

On-line process control in pharmaceutical industry

by

Rahel Girmai Bokretsion

Submitted in partial fulfilment of the requirements for the degree

MAGISTER SCIENTIAE

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

January 2003

© University of Pretoria

On-line process control in pharmaceutical industry

by

Rahel Girmai Bokretsion

Supervisor: Dr Raluca-Ioana Stefan

Co-supervisor: Professor Jacobus F. van Staden

Department of Chemistry

University of Pretoria

Degree: Magister Scientiae

SYNOPSIS

For pharmaceutical compounds that have a chiral center it is necessary to control the enantiopurity because the enantiomers have got different pharmacokinetics and pharmacodynamics. A big interest was recorded in the last few years for the on-line process control of enantiopurity in the pharmaceutical industry. The most used methods are the chromatographic ones. These methods are not very accurate, they are time consuming and also very expensive. A good alternative to the chromatographic methods is the utilization of

sequential injection analysis/sensors systems for on-line simultaneous analysis of enantiomers. The first step in on-line process control in the pharmaceutical industry with sequential injection analysis/sensors systems is sensor development. The most sensitive sensors are the amperometric ones. If amperometric detection is coupled with a biochemical reaction (e.g., enzymatic reaction or immunoreaction), the selectivity or enantioselectivity of these sensors will increase. The matrix of the sensors is also influencing the sensitivity and selectivity of them. By using a diamond paste matrix these parameters increased for the analysis of enantiomers, creatine, creatinine and azidothymidine.

By coupling the reliability of the proposed sensors with the accuracy and precision of an optimized sequential injection analysis system, the results obtained are not only competing with those obtained by using chromatographic techniques, but they are far more reliable, and the method is faster (75 samples/h for an assay of one component and 34 samples/h for simultaneous assay of two components). The system is fully computerized, inexpensive and suitable for on-line monitoring of the components in pharmaceutical industry. The proposed system has got features also for clinical analysis.

Aan-lyn proseskontrole in farmaseutiese industrie

deur

Rahel Girmai Bokretsion

Studieleier: Dr Raluca-Ioana Stefan

Mede-studieleier: Professor Jacobus F. van Staden

Department Chemie

Universiteit van Pretoria

Graad: Magister Scientiae

SAMEVATTING

Vir farmaseutiese verbindings met 'n chirale senter is dit nodig om die enantiosuiwerheid te kontroleer omdat enantiomere verskillende farmakokinetika en farmakodinamika het. 'n Groot belangstelling het die afgelope paar jaar ontstaan vir aan-lyn proseskontrole van die enantiosuiwerheid in die farmaseutiese industrie. Die metodes wat oor die algemeen aangewend word, is chromatografie. Hierdie metodes is nie baie akkuraat nie, is tydrowend en ook baie duur.

Sekwensiële inspuitanalitiese sensorsisteme vir aan-lyn gelyktydige bepaling van enantiomere is 'n goeie plaasvervanger vir chromatografie.

Die eerste stap in aan-lyn proseskontrole in die farmaseutiese industrie met sekwensiële inspuitanalitiese sensorsisteme is sensorontwikkeling. Die mees sensitiewe sensors is die gebaseer op amperometrie. Indien amperometriese deteksie gekoppel word met 'n biochemiese reaksie (byvoorbeeld 'n ensiematiese reaksie of 'n immunoreaksie), sal die selektiwiteit of die enantioselektiwiteit van hierdie sensors toeneem. Die matrys van die sensors word ook deur hulle sensitiwiteit en selektiwiteit beïnvloed. Hierdie parameters neem verder toe met die gebruik van 'n diamantpasta matrys vir die analise van enantiomere, kreatien, kreatinien en asidotimidien.

Deur die betroubaarheid van die voorgestelde sensors met die akkuraatheid en presisie van 'n geoptimiseerde sekwensiële inspuitanalise sisteem te koppel, is die resultate wat verkry word nie alleenlik kompeterend met chromatografiese tegnieke nie, maar is hulle ook by verre meer betroubaar en vinniger (75 monsters per uur vir een komponent en 34 monsters per uur vir die gelyktydige bepaling van twee komponente). Die sisteem is ten volle gerekenariseerd, goedkoop en geskik vir die aan-lyn monitering van komponente in die farmaseutiese industrie. Die voorgestelde sisteem is ook geskik vir kliniese analise.

Acknowledgements

First and foremost I would like to give praise to the Lord my Saviour for the strength and perseverance He gave me to achieve this goal.

I am deeply grateful to my supervisors Dr Raluca I Stefan and Prof. Jacobus F van Staden for the patience, encouragement and valuable guidance throughout the course of this work.

To my parents Abrehet and Girmai thanks very much for continuous encouragement support, inspiration and understanding. I would also like to thank my sister and brothers for their support.

To my friends and colleagues thanks very much guys for your assistance during the experimental of this work.

Finally I would like to thanks the University of Pretoria and EHRD (Eritrean Human Resource Development) for making my dream come true. I wouldn't have achieved this goal if it wasn't for the financial support I received from you.

Table of contents

Synopsis	i
Samevatting	iii
Acknowledgements	v
Table of contents	vi

Chapter 1 Enantioselective analysis using amperometric biosensors and immunosensors

1.1	Introdu	uction	1
1.2	Princip	bles of enantiomer recognition	3
	1.2.1	Molecular recognition of enantiomers using amperometric biosensors	4
	1.2.2	Molecular recognition of enantiomers using immunosensors	5
1.3	Design	of amperometric biosensors and immunosensors	5
	1.3,1	Amperometric biosensors	5
		1.3.1.1 Physical immobilization	7
		1.3.1.2 Chemical immobilization	8
	1.3.2	Amperometric immunosensors	9
		1.3.2.1 Physical immobilization	10
		1.3.2.2 Chemical immobilization	10

1,4	Respo	nse characteristics of the amperometric biosensors and immunosensors	12
	1.4.1	Slope (Response) of the electrode	13
	1.4.2	Limit of detection	13
	1.4.3	Linear concentration range	14
	1.4.4	pH range	14
	1.4.5	Ionic strength and activity coefficients	15
	1.4.6	Response time	15
	1.4.7	Influence of the temperature on the response of the electrodes	16
	1.4.8	Life time (t _L)	16
	1.4.9	Michaelis Menten constant (KM)	17
1.5	Enant	ioselectivity of the amperometric biosensors and immunosensors	17
	1.5.1	Methods for determining amperometric selectivity coefficients	19
		1.5.1.1 Mixed solution method	20
		1.5.1.2 Separate solution method	20
1.6	Refere	ences	22

Chapter 2 Sequential injection analysis

2.1	Introduction	24
2.2	The role of amperometric biosensors and immunosensors as detectors in flow	
	systems	27
2.3	Designs of SIA/electrodes systems for the assay of enantiomers	29
	2.3.1 Optimization of flow system	29

	2.3.1.1 Flow rate	30
	2.3.1.2 Sample volume	30
	2.3.1.3 Buffer volume	30
	2.3.1.4 Diameter and length of tubing	30
2.4 Re	eferences	32

Chapter 3 On-line enantioselective analysis of methotrexate

3.1	Introdu	Introduction	
3.2	Experi	mental section	36
	3.2.1	Reagents and materials	36
	3.2.2	Amperometric biosensors design	37
		3.2.2.1 Physical immobilization	37
		3.2.2.1.1 Monoenzyme amperometric biosensors	37
		3.2.2.1.2 Bienzyme amperometric biosensors	38
		3.2.2.1.3 Trienzyme amperometric biosensors	38
		3.2.2.2 Chemical immobilization	38
	3.2.3	Apparatus	39
	3.2.4	Recommended procedures	39
		3.2.4.1 Direct amperometry	39
		3.2.4.2 Uniformity content test for Methotrexate tablets and	
		Methotrexate injections	39
3.3	Result	s and discussion	40

	3.3.1	Response characteristics of the amperometric biosensors	40
	3.3.2	Enantioselectivity of the amperometric biosensors	41
	3.3.3	Analytical applications	42
3.4	Sequer	ntial injection analysis system for on-line simultaneous assay of	
	enanti	omers of methotrexate	46
	3.4.1	Sequential injection system	46
	3.4.2	Response characteristics of the amperometric biosensors as detectors	
		in SIA system	48
	3.4.3	Selectivity of the biosensors as detectors in SIA systems	48
	3.4.4	Analytical applications of SIA/amperometric biosensors system	49
3.5	Concl	usion	52
3.6	Refere	ences	53

Chapter 4 On-line enantioselective analysis of carnitine

4.1	Introduction		55
4.2	Experi	imental section	56
	4.2.1	Equipment and reagents	56
	4.2.2	Amperometric biosensors design	57
		4.2.2.1 Physical immobilization	57
		4.2.2.1.1 Monoenzyme amperometric biosensors	57
		4.2.2.1.2 Bienzyme amperometric biosensors	58
		4.2.2.2 Chemical immobilization	58

	4.2.3	Apparatus	58
	4.2.4	Recommended procedures	59
		4.2.4.1 Direct amperometry	59
		4.2.4.2 Uniformity content test for Carnilean capsules	59
4,3	Result	s and discussion	59
	4.3.1	Response characteristics of the amperometric biosensors	59
	4.3.2	Enantioselectivity of the amperometric biosensors	60
	4.3.3	Analytical applications	61
4.4	Seque	ntial injection analysis system for on-line simultaneous assay of	
	enanti	omers of carnitine	64
	4.4,1	Sequential injection system	64
	4.4.2	Response characteristics of the amperometric biosensors as detectors	
		in SIA system	66
	4.4.3	Selectivity of the biosensors as detectors in SIA system	66
	4.4.4	Analytical applications of SIA/amperometric biosensors system	67
4.5	Concl	usion	69
4.6	Refere	ences	70

Chapter 5 On-line assay of ortho-acetyl-L-carnitine

5.1	Introd	uction	71
5.2	Exper	imental section	72
	5.2.1	Reagents and materials	72

Х

	5.2.2	Amperometric biosensors design	73
		5.2.2.1 Monoenzyme amperometric biosensors	73
		5.2.2.2 Bienzyme amperometric biosensors	73
	5.2.3	Apparatus	74
	5.2.4	Recommended procedure: Direct amperometry	76
5.3	Result	s and discussion	76
	5.3.1	Electrode response	76
	5.3.2	Selectivity of the amperometric biosensors	77
5.4	Concl	usion	78
5.5	Refere	ences	79

Chapter 6 On-line simultaneous determination of creatine and creatinine

6.1	Introdu	action	81
6.2	Experi	mental section	82
	6.2.1	Reagents and materials	82
	6.2.2	Amperometric biosensors design	83
		6.2.2.1 Bienzyme electrode for assay of creatine	83
		6.2.2.2 Trienzyme electrode for assay of creatinine	83
	6.2.3	Apparatus	84
	6.2.4	Recommended procedures	84
		6.2.4.1 Direct amperometry	84
		6.2.4.2 Uniformity content test for creatine capsules and powder	85

		6.2.4.3 Determination of creatine and creatinine in serum samples	85
6.3	Result	s and discussion	85
	6.3.1	Response characteristics of the amperometric biosensors	85
	6.3.2	Selectivity of the amperometric biosensors	86
	6.3.3	Analytical applications	87
6.4	Sequential injection analysis system for on-line simultaneous determination		
	of crea	tine and creatinine	89
	6.4.1	Sequential injection system	89
	6.4.2	Response characteristics of the amperometric biosensors in SIA	
		system	91
	6.4.3	Selectivity of the amperometric biosensors in SIA system	92
	6.4.4	Analytical applications of the SIA/amperometric biosensors system	93
6.5	Concl	usion	95
6.6	Refere	ences	96

Chapter 7 On-line assay of azidothymidine

7.1	Introd	uction	97
7.2	Exper	imental section	98
	7.2.1	Reagents and materials	98
	7.2.2	Amperometric immunosensor design	99
	7.2.3	Apparatus	99
	7.2.4	Recommended procedures	101

		7.2.4.1 Direct amperometric	101
		7.2.4.2 Uniformity content test for APO-Zidovudine capsules	102
7.3	Results and discussion		102
	7.3.1	Electrode response	102
	7.3.2	Analytical applications	103
7.4	Concl	usion	104
7.5	Refere	ences	105

Chapter 8 Diamond paste based electrodes for the assay of creatine, creatinine and azidothymidine

8.1	Simultaneous assay of creatine and creatinine		
	8.1.1	Introduction	107
	8.1.2	Experimental section	109
		8.1.2.1 Reagents and materials	109
		8.1.2.2 Amperometric biosensors design	109
		8.1.2.2.1 Bienzyme electrode for assay of creatine	110
		8.1.2.2.2 Trienzyme electrode for assay of creatinine	110
		8.1.2.3 Apparatus	110
		8.1.2.4 Recommended procedures	111
		8.1.2.4.1 Direct amperometry	111
		8.1.2.4.2 Uniformity content test	111

		8.1.2.4.3 Determination of creatine and creatinine in serum	
		samples	112
	8.1.3	Results and discussion	112
		8.1.3.1 Response characteristics of the amperometric biosensors	112
		8.1.3.2 Selectivity of the amperometric biosensors	112
		8.1.3.3 Analytical applications	113
8.2	Differe	ential pulse voltammetry for determination of creatine and creatinine	115
	8.2.1	Differential pulse voltammetry	115
	8.2.2	Apparatus	116
	8.2.3	Electrode design	116
	8.2.4	Uniformity content test	116
	8.2.5	Determination of creatine and creatinine in serum samples	117
	8.2.6	Electrode response	117
	8.2.7	Selectivity of the diamond paste based electrode	118
	8.2.8	Analytical applications	118
8.3	Diamo	ond paste based immunosensors for the determination of	
	azidot	hymidine	120
	8.3.1	Experimental section	120
		8.3.1.1 Reagents and materials	120
		8.3.1.2 Apparatus	121
		8.3.1.3 Amperometric immunosensor design	121
		8.3.1.4 Recommended procedures	121
		8.3.1.4.1 Direct amperometry	121

8.3.1.4.2 Uniformity content test for APO-Zidovudine

		capsules	122
	8.3.2	Response characteristics of the amperometric immunosensors	122
	8.3.3	Analytical applications	123
8.4	Concl	usion	123
8.5	Refere	ences	124
Cha	apter 9	Conclusions	126
App	oendix		128
Арј	pendix /	A Publications	129
Арј	pendix]	B Presentations	132

Chapter 1

Enantioselective analysis using amperometric biosensors and

immunosensors

1.1. Introduction

In the last few years, enantioselective high throughput screening analysis became increasingly important, especially for the pharmaceutical industry [1]. It was found that only one of the enantiomers has the pharmacodynamics and pharmacokinetics required. The other enantiomer may have a different pharmacodynamics or it may considerably reduce the activity of the requested enantiomer. Sometimes, the assay of the one enantiomer is not enough and there is a need for the simultaneous assay of enantiomers in the raw material. For some drugs, a certain ratio between the enantiomers can be tolerated.

The evolution concerning the design of enantioselective electrochemical sensors made their utilization a very accurate and precise alternative for chromatographic techniques in high throughput enantioselective screening analysis [2-5]. The best chromatographic technique for enantiomers separation is capillary zone electrophoresis (CZE) [6], but in most of the cases its sensitivity is lower than for amperometric biosensors [4]. Because the preparation of samples for CZE is very laborious and the separation step is not always

reliable, the accuracy and precision for this technique are lower than for electrochemical sensors [7].

The reliability of the response characteristics as well as the analytical information obtained by using electrochemical sensors is strictly correlated with the design of sensors [8]. Only a reliable construction of sensors will give reliable response characteristics and reliable analytical information. The design proposed for sensors is based on PVC, imprinting polymers, carbon paste and diamond paste matrices. The most reliable designs are that of carbon paste and diamond paste sensors. It is also necessary to look for more reliable chiral selectors and enzymes.

The utilization of electrochemical sensors in molecular recognition of the enantiomers is not laborious if one compares it with structural analysis and with chromatographic techniques [9]. The method is rapid, precise and not expensive. The enantioselective sensors are also used reliably for the determination of the best chiral selector for the assay of a certain enantiomer. By using a multiplexer, a maximum of 256 chiral selectors can be screened in less than two hours. Immunosensors assure the enantiospecificity when used in molecular recognition of enantiomers. The high reliability of analytical information obtained using these sensors made automation of amperometric techniques possible, by integration of enantioselective sensors as detectors in flow injection and sequential injection analysis techniques.

There is, however, no electrochemical sensor that can be reliably used for all types of enantiomers. The type of sensors (in addition to the chiral selector, the enzyme or the antibody) must be selected in concordance with the complexity of the structure of the enantiomer. The best selection of electrochemical sensor will assure the precision of molecular recognition of enantiomers. For electrochemical sensors with good response characteristics, the molecular recognition based on kinetics (integration of the sensors in the flow injection and sequential injection analysis systems) can be applied. This will increase the objectivity as well as the precision of molecular recognition.

1.2. Principles of enantiomer recognition

In molecular recognition of enantiomers, electrochemical sensors are a very good alternative for structural analysis (IR, NIR, Raman, MS, X-Ray Diffraction, Neutron Diffraction). The advantage of using these sensors, over the techniques used in structural analysis, is the high reliability that is given by high precision, high reproducibility, and rapidity [3,4]. Due to the fact that electrochemical sensors can be used directly for measurements of the compounds in solution, without any prior separation of the substance that has to be determined, their precision is higher than that obtained using a chromatographic method [2].

The electrochemical sensors proposed for molecular recognition in chiral discrimination are: potentiometric, enantioselective membrane electrodes, amperometric biosensors and immunosensors. There are two ways to use electrochemical sensors in molecular recognition of chiral substances: selective binding [mainly valuable for potentiometric,

enantioselective membrane electrodes (PEME) and for immunosensors] and catalyst selectivity (mainly valuable for biosensors). A molecule with a special chemical architecture is required for selective binding: a lock for a key. The catalyst selectivity has the same recognition mechanism, but the lock is the enzyme and the key is the chiral center of the molecule.

1.2.1. Molecular recognition of enantiomers using amperometric biosensors

For the design of amperometric biosensors, enzymes are used as they catalyze only the reaction of one of the enantiomers. It was shown that this type of electrode is more precise for the complex molecules than the potentiometric, enantioselective membrane electrode [4]. This enzyme can be combined with different electrochemical transducers: field effect transistor, potentiometric or amperometric.

The high stereo-, regio-, and enantioselectivity enzymes are used for both biotransformation and biosynthesis. However, this potential of biosensors can only be used occasionally, because it is not easy to find appropriate enzyme pairs for analysis that have high specificities and similar optimum pH and temperature ranges but different enantioselectivities. The most common enzyme pairs are [10]:(i) a non- enantioselective enzyme and an enantioselective one for the same analyte; (ii) an enzyme pair with high analyte selectivity, but with different enantiomeric specifity.

Due to the high importance of the assay of the enantiomers of amino acids and amino acids derivatives, numerous papers are dedicated to the assay of the enantiomers of these

substances by using enantioselective amperometric biosensors based on L- amino acid oxidase (L-AAOD) and D- amino acid oxidase (D-AAOD) [4] for the assay of S- and Renantiomers, respectively. A simultaneous screening of S and R enantiomers can be done by using the multiplexer.

1.2.2. Molecular recognition of enantiomers using immunosensors

The molecular recognition of enantiomers using immunosensors is based on the reaction between antigen and antibody. The antibody can recognize the chirality center of the antigen. This type of reaction is the only one that may be considered to be enantiospecific, because the antibody is not reacting with the other enantiomer. It is one of the advantages that can be used for screening of a particular enantiomer in a racemic mixture. They are also very sensitive, and they can be used for trace analysis of enantiomers.

1.3. Design of amperometric biosensors and immunosensors

1.3.1. Amperometric biosensors

The construction of biosensors is first related to the immobilization techniques for the enzymes, cells, or other biological active substances and second to the transducer that will be used. The evolution of biosensors design is influenced by the evolution of the transducers, in terms of design and sensitivity. When a biosensor is designed, a direct correlation between the type and quantity of the products formed in the enzymatic reaction and the type of transducer must be done. The first reaction that is taking place is the biochemical reaction. Most of the biosensors are based on the enzymatic reaction.

When an enzyme is immobilized, a transformation of the substrate under action of the enzyme (that acts as catalyst) into products is taking place:

Substrate- Enzyme > Product

The biochemical reaction is very selective and sensitive. Mainly, the enzyme is selective for a group of substances that are enclosed in the same class of organic compounds. Another one or two enzymes (bienzymatic or trienzymatic biosensors) can be used in biosensor design to improve the selectivity and sensitivity of the initial enzymatic reaction as well as to favor the obtaining of the compounds that can be detected by a certain transducer.

The type of the products resulted in the enzymatic reaction determined the type of the transducer, e.g., when H^+ is forming, a pH electrode can be used as transducer, when H_2O_2 is forming, the amperometric transducer is recommended, when carbon dioxide or ammonia are forming, the corresponding gas sensors are utilized. The sensitivity of the enzymatic reaction must be correlated with the sensitivity of the transducer. It follows that the best electrochemical transducer type that can be utilized in the construction of biosensors is the amperometric one [4]. This type of transducer competes with the chemiluminescences and fluorescence ones from the class of optical transducers.

Due the fact that the equilibria of biotransformation of the substrate are taking place at the membrane-solution interface, it follows that the nature of the matrix will influence the behavior of the enzyme. In this regard, the evolution of the design of biosensors is

interconnected with the evolution of the materials used for matrix (film) construction, as well as with the evolution of the technology involved in the (film) construction.

The best matrices for biological material (e.g., enzymes) immobilization proved to be carbon paste [4] (graphite powder and oil) and diamond paste (diamond powder and oil). Usually, nujol oil and paraffin oil are used for preparation of the paste. Lately, it has been found that the nature and quantity of oil can influence the response of the biosensor.

For the immobilization of the enzyme, the following facts must be taken into account:

- The type of the enzyme in terms of its stability with the temperature, and its activity;
- 2. The type of the matrix where the enzyme will be immobilized;
- 3. The possible types of immobilization.

There are two types of enzyme immobilization:

- I. Physical immobilization
- II. Chemical immobilization

1.3.1.1. Physical immobilization

The most reliable immobilization of the biological material consists of the physical mixture between the carbon or diamond paste and biological materials [4]. 100 μ L of enzyme solution (1 mg enzyme in the optimum buffer of certain pH) are mixed with 100 mg graphite or diamond powder and 40 μ L paraffin oil (IR purity). The utilization of

carbon or diamond pastes for physical immobilization of enzyme hasn't only the advantage of a reliable construction of the sensor but also they are ensuring for the enzyme high thermostability. The extreme thermostability in the graphite or diamond paste is attributed to the unusual conformational rigidity in the non-polar binding environment [11].

1.3.1.2. Chemical immobilization

Chemical modified carbon paste was prepared as follows: 0.4 g graphite powder were mixed with 400 μ L (0.03 mol/L) solution of 1-ethyl-3-3 (3-diamethylaminopropyl) carbodiimid (EDAC) and heated to 700^oC for 60 s in a muffle furnace. After cooling down, to ambient temperature, 10 μ L polyethylanimine (PEI) and 10 μ L of glutaraldehyde were added. 100 μ L solution containing (1mg/mL enzymes or mixture of enzymes) were added to the pre-treated graphite powder. The graphite enzyme mixture was allowed to react at 4^oC for 2 h and then it was mixed with 40 μ L of paraffin oil to produce the modified pastes.

A covalent bond of the enzyme to matrix will decrease its activity. Usually, after a covalent immobilization, it is necessary to check the activity of the enzyme. Also, this type of immobilization will decrease the sensitivity of the electrode as well as its lifetime. Sometimes, a covalent bond of the enzyme to the matrix is done to a temperature higher than the temperature of the body $(37^{0}C)$ that is the optimum working temperature for most of the enzymes. In this case, knowledge concerning the stability of the enzyme with

the temperature is necessary. Although the decrease in the sensitivity of the sensor as well as of the enzyme activity are also due to the temperature applied for immobilization.

1.3.2. Amperometric immunosensors

The main reaction that is taking place at the membrane-solution interface of the immunosensor is:

$$Ag + Ab \Leftrightarrow [Ag - - - Ab]$$

where Ag is the antigen and Ab is the antibody. The Ab is an extraordinarily selective and versatile reagent. It can be synthesized, as part of the immune defense system in animals, by an organism in reasonable quantity within weeks of injecting of a foreign species called an Ag. Therefore, it is necessary to select the type of the transducer in concordance with the sensitivity of the immunoassay that will take place at the electrode surface. It was demonstrated that the stability of shelf life of the sensor elements could be increased for multianalyte immunoassay by using different transducer elements [12,13]. The reproducibility of the construction of the membrane plays an important role in the reliability of response characteristic of the electrode. It was proved for different types of membrane electrodes that the best reproducibility can be obtained using carbon or diamond paste electrodes [8]. Due to the fact that the quality is directly related to the affinity of the Ab for the target analyte, special attention should be given to the selection of the Ab. Multianalyte sensors based on utilization of antibodies with different crossreactivities produce response patterns which allow structurally similar analytes to be identified and quantified.

In developing an immunosensor, it is necessary to immobilize an Ab onto the surface of a transducer. This can be carried out by physical (e.g., adsorbtion) and chemical (covalent binding) immobilization. Ab immobilization can significantly change its reactivity. Therefore, careful attention was given to achieve oriented coupling of antibodies on solid supports that can increase the Ag binding capacity [14-16]. Covalent binding leads to a decrease in reactivity.

1.3.2.1. Physical immobilization

For the carbon or diamond paste immunosensor, the graphite or diamond powder was heated to 700°C for 15 min in a muffle furnace and cooled to ambient temperature in desiccators [17]. The paraffin oil and graphite or diamond powder were mixed in a ratio of 1:4 (w/w) followed by addition to the diluted Ab to obtain a final composition of 0.9% (w/w) in Ab. The graphite (diamond)–paraffin oil paste was filled with the modified carbon (diamond) paste that contains Ab. Electric contact was made by inserting a silver wire in the paste. The surface can be renewed by simple polishing with an alumina paper.

1.3.2.2. Chemical immobilization

The design where the Ab is chemically immobilized is applied mainly for the ELISA technique. For chemical immobilization, different supports are proposed, e.g., gold, plastic membranes, conducting composite materials, sol-gel derivatives, etc.

The following procedure is adopted for the immobilization of Ab in gold: the freshly prepared electrodes were immersed for 1 h into solutions of 0.01 mol/L 3,3'-

dithiodipropionic acid bis-(N-hydroxysuccinimide) (DSP, Pierce) in dry dimethyl sulfoxide (DMSO), washed with DMSO and dried in a stream of nitrogen. For the immobilization of Ab, the surface must be covered with 15 μ L droplets of buffer, containing the Ab, and incubated for 2 h with the Ag. After incubation, the sensor must be washed with buffer solution.

For Ab immobilization on the surface of a plastic membrane, a freshly prepared solution containing the Ab (10 ng/mL) and 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDAC) (5 mg/mL) was deposited and left for 24 h. After this time, the sensor must be washed in a vigorously stirred buffer to remove the excess of unbound Ab.

When the composite materials are used as immobilization matrices for immunosensors design, the Ab is first mixed with the monomer and graphite to prepare the immunocomposite. The ratio between the monomer and graphite must be 1:1 (w/w). The final proportion of Ab is 0.3 % (w/w). The resulting paste is introduced into a 6 mm i.d. PVC tube, until it makes contact with an electrical connector located at the other end of the tube. After this step, the immunocomposite is cured in a nitrogen atmosphere at room temperature for 3 days.

Sol-gel type immunosensors can be constructed using a one-step sensor fabrication technique, based on the coupling of sol-gel and screen-printing technologies. A low temperature cured ink is prepared by dispersion of Ag, graphite powder, and a binder in the sol-gel solution. The enzyme-labeled Ab can readily diffuse towards the encapsulated

Ag, which retains its binding properties, and the association reaction is easily detected at the dispersed graphite surface.

A high reproducible procedure utilized in immunosensors design is the *in situ* Ag immobilization. The procedure was applied for the first time, for the assay of herbicides, and it was based on an enzymatic single-step *in situ* synthesis of hapten-carrier conjugates on electrodes. Catalyzed by transglutaminase from a variant of *Streptoverticillium mobaraense*, the reaction proceeds in aqueous solution with and without addition of organic media in only 1.5 h.

1.4. Response characteristics of the amperometric biosensors and immunosensors

The functional relation between the intensity of the current, I, measured at a certain potential, E, and concentration of the analyte, c, is given in Figure 1.1:

Figure 1.1. Electrode function for amperometric electrodes.

As can be seen from Figure 1.1, it is a linear correlation between the intensity of the current and concentration of the analyte:

I=f(c)

1.4.1. Slope (Response) of the electrode

The slope is one of the most important response characteristics for amperometric electrodes. A minimum value of 100 nA/decade of concentration is requested for amperometric electrodes to be considered for bioanalysis. The determination of the slope can be done from the graphic method as tangent of the angle formed between the calibration curve and the concentration axis. However the linear regression method is the most recommended for the determination of the slope.

1.4.2. Limit of detection

IUPAC defined the limit of detection as the concentration at which, under specified conditions, the intensity of the current, I, deviates from the average value by a multiple of the standard error of a single measurement of the intensity of the current in this region [18]. For amperometric electrodes an experimental determination of the limit of detection is recommended, rather than a statistical treatment of the experimental data obtained in the calibration of the electrode. In this case, the limit of detection depends on the type of pH of the solution used as blank. The limit of detection can be considered as [19]:

- The concentration where the limiting current intensity value is equal with the one obtained for the blank solution;
- (ii) The concentration where the limiting current intensity value is double than the one obtained for the blank solution;
- (iii) The concentration below the one where the intensity of the limiting current remains constant.

The amperometric electrodes are very sensitive. Their limits of detection can reach values in the nmol/L-pmol/L magnitude order, or even less. For this reason, they are recommended as transducers in biosensors and immunosensors construction.

1.4.3. Linear concentration range

The linear concentration range represents the range of concentration of a substrate (or ion) over which the sensitivity of the electrode is constant within a specific variation, usually ± 5 %. The linear concentration range can be determined from the plot of current versus the concentration. This response characteristic is very important because all the solutions that had to be measured must have the activity or the concentration of the substances (or ions) within this range. The reproducibility of the linear range is connected with the working conditions of the electrode, like stirring rate of the solution, composition of the solution in which the quantities are measured, pH of the solution, the history and preconditioning of the electrode, and the temperature [19].

1.4.4. pH range

The pH plays a very important role in the response of amperometric electrodes. For biosensors and immunosensors, the pH plays the main role in the biochemical reaction. In these cases it is very important to work at a certain pH value and to use a certain composition for the buffer. It is very important for all kinds of electrodes to determine the dependence between intensity of the limited current and the pH. For some of these electrodes a range where the intensity of the limited current does not depend on the pH

was found [20,21,2]. In these situations it is necessary to buffer all the standard and sample solutions at a pH situated within this range. There are electrodes that did not have any range where the intensity of the current is not dependent on the pH. In this case, special care must be accorded to the buffering of each solution, because a small difference on pH will cause a change in the intensity of the current and that will be an error in the measurement.

1.4.5. Ionic strength and activity coefficients

The ionic strength and the activity coefficients are also playing a very important role in the accuracy of the measurements. To avoid the differences in the intensity of the limiting current readings, which can cause another source of error due to the variations of the activity coefficients of the ions in the solution, it is necessary to work at the same ionic strength [22].

1.4.6. Response time

IUPAC defined the response time as the time which elapses between the instant when the electrodes of the amperometric cells are brought into contact with a sample solution and the first instant at which the slope of the working electrodes becomes equal to a limiting value selected on the basis of the experimental conditions and /or requirements concerning the accuracy [18]. For amperometric electrodes, the response time is a function of the kinetics of the processes that takes place at the surface of the electrode. For all types of electrodes the response time increases with the decreasing of the concentration of the ion that has to be determined. In the presence of the interferences,

the response time is modified due to the competitive equilibrium that takes place at the electrode interface. The electrodes with short response time are preferred to be used in bioanalysis, especially if they are used as detectors in flow systems.

1.4.7. Influence of the temperature on the response of the electrodes

The temperature has a high effect on the slope of the electrodes. The increase of temperature will favor the kinetics as well as the thermodynamics of the processes that take place at the electrode surface. Accordingly, the slope will increase. For all types of electrodes, the temperature must be controlled and maintained constant during the measurement of standard and sample solutions. A temperature of 298 K is recommended for characterization of the electrodes.

1.4.8. Lifetime (t_L)

This parameter is very important for biosensors and immunosensors. The mode of assessment of lifetime should be specified, i.e. by reference to initial sensitivity, upper limit of the linear concentration range for the calibration curve, accuracy, or reproducibility. Lifetime can be defined as the storage or operation time necessary for the sensitivity, with the linear concentration range, to decrease by a factor of 10% (t_{L10}) or 50% (t_{L50}) [23]. For the storage lifetime, it is necessary to compare the sensitivities of different biosensors, derived from the same production batch, after different storage times under identical conditions.

1.4.9. Michaelis-Menten constant (KM)

The Michaelis-Menten constant represents the analyte concentration yielding a response equal to half of its maximum value for the current measured for infinite analyte concentration [23]. When the apparent KM is much larger than its value for soluble enzyme, it means either that a significant substrate diffusion barrier is present between the sample and reaction layer, or that the rate of reaction to the co-substrate with the enzyme is increased. As for enzyme solution kinetics the apparent KM is usually determined using line Weaver-Burk reciprocal plots, i.e. $\frac{1}{\Delta I}$ versus $\frac{1}{C}$, where $\Delta I = I - I_b$, I is the value of the current recorded for the analyte and I_b is the current recorded for the blank solution, and c is the concentration of the analyte.

1.5. Enantioselectivity of the amperometric biosensors and immunosensors

Selectivity is one of the basic characteristics of electrochemical sensors. It depends on the composition of the membrane (active sites as well as matrix), ratio between the activities of the main ion and interfering ion in the solution, complexity of the matrix of the sample that is analyzed, current applied, and pH of the solution. The selectivity can be improved by modifying these parameters or by using a biochemical reaction before the electrochemical detection (e.g., biosensors, immunosensors). The most utilized biochemical reactions are based on enzymes or antigen-antibody (Ag-Ab) pairs. This property of the electrochemical sensors restricts their utilization for the assay of an ion from a complex matrix (e.g., environment). Usually, these electrodes have group selectivity. Their selectivity is high when they are utilized for clinical analysis including pharmaceutical analysis and for the assay of some substances/ions in food.

IUPAC defined the interfering substance as any substance, other than the ion being determined, whose presence in the sample solution affects the measured current [18]. There are two classes of interfering substances:

- Electrode/electrochemical (substances whose response is similar to that ion being determined, or electrolytes presence at high concentration) interferences;
- (ii) Chemical interferences (substances that intact with the ion being determined, so as to decrease its activity or apparent concentration, e.g., H⁺, OH⁻, or substances that intact with the membrane surface).

The degree of selectivity of the electrochemical sensors is given by the value of amperometric ($K_{i,i}^{amp}$) selectivity coefficients as follows:

- (i) For a magnitude order higher than 10⁻³, the ion tested for interfence does interfere;
 - (ii) For a magnitude order of 10⁻³, the ion tested for interfence is not a strong interferent;
 - (iii) For a magnitude order less than 10^{-3} , the ion does not interfere.

These coefficients defined the ability of the electrodes to distinguish a particular ion from other (interfering ions) [18].

Wang [24] proposed, for the amperometric electrodes, an equation for the correlation of the total current response and amperometric selectivity coefficient:

$$\boldsymbol{I}_i = \boldsymbol{b}\!\!\left[\boldsymbol{c}_i + \sum_{j=t}^N \boldsymbol{K}_{i,j}^{\text{amp}} \boldsymbol{c}_j\right]$$

Where I_i is the total current response, c_i and c_j are the concentration of the main and interfering species, respectively, N is the number of interfering species and b is given by the following equation:

$$b = \frac{n_i AFD_i}{\delta_i}$$

where n_i is the number of electrons transferred per mol of analyte, A is the surface of the electrode (cm²), F is Faraday number (96500 C), D_i is the diffusion coefficient of the analyte (cm²/s), and δ_i is the thickness of diffusion layer (cm). For a biosensors and immunosensors, $K_{i,j}^{amp}$ is a complex function responsible for the recognition of the substrate as well as of the selectivity of transducer over the species formed in the biochemical reaction and the species belonging to the matrix of the sample.

1.5.1. Methods for determining amperometric selectivity coefficients

In the case of amperometric electrodes there are two methods for determination of the amperometric selectivity coefficient: mixed and separate solutions methods. The mixed solution method shows the actual conditions under which the electrode is used and therefore recommended for the determination of the amperometric selectivity coefficients rather the separate solution method.

1.5.1.1. Mixed solution method

The equation for the determination of the selectivity coefficient using this method can be deduced from the equation proposed by Wang [25]. Practically the current recorded from a solution that contains only the main species that has to be analyzed is compared with the total current given by the equation proposed by Wang [25] for a solution containing both the main and the interfering species. The amperometric selectivity coefficient may be calculated from the equation:

$$\mathbf{K}_{i,j}^{\text{amp}} = \left[\frac{\Delta \mathbf{I}_i}{\Delta \mathbf{I}_i} - 1\right] \times \frac{\mathbf{c}_i}{\mathbf{c}_j}$$

where $\Delta I_i = I_t - I_b$ and $\Delta I_i = I_i - I_b$ are the values of the current recorded for the mixed solution and for the solution containing only the main species, and c_i and c_j are the concentrations of the main and interfering species, respectively. I_b is the current recorded for the blank solution. I_t is the current recorded for the mixed solution, and I_j is the current recorded for the solution containing only the main species.

1.5.1.2. Separate solution method

The intensity of the current is recorded for the solution that contains only the main species and separately for the solution containing only the interfering species, and the values obtained are compared with each other. The following equation is proposed to be used for the determination of the amperometric selectivity coefficient [26]:

$$K_{i,j}^{amp} = \frac{\Delta I_j c_i}{\Delta I_j c_j}$$

where $\Delta I_j = I_j - I_b$ and $\Delta I_i = I_i - I_b$, I_j and I_i are values of the current recorded for the interfering and main ion/substance, respectively, and I_b is the current recorded for the blank solution.

1.6. References

- H. Y. Aboul-Enein and I. W. Wainer, The Impact of Stereochemistry on Drug Development and Use, (1997) Wiley, New York.
- 2. H. Y. Aboul-Enein and R. I. Stefan, Crit. Rev. Anal.Chem., 28, (1998), 259.
- 3. H. Y. Aboul-Enein, R. I. Stefan and J. F. van Staden, Anal.Lett., 32., (1999), 623.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Electroanalysis, 11, (1999), 1233.
- 5. R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Combinat. Chem. High Throughput Screen, 6, (2000), 445.
- L. D. Hutt, D. P. Glavin, J. L. Bada and R. A. Mathies, Anal.Chem., 71, (1999), 4000.
- R. I. Stefan, G. E. Baiulescu, H. Y. Aboul-Enein and J. F. van Staden, Accred.
 Qual. Assur., 4, (1999), 225.
- 8. R. I. Stefan and H. Y. Aboul-Enein, Accred. Qual. Assur., 3, (1998), 194.
- 9. R. I. Stefan, J. F.van Staden and H. Y. Aboul-Enein, Cryst. Engin., 4, (2001), 113.
- 10. K. Schugerl, R. Ulber and T. Scheper, Trends Anal. Chem., 15, (1996), 56.
- 11. J. Wang, J. Liu and G. Cepra, Anal. Chem., 69, (1997), 3124.
- 12. R. Abuknesha and A.Brecht, Biosens.Bioelectron, 12, (1997), 159.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Fresenius J.Anal. Chem., 366, (2000), 659.
- 14. B. Lu, M. R. Smyth and R. O'Kennedy, Analyst, 121, (1996), 29R.
- 15. B. Lu, J. M. Xie, C. L. Lu, C. R. Wu and Y. Wei, Anal.Chem., 67, (1995), 83.

- E. Brynda, M. Houska, J. Skvor and J. J. Ramsdem, Biosens.Bioelectron, 13, (1998), 165.
- H. Y. Aboul-Enein, R. I. Stefan, G. L. Radu and G. E. Baiulescu, Anal.Lett., 32, (1999), 447.
- J. Inczendy, T. Lengyel, A. M. Ure, A. Gelencser and A. Hulanicki, Compendium of Analytical Nomenclature. Definitive rules 1997, 3rd Edition, Blackwell Science Ltd, (1998), Great Britain.
- V. V. Cosofret and R. P. Buck, Pharmaceutical Application of Membrane Sensors, (1992), CRC Press Inc., Boca Raton, Florida.
- R. I. Stefan, G. E. Baiulescu and H. Y. Aboul-Enein, Crit. Rev. Anal.Chem., 27, (1997), 307.
- 21. R. I. Stefan, Anal.Chim.Acta, 350, (1997), 105.
- F. Battaglini, E. J. Calvo, C. Danilowiez and A. Wolosiuk, Anal.Chem., 71, (1999), 1062.
- D. R. Thenevot, K. Toth, R. A. Durst and G. S. Wilson, Pure Appl.Chem., 71, (1999), 2333.
- 24. J. Wang, Talanta, 41, (1994), 857.
- 25. K. Ren, Fresenius J.Anal.Chem., 365, (1999), 389.
- A. E. G. Cass, Biosensors. A Practical Approach, Oxford University, (1990), New York.

Chapter 2

Sequential injection analysis

2.1. Introduction

Sequential injection analysis (SIA) is an analytical technique that was conceived from flow injection analysis [1,2]. This was due to the demand for mechanically simple and robust systems for process analyses that were able to process a large number of samples in a certain period of time. In contrast to FIA, SIA is based on discontinuous flow and consumes reagents only when the sample is being treated by exploiting a combination of stopped flow, reversed as well as forward flow in the microlitre scale [3].

The sequential injection system is assembled from the following: a pump, a multi position selection valve, a holding coil and appropriate detector (Figure 2.1). The versatility of the sequential injection technique is centered around the selection valve where each port of the valve allows a different operation to be performed. Each port of the valve is dedicated to a specific purpose and the combinations of standards, reagents and detectors around the valve are easily modified to suit particular analysis [4].

The principle of SIA is based on sequential aspiration of a sample zone and reagent zone into a holding coil through a selection valve. The aspiration of zones is achieved by means of a pump, which is capable of controlled stop-go-forward-reverse movement [5].

Figure 2.1. Schematic flow diagram of SIA system

A stack of well-defined zones adjacent to each other are formed in the holding coil (Figure 2.2). The selection valve is then switched to the detector position and flow reversal creates a composite zone in which the sample and reagent zone mutually disperse and penetrate each other due to combined axial and radial dispersion.

This creates the formation of a product zone, which is monitored by the detector in the form of a peak whose height or width is related to the concentration of species determined. The reagent is usually in excess to ensure effective mixing [6]. By varying the different operational parameters in a SIA flow conduit, it is possible to control the

amount of dispersion within the system [7]. The order in which sample and reagent zones are stacked is in accordance with the reactions sought. The degree of mixing and length of the reaction time as well as the sample and reagent volumes may be changed without physical re-configuration of flow channel by means of programming the piston and valve movements [8,9]. Zone penetration was found to be a key parameter in a SIA system [7]. Its importance is ascribed to the fact that this influence has a dramatic impact on the surface area over which a concentration gradient exists and therefore over which axial mixing takes place [10,11].

Figure 2.2. Principles of sequential injection analysis. Profile zones after injection (A), immediately after flow reversal (B) and in reaction coil (C) S-sample R-reagent and P-formed product.

The holding coil is considered the heart of the system as it substitute the mixing chamber and its volume could be adjusted by changing the length and diameter as required. A high reproducible flow pattern is obtained by computer control of the SIA system because an

analytical procedure often requires a complex and high reproducible pattern. This technique can employ any detector capable to operate successfully in a flowing stream. SIA uses a single channel pump to move the liquid in reverse and forward steps [12], as compared to a multichannel pump in FIA. Peristaltic pumps are preferred over syringe and sinusoidal flow types. The advantages of peristaltic pumps are: (i) that the configuration is easier and simpler to design, initiate and operate; (ii) they are widely available and easy to handle and (iii) the sampling cycle is considered shorter as there is no need for the aspiration of a wash solution. Syringe pumps on the other hand offer a pulse-less and highly precise flow but they require priming before use, and have a limited reservoir volume and are relatively expensive. The technique of SIA has the advantages of reduced reagent consumption and easy and fast change of solutions.

2.2. The role of amperometric biosensors and immunosensors as detectors in flow systems

Amperometric biosensors and immunosensors can be easily incorporated in the conduits of a flow system (FIA, SIA) to form a simple, low-cost analyzer [13-15]. The hydrodynamic conditions can be controlled in such a way that a very reliable electrochemical sensor/flow system is obtained. The use of amperometric biosensors and immunosensors in flow systems has advantages also for amperometric detection itself [16], because:

(i) As the sample being in contact with the electrode surface moving continuously, the electrode cannot influence the sample concentration and

furthermore, the electrode surface is renewed by "on-line polishing" with the carrier;

- (ii) As the diffusion layer of small thickness is established at the electrode surface, the linear concentration range, the sensitivity, the limit of detection, and the response time of the indicator are improved;
- (iii) The reference electrode usually is placed down-stream in respect to the indicator one, so the ionic species flowing out of the reference electrode cannot influence the response of the indicator electrode;
- (iv) Reference electrodes with flowing inner solution can easily be employed to overcome problems arising from the alteration of liquid junction potential;
- (v) The potential or intensity of the current is measured in non-equilibrium conditions but always at the same moment after sample injection.

Among amperometric biosensors and immunosensors parameters, their dynamic response characteristics are very important for flow systems. Therefore, efforts have been done devoted in developing appropriate measuring techniques in order to study their dynamic response properties [17]. Amperometric biosensors and immunosensors were used as detectors in FIA and SIA. The advantages of using SIA in the place of FIA are to decrease the consumption of samples and buffers, a cheap electrolyte (e.g., NaCl 0.1-1 mol/L solution) can be used as carrier, lower cost, and increasing the precision, accuracy, and reliability of the analysis.

2.3. Designs of SIA/electrodes systems for the assay of enantiomers

The sequential injection system (SIA) used for the assay of enantiomers, is illustrated in Figure 2.1. The system is constructed from:

- 1. A Gilson Minpuls peristaltic pump;
- A ten-port electrically actuated selection valve (Model ECSD10P, Valco Instruments, Houston Texas).
- 3. Flow detection cell.

Data acquisition and device control are achieved using a PC 30-B interface board (Eagle Electric Cape Town, South Africa). The FlowTek software package (obtained from Mintek) was used throughout for device control and data acquisition [18]. Tygon tubing were used for the holding coils (HC) and reaction coils (RC).

2.3.1. Optimization of flow system

It is necessary to optimize a number of physical and chemical parameters to obtain the highest sensitivity and precision. Accordingly, van Staden [19] evaluated different SIA sample-buffer configurations (sample-buffer, buffer-sample, sample-buffer-sample, and buffer-sample-buffer, the last two being in the sandwich mode) that can be used with electrochemical sensor as detection system. The peak profiles of these SIA configurations were evaluated using a conventional fluoride selective membrane electrode. The best response characteristics and peak shapes as well as recovery and precision values were obtained for the buffer sample configuration. For very low concentration levels, sandwich SIA configurations are more suitable, when optimum buffer and pH are used. The

original optimization was done using the configuration where the aspiration order into a SIA holding coil was buffer-sample. The optimum conditions where applied to all the other configuration [19].

2.3.1.1. Flow rate

The influence of the flow rate on sensitivity and precision was evaluated. A total sample of 270 μ L was used during these evaluations. The volume was adjusted to remain constant for every flow rate studied. This resulted in longer times for lower flow rates and shorter times for higher flow rate. The optimum flow rate was chosen to be 3.61 mL/min [19].

2.3.1.2. Sample volume

It is important to optimize this parameter to ensure that effective mixing with the buffer solutions was obtained. Different sample volumes were investigated and a sample volume of 270 µL was selected for optimum working conditions [19].

2.3.1.3. Buffer volume

Different volumes of buffer solution were aspirated into the SIA system to evaluate the volume of the buffer solution. The optimum volume is $300 \ \mu L$ [19].

2.3.1.4. Diameter and length of tubing

i. **Holding coil.** The holding coil serves as a holding reservoir that prevents the stack of zones from entering the conduit of the pumping tube in the peristaltic

pump where deformation could take place. The length and diameter of the holding coil did not have a large influence and 3.5 m (1.6 mm i.d.) Tygon tubing was used [19].

ii. **Reaction coil.** The length and diameter of reaction coil where optimized using different lengths and diameters of Tygon tubing. The optimum length and diameter for the reaction coil were found to be 0.3 m and 0.89 mm i.d., respectively [19].

Improving of the quality of the analyses when a certain electrochemical sensor has to be used in flow system can be done not only through the optimization of the parameters of the flow system, but also through optimization of the size and geometry of the flow cell. In this regard, Stefan [20] proposed a new cell to be used in flow systems (Figure 2.3).

(A) (B)

Figure 2.3. The electrochemical cell for FIA and SIA measurements. (A) Complete cell during working runs. WE, working electrode; RE, reference electrode; AE, auxiliary electrode. (B) View of top and bottom parts of the cell [20].

2.4. References

- 1. J. Ruzicka and G.D. Marshal, Anal. Chim. Acta, 237, (1990), 329.
- J. Ruzicka, G.D. Marshal and G.D. Christian, Anal. Chim. Acta, 62, (1990), 1861.
- 3. J. Ruzicka, Trends Anal.Chem., 17, (1998), 69.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Einein, Electrochemical Sensors in Bioanalysis, (2001), Marcel Dekker, New York USA.
- 5. J. Ruzicka, Anal. Chim. Acta, 261, (1992), 3.
- 6. T. Gubeli, G. D. Christian and J. Ruzicka, Anal. Chem., 63, (1991), 2407.
- 7. J. F. van Staden and A. Botha, S. Afr. J. Chem., 51, (1998), 100.
- 8. J. Ruzicka and T. Gubeli, Anal. Chem., 63, (1991), 1680.
- N. W. Barnett, C. E. Leneham and S. W. Lewis, Trends Anal. Chem., 18, (1999), 346.
- R. E. Talijaard, Application of sequential injection analysis as process analysers,
 M.Sc. Thesis, University of Pretoria, (1996).
- J. F. van Staden, H. du Plessis, S. M. Linseed, R. E. Halyard and B. Kremmer, Anal. Chim. Acta, 354, (1997), 59.
- 12. A. Ivaska and J. Ruzicka, Analyst, 118, (1993), 885.
- 13. J. F. van Staden and R. I. Stefan, Talanta, 49, (1999), 1017.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Anal Chim Acta, 411, (2000), 51.
- 15. Y. Fintschenko and G. S. Wilson, Mikrochim. Acta, 129, (1998), 7.

- G. Nagy, Zs. Feher, K. Toth and E. Pungor, Hungary Sci. Instrum., 41, (1997),
 27.
- 17. S. Kolev, K. Toth, E. Linder, E. Pungor, Anal. Chim. Acta, 234, (1990), 49.
- 18. M. Mayer and Ruzicka, Anal. Chem., 68, (1996), 3808.
- 19. J. F. van Staden, R. I. Stefan and S. Brighila, Talanta, 52, (2000), 3.
- 20. R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Talanta, 51, (2000), 969.

Chapter 3

On-line enantioselective analysis of methotrexate

3.1. Introduction

Methotrexate (Mtx) is a compound with a glutamate moiety. L-Mtx, N- [4-[[2,4-Diamino-6-pteridinyl) methyl] methylamino]-benzoyl] L-glutamic acid (Scheme 1) is an antifolate drug that shows significant antitumor activity in acute leukemia and other neoplastic diseases. It functions by interfering with the growth of cancer cells.

Scheme 1. The structure of methotrexate

These cells are then eventually destroyed. L-Mtx inhibits the enzyme dihydrofolate reductase causing a lack of reduced folates, which are donors of one-carbon units in the biosynthesis of nucleic acids and some amino acids. Like the folates, Mtx is converted intracellularly to polyglutamates, which inhibits further enzymes of the folate metabolism and thus takes part in the cytostatic action of the drug [1,2]. D-Mtx

is the antipode, and its pharmacokinetic behavior is significantly different from that of L-Mtx [2,3]. Although D-Mtx exhibits similar inhibitory effect to dehydrofolate as L-Mtx, vet D-Mtx is much less toxic (40-fold lower LD₅₀) and its antitumor effect is proportionately reduced [2].

Many analytical methods have been reported to analyse Mtx in its pharmaceutical formulations and in biological fluids by using chromatographic techniques, e.g., HPLC [4-10] and capillary zone electrophoresis [11], and spectrometric techniques, e.g., chemiluminscence [12] and fluorescence [13], yet only few methods had been reported discriminating between L- and D-enantiomers of Mtx [11].

Among the electrochemical biosensors, amperometric biosensors represent the best combination of sensitivity and selectivity. Amperometric biosensors are capable of direct sensing without additional reagents. Thus the sensors could be used when a fast analysis or a continuous *in situ* monitoring of analyte concentrations are required [14].

Ten amperometric biosensors based on different enzymes are proposed for the assay of L-Mtx and D-Mtx. Physical and chemical immobilization techniques were used for the sensors design: glutamate oxidase (Glox) based biosensor was used to determine L-Mtx by direct electrochemical reduction/oxidation of the co-substrate (O_2 /or formed H₂O₂). The detection principle of the biosensor modified with Glox is usually based on the amperometric detection of enzymatically produced H₂O₂ [15]. L-amino acid oxidase (L-AAOD) and D-amino acid oxidase (D-AAOD) is catalyzing only the conversion of the L- or D-enantiomer of the amino acid into their keto- acids and the hydrogen peroxide formed is measured by the amperometric transducer [16].

Horseradish peroxidase (HRP) is usually accompanied by Glox, L-amino acid or D-AAOD in the design of bi- or trienzyme sensors, and it is used in order to improve the reduction of H_2O_2 formed from the enzymatic reaction [17]. The reliability of biosensor construction is influencing the reliability of the analytical information and it will also contribute to the validation of the biosensor for pharmaceutical analysis.

3.2. Experimental section

3.2.1. Reagents and materials

Graphite powder, 1-2 μ , synthetic was supplied by Aldrich (Milwaukee, WI, USA). Paraffin oil was supplied by Fluka (Buchs, Switzerland); phosphate buffer (pH =7.00) was supplied by Merck (Darmstadt, Germany). De-ionized water from a Modulab system (Continental water systems, San Antonio, TX, USA) was used for all solution preparations: L-amino acid oxidase (L-AAOD) (E.C.1.4.3.2.Type I crude Dried Venom from Crotalus adamanteus, Sigma, St. Louis, MO) solution, L-Glox (L-Glutamate: oxygen oxido reductase (deaminating) (E.C.1.4.3.11 from steptomyces sp. Sigma) solution, D-amino acid oxidase (D-AAOD) (E.C.1.4.3.3.Type I: from porcine kidney Sigma) solution, horseradish peroxidase (HRP) (EC 1.11.1.7 Type I from Horseradish) solution, polyethylenimine (PEI) [(9002-98-6) (50%w/v) aqueous solution, (Sigma)], glutaraldehyde [EC 203-856-5(111-30-8) grade I 8% aqueous solution, (Sigma), 1-ethyl-3-3(3-dimethylaminopropyl)carbodiimid (EDAC) (EC 247-361-2). The L- and D-methotrexate (L (D) amethopterin hydrated, 98%) were supplied by Aldrich (Milwaukee, WI, USA). Solutions of L- and D-Mtx (10⁻⁴ mol/L), respectively, were also prepared in de-ionized water.

Methotrexate tablets (2.5 mg Mtx/tablet) were supplied by David Bull Laboratories, Warwick, UK. Methotrexate LPF[®] Sodium injections were supplied by Immunex Corporation, Seattle, WA, USA.

3.2.2. Amperometric biosensors design

Ten plastic tips were filled with plane carbon paste leaving an empty space of 3-4 mm in the top part to be filled with carbon paste containing the different enzyme mixtures as shown below. The diameters of all biosensors were 3 mm. Electric contacts were obtained by inserting silver wires into the carbon paste. The biosensors tips were gently rubbed on fine abrasive paper to produce a flat surface. The surface of the biosensors were wetted with de-ionized water and then polished with an alumina paper (polished strips 30144-001, Orion) before use. The biosensors were stored dry at 4^{0} C, when not in use.

3.2.2.1. Physical immobilization

Mono-, bi- and trienzyme electrodes were constructed. All the enzyme solutions used for the biosensors design were prepared in 0.1 mol/L phosphate buffer of pH=7.00.

3.2.2.1.1. Monoenzyme amperometric biosensors

Three electrodes, based on carbon paste, were designed as follows: paraffin oil and graphite powder were mixed in a ratio 1:4 (w/w) to form a carbon paste. 100 μ L from the solution (1 mg/enzyme/mL): L-AAOD or L-Glox or D-AAOD solution, were respectively added to three separate portions of carbon paste.

3.2.2.1.2. Bienzyme amperometric biosensors

Four different mixtures of enzymes were used for the design of the amperometric biosensors: (1) 1 mg of HRP was dissolved in 50 μ L of Glox (0.25 mg/mL); (2) 25 μ L of Glox solution (0.125 mg/mL) was mixed with 25 μ L of L-AAOD solution (0.125 mg/mL); (3) 1 mg of HRP was dissolved in 50 μ L of L-AAOD solution (0.25 mg/mL); (4) 1mg of HRP was dissolved in 50 μ L of D-AAOD solution (0.25 mg/mL). Each mixture was incorporated in the carbon paste (100 mg graphite powder and 40 μ L paraffin oil), to obtain four bienzyme electrodes.

3.2.2.1.3. Trienzyme amperometric biosensors

Paraffin oil and graphite powder was mixed in the ratio 1:4 (w/w) to form a carbon paste. 25 μ L of Glox solution (0.125 mg/mL) was first mixed with 25 μ L of L-AAOD (0.125 mg/mL) solution and then with 50 μ L of HRP (0.5 mg/mL) solution. The resulting solution was added to the carbon paste.

3.2.2.2. Chemical immobilization

Two electrodes based on chemical modified carbon paste were prepared as follows: 0.4 g graphite powder were mixed with 400 μ L (0.03 mol/L) solution of EDAC and heated to 700^oC for 60 s in a muffle furnace. After cooling down, to ambient temperature, 10 μ L PEI and 10 μ L of glutaraldehyde were added. 100 μ L solution containing 1 mg/mL of HRP and 0.25 mg/mL of Glox were added to the pre-treated graphite powder for the determination of L-Mtx, and 100 μ L solution containing 4 mg/mL of HRP and 1 mg/mL of D-AAOD was added to the respective pre-treated graphite powder for the determination of D-Mtx. Each graphite enzyme mixture was

allowed to react at 4° C for 2 h and then it was mixed with 40 µL of paraffin oil to produce the modified pastes.

3.2.3. Apparatus

A663VA Stand (Metrohm, Herisau, Switzerland) in combination with a μ Autolab and software (Ecochemie version 4.8) were used for all chronoamperometric measurements. A Pt electrode and an Ag/AgCl electrode served as the counter and reference electrodes in the cell.

3.2.4. Recommended procedures

3.2.4.1. Direct amperometry

The chronoamperometric technique was used for intensity of current measurements of each solution. The electrodes were dipped into a cell containing 10mL of phosphate buffer, pH= 7.00 and different aliquots of L- or D-Mtx solution. The intensity of current measured was plotted versus the concentration of L- or D-methotrexate. The unknown concentrations of L- and D-Mtx were determined from the calibration graphs.

3.2.4.2. Uniformity content test for Methotrexate tablets and Methotrexate injections

Ten methotrexate tablets (2.5 mg Mtx/tablet) were individually placed in ten 100 mL volumetric flasks, and dissolved in deionized water. 20 μ L solution of a Methotrexate injection (25 mg Mtx/mL injection) was poured into a 100 mL calibrated flask and then diluted to the mark with de-ionized water. Different aliquots from the solution prepared from tablets and injection were added to phosphate buffer (pH = 7.00) in the

electrochemical cell. Direct amperometry was used to determine the unknown concentration of L- and D-Mtx in the pharmaceutical formulations.

3.3. Results and discussion

3.3.1. Response characteristics of the amperometric biosensors

The response characteristics of the electrodes were measured at different potentials in order to determine the best working potential (higher sensitivity, lower limit of detection, shorter response time, etc.) for the determination of L- and D-Mtx (Tables 3.1 and 3.2). The electrode response was highly stable and reproducible over one week. The best response characteristics (larger concentration range, lower limit of detection and highest sensitivity) for the assay of L-Mtx and D-Mtx were obtained at 650 mV using the Glox (monoenzyme) based biosensor and physical immobilization of D-AAOD and HRP based biosensor, respectively. The faster response time was recorded for the biosensors based on L-AAOD and D-AAOD and HRP, for the assay of L- and D-Mtx, when the measurement of the intensity of the current was done at 650 mV respectively.

Enzyme(s) used for the design of the biosensor	E (mV)	Linear conc. range	Detection limit	Response time (s)
Glav	150	40-100 pmol/L	2 pmol/L	180
Olox	650	80-1000 fmol/L	4 fmol/L	60
1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -	250	1-4 nmol/L	100 pmol/L	120
Glox +HRP	650	40-400 pmol/L	8 pmol/L	120
	740	6-10 nmol/L	4 nmol/L	300
L-AAOD	650	100-600 nmol/L	80 nmol/1	30
L-AAOD + HRP	650	400-4000 pmol/L	200 pmol/l	120
	360	200-600 pmol/L	80 pmol/L	240
L-AAOD +Glox	650	400-2000 fmol/L	200 fmol/L	120
L-AAOD + Glox	240	800-2000 fmol/L	200 fmol/L	300
+ HRP	650	60-100 pmol/L	40 pmol/L	120
Glox + HRP *	650	40-100 pmol/L	20 pmol/L	180

Table 3.1. Response characteristics for the amperometric biosensors designed for L-

*Chemical immobilization.

Mtx

D-IVILX				
Enzyme(s) used for the design of the biosensor	E (mV)	Linear conc. range	Detection limit	Response time (s)
D-AAOD	12	40-80 fmol/L	10 fmol/L	180
	650	4-40 nmol/L	100 pmol/L	60
D-AAOD +HRP	530	1-10 nmol/L	800 pmol/L	60
	650	600-4000 pmol/L	2 pmol/L	30
D-AAOD + HRP*	650	80-600 nmol/L	60 nmol/L	180

Table 3.2. Response characteristics for the amperometric biosensors designed for D-Mtx

*Chemical immobilization.

3.3.2. Enantioselectivity of the amperometric biosensors

The selectivity of all biosensors was checked by both separate and mixed solution method with respect to L- and D- Mtx. Amperometric selectivity coefficients were determined following the method proposed by Wang [18], for the same potentials used for the determination of the response characteristics of the proposed amperometric biosensors. The ratio between the concentration of the main enantiomer and the other enantiomer was 1:10. The values of the amperometric selectivity coefficients (obtained using the mixed solution method) for the biosensors designed for L- and D-Mtx, respectively, are shown in Tables 3.3 and 3.4.

The $pK_{i,j}^{amp}$ values show that the biosensor based on L-AAOD, Glox and HRP enzymes has got the best enantioselectivity for L-Mtx assay, when the measurements are performed at 240mV, and that the biosensor based on physical immobilization of D-AAOD and HRP has got the best enantioselectivity for D-Mtx assay, when the measurements are performed at 650 mV.

OI L-WILA		
Enzyme(s) used for the design of the biosensor	E (mV)	$\mathbf{pK}_{i,j}^{\mathrm{amp}}$
Clar	150	2.14
Glox	650	2.29
	250	2.24
Glox +HRP	650	2.10
	740	2.12
L-AAOD	650	2.12
L-AAOD +HRP	650	2.86
T AAOD +Class	360	2.18
L-AAOD +Glox	650	2.21
	240	3.09
L-AAOD +HRP +Glox	650	2.03
Glox +HRP*	650	2.07

Table 3.3. Enantioselectivity of the amperometric biosensors designed for the assay of L-Mtx

*Chemical immobilization.

Table 3.4. Enantioselectivity of the amperometric biosensors designed for the assay of D-Mtx

Enzyme(s) used for the design of the biosensor	E (mV)	$\mathbf{pK}_{i,j}^{\text{amp}}$
DAAOD	12	2.61
D-AAOD	650	2.35
	530	2.04
D-AAOD +HKP	650	2.91
D-AAOD +HRP *	650	2.26

*Chemical immobilization.

3.3.3. Analytical applications

The amperometric biosensors proved useful for determination of the enantiopurity of L-Mtx raw materials and for testing the content of uniformity of Methotrexate tablets and Methotrexate injections due to the results obtained for the recovery tests of the pure L- and D-enantiomer of Mtx: higher than 99.90% (RSD < 0.20%, n=10) and higher than 99.78% (RSD < 0.30%, n=10), respectively for all biosensors proposed in this chapter. The determinations of L-Mtx and D-Mtx were conducted by use of different ratio of L- to D-Mtx. The results obtained (Tables 3.5 and 3.6) demonstrated the suitability of the proposed amperometric biosensors electrodes for testing the

enantiopurity of Mtx - raw material due to the good recovery values obtained for the assay of L-enantiomer in the presence of D-enantiomer and of D-enantiomer in the presence of L-enantiomer. No differences in the recovery tests were recorded for L: D or D: L ratios between 1:9 and 1:99.9.

Enzyme(s) used for the		Average recovery, (%)				
design of the biosensor	E (mV)		L: D			
		2:1	1:1	1:2	1:4	1:9
Class	150	99.99	99.98	99.95	99.97	99.98
Glox	650	99.49	99.47	99.82	99.82	99.81
	250	95.91	96.04	95.82	95.91	95.90
Glox +HRP	650	99.35	99.35	99.35	99.68	99.70
	740	94.13	97.16	98.09	96.25	96.47
L-AAOD	650	99.25	99.12	99.32	99.28	99.35
L-AAOD +HRP	650	99.60	99.40	99.42	99.46	99.45
L AAODI Class	360	95.18	95.31	96.84	98.10	98.08
L-AAOD+ Glox	650	100.00	100.00	99.98	99.98	99.98
	240	99.92	99.98	99.96	99.95	99.96
L-AAUD +HKP +Glox	650	99.90	99.92	99.91	99.89	99.93
Glox +HRP *	650	93.15	94.50	94.50	93.20	96.27

Table 3.5. Determination of L-Mtx in the presence of D-Mtx

*Chemical immobilization.

All values are the average of ten determinations and the RSD values were less than 0.25%.

Enzyme(s) used for the	10111					
design of the biosensor	E (mV)	(1		D: L		
		2:1	1:1	1:2	1:4	1:9
D-AAOD	12	90.68	90.70	90.68	91.00	90.73
	650	98.85	99.00	98.93	98.80	98.81
D-AAOD +HRP	530	99.82	99.82	99.82	99.80	99.84
	650	99.98	99.96	100.00	99.97	99.97
D-AAOD + HRP *	650	92.08	91.27	91.66	92.00	91.98

Table 3.6. Determination of D-Mtx in the presence of L-Mtx

*Chemical immobilization.

All values are the average of ten determinations and the RSD values were less than 0.30%.

The results obtained for the uniformity content test are presented in Tables 3.7, 3.8, 3.9 and 3.10 for Methotrexate tablets and Methotrexate injections, respectively. The uniformity content tests show that the tested pharmaceutical formulations contain as

main component the L-enantiomer of Mtx and only small amounts of the Denantiomer of Mtx.

Enzyme(s) used for the design of the biosensor	E (mV)	Average recovery of L-Mtx, (%)
Class	150	95.14 ± 1.61
Glox	650	95.31 ± 1.71
	250	95.05 ± 1.59
Glox +HRP	650	95.14 ± 1.64
	740	95.07 ± 1.58
L-AAOD	650	95.10 ± 1.63
L-AAOD +HRP	650	95.10 ± 1.64
LAAOD (Clark	360	95.11 ± 1.62
L-AAOD +Glox	650	94.99 ± 1.66
L AAOD +Clay +UPD	240	95.18 ± 1.60
L-AAOD +GIOX +HKF	650	95.13 ± 1.58
Glox +HRP *	650	95.06 ± 1.72

Table 3.7. Determination of L-Mtx in methotrexate tablets (2.5 mg Mtx/tablets)

*Chemical immobilization.

All values are the average of ten determinations.

Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of L-Mtx, (%	
D-AAOD	12	3.71 ± 1.75	
	650	3.95 ± 1.71	
DAAOD UIDD	530	3.82 ± 1.74	
D-AAOD +HKP	650	3.81 ± 1.77	
D-AAOD +HRP *	650	4.01 ± 1.79	

Table 3.8. Determination of D-Mtx in Methotrexate tablets (2.5 mg Mtx/tablets)

* Chemical immobilization.

All values are the average of ten determinations.

The recovery values for the L-Mtx – which is the active component of the Methotrexate tablets and injections, are within the labeled amount of 90-110%, with RSD values less than 6.00% required by the USP XXV [19].

Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of L-Mtx,(%)
Cl.	150	99.04 ± 0.20
Glox	650	98.02 ± 0.18
	250	99.09 ± 0.17
Glox +HRP	650	97.92 ± 0.17
	740	98.40 ± 0.19
L-AAOD	650	98.10 ± 0.19
L-AAOD +HRP	650	98.00 ± 0.18
L AAOD + Clay	360	98.97 ± 0.15
L-AAOD +010X	650	98.14 ± 0.14
L AAOD + Clay + UPD	240	98.67 ± 0.17
L-AAOD +Olox +HRP	650	98.00 ± 0.18
Glox +HRP *	650	98.03 ± 0.19

Table 3.9.	Determination of L-Mtx in the methotrexate injection
	(25 mg Mtx/mL injection).

* Chemical immobilization.

All values are the average of ten determinations.

Table 3.10. Determination of D-Mtx in Methotrexate injection

(25 mg Mtx/ml	_ injection).	and the second
Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of D-Mtx, (%)
D-AAOD	12	0.92 ± 0.23
	650	0.99 ± 0.20
	530	0.89 ± 0.21
D-AAOD +HRP	650	1.00 ± 0.14
D-AAOD +HRP *	650	0.87 ± 0.18

* Chemical immobilization.

All values are the average of ten determinations.

The amperometric biosensors electrodes described have excellent features in enantioselective analysis. The construction of the electrodes is simple, fast, and reproducible, and it is also assuring reliable response characteristics for the proposed amperometric biosensors. The enantioselectivity of the described biosensor made possible the performance of the enantiopurity assay of L-Mtx as raw material and from its pharmaceutical formulations. The selection of the working potential in the assay of the enantiomers of L- and D-Mtx proved to have a high effect on the

performances of the amperometric biosensors, in terms of sensitivity, limit of detection, linear concentration range, response time and enantioselectivity.

3.4. Sequential injection analysis system for on-line simultaneous assay of

enantiomers of methotrexate

3.4.1. Sequential injection system

The biosensors were incorporated into the conduits of a SIA system (Figure 3.1A) constructed from a Gilson Minipuls peristaltic pump and a 10-port electrically actuated selection valve (Model ECSD10P, Valco Instruments, Houston, TX).

Figure 3.1. SIA system used for the simultaneous determination of L- and Dmethotrexate (A) Schematic flow diagram (B) sequence of sample, phosphate buffer, and electrochemical cells for L-Mtx and D-Mtx.

Tygon tubing (0.76 mm i.d. for both holding coils and 0.89 mm i.d for both mixing coils) was used to construct the manifold; coils were wound round suitable lengths of glass tubing (15 mm o.d.); 0.1 mol/L NaCl was used as carrier. The capacity of the system is about 34 samples per hour. The device operating sequence is shown in Table 3.11. The device control was achieved using a PC30-B interface board (Eagle Electric, Cape Town, South Africa). The FlowTEK [20] software package (obtained from MINTEK) for computer-aided flow analysis was used though out for device control.

Time (s)	Pump	Valve	Description
0	Off	Buffer	- pump stops, select buffer stream
			(valve position 1)
5	Reverse	Buffer	- draw up buffer solution
9.5	Off		- pump stops
10.5		Sample	- select sample stream
			(valve position 2)
11.5	Reverse	Sample	- draw up sample solution
16	Off		- pump stops
17		L-Mtx cell	- select L-Mtx cell line
			(valve position 3)
18	Forward		- pump stack of zones to L-Mtx cell
48	Off		- pump stops
49		Buffer	- select buffer stream
			(valve position 4)
50	Reverse	Buffer	- draw up buffer solution
54.5	Off	1 CLARK CAL	- pump stops
55.5	10 P. 1	Sample	- select sample stream
			(valve position 5)
56.5	Reverse	Sample	- draw up sample solution
61	Off		- pump stops
62	Teres.	D-Mtx cell	- select D-Mtx cell line
			(valve position 6)
63	Forward		- pump stack of zones to D-Mtx cell
93	Off	Home	- pump stops, return valve to starting
			position (valve position 1)

Table 3.11. Device sequence for one cycle of the SIA system

An optimum flow rate of 3.61 mL/min was used to propel the solutions. The timing and flow direction is shown in Figure 3.1B. The sample and buffer consumption is

only 270 µL each per measurement of L- and D-enantiomer, which is very economical.

3.4.2. Response characteristics of the amperometric biosensors as detectors in

SIA system

The working concentration ranges as well as the limits of detection demonstrated the suitability of the proposed amperometric biosensors for the on-line monitoring of both enantiomers (Table 3.12). The response obtained for all biosensors revealed good stability and reproducibility for tests performed over one week.

or D-Mtx when the biosensors are used as detectors in SIA system						
Enzyme(s) used for the design of the biosensor	E(mV)	Linear conc. Range	Detection limit	Equation of calibration**	Correlation coefficient (r)	
Clar	150	2-400 pmol/L	1 pmol/L	^{1,a} H=38.77 +2.66C	0.9999	
GIOX	650	10-2000 fmol/L	0.6 fmol/L	^{1,b} H=4.41+118.84C	0.9994	
L-AAOD	650	10-600 nmol/L	4 nmol/L	^{1,c} H=13.14 +0.91C	0.9921	
L-AAOD + HRP	650	100-2000 pmol/L	6 pmol/L	^{2,a} H=0.10 +1.06C	0.9999	
1.1.100.01	360	100-8000 pmol/L	40 pmol/L	^{1,a} H=3.12+34.37C	0.9999	
L-AAOD +Glox	650	40-1000 fmol/L	8 fmol/L	^{1,b} H=0.89 + 90.51C	0.9999	
L-AAOD + Glox	240	60-1000 fmol/L	8 fmol/L	^{I,b} H=7.11 +702.22C	0.9999	
+ HRP	650	0.4-100 pmol/L	200 fmol/L	^{1,a} H=5.59 +25.23C	0.9999	
Glox + HRP*	650	6-800 pmol/L	1 pmol/L	^{2,a} H=0.02 +0.03C	0.9999	
D-AAOD	650	0.08-80 nmol/L	40 pmol/L	^{1,c} H=3.25 +6.19C	0.9997	
D-AAOD+HRP*	650	10-1000 nmol/L	200 pmol/L	2,c H=0.06 +0.02C	0.9999	

Table 3.12. Response characteristics for the amperometric biosensors designed for L-

*Chemical immobilization

**H is the peak height in 1 nA and ${}^{2}\mu$ A, and C is the concentration of L- and D-Mtx, respectively, in ^apmol/L, ^bfmol/L and ^cnmol/L.

3.4.3. Selectivity of the biosensors as detectors in SIA system

The selectivity of all biosensors were checked using both the mixed and separate solutions methods with respect to L- and D-Mtx. Amperometric selectivity coefficient were determined following the method proposed by Wang [18] for the same potential used for the determination of the response characteristics of the proposed

amperometric biosensors. In the evaluation, the concentration of the interferent was selected to be ten times higher than that for the enantiomer of interest. The values for $pK_{i,j}^{amp}$ obtained using mixed solutions method are shown in Table 3.13. Accordingly, the proposed biosensors are enantioselective when used as detectors in a SIA system. Furthermore, at 650 mV, the biosensor based on L-AAOD, Glox and HRP enzymes has got the best enantioselectivity for L-Mtx assay, and that the biosensor based on D-AAOD has got the best enantioselectivity for D-Mtx assay.

SIA systems			
Enzyme(s) used for the design of the biosensor	Interfering species (J)	E (mV)	pK ^{amp} **
Class	D-Mtx	150	2.20
Glox	D-Mtx	650	2.51
L-AAOD	D-Mtx	650	2.10
L-AAOD +HRP	D-Mtx	650	2.06
	D-Mtx	360	2.19
L-AAOD +Glox	D-Mtx	650	2.01
	D-Mtx	240	2.06
L-AAOD +HKP +Glox	D-Mtx	650	3.05
Glox +HRP*	D-Mtx	650	2.03
D-AAOD	L-Mtx	650	3.09
D-AAOD +HRP*	L-Mtx	650	2.55

Table 3.13. Selectivity coefficients, pK_{amp} for amperometric biosensors as detectors in SIA systems

*Chemical immobilization

**n=10

3.4.4. Analytical applications of SIA/amperometric biosensors system

The flow systems obtained by incorporation of the amperometric biosensors in the SIA conduits, proved to be useful for on-line simultaneous assay of L-and D-Mtx. The results obtained for the recovery of one of the enantiomers in the presence of its antipode (Tables 3.14 and 3.15) demonstrated the suitability of the proposed flow system for on-line purity tests of Mtx-raw material. No differences were recorded in

the recovery (%) of the enantiomers between 1:9 and 1:99 in a favor of each enantiomer.

Engine (a) wood for the	- 10 F	Recovery L-Mtx, (%)**				
design of the biogeneous	E (mV)	L: D				
design of the blosensor		2:1	1:1	1:2	1:4	1:9
C1	150	99.85	99.87	99.90	99.89	99.90
Glox	650	99.85	99,99	99.90	99.45	99.46
L-AAOD	650	99.58	99.60	99.51	99.58	99.28
L-AAOD +HRP	650	99.95	99.98	99.97	99.98	99.98
T ALODE CI	360	99.20	100.02	99.25	99.30	99.30
L-AAOD+ Glox	650	100.00	99.95	99.97	99.96	99.97
LAAOD URD Char	240	99.88	99.85	99.90	99.87	99.88
L-AAOD +HRP +Glox	650	99.09	99.26	99.51	99.64	99.65
Glox +HRP*	650	99.98	99.92	99.98	99.95	99.95

 Table 3.14. Recovery of L-Mtx in the presence of D-Mtx using SIA/amperometric biosensors system

*Chemical immobilization; **n=10

Table 3.15. Recovery of D-Mtx in the presence of L-Mtx using SIA/amperometric biosensors system

Enzyma(s) used for the		Recovery D-Mtx, (%)** D: L				
design of the biosensor	E (mV)					
design of the blosensor		2:1	1:1	1:2	1:4	1:9
D-AAOD	650	99.85	99.90	99.92	99.93	99.92
D-AAOD +HRP *	650	99.75	99.80	99.82	99.87	99.88

*Chemical immobilization

**n=10

Uniformity content tests were performed for Methotrexate tablets and Methotrexate injections. Ten Methotrexate tablets (2.5 mg Mtx/tablet) were individually placed in ten 100 mL volumetric flasks, and dissolved in de-ionized water. 20 µL solution of a Methotrexate injection (25 mg Mtx/mL injection) was poured into a 100 mL calibrated flask and then diluted to the mark with de-ionized water. The solution prepared from tablets and injection were diluted with de-ionized water and the height of the peak was recorded using the proposed SIA/amperometric biosensors system. The results were interpolated into the calibration graph of the corresponding

electrode, in order to determine the concentration of each enantiomer, and furthermore, it's content in the corresponding pharmaceutical formulation.

Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of L-Mtx, (%)**	Recovery of D-Mtx, (%)**
<u>Class</u>	150	95.20 ± 1.69	
Glox	650	95.26 ± 1.58	-
L-AAOD	650	95.39 ± 1.75	141
L-AAOD +HRP	650	95.31 ± 1.60	-
L AAOD + Clar	360	95.36 ± 1.61	
L-AAOD +Glox	650	95.15 ± 1.70	-
	240	95.20 ± 1.75	1.1
L-AAOD +Glox +HRP	650	95.20 ± 1.69	21
Glox +HRP*	650	95.43 ± 1.44	-
D-AAOD	650		3.92 ± 1.87
D-AAOD +HRP*	650		3.91 ± 1.83

Table 3.16.	. Determination of L- and D-Mtx in Methotrexate tablets (2.	5 mg
	Mtx/tablet) using SIA/amperometric biosensors system	

*Chemical immobilization

**n=10

 Table 3.17. Determination of L- and D-Mtx in Methotrexate injection

 (25 mg Mtx/mL Injection) using SIA/amperometric biosensors system

Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of L-Mtx, (%)**	Recovery of D-Mtx, (%)**	
Clar	150	98.56 ± 0.04		
Glox	650	99.02 ± 0.02	-	
L-AAOD	650	98.94 ± 0.01	-	
L-AAOD +HRP	650	98.75 ± 0.01	-	
L AAOD +Clay	360	98.92 ± 0.03	÷	
L-AAOD +GIOX	650	99.00 ± 0.01		
L AAOD +Clay +UDD	240	98.97 ± 0.03	-	
L-AAOD +010X +HKP	650	99.02 ± 0.01		
Glox +HRP*	650	98.76 ± 0.02	4	
D-AAOD	650	-	0.82 ± 0.01	
D-AAOD+HRP*	650		0.92 ± 0.02	

*Chemical immobilization

**n=10

The results obtained for the uniformity content tests for Methotrexate tablets and injections (Tables 3.16 and 3.17) show that the tested pharmaceutical formulations contain small amounts of D-Mtx. The recoveries of the main enantiomer, L-Mtx is

within the ranges required by the USP XXV: 90-110%, with RSD values less than 2.00% [19].

3.5. Conclusion

The main advantages of the proposed system are: simplicity of construction and operation involved for biosensors as well as for the sequential injection analysis system; possibility of on-line monitoring of enantiomers during the synthesis of methotrexate, high reliability of analytical information, rapidity and, low cost of analysis. The high precision of the SIA over the manual method is due to the fact that all measurements are done after the same interval of time and the surface of the biosensors are continuously brushed by the sodium chloride or phosphate buffer carrier streams.

3.6. References

- 1. S. P. Ackland and R. L. Schilsky, J. Clin. Oncol., 11, (1993), 2017.
- 2. J. Hendel and H. Brodthagen, Eur.J. Clin. Pharmacol., 26, (1984), 103.
- S. M. Cramer, J. H. Schornagel, K. K. Kalghatgi, C. Bertino and C. Horvath, Cancer Res., 44, (1984) 1843.
- 4. L. Skibinska and J. Gregoczyk, Chemie Analitycza (Warsaw), 46, (2001), 329.
- 5. G. Rule, M. Chapple and J. Henion, Anal. Chem., 73, (2001), 439.
- H. N. Zhang, L. L. Wen, S. W. Zhang and P. Y. Ding, Yaowu Fenxi Zazhi, 20, (2000), 401.
- J. Chadek, L. Sispera and J. Martinkova, J. Chromatogr. B. Biomed. Appl., 744, (2000), 307.
- R. Turci, G. Micoli and C. Minoia, Rapid Commun. Mass Spectrom, 14, (2000), 685.
- E. D. Lobo and J. P. Balthasar, J. Chromatogr. B. Biomed. Appl., 736, (1999), 191.
- R. S. Myers, P. T. Parton, A. Dastgah, J. R. Martell and C. E. Berkman, Anal. Biochem., 275, (1999), 187.
- 11. C. Y, Kuo, H. L. Wu and S. M. Wu, Anal. Chim. Acta, 471, (2002), 211.
- 12. X. N. Chen, C. X. Zhange and J. R. Lu, Fenxi Ceshi Xueba, 19, (2000), 47.
- A. Espinosa-Mansilla, I. Duran Meras, A. Zamora Madera, L. Pedano and C. Ferreyra, J.Pharm.Biomed. Anal., 29, (2002), 851.
- E. Brynda, M. Houska, A. Brandenburg and A. Wikerstal, Biosens.
 Bioelectron, 17, (2002), 665.
- S. Ghobadi, E. Csoregi, G. Marko-Varga and L.Gorton, Current Sep., 14, (1996), 94.

- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Electrochemical sensors in Bioanalysis, (2001), Marcel Dekker Inc., New York.
 - E. Mikeladze, A. Schulte, M. Mosbach, E. Csoregi, R. Solomonia and W. Schuhmann, Electroanalysis, 14, (2002), 393.
 - 18. J. Wang, Talanta, 41, (1994), 857.
- 19. US Pharmacopeia 25- National Formulary 20 (2002), Asian Ed., 1111.
- 20. G. D. Marshall and J. F. van Staden, Anal. Instrum., 20, (1992), 79.

Chapter 4

On-line enantioselective analysis of carnitine

4.1. Introduction

L-carnitine, (R)-3-carboxy-2-hydroxy-N,N,N-trimethyl-1-propaminium hydroxide inner salt (scheme 1), is naturally occurring substance, essential for fatty acid oxidation and energy production in human body.

Scheme 1. The structure of L-carnitine

Without L-carnitine, long chain fatty acids cannot be transported from the cellular cytoplasm into the mitochondria, resulting in loss of energy and toxic accumulations of free fatty acids [1]. However, other functions are recognized, such as interconversion in the mechanisms of regulation of cetogenese and termogenese [2]. Also L-carnitine is used in the therapy of primary and secondary deficiency, and in various other diseases such as dislipoproteinemia [3]. The enantiomer D-carnitine has different pharmacokinetic and pharmacodynamic behaviour.

Many analytical methods have been reported to analyse carnitine in pharmaceutical formulation and in biological fluids by using chromatographic techniques (e.g., HPLC [1,4], and capillary zone electrophoresis [5-8]), fluorimetry [9], and spectrometry [10]. Among the electrochemical biosensors, amperometric biosensors represent the best combination of sensitivity and selectivity. Amperometric biosensors are capable of direct sensing without additional reagents. Thus the sensors could be used when a fast analysis or a continuous *in situ* monitoring of analyte concentration are required.

Six amperometric biosensors based on different enzymes are proposed for the assay of L-carnitine and D-carnitine. Physical and chemical immobilization techniques were used for the sensors' design. L-amino acid oxidase (L-AAOD) and D-amino acid oxidase (D-AAOD) is catalyzing only the conversion of the L-or D-enantiomer of the amino acid into their keto-acids and the hydrogen peroxide formed is measured by amperometric transducer [11]. Horseradish peroxidase (HRP) usually accompanied L-AAOD or D-AAOD in the design of bienzyme sensors, and it is used in order to improve the reduction of H_2O_2 formed from the enzymatic reaction. The reliability of biosensor construction is influencing the reliability of the analytical information and it will also contribute to the validation of biosensor for pharmaceutical analysis [12].

4.2. Experimental section

4.2.1. Equipment and reagents

Graphite powder, 1-2 μ was supplied by Aldrich (Milwaukee, WI, USA). Paraffin oil was obtained from Fluka (Buchus, Switzerland). Phosphate buffer (pH=7.00) was supplied by Merck (Darmstadt, Germany). Polyethylenimine (PEI), glutaraladehyde, and 1-ethyl-3-3(3-dimethylaminopropyl)carbodiimid (EDAC) were obtained from

Sigma. L-carnitine hydrochloride from Equine muscle and D-carnitine hydrochloride were obtained from Aldrich. De-ionized water from a Modulab system (continental water systems, San Antonio, TX, USA) was used for all solution preparations: Lamino acid oxidase (L-AAOD)(E.C.1.4.3.2. Type I crude Dried Venom from Crotalus adamanteus (Sigma)) solution, D-amino acid oxidase (D-AAOD)(E.C.1.4.3.3.Type I: from porcine kidney (Sigma)) solution, horseradish peroxidase (HRP)(EC 1.11.1.7 Type I from Horseradish) solution and solutions of L-and D-carnitine (10⁻⁴ mol/L), respectively. Carnilean capsules (250 mg carnitine/capsule) were obtained from Nutrent (Sandton, South Africa).

4.2.2. Amperometric biosensors design

Six plastic tips were filled with plane carbon paste leaving an empty space of 3-4 mm in the top part to be filled with carbon paste containing the different enzymes. The diameters of all biosensors were 3 mm. Electric contacts were obtained by inserting silver wires into the carbon paste. The biosensors tips were gently rubbed on fine abrasive paper to produce a flat surface. The surface of the biosensors were wetted with de-ionized water and then polished with an alumina paper (polished strips 30144-011, Orion) before use. The biosensors were stored dry at 4^oC, when not in use. All the enzyme solutions used for the biosensors design were prepared in 0.1 mol/L phosphate buffer of pH=7.

4.2.2.1. Physical immobilization

4.2.2.1.1. Monoenzyme amperometric biosensors

Two electrodes, based on graphite paste, were designed as follows: paraffin oil and graphite powder were mixed in a ratio 1:4 (w/w) to form a carbon paste. 100 μ L from

the solution (1mg/enzyme/mL) of L-AAOD or D-AAOD, respectively, were added to two separate portions of carbon paste.

4.2.2.1.2. Bienzyme amperometric biosensors

Two mixtures of enzymes were used for the design of ampreometric biosensors: (1) 1mg of HRP was dissolved in 50 μ L of L-AAOD solution (0.25 mg/mL); (2) 1mg of HRP was dissolved in 50 μ L of D-AAOD solution (0.25 mg/mL). Each mixture was incorporated in the carbon paste (100 mg graphite powder and 40 μ L paraffin oil), to obtain two bienzyme electrodes.

4.2.2.2. Chemical immobilization

Two electrodes based on chemical modified carbon paste were prepared as follows: 0.4 g graphite powder were mixed with 400 μ L (0.03 mol/L) solution of EDAC and heated to 700^o C for 60 s in a muffle furnace. After cooling down, to ambient temperature, 10 μ L PEI and 10 μ L of glutaraldehyde were added. 100 μ L solution containing 1 mg/mL of HRP and 0.25 mg/mL of L-AAOD were added to the pretreated graphite powder for the determination of L-carnitine, and 100 μ L solution containing 4 mg/mL of HRP and 1 mg/mL of D-AAOD was added to the pretreated graphite powder for the determination of D-carnitine. Each graphite enzyme mixture was allowed to react at 4^oC for 2 h and then it was mixed with 40 μ L of paraffin oil to produce the modified pastes.

4.2.3. Apparatus

A663 VA Stand (Metrohm, Herisau, Switzerland) in combination with a μ Autolab and software Ecochemie (version 4.8) were used for all chronoamperometric

measurements. A Pt electrode and a Ag/AgCl electrode served as the counter and reference electrodes in the cell.

4.2.4. Recommended procedures

4.2.4.1.Direct amperometry

The chronoamperometric technique was used for intensity of current measurement of each solution. The electrodes were dipped into a cell containing 10 mL of phosphate buffer, pH =7.00 and different aliquots of L- or D-carnitine solution. The intensity of current measured was plotted versus the concentration of L- or D-carnitine. The unknown concentration of L- and D-carnitine were determined from the calibration graphs.

4.2.4.2. Uniformity content test for Carnilean capsules

Ten carnilean capsules (250mg carnitine/capsules) were individually placed in ten 100mL volumetric flasks, and dissolved in concentrated hydrochloric acid and diluted with de-ionized water. Different aliquots from the solution prepared were added to phosphate buffer (pH=7) in the electrochemical cell. Direct amperometry was used to determine the unknown concentration of L- and D-carnitine in pharmaceutical formulations.

4.3. Results and discussion

4.3.1. Response characteristics of the amperometric biosensors

The response characteristics of the electrodes were measured at different potential in order to determining the best working potential (higher sensitivity, lower limit of detection, shorter response time, etc.) for the assay of L- and D-carnitine (Table 4.1).

The electrode response was highly stable and reproducible over one week. The best response characteristics (larger concentration range, lower limit of detection and highest sensitivity) for the assay of L-carnitine and D-carnitine were obtained at 650 mV when physically immobilization of L-AAOD and HRP based biosensor and D-AAOD and HRP based biosensor, respectively was used for the biosensor design.

Enzyme(s) used for the design of the biosensor	E (mV)	Linear conc. Range	Detection limit	t _R (s)	Equation of calibration**	Correlation coefficient (r)
T ALOD	250	40-8000 pmol/L	20 pmol/L	180	$^{1,a}I = 1.02 + 0.15C$	0.9999
L-AAOD	650	2-200 fmol/L	0.004 fmol/L	30	2,b I = 0.56 + 0.33C	0.9999
LANOD	450	0.02-20 pmol/L	10 fmol/L	180	2,a I = 0.85 + 3.58C	0.9991
L-AAOD +	650	20-4000 pmol/L	0.6 fmol/L	240	1,a I = 45.5 + 5.1C	0.9999
HRP	750	0.8-60 pmol/L	80 fmol/L	180	2,a I = 1.43 + 0.91C	0.9992
L-AAOD+	440	100-400 fmol/L	20 fmol/L	60	2,a I = 2.6 + 103.9C	0.9998
HRP*	650	0.08-20 pmol/L	60 fmol/L	30	2,a I = 0.85 + 10.86C	0.9999
	380	0.4-40 pmol/L	200 fmol/L	30	2,a I = 0.23 + 0.76C	0.9999
DAAOD	520	200-1000 fmol/L	2 fmol/L	60	2,a I = 0.68 + 54.63C	0.9993
D-AAOD	650	0.4-80 pmol/L	200 fmol/L	60	2,a I = 0.35 + 0.31C	0.9996
DALOD	350	10-2000 pmol/L	400 fmol/L	30	1,a I = 2.62 + 3.83C	0.9999
D-AAOD +	530	0.4-20 pmol/L	200 fmol/L	180	2,a I = 0.14 + 1.83C	0.9999
TIKF	650	2-200 nmol/L	100 fmol/L	30	2,c I = 0.85 + 1.38C	0.9999
D-AAOD + HRP*	650	10-40 nmol/L	9nmol/L	120	2,c I = 28.0 + 5.2C	0.9950

 Table 4.1. Response characteristics for the amperometric biosensors designed for

* Chemical immobilization

** I is the intensity of the current in ¹nA and ² μ A, and C is the concentration of Land D-Carnitine, respectively, in ^apmol/L, ^bfmol/L and ^cnmol/L.

4.3.2. Enantioselectivity of the amperometric biosensors

The enantioselectivity of all biosensors was checked by both separate and mixed solution method with respect to L- and D-carnitine. Amperometric selectivity coefficients were determined following the method proposed by Wang [13], for the same potential used for the determination of the response characteristics of the proposed amperometric biosensors. The ratio between the concentration of the main

enantiomer and the other enantiomer was 1:10. The values of the amperometric selectivity coefficients (obtained using mixed solution method) for the biosensors designed for L- and D-carnitine are shown in Table 4.2. The pK^{amp}_{i,j} values show that the biosensor based on L-AAOD enzyme has got the best enantioselectivity for L-carnitine assay, when measurements are performed at 250 mV, and that the biosensor based on D-AAOD has got the best enantioselectivity for D-carnitine assay, when measurements are performed at 250 mV, and that the biosensor based on D-AAOD has got the best enantioselectivity for D-carnitine assay, when measurements are performed at 520 mV.

Enzyme(s) used for the design of the biosensor	Interfering species (J)	E (mV)	pK ^{amp} **
LAAOD	D-carnitine	250	3.12
L-AAOD	D-carnitine	650	2.07
	D-carnitine	450	2.14
L-AAOD +HRP	D-carnitine	650	2.06
	D-carnitine	750	2.41
	D-carnitine	440	2.16
L-AAUD +HRP*	D-carnitine	650	2.08
	L-carnitine	380	2.06
D-AAOD	L-carnitine	520	2.24
	L-carnitine	650	2.05
	L-carnitine	350	2.08
D-AAOD +HRP	L-carnitine	530	2.09
	L-carnitine	650	2.12
D-AAOD +HRP*	L-carnitine	650	2.02

 Table 4.2. Enantioselectivity of amperometric biosensors designed for the assay of L- and D-carnitine

*Chemical immobilization, **n=10

4.3.3. Analytical applications

The amperometric biosensors proved useful for determination of the enantiopurity of L-carnitine raw materials and for testing the content of uniformity of carnilean capsules. The assay of L- carnitine and D-carnitine were conducted by use of different ratios between L- and D-carnitine. The results obtained (Table 4.3 and 4.4) demonstrated the suitability for the proposed amperometric biosensors for testing the

enantiopurity of carnitine raw material due to the good recovery values obtained for the assay of one of the enantiomers in the presence of the other enantiomer. No significant differences in the recovery values were recorded for the ratios between L: D or D: L enantiomers varying from 1:9 to 1:99.9.

Enzyme(s) used	F		Recovery L-carnitine, (%)**					
for the design of	E (mV)			L: D	L: D			
the biosensor	(mv)	2:1	1:1	1:2	1:4	1:9		
L-AAOD	250	99.40 ± 0.10	99.36 ± 0.12	99.29 ± 0.21	99.30± 0.19	99.40 ± 0.20		
	650	100.00 ± 0.08	99.74 ± 0.06	99.49 ± 0.07	99.71 ± 0.07	99.91 ± 0.09		
	450	99.02 ± 0.14	99.03 ± 0.12	99.03 ± 0.14	99.04 ± 0.10	99.10 ± 0.09		
L-AAOD +HRP	650	99.89 ± 0.10	100.00 ± 0.12	99.99 ±0.10	99.95 ± 0.12	99.93 ±0.19		
	750	100.02 ± 0.10	100.01 ± 0.10	99.98 ±0.14	99.72 ± 0.14	99.99 ± 0.12		
L-AAOD +HRP*	440	99.25 ±0.10	99.76 ±0.15	99.66 ± 0.12	99.30 ±0.14	99.56 ±0.12		
	650	99.87 ±0.09	99.25 ±0.10	99.62 ± 0.08	99.65 ± 0.09	99.65 ±0.08		

*Chemical immobilization, **n=10

Table 4.4. Determination of D-carnitine in the pr	resence of L-carnitine
---	------------------------

Enzyme(s) used	F		Recove	ry D-carnitine	, (%)**	
for the design of	E (mV)			D: L		
the biosensor	(mv)	2:1	1:1	1:2	1:4	1:9
	380	99.80 ± 0.20	99.40 ± 0.19	99.28 ± 0.10	99.40 ± 0.12	99.68 ± 0.14
D-AAOD	520	99.47 ± 0.21	99.82 ± 0.19	99.47 ± 0.19	99.22 ± 0.20	99.82 ± 0.18
	650	99.08 ± 0.12	99.76 ± 0.14	99.90 ± 0.12	99.89 ±0.13	99.80 ± 0.10
	350	99.38 ±0.12	99.50 ± 0.10	99.13 ± 0.18	99.25 ± 0.12	99.75 ± 0.14
D-AAOD +HRP	530	96.11 ± 0.22	96.07 ± 0.32	96.17 ± 0.24	96.32 ±0.21	96.20 ± 0.20
	650	99.48 ± 0.21	99.56 ± 0.19	99.57 ± 0.12	99.92 ± 0.15	99.91 ± 0.10
D-AAOD +HRP*	650	99.07 ± 0.18	99.51 ± 0.16	99.21 ± 0.24	99.29 ± 0.20	99.54 ± 0.18

*Chemical immobilization, **n=10

The results obtained for the uniformity content test are presented in Table 4.5 for carnilean capsules. The uniformity content test show that the tested pharmaceutical formulations contain as main component the L-carnitine and only small amounts of the D-carnitine. The recovery values for L-carnitine are within the limits requested by USP XXV: 90-110%, with RSD values less than 1%[14].

Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of L-carnitine, (%)**	Recovery of D-carnitine, (%)**
LAAOD	250	97.73 ± 0.96	10 million - 10 mi
L-AAOD	650	97.76 ± 0.85	÷
	450	97.78 ± 0.83	
L-AAOD +HRP	650	97.84 ± 0.88	÷
	750	97.76 ± 0.89	
	440	97.74± 0.91	
L-AAOD THRF	650	97.55 ± 0.82	-
	380		1.70 ± 0.23
D-AAOD	520		1.69 ± 0.24
	650		1.71 ± 0.20
	350		1.70 ± 0.21
D-AAOD +HRP	530	F	1.67 ± 0.26
	650	and the second	1.71 ± 0.24
D-AAOD +HRP*	650		1.72 ± 0.21

Table 4.5. I	Determination	of L-and	D-carnitine	in Carni	lean cap	sules
(250 mg carnit	ine/capsu	ile)			

*Chemical immobilization

**All values are the average of ten determinations.

The proposed amperometric biosensors have excellent features in enantioselective analysis. The construction of the electrodes is simple, fast and reproducible and it is also assuring reliable response characteristics for the proposed amperometric biosensors. The enantioselectivity of the described biosensor made possible the performance of the enantiopurity assay of L-carnitine as raw material and from its pharmaceutical formulations. The selection of the working potential in the assay of the enantiomers of L-and D-carnitine proved to have a high effect on the performances of the amperometric biosensors, in terms of sensitivity, limit of detection, linear concentration range, response time and enantioselectivity.

4.4. Sequential injection analysis system for on-line simultaneous assay of enantiomers of carnitine

4.4.1. Sequential injection system

The biosensors were incorporated into the conduits of SIA system (Figure 4.1A) constructed from a Gilson Minipuls peristaltic pump and a 10-port electrically actuated selection valve (Model ECSD10P, Valco Instruments, Houston, TX).

Figure 4.1. SIA system used for the simultaneous determination of L- and Dcarnitine (A) Schematic flow diagram (B) sequence of sample, phosphate buffer, and electrochemical cells for L-Carnitine and D-Carnitine.

Tygon tubing (0.76 mm i.d. for both holding coils and 0.89 mm i.d for both mixing coils) was used to construct the manifold; coils were wound round suitable lengths of glass tubing (15 mm o.d.); 0.1 mol/L NaCl was used as carrier. The capacity of the

system is about 34 samples per hour. The device operating sequence is shown in Table 4.6. The device control was achieved using a PC30-B interface board (Eagle Electric, Cape Town, South Africa). The FlowTEK [15] software package (obtained from MINTEK) for computer-aided flow analysis was used though out for device control.

Time (s)	Pump	Valve	Description
0	Off	Buffer	-pump stops, select buffer stream (valve position 1)
5	Reverse	Buffer	-draw up buffer solution
9.5	Off		-pump stops
10.5		Sample	-select sample stream (valve position 2
11.5	Reverse	Sample	-draw up sample solution
16	Off		-pump stops
17		L-carnitine cell	-select L-carnitine cell line (valve position 3)
18	Forward		-pump stack of zones to L-carnitine cell
48	Off		-pump stops
49		Buffer	-select buffer stream (valve position 4)
50	Reverse	Buffer	-draw up buffer solution
54.5	Off		-pump stops
55.5		Sample	-select sample stream (valve position 5)
56.5	Reverse	Sample	-draw up sample solution
61	Off	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-pump stops
62		D- carnitine cell	-select D-carnitine cell line (valve position 6)
63	Forward		-pump stack of zones to D-carnitine cell
93	Off	Home	-pump stops, return valve to starting position (valve position 1)

Table 4.6. Device sequence	for one cycle o	of the SIA s	ystem
----------------------------	-----------------	--------------	-------

An optimum flow rate of 3.61 mL/min was used to propel the solutions, the timing and flow direction is shown in Figure 4.1B. The sample and buffer consumption is only 270 μ L of each per measurement of L- and D-enantiomer, which is very economical.

4.4.2. Response characteristics of the amperometric biosensors as detectors in SIA system

The response characteristics of the biosensors were measured at different potential in order to obtain the best response characteristics (e.g., higher sensitivity, lower limit of detection, wide linear concentration range, etc.) for the simultaneous detection of L-and D-carnitine (Table 4.7). The working concentration ranges as well as the limits of detection demonstrated the suitability of the proposed amperometric biosensors for the on-line monitoring of both enantiomers. The response obtained for all biosensors revealed good stability and reproducibility for tests performed over one week (RSD<0.1%).

 Table 4.7.Response characteristics for the amperometric biosensors designed for Land D-carnitine when the biosensors are used as detectors in SIA system

Enzyme(s) used for the design of the biosensor	E (mV)	Línear conc. range	Detection limit	Equation of calibration*	Correlatio coefficien (r)
L-AAOD	250	0.6-60 nmol/L	0.2 nmol/L	1,a H= 16.98 +105.09C	0.9999
	450	0.1-1 pmol/L	2 fmol/L	^{1,b} H=14.38 +394.8C	0.9997
L-AAUD +HKP	650	60-6000 pmol/L	10 pmol/L	^{1,a} H=0.18 +82.38C	0.9975
DAAOD	380	0.2-6 pmol/L	80 fmol/L	^{1,b} H=11.52 +92.26C	0.9995
D-AAOD	650	0.2-8 pmol/L	40 fmol/L	^{1,b} H=46.01 +257.26C	0.9994
	530	0.04-6 pmol/L	2 fmol/L	^{1,b} H=0.409 +3376C	0.9999
D-AAOD +HRP	650	4-80 nmol/L	0.4 nmol/L	^{1,a} H=2.23 +1.49C	0.9995

*H is the peak height in ¹nA and C is the concentration of L-and D-carnitine, respectively, in ^anmol/L and ^bpmol/L.

4.4.3. Selectivity of the biosensors as detectors in SIA system

The selectivity of all biosensors was checked using both the mixed solutions and separate solutions methods with respect to L- and D-carnitine. Amperometric selectivity coefficients were determined following the method proposed by Wang [13], for the same potentials used for the determination of the response characteristics of the proposed amperometric biosensors. In the evaluation, the concentration of the interferent was selected to be ten times higher than that of the enantiomer of interest.

The proposed biosensors are enantioselective when used as detectors in SIA system (Table 4.8). The $pK_{i,j}^{amp}$ values show that the biosensor based on L-AAOD has got the best enantioselectivity for L-carnitine assay, when the measurement are performed at 250 mV, and that the biosensor based on D-AAOD and HRP has got the best enantioselectivity for D-carnitine assay, when measurements are performed at 530 mV.

Interfering species (J)	E (mV)	pK ^{amp} ∗
D-carnitine	250	2.55
D-carnitine	450	2.31
D-carnitine	650	2.16
L-carnitine	380	2.08
L-carnitine	650	2.27
L-carnitine	530	3.29
L-carnitine	650	3.20
	Interfering species (J) D-carnitine D-carnitine L-carnitine L-carnitine L-carnitine L-carnitine	Interfering species (J)E (mV)D-carnitine250D-carnitine450D-carnitine650L-carnitine650L-carnitine530L-carnitine650

 Table 4.8. Selectivity coefficients, pK_{amp} for amperometric biosensors as detectors in

 SIA system

*n=10

4.4.4. Analytical applications of SIA/amperometric biosensors system

The proposed SIA/amperometric biosensors system proved to be useful for the simultaneous assay of L-and D-carnitine. The results obtained (Tables 4.9 and 4.10) demonstrated its suitability on-line purity tests of carnitine. No differences were recorded in recovery tests between 1:9 and 1:99 in the favor of each enantiomer.

Enzyme(s) used	E		Recove	ery L-carnitine	e, (%)*			
for the design of the biosensor	(mV)	L: D						
		2:1	1:1	1:2	1:4	1:9		
L-AAOD	250	99.79±0.02	99.86±0.02	99.83±0.01	99.84±0.02	99.81±0.02		
L-AAOD +HRP	450	99.75±0.02	99.99±0.01	99.81±0.01	99.89±0.02	99.83±0.01		
	650	99.61±0.03	99.37±0.02	99.39±0.02	99.78±0.02	99.79±0.03		

Table 4.9. Recovery of L-carnitine in the presence of D-carnitine using SIA/amperometric biosensors system

*n=10

 Table 4.10. Recovery of D-carnitine in the presence of L-carnitine using

 SIA/amperometric biosensors system

Enzyme(s) used	E		Recov	ery D-carnitin	e (%)*	
for the design of	(mV)		D: L			
the biosensor		2:1	1:1	1:2	1:4	1:9
D-AAOD	380	99.26±0.02	99.18±0.01	99.20±0.02	99.24±0.02	99.28±0.01
	650	99.84±0.01	99.86±0.01	99.80±0.02	99.84±0.01	99.99±0.01
D AAOD UDD	530	99.92±0.01	99.90±0.02	99.96±0.01	99.94±0.01	99.95±0.02
D-AAOD+HRP	650	99.89±0.02	99.87±0.03	99.88±0.02	99.90±0.02	99.91±0.01

*n=10

A uniformity content test was performed for Carnilean capsules. Ten Carnilean capsules (250 mg carnitine/capsule) were individually placed in 100 mL volumetric flasks, and dissolved in concentrated hydrochloric acid. The solutions prepared from capsules were diluted with de-ionized water and the height of the peak was recorded using proposed SIA/amperometric biosensors system. The results were interpolated into calibration graph of the corresponding electrode in order to determine the concentration of each enantiomer, and furthermore, it's content in the corresponding pharmaceutical formulation. The results obtained for the uniformity content test for Carnilean capsule (Table 4.11) show that the tested pharmaceutical formulations contain small amounts of D-carnitine. The recovery values for L-carnitine are within the limits requested by USP XXV: 90-110%, with RSD values less than 1% [14].

Enzyme(s) used for the design of the biosensor	E (mV)	Recovery of L-carnitine, (%)*	Recovery of D-carnitine, (%)*
L-AAOD	250	97.59±0.83	A
	450	97.64±0.85	1.1
L-AAOD +HRP	650	99.70±0.89	A
DAAOD	380	÷	1.65±0.25
D-AAOD	650		1.70±0.20
D AAOD HUDD	530		1.68±0.19
D-AAOD THRP	650		1.73±0.23

 Table 4.11. Determination of L- and D-carnitine in Carnilean capsules (250 mg Carnitine /capsule) using SIA/amperometric biosensors system

* n=10

4.5. Conclusion

The main advantage of the proposed system are: simplicity of construction and operation that involved for on-line monitoring of enantiomers during the synthesis of enantiomers, high reliability of analytical information, rapidity and, low cost of analysis. The high precision of the SIA over the manual method is due to the fact that all measurements are done after the same interval of time and the surface of the biosensors are continuously washed by NaCl solution used as carrier stream.

4.6 References

- 1. G. X. He and T. Dahl, J. Pharm. Biomed. Anal., 23, (2000), 315.
- I. M. P. L. V. O. Ferreira, M. N. Macedo and M. A. Ferreira, Analyst, 122, (1997), 1539.
- A. Marzo, G. Cardace, N. Monti, S. Muck and E. Arrigoni Martelli, J. Chromatogr., 527, (1990), 247.
- A. Marzo, N. Monti, M. Ripamonti and E. Arrigoni Martelli, J.Chromatogr.,
 459, (1988), 313.
- Y. Z. Deng, J. Henion, J. J. Li, P. Thibault, C. Wang and D. J. Harrison, Anal.Chem., 73, (2001), 639.
- 6. Y. Z. Deng, H. W. Zhang and J. Henion, Anal. Chem., 73, (2001), 1432.
- J. C. M. Waterval, H. Lingerman, A. Bult and W. J. M. Underberg, Electrophoresis, 21, (2000), 4029.
- L. Venez, M. Thomann and S. Kraehenbuehl, J. Chromatogr., 895, (2000), 309.
- 9. R. P. Hassett and E. L. Crockett, Anal. Biochem., 287, (2000), 176.
- A. Galan, A. Padros, M. Arambarri and S. Martin, Autom.Chem., 20, (1998),
 23.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein. Electrochemical Sensors in Bioanalysis, Marcel Dekker Inc., New York, USA, (2001)
- E. Mikeladze, A. Schulte, M. Mosbach, A. Blochl, E. Csoregi, R. Solomonia and W. Schuhmann, Electroanalysis, 14, (2002), 393.
- 13. J. Wang, Talanta, 41, (1994), 857.
- 14. US Pharmacopoeia 25- National Formulary 20, Asian Ed., 2002.
- 15. G. D. Marshall and J. F. van Staden, Anal. Instrum., 20, (1992), 79.

Chapter 5

On-line assay of ortho- acetyl- L-carnitine

5.1. Introduction

L-carnitine (3-hydroxy-4-N-trimethyl aminobutyrate) (Car) was discovered in beef [1], and it has been proved to play an important role in fatty acid metabolism, e.g., the transport of fatty acid into mitochondria and the modulation of intramitochondrial ratio [2]. O-Acetyl-L-carnitine (Acar) in connection with Car, also attracts a keen interest, being regarded as a transient substance of fatty acid metabolism in mitochondria, and is also found to have some important pharmacological properties [3-4]. The amount of serum Acar has close relation to chronic fatigue syndrome (CFS). Accordingly; it is possible to make a diagnosis of CFS by measurement of serum Acar [5]. The relationship between the amount of serum Acar and exhaustive exercise or starvation was also reported [6]. More interest has been focused on the biological and medical significance of Acar itself in many fields [7-10] besides CFS.

Many analytical methods have been reported to analyse ortho-acetyl-L-carnitine as metabolite of the pharmaceutical formulations, and in biological fluids by using chromatographic techniques, e.g., HPLC [11,12], and capillary zone electrophoresis [13], as well as spectrometric methods [14]. Among the electrochemical biosensors,

amperometric biosensors represent the best combination of sensitivity and selectivity. Amperometric biosensors are capable of direct sensing without additional reagents. Thus the sensors could be used when a fast analysis or a continuous *in situ* monitoring of analyte concentration are required.

In this chapter two amperometric biosensors based on different enzymes are described for the assay of ortho-acetyl-L-carnitine. Physical immobilization techniques were used for the design of those sensors [15,16]. Due to the reliability of its response characteristics, the biosensors were incorporated in the conduits of sequential injection analysis (SIA) system and used for on-line determination of ortho-acetyl-L-carnitine form the pharmaceutical formulation and clinical analysis.

5.2. Experimental section

5.2.1. Reagents and materials

Graphite powder, 1-2 μ was supplied by Aldrich (Milwaukee, WI, USA). Paraffin oil was obtained from Fluka (Buchus, Switzerland). Phosphate buffer (pH=7.00) was supplied by Merck (Darmstadt, Germany). L-carnitine hydrochloride from Equine muscle and D-carnitine hydrochloride was obtained from Aldrich. De-ionized water from a Modulab system (continental water systems, San Antonio, TX, USA) was used for all solution preparations: L-amino acid oxidase (L-AAOD)(E.C.1.4.3.2. Type I crude Dried Venom from Crotalus adamanteus (Sigma)) solution, horseradish peroxidase (HRP)(EC 1.11.1.7 Type I from Horseradish) solution, solutions of L- (D)-carnitine (10⁻⁴ mol/L), respectively, were also prepared in de-ionized water.

5.2.2. Amperometric biosensors design

Two plastic tips were filled with plane carbon paste leaving an empty space of 3-4 mm in the top part filled with carbon paste containing the different enzyme mixtures as shown below. The diameters of all biosensors were 3 mm. Electric contacts were obtained by inserting silver wires into the carbon paste. The biosensors tips were gently rubbed on fine abrasive paper to produce a flat surface. The surface of the biosensors was wetted with de-ionized water and then polished with an alumina paper (polished strips 30144-011, Orion) before use. The biosensors were stored dry at 4^{0} C, when not in use.

Physical immobilization mono- and bienzyme electrodes were constructed. All the enzyme solutions used for the biosensors design were prepared in 0.1 mol/L phosphate buffer of pH=7.

5.2.2.1. Monoenzyme amperometric biosensors

Paraffin oil and graphite powder were mixed in a ratio 1:4 (w/w) to form a graphite paste. 100 μ L from the solution (1mg/enzyme/mL): L-AAOD was added to the carbon paste to obtain the monoenzyme electrode.

5.2.2.2. Bienzyme amperometric biosensors

1 mg of HRP was dissolved in 50 μ L of L-AAOD solution (0.25 mg/mL); the mixture was incorporated in the carbon paste (100 mg graphite powder and 40 μ L paraffin oil) to obtain the bienzyme electrode.

5.2.3. Apparatus

A 663 VA Stand (Metrohm, Herisau, Switzerland) in combination with the PSTAT 20 and software (Ecochemie version 4.8) were used for all chronoamperometric measurements. A Pt electrode and an Ag/AgCl electrode served as the counter and reference electrodes in the cell. The biosensors were incorporated into the conduits of SIA system shown in Figure 5.1A below.

Figure 5.1. SIA system used for the determination of Acar (A) Schematic flow diagram (B) sequence of sample, phosphate buffer, and electrochemical cells for Acar.

The SIA system constructed from a Gilson Minipuls peristaltic pump and a 10-port electrically actuated selection valve (Model ECSD10P, Valco Instruments, Houston, TX). Tygon tubing (0.76 mm i.d. for holding coil and 0.89 mm i.d for mixing coil) was used to construct the manifold; coils were wound round suitable lengths of glass tubing (15 mm o.d.); 0.1 mol/L NaCl was used as carrier. The capacity of the system is about 75 samples per hour. The device operating sequence is shown in Table 5.1.The device control was achieved using a PC30-B interface board (Eagle Electric, Cape Town, South Africa). The FlowTEK [17] software package (obtained from MINTEK) for computer-aided flow analysis was used throughout for device control. An optimum flow rate of 3.61 mL/min was used to propel the solutions, the timing and flow direction is shown in Figure 5.1B. It follows from this that in the SIA system, the sample and buffer consumption is only 270 µL of each, which is very economical.

Time (s)	Pump	Valve	Description
0	Off	Buffer	-pump stops, select buffer stream (valve position 1)
5	Reverse	Buffer	-draw up buffer solution
9.5	Off		-pump stops
10.5		Sample	-select sample stream (valve position 2
11.5	Reverse	Sample	-draw up sample solution
16	Off		-pump stops
17		Ortho acetyl L- carnitine cell	-select ortho-acetyl- L- carnitine cell line (valve position 3)
18	Forward		-pump stack of zones to ortho-acetyl-L-carnitine cell
48	Off		-pump stops

Table5. 1. Device sequence for one cycle of the SIA system

5.2.4. Recommended procedure: Direct amperometry

The chronoamperometric technique was used for intensity of current measurements of each solution. The electrodes were dipped into a cell containing 10mL of phosphate buffer, pH= 7.00 and different aliquots of ortho- acetyl- L-carnitine solution. The intensity of current measured was plotted versus the concentration of ortho- acetyl- L-carnitine were determined from the calibration graphs.

5.3 Results and discussion

5.3.1. Electrode response

Response characteristics of the amperometric biosensors were measured at different potential in order to determine the best working potential (higher sensitivity, lower limit of detection, shorter response time, etc.) for the determination of ortho-acetyl-L- carnitine (Table 5.2) without SIA and (Table 5.3) with SIA system. The electrode response was highly stable and reproducible over one week. The best response characteristics (larger concentration range, lower limit of detection and highest sensitivity) were obtained when the measurement was performed at 250mV using L-AAOD with and without SIA system.

Enzyme(s) used for the design of the biosensor	E (mV)	Linear conc. Range	Detection limit	Equation of calibration*	Correlation coefficient (r)
L-AAOD	250	6-4000 fmol/L	4 fmol/L	^{1,a} I= 117.47 +2.22C	0.9998
	650	2-100 pmol/L	0.8 pmol/L	^{2,b} I=0.164 +0.362C	0.9999
L-AAOD +HRP	650	0.08-0.8 pmol/L	0.04 pmol/L	^{2,b} I=0.08 +9.86C	0.9947

Table 5. 2. Response characteristics for the amperometric biosensors designed for ortho-acetyl-L-carnitine without SIA system

* I is the intensity of current in ${}^{1}nA {}^{2}\mu A$ and C is the concentration of ortho acetyl L-carnitine in ${}^{a}fmol/L$ and ${}^{b}pmol/L$.

Enzyme(s) used for the design of the biosensor	E (mV)	Linear conc. Range	Detection limit	Equation of calibration *	Correlation coefficient (r)
L-AAOD	250	4-60 fmol/L	2 fmol/L	$T_{,a}$ H= 2.49 +21.13C	0.9999
	650	2-40 pmol/L	0.6 pmol/L	^{1,b} H=11.30+43.28C	0.9999
L-AAOD +HRP	650	0.4-1 pmol/L	0.06 pmol/L	^{2,b} H=0.21 +9.53C	0.9998

 Table 5. 3. Response characteristics for the amperometric biosensors designed for ortho-acetyl-L-carnitine with SIA system

* H is the peak height in ${}^{1}nA {}^{2}\mu A$ and C is the concentration of ortho-acetyl-L-carnitine in ${}^{a}fmol/L$ and ${}^{b}pmol/L$.

5.3.2. Selectivity of the amperometric biosensors

The selectivity of all biosensors was checked by both separate and mixed solution method over L- and D-carnitine possible interfering species. Amperometric selectivity coefficients were determined following the method proposed by Wang [18]. In the evaluation the concentration of the possible interferent, was selected to be ten times higher that of ortho-acetyl-L-carnitine and the result of mixed solution method shown in Table 5.4. From the pK^{amp}_{i,j} value all the amperometric selectivity coefficients were found to be lower than 10⁻³. This means that these compounds do not interfere, and that it is possible to determine the ortho-acetyl-L-carnitine in biological samples.

Enzyme(s) used for the design of the biosensor	Interference Species	E (mV)	$\mathbf{pK}_{i,j}^{amp}$		
			without SIA*	with SIA*	
7.77	L-carnitine	250	2.70	2.58	
L-AAOD	D-carnitine		2.51	2.20	
	L-carnitine	650	2.43	2.17	
and the second second	D-carnitine		2.72	2.70	
L-AAOD +HRP	L-carnitine	650	2.01	3.19	
	D-carnitine		3.10	3.30	

Table 5. 4. Selectivity of amperometric biosensors designed for the assay of orthoacetyl-L-carnitine with and without SIA system

*n=10

5.4. Conclusion

The constructions of biosensors are simple and reproducible. The reliability of the analytical information is assured by the RSD values obtained in recovery tests. The proposed amperometric biosensors/SIA system is suitable for on-line purity tests of ortho- acetyl- L-carnitine as raw material at a rate of 75 samples per hour when used as detector in SIA system. The main advantage of the proposed method over the other methods described for ortho- acetyl- L-carnitine assay is the possibility of its determination directly without any prior separation with a high precision, rapidity, low consumption of sample and buffer, and utilization of a not expensive carrier, NaCl solution 0.1 mol/L.

5.5. References

- W. L. Gulewitsh, R. Krimberg and Z. Hopper-Seyler's, Phisiol.Chem., (1905), 326.
- 2. J. Bremer, Physiol.Rev., (1983), 1420.
- A. Formenti, E. Arrigonni, V. Sansone, E. A. Martelli and M. Mancia, Int. J. Dev. Neurosci., 10, (1992), 207.
- 4. S. D. Shafran, Ame. J. Med., 90, (1991), 730.
- H. Kuratsune, K. Yamanguti, M. Takahashi, H. Misaki, S. Tagawa and K. Kitani, Clin. Infect. Dis., 18, (1994), 562.
- 6. R. Friolet, H. Hoppeler and S. Kraehenbuehl, J. Clin. Invest., 94, (1994), 1490.
 - K. Bartless, A. K. M. J. Bhuiyan, A. Aynsel-Green, P. C. Butler and K.G. M. M. Alberty, Clin. Sci., 77, (1989), 413.
 - 8. B. A. B. Bowman, Neutr. Rev., 50, (1992) 142.
 - 9. G. Galli and M. Fratelli, Exp. Cell Res., 204, (1993), 54.
 - 10. A. Pascale, S. Millano and N. Corsico, Eur. J. Pharmacol., 265, (1994), 1.
 - K. M. Park, M. K. Lee, Y. H. Park, J. S. Woo and C. K. Kim, J. Liq. Choromatogr., 24, (2001), 555.
 - 12. M. Kagawa, Y. Mavhida and H. Nishi, J. Chromatogr.A., 857, (1999), 127.
 - 13. K. Heinig, and J. Henion, J. Chromatogr.B., 735, (1999), 171.
 - 14. J. Schaefer and H. Reichmann, Clin. Chim. Acta, 182, (1989), 87.
 - R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Electrochemical sensors in Bioanalysis, Mercel Dekker, Inc., New York, USA, (2001).

- E. Mikeladze, A. Schulte, M. Mosbach, A. Blochi, E. Csoregi and R. Solomonia
 W. Schumann, Electroanalysis, 14, (2002), 393.
- 17. G. D. Marshall and J. F. van Staden, Anal. Instrum., 20, (1992), 79.
- 18. J. Wang, Talanta, 41, (1994), 857.

Chapter 6

On-line simultaneous determination of creatine and creatinine

6.1. Introduction

Creatinine is a final product of creatine metabolism in mammals. The measurement of creatine and creatinine in blood is important in clinical analyses, because creatinine is important in monitoring of kidney function while creatine is a valuable index of muscle damage. The physiologically normal concentration range for creatinine and creatine is below 0.14 mmol/L in serum, but during kidney disfunction or muscle disorder their concentrations may raise up to value higher than 1 mmol/L [1]. Also, creatine has recently great popularity as ergogenic aid. This popularity is based on the fact that creatine is converted to phosphocreatine in muscle in a reversible reaction with adenosine triphosphate (ATP). When muscle contractions deplete the immediate supply of ATP, the phosphocreatine can rephosphorylate adenosine diphosphate (ADP) to replenish the supply of ATP. Creatinine is the means by which creatine and phosphocreatine are excreted from the body and this occurs at rates of 0.016 and 0.03 per day for creatine and phosphocreatine, respectively. The amount of creatinine in the urine is proportional to the amount of creatine and creatine phosphate present in the body and hence also to the muscle mass [2].

The following techniques were proposed for the assay of creatine and creatinine: HPLC [3,4], mass spectroscopy [5], IR spectroscopy [6], capillary zone electrophoresis [7,8].

The emphasis of this chapter is to determine simultaneously the amount of creatine and creatinine using amperometric biosensors without and with a SIA system. The amperometric biosensors are based on creatininase, creatinase and sarcosine oxidase. The enzyme creatininase hydrolyses creatinine to yield creatine. Creatinase hydrolyses creatine first to sarcosine. Sarcosine oxidase is acting on sarcosine, forming formaldehyde, glycine and the hydrogen peroxide - the product that will be measured by the amperometric transducer [9].

6.2 Experimental section

6.2.1. Reagents and materials

Graphite powder, 1-2 μ , synthetic was purchased from Aldrich (Milwaukee, WI, USA). Paraffin oil was purchased from Fluka (Buchus, Switzerland); phosphate buffer (pH=7.6) was purchased from Merck (Darmstadt, Germany). De-ionized water from a Modulab system (continental water systems, San Antonio, TX, USA) was used for all solution preparations. Creatinase (CI) from Flavobacterium was obtained from Fluka, Sarcosine oxidase (SO) from Arthrobacterium species was obtained from Aldrich, and creatininase (CA) from Flavobacterium species was obtained from Sigma. Creatine and creatinine were purchased from Aldrich. Solutions of creatine and creatinine (10⁻⁴ mol/L) were prepared in de-ionized water. Enermax Creatine capsule (500 mg creatine monohydrate/capsule) were obtained from Nutrent (Sandton, South Africa) and

Roboforce effervescent creatine with ribose (5 g creatine/27.5 g powder) was purchased from EAS (Golden, CO, USA).

6.2.2. Amperometric biosensors design

Bi- and trienzyme electrodes were constructed. All the enzyme solutions used for the biosensors design were prepared in 0.1 mol/L phosphate buffer pH=7.6.

Two plastic tips were filled with plane carbon paste leaving an empty space of 3-4 mm in the top part filled with carbon paste containing the different enzyme mixtures as shown below. The diameters of all biosensors were 3 mm. Electric contacts were obtained by inserting silver wires into the carbon paste. The biosensors tips were gently rubbed on fine abrasive paper to produce a flat surface. The surface of the biosensors were wetted with de-ionized water and then polished with an alumina paper (polished strips 30144-001, Orion) before use. The biosensors were stored dry at 4^{0} C, when not in use.

6.2.2.1.Bienzyme electrode for assay of creatine

2 μ L of Cl solution (0.2 μ g SO/25 μ L phosphate buffer pH=7.6) was mixed with 2 μ L of SO solution (0.2 μ g SO/ μ L phosphate buffer pH=7.6). The mixture was incorporated in the carbon paste (25 mg graphite powder and 10 μ L paraffin oil), to obtain the bienzyme electrode.

6.2.2.2. Trienzyme electrode for assay of creatinine

Paraffin oil and graphite powder was mixed in the ratio 1:4 (w/w) to form a carbon paste. 2 μ L of CI solution (0.2 μ g CI/25 μ L phosphate pH=7.6) was first mixed with 2 μ L of SO

solution (0.2 μ g SO/25 μ L phosphate buffer pH=7.6) and then with 1 μ L of CA solution (0.2 μ g CA/25 μ L phosphate buffer pH=7.6). The resulting solution was added to the carbon paste.

6.2.3. Apparatus

A 663 VA stand (Metrohm, Herisau, Switzerland) in connection with a PGSTAT 20 and software (Eco Chemie version 4.8) was used for all chronoamperometric measurements. A Pt electrode and an Ag/AgCl electrode served as counter and reference electrodes in the cell. A Multiplexer module SCNR16 was connected to the PGSTAT 20 in order to be able to make the simultaneous analysis of creatine and creatinine.

6.2.4. Recommended procedures

6.2.4.1 Direct amperometry

The chronoamperometric technique was used for intensity of current measurement of each solution. The electrodes were dipped into a cell containing 10 mL of phosphate buffer, pH =7.6 and different aliquots of creatine and creatinine solutions. The intensity of current measured was plotted versus the concentration of creatine and creatinine. The unknown concentration of creatine was determined directly from the calibration graph of the bienzyme electrode. Because the trienzyme electrode can determine the full amount of creatine and creatinine in the solution, the concentration of creatine was determined by making the difference between the concentration obtained from the calibration graph of the trienzyme electrode and the concentration of creatine determined using the bienzyme electrode.

6.2.4.2. Uniformity content test for creatine capsules and powder

Ten Creatine capsule (500 mg Creatine/capsule) were individually placed in ten 100 mL volumetric flasks, and dissolved in de-ionized water. 0.0182 g of creatine powder was dissolved in 100 mL calibrated flask and then diluted to the mark with de-ionized water. Different aliquots from the solutions prepared were added to phosphate buffer (pH=7.6) in the electrochemical cell. Direct amperometry was used to determine the unknown concentration of creatine and creatinine in pharmaceutical formulations.

6.2.4.3. Determination of creatine and creatinine in serum samples

Different aliquots of serum samples were diluted with buffer solution. Direct amperometry was involved to determine the content on creatine and creatinine in serum samples.

6.3. Results and discussion

6.3.1. Response characteristics of the amperometric biosensors

The response characteristics of the electrodes were measured at different potentials in order to determine the best working potential (higher sensitivity, lower limit of detection, wide linear concentration range, etc.) for the simultaneous detection of creatine and creatinine (Table 6.1). The electrode response was highly stable and reproducible over one week. The best response characteristics (large concentration range, lower limit of detection and highest sensitivity) for assay of creatine were obtained at 240 mV when the bienzyme electrode was used and the best response characteristics were obtained for creatinine when measurements were done at 650 mV using the trienzyme electrode. The

response obtained for all biosensors revealed good stability and reproducibility for tests performed every day over one week (RSD<0.1%).

Type of Biosensor	E (mV)	Linear conc. Range	Detection limit	t _R (s)	Equation of calibration*	r
Distance	240	4-200 pmol/L	2 pmol/L	30	^{1,a} I=60.19 +12.67C	0.9984
Bienzyme	650	2-20 nmol/L	1 nmol/L	120	^{2,b} I=0.26 +2.86C	0.9998
This was the	420	4-40 nmol/L	2 nmol/L	60	^{2,b} I=0.11 +0.04C	0.9981
Thenzyme	650	4-100 nmol/L	2 nmol/L	30	2,b I=0.345 + 0.746C	0.9999

 Table 6.1. Response characteristics for the amperometric biosensors designed for creatine and creatinine

*H is the peak height in ¹nA and ²µA, and C is the concentration of creatine and creatinine respectively in ^apmol/L and ^bnmol/L.

6.3.2. Selectivity of the amperometric biosensors

The selectivity of both biosensors was checked using both the mixed and separate solutions methods. Amperometric selectivity coefficients were determined following the method proposed by Wang [10], for the same potentials used for the determination of the response characteristics of the proposed amperometric biosensors. In the evaluation, the concentration of the creatinine was selected to be ten times higher than that of creatine. The values of the amperometric selectivity coefficients ($pK_{i,j}^{amp}$) (obtained using mixed solution method) for the bienzyme biosensor over creatinine are: 2.09 when the measurements were done at 240 mV, and 2.75 when the measurements were done at 650 mV. The $pK_{i,j}^{amp}$ values show that the bienzyme electrode has got the best selectivity for creatine assay, when measurements are performed at 650 mV.

The selectivity of both electrodes was tested also over glycine, methionine, ribose and taurine. For all of these substances, the values of the amperometric selectivity coefficients

are less than 1×10^4 . These results proved the selectivity of the proposed electrodes over these substances that can be found in the pharmaceutical formulations of creatine.

6.3.3. Analytical Applications

The amperometric biosensors proved useful for determination of the creatine and creatinine in pharmaceutical products and serum samples. In order to prove the accuracy of the assay of creatine in the presence of creatinine, synthetic samples containing creatine and creatinine in different ratios were prepared. The results obtained (Table 6.2) demonstrated the suitability of the proposed amperometric biosensors for testing the purity of creatine due to the good recovery values obtained for the assay of creatine in the presence of creatinine. No significant differences in the recovery tests were recorded for creatine: creatinine ratios between 1:9 and 1:99.9.

E		Rec	overy Creating	e, (%)*	
(mV)		С	reatine: Creat	inine	
	2:1	1:1	1:2	1:4	1:9
240	99.65 ± 0.03	99.60 ± 0.02	99.68 ± 0.02	$99.63 {\pm}~0.03$	99.60 ± 0.01
650	99.20 ± 0.01	99.25 ± 0.02	99.23 ± 0.01	99.30 ± 0.02	99.28 ± 0.01

 Table 6.2. Determination of creatine in the presence of creatinine using the bienzyme electrode

The results obtained for the uniformity content tests are presented in Table 6.3 and 6.4 for Enermax Creatine capsule (500mg creatine monohydrate/capsule) and Roboforce effervescent creatine with ribose (5g creatine/27.5g powder), respectively. The uniformity content tests show that the tested pharmaceutical formulations contain as main component the creatine and only small amounts of the creatinine. The recovery values for

creatine are within the labeled amount of 90-110%, with RSD values less than 6.00% required by the USP XXV [11].

 Table 6.3. Determination of creatine and creatinine in Enermax Creatine capsules

 (500 mg creatine/capsule)

Type of biosensor	E (mV)	Recovery of Creatine, (%)*	Recovery of Creatinine, (%)*
Diamana	240	93.14 ±0.12	(4)
Blenzyme	650	93.05 ± 0.10	
Triongram	420	· · · · · · · · · · · · · · · · · · ·	3.98 ± 0.12
Thenzyme	650		3.82 ± 0.14

* n=10

 Table 6.4. Determination of creatine and creatinine in Roboforce effervescent creatine

 (5 g/27.5 g of powder)

Type of biosensor	E (mV)	Recovery of Creatine, (%)*	Recovery of Creatinine, (%)*
Diamana	240	95.95 ±0.18	
Bienzyme	650	96.02 ±0.16	
T	420		0.69 ±0.06
Thenzyme	650	*	0.72 ± 0.07

* n=10

Creatine and creatinine were simultaneous assay also from serum samples using a standard method [12] as well as the proposed biosensors (Table 6.5). Good correlation between the results was obtained using both standard and new developed method.

Standa	Standard method [12] (µ mol/L)			Proposed method (µ mol/L)		
Number	Creatine	Creatinine	Creatine	Creatinine		
1	20	14	19.75	13.90		
2	65	60	64.20	59.59		
3	7.6	80	7.3	79.40		
4	16	18	15.82	17.92		

Table 6.5 Determination of creatine and creatinine from serum samples

All values are average of ten determinations. RSD (%) values are lower than 0.1%.

The amperometric biosensors electrodes described have excellent features in pharmaceutical and clinical analyses. The construction of the electrodes is simple, fast and reproducible and it is also assuring reliable response characteristics for the proposed amperometric biosensors. The selection of the working potential in the assay of the compound proved to have a high effect on the performances of the amperometric biosensors, in terms of sensitivity, limit of detection, linear concentration range, response time and selectivity.

6.4. Sequential injection analysis system for on-line simultaneous determination of creatine and creatinine

6.4.1 Sequential injection system

The biosensors were incorporated into the conduits of SIA system (Figure 6.1A) constructed from a Gilson Minipuls peristaltic pump and a 10-port electrically actuated selection valve (Model ECSD10P, Valco Instruments, Houston, TX). Tygon tubing (0.76 mm i.d. for both holding coils and 0.89 mm i.d for both mixing coils) was used to construct the manifold; coils were wound round suitable lengths of glass tubing (15 mm o.d.); 0.1mol/L NaCl was used as carrier. The capacity of the system is about 34 samples per hour. The device operating sequence is shown in Table 6.6. The device control was achieved using a PC30-B interface board (Eagle Electric, Cape Town, South Africa). The FlowTEK [13] software package (obtained from MINTEK) for computer-aided flow analysis was used though out for device control.

Figure 6.1. SIA system used for the simultaneous determination of creatine and creatinine Schematic flow diagram (B) sequence of sample, buffer, and electrochemical cells for creatine and creatinine.

An optimum flow rate of 3.61 mL/min was used to propel the solutions, the timing and flow direction is shown in Figure 6.1B. It follows from this that in the SIA system, the sample and buffer consumption is only 270 μ L each per measurement of creatine and creatinine, which is very economical.

Time (s)	Pump	Valve	Description
0	Off	Buffer	-pump stops, select buffer
			stream (valve position 1)
5	Reverse	Buffer	-draw up buffer solution
9.5	Off		-pump stops
10.5		Sample	-select sample stream (valve
			position 2
11.5	Reverse	Sample	-draw up sample solution
16	Off		-pump stops
17		Creatine cell	-select creatine cell line
			(valve position 3)
18	Forward		-pump stack of zones to
			creatine cell
48	Off		-pump stops
49		Buffer	-select buffer stream (valve
			position 4)
50	Reverse	Buffer	-draw up buffer solution
54.5	Off		-pump stops
55.5		Sample	-select sample stream (valve
			position 5)
56.5	Reverse	Sample	-draw up sample solution
61	Off		-pump stops
62		Creatinine cell	-select creatinine cell line
			(valve position 6)
63	Forward		-pump stack of zones to
			creatinine cell
93	Off	Home	-pump stops, return valve to
			starting position (valve
	anangenenanggalananggenenangenenangalananggalanan	nnam <u>uunnannammuunnammuunnammuunnammuunna</u> mmuu	position 1)

Table 6.6. D	evice seque	nce for one	cycle of t	he SIA system
---------------------	-------------	-------------	------------	---------------

6.4.2. Response characteristics of the amperometric biosensors in SIA system

The response characteristics of the electrodes were measured at different potential in order to determine the best working potential (higher sensitivity, lower limit of detection, wide linear concentration range, etc.) for the simultaneous detection of creatine and creatinine (Table 6.7). The working concentration ranges as well as the limits of detection demonstrated the suitability of the proposed amperometric biosensors for the on-line

.....

....

monitoring of both compounds. The response obtained for all biosensors revealed good stability and reproducibility for tests performed over one week.

Type of biosensor	E (mV)	Linear conc. range	Detection limit	Equation of calibration*	Correlation coefficient (r)
Bienzyme 24 65	240	0.4-60 pmol/L	0.2 pmol/L	1,a H=26.71 + 26.12C	0.9995
	650	4-10 nmol/L	0.8 nmol/L	^{2.b} H=0.67 +0.995C	0.9998
Trienzyme 42 65	420	6-400 nmol/L	0.4 nmol/L	^{1,b} H=0.664 +0.629C	0.9999
	650	4-60 nmol/L	0.6 nmol/L	^{1,b} H=8.24 +5.98C	0.9994

 Table 6.7. Response characteristics for the amperometric biosensors designed for creatine and creatinine when the biosensors are used as detectors in SIA system

*H is the peak height in ¹nA and ^{2 μ A, and C is the concentration of creatine and creatinine respectively in ^apmol/L and ^bnmol/L.}

6.4.3. Selectivity of the amperometric biosensors in SIA system

The selectivity of both biosensors was checked using both the mixed and separate solutions methods. Amperometric selectivity coefficients were determined following the method proposed by Wang [10], for the same potentials used for the determination of the response characteristics of the proposed amperometric biosensors. In the evaluation, the concentration of the creatinine was selected to be ten times higher than that of creatine. The values of the amperometric selectivity coefficients ($pK_{i,j}^{amp}$) (obtained using mixed solution method) for the bienzyme biosensor over creatinine are: 2.07 when the measurements were done at 240 mV, and 3.05 when the measurements were done at 650 mV. The $pK_{i,j}^{amp}$ values show that the bienzyme electrode has got the best selectivity for creatine assay, when measurements are performed at 650 mV.

The selectivity of both electrodes was tested also over glycine, methionine, ribose and taurine. For all of these substances, the values of the amperometric selectivity coefficients are less than 1x10⁻⁵. These results proved the selectivity of the proposed electrodes over these substances that can be found in the pharmaceutical formulations of creatine.

6.4.4. Analytical applications of the SIA/amperometric biosensors system

The flow systems obtained by incorporation of the amperometric biosensors in the SIA conduits, proved to be useful for the simultaneous assay of creatine and creatinine. The results obtained for the recovery of creatine in the presence of creatinine (Table 6.8) demonstrated the accuracy of the proposed flow system for on-line simultaneous determination of creatine and creatinine. No differences were recorded in recovery (%) of the creatine when the ratio between creatine and creatinine increased from 1:9 to 1:99.

F		Reco	very Creatine,	(%)*		
(mV)	Creatine: Creatinine					
(mv)	2:1	1:1	1:2	1:4	1:9	
240	99.80 ± 0.02	99.81 ± 0.02	99.79± 0.01	99.82 ± 0.02	99.80 ± 0.01	
650	99.68 ± 0.01	99.70 ± 0.01	99.69 ± 0.02	99.72 ± 0.01	99.71 ± 0.01	

Table 6.8. Determination of creatine in the presence of creatinine using SIA/amperometric

In the uniformity content tests of Enermax Creatine capsules and Roboforce effervescent creatine, the height of the peaks were recorded using the proposed SIA/amperometric biosensors system. The results were interpolated into the calibration graph of the corresponding electrode, in order to determine the concentration of each compound, and furthermore, it's content in the corresponding pharmaceutical formulation. The results

obtained for the uniformity content tests (Tables 6.9 and 6.10) show that the tested pharmaceutical formulations contain small amounts of creatinine. The recoveries of creatine, is within the ranges required by the labeled amount of 90-110%, with RSD values less than 6.00% required by the USP XXV [11].

Type of biosensor	E (mV)	Recovery of Creatine, %	Recovery of Creatinine, (%)*
Diamanuma	240	93.10 ±0.05	
Bienzyme	650	93.02 ± 0.06	
Triongamo	420		4.01 ± 0.12
Thenzyme	650	-	3.98 ± 0.16

Table 6.9. Recovery of creatine and creatinine in Enermax Creatine capsules (500 mg creatine/capsule) using SIA amperometric biosensors system

* n=10

 Table 6.10. Determination of creatine and creatinine in Roboforce effervescent creatine

 (5 g creatine/27.5 g of powder) using SIA amperometric biosensors system

Type of biosensor	E (mV)	Recovery of Creatine, (%)*	Recovery of Creatinine, (%)*
Dianarma	240	96.49 ±0.07	
Bienzyme	650	96.53 ±0.09	
Trianar	420	-	0.72 ± 0.02
Thenzyme	650		0.90±0.03

*n=10

Creatine and creatinine were simultaneous assay also from serum samples using a standard method [12] as well as the proposed SIA/amperometric biosensors system (Table 6.11). Good correlation between the results was obtained using both standard and new developed method.

Standa	rd method [12] (p	Proposed method (µ mol/L		
Number	Creatine	Creatinine	Creatine	Creatinine
1	19	20	18.99	19.05
2	18	50	17.43	49.30
3	6.9	73	6.72	72.99
4	12	215	11.19	214.18

Table 6.11. Determination of creatine and creatinine from serum samples using SIA amperometric biosensors system

All values are average of ten determinations. RSD % values are lower than 0.1%.

6.5. Conclusion

The main advantage of the proposed system are: simplicity of construction and operation involved for biosensors as well as for the sequential injection analysis system; high reliability of analytical information, rapidity and, low cost of analysis. The high precision of the SIA over the manual method is due to the fact that all measurements are done after the same interval of time and the surface of the biosensors are continuously brushed by the sodium chloride or phosphate buffer carrier streams.

6.6. References

- 1. T. Yao and K. Kotegawa, Anal. Chim. Acta, 462, (2002), 283.
- 2. T. Smith-Palmer, J. Chromatogr. B., 781, (2002), 93.
- V. F. Samanidou, A. S. Metaxa and I. N. Papadoyannis, J. Liq. Chromatogr. Relat.Technol., 25, (2002), 43.
- 4. Y. D. Yang, Biomed. Chromatogr., 12, (1998), 47.
- E. Schwedhelm, D. Tsikas, T. Durand, F. M. Gutzki, A. Guy, J. C. Rossi and J. C. Froelich, J. Chromatogr. B. Biomed. Appl., 744, (2000), 99.
- J. L. Pezzanti, T. W. Jeng, L. McDowell and G. M. Oosta, Clin. Biomed., 34, (2001), 239.
- E. A. Clark, J. C. Fanguy and C. S. Henry, J. Pharm. Biomed. Anal., 25, (2001), 795.
- D. G. Burke, P. G. MacLean, R. A. Walker, P. J. Dewar and T. Smith-Palmer, J. Chromatogr. B., 732 (1999), 479.
- J. H. Shin, Y. S. Choi, H. J. Lee, S. H. Choi, J. Ha, I. J. Yoon, H. Nam and G. S. Cha, Anal. Chem., 73, (2001), 5965.
- 10. J. Wang, Talanta, 41, (1994), 857.
- 11. US Pharmacopoeia 25-National Formulary 20, Asian Ed., 1111, 2002.
- I. D. P. Wootton, Micro-analysis in medical biochemistry (4th Edition), J. A. Churchill Ltd., London, 1964.
- 13. G. D. Marshall and J. F. van Staden, Anal. Instrum., 20, (1992), 79.

Chapter 7

On-line assay of azidothymidine

7.1. Introduction

Azidothymidine (zidovudine, AZT [1]) (Scheme 1) is a thymidine analogue antiretroviral drug active against human immunodeficiency virus (HIV). AZT acts through the inhibition of nucleoside/nucleotide reverse transcriptase and when administered orally and intravenously it proved effective in reducing the incidence of opportunitic infections and neoplasms in acquired immunodeficiency syndrome (AIDS) and AIDS-related complex patients. AZT also increases helper T lymphocyte numbers and improves survival rates and quality of life [1-3]. Although several antiviral agents have been developed, AZT remains the mainstay in the treatment of patients infected with HIV [1,4].

Among electrochemical immunosensors, amperometric immunosensors represent the best combination of sensitivity and selectivity; since amperometric transducers ensure the highest sensitivity and the immunoreaction ensure the best selectivity [5-7]. The reliability of immunosensors construction is influencing the reliability of the analytical information and it will also contribute to the validation of the immunosensors for pharmaceutical analysis [8]. Accordingly, a physical immobilization of the antibody into carbon paste is preferred for the design of the amperometric immunosensor [5].

Separation (e.g., CZE [9,10], HPLC [11-17]), immunoassay (e.g., RJA [18-20], ELISA [20,21]) and polarographic [22] techniques as well as UV/Vis spectrometry [20], and mass spectrometry [20], were described for the assay of AZT.

In this chapter an amperometric immunosensor based on the physical immobilisation of anti-AZT in a carbon paste is proposed for the assay of AZT. Due to the reliability of its response characteristics, the immunosensor was incorporated in the conduits of a sequential injection analysis (SIA) system and used for on-line determination of AZT from the pharmaceutical formulation.

7.2. Experimental section

7.2.1. Reagents and materials

The immunological system composed from azidothymidine and anti-azidothymidine was purchased from Sigma as a kit (St. Louis, MO, USA). APO-Zidovudine capsules were obtained from APOTEX, Inc, Ville St, Laurent, Que, Canada. Graphite powder with a particle size of 50 µm was obtained from Merck (Darmstadt, Germany). Paraffin oil was

obtained from Fluka (Buchs, Switzerland). All other reagents were of the highest analytical grade. All the solutions were prepared using doubly distilled water.

7.2.2. Amperometric immunosensor design

The antiserum was diluted to a working dilution of 1:30 in 0.01 mol/L phosphate buffered saline, pH = 7.4, containing 0.1% sodium azide. The graphite powder was heated at 700°C for 15 s in a Muffle furnace and cooled to ambient temperature in a dessicator. The paraffin oil and graphite powder were mixed in a ratio of 1:4 (w/w) and then it was added to the diluted anti-AZT to obtain a final composition of 0.9% (w/w) in anti-AZT. The carbon paste (graphite powder and paraffin oil) was filled into a plastic pipette tip leaving about 3 to 4 mm empty in the top to be filled with the chemical modified carbon paste that contained anti-AZT. The diameter of the immunosensor was 3 mm. The electric contact was done by inserting a silver wire in the carbon paste. Before each use, the surface of the electrode was wetted with double distilled water and then polished with an alumina paper (polishing strips 30144-001, Orion). When not in use, the amperometric immunosensor was stored in a dry state at 5°C.

7.2.3. Apparatus

A 663 VA Stand (Metrohm, Herisau, Switzerland) connected to a PGSTAT 20 and a software version 4.8 was used for all amperometric measurements. A platinum electrode and a Ag/AgCl (0.1 mol/L KCl) electrode served as counter and reference electrodes in the cell. The electrodes were incorporated into the conduits of a SIA system shown in Figure 7.1A. It was constructed from: a Gilson Minipuls peristaltic pump and a 10-port electrically actuated selection valve (Model ECSD10P, Valco Instruments, Houston, Texas).

Figure 7.1. SIA system used for the determination of AZT (A) Schematic flow diagram (B) sequence of sample, phosphate buffer, and electrochemical cells for AZT.

Tygon tubing (0.89 mm i.d. for the holding coil and 0.76 mm for the reaction coil) was used to construct the manifold; coils were wound around suitable lengths of glass tubing (15 mm o.d.). A 0.1 mol/L NaCl solution was used as carrier. The capacity of the system is about 75 samples per hour. The device operating sequence is shown in Table 7.1. The device control was achieved using a PC30-B interface board (Eagle Electric, Cape Town, South Africa). The FlowTEK [23,24] software package (MINTEK, Randburg, South Africa) for computer-aided flow analysis was used throughout for device control.

Time (s)	Pump	Valve	Description
0	Off	Buffer	-pump stop, select buffer stream (valve position 1)
5	Reverse	Buffer	-draw up buffer solution
9.5	Off		-pump stop
10.5		Sample	-select sample stream (valve position 2)
11.5	Reverse	Sample	-draw up sample solution
16	Off		-pump stop
17		AZT Cell	-select AZT cell line (valve position 3)
18	Forward		-pump stack of zones to AZT cell
48	Off		-pump stop

 Table 7.1 Device sequence for one cycle of the SIA system

An optimum flow rate of 3.61 mL/ min was used to propel the solutions. The timing and flow direction is shown in Figure 7.1B. The sample and buffer consumption is only 270 μ L of sample, which is very economical.

7.2.4. Recommended procedures

7.2.4.1.Direct amperometry

The technique used for the direct amperometric assay was chronoamperometry; the potential applied was +435 mV vs. Ag/AgCl. The working temperature was 25°C. The sensor was dipped into a thermostated cell (25°C) containing 10 mL of phosphate buffered saline, pH = 7.4, containing 0.1% sodium azide. Different aliquots of stock AZT solution ($c = 10^{-3}$ mol/L) were added to generate a series of concentration steps.

7.2.4.2.Content uniformity test for APO-Zidovudine capsules

Ten Zidovudine capsules (100 mg AZT/capsule) are individually placed in ten 100 mL calibrated flasks, and solved in the phosphate buffer. The apparatus cell was filled with the prepared solution and the current developed was measured. The unknown concentration was determined from the calibration graph. In the proposed immunosensor/SIA system peak heights were measured and interpolated into the calibration graph.

7.3. Results and discussion

7.3.1. Electrode response

The electrode response was determined using a chronoamperometric technique (E = +435 mV vs Ag/AgCl). The calibration equations obtained for the amperometric immunosensor when used without and with the SIA system are as follows:

without SIA: I = 3.8 + 0.1 c; r = 0.9986

With SIA: H = -0.12 + 7.38 c; r = 0.9998

where I ($\langle I \rangle = nA$) is the intensity of the current, H ($\langle H \rangle = nA$) is the peak height, and c ($\langle c \rangle = nmol/L$) is the concentration of AZT. All the values are the average of the measurements performed during one week (10 measurements for each concentration were made every day). The RSD (%) values for the intensity of current and peak height, respectively, in one day were lower than 1%, and between the first and seventh day, lower than 2%. Accordingly, the response obtained for the immunosensor revealed a good stability and reproducibility for one week over the tests performed.

The limits of detection for the amperometric immunosensor are: 20 nmol/L and 10 nmol/L when the sensor is used without and with SIA system, respectively, with the corresponding

working concentration range between 40 and 200 nmol/L and between 80 and 2000 nmol/L, respectively. The response time of the amperometric immunosensor is 20s.

7.3.2. Analytical applications

The immunosensor proved to be useful for the purity tests of AZT using the chronoamperometric (E = +435 mV vs Ag/AgCl electrode) technique without and with SIA system. An average recovery of 99.98 \pm 0.03% (n=10) and of 99.98 \pm 0.01% (n=10) were recorded for the immunosensor when used without and with a SIA system, respectively.

The results obtained for the uniformity content test are presented in Table 7. 2. AZT can be reliably assayed from the APO-Zidovudine capsules with an average recovery of 99.74 \pm 0.13% (n=30) and of 99.74 \pm 0.10% (n=10) were recorded for the immunosensor when used without and with a SIA system, respectively. The results are in good agreement, and within the range given in The United States Pharmacopoeia XXIV [25]: 90 to 110% AZT in a capsule.

Recovery,	AZT (%)*
Without SIA	With SIA
$99.53 \pm 0.05\%$	$99.57 \pm 0.02\%$
$99.97 \pm 0.04\%$	$99.95\pm0.02\%$
$99.72 \pm 0.06\%$	$99.71 \pm 0.01\%$
*	

Table7.2. Uniformity content test of APO-Zidovudine capsules using immunosensor without and with SIA system

n=30

7.4. Conclusion

The construction of immunosensor is simple and reproducible. The reliability of the analytical information is assured by the RSD values obtained in the recovery tests. The proposed amperometric immunosensor/SIA system is suitable for on-line purity tests of AZT as raw material and from its pharmaceutical formulations, at a rate of approximately 75 samples per hour when used as detector in SIA system. The main advantage of the proposed method over the other methods described for AZT assay is the possibility of its determination directly without any prior separation with a high precision, rapidity, low consumption of sample and buffer, and utilization of a not expensive carrier, NaCl solution 0.1 mol/L.

7.5. References

- 1. http://www.virusmyth.net/aids/azt.htm
- 2. H. D. Langtry and D. M. Camoli-Richards, Drugs, 37, (1989), 408.
- 3. M. I. Wilde and H. D. Langtry, Drugs, 46, (1993), 515.
- 4. E. De. Clecq, Current Medicinal Chemistry, 8, (2001), 1543.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Electrochemical Sensors in Bioanalysis, Marcel Dekker, Inc., New York, (2001)
- R. I. Stefan and H. Y. Aboul-Enein, J. Immunoassay & Immunochem., 23, (2002),
 429.
- H. Y. Aboul-Enein, R. I. Stefan, G. L. Radu, G. E. Bailuescu, Anal. Lett., 32, (1999), 623.
- H. Y. Aboul- Enein, R. I. Stefan and G. E. Baiulescu, Quality and reliability in analytical chemistry, CRC Press, Boca Raton, Florida, (2000).
- N. Mesplet, P. Morin, C. Francois and L. A. Agrofoglio, J. Chromatogr A., 927, (2001), 161.
- 10. R. Singhal, J. Xian, and O. Otim, J. Chromatogr. A., 756, (1996), 263.
- T. N. Clark, C. A. White, C. Chu and M.G. Bartlett, J. Chromatogr. B., Biomed Appl., 755, (2001), 165.
- 12. V. A. Simon, M. D. Thiam and L. C. Lipford, J. Chromatogr. A., 913, (2001) 447.
- R. Plumb, G. Dear, D. Mallett and J. Ayrton, Rapid Comm Mass Spectrom, 15, (2001), 986.
- G. Aymard, M. Legrand, N. Trichereau and B.Diquet, J. Chromatogr. B. Biomed. Appl., 744, (2000), 227.
- K. B. Kenney, S. A. Wring, R. M. Carr, G. N. Wells and J. A. Dunn, J. Pharm. Biomed. Anal., 22, (2000), 967.

- 16. X. L. Tan and D. Boudinot, J. Chromatogr. B. Biomed. Appl., 740, (2000), 281.
- T. P. Moyer, Z. Temesgen, R. Enger, L. Estes, J. Charlson, L. Oliver and A. Wright, Clin. Chem., 45, (1999) 1465.
- J. V. Mei, W. H. Hannon, T. L. Dobbs, C. J. Bell, C. Spruill and M. Gwinn, Clin. Chem., 44, (1998), 281.
- M. de Remer, R. D'Ambrosio, L. Bartos, S. Cousins and G. D. Morse, Trerapeutic Drug Monitoring, 19, (1997), 195.
- 20. A. S. Pereira and R. R. Tidwell, J. Chromatogr. B. Biomed. Appl., 764, (2001), 327.
- B.Ferrua, H. Chakboub, C. Roptin, R. Garraffo, A. Faraj, J. Grassi, R.Guedj and J. P. Sommadossi, J. Immunoassay, 17, (1996), 175.
- W. Kawczynski, B. Czochralska and D. Shugar, Bioelectrochem. Bioenerg., 26, (1991), 441.
- 23. G. D. Marshall, J. F. van Staden, Process Control and Quality, 3, (1992), 251.
- 24. G. D. Marshall, J. F. van Staden, Anal. Instrum., 20, (1992), 79.
- The United States Pharmacopoeia XXXIV, US Pharmacopoeia Convention Inc., Rockville, MD, (2000).

Chapter 8

Diamond paste based electrodes for the assay of creatine, creatinine and azidothymidine

8.1. Simultaneous assay of creatine and creatinine

8.1.1. Introduction

Creatine is a naturally occurring metabolite in the body. Some is derived from dietary sources, but endogenous synthesis covers individual requirements. Creatine deficiency occurs only in subjects with genetic disorders. Oral supplementation at supraphysiological does seems to slightly improve the performance of some types of muscle exercise, but only those lasting less than 30 seconds; even this small effect is inconsistent. Creatine is a powerful energy conversion molecule that plays an important role in creating muscle energy by converting adenosine triphosphate into adenosine diphosphate allowing for more intense activity [1]. Creatinine, as the final product of creatine metabolism, is a widely used clinical parameter for evaluation of renal function and muscle damage [2]. Its serum concentration and its urinary excretion are not affected by short-term dietary changes increasing but if the normal value of creatinine in the body increase result in severe renal insufficiency.

The following techniques are proposed for the assay of creatine and creatinine: HPLC [3-5,] mass spectroscopy [6], NMR [7,8], and capillary zone electrophoresis [9,10].

Enzymatic biosensors, allowing direct measurements of creatine and creatinine in sample, promising economy of time and saving of costs in pharmaceutical and clinical analysis by enabling on-site analysis of samples. The technique is based on active enzymes immobilization on matrix inducing electrochemical detectable changes.

In this chapter, a new design for amperometic biosensors based on monocrystalline diamond paste is proposed. The advances in single-crystal diamond have enabled the development of a wide range of monocrystalline diamond products to meet the exacting requirements of many electrochemical applications [11]. Also, the monocrystalline diamond has got good holes and electrons, mobility [12]. The enzymes used for the biosensors design were creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO). The three enzyme sequence catalyses the conversion of creatinine via creatine and sarcosine to glycine, formaldehyde and hydrogen peroxide as depicted in the following reaction sequence [2]:

creatinine + $H_2O \xleftarrow{CA}$ creatine creatine + $H_2O \xleftarrow{CI}$ sar cosine + urea sar cosine + $H_2O + O_2 \xleftarrow{SO}$ formaldehyde + glycine + H_2O_2

Amperometric detection of enzymatically generated hydrogen peroxide gives direct access to the original creatinine and creatine concentration. For more information about creatine and creatinine see paragraph 6.1.

8.1.2. Experimental section

8.1.2.1. Reagents and materials

Natural diamond powder with particle size ca.50 μ was purchased from Aldrich. Paraffin oil was purchased from Fluka (Buchus, Switzerland); phosphate buffer (pH=7.6) was purchased from Merck (Darmstadt, Germany). De-ionized water from a Modulab system (continental water systems, San Antonio, TX, USA) was used for all solution preparations. Creatinase (CI) from Flavobacterium was obtained from Fluka, Sarcosine oxidase (SO) from Arthrobacterium species was obtained from Aldrich, and creatininase (CA) from Flavobacterium species was obtained from Sigma. Creatine and creatinine were purchased from Aldrich. Solutions of creatine and creatinine (10⁻⁴ mol/L) were prepared in de-ionized water. Enermax Creatine capsule (500mg creatine monohydrate/capsule) were obtained from Nutrent (Sandton, South Africa) and Roboforce effervescent creatine with ribose (5g creatine/27.5g powder) was purchased from EAS (Golden, CO, USA).

8.1.2.2. Amperometric biosensors design

Bi- and trienzyme electrodes were constructed. All the enzyme solutions used for the design of the biosensors were prepared in a 0.1 mol/L phosphate buffer pH=7.6.

Two plastic tips were filled with plane diamond paste leaving an empty space of 3-4 mm in the top part filled with diamond paste containing the different enzyme mixtures as shown below. The diameters of all biosensors were 3 mm. Electric contacts were obtained by inserting silver wires into the diamond paste. The biosensors tips were gently rubbed on fine abrasive paper to produce a flat surface. The surface of the biosensors

were wetted with de-ionized water and then polished with an alumina paper (polished strips 30144-001, Orion) before use. The biosensors were stored dry at 4°C, when not in use.

8.1.2.2.1. Bienzyme electrode for assay of creatine

 $2 \mu L$ of CI solution (0.2 μg CI/25 μL phosphate buffer pH 7.6) was mixed with 2 μL of SO solution (0.2 μg SO/25 μL phosphate buffer pH 7.6). The mixture was incorporated in the diamond paste (25 mg diamond powder and 5 μL paraffin oil), to obtain the bienzyme electrode.

8.1.2.2.2. Trienzyme electrode for assay of creatinine

5 μ L paraffin oil and 25 mg diamond powder were mixed to form a diamond paste. 2 μ L of CI solution (0.2 μ g CI/25 μ L phosphate buffer pH 7.6) was first mixed with 2 μ L of SO solution (0.2 μ g SO/25 μ L phosphate buffer pH 7.6) and then with 1 μ L of CA solution (0.2 μ g CA/25 μ L phosphate buffer pH 7.6). The resulting solution was added to the diamond paste.

8.1.2.3. Apparatus

A 663 VA stand (Metrohm, Herisau, Switzerland) in connection with a PGSTAT 20, a Multiplexer module SCNR16 and a software (Eco Chemie version 4.8) was used for all chronoamperometric measurements. A Pt electrode and an Ag/AgCl electrode served as counter and reference electrodes in the cell.

8.1.2.4. Recommended procedures

8.1.2.4.1. Direct amperometry

The chronoamperometric technique was used for intensity of current measurement of each solution. The electrodes were dipped into a cell containing 10 mL of phosphate buffer, pH = 7.6 and different aliquots of creatine and creatinine solutions. The intensity of current measured was plotted versus the concentration of creatine and creatinine. The unknown concentration of creatine was determined directly from the calibration graph of the bienzyme electrode. Because the trienzyme electrode can determine the full amount of creatine and creatinine in the solution, the concentration of creatine was determined by making the difference between the concentration obtained from the calibration graph of the trienzyme electrode and the concentration of creatine determined using the bienzyme electrode.

8.1.2.4.2. Uniformity content test

Ten Creatine capsules (500 mg Creatine/capsule) were individually placed in ten 100 mL volumetric flasks, and dissolved in de-ionized water. 0.0182 g of Roboforce effervescent creatine with ribose (5 g creatine/27.5 g powder) were dissolved in 100 mL calibrated flask and then diluted to the mark with de-ionized water. Different aliquots from the solutions prepared were added to phosphate buffer (pH=7.6) in the electrochemical cell. Direct amperometry was used to determine the unknown concentration of creatine and creatinine in pharmaceutical formulations.

8.1.2.4.3. Determination of creatine and creatinine in serum samples

Different aliquots of serum samples were diluted with buffer solution. Direct amperometry was involved to determine the content on creatine and creatinine in serum samples.

8.1.3. Results and discussion

8.1.3.1.Response characteristics of the amperometric biosensors

The response characteristics of the amperometric biosensors are shown in Table 8.1. For both biosensors, the working concentration ranges are in the fmol/L magnitude order with very low limits of detection. The properties of the diamond - used as matrix in biosensors design (low background current, high signal/noise ratio, lack of adsorption) are the explanation for such behaviour of the proposed biosensor. The response characteristics obtained for the biosensors revealed good stability and reproducibility for tests performed over one week, when used every day for the measurements.

the second se	Detection t _R Equation of r					
Type of biosensor	E (mV)	Linear conc. range (fmol/)	Detection limit (fmol/L)	t _R (s)	Equation of calibration*	· (r .)
Bienzyme	200	$4 \times 10^{-4} - 1 \times 10^{-3}$	2×10^{-4}	180	$I=5.68 \times 10^4 + 21.23C$	0.9992
Trienzyme	400	$2 \times 10^{-4} - 2 \times 10^{-3}$	1×10^{-4}	60	$I=9.67 \times 10^{-4} + 54.60C$	0.9986

 Table 8.1. Response characteristics for the amperometric biosensors designed for creatine and creatinine

*I is the intensity of current in mA, and C is the concentration of creatine and creatinine in fmol/L.

8.1.3.2. Selectivity of the amperometric biosensors

The selectivity of both biosensors was checked using both the mixed and separate solutions methods. Amperometric selectivity coefficients were determined following the

method proposed by Wang [13], for the same potentials used for the determination of the response characteristics of the proposed amperometric biosensors. In the evaluation, the concentration of the creatinine was selected to be ten times higher than that of creatine. The value of the amperometric selectivity coefficient ($pK_{i;j}^{amp}$) (obtained using the mixed solution method) for the bienzyme biosensor over creatinine was 2.65. This $pK_{i;j}^{amp}$ value shows that the creatinine does not interfere in the assay of creatine.

The selectivity of both electrodes was tested also over glycine, methionine, ribose and taurine. For all of these substances, the values of the amperometric selectivity coefficients are less than 1×10^{-5} . These results proved the selectivity of the proposed electrodes over these substances that can be found in the pharmaceutical formulations of creatine.

8.1.3.3. Analytical applications

The proposed amperometric biosensors were used with good results for the determination of creatine and creatinine as raw materials, in pharmaceutical products and serum. The advantage of the proposed method is high sensitivity and selectivity and no need of separation of creatine and creatinine from pharmaceutical products or biological fluids.

In order to prove the accuracy of the assay of creatine in the presence of creatinine, synthetic samples containing creatine and creatinine in different ratios were prepared. The results obtained for the recovery of creatine in the presence of creatinine (Table 8.2) demonstrated the suitability of the proposed amperometric biosensor for testing the purity

of creatine. No significant differences in the recovery tests were recorded for creatine: creatinine ratios between 1:9 and 1:99.9.

	Recov	ery of creatine	, (%)*				
Creatine: Creatinine							
2:1	1:1	1:2	1:4	1:9			
99.89 ± 0.01	99.90 ± 0.01	$99.87{\pm}0.02$	99.89 ± 0.02	98.91 ± 0.01			
*n=10							

Table 8.2. Determination of creatine in the presence of creatinine

The uniformity content tests show that the tested pharmaceutical formulations: Enermax Creatine capsules (500mg creatine monohydrate/capsule) and Roboforce effervescent creatine with ribose (5g creatine/27.5g powder) contain as main component creatine (average recovery, $93.12\pm0.10\%$ and $96.12\pm0.12\%$, respectively) and only small amounts of creatinine (impurity resulted in the synthesis of creatine) (average recovery, $3.87\pm0.18\%$ and $0.70\pm0.05\%$, respectively). The recovery values for creatine are within the labelled amount of 90-110%, with RSD values less than 6.00% required by the USP XXV [14].

Creatine and creatinine were simultaneous assay also from serum samples using a standard method [15] as well as the proposed biosensors (Table 8.3). Good correlation between the results was obtained using both standard and new developed method.

Standa	rd method [15](Proposed (µmol/L)		
Number	Creatine	Creatinine	Creatine	Creatinine
1	19	13	18.92	12.68
2	70	54	69.54	53.02
3	6.9	79	6.84	78.98
4	14	154	13.90	153.82

 Table 8.3. Recovery of creatine and creatinine in serum samples

All values are average of ten determinations. RSD % values are lower than 0.1%.

The amperometric biosensors described have excellent features in the assay of creatine and creatinine in pharmaceutical compounds and biological fluids. Due to the high biocompatibility of the diamond, the electrodes will be able to be use, after miniaturization, for *in vivo* simultaneous assay of creatine and creatinine. The construction of the electrodes is simple, fast and reproducible and it is also assuring reliable response characteristics for the proposed amperometric biosensors.

8.2. Differential pulse voltammetry for determination of creatine and creatinine

8.2.1. Differential pulse voltammetry

The technique used for the direct voltammetric assay was differential pulse voltammetry with the applied potential pulse amplitude of 25mV vs. Ag/AgCl. The diamond paste electrode together with the reference and auxiliary electrodes were dipped into a cell containing phosphate buffer (pH=8.0 for the assay of creatine, and pH=7.0 for the assay of creatinine) and sodium pyrophosphate as supporting electrolyte in a ratio of 3.5:1, as well as the synthetic mixture between creatine and creatinine. All solutions were deoxygenated for 5 min before the measurements with N₂. The peak height measured at 500 mV and 580 mV vs Ag/AgCl for creatinine and creatine, respectively, was plotted versus their concentration. The unknown concentrations of creatine and creatinine were determined from the corresponding calibration graphs.

8.2.2. Apparatus

A 663 VA Stand (Metrohm, Herisau, Switzerland) in combination with a µAutolab and software (Ecochemie version 4.8) were used for all differential pulse voltammetry measurements. A platinum electrode and an Ag/AgCl (0.1 mol/L KCl) electrode served as the counter and reference electrodes in the cell.

8.2.3. Electrode design

Diamond paste electrode was prepared by mixing 0.1 g of diamond powder with 20 µL paraffin oil. A portion of the paste was then filled into plastic pipette tip. The diameter of the sensing part was 3mm. Electric contact was made by inserting a silver wire in the paste. Before each use the electrode surface was smoothed out by polishing with alumina paper (polishing strips 30144-001, Orion). When not in use, the diamond paste was stored at room temperature.

8.2.4. Uniformity content test

Ten Enermax Creatine capsules (500mg creatine monohydrate/capsule) were individually placed in ten 100 mL volumetric flasks, and dissolved in de-ionized water. 0.0182 g of Roboforce effervescent creatine with ribose (5 g creatine/27.5 g powder) were dissolved in 100 mL calibrated flask and then diluted to the mark with de-ionized water. Different aliquots from the solutions prepared were added to phosphate buffer (pH=7.0 or pH=8.0) in the electrochemical cell. Differential pulse voltammetry was used to determine the unknown concentrations of creatine and creatinine in pharmaceutical formulations.

8.2.5. Determination of creatine and creatinine in serum samples

Different aliquots of serum samples were diluted with buffer solution. Differential pulse voltammetry was involved to determine the content on creatine and creatinine in serum samples.

8.2.6. Electrode response

The electrode response was determined using differential pusle voltamettry (DPV) technique. The calibration equations obtained for creatine and creatinine were as follows:

Creatine: H = 6.025 + 0.108 c; r = 0.9563

Creatinine: H = 0.214 + 0.01 c; r = 0.9969

where H is the peak height ($\langle H \rangle = \mu A$), c is the concentration of creatine, and creatinine, respectively ($\langle c \rangle = pmol/L$ for creatine $\langle c \rangle = nmol/L$ for creatinine), and r is the correlation coefficient.

For the assay of creatine, the linear concentration range is between 1 and 500 pmol/L with a limit of detection of 0.1 pmol/L, while for the assay of creatinine, the linear concentration range is between 0.01 and 100 nmol/L with a limit of detection of 1 pmol/L. The signal to background ratio is very high when compared to classical glassy carbon (GC) and carbon paste electrodes. The reproducibility of peak current was excellent (RSD% values recorded were less than 0.1%), when the measurements were done everyday for a period of 6 months.

8.2.7. Selectivity of the diamond paste based electrode

The selectivity of the electrode was checked using the mixed solution method. The amperometric selectivity coefficients were determined using the equation proposed by Wang [13]. The ratio between the concentrations (mol/L) of the main analyte and interferent was 1:10. The $pK_{i;j}^{amp}$ values of the selectivity coefficients were 2.60 when the main analyte was creatine and the supposed interferent creatinine and 3.34 when the main analyte was creatinine and the supposed interferent creatine. These values indicates that creatine and creatinine can be determined simultaneous from the solutions using the same electrode, but at different pH values.

The selectivity of the diamond paste electrode was tested also over glycine, methionine, ribose and taurine. For all of these substances, the values of the amperometric selectivity coefficients are less than 1×10^{-4} . These results proved the selectivity of the proposed electrodes over these substances that can be found in the pharmaceutical formulations of creatine.

8.2.8. Analytical applications

The differential pulse voltammtey proved useful for determination of the creatine and creatinine as raw materials as well as in pharmaceutical formulations and serum samples. The uniformity content tests show that the tested pharmaceutical formulations: Enermax Creatine capsule (500mg creatine monohydrate/capsule) and Roboforce effervescent creatine with ribose (5g creatine/27.5g powder) contain as main component the creatine (average recoveries, 95.65±0.19% and 92.46±0.21%, respectively) and only small

amounts of creatinine (average recoveries, $3.25\pm0.16\%$ and $0.75\pm0.09\%$, respectively). The recovery values for creatine are within the labelled amount of 90-110%, with RSD values less than 6.00% required by the USP XXV [14].

Creatine and creatinine were simultaneous assayed also from serum samples using a standard method [15] as well as the proposed diamond paste based electrode (Table 8.4). Good correlation between the results was obtained using both standard and new developed method.

Table 8.4. Recover	y of creatine and	creatinine from	serum samples
--------------------	-------------------	-----------------	---------------

Standard method [15] (µ mol/L)			Proposed method (µ mol/L)	
Number	Creatine	Creatinine	Creatine	Creatinine
1	20	20	19.87	19.81
2	80	80	79.62	79.04
3	8.9	83	8.84	82.34
4	20	420	19.88	416.43

All values are the average of ten determinations. RSD(%) values are lower than 0.1%.

The electrode described has excellent features in the simultaneous assay of creatine and creatinine in pharmaceutical products and biological fluids. Furthermore, the utilization of diamond as electrode material is making possible the utilization of the proposed electrode for *in vivo* simultaneous assay of creatine and creatinine. The construction of the electrode is simple, fast and reproducible and it is also assuring reliable response characteristics for the proposed electrode.

8.3. Diamond paste based immunosensors for the determination of azidothymidine

Azidothymidine (zidovudine, AZT) is a thymidine analogue antiretroviral drug active against the human immunodeficiency virus (HIV). For more information about azidothymidine see paragraph 7.1.

Among electrochemical immunosensors, amperometric immunosensors represent the best combination of sensitivity and selectivity, hence amperometric transducers ensure the highest sensitivity and the immunoreaction ensures the best selectivity [16-18]. The reliability of immunosensors construction is influencing the reliability of the analytical information and it will also contribute to the validation of the immunosensors for pharmaceutical analysis [19]. Accordingly, a physical immobilization of the antibody into diamond paste is preferred for the design of the amperometric immunosensor [16].

8.3.1. Experimental section

8.3.1.1. Reagents and materials

The immunological system composed from azidothymidine was obtained from Sigma (St.Louis, MO, USA). APO-Zidovudine capsules were obtained from APOTEX, Inc, Ville St, Laurent, Que, Canada. Diamond powder with a particle size ca .50µ was obtained from Aldrich. Paraffin oil was obtained from Fluka (Buchs, Switzerland). All other reagents were of the highest analytical grade. All the solutions were prepared using de-ionized water.

8.3.1.2. Apparatus

A 663 VA Stand (Metrohm, Herisau, Switzerland) connected to a µAutolab and software version 4.8 was used for all amperometric measurements. A platinum electrode and a Ag/AgCl (0.1 mol/L KCl) electrode served as counter and reference electrodes in the cell.

8.3.1.3. Amperometric immunosensor design

The antiserum was diluted to working dilution of 1:30 in 0.01 mol/L phosphate buffer saline, pH=7.4, containing 0.1 % sodium azide. The paraffin oil and diamond powder were mixed in a ratio of 1:4 (w/w) and then it was added to the diluted anti-AZT to obtain a final composition of 0.9% (w/w) in anti-AZT. The diamond paste (diamond powder and paraffin oil) was filled into a plastic tip leaving about 3 to 4 mm empty in the top to be filled with the chemical modified diamond paste that contains anti-AZT. The diameter of the immunosensor was 3mm. The electric contact was done by inserting a silver wire in the diamond paste. Before each use, the surface of the electrode was wetted with double distilled water and then polished with an alumina paper (polishing strips 30144-001, Orion). When not in use, the amperometric immunosensor was stored in a dry state at 4^{0} C.

8.3.1.4. Recommended procedures

8.3.1.4.1. Direct amperometry

The technique used for the direct amperometric assay was chronoamperometry; the potential applied was +240 mV vs. Ag/AgCl. The working temperature was 25° C. The sensor was dipped into a thermostatic cell (25° C) containing 10 mL of phosphate buffered

saline, pH= 7.4 containing 0.1% sodium azide. Different aliquots of stock AZT solution $(c=10^{-4} \text{ mol/L})$ were added to generate a series of concentration steps.

8.3.1.4.2. Uniformity content test for APO-Zidovudine capsules

Ten Zidovudine capsules (100 mg AZT/capsule) are individually placed in ten 100 mL calibrated flasks, and solved in the phosphate buffer. The apparatus cell was filled with the prepared solution and the current developed was measured. The unknown concentration was determined from the calibration graph.

8.3.2. Response characteristics of the amperometric immunosensors

The electrode response was determined using the chronoamperometric technique (E=+240mV vs. Ag/AgCl). The calibration equations obtained for the amperometric immunosensor is as follows:

where I ($<I>=\mu A$) is the intensity of the current and c (<c>= fmol/L) is the concentration of AZT.

The limit of detection for the amperometric immunosensor is $2x10^{-4}$ fmol/L with working concentration range between $4x10^{-4}$ and $6x10^{-2}$ fmol/L. The response time of the amperometric immunosensor is 60s. The response obtained for the immunosensor revealed a good stability and reproducibility for one week over the tests performed.

8.3.3. Analytical applications

The immunosensor proved to be useful for the purity tests of AZT using the chronoamperometric (E= +240mV vs. Ag/AgCl electrode) technique. An average recovery of 99.96±0.03% (n=10) was recorded for the assay of AZT raw material.

AZT can be reliably assayed from the APO-Zidovudine capsules with an average recovery of 98.71±0.21% (n=30). The results are in good agreement, and within the range given in the United State Pharmacopoeia XXIV [20]: 90 to 110% AZT per capsule.

8.4. Conclusion

The amprometric biosensors electrodes described have excellent features in the assay of creatine and creatinine in pharmaceutical compounds and biological fluids. Due to the high biocompatibility of the diamond, the electrodes will be able to be use, after miniaturization, for *in vivo* simultaneous assay of creatine and creatinine. The construction of the electrodes is simple, fast and reproducible and it is also assuring reliable response characteristics for the proposed amperometric biosensors. The construction of immunosensor is simple and reproducible. The reliability of the analytical information is assured by the RSD value obtained in the recovery tests. The proposed amperometric immunosensor is suitable for the assay of AZT raw material as well as from its pharmaceutical formulations. The main advantage of the proposed method over the other methods described for AZT assay is the possibility of its determination directly without any prior separation with a high precision, rapidity, low consumption of sample and buffer.

8.5. References

- B. Cartigny, N. Azaroual, L. Mille-Hamard, M. Imbenotte, P. Kintz,
 G. Vermeersch and M. Lhermitte, J. Anal. Toxicol., 26, (2002), 355.
- B. Tombach, J. Schneider, R. M. Schaefer and G. C. Chemnitius, Clin. Chim. Acta, 3, (2001), 129.
- C. Karatzaferi, A. De-Haan, C. Offringa and A. G. Sargeant, J. Chromatogr. B. Biomed. Appl., 730, (1999), 183.
- 4. Y. W. Zhang, C. Long and L. L. Sepu., 19, (2001), 251.
- 5. Y. Nohara, T. Hanai, T. Kinoshita and M. Watanabe, Chem. Pharm. Bull., 48, (2000), 1841.
- T. Rozakilis, S. L. Ramsay, P. D. Whitfield, E. Ranieri, J. J. Hopwood and P. J. Meikle, Clin. Chem., 48, (2002), 131.
- J. H. Feng, X. J. Li, F. K. Pei, X. Chen, S. L. Li and Y. X. Anal. Biochem., 301, (2002), 1.
- 8. A. C. Sewell, H. C. Murphy and R. A. Iles, Clin. Chem., 48, (2002), 357.
- R. Gatti, V. Lazzarotto, C. B. De-Palo, E. Cappellin, P. Spinella and E. F. De-Palp, Electrophoresis, 20, (1999), 2917.
- D. G. Burke, P. G. Maclean, R. A. Walker, P. J. Dewar and T. Smith-Palmer, J. Chromatogr. B. Biomed.Appl., 732, (1999), 479.
- 11. P. R. Heurs, Industrial Diamond Review, 57, (1997), 15.
- J. Isberg, J. Hammesberg, E. Jahansson, T. Wikstrom, T. J. Twitchen,
 A. J. Whitehead, S. E. Coe and G. A. Scarsbrook, Science, 297, (2002), 1670.
- 13. J. Wang, Talanta, 41, (1994), 857.

- 14. US Pharmacopoeia 25-National Formulary 20, Asian Ed., 1111,2002.
- I. D. P. Wootton, Mcro-analysis in medical biochemistry (4th Edition),
 J. A. Churchill, Ltd., London, 1964.
- R. I. Stefan, J. F. van Staden and H. Y. Aboul-Enein, Electrochemical sensors in Bioanalysis, (2001), Marcel Dekker, New York USA.
- R. I. Stefan and H. Y. Aboul-Enein, J. Immunoassay and Immunochem., 23, (2002), 429.
- H. Y. Aboul-Enein, R. I. Stefan, G. L. Radu and G. E. Baiulescu, Anal.Lett., 32, (1999), 447.
- 19. H. Y. Aboul-Enein, R. I. Stefan and G. E. Baiulescu, Quality and reliability in analytical chemistry, CRC Press, Boca Raton, Florida, USA, (2000).
- The United States Pharmacopoeia XXXIV; US Pharmacopoeia Convention Inc., Rockville, MD, 2000.

Chapter 9

Conclusions

There is an increase demand for rapid analysis and miniaturization in industrial and process analytical control. SIA is a technique that has a tremendous potential for on-line processes measurements. The development of this technique was aimed to provide pharmaceutical industries with reliable, precise and cost-effective instrumentation of performing analysis.

The importance of this work was to develop a biosensors and immunosensors capable for on-line determinations. The system must have a high sample throughput with minimum reagent and sample consumption. Sequential injection analysis was coupled to the amperometric detectors with the aim of meeting the objectives mentioned above. The method confirmed its feasibility for use in process analysis because it is fully computerized with minimum reagent and sample consumption and high sample frequency. The main advantages of the proposed system are: simplicity of construction and operation involved for biosensors and immunosensors as well as for the sequential injection analysis system; possibility of on-line simultaneous monitoring of enantiomers during the synthesis of methotrexate, carnitine, ortho-acetyl-L-carnitine as well as of azidothymide, creatine and creatinine, and high reliability of analytical information,

rapidity and, low cost of analysis. The high precision of the SIA over the manual methods is due to the fact that all measurements are done after the same interval of time and the surface of the biosensors and immunosensors are continuously brushed by the sodium chloride or phosphate buffer carrier streams.

The amprometric biosensors and immunosensors described have excellent features in the assay of enantiomers in pharmaceutical compounds and biological fluids. For the case of diamond paste due to the high biocompatibility, the electrodes will be able to be use, after miniaturization, for *in vivo* simultaneous assay of creatine and creatinine. The construction of the electrodes is simple, fast and reproducible and it is also assuring reliable response characteristics for the proposed amperometric biosensors and immunosensors.

APPENDIX

APPENDIX A

PUBLICATIONS

 Immunosensor for the determination of azidothymidine. Its utilization as detector in a sequential injection analysis system
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Talanta, In Press.

- Determination of L- and D-enantiomers of carnitine using amperometric biosensors
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Anal.Lett., In Press.
- Determination of L- and D-enantiomers of methotrexate using amperometric biosensors
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Talanta, Submitted
- 4. Simultaneous determination of L- and D-methotrexate using a sequential injection analysis/amperometric biosensors system
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Biosens.Bioelectron., Submitted

- Determination of creatine and creatinine using a diamond paste based electrode
 R.I. Stefan and R.G. Bokretsion
 Instrum.Sci. & Technol., Submitted
- 6. Simultaneous determination of creatine and creatinine using monocrystalline diamond paste based amperometric biosensors
 R.I. Stefan and R.G. Bokretsion
 Anal.Chem., Submitted
- 7. Simultaneous determination of creatine and creatinine using amperometric biosensors
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Talanta, Submitted
- Simultaneous determination of L- and D-carnitine using a sequential injection analysis/amperometric biosensors system
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 J.Pharm.Biomed.Anal., Submitted
- Simultaneous detection of creatine and creatinine using a sequential injection analysis/amperometric biosensors system
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein

Microchim.Acta, Submitted

- Biosensors for the determination of ortho-acetyl-L-carnitine. Their utilization as detectors in a sequential injection analysis system
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Prep.Biochem. & Biotechnol., Submitted
- 11. Diamond paste based immunosensor for the determinaton of azidothymidine

R.I. Stefan and R.G. Bokretsion

J.Immunoassay Immunochem., Submitted

APPENDIX B

PRESENTATIONS

Oral presentations

- Determination of L- and D-enantiomers of methotrexate using amperometric biosensors
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 Analitika 2002, Stellenbosch, South Africa, December, 2002.
- 2. Immunosensor for the determination of azidothymidine. Its utilization as detector in a sequential injection analysis system

R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein

Flow Analysis IX, Geelong, Australia, February, 2003.

Poster presentations

- Immunosensor for the determination of azidothymidine.
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein IMCS 9, Boston, USA, July, 2002.
- Determination of L- and D-enantiomers of methotrexate using amperometric biosensors
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 EUROANALYSIS 12, Dortmund, Germany, September, 2002.

3. Simultaneous determination of L- and D-methotrexate using a sequential injection analysis/amperometric biosensors system

R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein Analitika 2002, Stellenbosch, South Africa, December, 2002.

4. Simultaneous determination of L- and D-methotrexate using a sequential injection analysis/amperometric biosensors system

R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein Flow Analysis IX, Geelong, Australia, February, 2003.

- Immunosensor for the determination of azidothymidine.
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 PITTCON'2003, Orlando, USA, March, 2003.
- Determination of L- and D-enantiomers of methotrexate using amperometric biosensors
 R.I. Stefan, R.G. Bokretsion, J.F. van Staden and H.Y. Aboul-Enein
 PITTCON'2003, Orlando, USA, March, 2003.