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Summary

Quantum systems usually suffer from unavoidable interactions with the environment.

In most experiments, it is virtually impossible to isolate the system under study from

the environment. It is thus imperative to study and understand how quantum systems

interact with their surroundings.

In the present study, I consider the evolution of quantum entanglement in a two-qubit

system interacting with an environment in a regime where the non-Markovian effects are

important. The present thesis is organized as follows:

Chapter one is a general introduction to the thesis.

In chapter two, some preliminary concepts that will be used in the subsequent chapters

will be introduced and defined. These concepts include qubits, density matrix, Quantum

entanglement and Entropic measures in quantum information. Ways to detect or quantify

entanglement in a quantum system will also be discussed in the section on quantum

entanglement.

Chapter three will be about open quantum systems in general: concepts like master

equations, Markovian quantum systems and non-Markovian quantum systems will be

briefly reviewed.

Chapter four will deal with time dependent entanglement features of two-qubit and

multi-qubit systems interacting with an environment, basically all the results obtained

in my study will be presented there.

Some general conclusions will be drawn in chapter five.
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Chapter 1
Introduction

Craftsmen and engineers have been developing devices to manipulate and trans-

mit information by classical means from the very beginnings of civilizations. The

formal theoretical study of these processes was initiated by pioneers of computer

science and information theory in the 1930’s and 1940’s. Only recently, however,

scientists discovered that quantum entities can be used to process information

in novel, non-classical and highly counter-intuitive ways. Quantum mechanics

[1, 2] arose in the beginning of the twentieth century from the need to under-

stand thermal properties of radiation and the discrete spectral features of atoms.

Physical theory at that time could not explain certain phenomena such as black

body radiation, where it predicted the existence of an “ultraviolet catastrophe”

involving infinite energy. Quantum mechanics is to date the most successful the-

ory of physics as it describes with fantastic accuracy the structure of atoms and

molecules, the properties of materials, fusion reactions in stars, and the list goes

on. In its field theoretical version, quantum mechanics also describes the physics

of elementary particles. Excepting gravitation, the laws of quantum mechanics

apply to all known physical phenomena.

Quantum information theory studies the use of quantum mechanical systems to

transmit and process information. In the past few years, this emerging, multi-

disciplinary field [3] received a lot of attention and grew at a remarkable speed.
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This is because the laws of quantum physics opened doors to new opportunities

of manipulating information in ways that were not possible classically. Quantum

information differs from classical information in many respects, for example, quan-

tum entities may be in a superposition of states unlike classical entities. Another

difference is that an arbitrary quantum state cannot be cloned, that is, it is im-

possible to construct a copy of a quantum state without destroying the original

whereas this is easily done in classical information.

Quantum information theory is a vast field, but there are few fundamental goals

uniting work in the filed: [3]

• The identification of elementary classes of static resources in quantum me-

chanics (this is identified as type of information). Examples are qubits and

Bell states (section 2.7) shared between two distant particles

• The identification of elementary classes of dynamical processes in quantum

mechanics (this is identified as types of information processing). Examples

are the ability to store quantum information over a period of time and the

process of protecting quantum information from the effects of noise.

• The quantification of resource tradeoffs incurred performing elementary dy-

namical processes, for example, what minimal resources are required to trans-

fer quantum information reliably between two parties using a noisy commu-

nications channel.

One of the most fundamental aspects behind quantum information is quantum

entanglement. It allows one to perform tasks that are impossible or very difficult

otherwise [3]. Examples of these tasks include quantum teleportation [4], super-

dense coding [5], quantum computing [6] and quantum cryptography [7]. Quantum

entanglement is a physical resource proper to quantum mechanics that is associated

with non classical correlations between subsystems of quantum composite systems.

Quantum entanglement was initially regarded as a problematic and paradoxical

aspect of quantum physics, when Einstein Podolski and Rosen pointed it out in

2

 
 
 



an attempt to show that quantum mechanics was an incomplete theory [8]. Nowa-

days, entanglement is seen as a fundamental phenomenon that lies at the heart of

our understanding of quantum physics. It also constitutes a valuable resource for

implementing information-related tasks.

Building quantum information processing devices is a great scientific and engi-

neering challenge. One major limitation is noise. This is mainly because quantum

entanglement is a very fragile resource. Real quantum systems suffer from un-

avoidable couplings with the environment [12, 13]. These interactions with the

environment are regarded as noise in quantum information theory. Consequently,

in many practical situations, quantum systems must be treated as open systems

since it is not possible to get complete isolation from the surrounding. In order to

build useful quantum information processing systems, it is crucial to understand

these interactions with the environment.

The theory of open quantum systems plays a major role in quantum physics since

a complete isolation of the system from the environment is not feasible, and a

complete microscopic description or control of the environment degrees of freedom

is not possible (or only partially so). The study of open quantum systems is a vast

topic and there are many ways to approach it. In chapter 3, some basic aspects of

this subject will be reviewed.

Open quantum systems may be subdivided into two major groups, depending on

the restrictions we put on the system or the assumptions we make. These two

groups are Markovian quantum systems and non-Markovian quantum systems.

In the case of Markovian systems (section 3.2.6) it is assumed that “memory

effects” in the system-environment interaction are not important. In other words,

it is assumed that any self-correlations within the environment created by the

coupling to the system decay rapidly compared to the characteristic time over

which the state of the system varies noticeably.
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In the non-Markovain regime, on the other hand (section 3.3), the environment

correlation time is greater than, or of the same order as, the relaxation time over

which the state of the system changes. “Memory effects” are thus considered

important and are taken into account.

The present study is mainly about the evolution of quantum entanglement of two-

qubit systems interaction with a reservoir in a regime where the non-Markovian

effects are important [12, 44, 45]. The dynamics in this case is quite different to

the one corresponding to single qubit cases.

It was interesting to note that the entanglement disappears completely at finite

times for some initial states. This is known as “Entanglement sudden death”

(ESD) and has been observed experimentally (see Almeida et al. [43]). It is

very important to study and understand ESD because the realization of quantum

information and computation depends on the longevity of entanglement in multi-

qubits states.

The System studied here was previously presented by B. Bellomo et al. [44, 45]

but they considered only particular initial states. The aims of the present study

are the following:

• My first goal is to determine a global picture of the average, typical behaviour

of the system for important families of initial states. I will do this by recourse

to a numerical approach based upon the generation of random initial states

and the evaluation of the concomitant time dependent average properties.

• The second goal is to consider entanglement features that were not consid-

ered by the previous researchers. I will study the relationship between the

time evolutions of the two-qubits entanglement, on the one hand, and their

mixedness on the other. I will study the behavior of entanglement indicators

based on q-entropies and on appropriate uncertainty relations.

• I will also consider the entanglement dynamics of systems consisting of more

than two qubits.
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Chapter 2
Multi-partite quantum systems,
Entanglement and entanglement
indicators

It was stated in the introduction that quantum mechanics opens novel ways to

process and transmit information. This is possible, to a large extent, because

of quantum entanglement, as it is the fundamental resource that makes many

quantum information tasks feasible. Quantifying quantum entanglement [10, 11,

26] is an important subject in quantum information theory. It is also important to

develop practical entanglement indicators to estimate the amount of entanglement

associated with a given quantum state.

The aim of this introductory chapter is to define some preliminary concepts that

are important in quantum information theory and will be use extensively later.

The first preliminary concept that will be presented is the qubit or quantum bit.

2.1 The Qubit

A qubit (quantum bit) is a 2-level quantum mechanical system (that is, a system

described by a 2-dimensional Hilbert space). Similarly to the role played by the

bit in classical computation and information, the qubit is the fundamental unit of

quantum mechanical devices that process information.
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2.1. THE QUBIT

Examples of physical realizations of qubits are the spin degrees of freedom of a

spin-1/2 particle, the polarization state of a photon, or an atom where we focus

our attention on quantum superpositions of only two relevant eigenstates.

Just like a classical bit, a qubit also has a state. Two possible states of a qubit

are |0〉 and |1〉 which correspond to the state 0 and 1 of a bit. Unlike a classical

bit, which can only have either of the two states 0 and 1, a qubit can also be in a

superposition of state. That is, a qubit can be in a state like

|ψ〉 = α|0〉+ β|1〉 (2.1)

where α and β are complex numbers satisfying |α|2 + |β|2 = 1. It is thus clear

that a qubit can be in an infinity of possible states since one can find infinitely

many complex numbers satisfying |α|2 + |β|2 = 1. So one may think that it is,

in principle, possible to store a great deal of information in a qubit. But this is

not true because when the state of a qubit given by Eq. 2.1 is measured, one

obtains either the state 0 or 1 with probability |α|2 and |β|2 respectively, and,

after the measurement, the state of the qubit is collapsed from the superposition

state to the state resulting from the measurement. As an illustration, consider

a spin-1/2 particle, an electron for instance. When the z-component of the spin

is measured, one gets either + (for spin up) or − (for spin down) and the post

measurement state of the particle is the state that is consistent with the result.

Or, more explicitly, the post measurement state of the particle will be spin up if

the value + was obtained and spin down if the value − was obtained.

A useful geometrical representation to picture the state of a qubit is as follows:

since |α|2 + |β|2 = 1, one may write Eq. 2.1 as

|ψ〉 = eiγ

(
cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉

)
, (2.2)

where θ, ϕ and γ are real numbers. As the overall phase of a quantum state does

not have any physical significance (only the phase difference between α and β is

important), we can rewrite the state as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉. (2.3)
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2.1. THE QUBIT

All possible states may be obtained by restricting the parameters to 0 ≤ θ ≤ π

and 0 ≤ ϕ ≤ 2π. Thus any state is a point on the unit sphere with azimuthal

angle ϕ and polar angle θ. This sphere is often referred to as the Bloch sphere.

2.1.1 Bell states

Bell states are two-qubits states of particular importance in quantum information.

They are sometimes called EPR pairs, after Einstein, Podolsky and Rosen who

were the first to point out the strange properties of entangled quantum states [8].

Bell states are

|β00〉 =
1√
2
(|00〉+ |11〉) (2.4)

|β01〉 =
1√
2
(|01〉+ |10〉) (2.5)

|β10〉 =
1√
2
(|00〉 − |11〉) (2.6)

|β11〉 =
1√
2
(|01〉 − |10〉) (2.7)

The notation above may be generalized as [3]

|βxy〉 =
1√
2
(|0y〉+ (−1)x|1ȳ〉) (2.8)

where ȳ is the negation of y.

Bell states are maximally entangled two-qubit states and they play an important

role in quantum protocols like quantum teleportation (section 2.4.2) and super

dense coding. An interesting property of Bell states is the following: suppose

one has a pair of qubits in the state |β00〉. If one measures the state of the first

qubit, the result is either 0 with probability 1
2 (and the post measurement state

is |00〉) or 1, also with probability 1
2 (and the resulting state is |11〉). Therefore a

measurement of the state of the second qubit will definitely be 0 in the first case or

1 in the second one. In other words, the results are correlated. John Bell proved

that these correlations are beyond any classical correlation [9].
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2.2. DENSITY MATRIX AND MIXED STATES

2.2 Density matrix and mixed states

The density matrix (or statistical operator) formalism was introduced indepen-

dently by J. Von Neumann and L. Landau in 1927 to describe physical situations

involving either

• incompletely specified quantum states or

• subsystems of composite quantum systems.

This formalism is very useful to describe a system whose state is not completely

known and it is used extensively in quantum statistical mechanics. The formal-

ism is also necessary for describing quantum mechanical experiments where noise

is inevitable. In virtually all quantum mechanical experiments it is impossible

to conpletely isolate the quantum system under study. The system becomes en-

tangled with the environment through unwanted, but unavoidable, interactions.

Nevertheless, it is sometimes necessary to describe the system without taking the

environment explicitly into account. The density operator formalism constitutes

an indispensable tool in situations where one needs to describe subsystems of a

composite quantum system.

Consider a quantum system in one of the states of an ensemble of pure states

{pi, |ψi〉} where pi is the probability associated with the state |ψi〉. The states |ψi〉
do not need to be orthogonal to each other. The density operator for the system

is then defined as

ρ ≡
∑

i

pi|ψi〉〈ψi|. (2.9)

In the density operator formalism one represents quantum states by hermitian op-

erators acting on the system’s Hilbert space, instead of unit vectors on this space.

For any quantum state vector |ψ〉, the corresponding density operator is the pro-

jection operator |ψ〉〈ψ|. That is, the system is in the state |ψ〉 with probability 1

in this case, and the system is said to be in a pure state.
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2.2. DENSITY MATRIX AND MIXED STATES

The properties of a density matrix are:

1. Hermiticity: ρ is a hermitian operator, that is, ρ = ρ†

2. Trace condition: Trρ = 1, the density operator has trace equal to one. In

other words, ρ is normalized.

3. Positivity condition: For any vector v, 〈v|ρ|v〉 ≥ 0, that is, the density

operator is a positive semidefinite operator. Alternatively, one may say that

ρ is Hermitian with nonnegative eigenvalues.

The trace property is easily proved as follows:

consider the density matrix given by Eq. 2.9, then

Tr(ρ) =
∑

i

piTr(|ψi〉〈ψi|) =
∑

i

pi = 1

since the pi are probabilities.

For the last condition, suppose that |ϕ〉 is an arbitrary vector in the state space,

then

〈ϕ|ρ|ϕ〉 =
∑

i

pi〈ϕ|ψi〉〈ψi|ϕ〉

=
∑

i

pi|〈ϕ|ψi〉|2

≥ 0.

An important fact to mention here is that it is possible to find two different ensem-

bles of pure states leading to the same density operator [3], For instance consider

an equal mixture of the states |0〉 and |1〉; the density operator obtained from

that mixed state is ρ = 1
2I where I is the identity operator. The same density

operator can be obtained by mixing equally the states |+〉 = 1√
2
(|0〉 + |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉), as it is easy to verify that

1

2
|+〉〈+|+ 1

2
|−〉〈−| = 1

2
I.
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2.2. DENSITY MATRIX AND MIXED STATES

As stated above, a state that can be represented by a state vector is pure and a

state that cannot be represented by a state vector is called a mixed state. We use

the density operator formalism to describe mixed states. Now that pure and mixed

states are defined, one may ask the following question: given a density operator,

how can one tell wether it represents a pure or a mixed state? One simple criterion

to check if a density operator represents a pure state or not is to compute the trace

of that density operator squared, because for every density operator ρ,

Trρ2 ≤ 1, (2.10)

with equality if and only if ρ represents a pure state. That is, if and only if

ρ = |ψ〉〈ψ| for some unit vector |ψ〉.
One of the most important applications of density matrices in quantum information

theory is the description of subsystems of composite quantum systems through

the reduced density matrix. Consider for example a composite system made of two

subsystems A and B, and let ρAB be a density matrix describing a state of the

composite system AB. Then the reduced density matrix of the subsystem A is

given by

ρA = TrBρAB, (2.11)

that is, ρA is obtained by taking the partial trace over subsystem B. Likewise, the

reduced density matrix of subsystem B is obtained by performing a partial trace

over subsystem A.

The partial trace is defined as follows: let |ϕA
1 〉 and |ϕA

2 〉 be two vectors on the

state space A and |ϕB
1 〉 and |ϕB

2 〉 be two vectors on the state space of B, then

TrB(|ϕA
1 〉〈ϕA

2 | ⊗ |ϕB
1 〉〈ϕB

2 |) = |ϕA
1 〉〈ϕA

2 |Tr(|ϕB
1 〉〈ϕB

2 |). (2.12)

2.2.1 Schmidt decomposition

The Schmidt decomposition [3, 27] is a very useful tool for the study of composite

quantum systems and it is stated as follows:
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2.3. ENTROPIC MEASURES IN QUANTUM INFORMATION THEORY.

Suppose |ψ〉 is a pure state of a composite quantum system, AB. Then there exist

orthonormal basis {|iA〉} for system A and {|iB〉} for system B such that

|ψ〉 =
∑

i

√
λi|iA〉|iB〉; (2.13)

where λi are non-negative real numbers satisfying
∑

i λi = 1. These are known as

Schmidt coefficients. The basis |iA〉 and |iB〉 are called Schmidt basis, the number

of non-zero valued λi is known as the Schmidt number for the state |ψ〉, and it

is at most min(dA, dB) where dA and dB are the dimensions of subsystems A

and B respectively. The Schmidt coefficients (and consequently also the Schmidt

numbers) of a given state are invariant under local unitary transformations U =

UA⊗UB. This invariance makes the Schmidt number a useful tool. As an example,

the Schmidt number can be use as way to check if a given pure bipartite state is

separable.

An interesting consequence of the Schmidt decomposition is the following: consider

the state |ψ〉 given above, this state is a pure state of the composite system AB.

The reduced density matrices of the subsystems A and B are then given by ρA =
∑

i λi|iA〉〈iA| and ρB =
∑

i λi|iB〉〈iB| respectively. Thus the reduced density

matrices of the two subsystems have the same eigenvalues. This implies that any

function of the density matrix that depends only on the eigenvalues will have the

same value for both reduced density matrices.

2.3 Entropic Measures in Quantum information theory.

The concept of entropy first arose in the theories of thermodynamics and statistical

physics, but after Shannon’s work [28], it turned out to also play a fundamental

role in information theory. Entropy is a very important concept in classical and

quantum information theory. One of its useful applications is as a measure of the

degree of “mixedness” of a given quantum state. Entropy can be defined as a

measure of the uncertainty in the state of a physical system. In this section, the

definitions and basic properties of few relevant quantum entropic measures will be

11

 
 
 



2.3. ENTROPIC MEASURES IN QUANTUM INFORMATION THEORY.

reviewed.

2.3.1 Von Neumann Entropy

The von Neumann entropy is important because of its relation with the thermo-

dynamics entropy. For a quantum state ρ it is defined as

S(ρ) = −kTr(ρ ln ρ), (2.14)

where k is the Bolzmann’s constant. In quantum information theory, it is usually

defined it as

S(ρ) ≡ −Tr(ρ log2 ρ), (2.15)

where the logarithm is taken in base two. If the eigenvalues of ρ are known to be

λi, the von Neumann entropy may be written as

S(ρ) = −
∑

i

λi log2 λi. (2.16)

In these expressions, it is understood that 0 · log 0 ≡ 0.

Some of the properties of the von Neumann entropy are [3, 29]:

1. Purity. The entropy is non-negative and for a pure state ρ = |ϕ〉〈ϕ|,
S(ρ) = 0. This is straightforward because if ρ represents a pure state, all the

eigenvalues of ρ are zero, except one, which has the value one. Thus the von

Neumann entropy of the pure state is S(ρ) = 1× log2 1 = 0

2. Invariance under unitary transformation. That is,

S(UρU †) = S(ρ) (2.17)

for any unitary transformation U .

3. In a d dimensional Hilbert space, the von Neumann entropy is at most log2 d,

that is,

S(ρ) ≤ log2 d, (2.18)
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2.3. ENTROPIC MEASURES IN QUANTUM INFORMATION THEORY.

with equality when all the eigenvalues are nonzero and equal, in other words,

S(ρ) = log2 d if and only if the system is in the completely mixed state I/d,

where I is the d× d identity matrix.

4. Suppose that the composite system AB is in a pure state, then the two

marginal density matrices ρA and ρB have the same entropy,

S[ρA] = S[ρB]. (2.19)

This can simply be proven by using the Schmidt decomposition. As stated

in section 2.2.1, one consequence of the Schmidt decomposition is that if

the composite system is in a pure state, the reduced density matrices of the

subsystems have the same eigenvalues.

5. Concavity: The von Neumann entropy is a concave functional on the space

of density matrices. That is, given n density matrices ρi, for λ1, λ2, · · · , λn ≥
0 and λ1 + λ2 + · · ·+ λn = 1,

S(λ1ρ1 + · · ·+ λnρn) ≥ λ1S(ρ1) + · · ·+ λnS(ρn). (2.20)

6. Additivity: If ρ = ρA ⊗ ρB, then S(ρ) = S(ρA) + S(ρB).

2.3.2 The Linear Entropy

The linear entropy is an entropic measure that is sometimes preferred to the von

Neumann entropy due to its many computational advantages, both from numerical

and analytical points of view. The linear entropy of a density matrix ρ is given by

SL(ρ) = 1− Tr(ρ2). (2.21)

One clearly sees that to compute SL, there is no need to diagonalize the density

matrix like in the case of the von Neumann entropy.

The usefulness of the linear entropy as a measure of the degree of mixedness is

based on an important property of the density matrix: for a given density matrix

ρ, Tr(ρ2) ≤ 1 with equality if and only if ρ represents a pure state. From that, it

13

 
 
 



2.4. QUANTUM ENTANGLEMENT

is clear that SL(ρ) is zero if and only if ρ represents a pure state. On the other

hand, SL adopts its maximum value for the completely mixed density matrix.

2.3.3 q-entropies

The q-entropies are entropic measures involving the quantity Tr(ρq). The most im-

portant q-entropies are the Tsallis [30, 36, 33, 34, 35] and the Rényi [30] entropies.

A noticeable fact about the q-entropies is their dependence on the parameter q.

Each value of q corresponds to a specific entropic measure. In other words, the

q-entropies provide one with a family of entropic measures. It is interesting to

note that the q-entropies reduce to the von Neumann entropy in the limit q → 1.

Rényi entropy

The Rényi entropy is defined as follows:

S
(R)
q =

1

1− q
ln(Tr(ρ̂q)) (2.22)

and in the limit q →∞ the Rényi entropy becomes

S
(R)
∞ (ρ) = − ln(λm) (2.23)

where λm is the maximum eigenvalue of the density matrix ρ.

Tsallis entropy

The Tsallis entropy on the other hand is defined as

S
(T )
q =

1

q − 1
(1− Tr(ρ̂q)) (2.24)

In the limit q → 1, the von-Neumann entropy is recovered. The linear entropy SL

corresponds to S
(T )
q with q = 2.

2.4 Quantum entanglement

The word entanglement comes from the translation of the German word “Ver-

schränkung ”used by Erwin Schödinger to describe a correlation of a quantum
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nature [37]. Quantum entanglement is a physical resource proper to quantum me-

chanics that is associated with non classical correlations between subsystems of

quantum composite systems. A pure state of a composite quantum system is en-

tangled if it cannot be factorized in terms of pure states of each of the subsystems.

Otherwise the state is said to be separable. Consider a bipartite system consisting

of two subsystems A and B. A pure state of this system is entangled if it cannot

be factorized as |a〉 ⊗ |b〉, where |a〉 is a pure state of subsystem A and |b〉 is a

pure state of subsystem B. As an example, consider two qubits in the Bell state

|β00〉 = 1√
2
{|00〉+ |11〉}. It is impossible to attribute to either qubit a definite pure

state. In other words, it is impossible to write that Bell state as |a〉⊗|b〉, where |a〉
is a state of the first qubit and |b〉 is a state of the second qubit. The state |00〉 on

the other hand is separable and it is clear that each of the qubits are in the state |0〉.

A mixed state of the bipartite system described above is entangled if it cannot

be represented as a mixture of factorizable pure states of the system. That is, if

its density matrix cannot be written as [38]

ρ =
∑

i

pi|ai〉〈ai| ⊗ |bi〉〈bi|, (2.25)

where the coefficients pi are probabilities (0 ≤ pi ≤ 1,
∑

i pi = 1) and the |ai〉 and

|bi〉 are pure states of subsystems A and B respectively.

An example of a mixed separable state is

ρ =
1

2
(|00〉〈00|+ |11〉〈11|) (2.26)

and an example of a mixed entangle state is the Werner state

ρW =
1− p

4
I4 + p|β00〉〈β00|. (2.27)

That is, a mixture of a maximal entanglement via the Bell state |β00〉 and a maxi-

mal incoherence via the two-particles identity. This state is entangled for p > 1/3.

Entangled states cannot be prepared locally by acting on each of the subsystem

individually. This is related to the fact that the amount of entanglement does
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not change under local unitary transformation. This last statement can be proved

using the Schmidt decomposition [27] (section 2.2.1).

2.4.1 Entanglement measures and entanglement indicators

It is clear by now that quantum entanglement is a very important resource in

quantum information theory, but to be able to use it, one needs to find a way

to measure or to quantify it. In this section, entanglement measures for bipartite

systems will be defined. The focus is on bipartite entanglement due to the intrinsic

importance of bipartite systems, and also because the most useful multi-partite

entanglement measures are based on the bipartite case.

An entanglement measure E(·) may be seen as a functional that takes a quantum

state of a bi-partite system to a nonnegative real number, that is,

E : D(H) → R+ (2.28)

where D(H) is the set of density operators on the Hilbert space H = HA ⊗HB.

Quantifying entanglement is an important topic in quantum information theory,

but determining the amount of entanglement associated with general mixed states

of multi-partite systems is a very difficult task.

Various measures of entanglement appear in the literature, some of these measures

will be presented in details in the following sections. These measures are subdi-

vided into two groups: on the one hand we have operational measures like the

entanglement cost EC and the entanglement of distillation ED and on the other

hand we have the abstract measures that quantify entanglement mathematically

but are not operationally defined in terms of entanglement manipulation. Exam-

ples of abstract entanglement measures include the reduced von Neumann entropy

and the entanglement of formation. Some of these abstract measures coincide with

the operational ones.

A good entanglement measure has to fulfill certain requirements that will be listed

below, but it is still debatable whether all of these requirements are necessary. In
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fact, some of the entanglement measures that will be presented below don’t sat-

isfy all of them. The fundamental requirement that everyone agrees with is that

an entanglement measure must be monotonic under LOCC [25]. In other words,

the amount of entanglement should not increase by local quantum operation and

classical communications [39].

The requirements for an entanglement measure are:

1. If ρ is separable then E(ρ) = 0.

2. Normalization: the entanglement of a maximally entangled state of two

d-dimensional systems A and B is given by

E(P d
+) = log2 d (2.29)

where P d
+ = |Φd

+〉〈Φd
+| and |Φd

+〉 =
∑d

i=1
1√
d
|iA〉⊗|iB〉 is a maximally entangle

state in d × d dimensions and {|iA〉} and {|iB〉} are orthonormal basis of

systems A and B respectively.

3. No increase under LOCC: the entanglement of ρ cannot be increased by

applying local operations to ρ and classically communicating. That is,

E(ΛLOCC(ρ)) ≤ E(ρ). (2.30)

4. Continuity: In the limit of vanishing distance between two density matrices,

the difference between their entanglement should tend to zero. That is,

E(ρ)− E(σ) → 0 for ||ρ− σ|| → 0. (2.31)

5. Additivity: The entanglement of a number n of identical copies of a given

state ρ should be equal to n times the entanglement of one copy,

E(ρ⊗n) = nE(ρ). (2.32)
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6. Subadditivity: The entanglement of a tensor product of two states ρ and

σ must be less than or equal to the sum of the entanglement of each of the

states, i.e.

E(ρ⊗ σ) ≤ E(ρ) + E(σ). (2.33)

7. Convexity: The entanglement measure should be a convex function, that

is,

E(λρ + (1− λ)σ) ≤ λE(ρ) + (1− λ)E(σ) (2.34)

for 0 < λ < 1.

In an attempt to quantify entanglement for bi-partite quantum systems, one should

distinguish between the simpler case of pure states entanglement and the more

complicated case of mixed states entanglement. It should be stressed that there

are entanglement indicators that are very useful for estimating the amount of

entanglement, even if they do not comply with all the above properties.

Entanglement measures for pure bi-partite states

Entropy of entanglement

For a pure bipartite state each of the subsystems is described by a mixed state.

The more mixed the subsystems are, the more entangled the overall state is. Thus,

one can use the degree of mixture of the subsystems as a measure of the entangle-

ment present in the global state. Since quantum entropies measure the degree of

mixture of a given quantum state, one can use the von Neumann entropy of the

reduced density matrices (sometimes called the reduced von Neumann entropy) as

a measure of the amount of the entanglement of the global state. This measure of

entanglement is also known as the entropy of entanglement (EE).

Entanglement of distillation and the entanglement cost

As stated above, these entanglement measures have a direct operational meaning

in terms of the manipulation of entanglement.
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The entanglement cost is defined as the minimum number of Bell states needed

to create a given state by means of LOCC. In other words, it tells us how expensive

it is to create an entangled state, i.e. what is the ratio of the number of maximally

entangled |Bell〉 states over the number of produced output states ρ, minimized

over all LOCC operation. In the limit of infinitely many states, EC is given by

EC(ρ) = inf
{ΛLOCC}

lim
nρ→∞

nin
|Bell〉
nout

ρ
. (2.35)

The Entanglement of distillation on the other hand is the maximum yield of

Bell states that can be obtained, optimized over all possible LOCC protocols. In

other words, it tells one how much entanglement can be extracted from a given

entangled state ρ, i.e. what the ratio is of the number of maximally entangled

output states |Bell〉 over the needed input states ρ, maximized over all LOCC

operations. In the limit of infinitely many states, ED is given by

ED(ρ) = sup
{ΛLOCC}

lim
nρ→∞

nout
|Bell〉
nin

ρ
. (2.36)

It was shown in [39] that these three entanglement measures coincide, that is,

ED(|ψ〉) = EC(|ψ〉) = EE(|ψ〉) for a given pure state |ψ〉. This is a consequence

of the uniqueness theorem for entanglement measures [25, 40, 26, 41, 42]. This

theorem states that any pure state measure of entanglement coincides with the

entropy of entanglement under appropriate conditions. The minimal conditions

for the theorem to hold are given in [40].

Mixed bi-partite states entanglement measures

It is much more complicated to quantify entanglement in the case of mixed states

than it is for pure states. A different approach has to be used. The reduced von

Neumann entropy fails to quantify mixed states’ entanglement because it doesn’t

distinguish between quantum and classical correlation.

The entanglement cost (EC) and the entanglement of distillation (ED) discussed

above may also be used to quantify mixed state entanglement. It was shown in
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[40] that under appropriate conditions, the entanglement of distillation and the

entanglement cost provide upper and lower bounds for mixed states entanglement

measures. That is, for some entanglement measures E, we have ED ≤ E ≤ EC .

EC and ED are entanglement measures with operational meaning, but there also

exist abstract mixed states entanglement measures. These include the entangle-

ment of formation and the Negativity. These two entanglement measures will be

the subject of the following sections.

The entanglement of formation

The entanglement of formation, ocasionally called the entanglement of creation,

may be seen as the generalization of the entropy of entanglement to mixed states.

The entanglement of formation is defined as follows:

Let ρ be the density matrix jointly describing the pair of quantum systems A and

B. Consider all possible decompositions {pi, |ψi〉} of ρ as a mixture of pure states

|ψi〉. In other words, all the mixtures {pi, |ψi〉} such that

ρ =
∑

i

pi|ψi〉〈ψi|. (2.37)

For each of the pure states |ψi〉, the entanglement E(ψi) is quantified by the

entropy of either subsystems A and B, as discussed above. The entanglement of

formation is then the minimum over all the aforementioned decompositions of the

corresponding average entanglement,

E(ρ) = min
{pi,|ψi〉}

∑

i

piE(ψi). (2.38)

This minimization problem constitutes in general a formidable one that can only be

approached numerically. However, an analytical expression for the entanglement

of formation has been obtained by Wooters in the two-qubits case. Wooters’
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celebrated formula is given by [47]:

E = h

(
1 +

√
1− C2

2

)
(2.39)

where h(x) = −x log2(x)− (1− x) log2(1− x) is Shannon’s entropy function and

C is the concurrence defined by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (2.40)

The λi are the eigenvalues, in decreasing order, of the hermitian matrix

R =
√√

ρρ̃
√

ρ (2.41)

and

ρ̃ = (σ2 ⊗ σ2)ρ
∗(σ2 ⊗ σ2) (2.42)

is known as the spin-flip state with

σ2 = σy =


 0 −i

i 0


 . (2.43)

The Negativity

Another abstract measure of entanglement is the negativity [50, 54, 55, 56, 57].

The negativity is defined as follows: Consider a density matrix ρ describing a state

of a bipartite system composed by two subsystems A and B. Let us assume that

this composite system has a finite-dimensional Hilbert space HA ⊗ HB. Let ρTA

denote the partial transpose of ρ with respect to subsystem A. That is, ρTA is the

Hermitian, trace-normalized operator having matrix elements

〈iA, jB|ρTA|kA, lB〉 ≡ 〈kA, jB|ρ|iA, lB〉. (2.44)

Then the negativity is defined as

N (ρ) ≡
∥∥ρTA

∥∥
1
− 1

2
(2.45)

21

 
 
 



2.4. QUANTUM ENTANGLEMENT

where ‖·‖1 is the trace norm, which is defined for any Hermitian operator A as

‖A‖1 = tr
√

A†A. Alternatively, the negativity can be defined as

N (ρ) ≡
∑

i

|λi| − λi

2
(2.46)

where λi are the eigenvalues of ρTA . In other words, the negativity is the absolute

value of the sum of the negative eigenvalues of ρTA .

The Negativity measure is closely related to the Peres criterion for separability

[58], also known as the positivity of the partial transpose ( PPT) criterion. This

criterion states that for ρ to be separable, all the eigenvalues of ρTA must be

positive or zero. The reasoning behind Peres criterion is the following:

Since any separable bi-partite state can be written as in Eq. 2.25, its partial

transpose is given by

ρTA
sep =

∑

i

pi(|ai〉〈ai|)T ⊗ |bi〉〈bi|. (2.47)

The (|ai〉〈ai|)T are again valid density matrices for the subsystem A (the (|ai〉〈ai|)T
are Hermitian, non-negative matrices with unit trace). Therefore ρTA

sep ≥ 0, in other

words, ρTA
sep is a positive operator.

The PPT criterion is a necessary separability criterion, but not a sufficient one

because some entangled states pass the PPT criterion. Entangled states verifying

the PPT criterion are called PPT entangled states. In the special case of two-

qubits states, the PPT separability criterion is both necessary and sufficient.

The fact that the Negativity relies on the PPT criterion is also its weakness because

it fails to distinguish between separable states and entangled PPT states. That

is, the Negativity is zero for both separable states and PPT entangled states.

However, from the practical point of view, the negativity is still the best available

entanglement measure for mixed states of composite systems of dimensions larger

than 2× 2. Indeed, it is the measure normally used by researchers when studying

the entanglement of mixed states in these systems.
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Entanglement indicators based on the q-entropies.

Given a composite quantum system, AB, consisting of two subsystems A and

B, the entropies associated with the composite system as a whole, S[AB], and

the entropies associated with the subsystems, S[A] and S[B], allow for a direct,

information-theoretical way of characterizing the entanglement exhibited by cer-

tain quantum states. A very intuitive property of classical composite systems is

that the global entropy of the complete system is always larger than or equal to

the individual entropies associated with each of the subsystems. However, this is

not always true in the case of composite quantum systems. For instance, when

one has such a composite system in a pure quantum state, the entropies of its

subsystems are in general not zero, in spite of the fact that the entropy of the

global system vanishes. Indeed, for pure states of bi-partite quantum systems the

entropy of one of the subsystems constitutes a valuable quantitative measure for

the amount of entanglement exhibited by the state.

In the case of mixed states of bi-partite quantum systems it is also the case that,

unlike what happens with classical systems, the entropy of a sub-system may be

greater than the entropy of the global system if the composite system is in an

entangled state. However, the situation for mixed states is more complicated than

it is for pure states. All non-entangled states comply with the classical entropic

inequalities, but some entangled states also verify those inequalities. This means

that, if for a given state the entropy of a subsystem is larger than the entropy of

the complete system, then we know for sure that the state under consideration is

entangled. However, if the state complies with the classical entropic inequalities,

we cannot be sure that the state is separable.

On the basis of the above considerations, it is interesting to consider entropic

23

 
 
 



2.4. QUANTUM ENTANGLEMENT

differences of the form

Dq = Sq[A]− Sq[AB] (2.48)

as indicators of entanglement. If Dq is positive, then one can conclude that the

state is entangled, but in the case when Dq is negative or zero, one cannot conclude

that the state is separable, for there are entangled states for which the value of Dq

is negative. Thus, in the case of mixed states, the quantities Dq lead to sufficient

(but not necessary) criteria for entanglement.

An entanglement measure was defined in section 2.4.1 as a functional that takes

quantum states to positive real numbers, but the quantity Dq defined here can

be negative for certain entangle states. So for the sake of conforming with the

definition, only the positive values of Dq will be considered. The quantity Dq will

be set equal to zero whenever Sq[A]− Sq[AB] < 0.

The entropic entanglement indicators Dq are closely related to the other entropic

indicators or entropic measures:

• For pure states and q = 1, Dq coincides with the entropy of entanglement.

• For pure states and q = 2, Dq coincides with the linear entropy.

• In the case q = 2 (for general states, pure or mixed), Dq is closely related

to the Mintert-Buchleitner lower bound EMB for the squared concurrence

(section 2.4.1).

Entanglement indicators based on uncertainty relations

Uncertainty relations lie at the heart of some of the most basic aspects of quantum

physics. It turns out that it is possible to formulate uncertainty relations that will

only be violated by entangled states. In other words, all separable states comply

with these relations, but some entangled states violate them. However, not all

entangled states violate these relations. Consequently, these relations provide suf-

24

 
 
 



2.4. QUANTUM ENTANGLEMENT

ficient (but not necessary) conditions for entanglement [61].

Let us consider a family of observables of a quantum mechanical system represented

by a set of hermitian operators {Âi}. The uncertainty of Ai is then given by

δA2
i = 〈Â2

i 〉 − 〈Âi〉2. (2.49)

This positive quantity can only be zero in the case of perfect predictability of the

measurement outcome, that is, only if the quantum state is an eigenstate of Âi.

This implies that a quantum state with zero uncertainty in all the properties Âi

must be a simultaneous eigenstate of all the operators in {Âi}. In the case where

these uncertainties cannot be all zero (because the Âi do not all share a common

eigenstate), there must be a lower bound U > 0 for the sum of uncertainties

∑

i

δA2
i ≥ U. (2.50)

The value of U may be difficult to find in cases where the operators Âi have a

difficult form. There are, however, cases where this limit is relatively easy to

compute. For N -level systems, one can obtain such a limit by using the spin

algebra of the corresponding spin l = (N − 1)/2 system with

(L̂2
x + L̂2

y + L̂2
z)|ψ〉 = l(l + 1)|ψ〉 (2.51)

for any state |ψ〉. In this case one obtains the uncertainty limit [61]

δL2
x + δL2

y + δL2
z = 〈L̂2

x + L̂2
y + L̂2

z〉 − (〈L̂2
x〉+ 〈L̂2

y〉+ 〈L̂2
z〉) ≥ l. (2.52)

In the case of two-level systems, the spin are often expressed in terms of the

normalized Pauli matrices. The uncertainty relation above (Eq. 2.52) becomes

δσ2
1 + δσ2

2 + δσ2
3 ≥ 2. (2.53)
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Now, given a bi-partite system AB, let us consider two sets of observables {Ai}
and {Bi} referring, respectively, to the subsystems A and B. These two sets of

operators satisfy the sum uncertainty relations given by

∑

i

δA2
i ≥ UA,

∑

i

δB2
i ≥ UB. (2.54)

Here, the Hilbert spaces of systems A and B do not need to have the same di-

mension. The operator properties Âi + B̂i then define a set of joint properties

of the two systems that can be determined by local measurement on Âi and B̂i,

respectively. It follows that the uncertainties of Âi + B̂i are equal to the sum of

the local uncertainties for product states ρ = ρ(A)⊗ ρ(B). That is,

δ(Ai + Bi)
2 = δA2

i + δB2
i (2.55)

Therefore, the measurement statistics of the product states are limited by the

uncertainty relation ∑

i

δ(Ai + Bi)
2 ≥ UA + UB. (2.56)

This uncertainty limit is also valid for mixture of product states

ρ =
∑
m

pmρ̂m(A)⊗ ρ̂m(B), (2.57)

since the uncertainties of a mixture are always greater than or equal to the average

uncertainties of the components. Therefore, any separable state satisfies the local

uncertainty relation (Eq. 2.56). Any state violating Eq. 2.56 must be entangled.

One can define the relative violation of local uncertainty relation for a pair of

quantum systems A and B as

CLUR = 1−
∑

i δ(Ai + Bi)
2

2U
(2.58)

where U is the uncertainty limit for a single system (here, we assume that UA =

UB = U).
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Mintert-Buchleitner observable concurrence lower bound

All the entanglement measures presented so far are indirect ways to quantify en-

tanglement in a given quantum state. In this section, we review a method of

obtaining the lower bound of the entanglement in a mixed state % by making few

experimental measurement on a twofold copy % ⊗ % [62, 63]. This lower bound is

given by

[c(%)]2 ≥ Tr(%⊗ %Vi), (2.59)

(i = 1, 2) with V1 = 4(P− − P+)⊗ P− and V2 = 4P− ⊗ (P− − P+)

P− is the projector on the antisymmetric subspace of the two copies of either

subsystem and P+ is the symmetric counterpart of P−. The lower bound on the

right-hand side can be expressed in terms of the purities of %, %
(1)
r and %

(2)
r that

is,

Tr(%⊗ %Vi) = 2[Tr%2 − Tr(%
(i)
r )2], (2.60)

where %
(i)
r is the reduced density matrix of either subsystem.

In the case q = 2 the quantity EMB = Sq[A] + Sq[B]− 2Sq[AB] (evaluated using

Tsallis q-entropies) is the lower bound for the squared concurrence of the state.

The quantity EMB is an experimentally measurable quantity [62]. For quantum

states verifying the equality S2[A] = S2[B] the alluded measurable quantity coin-

cides with D2 introduced in section 2.4.1. This is particularly important because

the amount of entanglement (as measured, for instance, by the squared concur-

rence) is not a directly measurable quantity. It is therefore important, both from

the practical and the theoretical points of view, to investigate in detail the prop-

erties of experimentally measurable indicators of entanglement, especially if they

also establish lower bounds for the amount of entanglement.

Entanglement measure for multi-partite (more than two parts) systems

It is important to understand multi-partite systems’ entanglement since this is

crutial to the realization of quantum information processing devices. For a multi-

partite system in a pure state, one way to quantify entanglement is to compute
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the average value of the entropic entanglement measures for all the possible bi-

partitions [53, 52, 57].

A practical entanglement measure for n-qubit pure states |ψ〉 was introduced by

Meyer and Wallach [51]. Brennen [53] showed that this measure is equivalent to

the average of all the single-qubit linear entropies,

Q(|ψ〉) = 2

(
1− 1

n

N∑

k=1

Trρ2
k

)
, (2.61)

where ρk is the density operator for the kth qubit after tracing out the rest. This

expression was generalized by Scot [52] to the multiqubit states |ψ〉. By considering

all the possible bipartite divisions one obtains

Qm(|ψ〉) =
2m

2m − 1

(
1− m!(n−m)!

n!

∑
s

Trρ2
s

)
,

m = 1, . . . , bn/2c, (2.62)

where the sum is taken over all the subsystems s constituted by m qubits, ρs are

the corresponding marginal density matrices, and bxc is the integer part of x.

In the case of a multi-partite system in mixed state, one can used the average of

the negativity of all the possible partitions [56, 54].

Let us consider an n-qubit state in the form

|ψ〉 =
2n−1∑

k=0

ck|k〉 (2.63)

where the ck ∈ C obey the normalization condition. Each k is a basis state

|a1a2 · · · an〉, where a1a2, · · · , an is the binary representation of the integer k, with

ai ∈ {0, 1}. Now we construct a density operator of a mixed state ρ using N pure
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states of the same form as |ψ〉:

ρ =
N∑

j=1

pj |ψj〉〈ψj |

=
N∑

j=1

pj

1∑

a1...an=0

cj
a1...an

|a1 . . . an〉
1∑

a′1...a′n=0

cj∗
a′1...a′n

〈a′1 . . . a′n|

=
N∑

j=1

pj

1∑

a1...an=0
a′1...a

′
n=0

dj
a1...ana′1...a′n

|a1 . . . an〉〈a′1 . . . a′n| (2.64)

where dj
a1...ana′1...a′n=0 = cj

a1...ancj∗
a′1...a′n=0. The partial transpose ρT{i} of ρ with

respect to the index i (also known as the cut set {i}) is obtained by transposing

the bits ai and a′i in the basis states. That is,

ρT{i} =
N∑

j=1

pj

1∑

a1...an=0
a′1...a

′
n=0

dj
a1...ai...ana′1...a

′
i...a

′
n
|a1 . . . a′i . . . an〉〈a′1 . . . ai . . . a

′
n|

=
N∑

j=1

pj

1∑

a1...an=0
a′1...a

′
n=0

dj
a1...a′i...ana′1...ai...a′n

|a1 . . . ai . . . an〉〈a′1 . . . a′i . . . a
′
n|

(2.65)

The partial transpose of larger set of indices (larger cut set) is constructed similarly,

by transposing the bits corresponding to each of the index in the set. Each density

matrix has 2n different partial transposes. To get a good indication of the amount

of entanglement, one must investigate all the possible cuts. In practice, however,

only 2n−1 − 1 of the 2n partial transposes need to be calculated. This is because

certain cuts are equivalent and the trivial partial transpose with respect to the

empty cut ρT{∅} is the original density matrix, which is known to have no negative

eigenvalues.

2.4.2 Example of an application of Entanglement

Entanglement is important because it is a fundamental resource that can be ex-

ploited to perform tasks that are impossible or very difficult otherwise. Quan-
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tum entanglement is one of the pillars of the emerging, new quantum information

technologies. Entanglement is at the core of information-related tasks such as

quantum computation, quantum cryptography, quantum teleportation and super

dense coding. For an example of application of quantum entanglement, quantum

teleportation, proposed by Bennett et al in 1993, will be discussed below.

Quantum teleportation

Quantum teleportation [3, 4] may be seen as a technique for moving quantum

states around even in the absence of a quantum communication channel between

the sender and the recipient.

Consider two observers “Alice” and “Bob” that live far apart, and suppose that

they met long time ago and shared an EPR pair (section 2.1.1). Now Alice wishes

to send a qubit in a state |ψ〉 to Bob, but the state of the qubit and the location

of Bob are unknown to Alice and there is no quantum communication channel

between her and Bob (that is, she can only send classical information to Bob).

One way to achieve this task happens to be quantum teleportation.

Let {|0〉A, |1〉A} and {|0〉B, |1〉B} be basis for Alice’s and Bob’s EPR particles

respectively, and let {|0〉Q, |1〉Q} be a basis for the qubit that Alice wishes to send

to Bob. The state of that qubit is |ψ〉 = a|0〉Q + b|1〉Q with a and b unknown

amplitudes satisfying |a2| + |b2| = 1. The EPR particles are prepared in the Bell

state |β00〉 = 1√
2
(|0〉A|0〉B + |1〉A|1〉B). The entire system is thus in a pure state

|ψQAB〉 = |ψ〉|β00〉. To teleport the qubit, Alice must couple it with the EPR pair.

She does so by performing a complete measurement on the system consisting of

the qubit and her EPR particle. The measurement is performed in the Bell basis

given by
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|β00〉 =
1√
2
(|0〉Q|0〉A + |1〉Q|1〉A)

|β01〉 =
1√
2
(|0〉Q|1〉A + |1〉Q|0〉A)

|β10〉 =
1√
2
(|0〉Q|0〉A − |1〉Q|1〉A)

|β11〉 =
1√
2
(|0〉Q|1〉A − |1〉Q|0〉A).

These four states constitute a complete orthonormal basis for the particle A and

the qubit Q.

The complete state of the three particles before Alice’s measurement is

|ψQAB〉 = (a|0〉Q + b|1〉Q)[
1√
2
(|0〉A|0〉B + |1〉A|1〉B)]

=
a√
2
(|0〉Q|0〉A|0〉B + |0〉Q|1〉A|1〉B)

+
b√
2
(|1〉Q|0〉A|0〉B + |1〉Q|1〉A|1〉B). (2.66)

From the Bell basis, we get the following relations:

|0〉Q|0〉A =

√
2

2
(|β00〉+ |β10〉) (2.67)

|0〉Q|1〉A =

√
2

2
(|β01〉+ |β11〉) (2.68)

|1〉Q|0〉A =

√
2

2
(|β01〉 − |β11〉) (2.69)

|1〉Q|1〉A =

√
2

2
(|β00〉 − |β10〉). (2.70)

By substituting these into |ψQAB〉, one gets

|ψQAB〉 =
a

2
[(|β00〉+ |β10〉)|0〉B + (|β01〉+ |β11〉)|1〉B

+
b

2
[(|β01〉 − |β11〉)|0〉B + (|β00〉 − |β10〉)|1〉B]

=
1

2
[|β00〉(a|0〉B + b|1〉B) + |β01〉(a|1〉B + b|0〉B)

+|β10〉(a|0〉B − b|1〉B) + |β11〉(a|1〉B − b|0〉B)] (2.71)
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So depending on Alice’s measurement outcome, Bob’s particle will be in one of the

four pure states

a|0〉B + b|1〉B
a|1〉B + b|0〉B
a|0〉B − b|1〉B
a|1〉B − b|0〉B. (2.72)

Thus to complete the process, Alice has to communicate the result of the mea-

surement to Bob. After that Bob can recover the state |ψ〉 = a|0〉B + b|1〉B by

applying an appropriate operator to his particle. If the measurement outcome is

|β00〉, Bob doesn’t need to do anything since his particle will be in the state |ψ〉.
If the outcome is |β01〉, then Bob’s particle is in the state a|1〉B + b|0〉B so he has

to apply the operator

X =


 0 1

1 0


 (2.73)

to recover |ψ〉 = a|0〉B + b|1〉B.

If the outcome is |β10〉, Bob’s particle will be in the state a|0〉B − b|1〉B. Conse-

quently, he has to apply the operator

Z =


 1 0

0 −1


 (2.74)

to recover the state |ψ〉 of the qubit.

And finally if the outcome is |β11〉, Bob’s particle will be in the state a|1〉B−b|0〉B.

So in order to recover |ψ〉 = a|0〉B + b|1〉B, he will have to apply first the operator

X and then the Z operator.
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Chapter 3
Entanglement and open quantum systems

3.1 Introduction

An open quantum system may be defined as a system S which is coupled to an-

other system B, called the environment. In other words, it is a subsystem of the

combined system (S + B). A simple illustration is given in Fig. 3.1. The study

of open systems is a very important subject in quantum physics in general and in

quantum information theory in particular. This is because real quantum systems

often suffer from unwanted and unavoidable coupling with the environment [12].

Quantum systems must then be regarded as open systems since it is not possible

to get complete isolation from the surrounding. In order to build useful quantum

information processing systems, it is crucial to understand these interactions with

the environment and how they affect the entanglement of quantum systems.

To study how quantum systems interact with their environment is also important

from the point of view of fundamental physics. This is because these interactions,

leading to a set of effects generally referred to as decoherence, justify the framework

and intuition of classical physics as an acceptable approximation, even though the

underlying processes are quantum mechanical. In other words, decoherence is the

mechanism by which the classical picture emerges out of the quantum mechanical

background. Consequently, it determines the location of the quantum-classical
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boundary.

The study of open quantum systems is a vast topic, and there are many ways to

approach it. The aim of this chapter is not to explore open quantum systems in

depth, for this is beyond the scope of the present study. Here, I introduce and

explain basic concepts on open systems that are crucial to the understanding of

the system that I will study.

System S

(S + B)

Environment B

Figure 3.1: Simple Schematic picture of an open quantum system

When dealing with a closed quantum system one represents its dynamics by a

unitary evolution operator. In general, this is not possible in the case of open

systems. Consider for example the illustration given by Fig 3.1. The state of the

subsystem S will change due to the interaction with the environment B and due to

its internal dynamics. After some time, it will no longer be possible to represent its

resultant state in term of unitary Hamiltonian dynamics. It is therefore necessary

to formulate the dynamics of open system by means of appropriate equations of

motion. These equations of motion are usually called master equations.
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In the study of open quantum systems, one tries to develop a simpler description

in a reduced state space formed by a restricted set of physically relevant variables.

This is because in many important situations, a complete mathematical model of

the combined system dynamics is too complex. As an example, one can mention

the case where the environment consists of infinitely many degrees of freedom (a

reservoir), or the case where the modes of the environment are neither known ex-

actly nor controllable. This simpler description is achieved by means of various

analytical methods and approximation techniques.

It was stated earlier that the evolution of open quantum systems is described by

master equations. These master equations relieve one from the need of having to

first determine the dynamics of the total system-environment combination and to

then trace out the degrees of freedom of the environment as we usually do with

close quantum systems. The next section is about Quantum Markov processes

in general and the Born-Markov master equation in particular. After that, I will

discuss the Non-Markovian regime.

3.2 Master equations formalism

Before discussing Master equations, it is crucial to define few preliminary concepts

from probability theory. These concepts are Random variables, Stochastic process,

and Markov processes. I shall first briefly explain from the point of view of classical

probability the main difference between Markovian and non-Markovian processes.

Afterwards, I shall review the basics of quantum master equations.

3.2.1 Random variables

A random variable is basically an unknown quantity whose value is determined by

the randomness of some experiment. This concept is very important in probability

theory because in many situations one is not interested in an experiment itself,

but rather in some consequence of its random outcome. Such consequences, when

real valued, may be thought of as functions called random variables which map
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the sample space Ω into R. The sample space Ω is the set of all possible outcomes

of an experiment. [12, 14].Thus a random variable X is a map

X : Ω 7→ R (3.1)

which assigns to each elementary event ω ∈ Ω a real number X(ω).

As an illustrative example, consider an experiment where a fair coin is tossed

twice: Ω = {HH, HT, TH, TT}. For ω ∈ Ω, let X(ω) be the number of heads,

then X(HH) = 2, X(HT ) = X(TH) = 1, X(TT ) = 0.

3.2.2 Stochastic processes

A stochastic process is a random variable whose statistical properties change in

time [12, 14]. Stochastic processes may be seen as a generalization of the idea of

deterministic time evolution. The latter is usually given in terms of differential

equations describing the deterministic change in time of some variable while in a

stochastic process, such a deterministic evolution is replaced by a probabilistic law

for the time development of the variable [12].

A more mathematically rigorous definition of stochastic processes is as follows:

a stochastic process is a family of random variables X(t) on a common probability

space depending on a parameter t ∈ T . The parameter t may represent the time

variable as it is the case in most physical applications. In that case, the parameter

space T is an interval of the real time axis. According to this definition, for each

fixed t, the quantity X(t) is a map from the sample space Ω into R. That is, X is

a map,

X : Ω× T → R (3.2)

which associates with each ω ∈ Ω and with each t ∈ T a real number X(ω, t).

When ω is kept fixed, the mapping

t 7→ X(ω, t), t ∈ T, (3.3)

is called a realization, trajectory, or sample path of the stochastic process.
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3.2.3 Markov processes

Markov processes are very important in natural sciences in general and in physics

in particular. Many important processes arising in equilibrium statistical mechan-

ics may be classified as Markovian if an appropriate set of variables are chosen.

A Markov Process is a Stochastic Process with a short memory. That is, a process

which rapidly forgets its past history. Consequently, Markov Processes are rela-

tively easy to deal with. One can formulate the condition of the fast decrease of

memory effects in terms of conditional probability as follows:

P (X(t) ∈ B|X(tm) = xm, ..., X(t1) = x1) = P (X(t) ∈ B|X(tm) = xm). (3.4)

This equation is known as the Markov condition. It states that the probability of

the event X ∈ B conditioned on m previous events X(tm) = xm, ..., X(t1) = x1

depends only on the latest event X(tm) = xm. Random processes that do not

comply with the above condition are called non-Markovian.

3.2.4 Dynamical maps

Let us consider the illustration of the open system given in Fig. 3.1. It is clear

that the total system (S +B) is a closed system. Its evolution is therefore unitary.

The reduced density matrix of the subsystem S is obtained by using the ordinary

formalism of closed systems, that is, by taking the partial trace over the degrees

of freedom of the environment

ρS(t) = TrB{U(t, t0)ρ(t0)U
†(t, t0)}; (3.5)

where U(t, t0) correspond to the time evolution of the total system. The equation

of motion for the marginal density matrix is obtained by taking the partial trace

over the environment on both sides of the Liouville-von Neumann equation for the

total system
d

dt
ρS(t) =

1

i~
TrB[H(t), ρ(t)]. (3.6)

In general, the dynamics of the reduced system defined by the exact equations 3.5

and 3.6 will be quite involved, if not intractable.
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In the master-equation formalism, the marginal density matrix ρS(t) is directly

calculated from an expression of the form

ρ̂S(t) = V̂ (t)ρ̂S(0), (3.7)

where the operator V̂ (t) is the dynamical map that generates the evolution of

ρ̂S(t). V̂ (t) is sometimes referred to as a “superoperator” because it represents an

operator that in turn acts on another operator. Equation 3.7 is called a master

equation for ρ̂S(t), and it represents the most general form that such a master

equation may take.

To discuss the concept of dynamical map further, suppose that at the initial time

t = 0, the state of the total system S + B is an uncorelated product state ρ(0) =

ρS(0)⊗ρB where ρS(0) is the initial state of the reduced system S and ρB represents

some reference state of the environment. The transformation describing the time

evolution of the subsystem S may be written in the form

ρ̂S(0) 7→ ρ̂S(t) = V̂ (t)ρ̂S(0) ≡ TrB{Û(t, 0)[ρ̂S(0)⊗ ρ̂B]Û †(t, 0)}. (3.8)

If the reference state ρ̂B and the final time are fixed, this relation (Eq. 3.8) defines

a map from the space S(HS) (HS is the Hilbert space of the subsystem S) of the

density matrices of the reduced system into itself,

V̂ (t) : S(HS) → S(HS). (3.9)

This map, describing the time evolution of the open system, is a dynamical map.

To discuss the dynamical map V̂ (t) above, the assumption that the time t ≥ 0

is fixed was made. If one allows the time to vary, one gets a one parameter

family V̂ (t)|t ≥ 0 of dynamical maps, where V̂ (0) is the identity map. Such a

family describes the whole future time evolution of the open system. This time

evolution is very involved in general. However, if the characteristic time scales

over which the environment correlation function decay are much smaller than the

characteristic time scale of the system’s evolution, memory effects in the reduced
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system dynamics can be neglected. One thus expects Markovian-type behavior as

in the classical theory.

3.2.5 Operator-sum representation

The operator-sum representation or Kraus representation [3, 15] is a useful tool

in the study of one part of a composite quantum system. Consider a composite

system made of two subsystems A and B, and suppose that its initial density

matrix ρAB is a tensor product state of the form

ρAB(0) = ρA(0)⊗ |b0〉〈b0|, (3.10)

that is, subsystem A has the the density matrix ρA(0) initially and subsystem B

is in the pure state |b0〉. The time evolution of the bipartite system is governed by

the unitary time evolution operator, that is,

ρAB(t) = ÛAB[ρA(0)⊗ |b0〉〈b0|]Û †
AB. (3.11)

The density matrix of the subsystem A is obtained by taking the partial trace of

the total density matrix,

ρA(t) = TrB(ÛAB[ρA(0)⊗ |b0〉〈b0|]Û †
AB). (3.12)

Now let {|bk〉} be an orthonormal basis for the state space of the subsystem B,

then the previous equation may be written as

ρA(t) =
∑

k

〈bk|ÛAB[ρA(0)⊗ |b0〉〈b0|]Û †
AB)|bk〉.

=
∑

k

〈bk|ÛAB|b0〉ρA(0)〈b0|Û †
AB|bk〉

=
∑

k

EkρA(0)E†
k. (3.13)

where Ek ≡ 〈bk|ÛAB|b0〉. The operators Ek are known as the operation elements

or the Kraus operators.
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It follows from the unitarity of ÛAB that the E′
ks satisfy the property

∑

k

E†
kEk =

∑

k

〈b0|Û †
AB|bk〉〈bk|ÛAB|b0〉

= 〈b0|Û †
ABÛAB|b0〉

= IA. (3.14)

This property is generally known as the completeness relation.

Here, it is assumed that the subsystem B is initially in the pure state |b0〉. The

above argument will still hold even if this assumption is not correct. This is because

if B starts in a mixed state, one can always introduce a second system to purify

it through a process known as purification.

3.2.6 The Born-Markov Master equation

Master equations are very useful in the description of the dynamics of open quan-

tum systems, but their power is only unlocked once certain assumptions about the

system-environment states and dynamics are imposed. In the case of the Born-

Markov master equation, two main approximations are involved [12, 17, 18]:

1. The Born approximation: here it is assumed that the environment is large and

practically unaffected by the interactions with the system. As a consequence,

changes of the density operator of the environment are negligible and the

system-environment state remains in an approximate product state at all

times. That is,

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂B (3.15)

with ρ̂B approximately constant at all times.

2. The Markov approximation: here, memory effects of the environment are

neglected. In other words, it is assumed that any self-correlations within the

environment created by the coupling to the system decay rapidly compared

to the characteristic time over which the state of the system varies noticeably.
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Derivation of the Born-Markov Master equation

In order to derive the Born-Markov Master equation, consider a system S inter-

acting with an environment B (see Fig. 3.1). The Hamiltonian describing the

combination S + B is of the form

H = HS ⊗ IB + IS ⊗HB + HSB = H0 + HSB (3.16)

where HS describe the system, HB the environment and HSB the interaction. Let

ρ be the density matrix describing the composite system S + B. Then the density

matrix describing the system is ρS = TrBρ. The evolution of ρ is governed by the

Liouville-von Neumann equation

i~ρ̇ = [H, ρ] (3.17)

If one assumes weak interaction, then it is possible to separate the fast motions

due to H0 = HS + HB and the slow motions due to the interaction HSB. Now let

make use of the interaction picture by defining [17]

i~U̇S = HSUS , US(0) = IS , (3.18)

i~U̇B = HBUB, UB(0) = IB,

U = US ⊗ UB

ρ̃ = U †ρU, H̃SB = U †HSBU (3.19)

After substituting Eq. 3.18 and Eq. 3.19 into Eq. 3.17, we get

i~ ˙̃ρ = [H̃SB, ρ̃] (3.20)

which is equivalent to

ρ̃(t) = ρ̃(0) +
1

i~

∫ t

0
dτ [H̃SB(τ), ρ̃(τ)] (3.21)
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where ρ̃(0) = ρ(0).

By inserting Eq. 3.21 into the right hand side of Eq. 3.20 we get

˙̃ρ(t) =
1

i~
[H̃SB(t), ρ(0)]− 1

~2

∫ t

0
dτ [H̃SB(t), [H̃SB(τ), ρ̃(τ)]]. (3.22)

The density matrix of the system S in the interaction picture is obtained by

taking the partial trace of ρ̃ over the environment degrees of freedom, that is,

TrB(ρ̃) = TrB(U †ρU) (3.23)

= U †
STrB(U †

BρUB)US

= U †
STrB(ρU †

BUB)US

= U †
STrBρUS

= U †
SρSUS

= ρ̃S .

Now if one takes the trace of Eq. 3.22 over the environment degrees of freedom,

one gets

˙̃ρS(t) =
1

i~
TrB{[H̃SB(t), ρ(0)]} − 1

~2

∫ t

0
dτTrB{[H̃SB(t), [H̃SB(τ), ρ̃(τ)]]}. (3.24)

To continue from this point, one needs to make few assumptions.

(i) The first assumption is that the system and the environment are not entan-

gled initially, that is, at t = 0,

ρ(0) = ρS(0)⊗ ρB(0) (3.25)

where ρs and ρB are the system and environment density matrices respec-

tively.

(ii) The second assumption is that

TrB{[H̃SB, ρ(0)]} = 0. (3.26)
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Even if this is not the case, it is always possible to redefine HS and HSR to

fulfill that assumption since TrB{[H̃SB, ρ(0)]} is an operator acting on the

system alone.

(iii) The third assumption is the Born approximation, in other words, one as-

sumes that the coupling is so weak and the environment so large that its

state is unaffected by the interaction. Consequently, the density operator of

the system-environment combination remains at all times in an approximate

product form. That is,

ρ̃(τ) ≈ ρ̃S(τ)⊗ ρ̃B (3.27)

so Eq. 3.24 becomes

˙̃ρS(t) = − 1

~2

∫ t

0
dτTrB{[H̃SB(t), [H̃SB(τ), ρ̃S(τ)ρ̃B]]}. (3.28)

(iv) The fourth assumption one makes is the Markov approximation. In Eq. 3.28,

computing the change of ρ̃S at time t requires knowledge of ρ̃S at all previous

times τ < t. The point of using the Markov approximation here is thus to

transform Eq. 3.28 into a time-local master equation. By replacing ρ̃S(τ)

with ρ̃S(t) in Eq. 3.28, one gets

˙̃ρS(t) = − 1

~2

∫ t

0
dτTrB{[H̃SB(t), [H̃SB(τ), ρ̃S(t)ρ̃B]]}. (3.29)

Now let σi be a basis of Hermitian operator acting on the system, then one can

expand the HSB as

HSB =
M−1∑

i=0

σiBi (3.30)

where the operator Bi acts on the environment and M = N2, and N is the di-

mension of the system’s Hilbert space. We also have the transformation equations

H̃SB(t) = U †(t)HSBU(t) =
∑

i

σ̃i(t)B̃i(t), (3.31)

where

σ̃i(t) ≡ U †
S(t)σiUS(t), B̃i(t) ≡ U †

B(t)BiUB(t). (3.32)
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Inserting Eq. 3.31 and 3.32 into Eq. 3.29 yields

˙̃ρS(t) = − 1

~2

∑

i,j

∫ t

0
dτTrB{[σ̃i(t)B̃i(t), [σ̃j(τ)B̃j(τ), ρ̃S(t)ρ̃B]]}. (3.33)

Expanding the commutator on the right-hand side of this equation gives

˙̃ρS(t) = − 1

~2

∑

i,j

∫ t

0
dτTrB{σ̃i(t)B̃i(t)σ̃j(τ)B̃j(τ)ρ̃S(t)ρ̃B

−σ̃i(t)B̃i(t)ρ̃S(t)ρ̃Bσ̃j(τ)B̃j(τ)− σ̃j(τ)B̃j(τ)ρ̃S(t)ρ̃Bσ̃i(t)B̃i(t)

+ρ̃S(t)ρ̃Bσ̃j(τ)B̃j(τ)σ̃i(t)B̃i(t)}. (3.34)

Using the cyclic property of the trace, one gets

˙̃ρS(t) = − 1

~2

∑

i,j

∫ t

0
dτTrB{σ̃i(t)σ̃j(τ)ρ̃S(t)B̃i(t)B̃j(τ)ρ̃B

−σ̃i(t)ρ̃S(t)σ̃j(τ)B̃j(τ)B̃i(t)ρ̃B − σ̃j(τ)ρ̃S(t)σ̃i(t)B̃i(t)B̃j(τ)ρ̃B

+ρ̃S(t)σ̃j(τ)σ̃i(t)B̃j(τ)B̃i(t)ρ̃B}. (3.35)

Let the environment correlation functions be defined as

Γ̃ij(t, τ) ≡ TrBB̃i(t)B̃j(τ)ρ̃B. (3.36)

After inserting this relation in the previous equation, one gets

˙̃ρS(t) = − 1

~2

∑

i,j

∫ t

0
dτTrB{σ̃i(t)σ̃j(τ)ρ̃S(t)Γ̃ij(t, τ)

−σ̃i(t)ρ̃S(t)σ̃j(τ)Γ̃ij(t, τ)− σ̃j(τ)ρ̃S(t)σ̃i(t)Γ̃ij(t, τ)

+ρ̃S(t)σ̃j(τ)σ̃i(t)Γ̃ij(t, τ)}. (3.37)

If one now assumes that the environment correlation functions are memoryless,

that is,

Γ̃ij(t, τ) = γ̃ijδ(t− τ) (3.38)

substituting that in the previous equation, one gets
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˙̃ρS(t) = − 1

~2

∑

i,j

γ̃ij

2

∫ t

0
dτTrB{σ̃i(t)σ̃j(t)ρ̃S(t)− σ̃i(t)ρ̃S(t)σ̃j(t)

−σ̃j(t)ρ̃S(t)σ̃i(t) + ρ̃S(t)σ̃j(t)σ̃i(t)}. (3.39)

Master equation in the Lindblad form

The Lindblad equation or master equation in the Lindblad form is the most general

type of Markovian master equation describing non-unitary evolution of the density

matrix ρ that is trace preserving and completely positive for any initial condition.

It was first shown by Lindblad [16] and Gorini et al. [19] that the most general

master equation ensuring the positivity of the density matrix is of the form

ρ̇ = − i

~
[H, ρ] +

∑

j

[2LjρL†j − {L†jLj , ρ}], (3.40)

where {x, y} = xy + yx is an anticommutator, H is the system Hamiltonian

representing the coherent part of the system and Lj are the Lindblad operators,

representing the coupling of the system with the environment [3].

To derive the master equation in the Lindblad form, one needs to use the operator-

sum representation or the Kraus representation discussed in section 3.2.5.

As stated earlier, the evolution of the density matrix of a system evolving uni-

tarily is governed by the Liouville-von-Neumann equation (Eq. 3.17), that is,

ρ̇ = − i

~
[H, ρ].

One can solve this equation and obtain

ρ(t) = e−iHtρ(0)eiHt (3.41)

if the Hamiltonian H is time independent. The aim here is to generalize this

equation to the case of Markovian but non-unitary evolution. That is, one wishes
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to get an evolution equation of the form

ρ̇(t) = L[ρ]. (3.42)

The linear operator L, also sometimes referred to as the generator, is called the

Lindbladian. It generates a finite superoperator in the same sense that a Hamil-

tonian H generates unitary time evolution. The formal solution of equation 3.42

is

ρ(t) = eLt[ρ(0)] (3.43)

if L is time independent.

If we consider a system S interacting with the environment B as illustrated in

figure 3.1, the density matrix of the system S is given by

ρ̇S = TrB(ρ̇SB) = TrB(− i

~
[H, ρSB]) (3.44)

But one cannot expect this formula to be expressed in terms of ρS alone. For

the following derivation, it is assumed that Markovian approximation applies. A

general superoperator S (an operator acting on another operator) has a Kraus

representation

ρ(t; t + dt) = S(t; t + dt)(ρ(t)) =
∑

k

Ek(t)ρ(0)E†
k(t) (3.45)

and S(t; t+dt) is a superoperator mapping ρ(t) into ρ(t+dt). If one assumes that

ρ(t + dt) = ρ(t) + O(dt), (3.46)

then one of the Kraus operators will be E0 = I + O(dt) and the other will be of

the order
√

dt. one can thus write

E0 = I +
1

~
(−iH + K)dt,

Ek = Lk

√
dt, k = 1, 2, 3 . . . (3.47)
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where H and K are hermitian operators, and the Lk are the Lindblad operators.

The operator K can be obtained with the normalization condition,

I =
∑

k

E†Ek

= [I +
1

~
(iH + K)dt][I +

1

~
(−iH + K)dt] +

∑

k>0

L†kLkdt (3.48)

After a little algebra, the previous equation becomes

2

~
Kdt +

∑

k>0

L†kLkdt + O((dt)2) = 0

∴ K = −~
2

∑

k>0

L†kLk. (3.49)

Substituting Eq. 3.49 into 3.45 and making use of the assumption

ρ(t + dt) = ρ(t) + ρ̇(t)dt, (3.50)

(which is possible under the Markovian approximation) one gets

ρ(t) + ˙ρ(t)dt = ρ(t)− i

~
[H, ρ(t)]dt

=
∑

k>0

(Lkρ(t)L†k −
1

2
L†kLkρ(t)− 1

2
ρ(t)L†kLk)dt. (3.51)

Now equating the terms of order dt, we obtain Lindblad’s equation

ρ̇ ≡ L[ρ] = − i

~
[H, ρ] +

∑

k>0

(LkρL†k −
1

2
L†kLkρ−

1

2
ρL†kLk) (3.52)

This master equation is usually referred to as the GKSL (Gorini, Kossakowski,

Sudarshan and Lindblad) master equation. The first term in L[ρ] is the usual

von-Neumann terms that generates unitary evolutions, the other terms describe

possible transitions that the system may undergo due to interactions with the

environment.

3.3 Non-Markovian processes

In order to derive the Born-Markov master equation above, certain assumptions

were made. For instance it was assumed that system-environment coupling is weak
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3.3. NON-MARKOVIAN PROCESSES

and that the memory effects of the environment are negligible. In many situations,

however, these assumptions are not fulfilled. The system in that case is said to be

non-Markovian.

It is important to understand non-Markovian approximation because studies showed

the limits of the Markovian description of quantum computation and quantum er-

ror correction [20, 21]. Moreover, in order to describe decoherence in many solid

state systems, one often needs to use non-Markovian approaches [22, 23]

Equations of motion for the density matrix of systems evolving under non-Markovian

conditions are usually obtained by using projection operator techniques [12]. The

basic idea behind projection operator techniques is to regard the operation of trac-

ing over the environment degrees of freedom as a formal projector P in the state

space of the total system. The super-operator has the property of a projector

operator, that is P2 = P . The density matrix Pρ is referred to as the relevant

part of the density matrix ρ of the total system. In the same way, one defines

another projector Q onto the irrelevant part Qρ where P +Q is the identity map.

The aim here is to derive an equation of motion for the relevant part Pρ. The

two projector operator techniques mostly used are the Nakajima-Zwanzig (NZ)

and the time convolutionless (TCL) techniques. Both these techniques lead to an

exact equation of motion for the relevant part Pρ.

The Nakajima-Zwanzig technique leads to an integrodifferencial equation that in-

volves a retarded time integration over the history of the reduced system while

the time convolutionless technique yields a first order differential equation local in

time.

The main system that will be studied in the next chapter is a two-level system

interacting with an environment. It might be helpful to complete this chapter by

introducing an example of a two-dimensional system interacting with the environ-

ment.
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Spontaneous decay of a two-level system [12, 24]

In this example, a two-level system S decaying spontaneously into the field vac-

uum is considered. This is an exactly solvable model.

The Hamiltonian of the total system is

H = HS + HB + HI = H0 + HI , (3.53)

where

H0 = ω0σ+σ− +
∑

k

ωkb
†
kbk, (3.54)

and

HI = σ+ ⊗B + σ− ⊗B† (3.55)

with B =
∑

k gkbk. ω0 is the transition frequency of the two-level system S and

σ± are the raising and lowering operators. The index k labels the different field

modes of the reservoir with frequencies ωk, b†k and bk are the modes’ creation and

annihilation operators, and gk are the coupling constants.

Now let introduce the states [24]

ψ0 = |0〉S ⊗ |0〉B, (3.56)

ψ1 = |1〉S ⊗ |0〉B, (3.57)

ψk = |0〉S ⊗ |k〉B, (3.58)

where |0〉S = σ−|1〉S and |1〉S = σ+|0〉S are the ground and exited states of the

system respectively, |0〉B denotes the vacuum state of the reservoir, and |k〉B =

b†k|0〉B. In the interaction picture, the state φ(t) of the total system obeys the

Schrödinger equation
d

dt
φ(t) = −iHI(t)φ(t), (3.59)

where

HI(t) = σ+(t)B(t) + σ−(t)B†(t) (3.60)
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is the interaction picture Hamiltonian with

σ±(t) = σ±e±iω0t, (3.61)

and

B(t) =
∑

k

gkbke
−iωkt. (3.62)

The ‘particle number’ operator is

N = σ+σ− +
∑

k

b†kbk, (3.63)

and one can easily show that it commutes with the total Hamiltonian given by Eq.

3.53. That is,

[H, N ] = 0. (3.64)

This means that N is a conserved quantity. As a consequence, any initial state of

the form

φ(0) = c0ψ0 + ci(0)ψ1 +
∑

k

ck(0)ψk (3.65)

evolves after a time t into a state

φ(t) = c0ψ0 + c1(t)ψ1 +
∑

k

ck(t)ψk. (3.66)

The amplitude c0 is constant since HI(t)ψ0 = 0, while the amplitudes c1(t) and

ck(t) are time dependent.

After substituting Eq. 3.66 into the Schrödinger equation (Eq. 3.59), one obtains

the following differential equations for the time evolution of the coefficients:

ċ1(t) = −i
∑

k

gke
i(ω0−ωk)tck(t), (3.67)

ċk(t) = −ig∗ke
−i(ω0−ωk)tc1(t). (3.68)

If one assumes that there are no photons in the initial state, one gets ck(0) = 0. A

close equation for c1(t) can then be obtained by solving the second equation and

inserting the solution into the first.

ċ1(t) = −
∫ t

0
dt1f(t− t1)c1(t1), (3.69)
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where the kernel f(t− t1) is given by the correlation function

f(t− t1) = TrBB(t)B†(t1)ρBeiω0(t−t1), (3.70)

where ρB = (|0〉〈0|)B is the vacuum state of the reservoir. This kernel may be

expressed in terms of the spectral density J(ω) of the reservoir,

f(t− t1) =

∫
dωJ(ω)ei(ωo−ω)(t−t1). (3.71)

Equation 3.69 can now be solved using Laplace transformation if one knows the

form of the spectral density. The density matrix of the two-level system can thus

be expressed as

ρS(t) = TrB|φ(t)〉〈ψ(t)| =

 |c1(t)|2 c∗0c1(t)

c0c
∗
1(t) 1− |c1(t)|2


 . (3.72)
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Chapter 4
Time dependent entanglement features of
two-qubit and multi-qubit systems
interacting with an environment.

4.1 System studied

First I will consider a system consisting of two qubits each interacting with a reser-

voir, then I will attempt to generalize the results to N qubits. As stated in [44],

the dynamics of the two-qubit density matrix elements can be obtained from that

of the single qubit, provided that the different parts are independent. Consider a

system composed by N independent parts S̃ = 1̃, 2̃, ..., Ñ . Each part consists of

a qubit (S = 1, 2, ..., N) interacting with a reservoir Rs = R1, R2, ..., RN respec-

tively. Each qubit S and the corresponding reservoir RS are initially considered

statistically independent or uncorrelated. The time dependent reduced density

matrix of the single qubit S is given by

ρ̂S(t) = TrRS
{Û S̃(t)ρ̂S(0)⊗ ρ̂RS(0)Û S̃†} (4.1)

where the trace is over the reservoir RS degrees of freedom and Û S̃(t) is the time

evolution operator for the part S̃. The density matrix of the reservoir can be

written in its spectral decomposition as

ρ̂RS(0) =
∑
αS

λαS |ϕαS〉〈ϕαS |. (4.2)
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Let |ϕβS
〉 be an orthonormal basis for the state space of the environment. Using

the operator sum representation (section 3.2.5), Eq. 4.1 becomes

ρ̂S(t) =
∑

αSβS

λαS〈ϕβS
|Û S̃(t)[ρ̂S(0)⊗ |ϕαS〉〈ϕαS |]Û S̃†|ϕβS

〉

=
∑

αSβS

λαS〈ϕβS
|Û S̃(t)|ϕαS〉ρ̂S(0)〈ϕαS |Û S̃†|ϕβS

〉

=
∑

αSβS

ŴS
αSβS

(t)ρ̂S(0)ŴS†
αSβS

(t) (4.3)

where the operators ŴS
αSβS

(t) are given by

ŴS
αSβS

(t) =
√

λαS〈ϕβS
|Û S̃(t)|ϕαS〉. (4.4)

Given the basis |lS〉, lS = 0S , 1S for the qubit S. Inserting the identity operators

IS =
∑ |lS〉〈lS | between the Ŵ S̃ ’s operators and the density matrix in Eq. 4.3, it

follows that the reduced density matrices of the qubits S = 1, ..., N have the form

〈iS |ρ̂S(t)|i′S〉 ≡ ρS
iSi′S

(t) =
∑

lSl′S

∑

αSβS

〈iS |ŴS
αSβS

(t)|lS〉〈lS |ρ̂S(0)IS |l′S〉〈l′S |Ŵ †S
αSβS

(t)|i′S〉.

(4.5)

Now by setting

AlSl′S
iSi′S

(t) ≡
∑

αSβS

〈iS |ŴS
αSβS

(t)|lS〉〈l′S |Ŵ †S
αSβS

(t)|i′S〉, (4.6)

the density matrix elements of each qubit are given by

ρ1
i1i′1

(t) =
∑

l1l′1

Al1l
′
1

i1i′1
(t)ρj

l1l′1
(0)

ρ2
i2i′2

(t) =
∑

l2l′2

Al2l
′
2

i2i′2
(t)ρj

l2l′2
(0)

...

ρN
iN i′N

(t) =
∑

lN l′N

AlN l′N
iN i′N

(t)ρj
lN l′N

(0).

(4.7)
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And the reduced density matrix elements of the N-qubit system are given by

〈i1, i2, ..., iN |ρ̂(t)|i′1, i′2, ....i′N 〉 = ρi1i′1,i2i
′
2,...,iN i′N (t)

=
∑

l1l′1

∑

l2l′2

· · ·
∑

lN l′N

Al1l
′
1

i1i′1
(t)Al2l

′
2

i2i′2
(t)× · · ·

×AlN l′N
iN i′N

(t)ρl1l′1,l2l
′
2,...,lN l′N (0). (4.8)

where the coefficients AlSl′S
iSi′S

(t) are the same as those in Eq. 4.7. It is thus clear

from Eq. 4.7 and Eq. 4.8 that the dynamics of N-qubits can can be obtained from

that of a single qubit.

For the evolution of the single qubit, let consider the “qubit + reservoir” Hamil-

tonian already discussed in section 3.3

H = ω0σ+σ− +
∑

k

ωkb
†
kbk + (σ+B + σ−B†) (4.9)

where B =
∑

k gkbk, ω0 denotes the transition frequency of the two-level system

(that is, a qubit) and σ∓ stands for the system’s raising and lowering operators.

The reservoir is represented as a set of field modes, b†k and bk being the concomitant

creation and annihilation operators associated with the k-mode. These field modes

are characterized by frequencies ωk and coupling constants gk with the two-level

system. The Hamiltonian (4.9) may describe, for instance, a qubit consisting of

the excited and ground electronic states of a two-level atom that interacts with

the quantized electromagnetic modes associated with a high-Q cavity [44, 12]. The

effective spectral density of the reservoir is assumed to be of the form

J(ω) =
1

2π

γ0λ
2

(ω − ω0)2 + λ2
, (4.10)

where γ0 and λ are positive parameters with dimensions of inverse time [44].

The dynamics of the single qubit is then described by the density matrix [12]

ρ(t) =


 ρ11(0)Pt ρ10(0)

√
Pt

ρ01(0)
√

Pt ρ00(0) + ρ11(0)(1− Pt)


 . (4.11)
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From Eq. 4.8 and Eq. 4.11, the elements of density matrix of the two-qubit system

in the basis B = {|1〉 ≡ |11〉, |2〉 ≡ |10〉, |3〉 ≡ |01〉, |4〉 ≡ |00〉} are:

ρT
11(t) = ρT

11(0)P 2
t ,

ρT
22(t) = ρT

22(0)Pt + ρT
11(0)Pt(1− Pt),

ρT
33(t) = ρT

33(0)Pt + ρT
11(0)Pt(1− Pt),

ρT
44(t) = 1− [ρT

11 + ρT
22 + ρT

33],

ρT
12(t) = ρT

12(0)P
3/2
t , ρT

13(0) = ρT
13(0)P

3/2
t ,

ρT
14(t) = ρT

14(0)Pt, ρT
23(0) = ρT

23(0)Pt,

ρT
24(t) =

√
Pt[ρ

T
24(0) + ρT

13(0)Pt(1− Pt)],

ρT
34(t) =

√
Pt[ρ

T
34(0) + ρT

12(0)Pt(1− Pt)] (4.12)

and ρT
ij(t) = ρT∗

ji (t), that is, the matrix ρT (t) is Hermitian. The function Pt is

given in the non-Markovian regime by [12, 44]

Pt = e−λt

[
cos

(
dt

2

)
+

λ

d
sin

(
dt

2

)]2

(4.13)

where d =
√

2γ0λ− λ2. By using a similar procedure, one can obtain the matrix

elements of the dynamics of a n-qubit system from those corresponding to a single

qubit.

In the present study, only the non Markovian regime is considered. To that end,

λ = 0.01γ0 will be used [44].

4.2 Time dependent features of two-qubit systems interacting
with the environment

In the two-qubit case, it was observed that for some initial states, entanglement

disappears for finite time, the two qubits remain disentangled for some time and

then the entanglement get revived. For example it occurs with the state |Φ〉 =

α|00〉+ β|11〉 for certain vales of α. This is illustrated by Fig. 4.1

55

 
 
 



4.2. TIME DEPENDENT FEATURES OF TWO-QUBIT SYSTEMS
INTERACTING WITH THE ENVIRONMENT

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Γ0t

C

Figure 4.1: Plot of the concurrence, C against the quantity γ0t for the initial state |Ψ〉 =
α|00〉+ β|11〉 with α2 = 1/3 and λ = 0.01γ0.

One clearly sees that the concurrence vanishes and then reappears after a finite

time.

4.2.1 General behaviour of two-qubit systems interacting with the
environment.

In order to investigate the average features characterising the entanglement dy-

namics associated with a given family of initial states, the average properties of

the concomitant evolutions are computed. To determine these averages I generate

random initial states (within the alluded family) uniformly distributed according

to the Haar measure [30, 59]. I shall consider a family of maximally entangled ini-

tial states, a family of partially entangled pure initial states all sharing the same

amount of entanglement, and a family of Werner states.

To study the typical, average behavior of the entanglement dynamics of a pair of

qubits evolving from an initial maximally entangled state, one can represent the
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initial states |Ψe〉 as [59]

|Ψe〉 = (I2 ⊗ U1) |Ψ0〉 (4.14)

where

|Ψ0〉 =
1√
2

(|01〉+ |10〉), (4.15)

I2 denotes the two-dimensional identity matrix and U1 is a unitary matrix on

SU(2). This unitary matrix can be conveniently parameterized as

U =


 − sin ϑe−iθ2 cos ϑeiθ1

cos ϑe−iθ1 sin ϑeiθ2


 (4.16)

where θ1,2 ∈ [0, 2π] and ϑ ∈ [0, 2π]. In terms of the three parameters θ1, θ2, and

ϑ, the maximally entangled state reads,

|Ψ〉 =
1√
2




cos ϑeiθ1

sin ϑeiθ2

− sin ϑe−iθ2

cos ϑe−iθ1




, (4.17)

where |Ψ〉 is represented as a column vector in terms of its coefficients with respect

to the computational basis. To generate the initial states, random unitary matri-

ces U are generated uniformly according to the Haar measure. The angles θi have

to be generated uniformly distributed in [0, 2π]. ϑ on the other hand, is obtained

by first generating a random variable ε, uniformly distributed in [0, 1] and then by

computing ϑ = arcsin[ε1/2].

More generally, random pure states exhibiting a fixed, prescribed amount of en-

tanglement can be generated using the representation

|Ψα〉 = (I2 ⊗ U1)
(√

1− α2|01〉+ α|10〉
)
, (4.18)
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which leads to the parameterization

|Ψα〉 =




√
1− α2 cos ϑeiθ1

√
1− α2 sin ϑeiθ2

−α sin ϑe−iθ2

α cos ϑe−iθ1




(4.19)

where one can change the degree of entanglement by using different values of α,

for instance the value α = 1√
2

will give the maximally entangled states above. The

parameters θ1,2 and ϑ appearing in (4.19) have to be generated in the same way

as in the case of the maximally entangled states.

Maximally Entangled Initial States

In this section, the typical, average entanglement dynamics corresponding to max-

imally entangled initial states will be explored. To this end, I generate random

maximally entangled initial states according to the procedure described in the pre-

vious section and compute, for different times, the averages of the concurrence C

and the linear entropy SL. The average values of the concurrency (left) and that

of the linear entropy (right) are depicted in Fig. 4.2 as a function of the dimen-

sionless quantity γ0t. It transpires from this figure that, even though on average,

the concurrence does vanish at certain times, it does not stay equal to zero during

finite time intervals. In other words, the finite time interval of vanishing entangle-

ment before the entanglement revivals (that is observed for certain initial states)

is not a feature characterising the average entanglement dynamics. This observa-

tion will be of relevance later when comparing the entanglement dynamics of the

two-qubit system with the entanglement behaviours corresponding to three-qubit

or four-qubit systems.

It is a well-known trend that the amount of entanglement exhibited by a quantum

state of a bipartite system tends to decrease as the degree of mixedness of the

state increase (see [30] and references therein). In fact, all two-qubits states with
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a linear entropy SL = 1 − Tr(ρ2) larger than 2/3 have zero entanglement (that

is, are separable). The abovementioned general trend relating entanglement and

mixedness is consistent with the average behaviours of the concurrence and the

linear entropy during the first half of the initial period of entanglement decrease

observed in Fig. 4.2. During this first part of the two qubits evolution, the

concurrence (and, consequently, the amount of entanglement) decreases while the

degree of mixedness increases. However, after this first phase of the evolution

the pattern changes: the concurrence and the mixedness increase or decreases

simultaneously. In particular, during the entanglement revivals, the entanglement

and the degree of mixedness of the two-qubit system tend to adopt their maximum

values at the same time.
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Figure 4.2: Plot of the average value of the concurrence against the quantity γ0t (left),
and the average value of the linear entropy against the quantity γ0t (right)
for the maximally entangled states.

Fig. 4.3 shows the plot of the average value of the concurrence, 〈C〉, (continuous

line) and the dispersion,

∆C =

√
〈C2〉 − 〈C〉2, (4.20)

(dotted line) against the quantity γ0t for the two-qubit maximally entangled state.

The plot of the dispersion remains low which indicates that the typical values of

the concurrence of the states generated are not very far from the mean value.
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Figure 4.3: Plot of the average value of the concurrence, 〈C〉,(continuous line) and the
dispersion, ∆C,(dotted line) against the quantity γ0t for the two qubits state
|Ψ〉.

When considering the relationship between the amount of entanglement and the

degree of mixedness of two qubits states, the maximally entangled mixed states

(MEMS) play an important role. The MEMS [60] states are two qubits states that

have the maximum possible value of the concurrence for a given degree of mixture.

Their density matrix is given by

ρMEMS =




g(γ) 0 0 γ/2

0 1− 2g(γ) 0 0

0 0 0 0

γ/2 0 0 g(γ)




(4.21)

where

g(γ) =





γ/2, γ ≥ 2/3

1/3, x = γ < 2/3
(4.22)
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Some aspects of the entanglement dynamics of the two-qubit system can be illu-

minated if one considers the trajectory followed by this system in the mixedness-

concurrence plane, and compare this trajectory with the curve corresponding to

the MEMS states. Fig. 4.4 shows a plot of the average value of the concurrence

against the average value of the linear entropy (continuous line) for maximally

entangled initial states. The curve in the (SL − C)-plane corresponding to the

concurrence Cmems associated with maximally entangled mixed states (MEMS) of

linear entropy SL is also depicted (dotted line).
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Figure 4.4: Plot of the average value of the concurrence, 〈C〉, (continuous line) and the
concurrence of the maximally entangled mixed states, Cmems,(dotted line)
against the linear entropy.

It can be appreciated in Fig. 4.4 that the average trajectory in the (C−SL)-plane

associated with maximally entangled initial states has two branches: an upper

branch that stays relatively close to the MEMS curve and a lower branch that de-

parts drastically from the MEMS. During the first phase of entanglement decrease,

the average evolution associated with maximally entangled initial states describes

the complete trajectory depicted in Fig. 4.4, starting with states of maximum

entanglement and zero mixedness, and ending with states of zero entanglement

and zero mixedness. During the periods of entanglement revival, the average evo-
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lution follows the lower branch, first in the direction corresponding to an increase

of entanglement and mixedness, and then in the opposite direction. During the

first entanglement revival the two-qubit states reach the point of maximum 〈SL〉
in the 〈SL〉 − 〈C〉 curve, and retrace part of the upper branch. In the second and

later entanglement revivals, the two-qubit states remain in the lower branch.

Partially Entangled Pure Initial States

The average behavior corresponding to pure, partially entangled initial states is

qualitatively similar to the one corresponding to maximally entangled initial states,

but with a 〈SL〉− 〈C〉 obviously starting with states of less than maximum entan-

glement and zero mixedness (that is SL = 0). The average behavior, as a function

of γ0t, of the concurrence and the linear entropy is depicted in Fig. 4.5 for initial

states of the form

|Φ〉 = α|00〉+ β|11〉, (4.23)

for α2 = 1/3. It can be seen in Fig. 4.5 that the finite time intervals of zero entan-
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Figure 4.5: Plot of the average value of the concurrence against the quantity γ0t (left),
and the average value of the linear entropy against the quantity γ0t (right)
for the partially entangled states with α2 = 1/3.

glement disappear when we consider the average behavior of the above-mentioned
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states. This is in clear contrast with the behaviour of some particular initial states

with α2 = 1/3, whose associated trajectories show rather long intervals with zero

entanglement like in Fig. 4.1.

An analytical expression linking SL and C during the evolution associated with

individual partially entangled initial states of the form α|00〉 + β|11〉 is obtained.

The trajectory on the (SL−C)-plane corresponding to these initial states is given

by

SL =

(
C2

4α2(1− α2)
− C

2α
√

1− α2

)
. (4.24)

The average trajectories corresponding to a family of initial pure states with the

same entanglement (concurrence) as the state (4.23) are depicted in Fig. 4.6 for

different values of α.
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Figure 4.6: Plot of the average value of the concurrence, 〈C〉, and the concurrence of
the maximally entangled mixed states, Cmems, against the linear entropy for
various values of α for the initial state α|00 + β|11〉.

It transpires from Fig. 4.6 that the smaller the initial entanglement, the larger

the maximum degree of mixedness achieved by the two-qubit system during its

63

 
 
 



4.2. TIME DEPENDENT FEATURES OF TWO-QUBIT SYSTEMS
INTERACTING WITH THE ENVIRONMENT

evolution. Another trend that can be observed in Fig. 4.6 is that the smaller the

initial entanglement, the closer the second branch of the average trajectory is to

the 〈C〉 = 0 line. This, of course, is related to the increasing length of the time

intervals of zero entanglement corresponding to initial pure states of decreasing

entanglement.

The time averaged amount of entanglement exhibited by an evolving compos-

ite system is also an interesting quantity to consider. The time average of the

concurrence of the two-qubit system,

〈C〉t =
1

τ

∫ τ

0
C(t) dt, (4.25)

was computed numerically. Here, τ is the time when the concurrence vanishes for

the second time (that is, τ corresponds to the end of the first revival event). In

particular, 〈C〉t was computed by using the Bell states

|β00〉 =
1√
2
(|00〉+ |11〉) (4.26)

|β01〉 =
1√
2
(|01〉+ |10〉) (4.27)

|β10〉 =
1√
2
(|00〉 − |11〉) (4.28)

|β11〉 =
1√
2
(|01〉 − |10〉) (4.29)

as initial states, obtaining the values 〈C〉t = 0.225336 for |β00〉 and |β10〉 and

〈C〉t = 0.376867 for |β01〉 and |β11〉. A numerical search for the maximum value

of 〈C〉t among evolutions starting with a maximally entangled initial state yielded

a maximum value 〈C〉(max.)
t = 0.376867. This maximum value is achieved by the

states |β01〉 and |β11〉.
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Initial Mixed States of Two Qubits

This section is about the entanglement dynamics associated with mixed initial

states of the form

ρ = γ|Ψ〉〈Ψ|+ 1− γ

4
I (4.30)

where 0 < γ < 1, I is the 4× 4 identity matrix and |Ψ〉 is a maximally entangled

pure state of the form of Eq. 4.14. The state ρ represents a mixture of a maximally

entangled pure state and the completely mixed state I
4 . The state ρ is entangled

for γ > 1/3.

In order to study the typical, average behavior of initial mixed states of the form

of Eq. 4.30, maximally entangled states |Ψ〉 were generated (according to the

procedure explained in Section 4.2.1). Then the average properties associated

with the evolutions corresponding to the family of states (4.30) were computed.
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Figure 4.7: Average value of the concurrence, 〈C〉 as a function of γ0t for the initial
mixed states γ|Ψ〉〈Ψ|+ 1−γ

4 I with γ = 2
3 .
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Figure 4.8: Average value of the concurrence 〈C〉 against the average linear entropy
〈SL〉 for the same family of initial mixed states considered in Figure 4.7
(continuous line) and the concurrence of the maximally entangled mixed
states Cmems against SL (dotted line).

The results obtained, for γ = 2
3 , are summarized in Fig. 4.7 and Fig. 4.8. We

can see in these figures that the behaviour of the initial mixed states (4.30) share

some general features with the behaviour of the maximally entangled initial states

considered previously. There is, however, one important difference (aside from the

fact that the trajectory on the 〈SL〉− 〈C〉 plane starts from an initial state of par-

tial entanglement and finite linear entropy). The lower branch of the trajectory

on the 〈SL〉 − 〈C〉 plane depicted in Fig. 4.8 has a long, almost horizontal part

associated with states of very little, almost zero entanglement. This section of the

lower branch corresponds to the time intervals between entanglement death and

entanglement revivals in Fig. 4.7. This means that the existence of finite intervals

of basically zero entanglement before entanglement revivals constitutes a typical,

average property exhibited by the family of states (4.30).
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Figure 4.9: Plots of the concurrence C and of the quantity D
(T )
q

D
(T )
q (t=0)

against γ0t for

different values of q for the Tsallis’ entropy. All depicted quantities are non-
dimensional.

Entanglement indicators based on the q-entropies

In the model under consideration it has been observed that for some initial states,

entanglement disappears at a finite time and afterwards the entanglement is re-

vived [44]. Here, the q-entropic counterpart of this behaviour is investigated, the

general results obtained are presented in [48]. Here, I compute for the initial Bell

state

1√
2

(
|00〉+ |11〉

)
(4.31)

and the strong non-Markovian regime corresponding to λ = 0.01γ0, the time evo-

lution of the entropic difference Dq = Sq[A]−Sq[AB] (introduced in section 2.4.1),

both for the Tsallis and the Rényi entropies.

The results are shown in Fig. 4.9 and 4.10, where the time evolutions of the

concurrence C and of the Dq quantities are shown for the Tsallis and the Rényi

entropies, respectively. In these figures the entropic differences Dq are plotted

against the non-dimensional variable γ0t. Since the quantities Dq are used as en-
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Figure 4.10: Plots of the concurrence C and of the quantity D
(R)
q against γ0t for dif-

ferent values of q for the Rényi entropy. All depicted quantities are non-
dimensional.

tanglement indicators (and Dq > 0 is a sufficient but not necessary condition for

entanglement) in Figures 4.9 and 4.10, Dq is set equal to 0 (indicating that no

entanglement is detected by this quantity) whenever Dq becomes negative.

It is plain from Figures 4.9 and 4.10 that the first entanglement disappearance and

its subsequent revival can be observed in the behavior of Dq. It also transpires from

Figure 4.10 that the limit case q → ∞ is the most favorable for these purposes.

This is fully consistent with several previous studies by other researchers. Indeed,

it is observed in Figure 4.10 that the Rényi based entropic difference D
(R)
∞ is the

one that detects the presence of entanglement for the largest time periods, both

prior to the disappearance of entanglement and also during the first entanglement

revival. During the initial decay of entanglement D
(R)
∞ detects entanglement (that

is, the concomitant classical entropic inequality does not hold) for approximately

one half of the time interval where the two-qubits are entangled. During the

first entanglement revival, the classical inequality is not verified for approximately

one third of the time interval corresponding to non-vanishing entanglement. In
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both cases the classical entropic inequality starts to be verified when the squared

concurrence falls below a value around 0.2. Note that in the figures C is plotted and

not C2, in order to make it easier to see the points where entanglement disappears.

However, had C2 been plotted instead of C, it would be clear that 2D
(T )
2 does not

constitute too bad a lower bound for C2.

An analytical expression for the entropic difference D
(R)
q associated with Rényi

entropy in the limit q → ∞ can be obtained for the initial Bell state (4.31), and

it is given by

D
(R)
∞ = ln

[
1− Pt − P 2

t +
√

1− 2Pt + P 2
t

2− Pt

]
. (4.32)

For the same initial state, one can also obtain an analytical expression for the

Tsallis entropy, and it is given by

D
(T )
q =

1

q − 1
×

ln

[
2(1− Pt)

qP q
t + (1− Pt − P 2

t − Et)
q + (1− Pt − P 2

t + Et)
q

(2− Pt)q + P q
t

]

(4.33)

where Et =
√

1− 2Pt + P 2
t .

The entropic differences corresponding to q = 1/2 are considerably less efficient

as entanglement indicators during the aforementioned processes of entanglement

decay and revival. On the other hand, it can also be seen in Figure 4.10 that

the cases q = 2, even being not as good as the case q = ∞, is almost as efficient

as this limit case. This feature of the q = 2 entropic differences is of particular

interest because, in the present case, D
(T )
2 coincides with a recently discovered

experimentally measurable entanglement indicator [62].

None of the entropic differences Dq based on either the Tsallis or the Rényi en-

tropies are able to detect the second entanglement revival occurring after its second
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“death”. However, these later events are less important that the first entangle-

ment revival, because the actual amount of entanglement exhibited by the two-

qubit system during the second entanglement “resurrection” is rather small and,

consequently, of limited practical relevance.

4.2.2 Entanglement indicator based on the uncertainty relation

An entanglement measure based on the uncertainty principle was introduced in

Section 2.4.1. All separable states (pure or mixed) of two-qubit systems satisfy

U = δ[σ1(A) + σ1(B)]2 + δ[σ2(A) + σ2(B)]2 + δ[σ3(A) + σ3(B)]2 ≥ 4, (4.34)

where σi(A), σi(B) i = 1, 2, 3, are the Pauli matrices corresponding to subsystems

A and B, repsectively, and δO2 = 〈O2〉− 〈O〉2 is the uncertainty of the observable

O. On the basis of (4.34) we can regard the quantity

4− U

4
(4.35)

as an entanglement indicator. Any state with (4 − U)/4 > 0 is necessarily en-

tangled. On the other hand, if the above quantity is negative, the state may be

entangled or separable. The entanglement indicator (4.35) is of interest because it

is based on quantities that are in principle measurable.

The uncertainty limit U is plotted as a function of the quantity γ0t for the initial

state 1√
2
(|01〉 − |10〉). As one can see in Figure 4.11, the value is less than four

most of the time. There are some particular initial, maximally entangled states for

which the entanglement of the time-dependent state ρ is detected (at least part of

the time) by the violation of the uncertainty relation (4.34). Therefore, for these

states the quantity (4− U)/4 > 0 exhibits positive values when the state ρ has a

large enough amount of entanglement. This behaviour can be seen in Figure 4.12

for the initial state 1√
2
(|01〉 − |10〉).
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The same quantities were also plotted for the initial state 1√
2
(|00〉+ |11〉) and the

results are shown in Fig. 4.13 and 4.14. but in this case, it is interesting to note

that the uncertainty relation is not violated, so the entanglement is not detected

by the uncertainty limit in this case. One can therefore conclude that the uncer-

tainty limit is a relatively good measure of entanglement but it does not detect

entanglement in some states.
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Figure 4.11: Plot of the Uncertainty relation as a function of the quantity γ0t for the
initial state 1√

2
(|01〉 − |10〉).

71

 
 
 



4.2. TIME DEPENDENT FEATURES OF TWO-QUBIT SYSTEMS
INTERACTING WITH THE ENVIRONMENT

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Γ0t

C
an

d
����
����
����
����
����
��

4
-

U

4

����������������������
4 - U

4

concurence

Figure 4.12: The uncertainty-based entanglement indicator and the concurrence C
against γ0t, for the initial state 1√

2
(|01〉 − |10〉).
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Figure 4.13: Plot of the Uncertainty relation as a function of the quantity γ0t for the
initial state 1√

2
(|00〉+ |11〉).
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Figure 4.14: Plot of the concurrence (dotted line) and 4−U
4 (solid line) as a function of

the quantity γ0t for the initial state 1√
2
(|00〉+ |11〉).

The situation is different when one considers the average behavior of the uncer-

tainty sum U over the family of maximally entangled initial states. One can see

in Fig. 4.15 that, on average, the time dependent states arising from maximally

entangled initial states do not violate the uncertainty relation (4.34). Even though

these states do exhibit on average (at certain times) a considerable amount of en-

tanglement, this entanglement does not affect the local uncertainty relation (4.34).

Since the mean value of the uncertainty relation did not show any detection of

entanglement, it would be interesting to randomly generate many initial states

and obtain the mean values of the uncertainty relation, but only for the states

that violate the uncertainty relation initially. The results are shown in Fig. 4.16

and Fig. 4.18. The same thing was done for the states that do not violate the

uncertainty relation initially; the results are shown in Fig. 4.17 and Fig. 4.19.
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Figure 4.15: Plot of the mean of the uncertainty relation as a function of the quantity
γ0t for maximally entangled initial states generated randomly.
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Figure 4.16: Plot of the mean of the uncertainty relation as a function of the quantity
γ0t for maximally entangled, randomly genarated, initial states that violate
the uncertainty relation initially.
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Figure 4.17: Plot of the mean of the uncertainty relation as a function of the quantity
γ0t for maximally entangled, randomly generated, initial states that do not
violate the uncertainty relation initially.
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Figure 4.18: Plot of the 4−〈U〉
4 as a function of the quantity γ0t for maximally entangled,

randomly generated, initial states that violate the uncertainty relation ini-
tially.
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Figure 4.19: Plot of the 4−〈U〉
4 as a function of the quantity γ0t for maximally entan-

gled, randomly generated, initial states that donnot violate the uncertainty
relation initially.

4.2.3 Minternt-Buchleitner (MB) Lower bound for the concurrence squared

Here, the measure EMB introduced in Section 2.4.1 is considered.

EMB[ρAB] = 2Tr[ρ2
AB] − Tr[ρ2

A] − Tr[ρ2
B]. (4.36)

This entanglement indicator is particularly interesting because, as was shown by

Minternt and Buchleitner, it is an experimentally measurable quantity that pro-

vides a lower bound for the squared concurrence of ρAB,

C2[ρAB] ≥ EMB[ρAB]. (4.37)

Last, but certainly not least, the indicator EMB is a practical, mathematically

simple to compute quantity.

It is interesting to examine the behaviour of EMB in a time dependent setting.

The behaviour of EMB is compared with that of the squared concurrence C2

in Figure 4.20 where both quantities are plotted against γ0t for the initial state

1√
2
(|00〉+ |11〉). The average values of the concurrence squared C2 and of the MB
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lower bound were also computed for the evolutions corresponding to initially max-

imally entangled, randomly generated states. The results obtained are depicted in

Figure 4.21.

The quantum states considered in Fig. 4.20 and Fig. 4.21 have Tr[ρ2
A] = Tr[ρ2

B]

and, consequently, for these states we can write EMB[ρAB] = 2
(
Tr[ρ2

AB] − Tr[ρ2
A]

)
.

One can verify in Fig. 4.20 and Fig. 4.21 that, indeed, the quantity EMB consti-

tutes a lower bound for C2. The results depicted in Fig. 4.20 indicate that, for

the initial state 1√
2
(|00〉+ |11〉), the lower bound EMB provides a reasonably good

estimate of the amount of entanglement exhibited by the two qubits during the

first period of entanglement decrease. The quantity EMB is also able to detect the

first entanglement revival, at least during the time interval around the peak value

exhibited by C2 in this revival (this interval corresponds, approximately, to one

third of the duration of the first revival). On the contrary, EMB does not detect

the second or later entanglement revivals.

As for the average behavior of the lower bound EMB corresponding to initial

maximally entangled states, EMB provides a reasonable estimate for the squared

concurrence during the first half of the first time interval of entanglement decrease.

However, EMB does not detect the subsequent entanglement revivals.
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Figure 4.20: Plot of the concurrence squared and the MB lower bound EMb,as a function
of γ0t, for the initial state 1√

2
(|00〉+ |11〉).
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Figure 4.21: The averages of the concurrence squared and of the MB lower bound cor-
responding to initial maximally entangled states, as a function of γ0t.

4.3 N-qubits states (N > 2)

This section is about the entanglement dynamics of three-qubit and four-qubit

systems interacting with an environment in non-Markovian regime. As in the

two-qubit case, it is assumed that each qubit interacts with its own, independent
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environment. In the case of three qubits or more, the GHZ (Greenberger-Horne-

Zeilinger) state and the W states are studied. The general expression of the GHZ

state is

|GHZ〉 =
|0〉⊗n + |1〉⊗n

√
2

(4.38)

where n is the number of qubits. For instance the GHZ state for three qubit will

be

|GHZ〉 =
|000〉+ |111〉√

2
(4.39)

The W state is generally given by

|W 〉 =
1√
n

(|100...0〉+ |010...0〉+ ... + |000...1〉) (4.40)

For three qubits, the W state is

|W 〉 =
1√
3
(|100〉+ |010〉+ |001〉) (4.41)

The negativity (described in 2.4.1) is used here to quantify the entanglement in the

case of more that two qubits. To determine the average behavior associated with

initial states locally equivalent to the n-qubits |GHZ〉 state we generate random

initial states of the form

(U1 ⊗ · · · ⊗ Un) |GHZ〉, (4.42)

where the unitary operators Ui (acting on the ith single qubit) are generated ran-

domly, independently and uniformly distributed according to the Haar measure,

as described in Section 4.2.1. Then, the average, time dependent properties cor-

responding to the abovementioned random initial states are computed. A similar

procedure was followed to study the average properties of evolutions corresponding

to initial states locally equivalent to the n-qubits |W 〉 state.

As in the two qubits case, the typical behavior of appropriate families of initial

states was studied for three-qubit and and four-qubit systems. The most notice-

able difference between the results obtained for two qubits and those obtained for
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three or four qubits involves the finite time intervals of zero entanglement between

entanglement revivals. For initial maximally entangled two-qubits states the finite

time intervals of zero entanglement between entanglement revivals disappear when

one computes the concomitant average behavior, as shown in Fig. 4.2 and Fig.

4.5. On the contrary, in the case of initial three-qubits states locally equivalent to

the |GHZ〉 or the |W 〉 states, the aforementioned intervals of zero entanglement

survive after the averaging procedure, as depicted in Fig. 4.22 and Fig. 4.23).

This means that the abovementioned finite time intervals of entanglement disap-

pearance are robust features of the entanglement dynamics of three-qubit systems.

This is consistent with the fact that the entanglement associated with N -qubit sys-

tems tends to become more fragile as the number of qubits increases.

Similar behaviour is observed in the case of four qubits. The general results in the

four qubits case (Fig. 4.24 and Fig. 4.25) are similar to those in the three qubits

case, with the difference that the interval of time over which ESD occurs is a bit

wider in the four qubits case. As a general remark, one notices that as the number

of qubits increases, ESD becomes more important.
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Figure 4.22: Plot of the average value of the negativity together with its dispersion
against the quantity γ0t (left), and the average value of the linear entropy
together with its dispersion against the quantity γ0t (right) for a family of
the three qubits GHZ states.
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Figure 4.23: Plot of the average value of the negativity together with its dispersion
against the quantity γ0t (left), and the average value of the linear entropy
together with its dispersion against the quantity γ0t (right) for a family of
the three qubits W states.
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Figure 4.24: Plot of the average value of the negativity together with its dispersion
against the quantity γ0t (left), and the average value of the linear entropy
together with its dispersion against the quantity γ0t (right) for a family of
the four qubits GHZ states.

81

 
 
 



4.3. N-QUBITS STATES (N > 2)

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

Γ0t

D
N

an
d
�

N
�

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Γ0t

D
S L

an
d
�

S L
�

Figure 4.25: Plot of the average value of the negativity together with its dispersion
against the quantity γ0t (left), and the average value of the linear entropy
together with its dispersion against the quantity γ0t (right) for a family of
the four qubits W states.
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Chapter 5
Conclusions

It was stated in the introduction that the current study has three main goals. The

first goal is to get a global picture or a global typical behaviour of the system by

randomly generating a sufficient number of initial states and observing how they

behave in general. The second goal is to consider entanglement features that were

not considered by previous researchers, and the third goal is to consider systems

of more than two qubits.

In the case of two-qubits, the average, typical behavior corresponding to maxi-

mally entangled initial states, or that corresponding to pure, partially entangled

states with a given amount of entanglement, does not have finite time intervals

of zero entanglement between entanglement revivals, as is the case for some par-

ticular initial states belonging to the alluded families. On the contrary, when

investigating the dynamics of entanglement associated with the families of initial

states of three-qubits locally equivalent to the |GHZ〉 (Eq. 4.38) and to the |W 〉
(Eq. 4.40) states, we found that the finite intervals of zero entanglement are still

present in the average behavior. Consequently, the phenomena of entanglement

sudden death and subsequent entanglement revival are robust properties of the

evolutions associated with the abovementioned families of initial states of three-

qubits. Similar results were obtained in the case of four-qubits. However, the

phases of zero entanglement between entanglement revivals observed in connec-
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tion with four-qubit initial states locally equivalent to the |GHZ〉 and to the |W 〉
states are longer than the concomitant intervals for three-qubit systems. These

features of the entanglement dynamics of three-qubit and four-qubit systems are

consistent with the fact that, in general, entanglement becomes more fragile as the

number of qubits of a system increases.

Entanglement measures based on the Tsallis and Rényi entropies were introduced

in section 4.2.1. The time behaviour of entropic differences Dq = Sq[A]− Sq[AB]

between the q-entropy of one of the qubits and the q-entropy of the two qubits

was investigated. The quantity Dq is an entanglement indicator in the sense that

Dq > 0 is a sufficient criterion for entanglement. The time evolution of Dq was

computed for various values of q, both for the Tsallis and for the Rényi entropies.

Classical entropic inequalities are violated for (approximately) one half of the time

interval corresponding to the initial entanglement decay, and for one third of the

duration of the first entanglement revival. In both cases the classical inequalities

are verified when the concurrence falls below a value of around 0.2. It is interesting

to note that this behaviour shows some similarities with the behaviour exhibited

for this system by the Bell inequalities. It was found in [46] that the Bell inequal-

ities are satisfied (and, consequently, they don’t detect entanglement) during an

appreciable part of the first entanglement revival.

It was also observed that the limit case q → ∞ constitutes the most favorable

one for detecting the first decay of entanglement and the subsequent entanglement

revival, in agreement with results obtained previously by other researchers in dif-

ferent contexts. However, the case q = 2 proved to be almost as good as the limit

case q → ∞ (particularly during the first phase of entanglement decay). This is

specially relevant because, in the present case, D
(T )
2 constitutes an experimentally

accessible indicator of entanglement.

The behaviour of two entanglement indicators based upon measurable quantities
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was also investigated. The Minternt-Buchleitner lower bound EMB for the squared

concurrence and an entanglement indicator based on the violation of a local uncer-

tainty relation were considered. For the initial state 1√
2
(|00〉+ |11〉), the quantity

EMB exhibited “sudden death” and one “revival”. On the other hand, the average

behavior of EMB corresponding to maximally entangled initial states has sudden

death, but no revival. During the the period of entanglement decrease EMB pro-

vides a reasonable estimate for the squared concurrence.

The estimator based on the violation of local uncertainty relations does detect the

entanglement of the evolving two-qubit state for some initial conditions. However,

its average behavior for initial maximally entangled states corresponds to separa-

ble states. These findings are consistent with the results reported by Bellomo et

al. in [46], where it was shown that even at times when the two-qubits system still

has a considerable amount of entanglement it behaves “classically”, as far as the

Bell inequalities are concerned. Our present results show that the time dependent

state of the two-qubits system, particularly during the entanglement revivals, also

fails to exhibit other manifestations of entanglement, such as positive values of

the Minternt and Buchleitner indicator EMB, or the violation of local uncertainty

relations.

In the case of initially mixed states of two-qubits, initial states of the form

γ|Ψ〉〈Ψ|+ 1− γ

4
I (5.1)

are considered, where Ψ is a maximally entangled state, I is the 4 × 4 identity

matrix and 0 < γ < 1. This state is entangled for a finite if γ > 1/3. The general

results obtained with γ = 2/3 show that entanglement disappears for a finite time

and then gets revived.

I also investigated the connection between the time evolution of the amount of

entanglement exhibited by the multi-qubit system on the one hand, and its global
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degree of mixedness (as measured by the total linear entropy SL) on the other.

As a general trend, the entanglement exhibited by multi-partite quantum systems

tends to decrease as the degree of mixedness increases. However, excepting the ini-

tial period of entanglement decrease, the systems considered here tend to exhibit

the largest amount of entanglement simultaneously with the largest degrees of

mixedness. Indeed, during the entanglement revivals entanglement and mixedness

tend to increase and decrease together. The trajectory followed by the multi-qubit

systems (for various families of initial states) in the (〈SL〉 − 〈E〉)-plane was deter-

mined. In all the cases studied, these trajectories exhibit the shape of an inverted

“C” with two branches, one corresponding to the initial phase of entanglement

decrease, and the second branch corresponding to the entanglement revivals. In

the case of maximally entangled initial states of two-qubits, the first branch is

relatively close to the MEMS curve, while the second branch departs drastically

from it.
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