FRAMEWORK TMPLEMENTATION

This part of the dissertation defines the requirements for the software framework based on
existing experience within the Command and Control domain. The focus quickly shifts to
the framework design and implementation. The framework implementation is then evaluated
and the evaluation covers enough aspects of the implementation to address how well the
design fits the original requirements. Critical components of the software framework design
are formally described and evaluated. This is done using the software architecture concepts
and behaviour analysis techniques reviewed in the previous part of this dissertation.

Department of Electrical, Electronic and Computer Engineering 49
University of Pretoria

7. Framework Requirements

This chapter marks the start of the third part of this dissertation, which discusses the
design and implementation of the proposed simulation software framework. The use case
for the software framework is created based on existing experience with M&S as well as
the requirements, identified in the previous part of this dissertation, for supporting the
C2 Enterprise. The use case is then used to generate the requirements for the framework
implementation.

7.1 Framework Use Case

Figure 7.1 shows a simple use case diagram for the software framework. There are five
different actors defined for the framework: the software developer, the operator, the C2
system, the LVC simulator(s) and the user or stakeholder. The developer has to be able to
extend the framework and use it to develop applications according to the user’s requirements.
The operator has to be able to use the developer’s tools and applications within the C2
enterprise. The user may also be the operator.

The use case shows that the developer can also be the operator, but this is mainly for
testing and evaluation. The operator is responsible for running the application and possibly
managing the simulation execution or the links to external systems. The operator could also
form part of the simulation in the case of virtual simulations or human-in-the-loop (HIL) type
applications. The operator might require additional feedback or insight through a debriefing
capability provided by the application. For this the application should be able to capture the
relevant information and present it in a sensible way.

Developers have several tasks: they have to maintain the framework and ensure that the
code-base is of a high enough quality; they have to build and test the application(s); they
have to extend the framework to accommodate new features; and, they have to build the
relevant models of systems in order to virtualise them.

The external C2 systems and LVC simulators can be anything from real equipment like search
radars, aircraft and ships, to simulators used for training and/or planning.

Department of Electrical, Electronic and Computer Engineering 51
University of Pretoria

CHAPTER 7 FRAMEWORK REQUIREMENTS

Figure 7.1: Framework Use Case Diagram

7.2 Framework Requirements

The software framework requirements are generated from the use case diagram. The
focus is placed on supporting the tactical networks that feed data into and out of the C2
enterprise. The interoperability, M&S and application development capabilities provided by
the framework supports the enterprise by enabling the integration of the tactical layer with
the enterprise business layer and by filling any gaps in the tactical layer.

The knowledge gained during the literature review, presented in the previous part of
this dissertation, also contributed to formulating the framework’s requirements. These
requirements can be divided into five main points: interoperability with C2 systems,
virtualisation of C2 equipment using M&S, application development, good code quality and

52 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 7 FRAMEWORK REQUIREMENTS

performance and portability. Figure 6.2 in Chapter 6 shows how the framework capabilities
should fill the gap between the C2 Enterprise and the operational tactical systems.

7.2.1 Interoperability with C2 Systems

To function within the C2 enterprise the framework should enable the following:

e interoperability with legacy and net-centric C2 systems and simulators,
e protocol translation when communicating with systems and simulators,

e automatic attribute translation when translating to and from external data represen-
tations,

e unified and extendable internal information model,

e protocol bridging (acting as an adaptor or gateway for systems that do not support the
correct protocol or interface).

7.2.2 Virtualisation of C2 equipment using M&S

Applications and tools created with the framework can support the C2 enterprise by deploying
virtual systems when the real systems cannot be deployed. This introduces the following
requirements:

e dynamic addition and removal of simulation objects like services and models,
e operator in the loop (OIL) support,

e running in real-time and the ability to catch up if the simulation was slowed down
temporarily (soft real-time),

e running in reverse, running as fast as possible and pausing execution,

e the ability to jump in time, and

a configurable frame rate.

It should be possible to distribute the execution over multiple nodes for increased performance
and fault tolerance.

7.2.3 Application Development

The users and operators require a means of interacting with the virtual environment or
controlling the system interoperability. This interaction could be through anything from a
text console to a full Graphical User Interface (GUI). The framework should provide the
software developer with a concise way of integrating with user interfaces and applications.
The framework should also define how the application should interact with the underlying
virtualisation and interoperability capabilities of the framework.

Department of Electrical, Electronic and Computer Engineering 53
University of Pretoria

CHAPTER 7 FRAMEWORK REQUIREMENTS

7.2.4 Good Code Quality

The framework is intended for rapid development of technology demonstrators and prototyp-
ing of software. More often than not the applications are also subject to ad-hoc changes in
user requirements. The quality of the framework code base will determine how the framework
is used. The framework code base should be characterised by the following:

a common interoperability infrastructure across the tactical environment,
a common M&S infrastructure across the tactical environment,

seamless integration of the M&S and interoperability infrastructures.
unified data collection and analysis,

fault-tolerance and reliability,

usability, maintainability and extensibility

7.2.5 Performance and Portability

Real-time performance is desired, but in most cases this is actually soft real-time since the
targeted operating systems do not support hard real-time. Parallel execution (distribution
over multiple CPU/Cores on one node) should also be considered to utilise the power of the
new generation of multi-core processors. There are cases where interoperability is required
with equipment and systems that might have very strict timing requirements: this requires
that some components of the framework have to be run in separate high priority threads to
achieve the desired execution speed and reliability.

Ultimately the framework should make it easy for application developers to create good
quality applications and tools that support the C2 Enterprise. The framework design and
implementation should not be specific to any platform or operating system. The next chapter
discusses the current framework design and implementation.

54 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8. Framework Design and
Implementation

This chapter discusses the design and implementation of the software application framework.
The framework architecture is also described using the various software architecture concepts
and terms reviewed in part two of this dissertation.

8.1 Design Overview

The framework is split into five functional layers: the backbone layer, the infrastructure layer,
the interoperability layer, the simulation layer and the application layer. Figure 8.1 shows the
layers of the framework mapped onto specific layers of the OSI model to give some perspective
on the functionality of each layer.

Figure 8.1: The Framework Layers

Department of Electrical, Electronic and Computer Engineering 55
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

The layers are implemented as separate C++ libraries. There is a clear separation between
the layers in terms of functionality and each layer can be compiled or modified without
affecting the other layers. This layered architecture accommodates multiple teams of
software developers either working on different layers of the framework or building different
applications using the framework.

The work discussed in this dissertation covers all the layers depicted in Figure 8.1, but the
framework implementation focuses on the backbone, infrastructure and interoperability layers.
The simulation and application layers are more application specific, with some examples
given in the next chapter. This chapter does however discuss the simulation and application
layers in enough detail to show how these layers should be extended and how the framework
interfaces with higher level user applications.

Figure 8.2: The Framework Supporting the C2 Enterprise

Figure 6.2 in Chapter 6 shows that the C2 enterprise consists of a tactical network layer and
a enterprise layer—two distinct layers. Figure 8.2 shows how the framework supports the
integration of the tactical layer with the enterprise business layer (the framework enables
interoperability with C2 systems). The framework also helps fill any gaps in the tactical layer
through virtualisation of C2/tactical equipment using MES.

The use of proven cross-platform libraries improves the quality and usability of the applica-
tions created with the framework. The framework and current application implementations

56 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

make use of the following open-source or standardised libraries:

e The framework relies extensively on the Standard Template Libraries (STL) for C++
for data structures, containers, sorting, etcetera. STL is proven, well documented and
comes standard with C++.

e The framework also relies on some of the Boost C++ libraries (http://www.boost.org)
for things like multi-threading, string hashing and random number generation. Boost
is a free cross-platform set of libraries with some of the libraries being considered for
inclusion into the new C++ standard (currently being finalised).

e The applications created with the framework make use of user interface technologies
like wxWidgets (http://www.wrwindows.org) and Qt (http://qt.nokia.com/products) for
building the relevant user interfaces. wxWidgets and @Qt are cross-platform and open-
source—either can be used to create good user interfaces for applications.

e The applications use Open Scene Graph (OSG, hitp://www.openscenegraph.org) to
create 2D and 3D visualisation panels in the user interfaces. OSG is a cross-platform,
open-source 3D graphics toolkit.

e The framework builds on libzml (http://xmlsoft.org) to create a simple object-oriented
XML reading and writing capability. libxml is a cross-platform XML processing library
for C.

The remainder of this chapter discusses the five layers of the framework.

8.2 The Backbone Layer

The backbone layer provides Inter Process Communication (IPC) and object execution (i.e.
functionally it corresponds to the OSI Transport and Session layers, as well as in part to
the Presentation layer, as shown in Figure 8.1). The backbone also contains a set of core
components that contribute to the portability and quality of the framework.

The executable objects are commonly referred to as backbone objects. The backbone object
execution can be distributed among multiple hosts or among multiple CPUs of a single host
(or both) (see Figure 8.3). The process responsible for managing a set of backbone objects is
referred to as a backbone node. Data flows from one backbone object to another in the form
of issues, where issues encapsulate events which are called titles.

The backbone is loosely based on the work described in (Duvenhage and Kourie, 2008):
objects communicate with each other using topic-based publish/subscribe-type message
passing (Eugster et al., 2003). The backbone architecture can also be described as having an
event-based, implicit invocation style, since the backbone objects exchange data through the
backbone and do not access each other directly (see Chapter 3). In this context the backbone
layer follows the mediator design pattern, since backbone objects only communicate through
the backbone and not directly with each other (see Chapter 3).

8.2.1 Inter Object Communication

What issues a backbone object can publish and where the issues go are determined by the
publications which backbone objects register and by the subscriptions which backbone objects

Department of Electrical, Electronic and Computer Engineering o7
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

Figure 8.3: The Hosts, Nodes and Objects of the Framework

make. Issues are also inherently generated by the backbone layer for each backbone object
in the following cases:

e The backbone generates a publication issue whenever an object registers a publication.
The issue is then broadcast to all objects on all nodes.

e The backbone generates a subscription issue whenever an object registers a subscription.
The issue is then broadcast to all objects on all nodes. Any object that has a matching
publication then processes the subscription.

e The backbone generates a subscription issue in response to the delivery of a publication
issue if there is a relevant subscription. The subscription issue is then sent to the
publisher.

This passing of issues allows backbone objects to register and delete publications and to
add and remove subscriptions to other titles in an ad-hoc fashion (i.e. during runtime).
Registering a publication will trigger a subscription issue from all objects that have an interest
in the publication. Making a subscription will create a subscription issue that is processed
by all the objects that have the relevant publication registered.

The title interface contains methods for streaming and de-streaming the title attributes to
and from a binary stream. Title objects are automatically identified and constructed (this
is explained in the next part of this section) and are converted to and from binary when
transmitted from one node to another. This makes it very easy to support any number of
title types without having to modify the backbone layer.

58 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

8.2.2 Inherent Object Construction

The built in runtime type information of C+-+ is not good enough to uniquely identify the
type of objects. Because of this the backbone includes its own type system, referred to the
object hierarchy. The backbone layer also contains an object factory that can automatically
construct any class within the object hierarchy.

A class can be added to the object hierarchy by inheriting from a specific interface and
including the relevant class members These class members are then used to identify classes
within the object hierarchy. Classes are identified within the hierarchy in two ways: based
on the class name (string value) or based on the hash value of the class name (for faster
identification).

The object type information also indicates its parent type which allows an object to be
identified by the object’s type as well as by the type of any one of the object’s parents within
the object hierarchy. Operations to check the type of objects as well as perform safe casting
between types are available as part of the backbone.

The object factory follows the factory method design pattern (see Chapter 3) and enables
automatic construction of objects based on its type (as defined in the object hierarchy).
Titles and backbone objects are part of the object hierarchy. The object factory and object
hierarchy make it possible to identify and construct titles with the correct type when reading
data from other nodes—other layers of the framework as well as applications can add new
object and title types without having to explicitly specify them in the backbone layer.

8.2.3 Distributed Object Execution

The backbone runs at a fixed frame rate which determines the simulation time step size. The
backbone calls an object to give it time to update itself and read and publish issues. Each
backbone object has a very simple interface that is called by the backbone. Not all objects
would have to run on every frame and for this an object can specify a trigger-frame which
specifies the intervals at which the object should be called.

Figure 8.4: The Backbone Object Execution Frame

The backbone executes each simulation frame in five steps with conservative (or lock-step)
time management between nodes (see Figure 8.4).

1. The backbone receives all the issues that were published in the previous frame. The
backbone keeps on reading issues until all nodes are finished with the previous frame.

2. The backbone then delivers the issues to the correct backbone objects.

3. The backbone then calls all the backbone objects that have a trigger frame matching
the current frame. The backbone objects update themselves and get a chance to publish
any new issues. Newly published issues are temporarily stored in the backbone.

Department of Electrical, Electronic and Computer Engineering 59
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

4. The backbone then sends out all the published issues to the other nodes.
5. The backbone then indicates to other nodes that it is finished with its current frame
and continues to the next frame.

The backbone layer uses a separate component, called a hub, to transfer issues from one node
to another. The hub manages the inter process communication (IPC) without affecting the
rest of the backbone layer. The hub interface is part of the backbone layer, but the hub
implementations are part of the infrastructure layer and will be discussed in more detail in
the next section. The node also uses the hub interface to signal the end of its current frame
and then to wait for all the other nodes. The application should then wait for the proper
period of time before starting a new frame to keep to the relevant object execution frame
rate (see Figure 8.4).

Backbone objects always publish issues for the next frame and the backbone only sends out
those issues once all the objects have been called. This can be seen as a form of double
buffering, since objects only have access to new issues in the next frame. This situation is
ideally suited to parallelisation and the backbone objects can be executed concurrently within
a frame. For this the backbone divides the object execution among several worker threads to
better utilise the potential of multi-processor systems or multi-core CPUs.

The worker threads execute objects concurrently (and independently). Each worker thread
has a fixed set of backbone objects it executes. Each worker thread is also responsible for
delivering the relevant issues that were published in the previous frame to its set of backbone
objects. The worker threads all use the same set of delivered titles since these titles are not
modified by the backbone objects.

There might be multiple hub implementations in the framework and it is assumed that the
hub implementations are not thread safe (i.e. allowing multiple threads to access the hub at
the same time would result in undefined behaviour or errors)—this is to make it easier to
implement new hubs. For this reason, one of the worker threads have to execute its objects
and then wait for all the other worker threads before sending all the published issues to the
hub. This worker thread is also referred to as the main thread.

8.2.4 Subscriptions and Publications

The backbone manages publications and subscriptions as queues of titles. A backbone object
can push data onto the back of its publications and the backbone would pop the data off
the front of the object’s publications when the object execution has finished. The backbone
also pushes titles onto the back of an object’s subscriptions and an object could then pop
the titles off the front of its subscriptions. Each backbone object has direct access to all the
publications and subscriptions it has registered. The subscription and publication classes
have specific interfaces that allow the backbone object to push titles to publications and pop
titles from subscriptions.

The publication and subscription interfaces do not however accommodate quantisation of
states or integration of events (see QDEVYS at the end of Chapter 5). For this the backbone
layer includes several template functions that control how titles are pushed to publications
or popped from subscriptions. This enables title quantisation at the publisher and title
integration at the subscriber, which makes things like dead-reckoning possible. The template

60 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

functions, combined with the object type casting and checking provided by the backbone,
control how sets of titles are updated and published and then rebuilt at the subscriber.

8.2.5 Core Backbone Components

The backbone contains a set of core components that contribute to the portability and
quality of the framework. The backbone abstracts aspects such as multi-threading, memory
management and networking to be operating system independent. This means that the
framework can run on any operating system for which the core components have been
implemented.

Multi-threading abstractions are implemented in the backbone using one of the boost cross-
platform libraries. The framework also makes use of Boost mutexes and barriers for thread
synchronisation. Scoped locks are used extensively throughout the framework to make it
easier for the developer to manage the locking and unlocking of resources (see Chapter 3).
Process-control abstractions also make it possible to control operating system specific things
like thread-priority, thread affinity and process-priority in a operating system independent
way.

The backbone includes a custom memory manager that helps track down memory leaks. The
memory manager is created as a singleton (see Chapter 3). All objects in the backbone object
hierarchy inherit from a base class that has the memory operators overloaded to store the
file and line number of the allocation and to register the allocation. It is then possible to
at any time examine the registered memory allocations. Doing this when a application exits
provides the location in the source code of memory allocations that were never de-allocated
(i.e. potential memory leaks).

Figure 8.5: The Backbone Network Interface Classes

The backbone provides networking classes that are divided into network interfaces and
network coders (see Figure 8.5). A network interface does the low-level reading and writing of
binary data from various interfaces like files, network transport interfaces and even hardware
interfaces like RS232. A network coder is a wrapper for a network interface and is responsible
for translating the binary data of the interface to titles when receiving data and from titles
when transmitting data.

The network interface classes all present the exact same interface, providing a unified way of

Department of Electrical, Electronic and Computer Engineering 61
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

accessing binary streams (including files). This means that a network coder can operate on
any one of the network interfaces, making the networking much more flexible. The network
coders also log all the binary data (received and sent) to a file. These raw logs can then be
used for playback at a later stage by using a file interface with the relevant coder.

The network coders run on separate threads to ensure that interface creation or slow data
transfer do not interfere with the backbone object execution. The interoperability layer uses
extended network coders referred to as protocol coders that operate on various data formats
and protocols. Protocol coders are discussed in more detail later in this chapter. The network
coder thread also includes mechanisms to recover and possibly re-connect when a network
interface fails.

The backbone contains components that can measure the performance of the backbone object
execution. This helps to optimise the object execution and distribution. The performance
measures look at the following:

e the overall application load, which provides an indication of how well the application
in running in general,

e the backbone overhead, which shows how much of the time is spent on modelling versus
time spent on reading and writing titles,

e the hub bandwidth throughput, which gives an indication of the utilisation of the
underlying transport medium when running in distributed mode, and

e the ratio of titles sent to local objects vs. titles sent to objects on other nodes, which
indicates how well the objects are distributed among the different nodes.

The overhead is an indication of the amount of data transported over the backbone and gives
an indication of how successfully an application could be distributed. Objects that interact
closely, exchanging a lot of data, should typically be located on the same node to minimise
inter-node bandwidth usage.

8.3 The Infrastructure Layer

The infrastructure layer extends the capability of the backbone layer from simple object
execution to the simulation of virtual environments. The infrastructure layer is also
responsible for the simulation time management and synchronisation between different nodes.

The backbone objects and basic object titles are extended for modelling and simulation of
spatial, time-based phenomena. The backbone objects are also extended to allow saving and
loading object attributes in a XML format. The framework uses this to read and write XML
scenario files which specify what object are loaded into the backbone.

8.3.1 Spatial Reference and Environment Models

This layer adds spatial reference models for coordinate representation and translation. The
models support Meridian and Cartesian coordinates and vectors as well as orientation. This
layer also includes the relevant coordinate conversion operations.

62 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

The infrastructure layer also adds the environment model for terrain. The environment
model can also include things like atmosphere and sun position. The terrain gives objects
the ability to get the terrain altitude as well as the ability to test for line of sight. The terrain
components are designed to be easily extendable to support different terrain formats. The
terrain is loaded as a set of terrain tiles.

8.3.2 The Bootloader

The bootloader introduces the backbone object XML interface. It allows backbone object
attributes to be loaded (and saved) from XML scenario files. The bootloader identifies
and creates objects from the object hierarchy based on the type of the object. The XML
element names correspond to the relevant object class names as defined in the backbone
object hierarchy.

Any backbone object that is in the object hierarchy and inherits from the XML interface
can be loaded by the bootloader. This, along with the use of the backbone object factory,
allows the bootloader to support an arbitrary number of objects without having to modify
or recompile the infrastructure layer.

8.3.3 The Node Hub

The backbone uses a separate component, called a hub, to transfer issues from one node
to another. The hub implementations are found in the infrastructure layer and not in the
backbone layer since it was desirable to be able to configure the hub through the XML
scenario file.

The hub specifies the type of inter process communication (IPC) used. It controls the inter-
node communication, synchronisation, node addressing and inter-node connection setup. This
makes it possible to change the backbone infrastructure from a distributed peer-to-peer TCP
scheme to a parallel memory-mapped scheme or even a web-based scheme by using different
hub implementations.

The current framework implementation includes two hub implementations. The first is a very
simple single node hub implementation that just delivers everything that was published in
the previous frame to the local node. It is very fast and ideal when all the backbone objects
are run on one node (no distribution).

The second hub implementation is a peer-to-peer TCP/IP node hub that allows two or more
nodes to be connected (i.e. distributed backbone object execution). The hub implementation
creates a mesh network with every node connected to all nodes except itself (see Figure 8.6).
The hub implementation is then intelligent enough to only send issues to the nodes that
have the relevant subscribers. The peer-to-peer TCP/IP node hub can be used to run nodes
distributed over multiple hosts, but there can also be more than one node per host.

Department of Electrical, Electronic and Computer Engineering 63
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

Figure 8.6: The TCP/IP Node Hub Inter-connection

8.3.4 Information Representation and Translation

The data model of a virtual environment implemented with the framework is the specific
set of titles published by the simulation objects. A title does however not specify how
an object should react when it receives a title through a specific subscription. The data
model also includes how, in the military case, objects are classified as units, equipment,
weapons, etcetera. For this the current infrastructure layer implements the MIL-STD-2525B
warfighting symbology standard.

Real-world systems use tactical data links or proprietary protocols to communicate. The
information exchanged by these systems may not match the titles and symbology used by
the virtual environment. The internal titles would have to be translated to and from the
external data models used by the real-world systems to interoperate with those systems.

Translating titles to and from the various external data models is done by the protocol coders,
discussed in the next section, but the infrastructure layer contains the components for defining
and matching the symbology used by external systems with the internal symbology. For
example: the internal data model will identify an fighter aircraft as a fixed wing military
aerial unit with a fighter role; an external system might only have aircraft or bomber defined.

Tactical data links have very specific ways of addressing different systems in the network, but
the backbone uses a single string (the simulation ID) to identify objects. The infrastructure
layer also contains components for system address translation, which allow the protocol coders
to translate to and from external system addresses.

64 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

8.4 The Interoperability Layer

The interoperability layer adds the required components to interoperate with real-world
systems and other simulators. This is where all tactical systems and enterprise services
link into the framework. All the relevant protocols and data representations of the legacy
and net-centric systems have to be understood and translated. The interoperability layer
consists of the following;:

e the protocol coders,
e the backbone link objects for the protocol coders, and
e the gateway interoperability service.

The protocol coder components are extended network coder components (see Figure 8.5).
Communicating with real-world systems involves creating one or more network coders which
are responsible for translating between the external systems and the internal application
components built with the framework. These protocol coders operate on the syntax or
structure of the foreign data and only map the information onto titles without understanding
the data (i.e. on a syntax level and not on a semantic level).

The protocol coder components all run on their own threads to prevent slow or blocking
interfaces from holding up the backbone object execution. The coders are responsible for link
setup, link tear-down and handshaking (maintaining the link). These functions may be slow
depending on the type of interface to the external system and the link requirements. Having
the coders run on separate threads makes it very easy to execute these functions without
causing the backbone object execution to be delayed—the coder executes independently of
the backbone. For example: a coder can wait four seconds for a reply and only then return
titles to the backbone with no delay in the object execution.

Normally the coder thread priority is set to below normal while the backbone worker thread
priority is set to mormal. This caused the operating system to give the backbone object
execution priority above protocol coder execution. This helps to improve the backbone object
execution when there are many protocol coders. The drawback of this is that the coder
threads might starve (i.e. not be run by the operating system if the backbone object execution
is using too much CPU resources).

Some protocol coders have very strict timing requirements and have to run with a very high
confidence or at a very high rate. This is typically required when virtualising or emulating
systems that normally send messages at very specific intervals. In these cases the developer
can set the protocol coder thread priority very high. This commands the operating system to
give the coder thread priority above all other threads. The coder execution should however
be carefully controlled since high-priority threads can starve the rest of the operating system
threads.

The protocol coders are not backbone objects and have to be wrapped inside extended
backbone objects, called link objects that can be loaded and executed by the framework.
The interoperability layer includes a basic link object that handles the locking of the coder
for thread-safe access; manages the publications and subscriptions; and reports the link-
state. The interoperability layer includes many different link objects that extend the basic
link object.

Department of Electrical, Electronic and Computer Engineering 65
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

The basic link also adjusts titles to have the correct time reference: incoming titles are
adjusted to be relative to the simulation time while outgoing titles are adjusted to be relative
to the clock of the external system. The link buffers incoming titles if the adjusted time
reference is in the future. This normally occurs when reading from a file interface (i.e. all
the protocol information is available immediately) or when the backbone object execution is
too slow (i.e. real-time execution cannot be maintained).

There is also a gateway service which is a backbone object extended to act as a router for
the titles from the different links. The gateway service subscribes to titles from all links and
selectively publishes titles back to links based on the configured routes.

8.5 The Simulation and Application Layers

The application layer (and to a certain extent the simulation layer as well) is very application
specific. A typical rapid application development code-base would consist of many different
simulation and application layer implementations that could be reused or extended to quickly
create new tools and applications. The simulation layer allows developers to create unique
simulations or tools by adding the required models and services.

The virtualisation (or emulation) of systems happens on this level. A simulation model
is created by extending a backbone object to simulate the behaviour of an actual system.
Models of aircraft, for example, would simulate the flying qualities of a specific aircraft and
then publish certain attributes of the aircraft (like position and velocity).

The simulation layer is built on top of the infrastructure layer and the interoperability layer.
The simulation layer is therefore ideally equipped to create models of systems that interface
with the C2 enterprise as the real systems would. The next chapter discusses the Radar
Emulator application, which is an example of this.

The framework will be used to create many different types of applications, but there are
some generic components that most applications will share. This is discussed in the next few
paragraphs.

8.5.1 Application Integration

Applications might require specific command-line arguments. For this the framework
includes, as part of the core operating system abstractions, a command line argument parser
that gives any part of an application access to the command line arguments.

Applications also require the ability to load application specific parameters from disk and save
them again. The application layer provides an extendable XML parameter loader. It works
similarly to the backbone object boot-loader and application developers can add additional
parameter sets.

Applications need an interface for loading and saving scenarios as well as managing the
backbone object execution. The application layer provides a generic framework execution
thread that manages scenario loading, object execution, object locking and provides access
to the spatial environment. This component frees the application from the complexities

66 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

of loading and saving XML files, locking backbone objects for safe access and managing the
object execution. All the applications built with the framework have access to this framework
ezecution component.

The application layer has to provide a means of collating the capabilities of the framework and
integrating it with the relevant technologies for building the user applications and tools. The
framework uses control services which are normal backbone objects that are instantiated by
the user application rather than from the XML scenario file. The user application can create
the control service and add it to the backbone (using the framework execution component)
as soon as a scenario is loaded.

Control services can be simple or complex, depending on the application requirements. A
control service can subscribe and publish like any other backbone object, but it also allows
the application to access the title information through an application specific interface. This
means that the application still works with titles, but the control services manage how the
information gets processed and then distributed to other backbone objects. Applications can
dynamically add and remove control services. One restriction is that an application should
lock a control service before it uses it—this is to prevent the backbone from accessing a
control service while the application is busy using it.

The next chapter evaluates the framework implementation to determine how well the
implementation fits the requirements. This evaluation covers a wide range of criteria. Critical
components of the framework are also evaluated using the software architecture concepts as
well as the behaviour analysis techniques reviewed in part two of this dissertation.

Department of Electrical, Electronic and Computer Engineering 67
University of Pretoria

9. Framework Evaluation

In this chapter the evaluation of the framework implementation is discussed. The evaluation
covers enough aspects of the implementation to address how well the implementation fits the
original requirements discussed in Chapter 7 (interoperability with C2 systems, virtualisation
of C2 equipment using M&S, application development, good code quality and performance
and portability).

This chapter is divided into three sections. The first section evaluates the performance
and scalability of applications created with the framework. The next section discusses the
existing C2 applications created with the framework. The third section formally evaluates
the framework implementation. The formal evaluation is done using the software architecture
concepts and behaviour analysis techniques reviewed in part two of this dissertation.

This chapter uses the terms host, node, object, title and worker thread extensively. Please
refer back to Chapter 8 for a description of these.

9.1 Performance and Scalability Testing

Object execution performance and scalability is important when virtualising C2 equipment.
This section discusses the evaluation of the general M&S performance of the framework
implementation. A small test application was created with the framework. It is a very
simple simulation that runs multiple instances of the same model. The model has a constant
execution time of 2.5ms and only publishes one type of title. The number of titles published
are however configurable. The title has several attributes and has a size of 135 bytes when
streamed.

The simulation frame rate is set at 100Hz with 160 models in total. Each model subscribes
to every other model (i.e. each model will receive 159 sets of titles per frame—one set of
titles from every model). The model execution is distributed over multiple hosts as well as
distributed over multiple CPU cores of one host. The test application is run multiple times
with the models evenly distributed over a varying number of hosts and CPU cores. This tests
both the distributed performance and parallel performance of the object execution.

The fact that the test application only has one type of model and one type of title makes it
easy to analyse the distributed and parallel performance of the test application. Normally
one would get several different types of models, publishing different types of tiles at lower
rates (each model subscribing and publishing to every other model is actually the worst case
scenario).

Department of Electrical, Electronic and Computer Engineering 69
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.1: The 10 Toshiba Qosmio Laptops

The hosts used for the tests are Toshiba Qosmio laptops. Each laptop runs MS Windows 7
and has an Intel i7 processor with four hyper-threaded cores. The hyper-threading effectively
provides eight execution units per CPU. Each ezxecution unit is also referred to as a core in
the rest of this chapter (the difference between a hyper-thread and a real CPU core is beyond
the scope of this discussion). All the hosts are connected using a 1Gbps Local Area Network
(LAN). Ten laptops were used for the tests.

9.1.1 Expected Behaviour

The test hosts can schedule eight threads of execution to run concurrently (one per core). An
application running on a single thread only has access to one core at a time which amounts
to 12.5% of the total CPU resources. An application that can use eight threads effectively
should be able to fully utilise the host CPU.

The object execution can be distributed among several worker threads in the same node (i.e.
parallel execution utilising multiple CPU cores of one host). The objects are divided up
equally among the worker threads and the worker threads all operate independently of each
other on the same set of delivered titles. Something that may affect execution performance
is resource locking: the framework uses a memory manager that keeps track of all memory
allocations within a node and each node has its own memory manager. Allocating and
deleting memory involves locking some parts of the the memory manager. The contention
caused by backbone objects allocating or deleting memory from different worker threads may
then decrease the execution performance. The contention at the memory manager should be
the only thing affecting the worker thread performance.

Distributed model execution involves executing backbone objects on different nodes and
transferring data between nodes. The amount of data to transfer increases as more nodes
are added, for example: 160 models distributed over two nodes adds up to 80 models per

70 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

node (i.e. 80 models are publishing to another node, giving 80 sets of titles being received
and published per frame by each node); 160 models distributed over four nodes gives 40
models per node (i.e. 40 models are publishing to three nodes, giving 120 sets of titles being
received and published per frame by each node). The inter-node data transfer overhead in
the test application can be controlled by configuring the number of titles each test model
publishes per frame. The network throughput is measured as the total amount of bytes sent
and received by each node per second.

Nodes can be deployed per host (i.e. distributed) or as multiple processes on the same
host. Communication between the nodes occur in exactly the same way in both cases
(using TCP/IP). In the first case (the distributed case) the inter-host data transfer and
synchronisation may reduce the overall performance and in the second case the overhead
should be very low. In both cases the network overhead and host synchronisation should
be the only thing affecting the execution performance if there is only one worker thread
per node (since resource locking or worker thread contention within the nodes do not affect
performance in these cases).

9.1.2 Parallel Performance

The framework object execution can be distributed among several worker threads in the
same node (parallel execution utilising multiple CPU cores of one host). The test application
was run with varying worker thread counts and detailed results are shown in Figure 9.2. A
number of summarised views of this data are presented in subsequent figures.

Each table in Figure 9.2 shows the following;:

the number of titles published per model per frame,

the number of worker threads,

the CPU utilisation,

the time per frame it takes to run all the models,

the time per frame it takes to read and publish titles (overhead) and

the speedup compared to using only one worker thread.

The model exec time here includes the time it takes to process the received titles.

Figure 9.3 shows how well the model execution can be sped up when the models are not
publishing any titles. The figure shows the thread count (worker count) on the horizontal
axis and the speed increase and CPU utilisation on the vertical axis. The speed increase and
CPU utilisation are very close to linear in the number of threads (i.e the work is distributed
very well with almost no overhead). The CPU utilisation shows an increase from 13 to 98
percent which is almost perfect. Unfortunately these results are very optimistic since the
models are not publishing information.

The effect of the memory manager contention can already be seen in Figure 9.4 and Figure 9.5.
As more worker threads are added, the speed increase and CPU utilisation no longer increase
linearly in the number of threads: backbone objects that are publishing and processing titles
need access to the memory manager and contention caused by the objects being executed by
multiple worker threads increases as more threads are used.

Department of Electrical, Electronic and Computer Engineering 71
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.2: Parallel execution results

Figure 9.3: Performance with no publications

72 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.4: Performance with 1 title published per model per frame

Figure 9.5: Performance with 2 titles published per model per frame

Figure 9.6: Performance with 10 titles published per model per frame

Figure 9.7: Performance with 50 titles published per model per frame

When the models publish even more titles per frame the performance suffers further.
Figure 9.6 and Figure 9.7 show a decrease in performance as more worker threads are added.
This indicates that the backbone objects actually spend more time waiting for access to
the memory manager than they spend executing. The key to good parallel performance is
minimising the number of titles published to help alleviate the contention issue between the
threads.

Department of Electrical, Electronic and Computer Engineering 73
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

9.1.3 Distributed Performance

This subsection discusses two sets of tests relating to distributed object execution. The first
set of tests involved running multiple nodes on one of the hosts. The results are given in
Figure 9.8. Each table in the figure shows the following:

the number of titles published per model per frame,

the number of worker threads,

the CPU utilisation,

the time per frame it takes to run all the models,

the time per frame it takes to read and publish titles (overhead) and

the total amount of data sent and received by each node (throughput in MBps), and
the speedup compared to running all the models on only one node (see previous section).

As before, the model exec time here includes the time it takes to process the received titles.
Each node is configured to use only one worker thread.

Figure 9.8: Distributed execution results with all nodes on one host

Figure 9.9 shows the speed increase and CPU utilisation when each model is publishing one
title per frame. The figure shows the node count on the horizontal axis and the speed increase

74 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.9: Performance with 1 title published per model per frame

Figure 9.10: Performance with 10 titles published per model per frame

Figure 9.11: Performance with 50 titles published per model per frame

Figure 9.12: Performance with 200 titles published per model per frame

and CPU utilisation on the vertical axis. There is a linear speedup and full CPU utilisation,

Department of Electrical, Electronic and Computer Engineering 75
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

which is expected since the overheads are very low.

The execution performance decreases as the overhead increases (Figure 9.10), but the CPU
utilisation is however still very good. Figure 9.11 shows that the speedup is less than half of
what it was for the first graph, but the CPU utilisation stays very high. This is expected,
since the overheads are increasing and there is no contention between the nodes (i.e the nodes
are spending more time processing titles, but without having to wait for each other). When
the overheads become too big the nodes start spending more time on exchanging data than
they do on executing models. This results in a decrease in performance as more nodes are
used (Figure 9.12). Nevertheless, the CPU utilisation still stays very high.

The second set of tests for the distributed object execution involves several hosts, running
one node each. The results are given in Figure 9.13. Each table in the figure shows exactly
the same data as in the previous table, namely:

e the number of titles published per model per frame,

e the number of worker threads,

e the CPU utilisation,

e the time per frame it takes to run all the models,

e the time per frame it takes to read and publish titles (overhead) and

e the total amount of data sent and received by each node (throughput in MBps), and

e the speedup compared to running all the models on only one node (see previous section).

Again, the model erec time here includes the time it takes to process the received titles.
There is no restriction on the number of hosts that can be used (as opposed to the previous
tests where only eight processor cores were available per host). Each node is configured to use
only one worker thread and with only one node per host, the CPU utilisation stays constant.

Figure 9.14 shows the speed increase and network throughput when each model is publishing
50 titles per frame. The figure shows the node count on the horizontal axis and the speed
increase and network throughput on the vertical axis. Figures 9.14 and 9.15 clearly show that
distributing the model execution among several hosts increases the performance. It actually
performs better than expected, since it outperformed the local host case (see Figure 9.8)
which was expected to be faster. It appears that the local host TCP/IP capability of the
host operating system is slower than expected.

The model execution time increases when more data is published (Figure 9.13). This is
expected since the model execution time includes the processing of the received titles. The
node throughput however changes very little when more data is published. This indicates
that the node throughput is at its maximum and that the execution performance is limited
by the sending, receiving and processing of titles rather than the actual model execution.
Figure 9.17 shows the maximum throughput achieved when the test model is modified to
have an execution time of Oms. The maximum values are very close to what is shown in
Figure 9.13, further indicating that the execution performance is limited by the processing of
titles rather than the actual model execution. The key here to good distributed performance
is minimising the data exchange between hosts.

76 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.13: Distributed execution results with one node per host

Figure 9.14: Performance with 50 titles published per model per frame

9.2 Application Examples

The previous section discussed the general M&S performance of the framework. This
section discusses applications which served to further verify some of the interoperability
and virtualisation (i.e. M&S) capabilities of the implemented framework. Four applications
within the C2 domain were developed and successfully applied. In addition, three test
applications were also developed. These test applications served to verify the behaviour and
performance of the backbone and infrastructure layer implementations of the framework. The
C2 applications are more complex and their successful implementation provides additional

Department of Electrical, Electronic and Computer Engineering 77
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.15: Performance with 200 titles published per model per frame

Figure 9.16: Performance with 400 titles published per model per frame

Figure 9.17: Performance with a model exec time of Oms

positive evidence in verifying the interoperability and application layers of the framework.

The framework and the three test applications were designed and implemented by the author.
However, the four C2 applications discussed below were developed by the relevant CSIR
project teams in which the author was merely the technical lead!'. Although the development
of the C2 applications cannot be regarded as part of the research discussed in this dissertation,
the fact that they were successfully implemented using the framework bears testimony to its
validity and usability and, for this reason, deserves to be mentioned here.

The test applications are:

e the performance test application discussed in the previous section of this chapter,
e a test application that simulates the flocking behaviour of birds, and
e an implementation of Conway’s game of life.

The C2 applications are:

'Because these C2 applications deal with restricted information they are only discussed in broad overview.
The author can be contacted for additional information.

78 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

e an air to air tactics evaluation tool for fighter aircraft,

a protocol gateway that facilitated air force, navy and military system interoperability
during preparatory field exercises for the soccer world cup 2010,

e a radar emulator for adding additional information sources to an air force system, and

a joint operations operator console concept demonstrator.

The C2 applications all use custom user interface and 2D /3D visualisation layers that are
integrated with the framework. These layers use technologies like wxWidgets, @t and Open
Scene Graph. The user interface and visualisation layers are application specific and do
not form part of the research effort discussed in this dissertation. The previous chapter
(Chapter 8) did however discuss how such application specific layers integrate with the
framework.

The framework source code has been included on the DVD accompanying this dissertation.
The complete source code for the three test applications is also included 2.

9.2.1 A Simulation of Flocking Behaviour

Craig Reinolds developed an artificial life program called Boids in 1986 which simulates the
flocking behaviour of birds. The test application discussed in this section implements that
same boid behaviour. The flocking behaviour is simulated by creating multiple instances of
a model (or boid) that moves around according to a fixed set of rules. The rules define how
each boid behaves within its flock: each boid tries to stay close to the center of the flock;
each boid tries to move in the same direction as the flock; and, each boid tries to avoid flying
into other boids. It is possible to create very realistic flocking behaviour with these simple
rules.

In order to test the infrastructure layer the flocking behaviour is simulated in a spherical
coordinate system (i.e. the boid positions are represented using latitude, longitude and
altitude). The model rules however operate within a local cartesian coordinate system and
the infrastructure layer contains the components that represent the two coordinate systems
and can translate between them.

Each boid subscribes to the state of every other boid and also publishes its own state using a
state title. The state title provides the position (in spherical coordinates) and the velocity of
a boid. Each boid builds up a set of flock-mate positions (in local coordinates) with the state
titles from its subscriptions. Each boid then calculates its own velocity based on the boid
rules, updates its own state and then publishes it. This type of simulation, with the models
operating at discrete time steps, can be referred to as discrete time simulation (DTS).

The boid models follow smooth trajectories that can be approximated by some form
of prediction. The framework accommodates techniques like dead-reckoning by allowing
subscribers to predict the future state of the information received from publishers. The boid
model updates the set of flock-mate positions with state titles that come through on the
subscriptions or by predicting the last known state for flock-mates that did not update. The
boid model does not publish its own state if it knows that the prediction used by other boids

2The four C2 applications created with the framework can not be included on the DVD since the applications
contain restricted or sensitive information.

Department of Electrical, Electronic and Computer Engineering 79
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

M GL Display =10

-
-

Figure 9.18: A 3D View of 40 Flocking Models in Test Application

would produce an accurate enough result (this functionality is part of the framework). This
can be used to make a trade off between accurate boid movement and publishing fewer titles.

Figure 9.18 shows a simple custom 3D view that was created as part of this test application.
This instance had 40 models specified in the XML scenario file. The boid model execution
can also be distributed and parallelised in exactly the same way as in the performance test
application discussed in the previous section of this chapter.

This test application simulated the flocking behaviour as expected and ran without problems.
The application can be found on the accompanying DVD.

9.2.2 Conway’s Game of Life

John Horton Conway developed Conway’s Game of Life in 1970. The game has no players
and takes place on a two dimensional grid of square cells. The cells switch on and off based
on specific game rules and the game grid evolves based on the initial cell pattern. The game
runs through multiple iterations, each cell changing in each evolution step on the basis of
rules relating to the cell states of its immediate neighbours.

Each cell has eight immediate neighbours (cells that are directly vertically, horizontally and
diagonally adjacent). The rules are:

e a cell that is off and has exactly three on neighbours switches on in the next iteration
of the game;

e a cell that is on and has more than three on neighbours switches off in the next iteration;
e a cell that is on and has less than two on neighbours switches off in the next iteration.

80 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

The rules aim to mimic the behaviour of cells living and dying as a consequence of
reproduction, overcrowding and under-population. The test application discussed in this
section implements the game of life with one model per cell subscribing to the state of its
eight neighbours and publishing its own state whenever it changes.

Figure 9.19: The Initial Cell Pattern Used by the Test Application

Figure 9.19 shows the initial pattern used by the test application: the cell models are created
in either the on state or in the off state based on this pattern. This particular pattern, when
being evolved by the game of life, is called the Gosper Glider Gun and the cells switch on
and off in such a way that it looks like a gun firing bursts that fly off indefinitely.

SI=E

Figure 9.20: A View of 2000 Cells in Test Application

Each cell in the test application publishes its initial state and then only publishes its state
again when it changes. Each cell also remembers the last state of each of its neighbours in
case they do not publish. The test application uses a 50 by 40 cell grid—that is 2000 cell
models running in the backbone (shown in Figure 9.20). The performance is still extremely
good since each cell only reacts if it gets a new update from one of its neighbours and then
only publishes its own state if its state changes. This type of simulation, where the models
only react to events and only publish events, is referred to as discrete event simulation.

The cell model execution can also be distributed and parallelised in exactly the same way
as in the performance test application discussed in the previous section of this chapter.
This application can be found on the accompanying DVD. It demonstrates how scalable

Department of Electrical, Electronic and Computer Engineering 81
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

the backbone object execution is—it easily runs 2000 models.

9.2.3 An Tactics Evaluation Tool for Fighter Aircraft

In 2008 an early version of the framework implementation was used to develop an air-to-air
tactics evaluation tool for the new generation Gripen fighter aircraft acquired by the South
African Airforce (SAAF). The Gripen has a higher situational awareness than previous SAAF
aircraft and it also has the ability to share information with other aircraft over a tactical data
link.

Figure 9.21: The Tactics Evaluation Tool (3D view)

The goal of the tool was to help develop new air-to-air tactics for the Gripen aircraft
using modelling and simulation (M&S). The key is simulating accurate aircraft flight paths,
correctly simulating the behaviour of the tactical data link between aircraft and correctly
simulating the behaviour of the aircraft radar. The tool helps the SAAF to quickly generate
information regarding the aircraft performance. This information can then be applied to help
the SAAF use the official Gripen mission planning systems more effectively.

The tool is currently still being extended by the Defence Peace Safety and Security,
Aeronautics research group within the CSIR. A custom 3D view component, developed by
the CSIR, is also integrated into the tool in order to visualise various aspects of the aircraft,

82 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.22: The Tactics Evaluation Tool (Closeup of Aircraft Model)

radar and data link models. Figure 9.21 and Figure 9.22 show what the tool looks like.

9.2.4 A Command and Control Protocol Gateway

The framework was used to build a gateway application that can act as a message router for
various systems and simulators (Duvenhage and Terblanche, 2008). The gateway implements
all the links required to connect to the relevant systems and to exchange information
with these systems. The gateway also translates the information to and from an internal
representation. This allows the gateway to route information between systems, acting as
a C2 hub. Most of the gateway functionality is implemented in the infrastructure and
interoperability layers of the framework, giving all applications access to it. The gateway
consists of multiple link objects and one gateway object.

The gateway links are implemented as different backbone objects that publish the information
they receive. The link objects are reusable across multiple applications. The links are fault
tolerant and translate the information of the various external systems to a unified internal
representation that is used throughout the rest of the application.

The gateway object subscribes to all the links; it routes and filters information; and it
publishes back to the links. The links also subscribe to information from the gateway. The

Department of Electrical, Electronic and Computer Engineering 83
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

subscriptions and publications are registered in such a way that the gateway object can receive
information from any link object and publish back to specific link objects based on the routing
rules. The gateway implements special internal links that enable filtering and exchanging of
information with other backbone objects. The internal links allow the gateway to be part of
any application created with the framework. The routing rules, links and internal links are
setup in the XML scenario file.

This gateway was used extensively to facilitate system interoperability during preparatory
military field exercises for the Soccer World Cup 2010—the police, air force, army and navy
had to work together and system interoperability was crucial. The gateway was used to relay
tactical information between operational air force, navy and army systems. This helped
create awareness of the importance of interoperability for joint operations.

9.2.5 A Radar Emulator

The gateway also has the ability to emulate (i.e. virtualise) a specific type of radar system
by implementing the same link protocol (in a link object) as an actual radar system does.
Several radar systems used by the South African Air Force (SAAF) use this protocol.

Figure 9.23: The Radar Emulator Test Setup at the SAAF Head Quarters

Figure 9.23 shows a test setup of this radar emulator at the SAAF Head Quarters, Pretoria,
South Africa. The machine running the gateway/emulator software is on the right and a
stand-alone SAAF air picture display system is on the left. The SAAF system accepts radar
inputs via an HDLC interface card. The emulator machine also has an HDLC interface card
and connects to the SAAF system via a serial cable (as the real system would). For all intents
and purposes the emulator machine then looks like a real radar system to the SAAF system.

The radar emulator has been used during SANDF field trials to integrate additional sensors
into a specific SAAF system. The gateway translates information from systems that would
normally not function with the SAAF system into something that looks like information from
one of the standard SAAF radars. This gives operators access to additional information that
would otherwise not have been so readily available.

84 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

In the test setup shown in Figure 9.23 the gateway listens in on a SAAF aircraft tactical
radio link (using a compatible link radio) and receives reports of each aircraft’s own position
as well as contact reports from each aircraft’s onboard radar. These reports are then sent to
the SAAF air picture display system as radar plots. This test setup was built in collaboration
with Saab Systems South Africa who provided all the relevant protocol specifications, the
HDLC card interface and the radio interface. Saab also assisted with setting up the radio
link to the aircraft.

9.2.6 A Joint Operations Operator Console

The Joint Operations Operator Console (JOOC) is a generic platform for technology demon-
strators within the Joint Command and Control (JC2) context. The JOOC demonstrates
concepts concerning air picture management, multi-sensor fusion and system interoperability.
Air picture management concerns sensor tracks of aircraft and the management thereof—an
air picture manager can classify or modify existing tracks to be more accurate. Multi-sensor
fusion is the process whereby tracks from two or more sensors are associated and combined
into a single set of tracks (i.e. only one track for each aircraft in the air).

The JOOC includes the C2 Protocol Gateway capabilities as well as a 3D view for geospatial
information and additional services that enable air picture management and multi-sensor
fusion. A geospatial view displays the situational picture and allows the user to interact with
it.

Figure 9.24: The JOOC with Various Air Tracks in the View

The JOOC is currently being extended for the Ground Based Air Defence (GBAD)
environment. It will be used to test concepts in regimental-level air defence (a role of the
South African Army). Regimental-level air defence concerns the control and management
of multiple air defence deployments, optimising air defence by looking at all the deployed
equipment and resources in a holistic fashion and collating the air defence efforts.

The extended JOOC (shown in Figure 9.24 and figure 9.25) will allow one to set up different
mock-up air defence terminals and have real military personnel experiment with and evaluate

Department of Electrical, Electronic and Computer Engineering 85
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.25: The JOOC With Some Air Tracks and GBADS Elements

their operational procedures for regimental fire control. What the role of each air defence
operator should be and how different operators should interact with each other, could then
be optimised.

Figure 9.24 and Figure 9.25 show the JOOC user interface. In both figures, the geospatial
view is in the top-center panel, and the main user interface panels are at the bottom and to
the right. The bottom panel contains tabs for logging and a text based console that reports
framework event and status information—the M&S capability of the framework is always
active. The two panels to the right show the gateway routes and link status, some view
controls and several tabs related to air defence control. The panels are user interface widgets
that use control objects (see Chapter 8) to exchange the relevant information and events with
backbone objects.

This extended JOOC will also be used to evaluate possible ways of integrating the GBAD
systems with air defence systems from the South African Air Force (SAAF) and the South
African Navy (SAN). Integration of the Army, Air Force and Navy air defence capabilities is
referred to as Joint Air Defence (JAD).

Figure 9.26 shows an earlier version of the JOOC that was integrated with the base station
of a military UAV during a demonstration at the CSIR. The integration was done via the
gateway that forms part of the JOOC. The UAV position as well as the positions of targets
of interest could be sent from the UAV’s base station (via a serial interface) to the JOOC and
displayed in 3D. The gateway also has a link that can get civilian air traffic information from
local air traffic control centres. This demonstration verified that it is possible to integrate
and present military UAV and civilian air traffic information on one view.

86 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.26: The JOOC Integrated With a Military UAV Base Station

9.3 Formal Evaluation

Part two of this dissertation showed how to describe the structure and behaviour of software.
In this section, critical components of the software framework design are identified and then
formally described and evaluated using the methods discussed in Chapter 4.

9.3.1 Distributed Execution

Distributed model execution involves executing backbone objects on different nodes and
transferring data between nodes. The backbone object execution is divided up into frames
and the nodes operate in a lock-step fashion (i.e. a node will not start a new frame until all
the other nodes have finished the previous frame). Each frame goes through several steps or
states which can be summarised as follows:

1. The node receives communications events, generated in the previous frame, from all
other nodes (the information from each node is abstracted into one event). The node
will not continue until it has received communications events from all nodes.

2. The node processes the communications events (delivering the issues generated in the
previous frame to all backbone objects; and then executing the relevant backbone
objects).

3. The node sends out the new information published by the objects and generated by the
backbone as communications events to all the other nodes.

4. The node goes back to step one and starts waiting for communications events from

Department of Electrical, Electronic and Computer Engineering 87
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.27: A Finite State Machine Showing the States of a Node Frame

other nodes. This ignores the additional wait the framework can make to keep the
simulation from running faster than real-time.

These steps match the backbone object execution steps discussed in Chapter 8, but have been
adapted for this discussion. Figure 9.27 shows the FSM for a node frame (the layered blocks
indicate that multiple nodes can be in that state). The start of the FSM is also not shown,
since the very first frame of each node does not include the read step—this FSM excludes
the first frame.

The following CSP analysis provides an alternative view to the FSM shown in Figure 9.30.
Figure 9.28 shows the communication events between three nodes. The nodes are numbered 1
to 3 (NODE1, NODE2, NODES) and each node can be seen as a process reading and writing
communications events. The communication events are C12, C13, C21, C23, C31 and C32.
To make the analysis simpler the events are reduced to C1, C2, C3 for the events that are
received from the nodes and D1, D2 and D2 for the events that are sent from the nodes. It
is correct to rename the sent events from C to D, since sent events are only read in the next
frame. The CSP for the individual processes can be written as follows:

NODEl1 = (C2—(C3— D1 — NODE]1) |
(C3 —-C2— D1 - NODE1) (9.1)
NODE2 = (C1—(C3— D2— NODE?2) |
(C3—C1— D2— NODE?2) (9.2)
NODE3 = (C1—(C2— D3 — NODES) |
(C2—-C1— D3 - NODE3) (9.3)
88 Department of Electrical, Electronic and Computer Engineering

University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.28: The Communication Events Between Three Nodes

The processes run in parallel, but have to synchronise on common events. This can be
expressed as:

NODES = NODE] || NODE2 | NODE3 (9.4)

Figure 9.29: The LTSA transition diagram for NODES

This CSP model was evaluated using a tool called the Labelled Transition System Analyser
(LTSA). The tool uses a Finite State Process (FSP) textual notation to represent the CSP.
The tool can analyse the models for deadlock. The CSP model for NODES can be expressed
in FSP as:

Department of Electrical, Electronic and Computer Engineering 89
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

NODE1 = (2— > ¢3— >dl— > NODE1 |

c3— > c2— >dl— > NODE1). (9.5)

NODE2 = (cl—>c3—>d2— > NODE2|
c3— > cl— > d2— > NODE?2). (9.6)

NODE3 = (cl—>¢2— >d3— > NODE3 |
2— > cl— > d3— > NODES3). (9.7)
INODES = (NODE1 | NODE2 | NODE3)/{d1/d3,d1/d2}. (9.8)

The events d2 and d3 are renamed to dI in the FSP model for NODES. This is legitimate,
since the order in which the different nodes write is not important (the nodes only have to
write something after the reads). The model forces synchronisation on the write and on the
reads. Using the LTSA tool it was determined that there is no possibility of deadlock. The
transition diagram generated for NODES by the LTSA tool is also shown in Figure 9.29.

9.3.2 The Frame Execution and Multi-threading

The backbone objects can be executed concurrently (i.e. by multiple worker threads), since
backbone objects do not interact directly with each other. The backbone has to interact with
the node hub to send and received information. This can only happen on a single worker
thread, called the main thread, since the node hub implementations might not be thread safe
(see Chapter 8). Because of this the other worker threads have to block or wait while the
main thread does the extra work. The Distributed Object Execution is discussed in detail in
Chapter 8.

The states of each node frame can be summarised as follows:

1. The main thread receives communications events from all the other nodes via the node
hub (these communications events were generated in the previous frame). The main
thread will not continue until it has received communications events from all nodes.
The worker threads wait for the main thread to continue.

2. The worker threads (including the main thread) process the communications events.
The threads are responsible for delivering all issues published in the previous frame
and executing the relevant objects. The threads can all work on the same set of issues,
since the issues are not modified while delivered.

3. Once all the threads have finished processing, the threads continue. The main thread
collects all the new information published by the backbone objects and then sends the
information as new communications events to all the other nodes. The worker threads
are finished until the next frame and start waiting for the main thread.

4. The node goes back to step one and starts waiting for communications events from
other nodes. This ignores the additional wait the framework can make to keep the
simulation from running faster than real-time.

These steps also match the backbone object execution steps discussed in Chapter 8, but have

90 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.30: A Finite State Machine Showing the States of the Main Thread and Worker
Threads

been adapted for this discussion. Figure 9.30 shows the Finite State Machine (FSM) for the
main thread combined with the FSM for the worker threads (the layered blocks indicate that
multiple threads can be in that state).

The worker threads are synchronised with the main thread by two barriers (see Chapter 8).
This is to ensure that worker threads stop executing objects while the published issues are
being sent out by the main thread. The worker threads wait at the first barrier for the main
thread and the second barrier effectively forces the main thread to wait for all the worker
threads to finish executing objects before continuing. Using barriers like this is very efficient,
since threads use very little CPU resources when waiting on a barrier.

Having some threads do work while other threads have to wait might decrease the CPU
utlisation. The backbone could be configured to have more worker threads than CPU cores.
Another, probably better solution, would be to balance the load of the different worker
threads in some way.

The following CSP analysis provides an alternative view to the FSM shown in Figure 9.30.
There are two types of processes executing objects: the main thread and the worker threads.
The main thread has to first read all the information from other nodes, synchronise with
worker threads, do some processing, synch with worker threads again and then send out new
information to other nodes. This can be expressed in CSP as follows:

MAIN = Read — Syncl — Sync2 — Send - M AIN (9.9)

Department of Electrical, Electronic and Computer Engineering 91
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Similarly the CSP for the worker thread can be expressed as:

WORKER(i) = Syncl — Sync2 - WORKER(i) (9.10)

The threads run in parallel and synchronise on the two barriers (the Sync! and Sync2 events).
This can be expressed as:

NODE = MAIN || WORKER(1..n) (9.11)

Figure 9.31: The LTSA transition diagram for NODE

The CSP model for NODE can be expressed in FSP as:

MAIN = (read— > syncl— > sync2— > send— > MAIN). (9.12)
WRK1 = (syncl— > sync2— > WRK1). (9.13)
WRK2 = (syncl— > sync2— > WRK?2). (9.14)
WRK3 = (syncl— > sync2— > WRK3). (9.15)
|INODE = (MAIN ||WRK1 | WRK2| WRK3). (9.16)

The FSP model for NODE has three worker thread processes (WRK1, WRK2 & WRK3).
All the worker threads (and the main thread) must jointly synchronise on sync! and sync2
(i.e. every worker thread will wait for all the others and for the main thread to execute synci,
and similarly for sync2). Using the LTSA tool it was found that there is no possibility of
deadlock in this model. The transition diagram generated for NODE by the LTSA tool is
also shown in Figure 9.31.

92 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

9.4 General Discussion

This chapter discussed the framework implementation in three sections: the first evaluated the
performance and scalability of applications created with the framework; the second discussed
the existing C2 applications created with the framework; and, the third formally evaluated
the framework implementation. This section provides some additional comments on the
framework implementation.

Successful distribution of the object execution depends on how much information each model
is publishing. This applies to both the parallel and distributed cases:

e When the object execution is distributed among several worker threads within one
node (parallel execution) the execution speedup decreases as threads start waiting for
each other. This is clear from the CPU utilisation that decreases as more objects are
published. The data exchange overhead is also very small in this case since all the
objects are running on one node.

e When the object execution is distributed among several nodes (on one or more hosts)
the execution speedup decreases as more time is spent on exchanging data. The CPU
utilisation stays high, even though the speedup decreases.

The backbone is designed for distributed object execution. Parallel object execution augments
the distributed execution by utilising more of the host resources. The key to good parallel
performance is CPU utilisation and solving the contention issue between the multiple threads.
The key to good distributed performance is load balancing and optimising the data exchange
between hosts. In general the number of titles published should be kept to a minimum.

The infrastructure and interoperability layers add to the functionality of the backbone by
giving applications access to spatial simulation and interoperability capabilities. The object
execution and inter object communication is however not compromised by the additional
layers: each model or interoperability link is also a backbone object. The framework is also
flexible enough to allow for discrete time and discrete event based simulation.

Each framework layer extends the capabilities of the layer below it (for example, the
infrastructure layer adds capabilities to the backbone layer and the interoperability layer adds
capabilities to the infrastructure layer—see Figure 8.1). Each layer does however depend on
the layer that it extends. This means that the infrastructure, interoperability and simulation
layers can be modified or replaced with new implementations, but the dependencies need
to be managed (for example, modifying the information model defined in the infrastructure
layer might affect the link implementations in the interoperability layer).

The application layer serves as a set of templates or rules that help guide developers on
how to develop the relevant user interfaces and then integrate those user interfaces with the
simulation and interoperability capabilities. Many of the application layer components are
reusable across multiple applications. The application examples discussed in this chapter
give a clear indication of the virtualisation and interoperability capabilities of the framework.
The user interface and visualisation layers are application specific and do not form part of
the research effort discussed in this dissertation.

Good code quality and portability is hard to measure in isolation. In general the acceptance
of the framework and the way in which it is used to create applications can be taken as

Department of Electrical, Electronic and Computer Engineering 93
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

an indication of the code quality. Each new application developed with the framework also
provides the opportunity to identify and solve potential deficiencies in the framework and to
add more capabilities to the relevant layers.

The next part of this dissertation provides the lessons learned and possible future work on
the framework.

94 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CONCLUSION

The current status of the framework, the lessons learned and possible future work on the
framework are discussed in this final part of the dissertation. The work discussed in this
dissertation also contributes to a larger vision of unified system development within the
command and control environment.

Department of Electrical, Electronic and Computer Engineering 95
University of Pretoria

96

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

	Front
	Part 1-2
	PART 3
	FRAMEWORK IMPLEMENTATION
	Chapter 7
	Chapter 8
	Chapter 9

	Back

