be above, in, or below the normal 

interval (AMS, 2001). 

A multi institutional joint study project named Dynamical Seasonal Prediction 

(DSP) was conducted to investigate the predictability of seasonal mean 
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climate anomalies using GCMs forced with the observed SSTs (Shukla et al, 

 
 
 

2000). This kind of study where multiple models are compared is helpful in 

understanding which aspects of results are robust and which depend on the 

model used. All models showed higher forecast skill over the Pacific-North 

America for ENSO years compared to the non-ENSO years. Different models 

showed quite different levels of inter-annual variability even though identical 

global SST boundary conditions were utilised (Shukla et al, 2000). 

An assessment of 13 year simulations of three atmospheric GCMs forced with 

observed SSTs were presented and compared with the NCEP reanalysis 

(Tennant, 2003). AGCM inter-annual variability as forced by SSTs was 

realistic. It reproduced the ENSO signal above noise levels that were 

determined from simulations using climatological SSTs (Tennant, 2003). 

There is a need to combine model simulations because there is a huge 

amount of information, sometimes contradicting, regarding the seasonal 

climate of the region that is available to the user from the different models 

(Klopper and Landman, 2003). Different GCMs may perform better in different 

geographical locations and a combination of models has been shown to 

outperform a single model globally (Klopper and Landman, 2003; Robertson 

et al, 2004). Several methods exist for combining together the ensemble 

simulations from multiple GCMs. A Bayesian optimal weighting scheme was 

used to combine six atmospheric GCM seasonal hindcast ensembles 

(Robertson et al, 2004). The skill of the combination scheme was almost 

always increased when the number of models in the combination was 

increased from three to six, regardless of which models were included in the 

three-model combination (Robertson et al, 2004). 

On a seasonal time scale, the importance of the effects of initial conditions is 

weakened considerably but these initial conditions do have a detectable 

influence (Goddard et al, 2001). Anderson and Ploshay (2000) conducted a 

study in which they investigated the influence of the initial conditions on 

seasonal forecasts. They found that the effects of introducing IC information 

for the land surface and atmosphere might actually reduce the skill of 

seasonal simulations in some instances. They interpreted this as being the 
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results of initial-error growth due to the shock of inserting observed ICs which 

 
 
 

are inconsistent with the model climatology and therefore extending the spin 

up period. One therefore needs to carefully evaluate the efficiency of using 

ICs when making seasonal predictions with atmospheric GCMs (Anderson 

and Ploshay, 2000). 

1.3.5. Dynamical vs. statistical models 

An assessment of the capabilities of one statistical model and two numerical 

models to simulate the extra-tropical atmosphere was investigated (Anderson 

et al, 1999). On average, the statistical model was found to produce 

considerably better simulations than either numerical model, even when 

numerical model simulations were bias corrected. The simulation skill was 

found to be generally low, but there were some individual seasons for which 

all three models produced simulations with good skill (Anderson et al, 1999). 

The skill of a statistical model and a GCM’s summer rainfall forecast for 

southern Africa were compared over a 10-year retro-active period from 

1987/1988 to 1996/1997 (Landman et al, 2000). The multi-tiered scheme 

(numerical) was able to produce skill levels that were better than chance and 

outscored the baseline skill level of a linear statistical model. GCM simulations 

using persisted August SST anomalies instead of forecast SSTs produced 

skill levels similar to those of the baseline for longer lead-times (Landman et 

al, 2000). 

Klopper and Landman (2003) proposed a system to produce a combined 

forecast from output from different models (statistical and dynamical) to 

predict seasonal rainfall for southern Africa in DJF. Three models used in the 

study were a linear statistical model (Landman and Mason, 1999a), a non-

linear statistical model (Mason, 1998) and output from the Model Output 

Statistics (MOS) recalibrated atmospheric GCM (Landman and Goddard, 

2003). The conditional probabilities were assumed to be equally probable and 

therefore the proposed method took a simple unweighted average. The 

combined forecasts performed generally better than any of the individual 

16



forecasts. The proposed procedure was able to capture rainfall scenarios 

sufficiently during ENSO events. 

1.4. Global Climate Models limitations and downscaling 

procedures 

1.4.1. Global Climate Model’s limitations 

GCMs are generally run at a resolution of roughly 300 km (Robertson et al, 

2004). The GCMs are restricted to this grid point spacing by computing power 

- running a GCM at a mesoscale resolution of about 60 km in the horizontal 

will require increased computer resources (Ji and Verneker, 1996). There are 

GCMs that are currently run at a much higher resolution but due to the 

amount of computer power needed, most centres continue to make low 

resolution GCM simulations. 

 
 
 

1.4.1.1. Small scale features 

Small scale features can affect the mean model climatology significantly; 

however the GCMs cannot parameterise these features adequately due to the 

course resolution of the models (McGregor et al, 1993). GCM simulations of 

rainfall, in particular, are unreliable and there is a need to provide accurate 

simulations of present and future climate (Joubert et al, 1999). The 

temperature extremes normally cover large areas (Kunkel et al, 2002) and the 

large scale structure and variability of the atmosphere are well characterised 

by the GCMs (Wilby and Wigley, 2000) while precipitation events are often 

highly localised in time and space (Kunkel et al, 2002). 

1.4.1.1.1. Precipitation 

Temperature and circulation patterns are larger scale and hence their 

predictive skill is usually higher than that of precipitation for the same location 

and time (Gong et al, 2003). Precipitation has smaller-scale complex features 
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that result in its noisier and less predictable character. The discrete individual 

convective cells producing precipitation are the major reasons for the noisy 

small-scale character of the precipitation events. Even non-convective 

precipitation usually contains pockets of locally heavy rainfall. Even when 

totalled over a 3-month period, substantial irregularities in the spatial pattern 

of rainfall are likely (Gong et al, 2003; Kunkel et al, 2002). 

1.4.1.2. The topographic representation 

One of the reasons why the coarse resolution of the GCMs leads to unrealistic 

small scale feature simulations is the poor representation of the topography in 

the models (McGregor et al, 1993). The topography influences the 

representation of the climate variables such as rainfall and temperature. The 

influence topography has on temperature is clearly visible over the 

escarpment situated over the southern and eastern part of South Africa, 

where the highest altitudes are characterised by the lowest temperatures 

(Figure 1.2 and 1.3). The large scale spatial differences in rainfall totals over 

relatively short distances over South Africa are also due to the escarpment 

(Tyson and Preston-Whyte, 2000; Engelbrecht et al, 2002; Joubert et al, 

1999). 

 
 
 

1.4.2. Downscaling/recalibrating 

An alternative to produce high resolution simulations using less computing 

power is downscaling, which is possible through statistical (Wilby and Wigley, 

2000) and dynamical methods (McGregor et al, 1993; Giorgi, 1990). The word 

recalibrating is normally used when making forecasts or simulations for spatial 

scales larger than the resolution of the model. For downscaling, forecasts or 

simulations are made using statistical or dynamical methods or a combination 
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Figure 1.2: The topography of southern Africa in meters above sea level and 

the domain of the RegCM3. 

 
 
 

Figure 1.3: The average Climate Research Unit observed temperature for the 

summer season defined as December, January and February (DJF) from 

1991/1992 to 2000/2001 in °C. 
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of the two, for grid-points at a resolution finer than that of the GCM or for 

 
 
 

stations. These downscaling procedures are especially relevant for 

developing countries where computer resources are limited. The simulated 

large-scale circulation by GCMs generally compares well with the observed 

circulation. It is therefore expected that downscaling GCM large scale output 

to specific rainfall regions of interest will produce improved rainfall forecasts 

(Landman and Goddard, 2005). 

1.4.2.1. Statistical downscaling 

Statistical downscaling is based on three assumptions (Wilby and Wigley, 

2000). The first one is that suitable relationships exist between large scale 

predictor circulation and smaller scale predictand variables. The second 

assumption is that these empirical relationships are valid under future climate 

conditions. The last assumption is that the predictor variables and their 

changes are well characterised by GCMs. If these assumptions are met, 

mathematical equations can be constructed to predict local precipitation from 

simulated large scale circulation. The two methods used in statistical 

downscaling are Perfect Prognosis (PP) and Model Output Statistics (MOS) 

(Wilks, 1995). In PP the same system of equations obtained through relating 

the observed (simulated) large scale features and the observed (simulated) 

small scale features is applied in a forecast setting. PP assumes that the 

relationships between the variables do not change in the forecast setting 

(Wilby and Wigley, 2000). In MOS a system of equations are obtained through 

analysing the relationship between the simulated large scale fields and the 

observed small scale fields. 

The statistical downscaling procedures have been applied over many regions 

including southern Africa. A MOS recalibration technique was applied over 

southern Africa to recalibrate large scale circulation features produced by the 

ECHAM3.6 GCM to observed regional rainfall for the December-January-

February (DJF) season (Landman and Goddard, 2002). The 850 hPa 

geopotential heights were used as the predictor. The recalibrated forecasts 

were found to outscore the GCM-simulated rainfall anomalies (Landman and 

Goddard, 2003). The PP procedure has also been applied in South Africa to 
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recalibrate 

 
 
 

COLA T30 simulations to streamflow for DJF 1987/1988 to 

1994/1995 seasons (Landman et al, 2001). Successful forecasts of 

streamflow categories (below-normal, normal and above-normal) were 

obtained for some years. 

A MOS procedure was used to downscale bias-corrected GCM (COLA T30) 

sea-level pressure and 500 hPa height fields to the regional rainfall of seven 

homogeneous regions in South Africa for 30-day periods within the DJF 

season. The best skill was found for the central interior, followed by the 

western interior, the eastern coast, the north-eastern interior and the Lowveld. 

Forecasts of extreme events (droughts and floods) were predicted skilfully 

over the larger area of the summer rainfall region, even during years that were 

not associated with El Niño and La Niña events. (Landman and Tennant, 

2000). 

The PP and MOS techniques were utilised to recalibrate the CSIRO 9 GCM 

large scale fields statistically to three equi-probable rainfall categories for DJF 

over southern Africa. MOS produced the higher skill for the independent test 

period (Bartman et al, 2003). A method of combining the attributes of MOS 

and PP called MOS-PP into a single forecast system has been proposed, and 

tested over southern Africa (Landman and Goddard, 2005). The proposed 

system uses atmospheric GCM simulation data to construct MOS equations 

and subsequently uses forecast fields of the same atmospheric GCM at 

various lead times in the simulation MOS-equations. High skill was found over 

most of the regions when the driest and the wettest years were forecast using 

the system. 

1.4.2.2. Dynamical downscaling 

Dynamical downscaling utilizes high resolution regional climate models 

(RCMs) to derive regional climate information, on a selected domain that 

covers an area of interest (Leung et al, 2003; Giorgi, 1990; McGregor et al, 

1993). An RCM is nested within a GCM or global analyses of observations 

which provides the required large-scale conditions (the initial conditions (ICs) 
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and the time dependant lateral boundary conditions (LBCs)) (Fennessy and 

 
 
 

Shukla, 2000). The RCMs produce high resolution simulation of surface 

variables which are most affected by vegetation, land use and topographic 

features that can vary substantially over spatial scales of a few kilometres 

(Kim et al, 2000). Regional climate simulations are more than an interpolation 

of the lower resolution data from GCMs or the reanalyses. Regional climate 

modelling exploits the four dimensional dynamics of the model, which account 

for the interaction of mesoscale circulations with a high-resolution 

representation of the local topography (Druyan et al, 2002). The RCMs, 

therefore, also offer a chance of understanding the regional climate better 

because they use physically and dynamically consistent ways (Kim et al, 

2000). 

1.4.2.2.1 RCMs vs. LAMs used for short term 

Limited Area Models (LAMs) are nested models, and hence RCMs are also 

called LAMs. The primary difference between RCMs and LAMs used for 

short-term weather forecasting is that RCM simulations are initialised only 

once. They are then extended for long simulation times (months to years) with 

the large-scale meteorological fields provided at the lateral boundaries at 

consecutive time periods (Giorgi and Bi, 2000). Initialisation is less important 

for an RCM’s climatology while for LAMs used for weather forecasting 

initialisation is crucial (Giorgi and Mearns, 1999). A dynamical equilibrium 

among the LBC forcing, the model-generated forcing from the interior of the 

domain, and the internal model physics and dynamics determine an RCM’s 

climatology (Giorgi and Bi, 2000). Some sensitivity studies have been 

conducted to investigate the sensitivity of the regional model’s simulations on 

factors such as the domain choice (Seth and Giorgi, 1998; Seth and Rojas, 

2003; Landman et al, 2005), model reinitialisations (Pan et al, 1998; Qian et 

al, 2003) and the model resolution (Giorgi and Marinucci, 1995). 

1.4.2.2.2. Domain 

The RCM simulations are affected by the domain size and location of the 

lateral boundaries (Seth and Giorgi, 1997). Sensitivity to model domain (size 
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and location) depends on whether large scale forcings originate from within or 

 
 
 

outside of the regional domain (Leung et al, 2003). The model domain should 

be large enough to encompass all regions that include forcings and 

circulations which directly affect climate over the area of interest as much as 

possible (Giorgi and Mearns, 1999; Seth and Giorgi, 1997). If the domain size 

is small and the region of interest is closer to the lateral boundaries, the 

influence of the LBCs on the model solution will be large. In a study by Seth 

and Giorgi (1997) it was found that when the reanalyses were used as forcing 

fields that a smaller domain produced the best simulations. It was established 

in a study where an RCM, DARLAM, was used that simulations were 

improved away from the boundaries of the domain, and were generally best in 

mid-latitude regions (Walsh and McGregor, 1995). 

The effects of the model domain size and the positions of its lateral 

boundaries on the simulation of tropical cyclone-like vortices and their tracks 

on a seasonal time scale in the Indian ocean were investigated (Landman et 

al, 2005). The simulation of the life-cycle of tropical cyclone-like vortices were 

affected by the positioning of the eastern and northern boundary of the RCM’s 

domain. The size of the domain was found to have a bearing on the ability of 

the regional model to simulate vortices in the Mozambique Channel. 

Madagascar also influences the storm tracks and therefore it is advisable that 

for the sensitivity studies over southern Africa Madagascar is included in the 

RCM’s domain (Landman et al, 2005). 

1.4.2.2.3. Model reinitialisation 

Every time a model is reinitialised, spin up problems are introduced (Pan et al, 

1998). The advantages of model reinitialisation are that long simulations can 

be run in parallel and also that accumulated model errors can be reduced. 

The effects of reinitialisation frequency were analysed by Pan et al (1998) and 

Qian et al (2003). In the integrations that continued without reinitialisation, 

locations of specific meteorological features drifted downstream, implying the 

need for periodic reinitialisation of the model (Qian et al, 2003; Pan et al, 

1998). When model reinitialisation interval is relatively long, simulated 

domain-averaged variables, including rainfall, were not very sensitive to 
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model reinitialisation 

 
 
 

because they are controlled to a large extent by 

boundary conditions. 

1.4.2.2.4. Resolution and topography 

The RCM’s sensitivity to horizontal resolution and topographic forcing has 

been investigated (Giorgi and Marinucci, 1995). The model was run for 

January and July month-long simulations over Europe with a resolution that 

ranged from 200 to 50 km and with various topography configurations. The 

precipitation amounts were found to be more sensitive to the resolution than 

to topographic forcing. The topographic effect was found to be on the spatial 

distribution of precipitation only in areas of complex topographic features 

(Giorgi and Marinucci, 1995). 

1.4.2.2.5. Large scale features in GCMs and RCMs 

The utility of RCMs is not to improve the GCM’s large scale circulation 

simulations (Leung and Ghan, 1998). The downscaling procedures assume 

that GCMs are able to simulate the characteristics of the large scale 

circulations (Leung et al, 2003). It then follows that the successful application 

of nested modelling approach requires that the GCM provides a sufficiently 

accurate broad-scale simulation (Giorgi and Mearns, 1999). RCM simulations 

should be expected to deviate from GCM simulations at the lower 

atmosphere, on spatial scales influenced by surface boundary conditions. In 

practise the large scale simulated by the RCMs might differ from those 

simulated by GCMs mainly because of differences in the physical 

parameterisations used by the models (Leung and Ghan, 1998; McGregor, 

1993). 

In reality the GCM large scale circulation have errors. In a nested system the 

errors in the large scale circulations produced by the driving model are 

transmitted to the nested model. Nested models can sometimes improve the 

large scale patterns of surface fields compared to the driving GCMs (Giorgi 

and Mearns, 1999). However, in general if a GCM misplaces the location of 

major storm tracks or other large scale circulation features, this misplacement 
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will be reflected in the nested model. When output from a GCM simulation is 

 
 
 

used to drive a regional model, an evaluation of the model performance in 

simulating large scale circulation patterns over the region of interest needs to 

be carried out. If different GCM simulations are available, the best performing 

one should be selected for model nesting in order to minimise the effects of 

errors in the large-scale fields provided to the RCM at the lateral boundaries 

(Giorgi and Mearns, 1999). 

1.4.2.2.6. GCM forced vs. reanalyses forced 

Rojas and Seth (2003) and Seth and Rojas (2003) used a regional climate 

model driven by reanalyses and ensemble integrations of a GCM to simulate 

two extreme rainfall seasons over south America. The nested model rainfall 

forced with GCM output was found to be degraded compared to those from 

the reanalyses-driven RegCM integrations. Druyan et al (2002) nested an 

RCM within a GCM and the NCEP reanalyses and used the predicted SSTs 

and observed SSTs to force the model at the surface boundary. The results 

from the experiment showed that using actual climate data to drive the RCMs 

does not guarantee realistic modelled precipitation distributions. 

1.4.2.2.7. Details vs. accuracy 

Dynamical downscaling provides enhanced details of climate simulations due 

to the high resolution of the RCMs. However, detail does not imply accuracy. 

It is therefore important to evaluate statistical structures of climate signals at 

various spatial scales to determine if predictability is improved with regional 

over global modelling (Leung et al, 2002). Since one of the objectives of 

nested climate runs is to model mesoscale features affecting a region, it also 

needs to be verified that the RCM realistically simulates those features. The 

rainfall events are highly localised in time and space (Kunkel et al, 2002) and 

hence are regarded as small scale. A considerable amount of work has been 

done on regional climate modelling and as a result a number of RCMs have 

been developed. 
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1.4.2.2.8. Long-term RCM simulations 

 
 
 

A number of studies have been conducted where simulations were made over 

a number of years to determine if the RCMs capture the general atmospheric 

patterns (Giorgi, 1990; Fennesy and Shukla, 1999; Ji and Verneker, 1996; 

Kim et al, 2000; Druyan et al, 2000; Leung and Ghan, 1998; Gallee et al, 

2004). Some simulations were made just for two months, one in winter and 

one in summer, which are thought of as representing the middle of the season 

concerned (Giorgi et al, 1993a;b; Renwick et al, 1999; Walsh and McGregor, 

1995). These studies determine if an RCM's solution is sensitive to the 

general mean atmospheric circulation patterns that determine the intra-annual 

seasonal changes. The studies have shown that the nested models are 

generally as good as or better than the GCMs. In some cases the RCMs even 

reduced the errors in the large scale simulations. 

Similar kinds of regional modelling studies have been conducted over South 

Africa by Engelbrecht et al (2000) and Joubert et al (1999) using the Division 

of Atmospheric Research Limited Area Model (DARLAM). DARLAM was 

nested within the CSIRO 9 Mark 2 GCM for January (Joubert et al, 1999) and 

July (Engelbrecht et al, 2000) for a period of 10-years. The simulations have 

demonstrated that DARLAM is generally able to simulate the details of 

regional climate better than the GCM, although rainfall was often 

overestimated in regions of steep topography (Joubert et al, 1999; 

Engelbrecht et al 2000). The problem is related to the fact that regional 

climate models tend to simulate too many rain days, as well as rainfall 

intensity (rain per day) which is lower than observed (Joubert et al, 1999). 

1.4.2.2.9. Inter-annual RCM simulations 

In order to be useful for practical climate applications, a nested model must be 

able to predict features of the observed inter-annual variability (Fenessy and 

Shukla, 2000). The inter-annual variability of the RCMs has been investigated 

by looking at the dry and wet years (Walsh and McGregor, 1997; Druyan et al, 

2002; Seth and Rojas, 2003; Rojas and Seth, 2003). The RCMs used in these 
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studies were able to capture the differences in the mean rainfall for the 

different years over the different areas of interest. 

1.5. Intra-seasonal 

1.5.1. The need for intra-seasonal studies 

The changes in the statistics of the daily events within a season lead to 

changes in the statistics of a season (Wilks, 2001). The character of the 

rainfall within the season often exerts a greater influence than does the 

seasonal total, as a result, seasonal forecasts are only marginally useful. 

Seasons with similar rainfall totals can have quite diverse characteristics of 

rainfall (Tennant and Hewitson, 2002). The prediction of wet and dry seasons 

is useful, but agricultural production and water resource management require 

a more detailed knowledge of the rainfall and temperature characteristics on 

the day to week event scale (Matarira and Jury, 1991). Agriculture drives the 

country’s economy and therefore it is important to understand and predict the 

temporal and spatial distribution of rainfall in the austral summer season 

(Harrison, 1984a). 

 
 
 

The chaotic characteristic of the atmosphere makes prediction of about two 

weeks to two months challenging (AMS, 2001). The noise-levels are reduced 

when simulations are averaged out (Chervin, 1974). Hence the forecasts in 

the range from several weeks to less than a season tend to be less skilful 

than seasonal climate forecasts. There is however, evidence that under some 

conditions strong regional boundary forcing useful skill may be realised on 

shorter climate timescales (AMS, 2001). 

The distribution of the number of rain days per year can be expected to 

resemble that of the total rainfall. However, it is not a case of direct 

proportionality because of the different characteristics of precipitation events, 

their types and time distribution (Taljaard, 1986). The distribution of the wet 

and dry spells within the season was found to be related to seasonal total 
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rainfall over South Africa (Cook et al, 2004). Wetter seasons tend to have 

longer or more intense wet spells rather than a greater number of wet spells 

(Cook et al, 2004). Seasons with a high total rainfall generally have a higher 

number of heavy rain days and not necessarily an increase in light rain days 

(Tennant and Hewitson, 2002). It was found that the length of the period 

between rain days has a low correlation to seasonal totals, and therefore that 

seasons with a high total rainfall may still contain prolonged dry periods 

(Tennant and Hewitson, 2002). 

The intra-seasonal climate variability over southern Africa has been studied 

based on observational analyses of selected wet and dry spells (Taljaard, 

1986; Miron and Lindesay, 1983). The historical distribution of summer rainfall 

over southern Africa is typically composed of five wet spells, occurring at 

approximately monthly intervals from late November to late March. During the 

dry summers of 1987 and 1992 there were only two wet spells in December 

and January. The relatively wet years of 1989 and 1990 exhibit continuously 

wet periods in January and February (Taljaard, 1986). 

 
 
 

In addition to getting a reasonable prediction of seasonal mean precipitation, it 

is important that a model correctly predicts the intra-seasonal variability, 

particularly for precipitation (Fennessy and Shukla, 2000). Over many parts of 

the world, ENSO forcing of the seasonal total rainfall is accomplished through 

affecting the frequency and intensity of rainfall in different regions. A study 

was conducted where attempts were made to predict the intra-seasonal 

characteristics over the US using ENSO as the predictor (Gershunov et al, 

2000; Gershunov, 1998). Given a perfect forecast of ENSO, the frequency of 

intra-seasonal extremes is specified as the average frequency of occurrence 

during similar-phased ENSO seasons on record. The skill was found to 

depend on varying ENSO sensitivity in different geographic regions. The 

quantile ranges and consistency or variability from one ENSO event to 

another ENSO sensitivity varied according to the intensity of the tropical 

forcing. Good predictability is likely for variables and in regions displaying a 

strong and consistent ENSO signal (Gershunov, 1998). 
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An assessment of 13 year simulations of three atmospheric GCMs forced with 

 
 
 

observed SSTs were presented and compared with the NCEP reanalysis. 

Daily circulation statistics were well represented by the Hadley Centre 

Atmospheric Climate Model (HADAM3) but the COLA and CSIRO9 models 

produced flow patterns biased toward atmospheric archetype modes 

(Tennant, 2003). 

The atmospheric GCM and nested model simulations of the daily precipitation 

variability was examined over different regions of the United States and the 

regional model was found to have a more realistic intra-seasonal variability 

compared to the atmospheric GCM alone (Fennessy and Shukla, 2000). Time 

series of daily mean rainfall were averaged over two 2.5° x 2.5° grid meshes 

in the Niamey region in West Africa from the MAR regional model (Gallee et 

al, 2004). Maxima reaching up to 40 mm/day are found in the same areas in 

the simulations as in the observations. 

Kunkel et al (2002) presented a paper that described an analysis of a 10-year 

simulation from a regional climate model, comparing model estimates with 

observations of heavy precipitation and seasonal anomalies. Model 

thresholds for heavy precipitation events were generally greater than the 

observed thresholds in the mountainous regions of the western United States 

and less than observed along the west coast. The timing of specific events 

between model solutions and observations did not correspond generally, 

reflecting differences between model and observations in the speed and path 

of many of the synoptic-scale events triggering the precipitation (Kunkel et al, 

2002). 

1.6. The status of long-range forecasting at the South African 

Weather Service 

Considerable progress has been made since the early 1990s to develop 

models that are able to predict the seasonal climate behaviour over southern 

African. Seasonal forecasts have been issued since the early 1990s by 
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groups both locally and internationally. Most algorithms for predicting southern 

 
 
 

African inter-seasonal climate variability have made use of linear statistics, 

relating seasonal rainfall to global SSTs, outgoing long-wave radiation and 

various atmospheric pressure and wind indices (Jury et al, 1998; Landman 

and Mason, 2001). In addition to statistical methods, the COLA T30 GCM has 

been used successfully operationally to predict seasonal rainfall over the 

summer rainfall region of southern Africa at the South African Weather 

Service (SAWS) (Landman and Tennant, 2000). 

A combination of models has shown to outperform a single model globally 

(Klopper and Landman, 2003) and as a result SAWS combines a number of 

models to produce its forecasts. The procedure to come up with seasonal 

forecasts at the SAWS is as follows: The output from statistical models and 

GCMs run at the SAWS, and GCMs run at the University of Cape Town 

(UCT), the European Centre for Medium-Range Weather Forecasts (ECMWF) 

and the United Kingdom Met Office (UK Met-Office) are used as input to 

derive the forecasts. The International Research Institute for Climate and 

Society (IRI) maps derived from the models run at the IRI and as well other 

meteorological centres are also used. A group of seasonal forecast specialists 

from the SAWS, UCT and the Agricultural Research Council (ARC) produce 

the forecasts based on the model output and expert interpretation on the 

current climatic conditions (SAWS, 2006). 

An example of the seasonal forecast issued by the SAWS and the 

corresponding observations are given in Figure 1.4 and Figure 1.5 for 

November-January 2005/2006. During the season the greatest part of the 

country received normal to above-normal rainfall with the exception of the 

south-western part of the country. In the forecast issued for the summer 

rainfall regions, a higher probability was assigned to the normal category and 

the next likely category was above-normal. The highest probability of 40% of 

the below-normal category was given to the southern and western coast and 

the adjacent interior. 

It has been found that the GCMs are unable to simulate precipitation with a 

high level of skill due to their low resolution ((McGregor, 1993; Giorgi, 1990). 
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Figure 1.4: The probabilistic seasonal rainfall forecast for November-January 

2005/2006 as issued by the South African Weather Service in August 2005. 

 
 
 

Figure 1.5: The observed seasonal rainfall in three categories in the three 

categories over South Africa for the season November-January 2005/2006. 
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The downscaling procedure was developed to correct the biases in the GCM 

 
 
 

simulations (statistical downscaling) and also to produce simulations with high 

resolution (RCMs). At the SAWS a statistical downscaling procedure called 

MOS-PP (Landman and Goddard, 2005) is also used operationally in addition 

to all the models mentioned above. The RCMs are not used operationally yet 

and it is the plan of SAWS to produce an operational regional climate 

modelling system by the end of the 2006. In addition to the high resolution 

model simulations that will be obtained from the RCMs, intra-seasonal 

forecasts will be made using the RCM, if the RCM is found to produce the 

intra-seasonal characteristic skilfully. The best possible way to produce the 

simulations using the available models has to be determined before the 

models are used operationally. 

1.7. The Internal variability of the GCM and the RCM 

1.7.1. A GCM’s internal variability 

The internal variability of the models is central to the question of the 

predictability of the atmosphere. In operational forecasting, multiple 

realisations are made using the GCM due to non-linearities in the GCM 

(Giorgi and Bi, 2000). GCM solutions started with initial conditions that are 

slightly different from one another will diverge substantially after a few days of 

simulations. The solutions will diverge from one another as a result of the 

internal variability of the GCM. The differences among the ensemble 

members give the forecasts some measure of the likelihood that a particular 

seasonal climate state will be below, in, or above the normal interval (AMS, 

2001). The seasonal forecasts produced in this way have proved to be skilful. 

1.7.2. An RCM's internal variability 

In regional climate modelling an RCM is nested within a GCM which provides 

the ICs and the time dependent LBCs. The lateral boundary forcing limits the 

degrees of freedom of RCMs, and as a result an RCM’s climatology will not 
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diverge from the forcing fields strongly (Giorgi and Bi, 2000). 

 
 
 

The RCM’s 

physics and dynamics are just as non-linear as the GCM’s are, and so 

although they are restricted by the boundary forcing, they are expected to 

exhibit a certain level of the internal variability. If an RCM is nested within a 

GCM the solutions that are obtained are a function of the internal variability of 

GCM as well as of the RCM. It is therefore necessary to investigate the 

amount of variability introduced to the nested system solutions by the RCM’s 

internal variability. The question is central to seasonal forecasting using an 

RCM because it has to be established as to whether or not it is necessary to 

produce multiple realisations to quantify the uncertainty associated with non-

linearities in an RCM as it is done for the GCM. 

Giorgi and Bi (2000) analysed sensitivity experiments in which random 

perturbations were applied to the ICs and LBCs of a set of seasonal RCM 

simulations over eastern Asia. In the experiment they found that the sensitivity 

to the perturbations grew for the first 5-15 days of the simulation and then 

reached a dynamical equilibrium. The perturbations did not affect the domain-

wide average climatology significantly , but it substantially influenced the day-

to-day model solution. The influence was significant especially for 

precipitation, and aspects of the model climate such as the frequency of 

occurrence of heavy precipitation events. 

Estimates of external (SST forced signal) and internal (dynamics generated 

noise) variability were made for both the global model and the nested model 

predictions (Fennessy and Shukla, 2000). The signal, noise, and signal-to-

noise ratios of the near-surface temperature and precipitation fields were 

generally quite similar between the nested model and the global model 

predictions. In the winter season the nested model had larger signal-to-noise 

ratios in both temperature and precipitation than did the GCM alone 

(Fennessy and Shukla, 2000). 
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1.8. Summary 

In general, the precipitation of South Africa increases from west to east, 

except along the southern coast. Maximum altitudes in excess of 3500 m 

occur along the South African escarpment. The latter escarpment results in 

large scale spatial differences in rainfall totals over relatively short distances 

over South Africa. South Africa is situated in the subtropics and therefore it is 

affected by the circulations systems in the tropics, the subtropics and the 

middle latitudes. The atmospheric systems that are operating in the region 

result in the rainfall that is highly seasonal. More than 80% of the annual 

rainfall over the most part of the country is received in summer. Tropical 

circulations dominate during late summer. In a study conducted over the 

period 1980-1999 it was found that the GDP is closely associated with the 

summer rainfall and therefore forecasts issued one season in advance could 

greatly assist the management of environmental and financial resources in the 

country. 

 
 
 

The atmosphere is chaotic and hence predictability is limited. Simulations 

started with slightly different initial conditions will diverge after a finite amount 

of time. This is an issue of concern because of the lack and errors in the 

observations that are available for the initial conditions. However, it was found 

that the tropical atmosphere does not adhere to the definition of chaos. The 

tropical seasonal circulation and rainfall are strongly affected by the boundary 

conditions of the SSTs. It should therefore be possible to predict the tropical 

large scale seasonal circulation and rainfall for as long as the SSTs can be 

predicted. The high predictability of tropical rainfall for a given SST can 

therefore enhance the predictability of seasonal mean circulation in certain 

extra-tropical regions. 

Numerical models, especially GCMs, have been used to predict the response 

of the atmosphere to the forcing fields. Due to the non-linearities in the 

atmosphere the seasonal forecasts are aggregated (average temperature and 

total rainfall) and they are expressed probabilistically (below-normal, normal 

and above-normal). Comparison of past seasonal forecasts with the 
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corresponding observed seasonal outcomes has demonstrated real potential 

 
 
 

useful information content. 

GCMs are generally run at a resolution of about 300 km and therefore are 

unable to simulate small scale features effectively and are generally skilful in 

producing the large scale structure of the atmosphere. However, the 

predictive skill for precipitation is limited because precipitation events are 

highly localised in time and space. Downscaling was introduced as a feasible 

method to produce high resolution simulations with less computer resources 

than those required if a GCM were to run with the same resolution. This 

procedure is possible through statistical and dynamical methods. In the latter 

method RCMs are nested within the GCM that provides the ICs and the time 

dependent LBCs. RCMs have been found to produce more skill as compared 

to the GCMs, especially when variables that are affected by the characteristic 

of the land surface are considered. 

The skill of both the GCMs and RCMs to capture the inter-annual rainfall 

variability has been investigated over many parts of the world. The models 

were found to capture the inter-annual variability. The regional climate 

modelling work with special emphasis over South Africa is limited. That is also 

illustrated by the fact that at the SAWS where seasonal forecasts have been 

issued since 1994, RCMs are not used as yet to generate the raw model 

output. The SAWS aims to have an operational multi-regional climate 

modelling system. The best possible ways to implement the RCMs have to be 

determined before the models are used operationally. 

The GCMs represent the atmospheric processes that by nature have a non-

linear characteristic. To quantify the uncertainty associated with the internal 

variability of the GCM, multiple realisations for each GCM have to be 

produced in operational forecasting and also in experiments. In regional 

climate modelling an RCM is nested within a GCM which provides the ICs and 

the time dependent LBCs. The lateral boundary forcing limits the degrees of 

freedom of RCMs, and therefore an RCM’s climatology will not diverge from 

the forcing fields strongly. The RCM’s physics and dynamics are non-linear 

just as the GCM’s are and so although they are restricted by the boundary 
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forcing, they are expected to exhibit a certain level of the internal variability. 

The solutions of a nested system of an RCM and a GCM are subject to the 

internal variability of both the GCM and the RCM. 

1.9. Aim of the study 

The core aim of the research in this dissertation is to investigate the internal 

variability of an RCM. In operational forecasting an RCM is nested within a 

GCM which also has an internal variability. The nested system solutions are 

therefore influenced by the internal variability of both the GCM and of the 

RCM. 

Objective 1 

To investigate the internal variability of the GCM and the RCM 

GCM simulations started with initial conditions that are different from one 

 
 
 

another will diverge substantially after a few days of simulation. The 

divergence of the solutions is due to the internal variability of the GCMs. In 

this study GCM simulations are made using different initial conditions. The 

realisations obtained from each initial condition are used to force an RCM. An 

RCM also represents the atmospheric processes and therefore its internal 

variability influences the simulations. The divergence of the nested system 

solutions is therefore due to a combination of the internal variability of the 

GCM and the RCM. The question that is asked is to what extent will the 

nested system solutions obtained from the procedure explained above 

diverge from one another? 

Objective 2 

To investigate the internal variability of the RCM 

In regional climate modelling an RCM is nested within a GCM which provides 

the ICs and the time dependent LBCs. The RCM’s physics and dynamics are 

as non-linear as the GCM’s are and so, although they are restricted by the 
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boundary forcing, they are expected to exhibit a certain level of the internal 

variability. In this part of the study, the question is, to what extent does the 

internal variability of the RCM influence the variability of the solutions obtained 

from a nested system. In other words, to what extent will the RCM solutions 

diverge from one another when started with different ICs with the LBCs kept 

the same? 
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CHAPTER 2: DATA, METHODS AND NUMERICAL MODELS 

 
 
 

2.1. Introduction 

More than 80% of the annual rainfall over most parts of South Africa is 

received between October and March (Taljaard, 1986). The GDP has been 

found to have a close association with the summer rainfall over South Africa 

(Jury, 2002). Forecasts of summer rainfall more than one season in advance 

could greatly assist the management of environmental and financial resources 

in the country. Seasonal forecasts have been issued by SAWS since 1994 

and they have proved to be skilful. Seasonal predictability is derived from the 

fact that slowly evolving boundary conditions such as the SSTs leave some 

memory in the atmosphere and therefore render the atmosphere partly 

predictable (Shukla, 1998). This is especially true in the tropical atmosphere. 

The tropical circulations dominate over South Africa in late summer (Harrison, 

1994a). Given that most of the rainfall is received in summer and that the 

tropical atmosphere dominates in late summer, the study concentrates only 

on the summer season defined as December to February (DJF). 

The models that are used operationally at SAWS to produce forecasts are 

GCMs, statistical models and statistical downscaling models (SAWS, 2006). 

The RCMs are not used as yet in the production of seasonal forecasts and it 

is the plan of SAWS to have the RCMs used operationally by the end of 2006. 

Before a model is used to produce operational rainfall forecasts researchers 

have to determine ways in which they will obtain the best possible simulations 

from the models. The question of the internal variability of the model is very 

important in modelling because it lies at the centre of the predictability of the 

atmosphere using the dynamical models. The atmosphere is chaotic (Shukla, 

1998) and as a result the models representing the climate system are 

nonlinear (Giorgi and Bi, 2000). 

In order to make the predictions more robust and to quantify the uncertainty, it 

is necessary to make multiple realisations for a particular SST forecast. The 

multiple realisations can be produced by perturbing the initial conditions used 
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in each model and repeating the model integration with each perturbed initial 

state. LAF can also be used to make ensemble members (Hoffman et al, 

1982). The departures from the ensemble mean are a measure of the model’s 

internal variability. The aim of this study is to investigate the internal variability 

of the GCM and the RCM and then to determine to what extent does the 

internal variability of the RCM influence the variability of the nested system 

simulations. 

In this study the internal variability of an RCM is studied using the GCM 

simulations as lateral boundary conditions, and observed SSTs at the surface 

boundary. Using observed global SSTs as lower boundary conditions helps 

determine the upper limit of SST forced predictability (Shukla et al, 2000). In 

operational forecasting an RCM is forced with the GCM simulations which are 

also subject to the GCM’s internal variability (Giorgi and Bi, 2000). The nested 

solutions are therefore subject to the internal variability of both GCMs and the 

RCMs. 

 
 
 

2.2. The GCM’s and the RCM's internal variability 

The GCM simulations are sensitive to the non-linearities in the model 

equations (Giorgi and Bi, 2000). As a result, solutions started with different 

initial conditions will diverge substantially after a few days of simulation. 

Seasonal predictability is based on the fact that the atmosphere responds to 

slowly evolving forcings such as the SSTs (Shukla, 1998). The use of 

ensembles provides some idea of the probability distribution of outcomes, as 

well as the mean outcome which may reasonably be regarded as a best 

guess for the forecast. It is expected that the signal resulting from SST forcing 

in a GCM over periods longer than a few weeks must be distinguished from 

the noise level if the signal is to be considered physically significant (Shukla et 

al, 2000). In other words, assuming that ENSO was the only factor influencing 

the seasonal rainfall over South Africa, during an El Niño season one will 

expect the greatest number of ensemble members to lean towards the below-

normal rainfall category over South Africa. Some ensemble members will be 
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Table 2.1: The design of the experiment to investigate of the internal 

variability of the ECHAM4.5 GCM and the RegCM3. 

Season No. of ensemble 

members 

Start date of 

integration 

End date of 

Integration 

DJF 1991/1992 4 01/11/1991 27/02/1992 

DJF 1992/1993 4 01/11/1992 27/02/1993 

DJF 1993/1994 4 01/11/1993 27/02/1994 

DJF 1994/1995 4 01/11/1994 27/02/1995 

DJF 1995/1996 4 01/11/1995 27/02/1996 

DJF 1996/1997 4 01/11/1996 27/02/1997 

DJF 1997/1998 4 01/11/1997 27/02/1998 

DJF 1998/1999 4 01/11/1998 27/02/1999 

DJF 1999/2000 4 01/11/1999 27/02/2000 

DJF 2000/2001 4 01/11/2000 27/02/2001 

expected to diverge from the expected forecast due to the internal variability 

of the models. 

A GCM ensemble of 24 runs is produced, where the ensemble members are 

exposed to the same observed SST boundary conditions, but are initialised 
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with differing 

 
 
 

atmospheric initial conditions (pers. comm. DeWitt, 2006). 

Analysing the differences in the model solution when different initial conditions 

are used gives an idea of the model’s internal variability. The GCM used in 

the study is the ECHAM4.5 and this model is used because it was found to 

outperform four other GCMs over southern Africa in a previous study 

(Landman and Goddard, 2003). The GCM integrations used in the study are 

made at the International Research Institute for Climate and Society (IRI). 

Four out of the 24 ensemble members generated above are used to force a 

regional climate model called the RegCM3. The wind fields in the ensemble 

members that are used were perturbed at the beginning of the integration to 

make the initial conditions different (pers. comm. DeWitt, 2006). The analysis 

of the generated data gives the internal variability of the ECHAM4.5 and the 

RegCM3. The simulations are made over a 10-year period and for DJF. Table 

2.1 summarises the design of the experiment to investigate the internal 

variability of the ECHAM4.5-RegCM3 nested system. The reason why model 

integrations are started on 1st of November as opposed to the 1st of December 

are explained below in the section on the spin up period. 

2.3. The Global Climate Model 

The ECHAM4.5 GCM was developed at the Max-Planck Institute for 

Meteorology, Hamburg, Germany (Roeckner et al, 1996). The ECHAM 

climate model was developed from the European Centre for Medium-range 

Weather-Forecasting (ECMWF) model with changes for climate simulations 

by a comprehensive parameterisation package developed at Hamburg. The 

model was configured at a triangular spectral truncation 42 (T42), and as a 

result the resolution is about 2.8º lat X lon with 19 vertical layers. The cumulus 

convection scheme developed by Tiedtke (1989) was employed in the 

production of the ECHAM4.5 simulations. The ECHAM4.5 GCM is used 

operationally at the IRI. 
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2.4. The Regional Climate Model 

 
 
 

The RCM used in this study is the RegCM3 developed by the Abdus Salam 

International Centre for Theoretical Physics (ICTP) in Italy and released in 

2003. The first generation National Centre for Atmospheric Research (NCAR) 

RegCM was built upon the NCAR-Pennsylvania State University Mesoscale 

version MM4 in the late 1980s. The dynamical component of the model 

originated from that of the MM4, which is a compressible, finite difference 

model with hydrostatic balance and vertical �-coordinates. For application of 

the MM4 to climate studies, a number of physics parameterization were 

replaced, mostly in the areas of radiative transfer and land surface physics, 

which led to the first generation RegCM. A first major upgrade of the model 

physics and numerical schemes was documented by (Giorgi et al, 1993a, 

Giorgi et al, 1993b), and resulted in the second generation RegCM 

(RegCM2). The physics of the RegCM2 was based on that of the NCAR 

Community Climate Model 2 (CCM2), and the mesoscale model MM5 (Grell 

et al, 1994a). 

There have been several improvements and additions to the newest version 

of the RegCM3. In the last few years, some new physics schemes have 

become available for use in the RegCM, mostly based on physics schemes of 

the latest version of the Community Climate Model, CCM3 (Kiehl et al, 1996). 

First the CCM2 radiative transfer package has been replaced by that of the 

CCM3. Changes in the model physics include a new large-scale cloud and 

precipitation scheme which accounts for the sub-grid scale variability of 

clouds (Pal et al, 2000) and new parameterisations for ocean surface fluxes 

(Zeng et al, 1998). The model has 18 sigma levels in the vertical and the 

cumulus parameterisation scheme used in this study is Grell with the Fritsh 

and Chappell closure (Grell, 1993). 

ICs and LBCs fields are derived by standard interpolation procedures from the 

ECHAM 4.5 data grid to the RegCM3 grid. The USGS Global Land Cover 

Characterization and Global 30 Arc-Second Elevation datasets are used to 

create the terrain files. The monthly optimum interpolation sea-surface 
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temperature (OISST) analysis will be used as surface boundary conditions. A 

 
 
 

description of the OI can be found in Reynolds and Smith (1994). In this study 

the RegCM3 model is run with a horizontal resolution of 60 km. 

2.5. The spin-up period 

The period of interest in the study is DJF. However, the models were allowed 

to run for a period of about a month prior to the period of interest for spin-up 

purposes (Anthes et al, 1989). The atmosphere spins up rather quickly, 

meaning the regional model dynamics equilibrate with the boundary forcing. 

The land and in particular the soil moisture, can take much longer to spin up. 

Depending on how the soil moisture is initialised, it can take weeks to months 

to equilibrate. The RCM climatology is determined by a dynamical equilibrium 

among the LBC forcing, the model-generated forcing from the interior of the 

domain, and the internal model physics and dynamics (Giorgi and Bi, 2000). 

Studies by Qian et al (2004) and Pan et al (2000) have shown that 

reinitialisation improves the simulations because the simulations do not drift 

downstream. In this study we use a spin up period of one month to also allow 

a long enough lead time that can be used in operational forecasting. 

2.6. The Domain 

The selection of the domain is an issue that requires careful consideration. 

Seth and Giorgi (2000) suggested that in sensitivity studies the domains 

should be put well outside the area of interest so as to give the RCM solution 

allowance to respond to the internal physics and dynamics of the RCM. In 

some studies it was suggested that the important sources that influence the 

climate systems of the area of interest should be included in the domain 

(Fennessy and Shukla, 2000; Leung et al, 2002; Giorgi and Mearns, 1999). 

Southern Africa is influenced by ENSO which is very far removed from the 

region. For skilful simulations, ENSO related information should be provided 

to the RCM at the lateral boundaries (Fennessy and Shukla, 2000). Most of 
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the moisture that provides the rainfall in South Africa is advected from the 

Atlantic Ocean, the Indian Ocean and the Tropics (Cook et al, 2004; 

D’Aberton and Lindesay, 1982). The domain with interest over South Africa 

should include Madagascar because it affects the moisture flux from the 

Indian Ocean into South Africa and it also influences the migration of the 

cyclone-like vortices (Landman et al, 2005). With the consideration of the 

above mentioned facts the model domain was chosen from about the Equator 

to 40°S and from Greenwich to 70°E (Figure 1.2). 

2.7. Observed data used for verification 

The observed data from the 970 South African Weather Service rainfall 

stations is used to verify the simulated rainfall in South Africa. The spatial 

distribution of the stations is shown in Figure 3.7. The CAMS_OPI data is also 

used to verify the model rainfall simulations, especially over the 

oceans(Janowiak and Xie, 1999).. The "CAMS_OPI" (Climate Anomaly 

Monitoring System ("CAMS") and OLR Precipitation Index ("OPI") is a 

precipitation estimation technique which produces real-time monthly analyses 

of global precipitation. To do this, observations from raingauges ("CAMS" 

data) are merged with precipitation estimates from a satellite algorithm 

("OPI"). The analyses are on a 2.5 x 2.5 ° latitude/longitude grid, are updated 

each month, and extend back to 1979. 

 
 
 

For temperature and pressure verification the NCEP reanalyses are used. 

The NCEP reanalyses are generated using the Medium-Range Forecast 

(MRF) model (Kalnay et al, 1996). This dataset consists of a reanalysis of the 

global observation network of the meteorological variables and a forecast 

system at a triangular spectral truncation of T62 to perform data assimilation. 

Data are reported on a 2.5° and 2.5° grid every 6 hours (0000, 0600, 1200 

and 1800 UTC), on 17 pressure levels from 1000 to 10hPa. 
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2.8. Signal and noise formulae 

To determine the variability of the nested system ensemble members over the 

10-year period the following variances are calculated. The total variance is the 

sum of the signal plus noise variances (Shukla et al, 2000). The variance of 

the ensemble average seasonal means among all the years is referred to as 

the SST forced variance or signal. The variance within each ensemble 

average for all the years is referred to as the internal dynamics variance, or 

noise. For a seasonal mean climate variable xij e.g. (temperature, rainfall, etc.) 

for N years (i=1, 2,…, N), and n ensemble members (j=1,2,…,n) ensemble 

mean and the climatological mean are defined respectively as 

xi = 1 
ƒ

n 

xij and (3) 
n j=1 

1 N n 

x =
nN ƒƒ

xij . (4) 
i=1 j=1 

The internal dynamics variance (noise) is given by 

1 N n 22� noise = ƒƒ (xij − xi ) (5) 
N (n −1) i=1 j=1 

 
 
 

The SST forced variance is given by 

2 2 1 2� signal = � EM − � noise (6) 
n 

where the variance of the ensemble mean is 

2 
2 1� = ƒ (xi − x) (7) EM N −1 

The total variance is given by 
2 2 2� total = � noise + � signal (8) 

All the above equations on the variance are found in Shukla et al (2000). 

The simulations will be verified against the observations. To determine if the 

areas of the maximum variance in the simulations correspond with the areas 

of maximum variance in the observations the formula of the variance as 

written below (9) will be applied to the NCEP reanalysis and the CAMS_OPI 
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data (Janowiak and Xie, 1999). The formula for the total variance for the 

observed field x over N years (Steyn et al, 2004) is given by 

2� 2 = 1 
ƒ

N 

(xi − x) (9). 
N −1 i=1 

2.9. The internal variability of the RegCM3 

In regional climate modelling RCMs are nested within the GCM. What that 

means is that the GCM provides time dependent LBCs to the RCM. The 

procedure results in limited degrees of freedom of an RCM and hence the 

RCM solutions are not expected to deviate much from the forcing fields. The 

RCM solutions are also sensitive to the non-linearities in the RCM and as a 

result, although they are restricted at the boundaries, the solutions are 

expected to be affected by the internal variability of the RCM. 

To investigate the internal variability of the RegCM3, the RegCM3 is nested 

within one realisation of the ECHAM4.5 (ensemble member 13). Four 

solutions of the RegCM3 are then generated through initialising the RegCM3 

on different days. The difference between the RCM solutions is therefore 

caused only by the different initial conditions. The LBCs and surface 

conditions are constant for each year. The difference among the RCM 

solutions gives the internal variability of the RegCM3. To make sure that the 

results obtained using a single realisation from the ECHAM are consistent for 

all the other realisations one additional GCM realisation (ensemble member 

18) is used and the procedure is repeated (see Table 2.2). 

 
 
 

The main objective to be addressed in this study is to what extent is the 

internal variability of the RCM responsible for the variability of the nested 

system’s solutions. For this study only two seasons that were highly 

anomalous are studied, 1991/1992 (Figure 2.1) and 1995/1996 (Figure 2.2). 
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Figure 2.1: The total DJF 1991/1992 rainfall anomaly in mm calculated based 

on the ten years average from 1991/1992 to 2000/2001 as observed from 

rainfall stations in South Africa. 

 
 
 

Figure 2.2: The total DJF 1995/1996 rainfall anomaly in mm calculated based 

on the ten years average from 1991/1992 to 200/2001 as observed from 

rainfall stations in South Africa. 
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Table 2.2: The design of the experiment to investigate the internal variability 

of the RegCM3. 

Season Ensemble 

member 

Start date End date Rainfall 

DJF1991/1992 13 and 18 01/11/1991 27/02/1992 Dry 

02/11/1991 27/02/1992 

03/11/1991 27/02/1992 

04/11/1991 27/02/1992 

DJF1995/1996 13 and 18 01/11/1995 27/02/1996 Wet 

02/11/1995 27/02/1996 

03/11/1995 27/02/1996 

04/11/1995 27/02/1996 

The experimental design is summarised in Table 2.2. The two seasons are 

associated with ENSO: 1991/1992 was an El Niño season, while 1995/1996 

was a La Niña season. The rainfall anomalies in the two seasons were highly 

anomalous and as a result the seasons received some attention from 

meteorologists in the region (Landman et al, 2001; Rautenbach, 1998; Crimp 

and Mason, 1998). 

2.10. MAD and BIAS 

To measure the deviation between each ensemble member and the ensemble 

average the statistical measures, the mean absolute difference (MAD) and the 

average difference (BIAS) are used. The way the two measures are used 

here is based on Giorgi and Bi (2000). Giorgi and Bi (2000) compared the 

model results from the perturbed runs with those from the original unperturbed 

run, but in this study comparison of the model solution for each ensemble 

member for the different days and years is made relative to the ensemble 

average. 

The MAD for any areal averaged variable x e.g ( rainfall) over a particular 

region is given by 
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ave ens 
i 

jens 
ix 

xxMAD jens 
__ 

_ −= (10) 

where the superscripts refer to the run. ens_j is the ensemble member j 

simulation and the ens_ave is the ensemble average, while i refers to the 

different seasons, or in the case of intra-seasonal variability i refers to the 

different days. The MAD is a measure of the deviation in the different 

homogeneous regions (shown later). The corresponding BIAS is defined by 

( )ave ens 
i 

jens 
ix 

xxBIAS jens 
__ 

_ −= . (11) 

The BIAS is also a measure of the deviation but it measures the deviation in 

given directions. 

2.11. ME and MAE 

To analyse how the model is performing relative to the observations the mean 

error (ME) and the mean absolute error (MAE) are analysed. The equation of 

ME is as follows: 

 
 
 

ME =
N 
1 
ƒ

N 

( yi − oi ) (12) 
i=1 

where i is the different years and N is the total number of years or days for the 

intra-seasonal variability study. 

The mean error is the difference between the average forecast and the 

average observation, and therefore expresses the bias of the forecasts (Wilks, 

1995). Forecasts that are on average over-forecast will exhibit ME>0, and 

forecasts that are on average under-forecast will exhibit ME<0. The bias gives 

no information about the magnitude of individual forecast errors, and is 

therefore not an accuracy measure. 

The mean absolute error is calculated and it is in the form 

MAE = 1 
ƒ

N 

| y − oi | (13) 
N i=1 

i 

The MAE is the average absolute difference between the forecast and 

observation pairs (Wilks, 1995). Taking the absolute error necessarily 
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produces positive terms so that the MAE increases from zero for perfect 

forecasts through larger positive values as the errors increase. 

2.12. Equi-probable categories 

In the analysis of the intra-seasonal variability the 33.33 and the 66.67 

percentiles will be used as cut-off values to determine three rainfall categories 

(below-normal, normal and above-normal). The nth percentile can be 

determined as 

P * (N +1)
nP = th (14) 

100 

value in the data array (Steyn et al, 1994), where P is the percentile, N is the 

total number of values associated with each ensemble member and all the 

days in DJF. The rainfall amount that corresponds with the np position of the 

data array is the np percentile. If np has decimal places after the comma, the 

number after the comma is multiplied by the difference of the number that 

follows the number before the comma and the number before the comma and 

then added to the number before the comma. For example if np is 25.67 then 

the 25th value is added to 0.67 multiply by (the 26th value minus the 25th 

value). The same procedure is used for the observations where N is the total 

number of days in the two seasons under investigation. 

 
 
 

2.13. Synopsis 

The models, the GCM and the RCM that are used in the study have been 

described. The method through which the experiment to investigate the 

internal variability of the ECHAM4.5-RegCM3 system and of the RegCM3 has 

been described. The following Chapters describe the findings that are made 

from the data that is generated as described in this Chapter. The measures 

that are used to analyse the datasets in the next Chapters have also been 

described in this Chapter. 
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CHAPTER 3: THE INTERNAL VARIABILITY OF THE ECHAM4.5-RegCM3 

SYSTEM 

3.1. Introduction 

The nested system solutions are sensitive to the internal variability of both the 

GCM and the RCM. An ensemble of ECHAM4.5 simulations are generated 

using lagged one-day starting dates of the integration as well as perturbing 

the wind fields. For the purpose of this study, four of the ensemble members 

that are obtained through perturbing the wind fields are used to force the 

RegCM3. The solutions obtained from the nested system are analysed to 

determine the internal variability of the ECHAM4.5-RegCM3 nested system. 

The total variance, the SST forced variance which is regarded as the signal, 

and the internal dynamics variance (noise), are analysed in the next section. 

In this chapter the variability of the ensemble members obtained from the 

nested system are analysed and comparison with the observations follows in 

the next chapter. 

 
 
 

3.2. Different aspects of model variances 

The variable of interest in this dissertation is precipitation, however, there are 

challenges with its simulation as mentioned in Chapter 1 because of its small 

scale spatial scale. It may be possible that the precipitation simulations are 

sensitive to the SST forcing, but the problems associated with 

parameterisation problems may overshadow the SST forcing. It is therefore 

necessary to analyse the large scale features’ simulated variance to 

determine if the findings that are reflected in the rainfall simulations are 

consistent with the large scale simulations. The temperature and surface 

pressure variances are also analysed for the above mentioned reasons. 
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Figure 3.1: The total surface pressure variance for 10 DJF seasons with 4 

ensemble members. 

The SST forced variance (equation 6), the internal dynamics variance 

 
 
 

(equation 5) and the total variance (equation 8) are calculated as in Shukla et 

al, 2000 (the equations are summarised in Chapter 2). The variance of the 

ensemble average seasonal means among all the years is referred to as the 

SST forced variance or signal. The variance within each ensemble averaged 

for all the years is referred to as the internal dynamics variance or noise. The 

total variance is the sum of the signal plus noise variances. The different 

measures are calculated using 10-years of data as simulated by the RegCM3 

nested within four ensemble members of the ECHAM4.5. 

3.2.1. Surface Pressure 

The highest simulated surface pressure variability occurs in the Indian Ocean 

and also south of the continent (Figure 3.1). The variance south of the country 

is due to cold fronts that are generally restricted to the ocean in summer 

(Tyson and Preston-Whyte, 2000). Cold fronts are responsible for the winter 

rainfall over the south-western and southern coast in winter because they 

migrate northward. In summer they are generally restricted to the south but 
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some of the 

 
 
 

cold fronts occasionally influence the south coast. The AOH 

sometimes ridges eastward and to the south of the continent causing 

favourable rainfall conditions. The transition from cold fronts that are part of 

the mid-latitude cyclones and have low pressure centres, to the ridging high 

pressure cells explains the high pressure variance in the area in DJF. 

East of Madagascar there is an area that has a very high variance (Figure 

3.1). The identified area is affected by tropical cyclones in summer. The sea-

level pressures at the centre of the tropical cyclones may drop to 900 hPa and 

below (Tyson and Preston-Whyte, 2000). Over the Indian Ocean, there is 

generally an IOH and as the name describes, has a centre of high pressure. 

The transition from IOH to tropical cyclones explains the high surface 

pressure variability in the area. 

The maximum surface pressure variance is associated with the internal 

dynamics variability of the nested system (Figure 3.2 and Figure 3.3). The 

results show that the variance associated with the internal variability model is 

greater than the SST forced one even when temperature (not shown) and 

rainfall are considered (Figure 3.5 and Figure 3.6). The results suggest that 

the variability between the ensemble members for a particular season (i.e. 

same year) exceeds the variability of the ensemble average over the ten year 

period. The MAD (equation 10) and the BIAS (equation 11) in Chapter 2 are 

analysed for the 10-years to confirm if the ensemble members’ variability in a 

single year exceeds the ensemble average variance over a 10-year period. 

The areas of maximum variance correspond to areas of maximum MAD. The 

BIAS which is also calculated based on the ensemble average and each 

ensemble member for each year shows that there is a high variability amongst 

ensemble members in the same year. The high variability in the same season 

is illustrated by the BIAS of -2 and 2 hPa for two ensemble members over the 

same area (i.e. the Indian Ocean) (not shown). 
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Figure 3.2: The internal dynamics surface pressure variance for 10 DJF 

seasons with 4 ensemble members. 

 
 
 

Figure 3.3: The SST forced surface pressure variance for 10 DJF seasons 

with 4 ensemble members. 
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The SST forced 

 
 
 

surface pressure variance is the highest over the Indian 

Ocean east of Madagascar and south-west of Madagascar (Figure 3.3). The 

variance of between 0.2 and 0.4 joins the latter two regions adjacent to 

Madagascar and extends towards the tropics over Africa. Seasonal 

forecasting is based on the fact that the slowly evolving boundary conditions 

leave some memory in the atmosphere and hence render the atmosphere 

partly predictable. The most known or rather most understood of the SST-

atmosphere relation is ENSO. The simulated SST forced surface pressure 

variance is the highest over the areas that are affected by ENSO over south-

east Africa (Tyson and Preston-Whyte, 2000). 

3.2.2. Temperature 

The temperature variance is the greatest over land (Figure 3.4). The low 

variance over the ocean is the desired result because the model is forced with 

the observed SSTs at the surface. The temperatures over the oceans are 

therefore the same for the different ensemble members for each year. The 

small variance is also a result of the slow evolution characteristic of the SSTs. 

The area with the maximum variance (both the SST forced and the internal 

dynamics forced variance) is over Botswana. The MAD also shows that the 

difference between the ensemble members and the ensemble average is high 

over the area characterised by the maximum variability, but it is not clear why 

the variability is so high over that region. 

3.2.3. Rainfall 

As mentioned above the most rainfall variance is associated with the internal 

dynamics of the model (Figure 3.5). The rainfall variance is high in the Indian 

Ocean, i.e. north of Madagascar and tropical regions, but smaller over South 

Africa. RCMs produce spurious rainfall at the boundaries (Walsh and 

McGregor, 1995) as is found in this study (Figure 3.5 and Figure 3.6). It was 

found in a study by Walsh and McGregor (1995) that the influence of the 

lateral boundary spurious rainfall on the internal domain rainfall is small. The 

spurious rainfall is caused by the inconsistency between the LBCs and the 

model domain’s internal climatology. The influence of the domain boundaries 
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Figure 3.4: The total air temperature variance for 10 DJF seasons with 4 

ensemble members. 

 
 
 

Figure 3.5: The rainfall internal dynamics variance for 10 DJF seasons with 4 

ensemble members. 
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Figure 3.6: The SST forced rainfall variance for 10 DJF seasons with 4 

ensemble members. 

 
 
 

is visible over the eastern and north-eastern boundaries, where high rainfall 

variance occurs in almost a straight line along the boundaries (Figure 3.5 and 

Figure 3.6). 

The nested system captured the positive west-east rainfall gradient over 

South Africa. The variance over the eastern part of South Africa which 

receives the greatest amount of rainfall in summer is higher than over the 

western side. The SST forced rainfall variance over South Africa is between 0 

and 1 while the internal dynamics variance ranges between 0 and 8 (Figure 

3.6). The SST forced variance is the minimum over the north-eastern part of 

South Africa which suggests low predictability over that area. The maximum 

variance is also associated with the maximum MAD and big differences in the 

BIAS between the ensemble members which confirms the results from the 

variance study. 

The area of interest in the study is South Africa. The fact that the internal 

dynamics variance exceeds the SST forced variance suggests that the 
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variance in 

 
 
 

a particular season exceeds the variability of the ensemble 

average over the 10-year period. To further investigate the simulated rainfall 

variability, analyses are made over South Africa using eight homogeneous 

regions (Figure 3.7). 

3.3. The inter-annual rainfall total over South Africa 

South Africa can be divided into homogeneous regions using spatial cluster 

analysis applied to observed rainfall stations over the whole of South Africa 

(e.g. Landman and Mason, 1999; Landman and Klopper, 1998; Bartman et al, 

2003; Landman and Tennant, 2002). Following the previous studies of 

dividing South Africa into homogeneous regions, 8 regions were determined 

using 970 rainfall stations which are evenly distributed over the whole country. 

Model data of the grid-points within the region are used to construct rainfall 

time series that can be compared with observed time series. The number of 

grid points in each region are as follows, region 1: 39, region 2: 43, region 3: 

23, region 4: 15, region 5: 42, region 6: 97, region 7: 86, region 8: 97. The 

total rainfall for each region for the four ensemble members is plotted on a 

time series together with the ensemble average over the 10-year period. The 

observed time series is included for the purposes of Chapter 4. The four 

ensemble members are ensemble member 13, ensemble member 16, 

ensemble member 18 and ensemble member 20. 

3.3.1. Region 1 

Region 1 is situated over the western coast and the adjacent interior (Figure 

3.7). The region receives most of its rainfall in winter (Figure 1.3). There is a 

general agreement between the ensemble members (Figure 3.8). Although 

the ensemble members agree in general and are in phase, the variability 

amongst them in certain years exceeds the variability of the ensemble 

average over the 10-year period. The variability characteristic is illustrated by 

the range of the ensemble average of 27 to 83 mm over the 10-year period 

and the range of the ensemble members’ simulation in 1999/2000 of 40 to 
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140 mm. The simulated ensemble member rainfall peaks occurred during the 

1993/1994, 1995/1996 and 1999/2000 seasons (Figure 3.8). Some ensemble 

members simulated low rainfall amounts during the three seasons. When the 

ensemble members are averaged the rainfall amount is reduced significantly 

due to the high variability of the ensemble members. 

3.3.2. Region 2 

Region 2 is the southern coast and adjoining interior region (Figure 3.7) 

which receives its rainfall throughout the year (Figure 1.3). There is a general 

agreement between the ensemble members in region 2 (Figure 3.9). The 

maximum simulated rainfall in this region is just above 350 mm (Figure 3.9) 

while the maximum simulated rainfall in region 1 is 150 mm (Figure 3.8). 

When comparing the two Figures, the range of the simulated rainfall in region 

1 of the y axis is 0 to 160, while in region 2 it is 0 to 400. The change in the 

simulated rainfall range from region 1 to region 2 is in agreement with the 

observed range as one moves from west to east. 

 
 
 

3.3.3. Region 3 and Region 4 

Region 3 and Region 4 are both situated over the eastern coast of South 

Africa (Figure 3.7). Comparison between regions 1 and 2 (Figure 3.8 and 

Figure 3.9) and region 3 and 4 (Figure 3.10 and Figure 3.11) further illustrates 

that the RegCM3 captures the east west rainfall gradient in the country. There 

is a general agreement amongst the ensemble members (Figure 3.10 and 

Figure 3.11) , but the agreement is less than that found in region 1 and region 

2 (Figure 3.8 and 3.9). The ensemble average corresponds with the majority 

of the ensemble members as expected, but the range of the ensemble 

average is still exceeded by the range of the ensemble members in some 

years. 
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Figure 3.7: The eight homogeneous regions obtained using spatial cluster 

analysis and the stations used to determine the regions. 
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3.3.4. Region 5 

Region 5 is situated on the far north-eastern section of South Africa (Figure 

3.7). This area is sometimes influenced by tropical cyclones (Tyson and 

Preston-Whyte; Taljaard, 1986). The ensemble average variability is very 

small (Figure 3.12). The minimum simulated ensemble average rainfall is 

about 300 mm while the maximum is just above 400 mm. The variability 

between the individual ensemble members in a single year generally exceeds 

the variability of the ensemble average over the 10-year period. 

3.3.5. Region 6 

Region 6 is situated in the central north-eastern part of South Africa (Figure 

3.7). This region forms part of what is regarded as the most important 

agricultural region in South Africa. This region covers half of the Northwest 

Provinces which is regarded as the food basket of the Southern African 

Developing countries (SADC). Also included in this region is Gauteng 

Province which is the smallest province in the country but has the highest 

population density in South Africa. The ensemble members are quite variable 

amongst themselves and that causes the variability in the ensemble average 

to be small (Figure 3.13). The two years that the ensemble members are quite 

variable are 1994/1995 and 1991/1992. 

 
 
 

3.3.6. Region 7 

Region 7 is the most central part of South Africa. The agreement between the 

ensemble members is higher in this region as compared to the other seven 

regions (Figure 3.14). The ensemble members seem to be in phase during 
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Figure 3.8: The total 10-year DJF rainfall in mm for region 1 for the four 

ensemble members, the ensemble average and the observations. 
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Figure 3.9: The total 10-year DJF rainfall in mm for region 2 for the four 

ensemble members, the ensemble average and the observations. 
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Figure 3.10: The total 10-year DJF rainfall in mm for region 3 for the four 

ensemble members, the ensemble average and the observations. 
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Figure 3.11: The total 10-year DJF rainfall in mm for region 4 for the four 

ensemble members, the ensemble average and the observations. 
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Figure 3.12: The total 10-year DJF rainfall in mm for region 5 for the four 

ensemble members, the ensemble average and the observations. 
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Figure 3.13: The total 10-year DJF rainfall in mm for region 6 for the four 

ensemble members, the ensemble average and the observations. 

64



region 7 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

DJF91/92 DJF92/93 DJF93/94 DJF94/95 DJF95/96 DJF96/97 DJF97/98 DJF98/99 DJF99/00 DJF00/01 

ens13 
ens16 
ens18 
ens20 
obs 
ens ave 

Figure 3.14: The total 10-year DJF rainfall in mm for region 7 for the four 

ensemble members, the ensemble average and the observations. 
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Figure 3.15: The total 10-year DJF rainfall in mm for region 8 for the four 

ensemble members, the ensemble average and the observations. 
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the most of the 10-years. There are, however, seasons when the variability 

between the ensemble members is high (e.g. 1998/1999). 

3.3.7. Region 8 

Region 8 is situated in the central-western part of South Africa. The region 

forms part of what is regarded as the arid region of South Africa. When 

comparing Figure 3.14 and Figure 3.15 and looking at the mm range, there is 

200 mm difference in the two, with region 8 having the smallest range. There 

is a general agreement between the ensemble members with a lot of them 

being in phase over most of the 10-year period (Figure 3.15). 

3.4. Summary and Conclusions 

The differences between the nested system ECHAM4.5-RegCM3 solutions 

that are obtained through perturbing the wind fields at initialisation are 

analysed. The variability associated with the internal dynamics of the models 

is greater than the variance that is SST forced. The above finding is 

consistent for all the variables (i.e. surface pressure, temperature and rainfall) 

that are analysed. These results imply that the variability between the 

ensemble members for each year exceeds the ensemble average variability 

over the 10-year period. 

 
 
 

The SST forced surface pressure variance is the greatest over the areas 

which are influenced by ENSO. The temperature total variance over the 

ocean is small, especially the internal dynamics variance. The values are 

small because the model is provided with observed SSTs and hence the 

SSTs for the different ensemble members are similar. The low variability of 

the SST is also a result of the slow evolution of the SSTs over the DJF period. 

The SST forced temperature variance over the oceans was expected to 

exceed the variance associated with the internal variability of the model, 

because SST anomalies are different from one year to the next. 
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The internal dynamics forced rainfall variance also exceeds the SST forced 

variance, but with the rainfall variance the influence of ENSO is not as 

obvious as it was with surface pressure. The finding about the variability of the 

ensemble members and the ensemble average variability was further 

illustrated over South Africa where the range of the ensemble average during 

the 10-years is more often than not exceeded by the range of ensemble 

members in a single year. The ensemble average exhibits a small variance 

because of the high variability of the ensemble members in different seasons. 

The ensemble members are more in phase over the central parts towards the 

western coast of the country, with high variability over the regions towards the 

eastern part of the country. 

The aim of this study is not to verify the nested system solutions. However, 

given that the knowledge of whether or not the model simulates the observed 

features determines whether or not the system is useful, the solutions are 

compared with the observations. Comparison of the observed anomaly to the 

ensemble average anomaly is also necessary and discussed next to 

determine if the model captures the observed inter-annual rainfall variability. 
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CHAPTER 4: THE INTERNAL VARIABILITY OF THE ECHAM4.5-RegCM3 

SYSTEM 

OBSERVATIONS VS. SIMULATIONS 

4.1. Introduction 

In the previous Chapter a lot of emphasis was put on the variability of the 

ensemble members, which gives a measure of the internal variability of the 

ECHAM4.5-RegCM3 system. In this Chapter, surface pressure, temperature 

and rainfall variances are computed using equation (9) in Chapter 2 using the 

NCEP reanalyses and CAMS_OPI data. The simulated and observed 

variances are compared to determine if there is an agreement between the 

areas of minimum and maximum variance that were observed in the previous 

Chapter. 

4.2. Variances 

 
 
 

4.2.1. Surface pressure variances 

The variance calculated from the NCEP reanalysis shows that the maximum 

surface pressure variance is found in the Indian Ocean, south of about 10°S 

and also south of the continent (Figure 4.1). The observed areas of maximum 

variance agree with those that were identified in the simulations (Figure 3.1). 

The results show that the nested system captures the large scale variability as 

expected. 

4.2.2. Temperature variance 

The maximum temperature variance from the NCEP reanalysis occurs in 

Botswana. However, in the simulations it is displaced northwards compared to 

the reanalysis (Figure 3.4 and Figure 4.2). Although the area of the maximum 

variance is further north in the simulations, this area extends towards central 

South Africa. The fact that the models captured the observed variance is 
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Figure 4.1: The surface pressure total variance as calculated from the NCEP 

reanalysis for the DJF season from 1991/1992 to 2000/2001. 

 
 
 

Figure 4.2: The air temperature total variance as calculated from the NCEP 

reanalysis for the DJF season from 1991/1992 to 2000/2001. 
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Figure 4.3: The seasonal rainfall variance as calculated from CAMS_OPI for 

 
 
 

the DJF season from 1991/1992 to 2000/2001. 

evidence that the ECHAM4.5-RegCM3 system is a skilful tool for climate 

studies. 

4.2.3. Rainfall variance 

The RegCM3 was run with a horizontal resolution of 60 km (approximately 

0.5°) while CAMS_OPI data has a resolution of 2.5°. Owing to the finer 

resolution of the RegCM3, the variance patterns are noisier than the patterns 

associated with the CAMS_OPI data. The NCEP reanalysis are also produced 

with a resolution of 2.5°but the differences in the resolution is not obvious for 

the surface pressure and temperature variances, owing to their larger spatial 

scale pattern. The units used in Figures 3.5 and 3.6 are not similar to those 

used in Figure 4.3. For Figure 4.3 the variance is calculated using monthly 

rainfall, while daily averages are used for the two Figures in Chapter 3. There 

is some agreement between the simulated and the observed variance. 
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However, the 

 
 
 

areas of the maximum variance do not correspond. The 

maximum variance occurs over the coast of Mozambique in the reanalysis 

while in the simulations it occurs on the western side of Madagascar, north of 

Madagascar and some areas over tropical Africa. The area in tropical Africa 

where the modelled variance is high is observed to have very little variance. 

The low variability of the region may not be a true reflection of the variance in 

the area because of a lack of observational data. Comparison with the 

observations is also made over South Africa for rainfall simulations to 

determine how the nested system performs over the homogeneous regions, in 

terms of over/under prediction and also capturing the inter-annual rainfall 

variability. 

4.3. The total rainfall over South Africa 

The simulated ensemble member’s DJF rainfall averaged over the grid-points 

within each of the regions of Figure 3.7 are compared with the observed 

regional rainfall. Figures 3.8 to Figure 3.15 in Chapter 3 display time series for 

the ensemble members, the ensemble average and the observations over the 

10-year period. The average difference between the ensemble average time 

series and the observations gives an idea of whether or not the model is over 

or under estimating the rainfall. The Figures in Chapter 3 show how the model 

has been performing over the 10-year period. The mean error (ME) (Figure 

4.4) and the mean absolute error (MAE) (Figure 4.5) are calculated to further 

substantiate the results of Figures 3.8 to 3.15. Comparisons between the 

observed and the ensemble mean anomaly time series are discussed next. 

The DJF rainfall anomalies series are plotted (Figure 4.6 to 4.13) to determine 

if there is a general agreement between the average simulated rainfall and the 

observed rainfall, with interest in the agreement between the observed and 

simulated anomaly sign (i.e., if the observed and simulated anomalies are 

positive or negative). 
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Figure 4.4: The mean error calculated over the 10 years for DJF based on 

the ensemble average and observations for the 8 regions. 
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Figure 4.5: The mean absolute error calculated over the 10 years for DJF 

based on the ensemble average and observations for the 8 regions. 
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4.3.1. Region 1 

There is a good agreement between the ensemble average and the 

observations (Figure 3.8) as reflected by a correlation of 0.4757. The mean 

error is positive which means that the nested system is over-forecasting 

rainfall. However, the magnitude of the error is small as compared to the other 

7 regions as can be seen on the mean absolute error graph (Figure 4.5). The 

simulated rainfall anomaly sign agrees in general with the observed anomaly 

(Figure 4.6). In general the nested system is over-predicting rainfall (Figure 

4.4), but there are some seasons when the observed rainfall exceeds the 

simulated ensemble average. The nested system does not capture the rainfall 

peak in 1995/1996 according to the ensemble average, but there is one 

ensemble member that captures the extreme rainfall season. It should 

however be noted that in the same season there is an ensemble member that 

gave a big anomaly in the opposite direction. When the latter ensemble 

member is averaged with the rest it reduces the amplitude of the ensemble 

average. 

 
 
 

4.3.2. Region 2 

There is a general rainfall overestimation by the nested system in region 2 

(Figure 3.9 and Figure 4.4). The observed total rainfall time series appears 

below all the ensemble members over the 10-year period except for one 

season. The observed rainfall ranges from about 80 mm to 220 mm while the 

simulated rainfall ranges from 180 to 310 mm. The overestimation is further 

confirmed by the positive mean error value which is higher than in region 1 

(Figure 4.4). The agreement between the observations and the simulated 

rainfall is a lot less in this region as compared to region 1. The correlation 

between the observations and the ensemble average is 0.1934. During three 

of the seasons the sign of the average anomaly of the simulated rainfall was 

opposite to the observed one (Figure 4.7). 
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Figure 4.6: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 1. 
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Figure 4.7: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 2. 
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Region 3 
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Figure 4.8: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 4. 
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Figure 4.9: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 4. 
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Region 5 
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Figure 4.10: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 5. 
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Figure 4.11: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 6. 
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Region 7 
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Figure 4.12: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 7. 
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Figure 4.13: The 10-year ensemble members and the ensemble average 

simulated and observed rainfall anomaly series in mm in region 8. 
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4.3.3. Region 3 

In region 3 the nested system overestimates rainfall with about 400 mm. The 

observed total rainfall time series does not overlap the ensemble average or 

any of the ensemble members anywhere, with the observed line below the 

simulated ones (Figure 3.10). The MAE graph (Figure 4.5) shows that the 

overestimation is the highest in this region. In previous studies the RegCM3 

was found to over-predict rainfall in the steepest topographical slopes over 

West Africa, the Andes and in South Asia (Pal et al, 2005). The RCMs that 

have been applied over South Africa were also found to over estimate rainfall 

in region 3 (Engelbrecht et al, 2000; Joubert et al, 1999). In region 3, there are 

steep coastal margins that are immediately followed by steep topographies as 

the altitude above sea level increases from low to the highest altitudes over 

the escarpment (Figure 1.2). There are three seasons when the nested 

system simulated an opposite ensemble average rainfall anomaly as 

compared to the observations (Figure 4.8). The correlation between the 

observations and the ensemble average is 0.3325. 

 
 
 

4.3.4. Region 4 

Region 4 is also in the eastern coast and as can be seen from Figure 3.11, 

the nested system overestimates rainfall there as well. Region 4 has the 

second highest mean absolute error (Figure 4.5). In this region the correlation 

between the observations and the ensemble average is -0.3992. The nested 

system does not capture the two peaks in 1995/1996 and 2000/2001, and 

simulates an opposite sign as compared to the observations (Figure 4.10). 

4.3.5. Region 5 

In region 5 the nested system generally underestimates rainfall as can be 

seen from a negative mean error value (Figure 4.4). The underestimation is 

due to the two extreme seasons of 1995/1996 and 2000/2001 that are not 

captured by the system (Figure 3.12). The ensemble average anomaly series 

is close to the zero line, while the observed time series has large amplitudes 

78



(Figure 4.10). The correlation between the observations and the ensemble 

average is -0.0932. 

4.3.6. Region 6 

There is a general overestimation of rainfall in region 6 (Figure 3.13). The 

average ensemble anomaly just oscillates between -50 and 50 (Figure 4.11). 

The seasonal total rainfall time series further confirms that the nested system 

for region 6 did not capture the extreme events of 1995/1996 and 1999/2000 

(Figure 3.13 and Figure 4.11). The correlation between the observations and 

the ensemble average is 0.0278. 

4.3.7. Region 7 

The correlation between the observations and the ensemble average is 

0.5138. The correlation value in this region suggests that the nested system 

performs better in this region than any of the other regions. In general there is 

an overestimation of rainfall (Figure 4.4) but the magnitude is smaller than in 

most of the other regions as can be seen from the mean absolute error 

(Figure 4.5). The time series of simulated rainfall and observed rainfall (Figure 

3.14) do not show that the simulated rainfall is overestimated, which explains 

why the magnitude of the mean absolute error is smaller than in the other 

regions. The anomaly signs agree in general during the 10 years and there is 

only one season when the observed and the simulated rainfall have opposite 

signs (Figure 4.12). 

 
 
 

4.3.8. Region 8 

In region 8 the system underestimates rainfall (Figure 3.15; Figure 4.4). The 

mean absolute error is the second lowest, and the correlation is also much 

higher than over the eastern part of the country with a value of 0.4644. During 

three seasons the model simulated an opposite anomaly as compared to the 

observations while during the remaining seven seasons the nested system 

and the observation have the same sign (Figure 4.13). 
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Figure 4.14: The simulated percentage of convective rainfall relative to the 

total rainfall over South Africa for DJF 1991/1992-2000/2001. 

 
 
 

4.4. Summary and Conclusions 

The areas of maximum variability for surface pressure and air temperature 

from the NCEP reanalysis correspond with that of the simulations. The 

CAMS_OPI rainfall variability also corresponds to some extent with the 

simulated rainfall variability. The simulated rainfall variability is noisy while the 

observed variability is smooth owing to the difference in the resolution of the 

two data sets. Over the tropical regions the observed variability is small while 

in the simulations it is large. The observed variability may not be a true 

representation of what happens in the area due to the lack of observations in 

the region. 

The nested system solutions correspond with the observations mostly over 

the central part of South Africa with the least correspondence over the east 

where the model overestimates the rainfall. The rainfall overestimation is a 
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feature that may be attributable to the steep topographic gradients in the area 

 
 
 

as was found in previous studies. When the anomalies are analysed the 

model still performs better in the central and western parts than in the eastern 

part of South Africa. The skill of statistical downscaling models was also found 

to be higher in the central interior of South Africa (Landman and Tennant, 

2002). The area where the models seem to be performing the best has the 

highest correlation with the SSTs in the Equatorial Pacific Ocean (Kruger, 

1998). 

The highest correlations between the observed DJF rainfall and the simulated 

ensemble average are over the western parts of the country. However, 

correlation does not take into account the underestimation found in region 8 

(Figure 3.15). The percentage of convective rainfall relative to the total rainfall 

was plotted to determine how much of the rainfall is of convective origin and 

what percentage is of large scale origin (Figure 4.14). The model is able to 

capture that over the central parts (region 7) rainfall is mainly of large scale 

origin where very little underestimation is found, as opposed to region 8 where 

the rainfall is mainly of convective origin. Moreover, the model is also able to 

capture that most of the rainfall that occurs over the coasts and the adjacent 

interior is of large scale origin. 

In Chapter 3 simulations from the RegCM3 obtained through nesting the 

RegCM3 inside the GCM solutions generated by perturbing the wind fields at 

initialisation were analysed. The ensemble members were found to be highly 

variable, providing evidence that the simulations from different initial 

conditions diverge as a result of the internal variability of the models. Although 

the ensemble members are different the ensemble average anomaly sign 

over South Africa is generally the same as the observed anomaly sign. 

The above simulations were different from each other due to the internal 

variability of both the GCM and the RCM. In seasonal prediction it has already 

been established that multiple realisations should be made in sensitivity 

studies as well as in the operational forecasting to quantify the uncertainty 

associated with non-linearities in the GCMs. It has, however, not been 

established yet, whether or not multiple realisations should be made to 
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quantify the uncertainty associated with the RCM’s internal variability. It is 

important that the question is answered before the RCMs is used 

operationally. 
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CHAPTER 5: THE INTERNAL VARIABILITY OF THE RegCM3 (SEASONAL) 

 
 
 

5.1. Introduction 

In the previous chapters it was established that the nested system solutions 

capture the inter-annual rainfall variability in general. The ensemble members 

diverged from one another due to the internal variability of both the GCM and 

the RCM. In this Chapter the contribution of non-linearities in the RCMs to the 

total variability of the solutions described in the previous two chapters is 

investigated. In this part of the study only two years that were highly 

anomalous are analysed. DJF 1991/1992 was associated with dry conditions 

(Figure 2.1) while DJF 1995/1996 (Figure 2.2) was associated with wet 

conditions. The two seasons were defined as ENSO seasons by Trenberth 

(1997); the dry season was associated with the low phase of the oscillation 

while the wet season was associated with the high phase of the oscillation. 

The section on the internal variability of the GCM and the RCM discusses the 

variability of the ensemble members that are generated to quantify the non-

linearities in both the GCM and the RCM. In the previous chapters the area 

averages in the homogeneous regions were considered but in this section the 

rainfall totals are displayed over the whole of South Africa. The section on the 

internal variability of the RCM discusses the ensemble members generated in 

order to quantify the uncertainty associated with non-linearities in the RCMs 

alone. 

The simulated seasonal total rainfall anomalies over South Africa for each 

ensemble member as well as the ensemble average for the two seasons are 

compared with each other and with the observations. The observed 

anomalies for the two seasons, 1991/1992 and 1995/1996, are calculated 

using the average of the 10-year period from 1991/1992 to 2000/2001. The 

simulated ensemble members and ensemble average anomalies for the two 

years are obtained through subtracting the ensemble average calculated over 

the 10-years. The ensemble average is calculated like before using the four 
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ensemble members described in the previous chapters over the 10-year 

period. 

5.2. 1991/1992 

5.2.1. The internal variability of the GCM and the RCM 

The ensemble average anomaly obtained through perturbing the wind fields at 

initialisation for the GCM is generally negative (Figure 5.1). The negative 

anomalies over the eastern part of the country are not as big as they are in 

the observations. There are areas towards the eastern coast where the 

ensemble average gives positive anomalies. 

The solutions obtained from the ensemble members are quite distinct. 

Ensemble member 13 gives a negative anomaly over the whole country 

(Figure 5.2), and ensemble member 16 gives a negative pattern over most of 

the country, but with some positive anomaly areas towards the north-eastern 

parts (Figure 5.3). Ensemble member 18 also has some positive anomalies 

towards the north-eastern parts (Figure 5.4) while ensemble member 20 is 

dominated by the positive anomalies over the eastern half of South Africa 

(Figure 5.5). 

 
 
 

The results show that the nested system solution is sensitive to the SST 

forcing fields, because the ensemble average captures the negative 

anomalies over the larger part of South Africa for DJF 1991/1992 (Figure 5.1). 

If ensemble member 13 were the only one to be used then the model solution 

would have been closer to the observations as opposed to when the 

ensemble average is used. It is, however, interesting that although the 

ensemble members are different the majority of the ensemble members 

captured the sign of the observed anomaly over the larger part of the country. 

The positive anomalies in three of the ensemble members towards the 

eastern coast resulted in the ensemble average anomaly being positive over 
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Figure 5.1: The DJF 1991/1992 GCM internal variability induced ensemble 

average RCM total rainfall anomaly in mm. 

 
 
 

Figure 5.2: The DJF 1991/1992 Ensemble member 13 total rainfall anomaly 

in mm. 
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Figure 5.3: The DJF 1991/1992 Ensemble member 16 total rainfall anomaly 

 
 
 

in mm. 

Figure 5.4: The DJF 1991/1992 Ensemble member 18 total rainfall anomaly 

in mm. 
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Figure 5.5: The DJF 1991/1992 Ensemble member 20 total rainfall anomaly 

 
 
 

in mm. 

that area. However, the area is smaller in the ensemble average. While there 

is an ensemble member that got the direction of the anomalies far better than 

the rest there is one that simulated an opposite anomaly sign to the observed. 

If ensemble member 20 were the only one considered then the model solution 

would have seemed less useful. Given that the ensemble members are 

different only due to the internal variability of the models there is no way of 

predetermining which ensemble member will be the most useful. The results 

confirm that the use of ensemble averages improves skill over a single 

realisation. 

5.2.2. Internal variability of the RegCM3 

Four ensemble members are generated using only ensemble member 13 of 

the GCM to force the RegCM3. The ensemble members that are generated 

differ from each other by one model day obtained from using the LAF 

technique. The resulting anomalies obtained from each ensemble member 
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Figure 5.6: The DJF 1991/1992 Ensemble member 13 ensemble average 

total rainfall anomaly in mm. 

 
 
 

Figure 5.7: The DJF 1991/1992 Ensemble member 13 ensemble member 2 

total rainfall anomaly in mm. 
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Figure 5.8: The DJF 1991/1992 Ensemble member 13 ensemble member 3 

total rainfall anomaly in mm. 

 
 
 

Figure 5.9: The DJF 1991/1992 Ensemble member 13 ensemble member 4 

total rainfall anomaly in mm. 
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Figure 5.10: The DJF 1991/1992 Ensemble member 18 ensemble average 

total rainfall anomaly in mm. 

 
 
 

Figure 5.11: The DJF 1991/1992 Ensemble member 18 ensemble member 2 

total rainfall anomaly in mm. 
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Figure 5.12: The DJF 1991/1992 Ensemble member 18 ensemble member 3 

total rainfall anomaly in mm. 

 
 
 

Figure 5.13: The DJF 1991/1992 Ensemble member 18 ensemble member 4 

total rainfall anomaly in mm. 
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are found to be generally similar. The differences in the anomaly of each 

ensemble member (Figure 5.2; Figure 5.7; Figure 5.8 and Figure 5.9) and the 

anomaly of the ensemble average (Figure 5.6) are small. The same 

procedure is followed using ensemble member 18 and the ensemble 

members are also found to be generally the same (Figure 5.4; Figure 5.11; 

Figure 5.12; Figure 5.13). Ensemble member 18 simulated some positive 

anomalies and as a result all the ensemble members and the ensemble 

average (Figure 5.10) that are generated from ensemble member 18 also 

have positive anomalies which were not observed (Figure 2.1). The results 

suggest that the internal variability of the RCM does not contribute much to 

the variability of the simulations. Therefore, the variability of the ensemble 

members generated from a nested system is mainly a result of the non-

linearities in the forcing GCM. 

5.3. 1995/1996 

 
 
 

5.3.1. The internal variability of the GCM and the RCM 

A similar procedure is followed as above, but for the wet season of 1995/1996 

(Figure 2.4). The ensemble average from the GCM got the general direction 

of the wet anomalies over a larger part of the country (Figure 5.14). The 

simulated anomalies of the ensemble average are again small over the 

eastern part of the country as compared to the observed anomaly with some 

parts of the north-eastern part having an opposite sign to the observed. This 

season was very wet and the observed positive anomalies are quite high over 

the north-eastern part of South Africa, but the model did not capture these 

extreme anomalies. This season is one of the seasons that led to the mean 

error graph of region 5 (Figure 4.4) in Chapter 4 to be negative. 

The ensemble members obtained from perturbing the wind fields of the GCM 

at initialisation and then nesting the RegCM3 in the different solutions are 

different from one another (Figure 5.15; Figure 5.16; Figure 5.17 and Figure 

5.18) similar to what was also found for 1991/1992. Ensemble member 13 
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Figure 5.14: The DJF 1995/1996 GCM internal variability induced ensemble 

average RCM total rainfall anomaly in mm. 

 
 
 

Figure 5.15: The DJF 1995/1996 Ensemble member 13 total rainfall anomaly 

in mm. 
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Figure 5.16: The DJF 1995/1996 Ensemble member 16 total rainfall anomaly 

 
 
 

in mm. 

Figure 5.17: The DJF 1995/1996 Ensemble member 18 total rainfall anomaly 

in mm. 
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Figure 5.18: The DJF 1995/1996 Ensemble member 20 total rainfall anomaly 

 
 
 

in mm. 

gives negative anomalies over the larger part of the country except over the 

north-western parts (Figure 5.15), Ensemble member 16 shows positive 

anomalies over a larger part of SA except for a small region over the north-

eastern parts (Figure 5.16). Ensemble member 18 gives positive anomalies 

over almost the whole of SA (Figure 5.17) while ensemble member 20 gives a 

general negative anomaly pattern except over the eastern coast (Figure 5.18). 

For 1995/1996 ensemble member 13 is quite different from the observations 

while ensemble member 18 is closer to the observations. In 1991/1992 

ensemble member 13 performed better than all the other ensemble members 

and in this season it is performing the worst. This shows there is not a single 

ensemble member out of the four which can be singled out to be performing 

the best over the 10-year test period. 

5.3.2. The internal variability of the RegCM3 

Four RegCM3 ensemble members are nested in GCM ensemble members 13 

and 18 as was done before for 1991/1992 season. The RegCM3 ensemble 
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Figure 5.19: The DJF 1995/1996 Ensemble member 13 ensemble average 

total rainfall anomaly in mm. 

 
 
 

Figure 5.20: The DJF 1995/1996 Ensemble member 13 ensemble member 2 

total rainfall anomaly in mm. 

96



Figure 5.21: The DJF 1995/1996 Ensemble member 13 ensemble member 3 

total rainfall anomaly in mm. 

 
 
 

Figure 5.22: The DJF 1995/1996 Ensemble member 13 ensemble member 4 

total rainfall anomaly in mm. 
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Figure 5.23: The DJF 1995/1996 Ensemble member 18 ensemble average 

total rainfall anomaly in mm. 

 
 
 

Figure 5.24: The DJF 1995/1996 Ensemble member 18 ensemble member 2 

total rainfall anomaly in mm. 
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Figure 5.25: The DJF 1995/1996 Ensemble member 18 ensemble member 3 

total rainfall anomaly in mm. 

 
 
 

Figure 5.26: The DJF 1995/1996 Ensemble member 18 ensemble member 4 

total rainfall anomaly in mm. 
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members that are related to ensemble member 13 are all generally similar to 

 
 
 

one another (Figure 5.15; Figure 5.20, Figure 5.21; Figure 5.22) as well as to 

the ensemble average (Figure 5.19). Ensemble member 13 did not perform 

well during the 1991/1992 season especially over the coastal areas. All the 

RegCM3 ensemble members that are generated from ensemble member 13 

performed in the same way. The differences in the simulations are very small. 

Ensemble member 18 performed well in this season as can be seen from the 

ensemble average (Figure 5.23). All four of the RegCM3 runs nested in GCM 

ensemble member 18 performed in the same way giving mainly positive 

anomalies over a larger part of the country with small differences amongst the 

ensemble members (Figure 5.17; Figure 5.24; Figure 5.25; Figure 5.26). 

5.4. Summary and Conclusions 

In this Chapter two highly anomalous rainfall seasons were analysed and the 

models’ internal variability based on the two seasons was discussed. The four 

ensemble members obtained through perturbing the wind fields of the 

ECHAM4.5 at initialisation and nesting the RegcM3 within the different 

solutions and four ensemble members through initialising the RegCM on 

different days but using a single GCM realisation were analysed. The former 

gives the measure of the internal variability of both the GCM and the RCM 

while the latter gives the internal variability of the RCM. The model solutions 

obtained through perturbing the wind fields of the GCM at initialisation are 

quite different from one another while those obtained through initialising the 

RegCM3 on different days are generally similar. These results suggest that 

the variability that is found amongst the ensemble members that were 

generated through perturbing the wind fields of the GCM at initialisation is 

mostly a result of the non-linearities in the GCM. 

The model captured the general direction of the rainfall anomalies in the two 

seasons. The anomalies associated with the ensemble averages are quite 

small when compared to the observations and also when compared to the 

individuals ensemble member anomalies. These small anomalies in the 
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ensemble average are due to the high variability of the ensemble members. 

Ensemble member 13 performed the best for the 1991/1992 season and in 

1995/1996 the situation was reversed. Ensemble member 20 performed the 

worst in the 1991/1992 season. In both seasons the ensemble average 

captured the general direction of the observed anomaly even though some 

ensemble members were misleading. The results confirm that the use of 

ensembles improves skill over a single realisation. 

The results in this Chapter suggest that most of the variability that is found in 

the ensemble members obtained from a nested system is mainly due to non-

linearities in a GCM. The RCM solutions’ variability seem to be influenced 

more by lateral boundary forcing than it is by the model’s internal dynamics 

and physics. It is of interest to determine how the internal variability of the 

models influences the daily simulations because daily simulations are 

aggregated when seasonal totals are considered. In the next Chapter the 

same datasets that were analysed in this Chapter are analysed again but for 

intra-seasonal variability considerations. 
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CHAPTER 6: THE INTERNAL VARIABILITY OF THE RegCM3 (INTRA-

SEASONAL) 

6.1. Introduction 

The statistics of a season cannot change without a corresponding change in 

the statistics of the daily events within a season. Dynamical models used here 

offer an opportunity to investigate the simulated intra-seasonal variability 

because the models give output occurs every 6 hours. Giorgi and Bi (2000) 

analysed sensitivity experiments in which random perturbations were applied 

to the ICs and LBCs of a set of seasonal RCM simulations in order to 

investigate the internal variability of the RCM. The response was found not to 

affect significantly the domain-wide average climatology, but it substantially 

influenced the day-to-day model solution, especially precipitation, and aspects 

of the model climate such as the frequency of occurrence of heavy 

precipitation events. 

In the previous chapter it was established that the variability of the ensemble 

members seasonal total rainfall obtained from a nested system is more due to 

the non-linearities in the GCM than those in the RCM. The RCM’s internal 

variability did not influence much the seasonal total rainfall. This chapter aims 

to investigate the daily rainfall total to determine the extent to which the 

internal variability of the RCM influences the variability of the daily rainfall 

events in a season. The analyses in this chapter are based on the spatial 

averaged observed and simulated daily rainfall in the 8 homogeneous regions 

(Figure 3.7). 

 
 
 

6.2. The internal variability of the GCM and the RegCM3 

The MAD (equation 10) as defined in Chapter 2 is used to determine the 

magnitude of the differences between the ensemble members and the 

ensemble average for the 88 days (i.e. 01 December to 26 February) during 
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Figure 6.1: The daily MAD for DJF 1991/1992 for the different ensemble 

member over region 1 for the ensemble members in mm. 
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Figure 6.2: The daily MAD for DJF 1991/1992 for the different ensemble 

member over region 3 for the ensemble members in mm. 
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Figure 6.3: The daily MAD for DJF 1991/1992 for the different ensemble 

member over region 1 for the ensemble members of ensemble member 13 in 
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Figure 6.4: The daily MAD for DJF 1991/1992 for the different ensemble 

member over region 1 for the ensemble members of ensemble member 18 in 
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Figure 6.5: The daily MAD for DJF 1995/1996 for the different ensemble 

member over region 6 for the ensemble members of ensemble member 18 in 

mm. 

the two DJF seasons of 1991/1992 and 1995/1996. The procedure that is 

followed to produce the simulations is the same as in Chapter 5. The 

magnitude of the difference between the daily ensemble average rainfall and 

the individual ensemble members increases as one moves from the west 

towards the eastern parts of South Africa (Figure 6.1 and Figure 6.2). The 

finding is consistent with Giorgi and Bi (2000) findings where they found the 

BIAS to be higher for seasons with higher rainfall amounts as compared to 

low rainfall seasons. Figure 6.1 to Figure 6.5 have different scales in the y-

axis. The MAD time series associated with the internal variability of the GCM 

and the RCM (Figure 6.1) is higher than that of the RCM alone (Figure 6.3). 

The variability associated with the non-linearities in the RCM is not small 

enough to be ignored over the eastern part (e.g region 6) (Figure 6.5). The 

internal variability of the RCM influences the timing of the events (Figure 6.5). 

The ensemble average used in the calculation of the MAD in Figure 6.5 is 

obtained through using the RegCM3 ensemble members of ensemble 
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member 18. The time series shows that there is some variability of the daily 

events when different ICs are used with the same LBCs. The difference 

between the ensemble member solutions and the ensemble average goes up 

to 11 mm/day. The next section discusses the influence of the non-linearities 

in the models to the number of rainfall events in three equi-probable 

categories of below-normal; normal and above-normal. 

6.3. Percentiles 

The total number of days for each ensemble member in a season is 88, and 

only two seasons are analysed and therefore each ensemble member has 

176 days. There are four ensemble members and therefore the total number 

N in equation (14) is 704 days. The position of the percentiles (P) is calculated 

as P*705/100. For the observations we only have 2 seasons with 88 days and 

therefore the position of the percentiles is calculated as P*177/100. The 

procedure that is followed to calculate the rainfall values associated with the 

percentiles is explained in Chapter 2. 

The position of the 33.33 percentile is 234.97 and the position of the 66.67 

percentile is 469.95 and the associated values for the 8 homogeneous 

regions are in Table 6.1. The rainfall values that are between 0 and the 33.33 

percentile fall into the below-normal category, those that are between the 

 
 
 

33.33 and the 66.67 percentiles are in the normal category while those that 

are above the 66.67 percentile are in the above-normal category. The same 

procedure is followed to determine the number of events in the different 

categories for the observed daily rainfall. The values of the 33.33 and the 

66.67 percentiles associated with the observations are also in Table 6.1. 
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Table 6.1: The 33.33 and 66.67 percentiles for the RegCM3 determined from 

the 2 seasons as well as observations. 

33.33 

percentile 

66.67 

percentile 

33.33 (obs) 

percentiles 

66.67(obs) 

percentiles 

Region 1 0.054881 0.359759 0 0.09 

Region 2 0.552048 2.510094 0.2 1.079878 

Region 3 3.400439 10.09129 1.639939 4.37 

Region 4 2.470063 7.729837 0.73 3.91878 

Region 5 1.625738 4.274322 1.259878 4.14817 

Region 6 3.269787 5.869811 
1.729878 

4.248658 

Region 7 0.89652 3.209939 0.729878 2.26939 

Region 8 0.117554 0.651762 0.02 0.539268 

6.3.1. Observations 

Table 6.2: The observed number of events in the three categories in DJF 

1991/1992. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 33 39 41 35 38 39 41 47 

Normal 33 30 32 38 38 24 26 23 

Above 25 22 18 18 15 28 24 21 

Table 6.3: The observed number of events in the three categories in DJF 

1995/1996. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 32 23 19 26 22 21 19 24 

Normal 25 29 30 22 23 37 35 27 

Above 34 39 42 43 46 33 37 40 

The summer season of 1991/1992 was dry. Table 6.2 shows that most of the 

observed daily rainfall events that occurred in this season were in the below-

normal category. In all the regions expect region 6, the above-normal 

category has the least number of events. Region 6 has the least number of 
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events in the normal category but it follows the same trend as the other 

regions of having a high number of events in the below-normal category. In 

1995/1996 wet conditions were experienced over the whole of South Africa. 

The highest number of the observed daily rainfall events in this season (Table 

6.3) are in the above-normal category for all regions except region 6. In region 

6 the highest number of events is in the normal category and the next highest 

is above-normal. 

6.3.2. The internal variability of the GCM and the RCM 

6.3.2.1. Ensemble member 13 

Table 6.4: Ensemble member 13 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 41 35 34 40 35 52 43 39 

Normal 24 23 29 24 33 17 32 29 

Above 23 30 25 24 20 19 13 20 

 
 
 

Table 6.5: Ensemble member 13 1995/1996 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 32 36 30 41 40 31 31 25 

Normal 31 28 34 32 24 36 25 23 

Above 25 24 24 15 24 21 32 40 

In Chapter 5 it was found that when seasonal totals were considered the 

ensemble member 13 was closest to the 1991/1992 observations. Most of the 

daily rainfall events are simulated to be in the below-normal category as in the 

observations (Table 6.4). In 1995/1996 ensemble member 13 was one of the 

worst performing ensemble members especially along the coastal regions. 

The season was very wet but the nested system simulated the season to be 

dry over the most part of the country. The nested system overestimated the 
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number of daily rainfall events in the below-normal category and 

underestimated those in the above-normal category (Table 6.5). 

6.3.2.2. Ensemble member 16 

Table 6.6: Ensemble member 16 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 34 46 44 33 42 33 42 36 

Normal 28 25 22 24 23 24 24 26 

Above 26 17 22 31 23 31 22 26 

Table 6.7: Ensemble member 16 1995/1996 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 24 17 14 20 12 16 17 17 

Normal 25 33 30 35 35 41 29 29 

Above 39 38 44 33 41 31 42 42 

 
 
 

Ensemble member 16 performed reasonably well in both the seasons. Most of 

the events in the 1991/1992 season which was dry are in the below-normal 

category (Table 6.6.), while in 1995/1996 they are in the near-normal and the 

above-normal category (Table 6.7), which means that the simulations are 

consistent with the observations. 

6.3.2.3. Ensemble member 18 

Table 6.8: Ensemble member 18 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 31 32 35 30 31 27 32 38 

Normal 33 27 29 23 29 29 28 29 

Above 24 29 24 35 28 32 28 21 
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Table 6.9: Ensemble member 18 1995/1996 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 21 20 26 21 17 19 15 18 

Normal 30 33 32 34 33 31 31 27 

Above 37 35 30 33 38 38 42 43 

The performance of ensemble member 18 was reasonably well in 1991/1992 

because it gave negative anomalies over the most part of South Africa. 

However there are areas in the north-eastern parts that are simulated to have 

positive anomalies that are not found in the observations. Most of the rainfall 

events in 1991/1992 are in the below-normal category (Table 6.8). Ensemble 

member 18 performed best in 1995/1996 giving positive anomalies almost 

over the whole of South Africa. These positive anomalies are also indicated 

by the high number of events in the above-normal category (Table 6.9). 

6.3.2.4. Ensemble member 20 

 
 
 

Table 6.10: Ensemble member 20 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 2 5 22 21 23 29 24 24 28 

Normal 32 35 34 33 26 31 35 39 

Above 31 31 33 32 33 33 29 21 

Table 6.11: Ensemble member 20 1995/1996 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 26 26 30 26 28 32 30 33 

Normal 32 31 25 30 32 26 31 33 

Above 30 31 33 32 28 30 27 22 

Ensemble member 20 performed the worst of all the members in 1991/1992 

because it gave positive anomalies over a larger part of the north-eastern 
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section of South Africa. The highest number of daily events in areas where 

the model over estimated rainfall is split between the near-normal and the 

above-normal categories (Table 6.10). In 1995/1996 the rainfall simulations 

divided the country into equal areas of above-normal and below-normal 

simulated rainfall figures, manifested in the more or less equal number of 

events for each category (Table 6.11). 

6.3.2.5. The Ensemble average 

Table 6.12: Ensemble average 1991/1992 daily rainfall categories distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 6 10 9 7 15 18 8 10 

Normal 48 49 53 44 49 41 49 42 

Above 34 29 26 37 24 29 31 36 

Table 6.13: Ensemble average 1995/1996 daily rainfall categories distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 2 3 6 9 8 19 4 0 

Normal 34 42 43 47 43 34 40 28 

Above 51 43 39 32 37 35 44 60 

 
 
 

The simulated daily rainfall amounts from the four solutions obtained through 

nesting the RegCM3 within the four GCM ensemble members are averaged. 

The number of events in the three categories were determined using these 

ensemble average for 88 days of the two seasons. In 1991/1992 most of the 

daily rainfall events are found to be in the normal category (Table 6.12). This 

is consistent with the finding from the previous chapter where the magnitude 

of the anomaly sign of the ensemble average was found to be small. When 

the ensemble average is considered it no longer becomes obvious that most 

of the events, from the different ensemble members fell in the below-normal 

category. In 1995/1996 the highest number of anomalies occurs both in the 

near-normal and the above-normal category (Table 6.13). The number of 

events in the normal category explains why the magnitude of the anomalies is 
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small for the ensemble average as compared to the individual ensemble 

member anomalies as well as the observations. 

6.3.3. The internal variability of the RCM 

6.3.3.1. Ensembles of ensemble member 13 in 1991/1992 

Table 6.4: Ensemble member 13 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 41 35 34 40 35 52 43 39 

Normal 24 23 29 24 33 17 32 29 

Above 23 30 25 24 20 19 13 20 

Table 6.14: Ensemble member 13 lag 2 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 39 38 36 39 41 51 42 41 

Normal 23 23 29 25 23 19 22 26 

Above 26 27 23 24 24 18 24 21 

 
 
 

Table 6.15: Ensemble member 13 lag 3 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 40 37 44 35 41 53 49 44 

Normal 30 25 27 34 27 17 20 27 

Above 18 26 17 19 20 18 19 17 

Table 6.16: ensemble member 13 lag 4 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 36 39 37 39 36 43 40 39 

Normal 29 19 28 24 31 24 30 31 

Above 23 30 23 25 21 21 18 18 
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Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 32 36 30 41 40 31 31 25 

Normal 31 28 34 32 24 36 25 23 

Above 25 24 24 15 24 21 32 40 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 26 29 24 35 19 20 17 16 

Normal 28 29 40 41 42 38 32 26 

Above 34 30 24 12 27 30 39 46 

distribution. 

Table 6.4 is repeated here for comparison purposes. The highest number of 

the daily events of RegCM3 ensemble members generated from the GCM 

ensemble member 13 fall into the below-normal category (Table 6.4; Table 

6.14; Table 6.15; Table 6.16). This finding explains why the seasonal total 

rainfall of all the RegCM3 ensemble members is almost similar. 

6.3.3.2. Ensembles of ensemble member 13 in 1995/1996 

Table 6.5: Ensemble member 13 1995/1996 daily rainfall categories 

Table 6.17: Ensemble member 13 lag 2 1995/1996 daily rainfall categories 

 
 
 

distribution. 

Table 6.18: Ensemble member 13 lag 3 1995/1996 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 32 29 25 34 25 22 14 20 

Normal 27 31 42 40 42 41 32 31 

Above 29 28 21 14 21 25 42 37 
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distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 24 24 20 30 26 17 19 17 

Normal 33 35 45 38 34 40 25 24 

Above 31 29 23 20 28 31 44 47 

ensemble the coastal 

Table 6.8: Ensemble member 18 1991/1992 daily rainfall categories 

distribution. 

Table 6.19: Ensemble member 13 lag 4 1995/1996 daily rainfall categories 

Table 6.5 is also repeated here for comparison purposes. In 1991/1992 

member 13 performed the worst especially over 

regions. The season was very wet and the observations reflect that through a 

high number of daily events in the above-normal category (Table 6.3). All the 

ensemble members that were generated from ensemble member 13 give the 

least number of the rainfall events in the above-normal category except over 

the western interior (Table 6.5; Table 6.17; Table 6.18; Table 6.19). 

6.3.3.3. Ensembles of ensemble member 18 in 1991/1992 

 
 
 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 31 32 35 30 31 27 32 38 

Normal 33 27 29 23 29 29 28 29 

Above 24 29 24 35 28 32 28 21 

Table 6.20: Ensemble member 18 lag 2 1991/1992 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 27 30 35 27 28 25 30 39 

Normal 38 30 26 30 37 29 29 27 

Above 23 28 27 31 23 34 29 22 
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distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 27 31 37 29 33 23 32 35 

Normal 38 30 23 25 31 31 24 31 

Above 23 27 28 34 24 34 32 22 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 28 31 38 26 31 29 35 37 

Normal 35 31 21 26 34 27 24 28 

Above 25 26 29 36 23 32 29 23 

were areas 

regions are represented by the high number of events in region 6 and region 4 

in the above-normal category for all ensemble members generated from 

ensemble member 18. In the other regions the highest number of events is in 

the below-normal or normal category. The distribution of the number of events 

in the different categories is almost similar for the different RegCM3 ensemble 

members (Table 6.8; Table 6.20; Table 6.21; Table 6.22). 

Table 6.21: Ensemble member 18 lag 3 1991/1992 daily rainfall categories 

Table 6.22: Ensemble member 18 lag 4 1991/1992 daily rainfall categories 

Ensemble member 18 performed reasonably well, in 1991/1992 but there 

over the north-eastern part of the country where the model 

simulated positive anomalies that were not observed. The positive anomaly 

 
 
 

6.3.3.4. Ensembles of ensemble member 18 in 1995/1996 

Table 6.9: Ensemble member 18 1995/1996 daily rainfall categories 

distribution. 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 21 20 26 21 17 19 15 18 

Normal 30 33 32 34 33 31 31 27 

Above 37 35 30 33 38 38 42 43 
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Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 20 20 32 20 17 27 17 20 

Normal 34 31 21 38 32 27 30 31 

Above 34 37 35 30 39 34 41 37 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 25 20 28 24 20 28 20 19 

Normal 23 26 32 37 26 22 27 29 

Above 40 42 28 27 42 38 41 40 

Cat Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 

Below 26 18 24 26 19 33 22 22 

Normal 28 32 32 36 22 21 21 23 

Above 34 38 32 26 47 34 45 43 

distribution. 

Table 6.23: Ensemble member 18 lag 2 1995/1996 daily rainfall categories 

Table 6.24: Ensemble member 18 lag 3 1995/1996 daily rainfall categories 

Table 6.25: Ensemble member 18 lag 4 1995/1996 daily rainfall categories 

 
 
 

distribution. 

distribution. 

Ensemble member 18 performed very well in the 1995/1996 season. The 

highest number of the daily rainfall events was simulated to be in the above-

normal category for all the RegCM3 ensemble members generated from the 

ECHAM4.5 ensemble member 18 (Table 6.9; Table 6.23; Table 6.24; Table 

6.25). 

6.4. Summary and Conclusions 

The Mean Absolute Difference (MAD) was calculated for the 8 homogeneous 

regions using the 4 ensemble members obtained through perturbing the wind 

fields of the GCM at initialisation and then nesting the RegCM3 within the 

different solutions. The MAD was also calculated for the ensemble members 
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obtained through initialising the RCM on different days to differ the initial 

conditions but keeping the LBCs the same. The MAD values associated with 

the internal variability of the nested system exceeds the values associated 

with non-linearities in the RCM alone. The MAD values increases as one 

moves towards the eastern part of the country. The MAD values associated 

with the RCM’s internal variability are not small enough to be ignored in the 

eastern part of the country. The values show that the RCM’s internal 

variability influences the timing of the daily rainfall events. 

The three categories (i.e. below-normal, normal and above-normal) were 

identified using the 33.33 and the 66.67 percentiles as the cut-off for the 

normal category. The solutions that showed positive seasonal rainfall 

anomalies are characterised by a high number of daily events in the above-

normal category while those that give negative anomalies are associated with 

a high number of daily events in the below-normal category. The internal 

variability of the RegCM3 does not affect the number of events in the different 

categories much. 

 
 
 

The ensemble average obtained from the four ensemble members of the 

GCM has the least number of rainfall events in the below-normal category. 

For 1991/1992 most of the events are in the near-normal category while in 

1995/1996 the events are spread between near-normal and above-normal 

categories. The findings explain why the magnitude of the anomalies 

associated with the ensemble average is small for the two seasons as 

compared to the anomalies in the individual ensemble members and 

observations. 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 
 
 

South Africa is located in the subtropics and as a result is affected by 

circulation systems prevailing in the tropics, subtropics and the mid-latitudes. 

These circulations control the rainfall over South Africa. The subtropical 

control is exerted through the continental high, the AOH and IOH. The mid-

latitude control is effected through the cold fronts that usually migrate into the 

country in austral winter. The tropical atmosphere is exerted through the cloud 

bands that are associated with the ITCZ. These circulations make the rainfall 

of South Africa to be highly seasonal, with most of the rainfall experienced in 

austral summer. In the summer season defined as DJF here, the tropical 

circulation dominates over South Africa and therefore most of the rainfall that 

is received during this part of the summer season is due to tropical cloud 

bands. Most of the agriculture in South Africa is dependent on rainfall and it 

has also been found that the GDP correlates highly with the summer rainfall. It 

is for that reason that accurate seasonal or intra-seasonal forecasts which are 

produced at least one season in advance will help in the financial and 

environmental management in the country. 

The atmosphere is a chaotic system and hence this chaos limits its 

predictability. It has, however, been found that the tropical atmosphere does 

not conform to the definition of chaos. The tropical atmosphere is almost 

entirely determined by the surface boundary conditions of the SSTs. It is 

therefore expected that accurate predictions of the SSTs would allow 

prediction of the tropical rainfall. The predictability of seasonal mean 

circulation in areas outside the tropics is enhanced by the high predictability of 

the tropical rainfall for a given SST. This study concentrates on DJF because 

it is in this season that the tropical circulation dominates over South Africa. 

Statistical and numerical models have been developed to model the response 

of the atmosphere to SSTs. Numerical models that are generally used to 

model the atmosphere are called the general circulation models. The general 

circulation models used for climate studies are called global climate models 

(GCMs). 
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The GCMs are generally run at a resolution of roughly 300 km. However, this 

 
 
 

resolution has been found to be too course for small scale features such as 

precipitation. Precipitation events are highly localised in time and space. As a 

result it is desirable that the models simulate the atmospheric processes at a 

higher resolution. The cost of running GCMs at a high resolution is high and 

as a result downscaling has been introduced as a way of producing high 

resolution simulations at a lesser cost. Downscaling is possible through 

dynamical and statistical methods. The former method utilises a high 

resolution RCM to derive regional climate information over an area of interest. 

An RCM is nested within a GCM or reanalyses which provides the required 

large scale conditions (ICs and LBCs). 

The GCMs represent the atmospheric processes that are chaotic by nature. 

The atmospheric models are therefore nonlinear and as a result they are 

sensitive to small perturbations. Two GCM solutions that are started with 

slightly different initial conditions will diverge substantially after a few days of 

simulation. The sensitivity of the GCMs to small perturbations led to the birth 

of ensembles. In seasonal forecasting multiple GCM realisations are 

produced to quantify the uncertainty associated with the non-linearities or with 

the internal variability of the GCM. 

In regional climate modelling, an RCM is nested within a GCM or within 

reanalyses which provide the ICs and the time dependent LBCs. The lateral 

boundary forcing limits the degrees of freedom of RCMs, so that the RCM 

climatology will not strongly diverge from the forcing fields. The RCMs are in 

fact expected to reproduce the large scale features that are being fed to them 

at the boundaries. The RCMs are nonlinear models and as a result, although 

they are restricted at the boundaries, they are expected to exhibit a certain 

level of the internal variability. It is therefore expected that in a nested system 

where a GCM is used to provide LBCs, the nested system solutions will be 

functions of the internal variability of both the GCM and the RCM. In 

forecasting, multiple realisations are already made to quantify the uncertainty 

associated with the GCM’s non-linearities. This study is aimed to investigate 

whether or not in regional climate modelling multiple realisations need to be 

made to quantify the uncertainty associated with the non-linearities in the 
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RCM. To do that the contribution of the RCM’s non-linearities towards the 

 
 
 

variability of ensemble members is analysed. 

In this study four ensemble members are produced from the ECHAM4.5 

through perturbing the wind fields at initialisation. The four solutions from the 

ECHAM4.5 are then used to nest the RegCM3. The simulations are 

generated over a 10-year period from 1991/1992 to 2000/01. The rainfall 

variability of the ensemble members is analysed to determine the amount 

variability associated with both models. The SST forced variance and the 

model’s internal dynamics variance are calculated. The former variance 

measures the variability of the ensemble average over the 10-year period 

while the latter variance measures the variability of the ensemble members in 

a single year. The results show that in general the internal dynamics variance 

is higher than the SST forced variability. The results are further confirmed 

through analysing rainfall data for the 8 homogeneous regions over South 

Africa. The variability of the ensemble members within the different regions is 

found to be generally higher than the variability of the ensemble average over 

the 10-year period. 

It is expected that when dry conditions are experienced most ensemble 

members will lean towards below-normal rainfall and during wet seasons most 

ensemble members will lean towards above-normal rainfall. The simulations 

are compared with the observations to determine how the model is performing 

in general and also to determine if the spread of the ensemble members will 

lean towards the expected categories. The sign of the majority of the 

ensemble member’s anomalies agree with the observed anomalies. The 

magnitude of the simulated anomalies of the ensemble average is smaller 

than the observed anomalies or the anomalies of the individual ensemble 

members because of the high variability in the ensemble members. The 

models are found to perform best over South Africa, in the central region 

where the rainfall is mainly large scale and where the correlation with the 

SSTs in the equatorial Pacific Ocean is highest. The model overestimates 

rainfall in areas of steep topographic gradients as was found with most other 

RCMs. 
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The variability 

 
 
 

of the ensemble members described above is due to the 

internal variability of the GCM and the RCM. To analyse the influence that the 

RCM has towards the total variability of the ensemble members, RCM 

solutions are made using one ECHAM4.5 realisation. Four RCM realisations 

are made through starting the RCM integrations on four consecutive model 

days. The procedure ensures that the LBCs stay the same and hence the 

solutions will vary as a result of the internal variability of the RCM. The 

simulations are made for two seasons that were highly anomalous: one was 

dry (1991/1992) and associated with El Niño conditions while the other was 

wet (1995/1996) and associated with La Niña conditions. 

High variability is found with the ensemble members that are obtained through 

nesting the RegCM3 within the ECHAM4.5 ensemble members. However, it is 

found that the simulations of the ensemble members obtained through 

initialising the RegCM3 on different days are almost similar to one another. 

This suggests that the variability that is observed on the original four 

ensemble members is mainly due to the internal variability of the GCM as 

opposed to the RCM. The RCM’s internal variability therefore makes a very 

small contribution towards the variability of the ensemble members, 

suggesting that the LBCs play a more important role than does the ICs. 

The intra-seasonal variability is also analysed. The rainfall events are divided 

into three equi-probable categories (below-normal, normal, and above-

normal). During the wet season (1995/1996) most of the rainfall events fall in 

the above-normal category, while during the dry season (1991/1992) most of 

the events fall in the below-normal category. The characteristic of the 

simulated daily events is the same as observed with many above-normal 

events in the wet season, and many below-normal events in the dry season. 

When the daily events of the ensemble average are considered, most of the 

events fall within the normal category. This happens because the ensemble 

mean is close to zero when the vastly different ensemble members are 

averaged. When the ensemble members associated with the non-linearites of 

the RCM are considered, the timing of the daily events is found to be different, 

but the number of events in a particular category is almost similar. 

121



The RegCM3 has been proven to be a useful downscaling tool. The internal 

variability of the RCM does not influence the variability of the nested system 

solutions to a great extent. The major contributor towards the characteristic of 

the ensemble members is the LBCs, because it is found that when LBC are 

kept the same, the solutions are generally similar. The results suggest that 

when forecasts are made both for seasonal and intra-seasonal time scales 

there is no need to produce multiple realisations to try and take into 

consideration the internal variability of the RCMs. 
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