
 i

                 UNIVERSITY OF PRETORIA 
 
 
 
 
 
 
 
 
 
                THE VARIABLE SELECTION PROBLEM AND  
 
 
             THE APPLICATION OF THE ROC CURVE FOR  
 
 
             BINARY OUTCOME VARIABLES 
 
 
 
 
 
                                  James M Matshego 
 
 
Prepared in partial fulfilment of the requirements for the degree of 
 
                                 Master of Science 
                                  
                                           in 
                                
                                 Applied Statistics 
 
 
                      
                   Supervisor:               Prof H T Groeneveld 
 
                   External Examiner:  Prof A J Van der Merve (U. O. F) 
 
 
                                        2006 
 
 
 
 

 
 
 



 ii

 
                                              DECLARATION 
 
 
 
I, James Moeng Matshego, hereby testify that the work presented in this study is my own original 

work and that all the resources used have been indicated and reflected by means of complete 

references. I further hereby declare that the dissertation that hereby submit for the degree in 

Applied Statistics at the University of Pretoria has not previously been submitted by me for degree 

purpose at any other university. 

 

 

Signed......................................... 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 iii

 
 
 
 
 
 
 
 
 
 
 
 
                                    
   
 
 
       Acknowledgements 
 
 
 
 
 
 

I sincerely thank  
 

o My supervisor Prof  H T Groeneveld for his encouragement, guidance and support. 
 

o Department of Statistics for having been patient with me. 
 

o Mr E Sibanda from Research and Development at TUT for availing the data set 
             used in this study.  
 

o My family for having afforded me time to study. 
 
o Prof A J van der Merwe for his valuable comments and advices. 

 
 

 
 
 
 
 
 
 
 

 
 
 



 iv

 
 
 
 
 
 
 
 
 
     
             
 
 
 
                       TABLE OF CONTENTS 
 
                          LIST OF TABLES……………………………………………………………... .viii

   ABSTRACT………………………………………………………………………...x 

 

  CHAPTER 1..........................................................................................................1 

ORIENTATION  ……………………………………………………………………1 

1.1 INTRODUCTION…………………………………………………………..1 

1.2 VARIABLE SELECTION………………………………………………….2 

1.3 SCOPE OF THIS WORK…………………………………………………..3 

 

     CHAPTER 2……………………………………………………………………..4 

SELECTION PROCEDURES FOR CONTINUOUS OUTCOME VARIABLES…4 

2.1 VARIABLE SELECTION IN LINEAR REGRESSION…………………..4 

2.1.1 Forward selection…………………………………………………….4 

2.1.2 Backward selection…………………………………………………..7 

2.1.3 Conventional Stepwise selection or Efroymson’s Algorithm………..8 

2.1.3.1 Criterion for addition…………………………………………9 

2.1.3.2 Criterion for deletion…………………………………………9 

2.1.3.3 Convergence of the Algorithm……………………………….9 

2.1.4 Press………………………………………………………………….10 

2.1.5 Principal component regression……………………………………...11 

 
 
 



 v

2.1.6 Latent root regression………………………………………………..12 

2.1.7 Branch-and bound Technique………………………………………..13 

2.1.8 Variable selection via elastic net……………………………………..14 

                                             2.1.8.1 Naïve elastic net…………………………………………….. 14 

                                             2.1.8.2 Elastic net…………………………………………………….16 

2.1.9 Generating all subsets………………………………………………..16 

                      2.2 VARIABLE SELECTION IN THE COX REGRESSION MODEL  ..........17       

  

                                 2.2.1 Purposeful selection variables.......…………………………………....18   

                                  2.2.2 The Lasso Method: Tibshirani(1997)....................................................19                

                                 2.2.3 Variable selection for time series data………………………………...21 

2.4 HYPOTHESIS TESTING ………………………………………………....24 

2.4.1 Lack-of-fit test ……………………………………………………….24 

2.4.2 The coefficient of determination, R 2 ………………………………...24 

2.4.3 Minimum adequate sets………………………………………………25 

2.5 COMPARISON OF MODELS: SOLUTION CRITERIA…………………26 

                      2.5.1 Akaike’s information criterion (AIC) and the Bayes information 

criterion (BIC)………………………………………………………...27 

                                   2.5.2 pC -Statistics ( rC -Criterion)  ………………………………………...27 

                                  2.5.3 The pS -Statistics ( rS -Criterion)……………………………………...31 

2.5.4 RMS, 2R and adjusted 2R - Statistics ………………………………... 32 

2.5.4.1 The Residual Mean Square……………………………………..32 

                                         2.5.4.2 The Squared Multiple Correlation Coefficients (SMCC)………32 

                                        2.5.4.3 The adjusted  2R  or Fisher’s A-Statistics.……………………...33 

 

CHAPTER 3…………………………………………………………… 34 

                    THE LOGISTIC MODEL AND VARIABLE SELECTION FOR A BINARY 

   OUTCOME VARIABLE  ............……………………………………………………34           

3.1 BINARY DATA. ……………………………………………………………34 

                           3.2 LOGISTIC REGRESSION……………………………………………….....35 

 
 
 



 vi

3.2.1 Assumptions…………………………………………………………..36 

3.2.2 The multiple linear logistic regression model  ……………………….37 

3.3 PARAMETER ESTIMATION  .…………………………………………… 38 

                                     3.3.1 Maximum likelihood estimation……………………………….........39 

3.3.2 The Newton-Raphson method……………………………………….41 

3.4 ODDS AND ODDS RATIOS    .…………………………………………….43 

3.5 INTERPRETATION OF COEFFICIENTS……………………………….45 

3.5.1 Dichotomous predictor variables……………………………………45 

3.5.2 Polytomous predictor variables……………………………………..46 

3.5.3 One continuous predictor variable…………………………………..47 

3.5.4 Multivariable case…………………………………………………...48 

3.5.5 One dichotomous and one continuous and their interaction ………..48 

3.6 TESTING FOR THE SIGNIFICANCE OF THE MODEL………………49 

3.6.1 The likelihood ratio test……………………………………………..49 

3.6.2 Wald Test Statistics…………………………………………………49 

3.6.3 Using deviations to compare likelihoods…………………………...50 

3.7 INTERACTION AND CONFOUNDING………………………………..50 

3.8 VARIABLE SELECTION IN LOGISTIC REGRESSION……………... 51 

3.8.1 Purposeful selection of variables………………………………….. 52 

3.8.1.1 Screening of variables……………………………………….52 

3.8.1.2 Scale of continuous variables………………………………..53 

3.8.1.3 Inclusion of interactions.……………………………………. 54 

3.8.2 Stepwise forward selection………………………………………...54 

3.8.3 Stepwise backward selection………………………………………55 

3.8.4 Stepwise selection (forward and backward)…………………….....56 

3.8.5 Best subset selection……………………………………………….56 

                                       3.8.6 General .............................................................................................57 

 

 

CHAPTER 4………………………………………………………………….58 

THE RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE.……….58 

 
 
 



 vii

4.1 BACKROUND………………………………………………………… 58 

4.2 DEFINITION OF ROC CURVE………………………………………. 59 

4.3 DIAGNOSTIC TEST INTERPRETATION.…………………………... 60 

4.3.1 2X2 Table or Contingency Matrix …………………………………60 

4.3.2 Basic concepts ……………………………………………………...60 

4.3.2.1 Sensitivity…………………………………………………...60 

4.3.2.2 Specificity…………………………………………………..61 

4.3.2.3 Pre-test probability………………………………………….61 

                                               4.3.2.4 Predictive value of a positive test…………………………..61 

4.3.2.5 Predictive value of a negative test ………………………….61 

4.4 ROC REGRESSION MODEL………………………………………...62 

4.5 AREA UNDER THE ROC CURVE (AUC) ………………………….62 

4.5.1 Interpretation of the area…………………………………………..62 

4.5.2 Comparison of tests………………………………………………..63 

4.5.3 Advantages and disadvantages of the ROC curve .....……………..64 

 

 

CHAPTER 5……………………………………………………………….65 

MODEL BULDING USING REAL DATA....……………………………….65 

5.1 PURPOSEFUL SELECTION OF VARIABLES PROCEDURE…….66 

5.2 OTHER LOGISTIC REGRESSION PROCEDURES………………..76 

5.3 INVESTIGATION OF THE AUC AS A SELECTION TOOL ……...77 

5.4 THE AUC AND THE STEPWISE SELECTION PROCEDURES ….79 

 

 

                          CHAPTER 6 .................................................................................. 81 

                               DISCUSSION AND CONCLUSION ……………………………………… .81 

 

                               APPENDICES……………………………………………………………….. 83 

 

                               REFERENCE………………………………………………………………..104 

 
 
 



 viii

 

 

 

 

 

 

 

 

                                          LIST OF TABLES 

 
Table 3.1: An example of coding of a design variable Race coded at three levels………37 

Table 3.2: An example showing coefficients that will be obtained when fitting the 

                  the model using design variables in Table 3.1……………………………….45 

Table 4.1: An example of a contingency table…………………………………………...45 

Table 5.1: Codes of variables used in the data set for study of factors associated with 

                  Success of first year students at TUT from 1999 to 2002……………………63 

Table 5.2: Indicator variables for the variable Faculty………………………………….. 64 

Table 5.3: Univariable logistic regression models……………………………………....  65 

Table 5.4: Multivariable model containing variables identified in the univariable  

                 Analysis……………………………………………………………………….66 

Table 5.5: Results of quartile analysis of the variable Agregate from the multivariable 

                  Model containing variables shown in Table 5.6……………………………...67 

Table 5.6: Preliminary main effects model…………………………………………….....68 

Table 5.7: Multivariable model with dichotomous variable Agregate_.............................70 

Table 5.8: A model containing interactions which were significant when added 

                 one by one to the main effects model………………………………………....72 

Table 5.9: Final model with interactions………………………………………………....73 

Table 5.10: Contingency matrix for a model in Table 5.9…………………………….....73 

Table 5.11: Odds ratios and association of predicted probabilities and observed 

                    Responses for the final model……………………………………………...74 

Table 5.12: Contingency matrix for the model in Table 34………………………….....77 

 
 
 



 ix

Table 5.13: Comparison of the AUC and the Stepwise procedures………………….....77 

Table 14: Univariable Analysis of the variable Age…………………………………....81 

Table 15: Univariable Analysis of the variable Agregate……………………………....82 

Table 16: Analysis of categorical variables…………………………………………….83 

Table 17: The results of Forward selection procedure………………………………….84 

Table 18: The results of the Backward selection procedure…………………………....85 

Table 19: The results of the Stepwise selection procedure…………………………….86 

Table 20: The results of the Stepwise procedure with interactions included…………..87 

Table 21: The results of Best subset selection procedure using Score criterion……….88 

Table 22: The results of Best subset selection procedure using pC  criterion…………88 

Table 23: The results of the step1 of the AUC procedure…………………………….. 89 

Table 24: The results of the step2 of the AUC procedure……………………………...89 

Table 25: The results of the step3 of the AUC procedure……………………………...90 

Table 26: The results of the step4 of the AUC procedure……………………………...90 

Table 27: The results of the step5 of the AUC procedure…………………………… ..91 

Table 28: The results of the step6 of the AUC procedure……………………………...91 

Table 29: The results of the step7 of the AUC procedure……………………………...92 

Table 30: The results of the step8 of the AUC procedure……………………………...92 

Table 31: The results of the step9 of the AUC procedure……………………………...92 

Table 32: The results of the step10 of the AUC procedure…………………………….92 

Table 33: The results of the step11 of the AUC procedure…………………………….93 

Table 34: The results of the step12 of the AUC procedure…………………………… 93 

Table 35: The results of the step13 of the AUC procedure…………………………….93 

Table 33: The results of the step14 of the AUC procedure…………………………….93 

 

 

 

 

 

 

 

 
 
 



 x

 

 

 

 

 

 
         

                    ABSTRACT 
 
Variable selection refers to the problem of selecting input variables that are most predictive of a 

given outcome. Variable  selection problems are found in all machine learning tasks, supervised or 

unsupervised, classification, regression, time series prediction , two - class or multi-class, posing 

various levels of challenges. 

 

Variables selection problems are related to the problems of input dimensionality reduction and of 

parameter planning. It has practical and theoretical challenges of its own. From the practical point 

of view, eliminating variables may reduce the cost of producing the outcome and increase its 

speed, while space dimensionality does not address these problems. Theoretical challenges include 

estimating with what confidence one can state that a variable is relevant to the concept when it is 

useful to the outcome and providing a theoretical understanding of the stability of selected 

variables subsets. As the probability cut-points increase in value, the more likely it becomes that 

an observation is classified as a non-event by the selected variables. 

  

The mathematical statement of the problem is not widely agreed upon and may depend on the 

application. One typically distinguishes: 

 

i) The problem of discovering all the variables relevant to the outcome variable and 

determine HOW relevant they are and how they are related to each other. 

ii) The problem of finding a minimum subset of variables that is useful to the outcome 

variable. 

 
 
 



 xi

 

Logistic regression is an increasingly popular statistical technique used to model the probability of 

discrete binary outcome. Logistic regression applies maximum likelihood estimation after 

transforming the outcome variable into a logit variable. In this way, logistic regression estimates 

the probability of a certain event. When properly applied, logistic regression analyses yield a very 

powerful insight in to what variables are more or less likely to predict event outcome in a 

population of interest. These models also show the extent to which changes in the values of the 

variable may increase or decrease the predicted probability of event outcome. Variable selection, 

in all its facets is similarly important with logistic regression. 

 

The receiver operating characteristics (ROC) curve is a graphic display that gives a measure of the 

predictive accuracy of a logistic regression model. It is a measure of classification performance, 

the area under the ROC curve (AUC) is a scalar measure gauging one facet of performance. 

Another measure of predictive accuracy of a logistic regression model is a classification table. It 

uses the model to classifying observations as events if their estimated probability is greater or 

equal to a given probability cut-point, otherwise events are classified as non-events. This 

technique, as it appears in the literature, is also studied in this thesis. 

 

In this thesis the issue of variable selection, both for continuous and binary outcome variables, is 

investigated as it appears in the statistical literature. It is clear that this topic has been widely 

researched and still remains a feature of modern research. The last word certainly hasn’t been 

spoken.         
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                                 CHAPTER 1 

 
                                          ORIENTATION 

 

1.1 INTRODUCTION 

 

The problem of variable selection is one of the most pervasive problems in statistical models. As 

stated by Guyon and Elisseeff (2002), variable selection problems are found in all machine 

learning, supervised or unsupervised, classification, regression, time series prediction tasks, and 

are posing challenges. Owing to the current availability of high speed computors, this problem has 

received enormous attention in recent statistical literature. Often referred to as the problem of 

subset selection, it arises when one wants to model the relationship between a variable of interest 

and a subset of  potential explanatory variables or predictors, but there is uncertainty about which 

subset to use. A common situation is that in which the explanatory or predictor variables, which 

will be denoted by X (nxp) measured at one time can be used to predict a variable of interest or 

response variable denoted by Y(1xn) at some future time. Unless the true form of the relationship 

between X and Y variables is known, it will be necessary for the data to be used to select the 

variables and to calibrate the relationship to be representative of the conditions in which the 

relationship will be used for prediction. 

 

In prediction we are usually looking for a small subset of variables which gives adequate 

prediction accuracy for a reasonable cost of measurement. On the other hand, in trying to 

understand the effect of one variable on another, particularly when the only data available are 

observational or survey data rather than experimental data, it may be desirable to include many 

potential variables which are either known or believed to have an effect (Miller (1990)). 

 

The problem of selecting a subset of predictor variables is usually described in an idealised setting. 

That is, it assumes that (a) all predictors are available for inclusion or exclusion from the model, 
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though this is not always the situation in practice. In many cases, the original set of measured 

variables will be augmented with other variables from them such as a product of two variables and 

(b) a ‘good’ data set is available on which to base the conclusions. The lack of these assumptions 

may make a detailed subset selection analysis a futile exercise. 

 The rationale for minimizing the number of variables in the model is that the resultant model is 

more likely to be numerically stable, and is more easily generalised. The more variables included 

in a model, the greater the estimated standard errors become, and the more dependent the model 

becomes on the observed data (Hosmer and Lemeshow (1989)). 

 

1.2 VARIABLE SELECTION 

           

It will be assumed that there are 1+≥ pn observations on a matrix of predictor variables, X  = 

( px.x ...1 ), and a scalar response, y , such that the j th response, nj ,....1= is determined by  

jij

p

i
jj xy ξββ ++= ∑

=1
0        (1.1) 

The residuals, jξ are assumed identically and independently distributed, usually normal, with mean 

zero and unknown variance, 2σ . (The predictors, ijx are frequently taken to be specified design 

variables, but in many cases it is more appropriate to consider them as random variables and 

assume a joint distribution on y and x , say, multivariate normal). Implicit in these assumptions is 

the assumption that the variables px.x ...1 include all relevant variables though extraneous variables 

may be included. 

 

The model (1.1) is frequently expressed in matrix notation as 

Y=Xβ +ε        (1.2) 

where Y is the n vector of observed responses, X is the design matrix dimension  

n  × )1( +p  as defined by (1.2), assumed to have rank 1+p and β is the ( 1+p ) – vector of 

unknown regression coefficients. 
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The variable selection problem is most familiar in the linear regression context where attention is 

restricted to normal linear models. Let γ index the subsets of px.x ...1 and letting γq be the size of 

the γ th subset, the problem is to select and fit a model of the form 

 

Y=X γ β γ + ε          (1.3) 

where X γ  is an n × γq  matrix whose columns correspond to the γ th subset, β γ  is a γq  × 1  vector 

of regression coefficients and ε~ ),0( 2 IN σ . More, generally, the variable selection problem is a 

special case of model selection problem, where each model under consideration corresponds to a 

distinct subset of px.x ...1 . 

 

The fundamental developments in variable selection seem to have occurred either directly in the 

context of linear model (1.3) or in the context of general model selection frameworks. Historically, 

the focus began with the linear model in the 1960s when the first wave of important developments 

occurred and computing was expensive (George (2000)). 

 

1.3 SCOPE OF THIS WORK 

 

This manuscript consists of six chapters. In Chapter 2, methods and procedures for selecting 

variables in respect of continuous outcome variables for different regressions are described. In 

addition, statistics for comparison of models are discussed. Chapter 3 introduces and defines the 

logistic regression model, a model for a binary outcome variable. Various selection procedures for 

this model are also discussed. The Receiver Operating Characteristic (ROC) curve, a curve 

representing a diagnostic test with binary outcome, is presented in Chapter 4. Chapter 5 covers a 

model building exercise. All selection procedures discussed with regard to binary outcome 

variable are applied to an available data set. We also look into the possibility of using the area 

under the ROC curve as a variable selection criterion by doing a test with the same data set used 

for other procedures. Chapter 6 wraps up this study with Discussions and Conclusions. 
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                                CHAPTER 2 
 

 SELECTION PROCEDURES FOR CONTINUOUS OUTCOME VARIABLES 

 

This chapter will look at the problem of finding one or more subsets of variables which give 

models that fit a set of data fairly well. However, there is no unique statistical procedure or 

technique selecting the best regression equation. If there are p  potential independent variables 

there are p2 possible equations to be considered. 

  

According to Miller (1984), reasons for using only some of the variables or possible predictor 

variables include: 

I. to estimate or predict at lower cost by reducing the number of variables on which 

predictions can be made. 

II. to predict accurately by eliminating uninformative variables.  

III. to describe a multivariate  data set parsimoniously.  

IV. to estimate regression coefficients with small standard errors (particularly when some of 

the predictors are highly correlated with others). 

 

2.1 VARIABLE SELECTION IN LINEAR REGRESSION 

 

In linear regression an F-test is used since errors are assumed to be normally distributed (Hosmer 

and Lemeshow (1989)). 

 

2.1.1 Forward Selection  

 

Hocking (1976) suggests a technique that starts with no variable in the equation and adds one 

variable at a time until either all variables are in or until a stopping criterion is satisfied. The 

variable considered for inclusion at any step is the one yielding the largest single degree of 
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freedom (d.f)  F-ratio among those eligible for inclusion. That is : variable i is added to the r -term 

equation if in
ir

irr
ii F

RSSRSS
F 〉

−
=

+

+ )
ˆ

(max 2σ
 where 

rRSS  , irRSS +  are residual sum of squares for r -term and ( ir + ) – term models and r the number 

of terms which are retained in the final equation. The subscript ( ir + ) refers to quantities 

computed when the variable i  is adjoined to the current r-term equation. 

 

Beale (1970) describes a method that requires the least amount of computation. In this method, all 

results are obtained as a by-product of solving the problem with all variables selected: if there are 

p regression variables, the covariance matrix of these variables is inverted by pivoting on each of 

the p diagonal elements in turn, and after each pivot step the results for the regression on those 

variables for which the corresponding diagonal elements have already been chosen as pivots, can 

be read off. With regard to this method there are no dependencies among the independent 

variables. If an element is less than some tolerance times its original value, pivoting is not done 

where the tolerance is normally 10-3 in single precision code or 10-7 in a double precision code. 

Theoretically this approach has a weakness when independent variables are correlated. Two (or 

more) variables may be individually useless but many together give a very good fit. 

 

Draper and Smith (1981) use the partial correlation coefficient as a measure of the importance of 

variables not yet in the equation. Assume 
1

Z  Z 2 , …Z k , are all functions of one or more of  the 

X’s, represent the complete set of variables from which the equation is to be chosen and that this 

set includes any functions, such as squares, cross products, logarithms, inverses, and powers 

thought to be desirable and necessary. The procedure starts by first selecting the Z most correlated 

withY . Suppose this Z is 1Z , the first–order linear regression equation is found to be )(ˆ
1ZfY = . 

We check the significance of the variable and if it is not, we quit and the model YY = is adopted 

as best, otherwise we search for the second predictor variable to enter the regression. The partial 

correlation coefficients of all predictors not in regression at this stage, namely 1, ≠jZ j  with Y is 

examined. In other words, Y and jZ , are both adjusted for their straight line relationships with 1Z , 

and the correlation between these adjusted values is calculated for all 1≠j . jZ  with the highest 
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partial correlation coefficient with Y is now selected, say it is 2Z . So the second regression 

equation ),(ˆ
21 ZZfY = is fitted. The overall regression is checked for significance with the 

improvement in 2R value noted, and the partial F - values for both variables now in the equation 

are examined. The smaller of these two partial sF ' is then compared with an appropriate 

F percentage point and the corresponding predictor variable is retained in the equation or rejected 

according to whether the test is significant or not. The testing of the “least useful predictor 

currently in the equation” is done at every stage of the procedure. Thus a predictor that may have 

been the best entry candidate at an earlier stage may, at a later stage become redundant as a result 

of the relationship between it and other variables now in the regression. Such a variable will be 

removed from the model upon testing non-significant and the appropriate fitted regression 

equation is then computed for all the remaining variables still in the model. Eventually, when no 

variables in the current equation can be removed and the next best candidate variable cannot hold 

its place in the equation, the process stops. As each variable is entered into the regression, its effect 

on 2R is noted. However, the correct choice of the α- levels is necessary to avoid cycling effect. 

 

Miller (1990) suggests a method that finds a subset r < p of variables )()2()1( ,....., pXXX from a set 

of variables pXXX ,....., 21 which minimises or gives a suitably small value for  

2

1
)( ijj

n

i
i xbyS −= ∑

=

. 

Since the value of jb is given by  

jb ∑∑
==

=
n

i
ij

n

i
iij xyx

1

2

1

 

it follows that 

∑∑∑
===

⎟
⎠

⎞
⎜
⎝

⎛
−=

n

i
ij

n

i
iij

i
i xyxyS

1

2
2

11

2 .               (2.1.1) 

 

If we let the first variable be denoted by )1(X , this variable is then forced into further subsets. The 

residuals Y –X )1( b )1(  are orthogonal to )1(X  , and to reduce the sum of squares by adding further 
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variables, the space orthogonal to )1(X must be searched. From each variable jX , other than the one 

already selected, we could form 

X )1.(j  = X j - b )1.(j X )1(  where )1.(jb  is the least squares regression coefficient of jX upon 1X , which 

 maximises (2.1.1) when Y is replaced with Y-X )1( b )1( and jX is replaced with )1(.jX .   

The variables )()2()1( ,...., rXXX are progressively added to the prediction equation, each variable 

being chosen because it minimises the residual sum of squares when added to those already 

selected. 

 

2.1.2 Backward elimination  

 

The backward elimination method is more economical than the “all regressions” method in the 

sense that it tries to examine only the “best” regression containing a certain number of variables 

(Draper and Smith (1981)). 

 

We start with all p variables, including a constant if there is one, in the selected set. Thus, a 

regression equation containing all variables is computed and variables are eliminated one at the 

time. 

 

At any step, the variable with the smallest F- ratio as computed from the current regression is 

eliminated if this F- ratio does not exceed a specified value. That is, variable i deleted from the    

p-term equation if  

out
P

pip
ii F

RSSRSS
F <

−
= − )

ˆ
(min 2σ

 . 

Here ipRSS − denotes the residual sum of squares obtained when variable i is deleted from the 

current p-term equation, and pRSS is the residual sum of squares for a p-term equation. 

 

Draper and Smith (1981) proposed a method with the following steps applied to the regression 

equation with all variables: 
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1. the partial F - value, which is associated with test 0:0 =βH versus 0:1 ≠βH for any 

particular regression coefficient, is calculated for every predictor variable treated as 

though it were the last to enter the regression equation. 

2. The lowest partial F - value say LF say, is compared with pre- selected significance level 

0F  say. If LF < 0F , the variable which gave rise to LF is removed and the regression  

equation is calculated with the remaining variable and step 1 is performed. If LF > 0F  the 

regression equation is adopted as calculated. 

 

A rather simpler approach by Miller (1990) uses the residual sum of squares. If pRSS is the 

corresponding residual sum for regression will all p variables, a variable is chosen for deletion if it 

yields the smallest value of  1−pRSS  after deletion. Then that variable from the remaining p-1 

variables which yields the smallest 2−pRSS  is deleted. The process continues until one variable is 

left or a stopping criterion is satisfied. 

 

According to Mantel (1970) the advantageous property of the backward elimination regression 

procedure is that it drops regressive variables, or sets of regressor variables, only when one can 

afford to discard without seriously impairing the goodness of fit. Thus many variables can be 

discarded without abruptly worsening the regression. 

 

On the other hand, backward elimination is usually not feasible when there are more variables than 

observations. It also requires far more computation than forward selection.  

 

2.1.3 Conventional Stepwise or Efroymson’s Algorithm 

 

This is a variation on forward selection. After each variable (except the first one) is added to the 

set of selected variables, a test is made to ascertain if any of the previously selected variables can 

be deleted without appreciably increasing the residual sum of squares. This algorithm incorporates 

criteria for the addition and deletion of variables. 
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2.1.3.1 Criterion for addition 

 

If  rRSS  denotes the residual sum of squares with r variables and a constant in the model and the 

smallest RSS  which can be obtained by adding another variable to the present that is 1+rRSS , the 

ratio 

)2(
1

1

−−

−
=

+

+

rn
RSS

RSSRSS
R

r

rr                                       (2.1.3.1) 

is calculated and its value is as compared with an ‘F–to enter’  value, say Fe. If R is greater than Fe, 

the variable is added to the selected set. 

 

2.1.3.2 Criterion for deletion 

 

If 1−rRSS  is the smallest RSS which can be obtained after deleting any variable from the 

previously selected variables, the ratio 

 

)1(

1

−−

−
= −

rn
RSS

RSSRSS
R

r

rr         (2.1.3.2) 

is calculated and its value compared with an ‘F – to delete (or drop)’ value, say Fd. If R is less than 

Fd, the variable is deleted from the selected set. 

 

2.1.3.3 Convergence of the Algorithm 

 

From (2.1.3.1) it follows that when the criterion for adding a variable is satisfied we have                            

RSS 1+r  ≤  RSS r  / {1+ )2( −− rn
Fe } and from (2.1.3.2) when the criterion for deletion of a 

variable is satisfied we have  

})2(1{1 −−+≤ + rn
FRSSRSS d

rr .Consequently when an addition is followed by a deletion, the 

new RSS, say RSS*
r, is such that  
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)2(1

)2(1
*

−−+

−−+
×≤

rn
F

rn
F

RSSRSS
e

d

rr
    

 (2.1.3.3) 

The procedure stops when no further additions and deletions satisfying the criteria are possible. 

Since each RSS r  is bounded below by the smallest RSS  for any subset of r variables, by ensuring 

that the RSS is reduced each time that a new subset of r variables is found, convergence is 

guaranteed. From (2.1.3.3) it follows that a sufficient condition for convergence is that Fd < Fe. 

 

However, there is no guarantee that this algorithm will find the best fitting subsets, though it often 

performs better than forward selection when some of the predictors are highly correlated. 

 

2.1.4 Press 

 

According to Draper and Smith (1981), the Press selection procedure proposed by D.M Allen in 

Technical Report No 23, Dept of Statistics, University of Kentucky, 1971, the procedure is a 

combination of all possible regressions, residual analysis and validation techniques. 

 

If r is the number of parameters including oβ in a regression equation and there are n observations 

in all, the basic calculations entail: 

 

1. Deleting the first observation on the response and predictor variables. 

2. Fitting all possible regressions to the remaining n-1 data points 

3. Using each fitted model to predict 1Y by rY1̂ (say) and so obtain a predictive discrepancy 

)ˆ( 11 rYY − for all the possible regression models. 

4. Repeating steps 1, 2 and 3, but deleting the second observation to give ( rYY 22
ˆ− ) values, 

the third to give (Y )3̂3 rY− values, and so on, to n deletions. 

5. Calculating the predictive discrepancy sum of squares 2

1

)ˆ( ir

n

i
i YY −∑

=

for each subset  

      regression model. 
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6. Choosing the “best” subset regression. This will have a comparatively small predictive 

sum of squares but not involve many predictors. 

 

2.1.5 Principal Component Regression  

 

This is a procedure which analyses the collaboration structures in some detail and was first 

proposed by Harold Hotelling (Draper and Smith (1981)). 

 

Let Z represent the appropriate centred and scaled X matrix. Then the correlation matrix Z'Z, and 

the eigenvalues of this correlation matrix are the k solutions kλλλ ,......., 21   of the determinantal 

equation 

|Z'Z – λI|= 0          (2.1.5.1) 

for the model with all possible predictors Z1, Z 2 ,…,Z k . By making each new variable column 

2
1

(

jj

jji
ji S

ZZZ −
=          (2.1.5.2) 

where 2

11

)(, j

n

i
jijj

n

i
jij ZZSZZn −== ∑∑

==

     (2.1.5.3) 

with zero mean and unit sum of squares, we have orthogonalised out a new '
0β term, and cast the 

predictors into ‘correlation form’. The rank of the non-singular correlation matrix is k= r – 1. The 

total of all sums of the squares of the Zj is clearly k (Draper & Smith (1981)). We call this the total 

variance of the Z’s. 

 

For each eigenvalue, jλ , there is a eigenvector γ satisfying 

(Z ' Z - λ j I)γ j = 0                                                                                           (2.1.5.4) 

with γ '
j γ j = 1. The vectors rj are used to re-express the Z’s in terms of principal components W’s, 

in the form  

kkjjjj zzzW γγγ +++= .....2211       (2.1.5.5) 
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and the sum of the squares of the new Wj column with elements Wji, i=1, 2,………,n, is jλ i.e. Wj 

picks up an amount of jλ  of the total variance. We note that ∑ =
j

j kλ and∑∑ =
j

i ji kW 2 . 

The W j  corresponding to the largest jλ value is called the principal component and accounts for 

the largest proportion of the variation in the standardised data set. Also Wj
'  s  explain smaller and 

smaller proportions until all variation is explained i.e. .
1

k
r

j
j =∑

=

λ The Wj’s are not all used but a 

selection procedure of some sort is used, however, there is no universally agreed upon procedure. 

 

 

2.1.6 Latent Root Regression 

 

This is an extension of the principal component regression for examining alternative predictive 

equations and elimination of predictor variables by Webster and his co-workers (Draper and Smith 

(1981)). The data matrix of the centered and scaled predictor variables is augmented with the 

centered and scaled responsible variable to provide Z*= (y,Z) where Z is the centered and scaled  

‘X matrix’ y=(Y – 1Y )/ 2
1

YYS  where 1 is an nx1 vector of  1’s and 2)( YYS iYY −= ∑ . It follows that 

Z*'Z* is the augmented correlation matrix. The eigen values and their corresponding eigen vectors 

are calculated and the first element of each of the eigen vectors is used as a measure of 

predictability of the response by that eigen vector. The larger the size of the first element of the 

eigen value the more useful is that eigen vector in predicting the response variable and vice versa. 

The presence of small eigen values indicates potential linear dependence among predictor 

variables. Eigen vectors whose eigen values and corresponding first element of the eigen vectors 

are small are dropped and modified least squares estimation equation is obtained. The backward 

elimination procedure is then employed to remove predictor variables from the equation. 

 

The vector of a modified least square (MLS) equation coefficients are given by:  
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⎥
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⎤
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⎣

⎡

= −∑
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j

j

k

c
b
b

b

γ

γ

γ

λγ 2

1
1

0
*

*
2

*
1

* *b              (2.1.6.1) 

where c = - { 12* −∑ j
j

oj λγ }-1{ 2

1
)( YY

n

i
i −∑

=

} 2
1

                      (2.1.6.2) 

and ∑* denotes a summation over only those values of j whose vectors have been retained. Also 

*
0b = Y  for the model. The residual sum of the squares for any modified least squares (MLS) 

equation can be written as 

 

1122

1

}*}{)({ −−

=
∑∑ −= j

j
oj

n

l
i YYRSS λγ  

 = 2
1

2})({ YYc i −− ∑          (2.1.6.3) 

the residual sum of squares that  results from deletion of Xl, kl ....2,1=  from the MLS equation can 

be evaluated as  

1
2

0
00

2

1

}}{)({ −

=

−−∑
ll

l
n

i
i t

ttYY          (2.1.6.4) 

where 
j

qjrj

j
rqt

λ
γγ

∑= *          (2.1.6.5) 

The main advantage of this method is that by removing the effect of the non-predictive near 

singularities, the true influences of the independent variables on the dependent variable are more 

clearly represented. 

 

2.1.7 Branch –and bound Techniques 

 

Suppose that we are looking for the subset of r variables out of p variables which yields the 

smallest RSS. We begin by dividing all possible subsets into two branches, those which contain 

X1 , and those which do not. Within each branch we can have sub-branches including and 

excluding variable X2, etc. Suppose at some stage we found a subset of r variables containing X1 
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or X2 or both giving RSS=100 say. Suppose we are about to start examining the sub-branch which 

excludes both X1and X2. A lower bound on the smallest RSS which can be obtained from this sub-

branch is the RSS for all of the p-2 variables. If this is say, 108 then no subset of r variables can do 

better than this, and since we have already found a smaller RSS, this whole sub-branch can be 

skipped. 

 

The technique is useful when there are ‘dominant’ variables which good-fitting subsets must 

include. It is of no value when there are more variables than observations, as the lower bounds are 

nearly always zero. 

 

2.1.8 Variable Selection via the Elastic net  

 

According to Zou and Hastie (2005), the elastic net encourages a grouping effect where strongly 

correlated predictors tend to be in or out of the model together. It is particularly useful when the 

number of predictors (p) is much bigger than the number of observations (n). 

 

2.1.8.1 Naive Elastic net 

Let y = (y '
,1 )..., ny be the response and X = )|...|( 1 pxx  the model matrix,  

where '
1 ),...,( njjj xx=x , j = 1,…,p, are the predictors. After a location and scale transformation, 

we can assume that the response is centered and the predictors are standardised, and hence 

                

               ∑
=

=
n

i
iy

1
0   ∑

=

=
n

i
ijx

1
0  and ,1

1

2 =∑
=

n

i
ijx  for j =1,…,p                           (2.1.8.1.1) 

For any fixed non-negative 1λ  and 2λ , we define the naïve elastic net criterion as: 

 

                1||||||),( 1
2

2
2

,21 ββXβyβ λλλλ ++−=L                                       (2.1.8.1.2) 

  where 
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∑

∑
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=

=

=
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j

j
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j
j

1
1

1

22

||||

||

β

β

β

β
 

 

The naïve elastic net estimator β̂  is the minimiser of (2.1.8.1.2)   

                                   }.,({minargˆ 2,1 ββ
β

λλL=                            (2.1.8.1.3) 

 

Let ,
21

2

λλ
λ

α
+

= then solving β̂  in (2.1.8.2) is equivalent to the optimisation problem  

β̂ =argmin|y-Xβ| 2  subject to (1-α)|β| 1  + α|β| t≤2  for some t. 

The function (1-α)|β| 1  + α|β| 2 is the elastic net penalty. In this discussion we consider the case  

where α<1. For all  α ∈[0,1), the elastic net penalty function is singular (without first derivative) 

at 0 and it is strictly convex for all α>0. 

 

 

Lemma 1. Given data set (y,X) and ( 1λ , 2λ ), define an artificial data set ( ),( ** Xy  by 

 

                   

    ,)1(
2

2
1

2
*

)( ⎟⎟
⎠

⎞
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⎝

⎛
+=

−
×+
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λppn               ⎟

⎠
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⎜
⎝
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0
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)( pn . 

                                                                                

Let 
)1( 2

1

λ
λ

γ
+

=     and  ββ )1( 2
* λ+= . Then the naïve elastic net criterion can be written as  

 

Let  )};,{(minargˆ *
*

ββ
β

* γL=  

then .ˆ
)1(

1ˆ *

2

ββ
λ+

=   

 

.||||),(),( 1
*2* ββXyββ *** γγγ +−== LL
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2.1.8.2 Elastic net 

 

Zou and Hastie (2005) point out that empirical evidence shows that the naïve elastic net does not 

perform satisfactorily unless it is very close to the lasso method discussed in section (2.2.2). This 

is why it is called naïve. The elastic net improves the prediction performance of the naïve elastic 

net. 

Given (y, X), penalty parameter ( 1λ , 2λ ) and let ( ** X,y ) be the artificial data, the naive elastic net 

solves a lasso-type problem 

           

1
*

2

12* ||
)1(

||minargˆ
*

ββXyβ **

β λ
λ
+

+−=                                                     (2.1.8.2.1) 

The elastic net (corrected) estimates β̂  are defined by  

             β̂ (elastic net) = *β̂1( )2λ+                                                                (2.1.8.2.2) 

We recall that β̂ (naïve elastic)={ *β̂}
)1(

1
2λ+

; thus 

                          β̂ (elastic net) = (1+   ˆ)2 βλ (naïve elastic net).                       (2.1.8.2.3) 

Hence the elastic net coefficient is a rescaled naïve elastic net coefficient. 

 

An algorithm called LARS-EN (Zou and Hastie (2005)) is recommended to solve the elastic net 

efficiently. Algorithm LARS-EN sequentially updates the elastic net fits. In the p>n case, such as 

with micro array data, it is not necessary to run the algorithm to the end. Real data and simulated 

computational experiments show that the optimal results are achieved at an early stage of 

algorithm LARS-EN. If we stop the algorithm after m steps, then it requires 0( )33 pmm +  

operations. 

 

2.1.9 Generating all Subsets  

                                            

 It is feasible to generate all subsets of variables if the number of predictor variables is not too 

large, say less than 20 and if only the RSS is calculated for each set. When the complete search has 

been carried out, a small number of the more promising subsets can be examined in more detail. 
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The disadvantage of generating all subsets is cost. The computational cost roughly doubles with 

each additional variable. Hence the availability of high-speed computing becomes imperative for 

this rather cumbersome procedure. 

 

2.2 VARIABLE SELECTION IN THE COX REGRESSION MODEL   

         

The Cox regression model or proportional hazards model for survival data assumes that  

             h(t,x,β) = )(0 th exp( )∑
j

jjx β                  (2.2.1)    

where )(0 th  is the hazard at time t given predictor values x = ( )...,1 pxx and )(0 th is an arbitrary 

baseline function. We usually estimate the parameter β = ( '
1 ),..., pββ  here in the proportional 

hazards model without specifying )(0 th  through maximization of the partial likelihood :     

                            L(β) =  ∏ ∑∈
∈

Dr
Rj

j

j

r

r

)}exp({
)exp(

'

'

xβ
xβ                                                 (2.2.2) 

Performing a proportional hazards regression analysis requires a number of critical decisions. 

When selecting a subset of covariates, we must consider issues such as clinical importance and 

adjustment for confounding, as well as statistical significance. Once a subset is selected, we must 

determine whether the model is ‘linear’ in continuous covariates and, if not, what transformations 

are suggested by data and clinical considerations. Another important decision is the question of 

interactions, if any, to be included in the model. 

 

Regardless of which method is used for covariate selection, any survival analysis should begin 

with a thorough bivariate analysis of association between survival time and all important 

covariates. For categorical covariates the logrank test must be employed whilst quartiles are used 

for continuous covariates to make them nominal for the logrank test to be employed.  

 

Stepwise methods for the Cox regression are similar to those that will be discussed in Logistic 

regression in Chapter 3 and hence will not be considered in this section. 
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2.2.1 Purposeful Selection of variables 

 

This is a method that is completely controlled by the data analyst. It begins with a multivariable 

model containing all variables significant in the bivariate analysis at the 20-25 percent level, as 

well as any other variable not selected with this criterion, but which are judged to be of clinical 

importance. The use of the above level of significance should lead to the inclusion of any variable 

that has the potential to be either an important confounder, or statistically significant in the 

preliminary multivariable model. 

 

Following the fit of the initial multivariable model, we use the P-values from the Wald tests of the 

individual coefficients to identify covariates that might be deleted from the model. The P-value of 

the partial likelihood ratio test should confirm that the deleted covariate is not significant. 

 

After fitting the reduced model, we assess whether or not removal of the covariate has produced an 

“important” change in the coefficients of the variables remaining in the model. We use a value of 

about 20 percent as an indicator of an important change in the coefficients. If the variable excluded 

is an important confounder, it is recommended that any variable excluded from the initial 

multivariable model be added back into the model to confirm that it is neither statistically 

significant nor an important confounder. 

 

The next step is to examine the scale of continuous covariates in the preliminary main effects 

model. There are methods that can be employed to assess whether the effect of the covariate is 

linear in the log hazard and if not, which transformation is linear in the log hazard. 

One of the methods involves replacing the continuous covariate with design variables such as 

quartiles or other purposeful cut-points that may have been used in the bivariate analysis. The 

estimated coefficients for the design variables are plotted against the midpoints of the groups and, 

at the midpoint of the first group, a point is plotted at zero. If the correct scale is linear in the log 

hazard, then the polygon connecting the points should be nearly a straight line. If there is a 

substantial departure from the linear trend, its form may be used to suggest a transformation of the 

covariate. The quartile method does not require any special software. However, it is not powerful 

enough to detect subtle, but often important, deviations from a linear trend. 
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Another approach is the method of fractional polynomials which we shall not discuss in this study. 

The only software that has fully implemented this method is STATA (Hosmer & Lemeshow 

(1998)). 

 

In the final step we determine whether interactions are needed in the model. Special considerations 

may dictate the inclusion of certain interaction terms irrespective of whether the coefficients are 

statistically significant or not. In most settings there will be insufficient clinical theory to justify 

automatic inclusion of interactions. 

 

Biologically plausible interactions are formed and those that are individually significant at the 5 

percent level are included simultaneously in the main effects model. The inclusion of non-

significant interactions will increase standard error estimates, resulting in wide confidence 

intervals. The inclusion of an interaction term will change the coefficients of the relevant main 

effects. When there is statistically significant interaction, we include the corresponding main effect 

terms in the model regardless of their statistical significance. 

 

2.2.2 The Lasso Method (Tibshirani (1997)) 

 

 We denote the log partial likelihood by λ(β)=logL(β), and assume that the ijx  are standardised so 

that ∑∑ ==
i iji ij NxNx .1/,0/ 2  

We estimate β via the criterion 

                      ( ),minargˆ ββ λ=  subject to Σ | sj ≤|β                                   (2.2.2.1) 

where s > 0 is a user specified parameter. Suppose 0β̂  are maximisers of the partial likelihood 

(2.2.2). Then if ∑≥ |ˆ| 0
js β , the solution to (2.2.2.1) are the usual partial likelihood estimates. If 

s<∑ || 2
jβ , the solutions to (2.2.2.1) are shrunken towards zero. An attractive feature of the 

particular constraint ∑ ≤ sj || β  is that quite often some of the solution coefficients are exactly 

zero and hence this makes for a more interpretable final model. 

The strategy for solving (2.2.2.1) is to express the usual Newton-Raphson update as an iterative 

reweighted least squares (IRLS) step, and then replace the weighted least squares step by a 
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constrained weighted least squares procedure. If X denotes the design matrix of regressor variables 

and η = Xβ, define u = ∂ℓ⁄∂η, A= 2∂ ℓ/∂ηη ' and z = η+A 1− u. Then a one-term Taylor series 

expansion for ℓ(β) has the form 

                       (z – η) '  A(z – η)                                                               (2.2.2.2) 

Hence to solve the original problem (2.2.2.1), we use the following procedure: 

i) Fix s and initialise β̂ =0. 

ii) Compute η, u, A and z based on the current value β.  

iii) Minimise (z – Xβ) '  A(z – Xβ)  subject to  Σ | sj ≤|β . 

iv) Repeat steps 2 and 3 until β̂  does not change. 

 

Since A is a full matrix, it requires computation of 0(N 2 ) elements. However, this difficulty can be 

avoided by replacing A with diagonal matrix D that has the same diagonal elements as A. 

If the log partial likelihood is bounded in β for the given data set, then for fixed s a solution to 

(2.2.2.1) exists since the region Σ | sj ≤|β  is compact. But the solution may not be unique. 

 

In some situations it is desirable to have an automatic method for choosing the parameter s based 

on the data. Tibshirani’s proposal is to minimise an approximate Generalised Cross Validation 

(GCV) statistic. We write the constraint Σ | sj ≤|β  as ∑ ≤ .||
2

s
j

j
β

β This latter constraint is 

equivalent to adding a Lagrangian penalty λ∑ ||
2

j

j
β

β  to the log partial likelihood, with λ≥0 

depending on s. We may write the constrained solution β̂  step 3 in the form  

 

                              β̂ = (X ' DX + λW) 1− X ' Dz                                        (2.2.2.3) 

W = diag (W j ), W
|~|

1
j

i β
=  if |~| jβ >0 and 0 otherwise. Therefore we may approximate the 

number of effective parameters in the constrained fit  β̂  by 

                             p(s) = tr[X(X ' DX + λW¯ ) 1− X ' D]. 
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Letting sλ be the log partial likelihood for the constrained fit with constraint s, we construct the 

GCV-style statistic 

                             GCV(s) = 2]/)(1[
1

NspNN
s

−
− λ

 . 

The GCV criterion inflates the negative log partial likelihood by a factor that involves p(s), the 

effective number of parameters and larger values of p(s) cause more inflation of the negative log 

partial likelihood. 

 

The simulation study by Tibshirani revealed that the lasso clearly outperforms stepwise selection 

and picked the correct number of zero coefficients. It is less variable than the stepwise approach 

and still yields interpretable models.  

                                                                                                                                                                            

2.3 VARIABLE SELECTION FOR TIME SERIES DATA 

 

Marriot and Pettitt (1997) proposed a model that takes the form:  

Yt= Filter + Covariates + noise   

where the filter is a “time series filter” and is designed to capture stochastic and deterministic 

trends and seasonality and also to correct for possible auto correlated noise terms. We simply seek 

to remove the “time series behaviour” from the dependent variable to prevent it from hiding the 

effects that any exogenous explanatory variable or covariable might have. 

 

The trend components take a lagged dependent variable and linear time trend, and the seasonal 

component is also a lagged dependent variable. 

The proposed time series filter is given by  

Filter = it

p

i
istt YYY

T
t

−
=

−− Δ+∂+++ ∑
1

1 φνβα   where T observations are available, Δ is the difference 

operator, 1−−=Δ ttt YYY  and s is the period of the seasonality. The exogenous explanatory 

variables or covariates are given as  

Covariates = ∑
=

k

l
i

1

ψ Xt,i 
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where Xt,i,…,Xt,k, are observations on the covariates, and the complete model for observed data is 

tjt

k

l
iit

p

l
isttt xYYrY

T
tY εψφβα ++Δ+∂+++= ∑∑

=
−

=
−− ,

11
1      t = 1,2,…..T 

where tε ~ iid   N (0, 2σ ) 

The model is given in vector form as ε+= ZθY      (2.3.2) 

where Z = (F, X), the columns of F and X being sample values of the filter and covariates 

respectively, and 'θ  = ( kpp ψψφφνβα ,...,,,...,,,,, 1∂ ). 

 

From (2.3.2), Marriot and Pettitt (1997) point out that Zellner (1971) shows that using a non 

informative joint prior for parameters, and writing D to represent the past history of both TY   and 

iTX ,   the marginal posterior density for θ is:  

 

 

 

where 4−−−= kpTν , 

s2 =
ν

)ˆ()ˆ( ' θZYθZY −−  

and   YZZZθ '1' )(ˆ −=  

This is a multivariate t-density. The marginal posterior density for σ is  

)
2

exp(1)|( 2

2

1 σ
ν

σ
σ υ

sf −∝ +D  

which is the inverse gamma type distribution. 
2/)1(' )}ˆ~()ˆ~({)|,()~,,|()~|( +−−−+∝= ∫ νυσσσ θzHθzθDθzθzD, FFFF YYddfYfYf  

where H = }~)~(~1{1 '1''
2 zzzZZz −+−

s
 

which is a t- density. The mean and variance of FY  are E[ zD ~,FY ] = YZZZz '1' )(~ −  

and ]~|])~|[[( 2 zD,zD,FF YEYE − = }~)(~1{
2

'1'2 zZZz −+
−

s
ν
ν  

2''2 )}ˆ()ˆ({)(
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−

−−+∝ θθZZθθD|θ ν
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If we delete the ith
 row of the Z-matrix to get Z–i, the complete Bayesian analysis using Z –i in 

place of Z is undertaken to obtain the posterior densities. The deleted row zi are used to obtain the 

predictive densities for observed Y value, Yi. The predictive mean E[ iiY zD, ] and standard 

deviation S[ ]|| iiY zD are then used in the construction of diagnostic plots. 

 

The plots are designed to help to answer the questions of whether or not an exogenous explanatory 

variable makes a significant additional contribution to the model or not, where we consider any 

additional contribution to be significant  if it appears to improve the predictive power of the model. 

 

The order of including explanatory variables is given by backward elimination, the variable 

corresponding to the smallest value of  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

D
D

i

i

S
E
ψ
ψ

[
[

   

at each step being removed. 

 

We plot the absolute value of the deviation (AD) of the observation from the predictive mean 

iii YEY zD,[−  against the predictive standard deviation (SD), 

],|var[ iiY zD  for each model. 

We then plot the convex hull of the scatter. For a clearer picture of the data, all points on the 

convex hull are ‘peeled’ away and the set of points that form the convex hull of the remaining 

scatter is identified. The process is repeated until the central 50% of the scatter is reached, and the 

convex hull of the central 50% is then superimposed on the picture. Plots arising from different 

models are superimposed, suppressing the original scatter, and the resulting pictures make the 

relative performance of competing models easy to assess. The better model is the model that 

combines low predictive dispersion with few extreme values, graphically, the plot of its convex 

hull is closest to the origin. 

 

If a graphical choice of a model is not clear cut, the sample means of the absolute mean deviations, 

MAD, and the standard deviations, MSD are used to select the optimal model. The use of sum of 
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these two, MAD + MSD, provides a simple but useful numerical summary of the absolute 

deviation-standard deviation, ADSP, plot. 

  

2.4 HYPOTHESIS TESTING 

 

Suppose that by some method we have already selected r variables, where r may be zero, out of p 

variables available to include in our predictor subset. If the remaining variables contain no further 

information which is useful for predicting the response variable then we should certainly not make 

any further selection. But we need to know whether the remaining variables containing further 

information or not. The following hypothesis can be tested 

HO: 0,........,, 21 =++ prr βββ where these s'β are the regression coefficients of the variables which 

have not been selected. 

 

2.4.1 The lack-of-fit Test    

 

If we have n observations and have fitted a linear model containing r out of p variables plus a 

constant, then the difference in RSS between fitting the r variables and fitting  all the p variables, 

RSSr – RSSp, can be compared with RSSr giving the lack-of-fit statistics: 

 

Lack of fit F = 

)1( −−

−
−

pn
RSS

rp
RSSRSS

P

pr

                (2.4.1.1)   

If the usual conditions of independence, constant variance and normality are satisfied, then the 

lack-of-fit statistic is sampled from an F-distribution with (p-r) and (n-p-1) degrees of freedom. 

 

2.4.2 The Coefficient of Determination, R2   

                                                                                                                                                                              

According to Miller (1990), the distribution of R2 for a random subset of the Y-variable which is 

uncorrelated with the X-variables is a beta distribution with  

prob (R2<z) = dttt
baB

bz a 1

0

1 )1(
),(

1 −− −∫  
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where a = 2
r , b = 2

)1( −− rn  if a constant has been included in the model but not counted in the 

r variables. Using the beta distribution and fitting constants to their tables, as Miller (1990) points 

out, Rencher and Pun obtained the following formula for the upper 100(1-γ) % point of the 

distribution of the maximum R2 using the Efroymson’s algorithm as  

2
γR = [ )(]

)(log
log1[ 1

8.1 4.0 γγ −+ F
N N

e

e ] where                     (2.4.2.1) 

 N = p Cr and F-1(γ ) is the value of z such that prob (R2<z) = γ 

Values of F-1(γ ) can be obtained from the tables of the incomplete beta function or from tables of 

the F-distribution by writing Regr to denote the regression sum of squares on r variables, we have  

 

R2 = )(Re
Re

rr

r
RSSg

g
+  

Write F = 

)1(

Re

−− rn
RSS

r
g

r

r

  

as the usual variance ratio for testing the significance of the subset of r variables, if had been 

chosen a priori, then R2 = ])1([ Frnrr −−+ .    (2.4.2.2) 

Thus the value of R2 such that the prob (R2<z) = γ  is the value of F with prob(R2<z) = γ  which is 

the value of F with r and (n-r-1) degrees of freedom for the numerator and denominator 

respectively so that the upper tail area isγ . The reciprocal of a variance ratio also has an F 

distribution but with the degrees of freedom interchanged, and use the tables with (n-r-1) and r 

degrees of freedom for numerator and denominator respectively and then take the reciprocal of the 

F-value read from the tables. The upper limit of R2 is then obtained by substitution in (2.4.2.2) and 

finally into (2.4.2.1). 

 

2.4.3 Minimum Adequate Sets 

 

Miller (1990) points out that Aitkin advances the following argument: 

If we decide on a prior for the comparison of subset X2 with the full model, containing all the 

variables in X, then we should use the likelihood-ratio test which gives the variance ratio statistic:  
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F =

)(

)(
)(

pn
RSS

rp
RSSRSS

p

pr

−

−
−

        (2.4.3.1) 

where the counts of variables (r and p) include one degree of freedom for a constant if it is 

included in the models. Under the null hypothesis that none of the (p-r) variables excluded from 

X 2 is in the ‘true’ model, this quantity is distributed as F(p-r,n-p), subject to assumption of 

independence, normality and homoscedacity of the residuals from the model. Aitkin then considers 

the statistic:   

  

U(X2) = (p-r)F                    (2.4.3.2) 

The maximum value of U for all possible subsets including a constant is then  

 

Umax
 = 

)(

1

pn
RSS

RSSRSS

p

p

−

−
 

where RSS1 is the sum of squares of Y about the mean. 

A simultaneous 100 %α  test for all the hypotheses 02 =β  for all subsets X2 is obtained by testing 

that: 

U(X2) = (p-1) F ( pnp −− ,1,α ).                (2.4.3.3)  

Subsets which satisfy (2.4.3.3) are referred to as ‘minimal adequate sets’ and are such that if any 

variable is removed from the subset, it fails to satisfy the condition.  

 

2.5 COMPARISON OF MODELS: SOLUTION CRITERIA 

 

Once a manageable set of models is reached, criteria are needed to select or decide on appropriate 

subset among contending subsets .The accuracy of any model is measured by a discrepancy, a 

measure of lack of fit of the model at hand. The model which minimises the expected discrepancy 

is the ‘best’ model selected. The overall discrepancy consists of two components: discrepancy due 

to the approximation (bias) and discrepancy due to estimation (variance). The discrepancy due to 
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approximation decreases as the number of parameters increases; the discrepancy due to estimation 

increases as the number of parameters increases.  

A consistent estimator of the expected discrepancy is called a criterion and is used for model 

selection.  

 

2.5.1 Akaike’s Information Criterion (AIC) and the Bayes Information Criterion (BIC). 

 

According to George (2000) these two criteria are among the most popular criteria, motivated from 

very different view points.  

 

Letting γl̂ denote the maximum log likelihood of the γth model, AIC selects the model which 

maximises γγ qlA −=                         (2.5.1.1) 

where γq is  defined in paragraph (1.2) of Chapter1. Miller (1990) points out that the AIC has often 

been used as the stopping rule for selecting ARIMA(auto-regressive, integrated, moving average) 

models where selection is not only between models with different numbers of parameters but also 

between many models of the same size. He further suggests that the AIC, with various 

modifications of it, can be applied in situations in which normality is not assumed. 

The BIC selects the model which maximises  

⎟
⎠
⎞

⎜
⎝
⎛ −= γγ qnlB )(log

2
1ˆ    

George (2000) mentions  Haughton as saying that BIC is consistent when the model is fixed  and 

Shibata saying that AIC is consistent if the dimensionality of the true model increases with n, the 

number of observations, (at an appropriate rate). 

    

2.5.2 Cp – Statistics (Cr – Criterion) 

 

According to Hocking & Leslie (1967), C L Mallows suggests that the standardised total squared 

error be used as a criterion and he developed an estimate Cp of this quantity given by:  
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Cp = )2(
ˆ 2 rnRSSr −−
σ

,                                   (2.5.2.1)  

where r is the number of variables in the regression, RSSr is as defined in (2.1.3.1) and 2σ̂  is an 

estimate of 2σ . 

 

Now, if an equation with r parameters is adequate, that is, does not suffer from lack of fit, then     

E(RSSr) =(n-r) 2σ  so that  

E(Cp) ≈ )2()(
2

2

rnrn
−−

−
σ

σ                              (2.5.2.2) 

          ≈ r 

for an adequate model. It follows that a plot of Cp versus r will show up the ‘adequate models’ as 

points fairly close to the line Cp = r. Thus subsets with small Cp and Cp close to r will be 

considered to be good. 

 

Certainly, of the ⎟
⎠
⎞

⎜
⎝
⎛ p

r
 possible regressions of size r, only few will be considered to be good. We are 

interested in that subset of size r for which the residual sum of squares and thus the Cp is minimal.  

 

Hocking & Leslie (1967) further describe a method that allows the subset of size r to be identified 

after having compared the residual sum of squares for only a small fraction of the possible ⎟
⎠
⎞

⎜
⎝
⎛ p

r
  

subsets. This computation will mostly yield those regressions with small Cp. Reference is made to 

the k = p – r variables which are to be removed from the regression rather than the variables which 

are to be retained. Reference shall also be made to the “reduction in regression sum of squares” 

due to removing a set of k variables. Now the set of k variables for which this reduction is 

minimum determines that set of r variables to be retained for which the residual sum of squares is 

minimum. 

 

If 2σ is determined by the residual mean square for the complete regression, and Redr denotes the 

reduction, the Cp statistic can also be computed from this reduction: 
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Cp = )2(
ˆ

Re
2 prdr −−

σ
                                                                                     (2.5.2.3) 

If a single variable, say the ith  is removed from the regression, the reduction is given by 22
itσ  

where  

2

2
2

ˆ
)(

ib

i
i

b
t

σ
=                     (2.5.2.4) 

is the square of the usual t- statistic associated with the ith  regression coefficient. The ib are defined 

by YXDXDXDb iiii ')' '1' −= . Let 

22ˆ ii tσθ =          (2.5.2.5) 

     = reduction due to eliminating ith variable where i = 1,…,p. 

First, we compute the full regression by solving the normal equations:  

X ' X YX '=β                    (2.5.2.6) 

and then evaluate the r univariable reductions, iθ . We assume that the variables are labelled 

according on the iθ . That is 

pθθθ .....21 ≤≤ .                 (2.5.2.7) 

With this labelling, the subset of size p-1 with minimum residual sum of the squares is obtained by 

deleting the first variable. 

 

This approach is based on the fundamental property of quadratic forms which states that if the 

reduction in the regression sum of squares due to eliminating any set of variables for which the 

maximum subscripts j is not greater than 1+iθ , then no subset including any variable with subscripts 

greater than i can result in a smaller reduction. 

 

We now describe a sequential method consisting of at most r+1 stages for each value of r 

=1,2……..,p-2. The first stage consists of computing the reduction due to eliminating variables 

1,2,…,k  for k=p-r under labelling indicated in expression (2.5.2.7). If this reduction does not 

exceed 1+kθ , then, according the above property, the process is terminated and the regression 

consisting of the r variables k+1,…,p is to be the ‘best’ subset of  size r in the sense of minimum 

residual sum of squares. 
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If the reduction computed in the first stage exceeds 1+kθ , then no decision can be made and we 

proceed to the second stage and variable k+1 is included among the candidates for elimination. 

The ⎟
⎠
⎞

⎜
⎝
⎛ k

1
 reductions due to eliminating any set of k variables selected from the first 1+kθ but 

containing the (k+1)st variable are then computed. If the smallest of the 1 + ⎟
⎠
⎞

⎜
⎝
⎛ k

1
   reductions 

computed to this point does not exceed  2+kθ  the process terminates and the corresponding subset 

is ‘best’. If not, no decision is taken at this second stage and we proceed to the third stage. 

 

In the third stage the reductions are computed for all subsets of the size k selected from the first 

k+2 variates which contain variable k+2, a total of ⎟
⎠
⎞

⎜
⎝
⎛ +1

2

k
computations. The minimum of the 1 + 

⎟
⎠
⎞

⎜
⎝
⎛ k

1
+ ⎟

⎠
⎞

⎜
⎝
⎛ +1

2

k
 reductions from the first three stages is now compared with 3+kθ and the iteration 

either terminates or continues to the next stage.  

 

In general, at any stage, say the qth, a total of ⎟
⎠

⎞
⎜
⎝

⎛ −+

−

2

1

qk

q
 reductions must be computed and checked to 

see if the ‘best’ subset can be identified. At this stage the largest subscript on any variable being 

considered is k+q-1 and hence the search can be terminated if the minimum of the ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+q

j j
jk

1 1
2

 

reductions computed in the first q stages does not exceed qk+θ and the corresponding subset is 

‘best’. If not, we proceed to stage q+1 where subsets of size k containing variable k+q are 

considered. However, it has been observed that it rarely happens that all r+1 stages are completed 

except for very small values for r. 
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2.5.3 The Sp – Statistics ( Sr – Statistics) 

 

According to Thomson (1978) this method is regarded as being amongst the most suitable for 

variable selection in multivariable regression analysis where dependent variable y and the p 

independent variables have a (p+1)-dimensional normal distribution. The criterion used minimises 

the expected squared distribution between the true and predictable values of the dependent variable 

y.  

The value of y, conditionally given some predictor set xDr  ,r≤p may be  expressed as follows :  

  rrrr XxDy εββ +−+= )(0        (2.5.3.1) 

where rX (1xr) vector of means obtained from a regression sample for the r variables being used 

and rε  ~ N(0; 2
rσ ). For some particular predictor set x, a future value of ryy ˆ,  is predicted by:  

rrrr bXxDby )(ˆ 0 −+=        (2.5.3.2) 

where b r  = [ YXXDDXxXXD nrrnrnr )'1('])1()'1(' 1 −−− −  and n the regression sample size. 

The method involves calculating the statistic: 

2−−
=

rn
MSES r

p  or                 (2.5.3.3) 

)2)(( −−−

+
=

rnrn
SSERED

S pr
p                  (2.5.3.4) 

For subsets of the independent variable where REDr, is the reduction in regression sums of squares 

between the full p-variable regression and the r variable regression, r=1,2,…,p and SSEp is the 

error sums of squares. Equation (2.5.3.4) as opposed to (2.5.2.3) provides an efficient 

computational procedure for the use of this statistic. 

 

The subset of variables chosen is the one which yields the smallest value of Sp. However, if the 

independent variables cannot be regarded as randomly and normally distributed, the use of Cp is 

suggested. 
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2.5.4 RMS, R2 and Adjusted R2 Statistics   

 

These are common criteria functions which are simple functions of the residual sum of the squares 

for the r-term equation denoted by RSSr 

 

2.5.4.1 The Residual Mean Square  

 

The residual mean square is given by:   RMSr  = 
rn

RSSr

−
   (2.5.4.1) 

Hocking (1976), points out that many statisticians voice preference for the residual mean square, 

RMSr, as a criterion function. RMS r , is plotted against r and the choice of r is based on  

I. The minimum RMS. 

II. The value of r such that RMSr = RMS for the full equation or 

     III.   The value of r such that the locus of the smallest RMSr turns sharply upwards. 

 

2.5.4.2 The Squared Multiple Correlation Coefficients (SMCC)  

The SMCC is given by: 
TSS
RSS

R r
r −= 12 .              (2.5.4.2.1) 

The plot of R2
r versus r may yield a locus of the minimum R2

r  which remains quite flat as r is 

decreased and then turns sharply down. The value of r at which this ‘knee’ in the R2
r plot occurs is 

frequently used to indicate the number of terms in the model. However, it has been observed that 

R2 is a measure of the residual sum of the squares proportional to the total sum of squares and, 

hence, would appear to be a reasonable measure of model adequacy. The relation of R2 to Cp is 

given by  

Cp = npRRtn r −+−−−− 2)1(1)(1( 22             (2.5.4.2.2) 

It follows from this relation that, while the R2
r plot may be quite flat for a given range of r, the 

coefficient (n-t-1) can magnify small differences causing Cp to increase dramatically as r is 

decreased. Therefore, the R 2
r  criterion may suggest the deletion of more variables than the 

minimum Cp criterion. Simulation studies by some authors as described by Hocking (1976) 

indicate that essential variables may be deleted using the 2
rR  criterion. Also, lacking a precise 

definition of the knee, the qualitative inspection of the 2
rR  plot is dependent on the scale. 
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2.5.4.3 The Adjusted R2 or Fisher’s A-statistics 

 

The adjusted R2-statistic (adjusted for degrees of freedom) is usually defined as: 

rn
nRR rr
−
−

−−=
)1()1(1 22                            (2.5.4.3) 

as an alternative to R2. Some users recommend the adjusted squared multiple correlation 

coefficient R  and suggest using the value of r for which 2
rR is maximum. Following the simple 

relation of 2
rR to Cp, the adjusted R 2 -statistic is given by: 

rr RMS
TSS
nR 112 −

−= . 

The 2
rR  procedure is exactly equivalent to minimising RMSr. There appears to be no advantage in 

using 2
rR over RMSr in view of the above relation. 
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                                     Chapter 3 
 

                 THE LOGISTIC MODEL AND VARIABLE SELECTION FOR A  

                 BINARY OUTCOME VARIABLE   

 
Having discussed variable selection procedures with regard to continuous outcome variables in 

Chapter 2, we now in this chapter, consider situations where the response variable is a categorical 

random variable, attaining only two possible outcomes. In the first place a model and estimation of 

its parameters is discussed in detail. Then variable selection for this model is presented. 

 

In the next discussions, use was made of the following references :( Czepiel, S, Guyon, I and 

Elisseeff, A (2002). Joubert, G (1994). Hosmer, D W and Lemeshow, S (1989). Larson, P V 

(2001). Menard S, (2001)). 

 

3.1 BINARY DATA 

 

When the response variable is dichotomous, it is convenient to denote one of the outcomes as 

‘success’ and the other as ‘failure’. For example, if a patient is cured of a disease, the response is 

‘success’, if not, then the response is ‘failure’. If a mouse dies from toxic exposure, the response is 

‘success’, if not (i.e. if it survives) the response is ‘failure’. It is standard to let the response 

variable Z be the binary variable, which attains the value 1, if the outcome is ‘success’, and 0 if 

the outcome is ‘failure’.  

 

Let π = P(Z=1) so that P(Z=0) = 1 – π, then Z~ B(1, π). Suppose that data on p predictor variables 

are available for each patient or mouse, x1 ,…,x p . The objective is to investigate the relationship 

between π and the predictor variables. In a regression situation, each response variable is 

associated with a given set of values of a set of explanatory variables x1 ,…,x k . For example 

whether or not a patient is cured of a disease may depend on the particular medical treatment the 

patient is given, the patient’s general state of health, age, gender, etc.; whether or not an item in a 

manufacturing process passes the quality control may depend on various conditions regarding the 
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production process, such as temperature, quality of raw material, time since last service of the 

machinery, etc. It is often possible to group the observations in such a way that all observations 

within a group have the same values of predictor variables. For instance, we may group the 

patients in the disease example according to type of medical treatment, gender and age group, etc 

such that there are several patients in each grouping. When the data can be grouped it is easier to 

record the number of successes and failures for each group, rather than recording a long series of 

0s and 1s.  

   

Example 3.1 (Larsen 2005) 

The link between the use of oral contraceptives and the incidence of myocardial infarction was 

investigated. The table below gives the number of women in the study, using the contraceptive pill, 

who suffered a myocardial infarction, and the number using the pill who did not suffer a 

myocardial infarction. The corresponding numbers for women not using the pill are also given. 

                                           

                                         Infarction 

                                         Yes       No 

                              Yes 

                  Pill 

                               No 

                                         Example 3.1 

 

3.2   LOGISTIC REGRESSION 

         

Binomial logistic regression is a form of regression which is used when the response variable is a 

dichotomy and the predictor variable(s) is/are of any type (i.e. discrete or continuous). It can be 

used to predict a response variable on the basis of values of predictors and to determine the  

percentage of variance in the response variable explained by the predictors; to rank the relative 

importance of predictors; to assess interaction effects; and to understand the impact of covariate 

control variables. Logistic regression has proven to be one of the most versatile techniques in the 

class of generalised linear models (Czepiel, S). 

 

23 
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Whereas linear regression models equate the expected value of the dependent variable to a linear 

combination of predictor variables and their corresponding parameters, generalised linear models 

equate the combination to some function of the probability of a given outcome on the dependent 

variable. In logistic regression, that function is the logit transform: the natural logarithm of the 

odds that some event will occur. In linear regression, parameters are estimated using the method of 

least squares by minimising the sum of squared deviations of predicted values from observed 

values. However, logistic regression is not capable of producing minimum variance unbiased 

(minvu) estimators of the actual parameters. In place of the minvu estimators maximum likelihood 

estimation is used to solve for the parameters. 

 

3.2.1 Assumptions 

 

 Logistic regression is popular in part because it enables the researcher to overcome many of the 

restrictive assumptions of ordinary least square (OLS) regression: 

 

i)  Logistic regression does not require linear relationships between predictors and the response 

variable but assumes a linear relationship between the predictors and the logit of the response 

variable. 

ii) The response need not be normally distributed (we need to assume its distribution is within the 

range of the exponential family of distributions, such as normal, Poisson, binomial, gamma). 

iii) The response variable need not be homoscedastic for each combination of levels of the 

predictors; that is, there is no homogeneity of variance assumption. 

iv) Normally distributed errors are not assumed. However, errors are assumed to be independent. 

v) Logistic regression does not require that the predictors be measured on interval scale. 

vi) Logistic regression does not require the dependents to be unbounded. 
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3.2.2 The Multiple linear Logistic Regression Model 

           

Let Z be a dichotomous (termed ‘success’ and ‘failure’) random variable denoting the outcome of 

some experiment and let X = (x 1 ,…, x p ) be a collection of predictor variables. Given a data set 

with a total sample size of M, where each observation is independent from all the others, Z can be 

considered as a column vector of M binomial random variables Z i . The data is aggregated such 

that each row represents one distinct combination of values of the predictor variables. The rows are 

often referred to as ‘populations’. Let N represent the total number of populations and let n be a 

column vector with elements n i representing the number of observations in each population  for     

i =1 to N where ∑
=

N

i
in

1

=M, the total sample size. 

 

Let Y be a column vector of length N where each element Y i  is a random variable representing the 

observed counts of the number of successes of Z for population i. Let the column vector y contain 

elements y i  representing the observed counts of the number of successes for each population. Let 

π be a column vector also of length N with elements π i  = P(Z i =1|i), i.e., the probability of success 

for any given observation in the ith population. 

 

The linear component of the model contains the design matrix and the vector of parameters to be 

estimated. The design matrix of predictor variables, X, is composed of N rows and p+1 columns, 

where p is the number of predictor variables specified in the model. For each design matrix, the 

first element x 0i  = 1 for all i. This is the intercept. The parameter vector, β , is a column vector of 

length p+1. There is one parameter corresponding to each of the p columns of predictor variables 

settings in X, plus one, 0β , for the intercept. 

 

The logistic regression model equates the logit transform, the log-odds of the probability of a 

success, to the linear component: 
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                             Logit ( iπ ) = log (
i

i

π
π
−1

) = ∑
=

p

k
kikx

0
β        i = 1,2, …, N            (3.2.2.1) 

                                                                        =  ippiii xxxx ββββ ++++ ...221100  

If some of the independent variables are discreet, (nominal scaled variables such as race,   sex, 

treatment group, and so forth), it is inappropriate to include them in the model as if they were 

interval scaled. In fact the numbers used to represent the various levels are simply identifiers, and 

have no numeric significance. The method of choice is to use a collection of design variables (or 

dummy variables). For example, if one of the predictor variables is race, say, coded as ‘‘white”, 

“black” or “other” then two design variables are necessary. Table 3.1 illustrates coding of the 

design variables, D1 and D2. 

                   

   

            Design Variable

 

RACE    D1         D2 

White      0             0 

 Black     1              0 

 Other     0              1 

           

 Table3.1. An example of the coding of Design Variable Race coded at three levels. 

 

(In general, if a nominal scaled variable has k possible values, then k-1 design variables are 

needed). 

 

3.3 PARAMETER ESTIMATION   

     

The goal of logistic regression is to estimate the p+1 unknown parameters in equation (3.2.1.1). 

This is done with maximum likelihood estimation which entails the finding of a set of parameters 

for which the probability of the observed data is greatest.  

 

 

 
 
 



 39

3.3.1 Maximum likelihood Estimation 

          

 The maximum likelihood estimation equation is derived from the probability distribution of the 

dependent variable. Since each iy represents a binomial count in the ith population, the joint 

density function of Y is:  

 

                            f(y|β) =  ∏
= −

N

i iii

i

yny
n

1 )!(!
!

 iy
iπ (1- ii yn

i
−)π                                   (3.3.1.1) 

 

For each population, there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ i

i

n

y
  different ways to arrange iy  success from in  trials. Since the 

probability of a success for any one of the in  trials is iπ , the probability of iy  successes is iy
iπ . 

Likewise, the probability of  ii yn −  failures is (1- ii yn
i

−)π .  

 

The joint probability function in equation (3.3.1.1) expresses the values of y as function of known, 

fixed values for β. The likelihood function has the same form as the probability function, except 

that the parameters of the function are reversed: the likelihood function expresses the values of β 

in terms of the known values for y. Thus, 

                            L(β|y) =  ∏
= −

N

i iii

i

yny
n

1 )!(!
!

 iy
iπ (1- ii yn

i
−)π                               (3.3.1.2)     

 

The maximum likelihood estimates are the values for β that maximize the likelihood function in 

equation (3.3.1.2). The critical points of a function (maxima and minima) occur when the first 

derivative equals 0. Attempting to take the derivative of equation (3.3.1.2) with respect to β is a 

difficult task due to the complexity of multiplicative terms. However, the likelihood equation can 

be considerably simplified. We ignore the factorial terms since they do not contain iπ and their 

exclusion will come to the same results. After rearranging equation (3.3.1.2) we obtain: 

 

                           L(y|β) =  ( ) i

i

n
i

yN

i i

i π
π

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∏

=

1
11

                                                (3.3.1.3) 
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Taking e to both sides of (3.2.2.1) gives, 

 

                           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− i

i

π
π

1
 = e∑ =

p

k kikx
0

β                                                                     (3.3.1.4) 

which after solving for iπ becomes, 

 

                           iπ  = 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∑+

∑

=

=

p
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p
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xe 0

ok ik

1

e x

β

β

                                                                   (3.3.1.5) 

 

Substituting equation (3.3.1.4) for (3.3.1.1) and equation (3.3.1.5) for (3.3.1.2), equation (3.3.1.3) 

becomes: 
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which can be written as: 
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This is the kernel of the likelihood to maximize. We simplify by taking its log and equation 

(3.3.1.7) becomes: 
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We now find the critical points of the log likelihood function by differentiating it and obtain:  
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The critical point will be a maximum if the matrix of second partial derivatives is negative 

definite; that is, if every element on the diagonal of the matrix is less than zero. It is formed by 

differentiating each of the p+1 equations in equation (3.1.1.9) a second time with respect to each 

element ofβ . The general form of the matrix of second partial derivatives is 
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Thus the critical point will be a maximum since the matrix of second partial derivatives is negative 

definite following the result obtained in equation (3.3.1.10).  

 

3.3.2 The Newton-Raphson Method 

 

Setting the equations in equation (3.3.1.9) equal to zero results in a system of p+1 nonlinear 

equations each with k+1 unknown variables. The solution to the system is vector kβ̂ . However, 
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solving a system of nonlinear equations is not easy since the solution cannot be derived 

algebraically as it can be done in the case of linear equations. The solution must be found using an 

iterative process. The most popular method for solving systems of nonlinear equations is Newton’s 

method, also known as the Newton-Raphson method.  

 

It is more convenient to use matrix notation to express each step of the Newton-Raphson method. 

We can write equation (3.3.1.10) as λ / (β) = ( ) ik

N

i
iiiki xxn∑

=

−−
1

1 ππ .                                               

Let β ( )0  represent the vector of initial approximations for each kβ , then the first step of Newton-

Raphson can be expressed as:  

 

                           β ( )1   = β ( )0   + [ - //λ (β ( )0 )] 1−  λ / (β ( )0 )                                         (3.3.2.1)     

 

Let μ be a column vector of length N with elements iii n πμ = . Each element of μ can be expressed 

as iμ = E( iy ), the expected value iy . Using matrix multiplication, we can show that: 

 

                                                         

               λ / (β) =- X ' (y-μ)                                                                                    (3.3.2.2) 

 

is a column vector of length P+1 whose elements are ( )
kβ
β

∂
∂ , as derived in equation (3.3.1.9). Let W 

be a square matrix of order N, with elements ( )iiin ππ −1  on the diagonal and zeros everywhere 

else. Again, using matrix multiplication, we can verify that 

 

                       //λ (β) = X ' WX             (3.3.2.3) 

 

is a p+1 ×  p+1 square matrix with elements ( )
2

2

kβ
β

∂
∂ λ . Now equation (3.3.2.1) can be written as  

                         

                          β ( )1   = β ( )0  + [X ' WX] 1−  X ' (y-μ)                          (3.3.2.4) 
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We continue to apply equation (3.3.2.4) until there is essentially no change between the elements   

of β from one iteration to the next. At this point, the maximum likelihood estimates are said to 

have converged, and equation (3.3.2.3) will hold the variance-covariance matrix of the estimates. 

 

                                                                      

 3.4 ODDS AND ODDS RATIO 

             

 The odds of some event happening (e.g. the event Y = 1) is defined as the ratio of probability that 

the event will occur divided by the probability that the event will not occur. That is, the odds of 

the event E is given by 

 

                            Odds (E) = 
)(

)(
notEP

EP  =  
)(1

)(
EP

EP
−

  

 

Example 3.1 (continued from page 34) 

 

An estimate of the probability of having a myocardial infarction for women in the study using the 

pill is given by P(E pill ) = 23/57 = 0.4035. Hence, the odds, amongst these women, of having a 

myocardial infarction when using the pill, is given by 

 

                                  Odds (E pill ) = 
4035.01

4035.0
−

 = 0.6764. 

 

 

That is, the probability of having a myocardial infarction is around 2/3rds the probability of not 

having a myocardial infarction, for women using the pill. 
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Similarly, for women who are not using the pill, an estimate of the probability of having a 

myocardial infarction is given by  P(E pillno− ) = 35/167 = 0.2096. The odds of having a myocardial 

infarction, when not using the pill, is given by 

 

                                  Odds (E pillno− ) = 
2096.01

2035.0
−

 = 0.2652. 

 

Thus the odds are around 1 to 4 that a woman in the study not using the pill will have a myocardial 

infarction. 

 

The odds ratio R BA,  that compares the odds of events E A  and E B  ( that is, Event E occurring in 

group A and B, respectively), is defined as the ratio between the two odds; that is  

 

                                 R BA, = 
)(
)(

B

A

Eodds
Eodds = 

)(1
)(

A

A

EP
EP

−
 

)(1
)(

B

B

EP
EP

−
. 

 

 

Example 3.1 (continued from page 42) 

 

The odds ratio comparing the odds of having a myocardial infarction for women using the pill with 

the odds of having a myocardial infarction for women not using the pill, is given by  

 

                               R pillnopill −,  =
)(

)(

pillno

pill

Eodds
Eodds

−

 = 0.6764/0.2652 = 2.5505. 

That is, the odds of having myocardial infarction are 2.55 times higher for women using the pill, 

than for women not using the pill. In particular, if an odds ratio is equal to one, the odds are the 

same for the two groups. 
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3.5 INTERPRETATION OF COEFFICIENTS 

 

The interpretation of any fitted model requires that we be able to draw practical inferences from 

the estimated coefficients in the model. The estimated coefficients must be able to answer the 

questions that motivated the study. Interpretation involves determining the functional relationship 

between the response variable and the predictor variable, and appropriately defining the unit of 

change for the response variable.  

 

3.5.1 Dichotomous Predictor Variables 

           

The link function is the logit transformation g(x) = ln{π(x)/[1- π(x)]} = β 0 +β 1 x for one predictor 

variable x . We assume that x  is coded either as 1 or 0.The log odds ratio (that is, the logarithm of 

the odds ratio) corresponding to the probability of success when the predictor variable has a value 

0=x  and the probability of success when the predictor variable has the value 1=x , is given by 

 

ln(ψ) =  ln{π(1)/[1- π(1)]}- ln{π(0)/[1- π(0)]} 

where 

      ψ = ( ) .
)0(
)1(

))0(1/()0(
))1(1/(1

g
g

=
−
−
ππ
ππ  

Now 

 ln(ψ)=  g(1)-g(0) 

         = β 0 +β 1 .1 –(β 0 +β 1 .0) 

         = β 1  

It follows that the odds ratio is given by ψ = 1βe  

 

In general, the estimate of the log odds for any predictor variable at two different levels, say x = a 

versus x = b, is given by 

 

ln[ )],( baψ) = )(ˆ)(ˆ bxgaxg =−=  

                  = )ˆˆ()ˆˆ( 1010 ba ×+−×+ ββββ  
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 = )(ˆ
1 ba −×β                                                                                (3.4.1.1) 

and the estimated odds ratio is 

exp[),(ˆ =baψ )(ˆ
1 ba −×β ]                                                                               (3.4.1.2) 

where  

  

 
))(ˆ1/()(ˆ
)(ˆ1/()(ˆ

),(ˆ
bxbx
axaxba

=−=
=−=

=
ππ
ππψ   

is used to represent the odds ratio in equations (3.4.1.1) and (3.4.1.2). 

 

The end points of the confidence interval for the odds ratio given in equation (3.4.1.2) are  

±− )(ˆexp[ 1 baβ )ˆ(ˆ|| 1
2

1
βα ESbaz ×−

−
] 

       

3.5.2   Polytomous Predictor Variables 

 

In paragraph 3.2.2 we mentioned that if a nominal scale variable has more than two levels, say k 

levels, we must model the variable using a collection of k-1 design variables as illustrated in Table 

3.1. With this method, we choose one level of the variable to be the reference level usually the 0 

level, against which all other levels are compared. We fit the model using design variables to 

obtain coefficients equal in number to the number of design variables. 

 

Fitting the model using Table3.1 will give the following results with regard to coefficients: 

(Here the category ‘white’ is used as reference category) 

 

 

Variable 

Estimated 

Coefficient 

Black 

Other 
11β̂  

12β̂  

 

Table 3.2 An example showing coefficients that will be obtained 
               when fitting the model using design variables in Table 3.1 
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Comparing Whites with Blacks we obtain  

ln )],(ˆ[ whiteblackψ  

 

   

Similarly, comparing others and with whites we obtain: 

ln 12
ˆ)],(ˆ[ βψ =whiteother  

Thus the odds ratio of any level with the reference level will be the exponential of the coefficient 

of that level. If comparison is not with a reference level, the odds ratio will be the exponential of 

the difference between the coefficients in question. 

 

The limits for a 100(1-α) percent CI for the coefficient are 

                      

                      )(ˆˆ
2

1 ijij ESz ββ α ×±
−

 

and the corresponding limits for the odds ratio are  

 

                      exp[ )ˆ(ˆˆ
2

1 ijij ESz ββ α ×±
−

]. 

3.5.3 One Continuous Predictor Variable 

 

We assume that the logit is linear in the continuous predictor, x, then the equation of the logit is 

                      .)( 10 xxg ββ +=  

The log odds for a change of c units in x  is obtained from the logit difference 

1)()( βcxgcxg =−+  and the associated odds ratio is obtained by exponentiating this logit 

difference, )exp(),()( 1βψψ cxcxc =+= . An estimate may be obtained by replacing 1β  with its 

maximum likelihood estimate 1β̂ . The end points of the 100(1-α) percent CI estimate )(cψ  are  

                           

11

21211102121110

ˆ
)0(ˆ)0(ˆˆ()0(ˆ)1(ˆˆ

),(ˆ

β
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whiteblackg

 
 
 



 48

                              exp )]ˆ(ˆˆ[ 1
2

11 ββ α EcSzc
−

±  

 

3.5.4 Multivariable Case 

 

We now face the situation in which the model contains two predictor variables, where one variable 

is dichotomous say, 1x  coded 0 and 1 and one continuous, 
2

x with primary interest focused on the 

effect of the dichotomous variable. The equation of the logit will then be 

221102,1 )( xxxxg βββ ++= . If 1x  changes from 0 to 1 with 2x = a i.e. held constant, then the log 

odds ratio is: 

                            

                                         

1

20210

2121

).0.(.1.
),0(),1()ln(

β
βββββ

ψ

=
+−++=

==−===
aa

axxgaxxg
 

 and the odds ratio is ψ = 1βe  

 Similarly, holding 1x  constant when 2x changes from x  to cx +  the odds ratio is 1βψ ce= . 

Confidence intervals are calculated as before. 

 

3.5.5 One Dichotomous and one Continuous and their Interaction  

 

If the primary interest is focused on the effect of the dichotomous variable 1x  coded 0 and 1 and 2x  

is the continuous covariate, then the equation of the logistic interaction is 

                       213221102,1 )( xxxxxxg ββββ +++= . 

If 1x  changes from 0 to 1 and ax =2  the log odds ratio is  

                        
a

aaaa
axxgaxxg

.
).0..0.(..1.

),0(),1()ln(

30

32103210

2121

ββ
ββββββββ

ψ

+=
+++−+++=

==−===
 

 

The odds ratio is thus 31 ββψ ae +=  which does not depend on the variable of interest only. The 

100(1-α) percent CI for the odds ratio is  
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                        )].ˆˆ(ˆ.ˆˆexp[ 31
2

131 aESza ββββ α +±+
−

  

where 

                        )ˆ,ˆ(ˆ2)ˆar(v̂)ˆar(v̂).ˆˆ(ˆ
212

2
131 ββββββ ovCaaaES ++=+  

 

3.6 TESTING FOR THE SIGNIFICANCE OF THE MODEL  

 

3.6.1 The Likelihood Ratio Test 

 

After fitting a particular multiple logistic regression model, we do an assessment of the model. We 

begin by assessing the significance of the p regression coefficients in the model. A likelihood ratio 

test for overall significance of the p coefficients for the predictor variables in the model is 

performed. This test is based on the statistic  

 

                    G = 2[L p (β) - L p (0)]  

Under the null hypothesis that the coefficients for the predictors in the model are all equal to zero, 

the distribution of G will be a chi-square with p degrees of freedom. The exceedance probability 

value (P-value) for the test is P= Pr[ )(2 pχ  > G]. Rejection of the null hypothesis leads to the 

conclusion that at least one and perhaps all p coefficients are significantly different from zero. 

 

3.6.2 Wald Test Statistics        

           

Before we conclude that all of the coefficients are nonzero, we may wish to look at the univariate 

Wald test statistics:             

                  
)ˆ(ˆ

ˆ

j

j
j ES

W
β

β
=  . 

This test is commonly used to test the significance of the individual logistic regression coefficients 

for each independent predictor variable (that is, to test the null hypothesis in logistic regression 

that a particular logit (effect) coefficient is zero). It is the ratio of the logit coefficient to its 
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standard error and is approximated by the standard normal distribution under the said null 

hypothesis. 

 

3.6.3 Using Deviances to Compare Likelihoods 

 

Suppose that model one has t parameters while model two is a subset of model one with only r of 

the t parameters so that r < t. Model one will have a larger log-likelihood than model two. For 

large sample sizes, the difference between these two likelihoods, when multiplied by two, will 

behave like the chi-square distribution with t-r degrees of freedom. This fact can be used to test the 

null hypothesis that the t-r parameters that are not in model two (as above) are zero. The difference 

denoted by D is calculated using results from statistical packages, as follows: 

 

                       D = -2[(model 2) – (model 1)] 

                           = -2logL (model 2) - -2logL (model 1), 

            and D ~ )(2 rt −χ , when the sample size is large. 

 

3.7 INTERACTION AND CONFOUNDING  

 

The term confounding is used by epidemiologists to describe a covariate that is associated with 

both the outcome variable of interest AND a primary predictor variable or risk factor. When both 

associations are present then the relationship between the risk factor and the outcome variable is 

said to be confounded. 

 

Consider a model containing a dichotomous risk factor variable and a continuous covariate. If the 

association between the covariate and the outcome variable is the same within each level of risk 

factor, there is no interaction between the covariate and the risk factor. Graphically the absence of 

interaction yields a model with two parallel lines of outcome variable on covariate, one for each 

level of risk factor variable. In general, the absence of interaction is characterised by a model that 

contains no product terms involving two or more variables. 
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When interaction is present, the association between the risk factor and the outcome variable 

differs or depends in some way on the level of the covariate. That is, the covariate modifies the 

effect of the risk factor. The term ‘effect modifier’ is used by epidemiologists to describe a 

variable that interacts with a risk factor. 

 

Determining if a covariate is an effect modifier and/or a confounder involves several issues. 

Determining effect modification status involves the parametric structure of the logit, while 

determination of confounder status involves two things. First, the covariate must be associated 

with the outcome variable. This implies the logit must have a nonzero slope in the covariate. 

Second, the covariate must be associated with the risk factor. 

 

In practice, the confounder status of a covariate is ascertained by comparing the estimated 

coefficient for the risk factor variable from models containing and not containing the covariate. 

Any “biologically important” change in the estimated coefficient for the risk factor would dictate 

that the covariate is a confounder and should be included in the model, regardless of the statistical 

significance of the estimated coefficient for the covariate. On the other hand, we believe that a 

covariate is an effect modifier only when the interaction term added to the model is biologically 

meaningful and statistically significant. When a covariate is an effect modifier, its status as a 

confounder is of secondary importance and the estimate of the effect of the risk factor depends on 

the specific value of the covariate. 

 

3.8 VARIABLE SELECTION FOR LOGISTIC REGRESSION 

 

According to Hosmer and Lemeshow (1989), in logistic regression the errors are assumed to 

follow a binomial distribution and the significance of a variable is assessed via the likelihood ratio 

chi-square. At any step in the procedure the most important variable in statistical terms will be the 

one that produces the greatest change in the log-likelihood relative to the model not containing the 

variable. 

 

 

 

 
 
 



 52

3.8.1 Purposeful Selection of Variables 

 

3.8.1.1 Screening of Variables 

This method is almost similar to the one discussed in section (2.2.1) under the proportional hazards 

regression model. This method is also analyst driven. 

 

 Hosmer and Lemeshow (1989) suggest that the selection process should begin with a univariate 

analysis of each variable. Hence it is suggested that the selection process should begin with a 

careful univariate analysis of each variable. For nominal, ordinal, and continuous predictor 

variables with few integer values, it is suggested this be done with a contingency table of outcome 

(y= 0, 1) versus the k levels of the predictor variable. The likelihood chi-square test with k-1 

degrees of freedom is exactly equal to the value of the likelihood ratio test for the significance of 

the coefficients for the k-1 design variables in a univariate logistic regression model that contains 

that single predictor variable. 

 

Particular attention should be paid to any contingency table with a zero cell. Strategies for 

handling zero cells include: collapsing the categories of the predictor variable in some sensible 

way to eliminate the zero cells: eliminating the categories completely: or, if the variable is 

ordinally scaled, modelling the variable as if it is continuous. 

 

For continuous predictor variables the most desirable univariate analysis involves fitting a 

univariate logistic regression with each predictor to obtain the estimated coefficient, the estimated 

standard error, the likelihood ratio test for the significance of the coefficient, and the univariate 

Wald statistic. 

 

The completion of univariate analyses is followed by selection of variables for multivariate 

analysis. Any variable whose univariate test has a P-value<0.25 should be considered as a 

candidate for a multivariable model along with all other variables of known biologic importance. 

 

The univariate approach has the disadvantage of excluding predictor variables which can 

collectively be important predictors of outcome, whilst individually weakly linked with the 
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outcome. This problem can be overcome by choosing a significance level large enough to allow 

the suspect variables to be included. 

 

After fitting the multivariable model, the importance of each variable included in the model should 

be verified. This should include (a) an examination of the Wald statistic for each variable and (b) a 

comparison of each estimated regression coefficient with the coefficient from the univariate model 

containing only that specific variable. Variables that do not contribute to the model based on these 

criteria should be eliminated and a new model should be fitted. Comparison of models is done 

through the likelihood ratio test. Also, estimated coefficients for any remaining variables should be 

compared to those of the full model. Marked change in magnitude would imply that one or more of 

the excluded variables were important in the sense of providing a necessary adjustment of the 

effect of variables that remained in the model. This process is done repeatedly until it appears that 

all of the important variables are included in the model and those excluded are either biologically 

or statistically unimportant. 

 

3.8.1.2 Scale of Continuous Predictors 

          

For continuous scaled predictor variables we must check the assumption of linearity in the logit. 

Since the concept of scale selection is the same for the multivariable models, we describe this 

approach using the univariable model. One method to ascertain linearity is to plot the fitted line on 

the scatter-plot of the logit versus the predictor variable and look for any obvious systematic 

deviations from the line. A modification of this approach is to break the range of the predictor 

variable into groups and, for each group, plot the average value of the logit versus the group 

midpoint. This approach in logistic regression requires that we transform the vertical axis to the 

logit. Thus we would plot, for each group, the logit of the group mean versus the midpoint of the 

group. The plot is examined with respect to the shape of the resulting “curve”. 

 

An alternative to scale identification in logistic regression is the Box-Tidwell transformation for 

linear regression. According to Hosmer and Lemeshow (1989), the use of this transformation has 

been examined for use in logistic regression by Guero and Johnson (1982). This approach adds a 

term of the form )ln(xx  to the model. If the coefficient for this variable is significant, we have 
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evidence for non-linearity in the logit. This procedure, however, has low power in detecting small 

departures from linearity. 

 

3.8.1.3 Inclusion of Interactions 

 

Once continuous variables are on the correct scale, we begin to check for interactions in the model. 

An interaction between two variables implies that the effect of one of the variables is not constant 

over levels of the other. For example, an interaction between sex and age would imply that the 

regression coefficient for age is different for males and females. The need to include interaction 

terms in a model is assessed by first creating the appropriate product of the variables in question 

and then using a likelihood ratio test to assess their significance (that is their contributions to the 

model). (See paragraph (3.5.3)). In general, for an interaction term to alter both the point and 

interval estimates, the estimated coefficient must attain at least a moderate level of statistical 

significance. The final decision as to whether an interaction term should be included in a model 

should be based on statistical as well as practical considerations. 

 

3.8.2 Stepwise Forward Selection 

 

This procedure starts by fitting only the intercept term, then for each of the possible predictor 

variables, a univariate logistic regression containing the intercept and that predictor (say xj) is 

fitted. The log- likelihood of the intercept model ( 0L ) is compared with the log-likelihood of each 

of the univariate model (Lj) by means of the ratio test statistic: 

)(2 0LLG jj −= .  

Its P-value is determined by ))(Pr( 2
jGvP >= χ , where ν=1 if xj is continuous and ν= k-1 if xj 

has k categories. The most important predictor variable is the one with minimum P-value and this 

variable, denoted by xe, is entered into the model. The subscript “e” indicates that the variable is a 

candidate for entry. The choice of an “alpha”( significance level) level used to judge the 

importance of variables is a crucial aspect. Let Eα  denote our choice where the “E” stands for 

entry and this choice for Eα will determine how many variables will eventually be included in the 

model. Choosing a value for Eα in the range 0.15 to 0.2 is highly recommended. Moreover, using 
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Eα in this range will provide assurance that the procedure selects variables whose coefficients are 

different from zero (Hosmer and Lemeshow (1989)). 

 

After the variable xe has been entered, the next step is to determine whether any of the remaining 

p-1 variables are important once xe is in the model by fitting the p-1 logistic regression models 

containing xe and xj, j = 1,2,3 ….. p and j ≠ e. The log-likelihoods of these models are compared 

with that of the model containing the intercept and xe. The variable with the smallest P-value at 

this step is entered, and the algorithm continues provided P-value< Eα , otherwise it stops. 

 

3.8.3 Stepwise Backward Selection  

 

The process starts with a full model containing all variables. In the first step the log-likelihood of 

the model containing all variables ( fL ) is compared to that of p-1 variables with xj is removed 

denoted by ( jL− ) by using the likelihood ratio test statistic 

)(2 jfj LLG −− −= . 

To ascertain which variable should be deleted from the model, we select that variable which, when 

removed, gives the maximum P-value. We denote the minimal level of continued contribution to 

the model by Rα  where “R” stands for remove. The value we choose for Rα  must exceed the 

value for Eα , to avoid the possibility of having to enter and remove the same variable at successive 

steps. 

 

In the next step the log- likelihood of the model excluding the one removed at the previous step is 

compared to those of all p-1 models with one of the remaining variables removed. If P-value> Rα , 

a variable is removed. Generally the choice of Rα is 0.2 or 0.25. However, important variables can 

be forced to remain in the model. 

 

The algorithm stops when all variables have entered the model or when all variables in the model 

have P-values to which is less than Rα . 
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3.8.4 Stepwise Selection (Forward and backward) 

 

This is a combination of forward and backward selection procedures discussed above. It is based 

on a statistical algorithm that allows moves in either direction, dropping or adding variables at 

various steps based on the ‘importance’ of variables. The ‘importance’ of a variable refers to the 

statistical significance of its coefficient. Since, in logistic regression the errors are assumed to 

follow a binomial distribution, the significance is assessed via the likelihood ratio chi-square test. 

Thus at any step in the procedure the most important variable will be the one that result in the 

largest likelihood ratio statistic, G. 

 

Since the magnitude of G depends on its degrees of freedom, any procedure based on the 

likelihood ratio test statistic, G must account for possible differences of degrees of freedom of 

variables. This is achieved by assessing significance through the p-value for G. 

 

3.8.5 Best Subset Selection 

 

This is an alternative to stepwise selection. This model building approach has been available in 

linear regression. Typical software implementing this method for linear regression will identity a 

specified number of ‘best’ models containing one, two, three variables, and so on, up to the single 

model containing all p variables. According to Hosmer and Lemeshow (1989), we may use any 

best subsets linear regression program to execute the computations for best subsets logistic 

regression. 

 

The subsets of variables selected for ‘best’ models depend on the criterion for ‘best’. In logistic 

regression the Score and the pC  criteria are preferred. A model with high score- value will be 

preferred to a model with a smaller score-value whereas a model with a small pC  value or pC ≈ r 

will be preferred where r is the number of predictor variables in the model. It is important to note 

that variables suggested by best subset strategy should not be accepted without considerable 

critical evaluation. 
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Though we discussed several selection procedures in Chapter 2, a few of them have been 

discussed, and others left out in this chapter. The reason is that such procedures do not apply to the 

logistic regression  

 

 

3.8.6 General 

From the information in this chapter, it is clear that selection methods for binary outcome variables 

are lacking. For this reason, we will be evaluating a new method, based on the ROC curve, briefly 

in Chapter 5. We will first discuss the concept of a ROC curve in Chapter 4. 
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                                                  Chapter 4                                                
 

THE RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 

 

4.1 BACKROUND  

 

We discuss ROC curves as a separate chapter because we will be endeavouring (chapter 5) to 

utilise these curves as additional model (or variable) selection method. Specifically: the area under 

the curve (AUC) will be evaluated as a selection criterion. The AUC will be discussed in section 

4.5. 

 

Researchers and analysts allocate a great deal of effort to the development of prediction models to 

support decision making. However, too often insufficient attention is allocated to the tool(s) used 

to evaluate the model(s) in question. The issue is that accurate prediction models may be measured 

inappropriately based upon the information available regarding classification error rate and the 

context of application. In the end, poor decisions are made because of selecting wrong models, 

using an inappropriate evaluation method. 

 

In the context of consumer risk prediction, understanding how to evaluate models which predict 

potential customers to be ‘good’ or ‘bad’ credit risks is critical to managing Customer Relationship 

Management (CRM). Since the dependent variable of concern is categorical, the issue is one of 

binary classification. For a binary classification problem (i.e. prediction of ‘good’ versus ‘bad’), 

logit analysis utilises a linear combination of the predictor variables and transforms the result to lie 

between 0 and 1, to equate to a probability. 

 

One method of evaluation, which enables a comprehensive analysis of all possible error severities, 

is the Receiver Operating Characteristic (ROC) curve. According to Morrison & Michelle (2005), 

ROC curves were developed in the field of statistical decision theory, and later used in the field of 

signal detection during WW II. ROC curves enabled radar operators to distinguish between an 

enemy target, a friendly ship, or noise. They further point out that ROC curves assess the value of 

diagnostic tests by providing a standard measure of the ability of the test to correctly classify 

 
 
 



 59

subjects. Mention is made of Metz (1978) stating that the biomedical field uses ROC curves 

extensively to assess the efficacy of diagnostic tests in discriminating between healthy and 

diseased individuals. ROC curves have since been used in fields ranging from electrical 

engineering and weather prediction to Psychology and are used almost everywhere in the literature 

on medical testing to determine the effectiveness of medications (Nargundkar and Priestly (2003)). 

 

4.2 DEFINITION OF AN ROC CURVE 

 

Consider diagnostic tests with dichotomous outcomes, with positive outcomes suggesting presence 

of disease. For dichotomous tests, there are two potential types of error. A false- positive error 

happens when a non-diseased individual has a positive test result. On the other hand, a false- 

negative error happens when a diseased individual has a negative test result. The rates of 

occurrence of these errors, termed false-positive and false negative rates, together constitute the 

operating characteristics of the dichotomous diagnostic test. These notions can be generalised to 

non-binary tests in this way: Let D be a binary (0/1) indicator of the disease status with D = 1 for 

diseased subjects. Let Y denote the test result with the convention that larger values of Y are more 

indicative of disease for some threshold value C. Now 1 minus the false-negative rate (or true 

positive rate) and 1 minus true negative rate (false-positive) associated with this decision criterion 

can be written as Pr (Y≥C 1=D ) and Pr(Y<C|D=0), respectively. An ROC curve is a plot of the 

true positive rate versus 1 minus true negative rate across all positive threshold values, C. When Y 

is continuous, a clear and brief way of writing the ROC curve is ROC(t) =  { })(1 tFF DD
−  t ∈(0,1), 

where FD and F D are the survivor functions of Y in the diseased and non-diseased populations, 

respectively, and where t is the false positive rate which varies from 0 to 1 as the corresponding 

implicit threshold value, C, varies from ∞  to -∞ . When Y is discrete the ROC curve can also be 

written in the form { })(1 tFF DD
−  but the domain for ROC (t) is restricted to the range of ( ).DF , that 

is, the set of all possible false positive rates associated with the test. By definition, the ROC curve 

is a monotone increasing function from [ ]0,0  to [ ]1,1  
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4.3 DIAGNOSTIC TEST INTERPRETATION 

 

 The basic idea of diagnostic test interpretation is to calculate, for example, the probability that a 

patient has a disease under the consideration given certain result. A 2 by 2 table is employed in this 

regard (See Table 4.3.1). 

 

4.3.1 2 X 2 Table or Contingency Matrix 

 

 

 

 

Disease 
Present 

Disease 
Absent 

 
 

Test 

Positive 

True Positives 
  (TP) 

False 
Positives 
(FP) 
 

   Total  
  Positive 
 

Test 

Negative 

False 
Negatives 
  (FN) 

True 
Negatives 
   (TN) 
 

Total 
Negative 
 

 Total with 
Disease 

Total without 

Disease 

Grand Total 

 Table 4.1 An example of a Contingency Table 

 

4.3.2 Basic Concepts 

         In this discussion we refer back to Table 4.1. 

4.3.2.1 Sensitivity 

            Sensitivity is the proportion of patients with disease whose tests are positive.   

            P(T+|D+)=TP/(TP+FN) 

      High sensitivity is important when: 

• The disease is serious and should not be missed. 

• The disease is treatable. 

• FP results do not lead to serious physic, psychological  
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or economic trauma to the patient. 

4.3.2.2 Specificity 

            Specificity is the proportion of patient without disease whose tests are negative.  

             P(T-|D-) = TN/ (TN + FN) 

             High specificity is needed when: 

• The disease is serious. 

• The disease is not treatable or curable. 

• FP   results do not lead to serious physic, psychological or economic trauma to the patient.  

 

4.3.2.3 Pre-test Probability  

            Pre-test probability is the prevalence of the disease in the population. It is also called  

             efficiency of the test. 

            P(D+) = (TP+N)/(TP+FP+TN+FN)     

            Higher Efficiency is needed when: 

• The disease is serious. 

• The disease is curable 

• FP and FN are essentially equally serious damages. 

 

4.3.2.4 Predictive Value of a Positive Test  

            Predictive values of a positive test is the proportion of patients with positive tests who                

      do have disease. 

             P(D+|T+) = TP/(TP+P) 

            These values measure:            

• The same thing as posttest probability of disease given a positive test. 

• Measures how well the test rules in disease. 

  

4.3.3.5 Predictive Value of a Negative Test  

             Predictive value of a negative is the proportion of patients with negative tests who   

            do not have disease. 

            P(D-|T-) = TN/(TN+N)    
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 This value measures how well the test rules out the disease. 

                         

4.4 ROC REGRESSION MODEL 

 

 Let the false positive rate be denoted by t and let τ denote the set of possible values for t, namely 

the range of DF , which is a subset of [0, 1]. Let Z denote some factors which potentially influence 

test accuracy and let X be a corresponding vector of covariates. For example, if Z is a categorical 

variable, X might be the associated vector of dummy variables. The covariate vector X is a 

function of the factors Z. We write the ROC curve associated with Z as )(tROCz  and model it as  

                       }),({)( 0 XtgtROCz βα=  (t )zτ∈ , 

where oα (t) is a univariate baseline function of t, βX is a linear predictor which characterises the 

effect of the covariates X on the ROC curve, g is a known function and zτ  denotes the domain of 

the ROC function associated with Z. In general the covariate vector X may include interactions 

between factors in Z and t, in which case we write the covariate vector X(t). Since the ROC curve 

is a monotone increasing function by definition, g and α must be chosen such that monotonicity in 

ROC z  is ensured.                      

 

4.5 AREA UNDER THE ROC CURVE (AUC) 

 

4.5.1 Interpretation of the Area 

 

The area under the ROC curve is commonly used as a summary measure of diagnostic accuracy. It 

takes values from 0.5 to 1.0. The AUC statistic can be interpreted as the probability that the test 

result from a randomly chosen diseased individual is more indicative of disease than that from a 

randomly chosen non-diseased individual or a measure of a model’s ability to discriminate 

between those who experience the outcome of the interest versus those who do not. 

).0,1( ==≥= jiji DDXXPAUC  An ROC curve summarises the possible set of 2 X 2 matrices 

that results when the cut-off value is varied continuously from its highest possible value down to 

its smallest possible value. An area of 1 represents a perfect discrimination. The closer the curve 

follows the left-hand border and then the top border of the ROC space, the more accurate the 
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discrimination. On the other hand an area of 0.5 represents a worthless discrimination. The closer 

the curve comes to the 45 degrees diagonal of the ROC space, the less accurate the test. 

An area of  

 

• 0.9 – 1.0 = excellent discrimination 

• 0.80 -0.90 = good discrimination 

• 0.70 -0.80 = fair discrimination 

• 0.60 -0.70 = poor discrimination 

• 0.50 – 0.60 = fail, i.e. no discrimination 

 

However, in practice it is extremely unusual to observe areas under the curve greater than 0.9. 

 

4.5.2 Comparison of Tests 

 

When results from multiple tests have been obtained, the ROC plots can be graphed together. The 

relative positions of the plots indicate the relative accuracies of the tests. A plot lying above and to 

the left of another plot indicates greater observed accuracy. If the curves for two tests cross, a 

meaningful difference between the tests over the range of interest might not be picked up by the 

AUCs. 

 

If we have two curves of similar area and we wish to decide whether the two curves differ 

significantly, we can use bivariate statistical analysis.  

 

Where we have different areas derived from two tests applied to different sets of cases, it is 

appropriate to calculate the standard error of the difference between the two areas, thus: 

                  )( 21 AASE −  = )22
21 AA SESE +  

This approach is not appropriate where two sets are applied to the same set of patients. Hanley and 

McNeil (1982) show that in these circumstances, the correct formula is: 

                  )( 21 AASE −     = 
2121 .222

AAAA SESErSESE −+  
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where r is the quantity that represents the correlation induced between the two areas by the study 

of the same set of cases. 

 

Once we have the standard error of the difference in areas, we can then calculate the statistic: 

  Z = ( 1A  – 2A ) /( )( 21 AASE − ) 

If Z is above a critical level, then we accept that the two areas are different. Commonly this critical 

value is set at 1.96, and we then have a 0.05 chance of making a type I error in rejecting the 

hypothesis that the two curves are similar.  

 

Assuming we have two tests T1 and T2 that classify our cases into either normal (n) or abnormal 

(a), and we have already calculated the AUCs for each test, r is calculated as follows: 

1. Look at (n), the non-diseased patients. We find how the two tests correlate for these   

    patients and obtain a value nr  for this correlation. 

2. Similarly we derive ar , the correlation between the two tests for the patients 

3. Average nr and ar . 

4. Average out the areas 1A and 2A by calculating ( 1A + 2A )/2. 

 5. Look up the value of r in Hanley and McNeil’s Table I (Hanley and McNeil (1982)) given the  

     the average areas of nr and ar . 

 

4.5.3 Advantages and Disadvantages of ROC 

 

The ROC plot is a simple, graphical and easily appreciated visually. It is a comprehensive 

representation of pure accuracy, i.e. discriminating ability, over the entire range of a test. It 

provides a direct visual comparison between tests on a common scale and it requires no grouping 

and binning of data. With appropriate software, ROC plotting is quite readily done. 

 

Actual decision thresholds are usually not displayed in the plot. The number of subjects is also not 

shown on the display and as the sample size decreases, the ROC plot tend to become increasingly 

jagged and bumpy. However, even with a large number of subjects, the plot may be bumpy. 
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                             CHAPTER 5 
 
                           MODEL BUILDING USING REAL DATA 
 
In this chapter we will look at the application of the procedures and methods outlined in chapters 3 

and 4 with regard to selection of variables. Some of the criteria, discussed in Chapter 2, such as the 

Akaike Information Criterion may come into play since they also are applicable to logistic 

regression and needless to say, Cox regression as well. 

 

The data set to be used was developed for a study of factors associated with success of first year 

students at the Tshwane University of Technology (TUT) from the year 1999 to 2002. Information 

on 18047 students was obtained. 

 

Table 5.1 describes the response, predictor variables and their codes. 

 

Variable                 Description   and  code 

 

Pass                       pass=1, fail=0    

Campuss                main campus=1, satellite campus =2 

Genderr                 female = 1, male=2 

Agregate               aggregate mark for all subjects in matric exam for an individual student 

Maritall                 marital status (single=1, married=2) 

Finaidd                  Financial aid (aided=1, not aided) 

Age                       student age at first registration 

English                  Performance in English in matric exam (good=1,not good=2) 

Race                      (white=1, coloured=2, Asian=3 and black=4) 

Faculty                  (Engineering=1, Commerce =2,  Social Science=3, Arts=4,  

                                Natural Science =5, Agricultural Science=6  and Health =7)                     

 

Table 5.1 Code Sheet of the Variables used in the Data set for the Study of Factors 
Associated with Success of First Year Students at TUT from 1999 to 2002 
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5.1 PURPOSEFUL SELECTION OF VARIABLES 

         

We begin with a univariable description of all predictors; both categorical and continuous 

variables are shown in Tables 14 and 15 of the appendix respectively. 

 

The univariable analysis does not reveal any variable for which there are illegal values. All binary 

variables are coded as 1; 2. Race and Faculty are the only non-binary categorical variables. We 

create indicator variables for the Faculty variable as shown in Table 5.2: 

 

    

Faculty Label faculty_2 faculty_3 faculty_4 faculty_5 Faculty_6 Faculty_7

1 Engineering 0 0 0 0 0 0 

2 Commerce 1 0 0 0 0 0 

3 Social Sci 0 1 0 0 0 0 

4 Arts 0 0 1 0 0 0 

5 Natural Sci 0 0 0 1 0 0 

6 Agric Sci 0 0 0 0 1 0 

7 Health 0 0 0 0 0 1 

 

Table 5.2 Indicator Variables for the Variable Faculty.  

 

Since the numbers of Indians and Coloureds were quite small, each less than 2% of the total, a 

dichotomous variable Brace (black race for blacks) was created. Brace takes the value 1 if race is 

black and the value 0 for other races (White, Coloured and Indian). The dependent variable was 

the logitπ = (logπ/(1-π)), where π is the probability that a student passed. 

 

 Univariable logistic regressions were fitted to the data and the results are given in Table 5.3.  
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 Predictor        Estimated Estimated           Estimated        Wald Test 

Variable         Coefficient         Standard Error   Odds ratio       95% CI         P-value      

 

Age                -0.0552              0.00726              0.759           (0.707,0.815)     <0.0001 

Agregate         0.00287            0.000078            1.267           (0.673,1.287)     <0.0001 

Campuss        -0.1645              0.0172                0.720           (0.673,0.770)     <0.0001 

Maritall           0.2043              0.0762                1.505           (1.116,2.028)       0.0073 

Finaidd            0.3483              0.0264                2.007           (1.810,2.225)     <0.0001 

Genderr           0.1662              0.0167                1.394           (1.306,1.489)     <0.0001 

English            0.3890              0.0199                2.177           (2.014,2.353)     <0.0001 

Faculty_2        0.2447              0.0586                1.277           (1.139,1.433)     <0.0001 

Faculty_3        0.5835              0.0620                1.792           (1.587,2.024)     <0.0001 

Faculty_4        1.8045              0.0757                6.077           (5.239,7.048)     <0.0001 

Faculty_5        0.7191              0.0744                2.053           (1.774,2.375)     <0.0001 

Faculty_6       -0.0894              0.0866               0.914            (0.772,1.084)       0.3020 

Faculty_7        1.2743              0.0288                3.576           (3.040,4.207)     <0.0001 

Brace              -0.9388              0.0344               0.391           (0.366,0.418)     <0.0001    

             

            Table 5.3 Univariable Logistic Regression Models  

 

For the variables Age and Agregate in Table 5.3 odds ratios are for an increase of 5 years and 100 

marks respectively. A change of 1 mark or 1 year would not be meaningful. 

 

With the exception of variables Faculty_6 and Agregate, there is evidence that each of the 

variables has some association with the outcome variable, pass. This is based on the observation 

that the confidence interval estimates do not contain 1. Furthermore, all variables are significant 

with P-value≤0.25 for the Wald test. We now, based on the univariable results, begin the 

multivariable model including all variables besides Faculty_6 which is not significant. The model 

is shown in Table 5.4. 

The Wald statistics is now used to delete variables one by one that do not appear to be significant 

at the P-value≤0.05 level, starting with the least significant one. 
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                                            Intercept  Intercepts and     
                              Criterion      Only         Covariates 
 
                              AIC           21460.178      19424.526 
                              SC            21467.979      19533.737 
                              -2 Log L      21458.178      19396.526 
 
                              Testing Global Null Hypothesis: BETA=0 
 
                      Test                 Chi-Square       DF     Pr > ChiSq 
 
                      Likelihood Ratio      2061.6516       13         <.0001 
                      Score                 2085.0164       13         <.0001 
                      Wald                  1798.0246       13         <.0001 
                                                     
                             Analysis of Maximum Likelihood Estimates 
                                               
       Parameter      DF    Estimate   Std  Error  Wald Chi-Square   Pr > ChiSq 
 
       Intercept       1     -2.5845      0.2700       91.6291       <.0001 
       age             1     -0.0101     0.00855        1.3903       0.2384 
       agregate        1     0.00162    0.000094      298.6322       <.0001 
       Campuss         1      0.0662      0.0255        6.7383       0.0094 
       maritall        1      0.0637      0.0946        0.4535       0.5007 
       finaidd         1      0.3634      0.0282      165.6272       <.0001 
       genderr         1      0.1001      0.0186       29.0649       <.0001 
       english         1      0.0778      0.0237       10.7918       0.0010 
       faculty_2       1      0.6209      0.0564      121.0806       <.0001 
       faculty_3       1      0.5730      0.0581       97.1171       <.0001 
       faculty_4       1      1.6185      0.0878      340.1683       <.0001 
       faculty_5       1      0.7232      0.0862       70.4490       <.0001 
       faculty_7       1      1.1871      0.0815      211.9119       <.0001 
       Brace           1     -0.5585      0.0437      163.3471       <.0001 
 
                                       Odds Ratio Estimates 
                                              Point          95% Wald 
                       Effect              Estimate      Confidence Limits 
 
                       age                    0.990       0.974       1.007 
                       agregate               1.267       0.673       1.287 
                       Campuss   1 vs 2       1.142       1.033       1.262 
                       maritall  1 vs 2       1.136       0.784       1.646 
                       finaidd   1 vs 2       2.068       1.852       2.311 
                       genderr   1 vs 2       1.222       1.136       1.314 
                       english   1 vs 2       1.168       1.065       1.282 
                       faculty_2              1.861       1.666       2.078 
                       faculty_3              1.774       1.583       1.988 
                       faculty_4              5.046       4.248       5.992 
                       faculty_5              2.061       1.741       2.440 
                       faculty_7              3.278       2.793       3.846 
                       Brace                  0.572       0.525       0.623 
 
 
Table 5.4 Multivariable Model Containing Variables Identified in the Univariable Analysis. 
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The model at the end of the process of removing non-significant variables is shown in Table 5.6. 

 
At this point, we allow each of the variables not in the model, the opportunity to re-enter the model 

one by one. As each variable enters the model, we evaluate its statistical significance using the 

Wald test and also ascertain whether the variable is a confounder or not of other variables in the 

model by calculating the extent of change of coefficients of variables in the model.  

  
There is no significant change in the coefficients of other variables when Faculty_6 re-enters the 

model but according to the Wald test the variable is however, not statistically significant. The 

same argument holds for the variables Maritall and Age when they re-enter the model. Therefore, 

the preliminary main-effects model is as given in Table 5.6. 

 

Before proceeding to determine interactions we need to examine the variables that have been 

modelled as continuous to obtain the correct scale in the logit. In this case the variable we need to 

check is Agregate. 

 

We start by determining the quartiles of the distribution of Agregate from appendix 1 Table 14    

and create three design variables using the lowest quartile as the reference group. The results of the 

quartile analysis are shown in Table 5.5. 

 

Quartile            Midpoint         Coefficient                 95%CI for Odds Ratios 

1                       775                  0                                                                     

2                       955                  0.2898                        (1.208,1.478)                            

3                       1137                1.0672                        (2.516,3.359)                            

4                       1680                0.9989                        (2.407,3.063) 

  

Table 5.5 Results of Quartile Analyses of the Variable Agregate from the Multivariable 

Model Containing Variables shown in Table 5.6 
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                                   Intercept     Intercept and  
                     Criterion     Only          Covariates 
   AIC           21460.178      19423.992 
                     SC            21467.979      19517.601 
                     -2 Log L      21458.178      19399.992 
 
                     Testing Global Null Hypothesis: BETA=0 
           Test                 Chi-Square       DF     Pr > ChiSq 
           Likelihood Ratio      2058.1862       11         <.0001 
           Score                 2083.3017       11         <.0001 
           Wald                  1796.8154       11         <.0001  
  
           Analysis of Maximum Likelihood Estimates 
                                             Standard                  Wald 
         Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
         Intercept       1     -2.7409      0.1250      480.9214        <.0001 
         agregate        1     0.00163    0.000093      304.3700        <.0001 
         Campuss   1     1      0.0730      0.0252        8.3651        0.0038 
         finaidd   1     1      0.3637      0.0282      165.9746        <.0001 
         genderr   1     1      0.1029      0.0184       31.1306        <.0001 
         english   1     1      0.0837      0.0234       12.8165        0.0003 
         faculty_2       1      0.6197      0.0564      120.6196        <.0001 
         faculty_3       1      0.5729      0.0582       97.0702        <.0001 
         faculty_4       1      1.6244      0.0877      342.9895        <.0001 
         faculty_5       1      0.7316      0.0861       72.2871        <.0001 
         faculty_7       1      1.1867      0.0815      211.7846        <.0001 
         Brace           1     -0.5567      0.0437      162.5179        <.0001 
 
     Odds Ratio Estimates 
                              Point          95% Wald 
         Effect               Estimate      Confidence Limits 
  agregate               1.267       0.673       1.287 
         Campuss   1 vs 2       1.157       1.048       1.277 
         finaidd   1 vs 2       2.070       1.853       2.312 
         genderr   1 vs 2       1.229       1.143       1.321 
         english   1 vs 2       1.182       1.079       1.296 
         faculty_2              1.858       1.664       2.076 
         faculty_3              1.773       1.582       1.988 
         faculty_4              5.075       4.274       6.027 
         faculty_5              2.078       1.756       2.460 
         faculty_7              3.276       2.792       3.844 
         Brace                  0.573       0.526       0.624 
 
         Association of Predicted Probabilities and Observed Responses 
 
         Percent Concordant        69.8    Somers' D    0.405 
         Percent Discordant        29.3    Gamma        0.409 
         Percent Tied               0.9    Tau-a        0.164 
         Pairs                 65896012    c            0.703 
                                                                      
         Adjusted Odds Ratios 
         Effect            Unit     Estimate 
         agregate         100.0        1.177 
         agregate        -100.0        0.850 

Table 5.6 Preliminary Main Effects Model 
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    Figure 5.1 Plot of quartile midpoints against coefficients. 

 

 

The results of plotting quartile midpoints against the coefficients are shown in figure 5.1. The plot 

of the coefficients supports an assumption of non linearity in the logit. Addition of the variable 

[Agregate*ln(Agregate)] to the model containing Agregate as a continuous variable yields a 

significant coefficient for the variable [Agregate*ln(Agregate)]. This confirms that agregate is not 

linear in the logit. 

 

From Table 5.5 the two coefficients in the third and fourth quartiles are almost similar in 

magnitude and their confidence intervals have a great deal of overlap. These observations suggest 

the creation of a dichotomous variable taking on the value 1 if Agregate is in the third and fourth 

quartiles and the value of zero otherwise as also being supported by figure 5.1. 

 

The results of including a dichotomous variable Agregate_ in the multivariable model are shown in  

Table 5.7.           
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                                          Intercept     Intercept and 
                              Criterion      Only         Covariates 
 
                              AIC           21460.178      19676.792 
                              SC            21467.979      19770.401 
                              -2 Log L      21458.178      19652.792 
 
 
                             Testing Global Null Hypothesis: BETA=0 
 
               Test                 Chi-Square       DF     Pr > ChiSq 
 
               Likelihood Ratio      1805.3857       11         <.0001 
               Score                 1831.4242       11         <.0001 
               Wald                  1618.6281       11         <.0001 
 
              Analysis of Maximum Likelihood Estimates 
 
                                                  Standard       Wald 
  Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
  Intercept       1     -1.0521      0.0663      251.6263        <.0001 
  english   1     1      0.1664      0.0229       52.6993        <.0001 
  finaidd   1     1      0.3990      0.0279      204.5030        <.0001 
  Campuss   1     1      0.0783      0.0251        9.7167        0.0018 
  genderr   1     1      0.1162      0.0183       40.3096        <.0001 
  faculty_2       1      0.5567      0.0558       99.5148        <.0001 
  faculty_3       1      0.5393      0.0576       87.7013        <.0001 
  faculty_4       1      1.6151      0.0868      345.9076        <.0001                
  faculty_5       1      0.7533      0.0855       77.5690        <.0001                
  faculty_7       1      1.1212      0.0806      193.6399        <.0001                
  Brace           1     -0.7023      0.0423      275.3671        <.0001 
  agregate_       1      0.2966      0.0393       57.0404        <.0001 
 
                                Odds Ratio Estimates 
 
                                        Point          95% Wald 
                  Effect               Estimate      Confidence Limits 
 
                  english   1 vs 2       1.395       1.275       1.526 
                  finaidd   1 vs 2       2.221       1.991       2.478 
                  Campuss   1 vs 2       1.169       1.060       1.290 
                  genderr   1 vs 2       1.262       1.174       1.355 
                  faculty_2              1.745       1.564       1.947 
                  faculty_3              1.715       1.532       1.920 
                  faculty_4              5.028       4.241       5.961 
                  faculty_5              2.124       1.796       2.512 
                  faculty_7              3.069       2.620       3.593 
                  Brace                  0.495       0.456       0.538 
                  agregate_              1.345       1.246       1.453 
 
 

 

Table 5.7 Multivariable Model With Dichotomous Variable Agregate_. 
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 We now form all possible two way interaction using the variables in Table 5.7. 
 
 
                 engagr=english*agregate_ 
 
                 engfin=english*finaidd 
 
                 amfin=campuss*finaidd 
 
                 finfac2=finaidd*faculty_2 
 
                 finfac3=finaidd*faculty_3 
 
                 finfac4=finaidd*faculty_4 
 
                 finfac5=finaidd*faculty_5 
 
                 finfac7=finaidd*faculty_7 
 
                 racfin=brace*finaidd 
 
                 agrbrac=agregate*brace 
 
                 engbrac=english*brace 
 
 
The interaction terms are added to the model containing main effects one by one. Table 5.8 shows 

those interactions that were significant when added one by one to the main effects model. 

Interactions which are not significant will be excluded from the model. A model with significant 

interactions is shown in Table 5.9. However, it should be noted that when there is statistically 

significant interaction, we include the corresponding main effects in the model regardless of their 

statistical significance.  

 

Table 5.9 gives the final model containing main effects and interactions. From Table 5.10, we see 

that (12308+1046)=13354 or 73% of the 18047 observations in our data are correctly classified by 

the logistic regression model in Table 5.9. Of the 5083 observed passes, 1046 or 20.6% are 

correctly classified as predicted passes. 4037 of these observations are incorrectly classified as 

predicted fails. They are called false-negatives. Only 656 of the observed fails are incorrectly 

classified as predicted passes. These observations are called false-positives. 
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The c statistic in Table 5.11 gives the area under the ROC curve (the AUC) in figure 5.2. This c-

value is 0.694 and indicates that the model has low predictive accuracy. But the low predictive 

accuracy does not imply the model does not fit.  

  
                                       
                   
                                          
                                            Intercept     Intercept and 
                              Criterion     Only          Covariates 
 
                              AIC           21460.178      19635.958 
                              SC            21467.979      19791.972 
                              -2 Log L      21458.178      19595.958 
                      
 
                  Analysis of Maximum Likelihood Estimates 
  
                                                Standard          Wald 
    Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
    Intercept       1     -0.8944      0.3361        7.0820        0.0078 
    Campuss   1     1      0.0806      0.0252       10.2242        0.0014 
    genderr   1     1      0.1099      0.0184       35.7304        <.0001 
    finaidd   1     1      0.2188      0.0922        5.6253        0.0177 
    english   1     1      0.1100      0.1428        0.5936        0.4410 
    faculty_2       1      0.8804      0.2504       12.3660        0.0004 
    faculty_3       1      0.5433      0.0577       88.6276        <.0001 
    faculty_4       1      0.4241      0.4249        0.9962        0.3182 
    faculty_5       1     -0.0852      0.3634        0.0550        0.8146 
    faculty_7       1      1.1313      0.0808      195.8363        <.0001 
    Brace           1     -0.5948      0.3306        3.2371        0.0720 
    agregate_       1      0.6119      0.1228       24.8345        <.0001 
    engagr          1     -0.1501      0.0936        2.5717        0.1088 
    engfin          1     -0.1932      0.1293        2.2326        0.1351 
    finfac4         1      0.6224      0.2182        8.1332        0.0043 
    finfac2         1     -0.1775      0.1301        1.8627        0.1723 
    finfac5         1      0.4584      0.1878        5.9573        0.0147 
    racfin          1     -0.1765      0.1473        1.4345        0.2310 
    agrbrac         1     -0.2025      0.0875        5.3520        0.0207 
    engbrac         1      0.3499      0.1325        6.9747        0.0083 

 
Table 5.8 A model containing Interactions which were Significant when Added One by One 
to the Main Effects Model. 
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                                  Intercept    Interaction and  
                   Criterion      Only         Covariates 
 
                   AIC           21460.178      19636.828 
                   SC            21467.979      19769.441 
                   -2 Log L      21458.178      19602.828 
 
              Analysis of Maximum Likelihood Estimates 
 
                                                Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -1.3260      0.0944      197.1637        <.0001 
Campuss   1     1      0.0802      0.0252       10.1358        0.0015 
genderr   1     1      0.1097      0.0184       35.6720        <.0001 
finaidd   1     1      0.3905      0.0441       78.5287        <.0001 
english   1     1      0.3305      0.0609       29.4292        <.0001 
faculty_2       1      1.0687      0.2342       20.8300        <.0001 
faculty_3       1      0.5447      0.0577       89.1103        <.0001 
faculty_4       1      0.3639      0.4263        0.7287        0.3933 
faculty_5       1     -0.0899      0.3664        0.0602        0.8061 
faculty_7       1      1.1313      0.0808      196.0118        <.0001 
Brace           1     -0.9373      0.1737       29.1054        <.0001 
agregate_       1      0.4453      0.0688       41.8797        <.0001 
finfac4         1      0.6557      0.2187        8.9884        0.0027 
finfac2         1     -0.2770      0.1212        5.2212        0.0223 
finfac5         1      0.4603      0.1892        5.9179        0.0150 
agrbrac         1     -0.2363      0.0838        7.9462        0.0048 
engbrac         1      0.3694      0.1315        7.8870        0.0050 
 
 
Table 5.9 Final Model with Interactions 
 
 
                    

 
                               
 
 
                      
      Actual  
Classification 
                              
 
 
 
 
 
                                 Table 5.10 Contingency Matrix for model in Table 5.9 
 
 
 

 
Predicted by Model 

 0 1 Total 

0 
 
 

12308 656 12964 

 
       1 

4037  1046 5083 

Total  16345 
        

1702        18047 
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                                   Odds Ratio Estimates 
                  
                                          Point          95% Wald 
                   Effect              Estimate      Confidence Limits 
 
                   Campuss   1 vs 2       1.174       1.064       1.296 
                   genderr   1 vs 2       1.245       1.159       1.338 
                   finaidd   1 vs 2       2.183       1.837       2.595 
                   english   1 vs 2       1.937       1.525       2.459 
                   faculty_2              2.912       1.840       4.607 
                   faculty_3              1.724       1.540       1.930 
                   faculty_4              1.439       0.624       3.318 
                   faculty_5              0.914       0.446       1.874 
                   faculty_7              3.100       2.646       3.632 
                   Brace                  0.392       0.279       0.551 
                   agregate_              1.561       1.364       1.786 
                   finfac4                1.926       1.255       2.958 
                   finfac2                0.758       0.598       0.961 
                   finfac5                1.585       1.094       2.296 
                   agrbrac                0.790       0.670       0.931 
                   engbrac                1.447       1.118       1.872 
                                           
 
                               
 
           Association of Predicted Probabilities and Observed Responses 
 
                       Percent Concordant        68.6    Somers' D    0.388 
                       Percent Discordant        29.8    Gamma        0.394 
                       Percent Tied               1.7    Tau-a        0.157 
                       Pairs                 65896012    c            0.694 

 
Table 5.11 Odds Ratios and Association of Predicted Probabilities and Observed Responses 
for the Final Model in Table 5.9 
 
 
5.2 OTHER LOGISTIC REGRESSION SELECTION PROCEDURES. 

        

The results of applying Forward, Backward, Stepwise and Best-Subset selection procedures are 

given in appendices 2, 3, 4, and 5 respectively.  

 

All the stepwise procedures except the Forward Selection produced eleven-variable models. The 

Forward Selection included two additional variables, Age and Faculty, which are non-significant at 

5% significance level according to the Wald test. These variables satisfied the entry level of 

P=0.25 but could not leave the model since the Forward procedure does not provide room for non 

significant variables to leave the model. 
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The Best Subset procedure using the pC - criterion pointed to a model with twelve variables from 

the two ‘best’ models requested for in the procedure. With regard to the Best Subset procedure 

using the Score-criterion we requested for ‘best’ two models as well, of each size (i.e. from a 

model containing one variable to a model with 13 variables). From the two ‘best’ models with 

twelve variables the Score- criterion selected the same model as the pC - criterion. 

 

The Purposeful Selection procedure like Backward and Stepwise procedures produced a model 

with eleven variables. However, Purposeful Selection warranted for the variable Agregate to enter 

the model as a binary variable following analysis of scale of continuity of this variable. 

       

           5.3 INVESTIGATION OF THE AUC AS A SELECTION TOOL 

 

         An attempt is now made to establish if the area under the ROC curve (AUC) can be used as a   

         tool for selection of variables. In other words building a model by including variables that are  

         increasing the AUC as they enter the model. A variable stays in the model provided it is significant   

         in accordance with the Wald test. Like in the Forward stepwise selection, variables enter the model  

         one at a time. 

          

The process starts by building one-variable models and recording the AUC and the P-values as 

shown in Table 23. The one-variable model with the highest AUC provides the first variable to 

enter the model. In the next step all other variables will enter the model one by one and only the 

two-variable models with AUC greater than the highest AUC obtained in the first step will be 

considered. In the third step, a two-variable model with the highest AUC will be the basis for a 

three-variable model and only models with AUC higher than the largest obtained in the previous 

step will be considered. In any step, if there is more than one model with the same maximum, the 

model to be considered to the basis for next step will be selected using AIC. The process continues 

in this way until the AUC does increase further even when the number of variables in the model 

increases. However, only variables that are significant according to the Wald test will be allowed 

to stay in the model.  
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Tables 23 to 36 give the results of applying the above procedure to our data set. We note that in the 

last two steps (Tables 35 and 36) there are non significant variables.  The final model is given in 

Table 34 with eleven variables, also the same as the other eleven-variable model obtained 

previously using Purposeful, Backward and Stepwise selection procedures.  

 
The ROC curve for the model in Table 34 is given by figure 5.2. The area under this curve is 0.703 

as shown in the table in question. This value of the area indicates a fair discrimination (predictive 

accuracy) by the model. 

 

From Table 5.12 we see that (12240+1191) =13431 or 74% of the observations in our data are 

correctly classified by the logistic regression model in Table34. Out of 5083 observed passes, 1191 

or 23% are correctly classified as predicted passes. 3892 or 77% of these observations are 

incorrectly classified as predicted fails (false negatives). Only 724 or 5.6% o the observed fails are 

incorrectly classified as predicted passes (false positives). 
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Figure 5.2 ROC curve for the model obtained using AUC procedure. 
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     Actual               
  Classification                                     
 
 
 
 
 
 
                                  Table 5.12 Contingency Matrix for the Model in Table 34 
                                          
 

5.4 THE AUC AND THE STEPWISE SELECTION PROCEDURES 

 

 These two selection procedures produced similar models. We note that these procedures involve 

‘picking’ and ‘dropping’ of variables and we now investigate the sequence or the order of the 

variables entering and leaving the models. The comparison is shown in Table13. 

 

Predicted by Model 

 0 1 Total 

0 
 
 

12240 724 12964 

 
       1 

3892  1191 5083 

Total  16132 
        

1915        18047 

Stepwise Procedure AUC Procedure 
Step Variable 

Entered/Removed 
Wald  
P-
value 

Step Variable Entered /Removed Wald  
P-value 

AUC 
 

1 Agregate     0.0001 1 Agregate 0.0001 0.637 
2 Faculty_4 0.0001 2 Brace 0.0001 0.656 
3 Faculty_7 0.0001 3 Finaidd 0.0001 0.671 
4 Finaidd 0.0001 4 Faculty_4 0.0001 0.681 
5 Brace 0.0001 5 Faculty_7 0.0001 0.687 
6 Genderr 0.0001 6 Genderr 0.0001 0.690 
7 Faculty_6 0.0001 7 Faculty_6 0.0001 0.694 
8 Faculty_2 0.0001 8 Faculty_2 0.0001 0.695 
9 Faculty_3 0.0001 9 Faculty_3 0.0058 0.697 
10 Faculty_5 0.0001 10 Faculty_4 0.0001 0.701 
11   Faculty_6  Removed 0.6888 10 Faculty_6 Removed 0.6888 0.702 
12 English  0.0002 11 English 0.0002 0.703 
13 Campuss 0.0038 12 Campuss 0.0038 0.703 
14 Age 0.862 13 Age Entered and Removed 0.0864 0.703 
15 Age Removed 0.864 14 Maritall Entered & Removed 0.1584 0.703 
Table 5.13 Comparison of the Stepwise and the AUC procedures 
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From Table 5.13 both procedures have Agregate as the first variable to enter the model. In step 2 

up to step 4 the same variables entered the model though not in the same sequence. From step 5 up 

to the end, the two procedures yielded almost the same results. But the Stepwise procedure did not 

consider the variable Maritall for entry into the model. 

 

The example used is perhaps not ideal for investigating the ROC curve as a variable selection 

technique. Here we have a lot of potential variables to be selected; all of them only make small 

contributions to the predicted probabilities. However, almost all of all of these contributions are 

statistically significant because of the huge sample size! Judging according to the AUC’s, the 

increase in AUC from Table 32 to Table 36 (Appendix 6) is only 0.2% and from Table 29 to Table 

36 only 0.8%. These are small increases and one may as well decide to use the model of Table 34 

as the final model. It is clear that much more research on the use of the AUC’s is needed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            
                             
 

 
 
 



 81

                                   CHAPTER 6 
 

                         DISCUSSION AND CONCLUSION 

 

The purpose of this study was to explore methods and procedures used to select predictor variables 

for binary response variables. However, as the point of departure selection procedures for a 

continuous response variable were also discussed in order to illuminate the whole question of 

variable selection. 

 

We have seen that selection procedures for binary responses and continuous dependent variables 

are basically the same, for example, all methods used in Logistic regression are almost similar to 

those used for the Cox regression model. For both regressions, the ‘Purposeful Selection of 

Variables’ emerges as the most interesting and recommended procedure for selecting variables, 

since the method is completely controlled by the analyst. The stepwise and the best subset 

procedures are statistical algorithms which, to some extend, do the selection automatically. In 

situations where the number of variables is not large, Purposeful selection is recommended as the 

sole tool for selection. It can be coupled with Stepwise selection when the number of variables is 

too large, in which case stepwise selection will reduce the number of predictor variables to a 

reasonable number before Purposeful selection is used. Another advantage of Purposeful selection 

is the inclusion of variables that are scientifically relevant or known to interact with other variables 

regardless of their statistical significance. Thus the analyst, not the computer, becomes responsible 

for the review and evaluation of the model. 

 

 The results of a fitted logistic regression model can intuitively be summarised via classification 

tables. In this regard, the logistic regression model is a diagnostic test and the classification table 

measures the prediction accuracy. However, this measure is statistically insensitive. On the other-

hand the area under the ROC Curve, another measure of the predictive accuracy, is not an 

extremely sensitive measure to compare two models. It is important to note that a model with high 

predictive accuracy does not necessarily provide evidence that the model fits well. We may have a 

situation where the logistic regression model is in-fact the correct model and thus fits the data but 
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classification or discrimination is poor. These measures should, therefore, supplement more 

rigorous methods of assessment of fit. 

 

The results in Tables 5.7, 5.13 and 34 suggest that to some extent, the AUC can be used as 

criterion for variable selection with the P-value of the Wald test used to remove insignificant 

variables. Perhaps even as an alternative to Purposeful and Stepwise selection procedures. 

However, further research is required to investigate this approach, especially for highly correlated 

variables. 

  

It is further recommended that the data set used to fit the model should not be used to test for the 

predictive accuracy, otherwise the results become biased. A new set of observation should be used 

to avoid this bias, and the method called jack-knifing should be applied. The following are some of 

the major challenges for evaluating diagnostic tests and for applying ROC methodology in 

particular: 

 

(1)  Status, for example disease status, is often not a fixed entity, but rather may evolve over time. 

Now, how can the time aspect, be incorporated sensibly into ROC analysis? 

 

(2) The statistical literature on diagnostic testing assumes that the test result is a simple numeric 

value. However, test results may be much more complicated, involving several components. Do 

ROC curves and the AUC have a role to play in determining how to combine different sources of 

information to optimise diagnostic accuracy? 

 

The very brief investigation into the use of ROC curves and the AUC, in this thesis, yields, by no 

means, definitive answers to the question: How effective is the ROC curve as a tool for subset 

selection? Much more research is needed. 

  

Finally, as the information revolution brings us larger data sets, with more and more variables, the 

demand for variable selection will strengthen and continue to be a basic strategy for data analysis. 

New problems will also appear as demand increases for data mining of massive data sets. 
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                                              APPENDIX 1A 
    
                           The UNIVARIATE Procedure 
                           Variable:  age (age) 
 
                                              Moments 
 
N                       18047    Sum Weights              18047 
Mean               20.0791821    Sum Observations        362369 
Std Deviation      2.72214158    Variance            7.41005479 
Skewness           4.36262118    Kurtosis            28.9348552 
Uncorrected SS        7409795    Corrected SS        133721.849 
Coeff Variation    13.5570342    Std Error Mean      0.02026321 
 
                   Basic Statistical Measures 
 
          Location                         Variability 
 
Mean     20.07918     Std Deviation            2.72214 
Median   19.00000     Variance                 7.41005 
Mode     19.00000     Range                   38.00000 
Interquartile Range      2.00000 
 
 
                  Tests for Location: Mu0=0 
 
           Test           -Statistic-           -----p Value------ 
 
           Student's t    t  990.9182    Pr > |t|    <.0001 
           Sign           M    9023.5    Pr >= |M|   <.0001 
           Signed Rank    S  81428064    Pr >= |S|   <.0001 
 
 
                   Quantiles (Definition 5) 
 
                   Quantile      Estimate 
                   100% Max            54 
                   99%                 33 
                   95%                 24 
                   90%                 22 
                   75% Q3              21 
                   50% Median          19 
                   25% Q1              19 
                   10%                 18 
                   5%                  18 
                   1%                  17 
                   0% Min              16 
                                          
                Extreme Observations 
 
        ----Lowest----        ----Highest--- 
 
         Value      Obs        Value      Obs 
 
            16    17517           51     2298 
            16    17497           51    11190 
            16    11294           52     7516 
            16    10238           52    13182 
            16     9455           54     3372 
 

Table 14 Univariate Analysis of the Variable Age 
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                The UNIVARIATE Procedure 
                Variable:  agregate (agregate) 
 
                        Moments 
   
    N                       18047    Sum Weights              18047 
    Mean               1056.67779    Sum Observations      19069864 
    Std Deviation      218.254459    Variance            47635.0089 
    Skewness            0.5336167    Kurtosis            -0.1263512 
    Uncorrected SS     2.10103E10    Corrected SS         859621371 
    Coeff Variation    20.6547788    Std Error Mean        1.624653 
 
                 Basic Statistical Measures 
 
                Location                    Variability 
 
   Mean     1056.678     Std Deviation          218.25446 
   Median   1075.000     Variance                   47635 
   Mode     1075.000     Range                       1440 
   Interquartile Range    365.00000 
 
 
           Tests for Location: Mu0=0 
 
     Test           -Statistic-           -----p Value------ 
 
     Student's t    t  650.4021    Pr > |t|    <.0001 
     Sign           M    9023.5    Pr >= |M|   <.0001 
     Signed Rank    S  81428064    Pr >= |S|   <.0001 
 
           Quantiles (Definition 5) 
 
           Quantile      Estimate 
 
           100% Max          2160 
           99%               1612 
           95%               1440 
           90%               1320 
           75% Q3            1200 
           50% Median        1075 
           25% Q1             835 
           10%                835 
           5%                 720 
           1%                 720 
           0% Min             720 
                                          
       Variable:  agregate  (agregate) 
 
       Extreme Observations 
 
         ----Lowest----        ----Highest--- 
 
         Value    Obs        Value      Obs 
 
         720    18044         1705    12262 
         720    18041         1715     6901 
         720    18038         1750     2105 
         720    18032         1750     8313 
         720    18022         2160     9123 
 

Table 15 Univariate Analysis of the Variable Agregate 
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                                                   APPENDIX 1B 
 
                            Faculty 
 
                                      Cumulative  Cumulative                         
 Faculty    Frequency     Percent     Frequency   Percent 
   2        6586       36.49          6586        36.49 
   3        3771       20.90         10357        57.39 
   1        2506       13.89         12863        71.28 
   5        1540        8.53         14403        79.81 
   6        1390        7.70         15793        87.51 
   4        1313        7.28         17106        94.79 
   7         941        5.21         18047       100.00 
 
                           Race 
 
                                   Cumulative    Cumulative 
 Race    Frequency     Percent     Frequency      Percent 
       
  4       12105       67.07         12105        67.07 
  1        5334       29.56         17439        96.63 
  3         341        1.89         17780        98.52 
  2         267        1.48         18047       100.00 
 
                          Campuss 
 
                                     Cumulative    Cumulative 
Campuss    Frequency     Percent     Frequency      Percent 
              
  1       12004       66.52         12004        66.52 
  2        6043       33.48         18047       100.00 
 
                          english 
 
                                     Cumulative    Cumulative 
english    Frequency     Percent     Frequency      Percent 
   1       12520       69.37         12520          69.37 
   2        5527       30.63         18047         100.00 
 
                                                                                
                          genderr 
 
                                     Cumulative    Cumulative 
genderr    Frequency     Percent     Frequency      Percent 
   1        9207       51.02          9207          51.02 
   2        8840       48.98         18047         100.00 
 
                          maritall 
 
                                      Cumulative    Cumulative 
maritall    Frequency     Percent     Frequency      Percent 
   
   1       17782       98.53         17782           98.53 
   2         265        1.47         18047           100.00 
 
                          finaidd 
 
                                     Cumulative    Cumulative                            
finaidd    Frequency     Percent     Frequency      Percent 
               
   2       16391       90.82         16391         90.82 
   1        1656        9.18         18047         100.00 

Table 16 Analysis of Categorical Variables 
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                                                      APPENDIX 2 
                                           
                                   Intercept       Intercept and 
                     Criterion     Only            Covariates 
 
                     AIC           21460.178      19424.820 
                     SC            21467.979      19534.030 
                     -2 Log L      21458.178      19396.820 
 
                     Testing Global Null Hypothesis: BETA=0 
    Test                 Chi-Square       DF     Pr > ChiSq 
 
    Likelihood Ratio      2061.3579       13         <.0001 
    Score                 2085.9704       13         <.0001 
    Wald                  1798.6426       13         <.0001 
 
                      Analysis of Maximum Likelihood Estimates 
                                               Standard          Wald 
 Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
 Intercept       1     -2.4774      0.2060      144.5645        <.0001 
 faculty_2       1      0.6342      0.0653       94.3829        <.0001 
 faculty_3       1      0.5862      0.0660       78.8456        <.0001 
 faculty_4       1      1.6319      0.0922      312.9702        <.0001 
 faculty_5       1      0.7349      0.0908       65.4564        <.0001 
 faculty_6       1      0.0370      0.0909        0.1654        0.6842 
 faculty_7       1      1.2008      0.0877      187.6919        <.0001 
 age             1     -0.0130     0.00750        2.9863        0.0840 
 agregate        1     0.00162    0.000094      298.0360        <.0001 
 Campuss   1     1      0.0657      0.0256        6.5952        0.0102 
 genderr   1     1      0.0987      0.0187       27.8821        <.0001 
 finaidd   1     1      0.3636      0.0282      165.7910        <.0001 
 english   1     1      0.0779      0.0237       10.8080        0.0010 
 Brace           1     -0.5574      0.0437      162.8453        <.0001 
 
                     Odds Ratio Estimates 
                    Point          95% Wald 
          Effect              Estimate      Confidence Limits 
 
          faculty_2              1.886       1.659       2.143 
          faculty_3              1.797       1.579       2.045 
          faculty_4              5.113       4.268       6.127 
          faculty_5              2.085       1.745       2.492 
          faculty_6              1.038       0.868       1.240 
          faculty_7              3.323       2.798       3.946 
          age                    0.987       0.973       1.002 
          agregate               1.002       1.001       1.002 
          Campuss   1 vs 2       1.140       1.032       1.261 
          genderr   1 vs 2       1.218       1.132       1.311 
          finaidd   1 vs 2       2.069       1.852       2.311 
          english   1 vs 2       1.169       1.065       1.282 
          Brace                  0.573       0.526       0.624 
 
          Association of Predicted Probabilities and Observed Responses 
 
         Percent Concordant        70.0    Somers' D    0.405 
         Percent Discordant        29.5    Gamma        0.408 
         Percent Tied               0.5    Tau-a        0.164 
         Pairs                 65896012    c            0.703 
                                 
                     Adjusted Odds Ratios 
                     Effect        Unit     Estimate 
 
                     age           5.0000   0.937 
                     age          -5.0000   1.067 
                     agregate      100.0    1.176 
                     agregate     -100.0    0.851 

 Table 17 The Results of Forward Selection Procedure                                             
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                                                   APPENDIX 3 
 
                                     Intercept      Intercept and  
                       Criterion     Only           Covariates 
                       AIC           21460.178      19423.992 
                       SC            21467.979      19517.601 
                      -2 Log L      21458.178      19399.992 
 
                      Testing Global Null Hypothesis: BETA=0 
 
                      Test                 Chi-Square       DF     Pr > ChiSq 
 
                      Likelihood Ratio      2058.1862       11         <.0001 
                      Score                 2083.3017       11         <.0001 
                      Wald                  1796.8154       11         <.0001 
 
                      Analysis of Maximum Likelihood Estimates 
 
                                                Standard          Wald 
    Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
    Intercept       1     -2.7409      0.1250      480.9214        <.0001 
    faculty_2       1      0.6197      0.0564      120.6196        <.0001 
    faculty_3       1      0.5729      0.0582       97.0702        <.0001 
    faculty_4       1      1.6244      0.0877      342.9895        <.0001 
    faculty_5       1      0.7316      0.0861       72.2871        <.0001 
    faculty_7       1      1.1867      0.0815      211.7846        <.0001 
    agregate        1     0.00163    0.000093      304.3700        <.0001 
    Campuss   1     1      0.0730      0.0252        8.3651        0.0038 
    genderr   1     1      0.1029      0.0184       31.1306        <.0001 
    finaidd   1     1      0.3637      0.0282      165.9746        <.0001 
    english   1     1      0.0837      0.0234       12.8165        0.0003 
    brace           1     -0.5567      0.0437      162.5179        <.0001 
 
                       Odds Ratio Estimates 
 
                                              Point          95% Wald 
                       Effect              Estimate      Confidence Limits 
                       faculty_2              1.858       1.664       2.076 
                       faculty_3              1.773       1.582       1.988 
                       faculty_4              5.075       4.274       6.027 
                       faculty_5              2.078       1.756       2.460 
                       faculty_7              3.276       2.792       3.844 
                       agregate               1.002       1.001       1.002 
                       Campuss   1 vs 2       1.157       1.048       1.277 
                       genderr   1 vs 2       1.229       1.143       1.321 
                       finaidd   1 vs 2       2.070       1.853       2.312 
                       english   1 vs 2       1.182       1.079       1.296 
                       Brace                  0.573       0.526       0.624 
 
                   Association of Predicted Probabilities and Observed Responses 
 
                       Percent Concordant        69.8    Somers' D    0.405 
                       Percent Discordant        29.3    Gamma        0.409 
                       Percent Tied               0.9    Tau-a        0.164 
                       Pairs                 65896012    c            0.703 
  
                   Adjusted Odds Ratios 
                   Effect            Unit     Estimate 
                   agregate         100.0        1.177 
                   agregate        -100.0        0.850 

Table 18 The Results of The Backward Selection Procedure 
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                                                          APPENDIX 4A 
 
 
                           Intercept     Intercepts and  
             Criterion     Only          Covariates 
             AIC           21460.178      19423.992 
             SC            21467.979      19517.601 
             -2 Log L      21458.178      19399.992 
 
             Testing Global Null Hypothesis: BETA=0 
 
      Test                 Chi-Square       DF     Pr > ChiSq 
      Likelihood Ratio      2058.1862       11         <.0001 
      Score                 2083.3017       11         <.0001 
      Wald                  1796.8154       11         <.0001 
 
  Analysis of Maximum Likelihood Estimates 
 
                                    standard   wald                              
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept       1     -2.7409      0.1250      480.9214        <.0001 
faculty_2       1      0.6197      0.0564      120.6196        <.0001 
faculty_3       1      0.5729      0.0582       97.0702        <.0001 
faculty_4       1      1.6244      0.0877      342.9895        <.0001 
faculty_5       1      0.7316      0.0861       72.2871        <.0001 
faculty_7       1      1.1867      0.0815      211.7846        <.0001 
agregate        1     0.00163    0.000093      304.3700        <.0001 
Campuss   1     1      0.0730      0.0252        8.3651        0.0038 
genderr   1     1      0.1029      0.0184       31.1306        <.0001 
finaidd   1     1      0.3637      0.0282      165.9746        <.0001 
english   1     1      0.0837      0.0234       12.8165        0.0003 
Brace           1     -0.5567      0.0437      162.5179        <.0001 
 
               Odds Ratio Estimates 
 
                    Point          95% Wald 
Effect              Estimate      Confidence Limits 
 
faculty_2              1.858       1.664       2.076 
faculty_3              1.773       1.582       1.988 
faculty_4              5.075       4.274       6.027 
faculty_5              2.078       1.756       2.460 
faculty_7              3.276       2.792       3.844 
agregate               1.002       1.001       1.002 
Campuss   1 vs 2       1.157       1.048       1.277 
genderr   1 vs 2       1.229       1.143       1.321 
finaidd   1 vs 2       2.070       1.853       2.312 
english   1 vs 2       1.182       1.079       1.296 
Brace                  0.573       0.526       0.624 
                              
Association of Predicted Probabilities and Observed Responses 
 
Percent Concordant        69.8    Somers' D    0.405 
Percent Discordant        29.3    Gamma        0.409 
Percent Tied               0.9    Tau-a        0.164 
Pairs                 65896012    c            0.703 
 
Adjusted Odds Ratios 
Effect            Unit     Estimate 
agregate         100.0        1.177 
agregate        -100.0        0.850 
 
Table 17 Results of The Stepwise Selection Procedure 
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                                                             APPENDIX4B  
                                                   
                                                                                                    
                                                                                                    
                                                           Intercept                                
                                            Intercept            and                                
                              Criterion          Only     Covariates                                
                                                                                                    
                              AIC           21460.178      19604.472                                
                              SC            21467.979      19744.885                                
                              -2 Log L      21458.178      19568.472                                
                                                                                               
                                                                                                    
                              Testing Global Null Hypothesis: BETA=0                                
                                                                                                    
                      Test                 Chi-Square       DF     Pr > ChiSq                       
                                                                                                    
                      Likelihood Ratio      1889.7059       17         <.0001                       
                      Score                 1928.0421       17         <.0001                       
                      Wald                  1700.7783       17         <.0001                       
                                                                                                    
                               Analysis of Maximum Likelihood Estimates                             
                                                                                                    
                                                Standard          Wald                              
               Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq                
                                                                                                    
               Intercept       1      0.8217      0.3777        4.7341        0.0296                
               faculty_2       1      1.0533      0.2352       20.0490        <.0001                
               faculty_3       1      0.5549      0.0578       92.2633        <.0001                
               faculty_4       1     -1.0342      0.4876        4.4991        0.0339                
               faculty_5       1     -1.4882      0.4363       11.6360        0.0006                
               faculty_7       1      1.1323      0.0809      196.1369        <.0001                
               agregate_       1      0.4487      0.0688       42.5332        <.0001                
               Campuss   1     1     -0.7741      0.1477       27.4734        <.0001                
               genderr   1     1      0.1077      0.0184       34.2445        <.0001                
               finaidd   1     1     -0.1440      0.1016        2.0090        0.1564                
               english   1     1      0.3295      0.0610       29.1972        <.0001                
               Brace           1     -0.9424      0.1739       29.3771        <.0001                
               camfin          1     -0.9071      0.1547       34.3832        <.0001                
               finfac2         1     -0.2644      0.1217        4.7179        0.0298                
               finfac4         1      1.4005      0.2526       30.7308        <.0001                
               finfac5         1      1.2059      0.2277       28.0501        <.0001                
               agrbrac         1     -0.2351      0.0839        7.8607        0.0051                
               engbrac         1      0.3704      0.1317        7.9155        0.0049                
                                                                                     
                                                                           
                                Odds Ratio Estimates                                                
                                                                                                    
                                              Point          95% Wald                               
                       Effect              Estimate      Confidence Limits                          
                                                                                                    
                       faculty_2              2.867       1.808       4.547                         
                       faculty_3              1.742       1.555       1.951                         
                       faculty_4              0.356       0.137       0.924                         
                       faculty_5              0.226       0.096       0.531                         
                       faculty_7              3.103       2.648       3.636                         
                       agregate_              1.566       1.369       1.792                         
                       Campuss   1 vs 2       0.213       0.119       0.379                         
                       genderr   1 vs 2       1.240       1.154       1.333                         
                       finaidd   1 vs 2       0.750       0.503       1.117                         
                       english   1 vs 2       1.933       1.522       2.455                         
                       Brace                  0.390       0.277       0.548                         
                       camfin                 0.404       0.298       0.547                         
                       finfac2                0.768       0.605       0.975                         
                       finfac4                4.057       2.473       6.657                         
                       finfac5                3.340       2.137       5.218                         
                       agrbrac                0.790       0.671       0.932                         
                       engbrac                1.448       1.119       1.875                         
                                                                                                    
                   Association of Predicted Probabilities and Observed Responses                    
                                                                                                    
                       Percent Concordant        68.7    Somers' D    0.392                         
                       Percent Discordant        29.5    Gamma        0.399                         
                       Percent Tied               1.9    Tau-a        0.159                         
                       Pairs                 65896012    c            0.696                         

                                                                                          
Table 20 The Results of The Stepwise Procedure with Interactions included. 
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                                                                 APPENDIX 5 
 
Number of  Score  
Variables  Chi-Square Variables included in the model 
 
      1   976.4420   agregate 
      1   768.8932   Brace 
      2   1431.5177  faculty_4 agregate 
      2   1256.2088  agregate Brace 
      3   1597.4285  faculty_4 faculty_7 agregate 
      3   1580.0377  faculty_4 agregate Brace 
      4   1749.6162 faculty_4 agregate finaidd1 Brace 
      4   1734.2736  faculty_4 faculty_7 agregate finaidd1 
      5   1869.5660  faculty_4 faculty_7 agregate finaidd1 Brace 
      5   1838.9862  faculty_4 agregate genderr1 finaidd1 Brace 
      6   1950.3123  faculty_4 faculty_7 agregate genderr1 finaidd1 Brace 
      6   1905.0736  faculty_2 faculty_4 faculty_7 agregate finaidd1 Brace 
      7   1976.8571  faculty_4 faculty_6 faculty_7 agregate genderr1 finaidd1 Brace 
      7   1976.3923  faculty_2 faculty_4 faculty_7 agregate genderr1 finaidd1 Bra 
      8   2036.9823  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate finaidd1 Brace 
      8   2017.8803  faculty_2 faculty_3 faculty_4 faculty_7 agregate genderr1 finaidd1 Brace 
      9   2071.1645  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate genderr1 finaidd1 
                     Brace                          
      9   2044.7677  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate finaidd1 english1  
                     Brace 
      10  2077.5397  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate genderr1 finaidd1  
                      English Brace                
      10  2077.2280  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate Campuss1 genderr1  
                      finaidd1 Brace 
      11  2083.3017  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate Campuss1 genderr1  
                      finaidd1 english1 Brace 
      11  2080.0984  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 age agregate genderr1  
                      finaidd1 english1 Brace 
      12  2084.8214  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 age agregate Campuss1  
                      genderr1 finaidd1 english1 Brace 
      12  2084.3485  faculty_2 faculty_3 faculty_4 faculty_5 faculty_7 agregate Campuss1 genderr1  
                      marital1 finaidd1 english1 Brace 
      13  2085.9704  faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7 age agregate  
                     campuss1 genderr1 finaidd1 english1 Brace 
      13  2085.4222  faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7 agregate Campuss1  
                      genderr1 maritall finaidd1 english1 Brace 
      14  2086.1659  faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7 age agregate  
                      campuss1 genderr1 maritall finaidd1 english1 Brace 

Table 21 The Results of Best Subset Selection Procedure using Score Criterion. 
 
 
                                       C(p) Selection Method 
 
                              Number of Observations Read       18047 
                              Number of Observations Used       18047 
 
                                            Weight: v 
  Number in 
  Model        C(p)  R-Square Variables in Model 
 
      12    11.6129    0.0902 faculty_2 faculty_3 faculty_4 faculty_5 faculty_7               
                              age agregate Campuss genderr finaidd English Brace 
 
      11    12.4942    0.0900 faculty_2 faculty_3 faculty_4 faculty_5 faculty_7  
                              Campuss agregate gender finaidd English Brace    

Table 22 The Results of Best Subset Selection Procedure using Cp Criterion. 
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                                                           APPENDIX 6 
 
 
 

Variable                       p-value                 AUC 
age                               <0.0001                0.532 
agregate                       <0.0001                0.637 * 
campuss                       <0.0001                0.537 
genderr                         <0.0001               0.541 
marital                            0.0073               0.503 
finaidd                      <0.0001               0.532 
english                         <0.0001               0.576 
brace                            <0.0001               0.608 
faculty_2                      <0.0001               0.545 
faculty_3                        0.0148               0.508 
faculty_4                      <0.0001               0.555 
faculty_5                      <0.0001               0.508 
faculty_6                      <0.0001               0.520 
faculty_7                      <0.0001               0.523 

Table 23 Step1 of the AUC procedure 
 
 
                       
 Variables :  agregate       marital        
 p-value    :  <0.0001      <0.0001 
 AUC        :  0.637 
 Variables  : agregate      faculty_5 
 p-value    :  <0.0001       0.4389 
 AUC        :  0.637 
 Variable   : agregate      faculty_3 
 p-value    : <0.0001       0.5985 
 AUC        : 0.638 
 Variable  : agregate       gender 
 p-value    : <0.0001       <0.0001 
 AUC       : 0.642 
 Variable  : agregate       campuss 
 p-value    : <0.0001       <0.0001 
 AUC       : 0.643 
Variable  : agregate       faculty_6 
p-value    : <0.0001       <0.0001 
AUC        : 0643 
Variable : agregate        english 
p-value  : <0.0001         <0.0001 
AUC      : 0.647 
Variable  : agregate       finaidd 
 p-value   : <0.0001       <0.0001 
 AUC       : 0.648 
 Variable  : agregate      faculty_4 
 p-value   : <0.0001       <0.0001 
 AUC       : 0.655 
 Variable  : aggregate    brace 
 p-value    : <0.0001      <0.0001 
 AUC       : 0.656 * 

Table 24 Step 2 of the AUC procedure 
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Variables : agregate    brace      faculty_2 
p-value    :  <0.0001   <0.0001  <0.0132 
AUC        :  0.658 
Variables  : agregate    brace      english 
p-value     :  <0.0001   <0.0001  <0.0001 
AUC         : 0.658 
Variable    : agregate    brace       campuss 
p-value     : <0.0001   <0.0001   <0.0001 
AUC         : 0.660 
Variable    : agregate    brace       faculty_7 
p-value      : <0.0001   <0.0001    <0.0001 
AUC         : 0.660 
Variable    :  agregate    brace      genderr 
p-value     :  <0.0001    <0.0001   <0.0001 
AUC         : 0.662 
Variable    : agregate    brace       faculty_6 
p-value     : <0.0001    <0.0001    <0.0001 
AUC         :  0.663      
Variable   : agregate   brace        faculty_4 
p-value   :  <0.0001   <0.0001     <0.0001 
AUC      :  0.666 
Variable  : agregate    brace        finaidd 
p-value   :  <0.0001   <0.0001     <0.0001  
AUC      : 0.671* 

         Table 25 Step 3 of the AUC procedure 
 
                                                           
 
 

Variables: agregate   brace       finaidd   faculty_2   
p-value  :  <0.0001  <0.0001   <0.0001  <0.0305 
AUC      : 0.673 
Variables: agregate   brace       finaidd    campuss 
p-value   : <0.0001   <0.0001   <0.0001  <0.0001 
AUC      : 0.674 
Variables: agregate   brace       finaidd     english   
p-value  :  <0.0001  <0.0001   <0.0001   <0.0001 
AUC      : 0.672 
Variables: agregate   brace       finaidd    genderr   
p-value  :  <0.0001  <0.0001   <0.0001   <0.0001 
AUC      : 0.677 
Variables: agregate   brace       finaidd   faculty_6   
p-value  :  <0.0001  <0.0001   <0.0001  <0.0001 
AUC      : 0.677 
Variables: agregate   brace       finaidd   faculty_4   
p-value  :  <0.0001  <0.0001   <0.0001  <0.0001 
AUC      : 0.681* 

Table 26 Step 4 of the AUC Procedure 
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Variables: agregate   brace       finaidd   faculty_4   faculty_3 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     0.0226 
AUC      : 0.682 
Variables: agregate   brace       finaidd   faculty_4   english 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001 
AUC      : 0.683 
Variables: agregate   brace       finaidd   faculty_4   faculty_2 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001 
AUC      : 0.683 
Variables: agregate   brace       finaidd   faculty_4   faculty_6 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001 
AUC      : 0.685 
Variables: agregate   brace       finaidd   faculty_4   genderr 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001 
AUC      : 0.686 
Variables: agregate   brace       finaidd   faculty_4   faculty_7 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001 
AUC      : 0.687* 

          Table 27 Step 5 of the AUC procedure 
 
 
 
 
 
Variables: agregate   brace       finaidd   faculty_4   faculty_7    faculty_5 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001      <0.0001 
AUC      : 0.688 
Variables: agregate   brace       finaidd   faculty_4   faculty_7   faculty_3 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001     <0.0001 
AUC      : 0.688 
Variables: agregate   brace       finaidd   faculty_4   faculty_7   english 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001     <0.0001 
AUC      : 0.688 
Variables: agregate   brace       finaidd   faculty_4   faculty_7   faculty_2 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001     <0.0001 
AUC      : 0.690* 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001    <0.0001 
AUC      : 0.690* 

    Table 28 Step 6 of the AUC procedure 
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Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr  faculty_5 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001  0.0065 
AUC      : 0.691 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr  faculty_3 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001  0.0002 
AUC      : 0.692 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr  english 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001  0.0003 
AUC      : 0.692 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr  faculty_2 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001  <0.0001 
AUC      : 0.693 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr   faculty_6 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001   <0.0001 
AUC      : 0.694* 

       Table 29 Step 7 of the AUC procedure  
 
        
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr   faculty_6   english 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001   <0.0001    0.0010 
AUC      : 0.695*  
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr   faculty_6  faculty_2 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001   <0.0001    <0.0001 
AUC      : 0.695* 

      Table 30 Step 8 of the AUC procedure  
 
 
        
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr   faculty_6  faculty_2   english 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001   <0.0001    <0.0001    <0.0001 
AUC      : 0.696 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr   faculty_6  faculty_2   faculty_3 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001   <0.0001   <0.0001      0.0058 
AUC      : 0.697* 

       Table 31 Step 9 of the AUC procedure  
 
        
 
   
Variables : agregate    brace       finaidd      faculty_4   faculty_7   genderr    faculty_6   faculty_2   faculty_3   english 
 p-value   : <0.0001    <0.0001  <0.0001    <0.0001      <0.0001     <0.0001   0.0091      <0.0001     <0.0001     0.0002 
 AUC      : 0.698 
Variables : agregate    brace       finaidd      faculty_4   faculty_7   genderr    faculty_6   faculty_2   faculty_3   faculty_5 
 p-value   : <0.0001    <0.0001  <0.0001    <0.0001      <0.0001     <0.0001   0.6888      <0.0001     <0.0001     0.0001 
 AUC      : 0.701* 
Variables : agregate    brace       finaidd      faculty_4   faculty_7   genderr    faculty_2   faculty_3   faculty_5 
 p-value   : <0.0001    <0.0001  <0.0001    <0.0001      <0.0001     <0.0001  < 0.0001     <0.0001     0.0001 
 AUC      : 0.701* 
 
 

        Table 32  Step 10 of the AUC procedure  
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Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr     faculty_2   faculty_3   faculty_5  english 
 p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001  <0.0001      <0.0001    <0.0001    0.0002 
 AUC      : 0.702 * 
        Table 33 Step 11 of the AUC procedure 
 
 
 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr    faculty_2   faculty_3   faculty_5  english     campuss 
 p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001 <0.0001      <0.0001       <0.0001  < 0.0001    0.0038  
 AUC      : 0.703* 

         Table 34 Step 12 of the AUC procedure 
 
 
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr    faculty_2   faculty_3   faculty_5  english    campuss   age 
 p-value  : <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001  <0.0001      <0.0001    <0.0001      0.0090     <0.0001   0.0864 
 AUC      : 0.703* 
       Table 35 Step 13 of the AUC procedure 
 
        
         
Variables: agregate   brace       finaidd   faculty_4   faculty_7  genderr    faculty_2   faculty_3   faculty_5  english    campuss    maritall 
p-value  :  <0.0001  <0.0001   <0.0001 <0.0001     <0.0001   <0.0001 <0.0001      <0.0001        <0.0001    0.0005   <0.0060    0.1584 
AUC      : 0.703*  

             Table 36 Step 14 of the AUC procedure 
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                                                    APPENDIX 7 
 
 
SAS PROGRAMME 
 
data jimmy; 
set sasuser.osiame; 
proc freq order=freq; 
tables faculty race campuss english genderr maritall finaidd; 
run; 
data jimmy2; 
set sasuser.osiame; 
proc univariate; 
var age agregate; 
title; 
run; 
data joseph1; 
set sasuser.osiame; 
if score ='1' then pass = 1; 
else if score ='2' then pass=0; 
if faculty = '2' then faculty_2=1; 
else faculty_2=0; 
if faculty = '3' then faculty_3 =1; 
else faculty_3 =0; 
if faculty ='4' then faculty_4 =1; 
else faculty_4 = 0; 
if faculty ='5' then faculty_5 =1; 
else faculty_5=0; 
if faculty = '6' then faculty_6 =1; 
else faculty_6 = 0; 
if faculty ='7' then faculty_7=1; 
else faculty_7 =0; 
if race >3 then Brace=1; 
else Brace=0; 
Keep faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
      pass age agregate campuss genderr maritall finaidd english brace; 
  run; 
 
 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass =age; 
units age=5 -5; 
run; 
 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=agregate; 
units agregate=100 -100; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=campuss; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
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model pass=maritall; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=finaidd ; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=genderr; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=english; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7 ; 
run; 
 
*/ The model without the variable Faculty_6 insignificant in  
   Univariate Logistic regression; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=age agregate campuss maritall  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7 brace;  
units age=5 -5 agregate= 100 -100; 
run; 
*/ The model without the variables faculty_6,maritall; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass=age agregate campuss  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7 brace ; 
units age=5 -5 agregate= 100 -100; 
run; 
*/ The model without the variables faculty_6,maritall and age; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass= agregate campuss  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7  brace   ; 
       
units  agregate= 100 -100; 
run; 
 
*/ Variable faculty_6 re-enters the model 
proc logistic descending; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass= agregate campuss  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7   brace faculty_6   ; 
       
units  agregate= 100 -100; 
run; 
*/ Variable maritall re-enters the model; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass= agregate campuss  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7 brace maritall  ; 
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units    agregate= 100 -100; 
run; 
*/ The variable age re-enters the model; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass= agregate campuss  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7 brace faculty_6  age ; 
       
units age=5 -5   agregate= 100 -100; 
run; 
*/ Variables thet give the pleliminary Main eefects model; 
proc logistic descending; 
class campuss maritall finaidd genderr english; 
model pass= agregate campuss  finaidd genderr english faculty_2 
      faculty_3 faculty_4 faculty_5  faculty_7 brace ; 
       
units    agregate= 100 -100; 
run; 
*/ Examining the scale of continuous covariate; 
*/ The variable agregate is analysed using quartiles; 
data joseph3; 
set joseph1; 
if 720 <= agregate <= 835 then agregroup =1; 
else if 835 < agregate <=1075 then agregroup=2; 
else if 1075 < agregate <=1200 then agregroup=3; 
else if agregate > 1200 then agregroup=4;  
if agregroup='2' then agre_2=1; 
else agre_2=0; 
if agregroup ='3' then agre_3=1; 
else agre_3=0; 
if agregroup ='4' then agre_4 = 1; 
else agre_4=0; 
run; 
proc logistic descending; 
class campuss maritall finaidd genderr english;; 
model pass= agre_2 agre_3 agre_4  campuss  finaidd genderr english faculty_2 
            faculty_3 faculty_4 faculty_5 faculty_7 brace; 
             
run; 
                                            
data midpoints; 
input    agreg    coef; 
cards; 
         775.5       0  
         955        .2898  
      1137.5     1.0672 
      1680       .9989 
   ; 
   run; 
   goptions  reset =all; 
   symbol c=blue v=dot h=.8 i=j; 
   axis order=(0 to 1.5 by .2) label=(a=90 'logit'); 
   proc gplot data=midpoints; 
   plot coef*agreg / vaxis=axis; 
   run; 
   quit; 

 
 
 



 99

      data joseph6; 
   set joseph3; 
   proc chart; 
   vbar agregate / midpoints=100 to 2200 by 100 
   GROUP=pass; 
   run; 
   data scale; 
   set joseph3; 
   exlinex=agregate*log(agregate); 
   run; 
      proc logistic descending; 
      class campuss maritall finaidd genderr english;; 
      model pass=agregate exlinex  campuss  finaidd genderr english faculty_2 
            faculty_3 faculty_4 faculty_5 faculty_7 brace; 
             
      run; 
 
     */ The variable agregate is dichotomised; 
   data joseph4; 
   set joseph3; 
   if agregate >= '1075' then agregate_=1; 
   else agregate_=0; 
   run; 
   */ Fitting a dichotomous variable agregate_; 
   proc logistic descending; 
   class english finaidd campuss genderr; 
   model pass = english finaidd campuss genderr faculty_2 faculty_3  
                faculty_4 faculty_5 faculty_7 brace agregate_; 
   run; 
    
 
 data interaction; 
 set joseph4; 
 engagr=english*agregate_; 
  engfin=english*finaidd; 
 camfin=campuss*finaidd; 
 finfac2=finaidd*faculty_2; 
 finfac3=finaidd*faculty_3; 
 finfac4=finaidd*faculty_4; 
 finfac5=finaidd*faculty_5; 
 finfac7=finaidd*faculty_7; 
 racfin=brace*finaidd; 
  agrbrac=agregate_*brace; 
  engbrac=english*brace; 
  run; 
  
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
             agregate_ engagr; 
 run; 
 
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
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               agregate_ engfin; 
 run; 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ camfin; 
 run; 
  
 
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ finfac2; 
 run; 
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ finfac3; 
               run; 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ finfac4; 
 run; 
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ finfac7; 
 run; 
 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ finfac5; 
 run; 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_ racfin; 
 run; 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
               agregate_  agrbrac; 
 run; 
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace 
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               agregate_ engbrac; 
 run; 
proc logistic data=interaction descending; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
               agregate_ engagr  engfin  finfac4 finfac2 
               finfac5 racfin agrbrac  engbrac ; 
 run; 
 
 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
               agregate_ engagr  engfin  finfac4 finfac2 
               finfac5 racfin agrbrac  engbrac ; 
 run; 
proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
               agregate_ engagr  engfin  finfac4 finfac2 
               finfac5  agrbrac  engbrac ; 
 run; 
 proc logistic data=interaction; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
               agregate_   engfin  finfac4 finfac2 
               finfac5  agrbrac  engbrac ; 
 run; 
 proc logistic data=interaction descending noprint; 
  class  campuss genderr finaidd english ; 
 model pass= campuss genderr  finaidd english faculty_2 faculty_3  
             faculty_4 faculty_5 faculty_7 brace  
               agregate_   finfac4 finfac2 
               finfac5  agrbrac  engbrac ; 
  output out=probability predicted=phat; 
 run; 
data probability1; 
set probability; 
predicts=(phat>=.5); 
run; 
proc freq data=probability1; 
tables pass*predicts / norow nocol nopercent; 
run; 
 
proc logistic data=interaction descending; 
class campuss genderr finaidd english; 
model pass=campuss genderr finaidd english faculty_2 faculty_3 faculty_4 
      faculty_5 faculty_7 brace agregate_ finfac4 finfac2 finfac5 agrbrac  
   engbrac / outroc=rocl; 
   goptions cback=white 
            colors=(blue) 
      border; 
      axis1 length=2.5in; 

 
 
 



 102

      axis2 order =(0 to 1 by .1) length=2.5in; 
proc gplot data=rocl; 
symbol1 i=join v=none; 
title 'First Year TUT Students Success ROC Curve'; 
plot _sensit_*_1mspec_ / haxis=axis1 vaxis=axis2; 
run; 
quit; 
*/ Forward selection procedure; 
data foward; 
set joseph1; 
proc logistic descending; 
class campuss genderr finaidd english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
       age agregate campuss genderr maritall finaidd english brace 
        / selection=forward slentry=.25 details ; 
  units age=5 -5 agregate=100 -100; 
  run; 
*/ Backward Selection procedure; 
proc logistic descending; 
class campuss genderr finaidd english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
       age agregate campuss genderr maritall finaidd english brace 
        / selection=backward details slstay=.05; 
  units age=5 -5 agregate=100 -100; 
run; 
*/ Stepwise Selection procedure; 
proc logistic descending; 
class campuss genderr finaidd english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
        agregate campuss genderr maritall age  finaidd english brace 
        / selection=stepwise slentry=.25; 
  units  agregate=100 -100; 
  run; 
 
*/ Stepwise Selection procedure used to select Interactions; 
proc logistic descending; 
class campuss genderr finaidd english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5  faculty_7  
        agregate_ campuss genderr  finaidd english brace engagr 
    engfin camfin finfac2 finfac3 finfac4 finfac4 finfac5 finfac7 racfin  
    agrbrac engbrac / selection=stepwise slentry=.25 include=11; 
    run; 
 
  
*/ Best Subset Selection procedure using Score criterion; 
 proc logistic descending; 
class campuss genderr finaidd english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
       age agregate campuss genderr maritall finaidd english brace 
        / selection=score best=2; 
  units age=5 -5 agregate=100 -100; 
  run; 
*/ Best Subset procedure using Cp criterion; 
proc logistic descending; 
class campuss genderr finaidd english; 
model pass=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
       age agregate campuss genderr maritall finaidd english brace; 
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       output out=best2 prob=pihat; 
  run; 
  data best3;   set best2 ; 
  z=log(pihat/(1-pihat))+((pass-pihat)/(pihat*(1-pihat))); 
  v=pihat*(1-pihat); 
  run; 
  proc reg; 
  model z=faculty_2 faculty_3 faculty_4 faculty_5 faculty_6 faculty_7  
               age agregate campuss genderr maritall finaidd  
               english brace/selection=cp best=3; 
      weight v; 
  run; 
 quit; 
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