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APPENDIXA

OPTIMAL RECURSIVE SYSTEMATIC
CONVOLUTIONAL CODES

A.1 APPENDIX OVERVIEW

HE most extensive set of the best rdte = k/n RSC coders thus far, has been presented by

BenedettpGarello andMontorsiin [88]. Their search approach for the best codes was based

on a minimal encoder description as a finite-state machine, derived frooup-giieoretic approach
to binary convolutional codes. This appendix summarises the encodengt@rs of the optimal rate
R.=1/4,R.=1/3,R. =1/2,R. =2/4, R. = 2/3, R. = 3/4andR. = 4/5 RSC codes obtained
from their exhaustive searches. The minimum free distahngce of each encoder is also given. For
illustrative purposes, these configuration parameters are used toumbresiroptimals-state, rate
R. = 2/3 RSC code encoder.

A.2 TABLES OF OPTIMAL RSC CODE ENCODER PARAMETERS

Instead of using the classic approach of describing encoder streidiurmeans of their generator
polynomials or matriceBenedettpGarello andMontorsi[88] opted to describe their set of optimal
RSC code encoders using the following parameters:

Vg = Number of delay elements in the shift register associated with'thmessage word bit in

the encoder input vectm_tm,i.
k-1
2V = Number of states in the code’s trellis. The parameter » v, denotes the total number
a=0
of delay elements used in the encoder.

z(a,b) = Output generator polynomial, given in octal form. When converted toaysequence, it
indicates the tap connections associated withutheshift register that contribute to ti&"
non-systematic output bit of the encoder.

h(a,b) = Feedback generator polynomial, given in octal form. When convertatitoary sequence,
it indicates the tap connections associated withdfteshift register that contribute to the
input of theb'" shift register.

These parameters are usedTable A.1, Table A.2, Table A.3, Table A.4, Table A.5, Table A.6
andTableA.7 to define the structures of optimal rale = 1/4, R, = 1/3, R. = 1/2, R, = 2/4,
R.=2/3, R. = 3/4andR. = 4/5 RSC code encoders, respectively.
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Table A.1: Encoder Descriptions of Optimal Radtg = 1/4 RSC Codes

2V || v; || Output Generators || Feedback Generators|| dyyce
2(0,b) h(0,0)
1 1, 33, 28 33 6
2 53, T, O s 10
3 15g,17g, 114 135 12
16 || 4 35s,37s,27g 233 14
32| 5 51g, 453, T1g 673 15
Table A.2: Encoder Descriptions of Optimal Rdte = 1/3 RSC Codes
2V || v; || Output Generators || Feedback Generators|| d .
2(0,b) h(0,b)
2 1 1 33, 28 33
4 1 2 7s, 58 73 8
3 15g, 175 135 10
16 || 4 375,33 233 10
32| 5 51g, 455 67g 11
64 || 6 131g, 1013 163g 11

Table A.3: Encoder Descriptions of Optimal Rdte = 1/2 RSC Codes

2V || v; || Output Generators || Feedback Generators|| dyyce
2(0,b) h(0,b)

1 23 38 3
4 2 98 73 5
8 3 17g 135 6
16 || 4 373 233 6
321 5 17g 673 8
64 || 6 115g 1475 9
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Table A.4: Encoder Descriptions of Optimal Radte = 2/4 RSC Codes

2V || wv; || Output Generators || Feedback Generators|| dy;ce
2(0,b) z(1,b) h(0,b) h(1,b)

1,0 || 1s,25 1g, 15 3g, 0g 1g,1g 4

4 || 1,1 | 3s,3s 3s,0s 0s, 33 3s, 28 5

2,1 | 3s,58 3g, 1g 2g,Dg 33, 23 )

16 || 2,2 || 1g,3s 98, 78 o8, 4s 28,58 6

Table A.5: Encoder Descriptions of Optimal Rdte = 2/3 RSC Codes

2V | w; Output Generators || Feedback Generators|| d ..
2(0,b) z(1,b) h(0,0) h(1,b)

1,0 29 0s 3g, Og 1g, 15 2
4 1 1,1 0s 33 28,33 3s, 03 3
8 || 2,1 s 1g 0s, 5 3s, 28 4
16 || 2,2 5s 33 63, 33 5,43 5
32| 3,2 || 15 s 0s, 135 73, 03 6
64 | 3,3 1g 114 13g, 125 165, 1s 6

Table A.6: Encoder Descriptions of Optimal Radte = 3/4 RSC Codes

2V v; Output Generators Feedback Generators dfree
2(0,b) | 2(1,0) | 2(2,b) h(0,0) h(1,b) h(2,b)
1,0,0 28 0s 0s 3s,08,08 | 1s,08,1g | 1g,1g,0s 2
4 1,1,0 23 1g 1g 25,15,08 | 2g,3s,1s | 1g,0s,0g 3
2,1,0 Ts 38 1g 0s, 58,08 | 38,08,05 | 1g,1g,1g 4
16 || 2,2,0 7s 08 1g Og,7g,0g | 7g,08,08 | 1g,1g,1g 4
32| 2,2,1 1g 63 33 35,08, 58 | 6s,0s,58 | 28,3s,3s 5
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Table A.7: Encoder Descriptions of Optimal Rdte = 4/5 RSC Codes

2V V; Output Generators Feedback Generators dfree
20,0) | 2(1,0) | 22,8) | 23,0) | h0,0) | h(1,0) | h2,0) | 1(3,0)
9 ]-aOa 28 08 08 08 387087 187087 187087 18a187 9
0,0 0g,08 | 0g,1g | 18,08 | 0s,0g
4 1717 28 ]-8 18 08 28718, 287387 087187 187087 )
0,0 0g, Og 0g, 1g 1g, Og 0g, Og
8 1>17 08 38 18 18 287087 087187 287387 187087 3
1,0 38,08 | 28,08 | 1g,1g | 0s,08

A.3 ENCODER CONSTRUCTION EXAMPLE

Fig. A.1 shows the generic structure of &rstate, rateR. = 2/3 RSC code. In this figured,, ; o
andd,, ;1 denote the'® pair of input data bits within the:*" vector of input bits, whereas,y; o
denotes the'™® single output parity bit within then™™ vector of output bits. Applying configuration
parameters such as those specifie@attionA.2, this generic encoder structure can be altered to
obtain several distinctly differe¢state, rate?. = 2/3 RSC code encoders. AccordingTableA.5
(code no.3), the best ratd?. = 2/3 8-state RSC code encoder is constructed by settingl) = 7g,
2(2,1) = 1s, h(1,1) = 0s, h(2,1) = 35, h(1,2) = 5g andh(2,2) = 25 in Fig. A.1. The resultant
optimal RSC code encoder is shownrHig. A.2.

»d

m,i,0
% > m,i,1
dm,i,o heo, | z(O,R
| s | | [ o
i I T, (R
--Shift Register-—-—--
h(1.0) yYy
74’Vm,i,0
h(0.) ) v §
> -Shift Register
. 3%\ Delay
h(12)

P

Z(10)

Figure A.1: General Structure ofaState, Raté?. = 2/3 Minimal Linear Systematic Convolutional
Code Encoder
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Figure A.2: Optimalg-State, RateR. = 2/3 Minimal Linear Systematic Convolutional Code En-
coder
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APPENDIX B

BERLEKAMP-MASSEY DECODING OF
REED-SOLOMON BLoOckK CODES

B.1 APPENDIX OVERVIEW

HIS appendix presents a conceptual description ofBleadekamp-Massegiecoding algorithm

[74, 75], frequently employed in the syndrome decoding of classic BGHR® block codes.
Since it falls beyond the scope of this study, the claBsidekamp-Massegigorithm is not described
in detail. However, several valuable references that focus on vargatifithis decoding algorithm are
cited for the interested reader.

B.2 THE BERLEKAMP-MASSEY ALGORITHM

The classic approach followed in the decoding of RS block codes entadsdeaision syndrome
decoding [94], which is described below (all mathematical operationseafermed inGF (25)):
Assume that,,(p) = cmn—1.0""" + cmmn—2.0""2 + ... + cm o is the code word polynomial gener-
ated by ann, k, dnin) GF (25) RS block code encoder at encoding instangegiven the message
polynomiald,, (p) = dp k1.1 + dmi—2.0"2 + ... + dm,o. This code word is then transmitted
through a non-ideal communication channel. 4{p) = Ym.n—1.0""* + Ymn—20" "2 + «o. + Ymo
represent the corrupted code word after hard decisions have beknandhe received and demod-
ulated code word symbols. The relationship between this polynomial and itfieabrcode word
polynomialc,,(p) is as follows [94]:

Ym(p) = cm(p) + em(p) (B.1)

wheree,, (p) = emm_l.p"*l + em,n_g.p"*2 + ... + em,0, referred to as therror polynomia) de-
scribes the alterations made by the channel to the original code word dairsgnission.

FromSection3.2.2.3.3.1 it follows that the number of parity symbols present in each coak gen-
erated by &..-.c:-Symbol error correcting RS block codejis- k = 2.tcorrect- ThUS,2.Ecorrect SYN-
dromes can be calculated for the received code word.ifr&/ndrome, with = 1,2, ..., 2.tcorrect,
is calculated as follows [74,75,94,175]:

$t =y (¢") = cm (¢") +em (¢) = em (¢) (B.2)
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wherey is the primitive element of/F' (2¢). In Eq. (B.2) c,,, (¢7) = 0, because’ is a root of the
block code’s generator polynomial (sBection3.2.2.3.3.2).

Assume that a number 6l oprect, With Meorrect < teorrect, COrrectable errors are presentin(p),
situated at positiong. , x2,, ..., xMecorreet, where0 < x7, < nfor j = 1,2, ..., Meorrect. FOr €ach
symbol in error, arerror locateris defined [74, 75,94, 175]:

. j )
ﬁgn - (@)Xm fOf] = 17 27 ey Mcorrect (B3)

Noting that only symbols received in error contribute to the syndrome vatuspossible to rewrite
Eqg. (B.2) in terms of the error locators:

Mco'rrect .
$,, = Z em’xin.(nﬁn)z (B.4)
j=1
Theerror locator polynomiapolynomial©,, (p), which describes the error pattern preseniip),
is defined as a polynomial whose inverse roots are the error locatqQi&s B4, 175]:

Mcom"ect

Omp) = [[ (1 -«xlp) (B.5)
j=1

The Berlekamp-Massewglgorithm is an iterative algorithm that computes both 2, et Syn-
dromes and the error locator polynom@l, (p). A detail description of this algorithm, which can be
performed in both the time and frequency domains, falls beyond the scdpis astudy. The inter-
ested reader is referred to [74, 75, 175] and [176] for descriptibtize time and frequency domain
versions of théBerlekamp-Massegigorithm, respectively.

In order to decode binary block codes, knowledge of the error positiothe received code words
are sufficient information. However, with non-binary block codes, tieranagnitudes must also
be determined: Assume that the error locater polynofijglp) for the received code word,,(p)
has been successfully constructed. Using the error locator polynogoaficients and the.t ., cct
syndromes, agrror evaluator polynomiaV,, (p) is determined [175]:

Mcorrect Mcorrect

Vi (p) = Om(p) + E i KD | | (1—kl,.p) (B.6)
j=1 i=1
1753

An estimate of the magnitude of the error at posit;id,n withj = 1,2, ..., Mcorrect, IS then calculated
as follows [175]:
Cmxdn — 46 (p) (B.7)
dp p=1/(Kh)
Completing the hard decision syndrome decoding process involves adimgjran estimate of the
original code word polynomial, denoted by, (p). This is accomplished by subtractllgL from

positionx?, in ym(p), for j = 1,2, ..., Meoprect.
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POPULAR BLOCK INTERLEAVERS

C.1 APPENDIX OVERVIEW

EVERAL prevalent block interleaver structures, frequently encoedtén iteratively and non-

iteratively decoded concatenated coding schemes, are consideredappbisdix. The imple-
mentable interleavers considered are divided into two categories: Detdicamsd random inter-
leavers. The deterministic interleavers presented include classic blodiavins Berrou-Glavieux
interleavers and JPL interleavers. PN generator interleavers, randrner generator interleavers
and s-random interleavers constitute the random interleavers of int€érestappendix is concluded
with a short discussion on the concept of a probabilistic uniform intertefregjuently encountered
in the theoretical performance evaluations of concatenated codes.

C.2 DETERMINISTIC BLOCK INTERLEAVERS

A deterministic block interleaver has a mapping functidé¥) that, for a given interleaver depth
J and interleaver width¥', always produces the same fundamental permutation. Several popular
deterministic block interleaver mapping schemes are discussed in the follawiagdions.

C.2.1 CLASSIC BLOCK INTERLEAVERS

A classic block interleaver [87] consists in essence of a$izeF’ memory matrix. The first step in
the interleaving process performed by this type of interleaver is to write thésiater input symbols
into this matrix in a row-wise fashion. The second and final step wherebijntedeaver output
symbols are obtained, is to write out the data stored in the memory matrix in a colisariashion.

It is easy to see that the interleaver period of this type of interleav€rds J. F.

C.2.2 BERROU-GLAVIEUX INTERLEAVERS

The depth and width of this type of interleaver are restricted to powers of.avd = 2¢ andF = 2°,
with ¢ andb positive integer values. Firstly, a set of eight prime numbers are defiki¢t) = 17,
X(2) =37, X(3) =19, X(4) =29, X(b) =41, X(6) = 23, X(7) = 13and X (8) = 7. The
interleaver mapping function is then defined as follows [87]:

TI(i) = (i) + F.F (i) (C.1)
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where:

Fo=4imodF

@o=(—Fo)/F

J=(Fo+9p) mod 8 (C.2)

FE)=(X@A+1).(Fp+1)—1)mod J
D(i)=(F/2+1).(Fo+ D) mod F
forevery0 <i< J-F = N.

C.2.3 JPL INTERLEAVERS

With JPL interleavers, the interleaver depthmust be even. As witBerrouGlavieuxinterleavers,
eight prime values are defined(1) = 31, X(2) = 37, X(3) = 43, X(4) = 47, X(5) = 53,
X (6) =59, X(7) =61 andX(8) = 67. Forevery0 < i < J.F = N, the JPL interleaver mapping
function is defined as follows [87]:

1(i) = 2.F (i) + J.@(i) — B(i) + 1 (C3)
where:

U(i) =imod F
QOZ(Z— (1)) /2 mod F
Fo=((t—0())/2—-@o)/F

F (i) = (10.Fo+ 1) mod J/2 (C.4)
J=F (i) mod 8

D(i) = (X (I+1).9y +21.0(:)) mod F

C.3 RANDOM BLOCK INTERLEAVERS

A random interleaver can be described as a block interleaver with a mappictipn generated from
a permutation, based on the outputs of a random noise source [87]aSitadiea behind the design
of random block interleavers is to eliminate regular pattern§ D), resulting in extremely long
interleaver periods. Some of the more popular random interleaversigindy used in concatenated
coding schemes, are discussed in the following subsections.

C.3.1 PN GENERATOR INTERLEAVERS

The generation of the mapping function of this type of interleaver makes fuB®\ @enerators.
Assuming a maximal length-PN generator is employed, the interleaver will have a period of
N = 2% — 1, since the period of the sequence generated by the PN generator-ig. It is ob-
vious that the interleaver periadl will always be an odd number. The interleaver mapping function
is determined as follows [87]:

1. Seti = 0.

2. Attime index, I1(¢) is the decimal equivalent of thebit binary word stored in the PN generator’s
shift register.

3. Ifi < 2% — 1, increment and return to step (2).
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C.3.2 RANDOM NUMBER GENERATOR INTERLEAVERS

Although similar to PN generator interleavers, this type of interleaver's ge¥ioneed not be an
odd number. Using any type of uniform number generator, a pe¥iaaindom number generator
interleaver’'s mapping function is determined as follows [87]:

1. GenerateN random numbers. Store these numbers in a lengthector, denoted by/ =
{0, Uy, ...,Un—-1}.

2. Reorder the elements containedirto range from the smallest to the largest value. The result is
stored a lengthV vector, denoted by = {Vy, V4, ..., Vv_1}

3. For everyi, with 0 < ¢ < NNV, determine the index such that/; = V;. The mapping function of
the interleaver is then simplj(:) = j.

C.3.3 s-RANDOM INTERLEAVERS

In [177] a simple method to generate a random pernbaerleaver that includes a constraint on the
spreading factoM,,..q (SeeSectiorB.2.3.2) is presented. The process whereby such an interleaver’s
mapping function is created, is as follows:

1. Store the numbessto N — 1 in a length#V vector, denoted by = {Uy, Uy, ..., Un_1}.

2. Choose an integer value for the spread fadtQy,..s. For a given value ofV, it is important to
chooseM,eqq < \/% in order for the interleaver construction method to be successful.

3. Set countef = 0. Repeat the following steps:

(a) Randomly pick a number from the list of available numbers containéd iif the chosen
number differs by more that M,,,...q when compared to the previods,,,..q values stored
in V, store it as elemenit; in the vectorV = {V;, V4, ..., Vy_1} and mark it as unavailable
for the next random selection from. Otherwise, repeat step (a).

(b) Increment counter.
(c) Repeat (a)to (b) fad <i < N.

4. For everyi, with 0 < ¢ < N, determine the index such thatU; = V;. As with random number
generator interleavers, the mapping function of the interleaver islifién= ;.

C.4 UNIFORM INTERLEAVERS

A concept frequently encountered in the derivation of concatenatidgecheme BER performance
bounds, is that of a uniform interleaver [100, 101]. A si¥euniform interleaver is a probabilistic
device that maps any given input waigl of Hamming weightw into all distinct (") permutations
of the input word, each permutation having a probability of occurrence of

Prob.(wy (") = w) = 1 /(g > (C5)
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COMPLEX SPREADING SEQUENCES

D.1 APPENDIX OVERVIEW

HE application of binary sequences in DS/SSMA systems has been exkjusivestigated

since introduction of SS. Due to the availability of potentially large sets of semsethat ex-
hibit comparable auto-correlation and improved cross-correlation giep&/hen compared to binary
sequences, interest has started to shift towards the use of non-BithySSs. There are numerous
advantages in using CSSs in future 4G DS/SSMA systems, including the ifitysgitgenerate CE
and SSB [4, 7, 10] transmitter output signals, etc. This appendix not ontynarises some of the
important performances measures utilised in the analysis of CSSs, buivasagncise overviews
of the filtered and unfiltered CSS families considered in this study.

D.2 IMPORTANT PERFORMANCE MEASURES FOR COMPLEX SPREADING
SEQUENCES

D.2.1 SEQUENCE LENGTH AND FAMILY SIZE

The length of a CSS, denoted BY,.,, is the number of chips in a single CSS. It is a cardinal factor
in the determination of a DS/SSMA system’s processing gain $&tionD.2.4). Furthermore, it
also influences the correlation characteristics of a CSSYsetionD.2.2 andSectionD.2.3), which

in turn is the factor determining a DS/SSMA system’s capacity.

Inseparably intertwined with the sequence length, is the family/sizg,, of a CSS. Usually a longer
sequence length implies that more sequences, i.e. a larger family, candratgdrthat exhibit ac-
ceptable correlation properties.

D.2.2 PERIODIC AUTO-CORRELATION

Two types of auto-correlation functions can be calculated for spreadiggences, namely periodic
and aperiodic. In synchronous DS/SSMA systems, such as the systesidered in this study, the
former is of greater importance. The periodic auto-correlation of a camismilengtha/,., CSS,
S(t), having chips of duratioff’.,;, [s], is defined as follows [43,47,48]:

Tchip

Mseq.
Rs),s() (1) = /0 S(t)S™ ((t + 1) mod(Mseq-Tenip)) dt (D.1)
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The periodic auto-correlation function gives an indication of the signalitudp to be expected at
the output of a coherent, perfectly synchronous correlator recgivg As such, this function can
also be used for synchronisation purposes in code tracking loops [43]

D.2.3 PERIODIC CROSS-CORRELATION

The periodic cross-correlation measures the periodic similarity betweeniffeedt CSSs having a
relative phase shift of seconds. It is defined as follows for the continuous length; CSSsS; (¢)
andSy(t), both consisting of\/,, chips of duratiori,;, [s] [47,48]:

Tchip

Mseq.
Rs,(),5,(1) (T) = /0 S1(8)S5 ((t + 7) mod(Mseq-Tenip)) dt (D.2)

The periodic cross-correlation characteristics of the sequences s dansly dictate the degrada-
tion in performance in a multi-user DS/SSMA system due to MUI. Lower perioaiss-correlation
values (especially at = 0 in synchronous systems) deliver less MUI, resulting in better BER per-
formances. Also, false code-lock is less probable for sequences wigh freriodic cross-correlation
values, especially in the rangid < % centered o = 0.

A very popular lower bound on the periodic cross-correlation for thgtten/,., sequences (t)
andS(t) from a family of sized/;,,,, is theWelshbound, given by [48]:

Mg — 1
max {RSl (),S2(t) (T)} > Mseq\/Mseq'foam 1 (D3)

Note that forM,., — oo, the Welsh-bound simplifies taax {RS1 (1),S2(t) (T)} R/ Mgeq.

D.2.4 SPREADING FACTOR AND PROCESSING GAIN

Assume a spreading sequence with a chip rae;gf is used to directly spread a symbol stream with
a rate off;. TheSpreading FactofSF) for this scenario is defined as follows [43, 44]:

SF = % (D.4)

The PG (measured in [dB]) of a DS/SSMA system, which is directly related td-itssSalculated as
follows [43, 44].

PG = 10log;, (SF) = 101og;, <f jﬁ”’) (D.5)

The SF and PG are important measures that reflect the spreadingitdiverduced by the
DS/SSMA system in order to combat the detrimental effects of narrowbaedarers or jamming
signals [43,44,81].

D.2.5 BANDWIDTH EXPANSION FACTOR

When comparing DS/SSMA systems employing filtered (or chip-level pulsgeshand unfiltered
CSSs, parameters such as PG and SF are insufficient, since theseasidasuot reflect the spectral
characteristics of the spreading sequences and/or chip-level paisegliilters employed. As such,
a new parameter, referred to as the BEF of a DS/SSMA system needs édiexdd The BEF for a

DS/SSMA system with a transmitter output signal bandwidtiBgf" prior to spreading and?ff;t
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after spreading (and chip-level pulse shaping), is calculated as follows

Bppst
BEF = ( > ) (D.6)

B
As with the SF and PG, the immunity a DS/SSMA system obtains against a nanoyiaming
signal by increasing its transmitter output signal’s dimensionality [43, 44tt8bligh spreading, is
reflected by the BEF. However, the BEF also includes the effects oflehgpulse shaping and other
DS/SSMA transmitter filtering on the bandwidth diversity obtained through theading process.
Furthermore, the spectral characteristics of the spreading sequesackin the DS/SSMA system are
also incorporated in the BEF.

D.2.6 SPREADING SEQUENCE LENGTH DIVERSITY

Certain pre-filtered CSS families (or chip-level pulse shaped CSS4),asithe ABC (se&ection
D.3.2.2) and DSB CE-LI-RU filtered GCL CSSs (s®ectionD.3.2.1), are highly bandlimited. Using
these CSSs in DS/SSMA communication systems are more bandwidth efficienisihgrunfiltered
CSSs or binary sequences of an equivalent length. As such, emplagrfitered CSSs, equivalent
SFs, but lower BEFs will be obtained. Generally, commercial communicat&tersg are restricted
in terms of their transmission bandwidth requirements. Thus, DS/SSMA comnionicystems
employing pre-filtered CSSs support the use of higher data rates andg®r|€SSs in order to
deliver permissable BEFs, when compared to systems using unfiltered E83ixed data rates and
BEFs, the SSLD obtained by using bandlimited spreading sequencesnisdiasi follows:
SF

SSLD = BEF (D.7)
Thus, the length of the filtered CSSs, denotedMy.,, can be increased SSLD-times in order for
the DS/SSMA communication system to occupy the same transmission bandwidiDSAS aMA
system using unfiltered CSSs of the same length. Moreover, a largéhg@red CSS family can be
used, possibly supporting more CDMA users.

D.3 IMPORTANT COMPLEX SPREADING SEQUENCE FAMILIES

D.3.1 UNFILTERED SEQUENCES
D.3.1.1 ZADOFF-CHU SEQUENCES

ZC CSSsis asubclass of GCL CSSs [9], which is generated and chiered s follows: Leﬁqzc =
{S%c10, 5% (1], ..., SLo[Mseq — 1]} represent the vector of chips of th length-\/,., unfiltered
continuous-time ZC sequenég . (¢). With j = v/—1, theith chip in this sequence is determined as

follows [4, 5]:
[4,5] exp jﬂ.a.ﬁ) if M., is even
) o m seq
Szclil = {eXp éjﬂm(lﬂ)) if M., is odd oY
Mecy seq

where the sequence numhecan only take on integer values relatively primeMQ.,. As such, the
family size for lengthA/,., ZC CSSs is calculated as follows:

Mseq—1 {1 if Mseq mod(a) # 0 (D.9)

Mam:1+ .
! 2 0 if Myequ modia) = 0

a=2
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Figure D.1: Real and Imaginary Parts of a Length., = 63 Unfiltered ZC CSS for, = 1, fepip =
63000 Hz and16 Samples per Chip
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Figure D.2: Envelope of a Length/,., = 63 Unfiltered ZC CSS for = 1, fcn;p = 63000 Hz and
16 Samples per Chip
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Hence, the largest ZC CSS families are obtained whigp, is an odd prime number. In such a case
the family size isM ., = Mseq — 1 [4]. Fig. D.1 shows the real and imaginary parts of the- 1
length-63 ZC CSS with a chip rate ¢f;,;, = 63000 Hz and16 samples per chip. Also note that the
complex envelope of the sequence, showhig D.2, is not constant.

D.3.1.2 QUADRIPHASE SEQUENCES

QPH sequences are closely related to binary sequences. A I#hgilQPH sequence’s chip vector

Sopu = {S%PH[O] Sopr(1ls -+ SGpp[Mseq 1]} is constructed using two lengthé,., binary
sequences’ chip vectors, denoted Y = {5%[0], S4[1], ..., S4[Mseq — 1]} and S = {SE[0]
SEN, ..., SE[Mseq — 1]}, respectively. Calculation of thzéh chip of the QPH sequence is accom-

plished as foIIows [6]:

Shoulil = 551+ Sl + 5 =(1 = Sl (0.10)

It foIIows that each ch|p in the QPH sequence will have a value from the lexmgpsymbol alphabet

{f + 5, f 75 f + 5, f f}, if the binary sequences’ chip vectaf§, and Sg
have chips from the antipodal alphaletl, +1}. ForAlltop-type QPH sequences [4], the family size
is given asM t4,,, = Mseq — 1, With the sequence lengtii,., limited to prime values. Furthermore,
using Gold binary sequences f6f, andS% is a popular approach [48Fig. D.3 show the real and
imaginary parts of usey’s length-63 QPH CSS with a chip rate ff,;, = 63000 Hz and16 samples
per chip. Since QPH sequences are binary in nature, it follows that threiplex envelopes will not
be constant. This characteristic is showrrig. D.4 for the QPH depicted iRig. D.3.
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Figure D.3: Real and Imaginary Parts of a Length., = 63 Unfiltered QPH CSS fo.;,;, = 63000
Hz and16 Samples per Chip
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Figure D.4: Envelope of a Length/,., = 63 Unfiltered QPH CSS fof.;, = 63000 Hz and16
Samples per Chip

D.3.2 FILTERED SEQUENCES
D.3.2.1 DSB CE-LI-RU FILTERED GCL SEQUENCES

It has been shown that ZC sequences contain all the frequencies B0, M fq,, /Tenip) [HZ],
with T, the duration of a chip [48]. Thus, the bandwidth of such sequencess farection of the
family size. In order to bandlimis’,(t) and remove its dependency on the sequence ingdex
mod (27) phase constraint can be incorporated, resulting@mnasequence’s chip vector denoted by
St = {5&4,10], 8Ly 1], <oy &y [Miseq — 1]} [4,5). Theit® chip of aChusequence is determined

as follows:
- g2 . i
ST [i] = exp J—Mseq) mod (27) if Meq is even 011)
Chu exp g%) mod (2r) if My, is odd

It has been shown [4] that the bandwidthGiusequences arg/T,;, [Hz]. DSB CE-LI-RU filtered
GCL sequences are obtained by filteris{g, . [i] with alinearly interpolating root-of-unity filtef7, 8]

in order to achieve the minimum Nyquist bandwidth192.7,,,) [Hz]. The family size of such
sequences is also given Ey. (D.9). Fig. D.5 gives the real and imaginary parts of user-q's length-
63 DSB CE-LI-RU filtered GCL CSS with = 1, a chip rate off,;, = 63000 Hz and16 samples
per chip. Fig. D.6 shows the complex envelope of this sequence, depicting its constarg.natu
This characteristic alleviates and even eliminates the linearity constraint oer @owplifiers used

in DS/SSMA systems employing such sequences. Since the instantanearsopole transmitter
output signal will be constant, the communication system engineer no loagds o be concerned
with amplifier back-off. Thus, it will be possible to more efficiently utilise partidihear power
amplifiers.
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Figure D.5: Real and Imaginary Parts of a Length., = 63 DSB CE-LI-RU filtered GCL CSS for

a =1, fenip = 63000 Hz and16 Samples per Chip
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D.3.2.2 ABC SEQUENCES

ABC sequences are generated by appropriately modifying the previdafilyed DSB CE-LI-RU
filtered GCL sequences in order to produce an injective function, agided in [7, 10]. When
used in balanced QPSK structures, ABC sequences [7, 10] exhilytiaabproperties, i.e. a SSB
DS/SSMA signal is obtained after modulation onto in-phase and quadratuiers (sed-ig. 6.16 in
Section6.4.3) [4]. As with ZC and DSB CE-LI-RU filtered GCL sequences, the fasiig of ABC
sequences is determined usiBg. (D.9). Fig. D.7 depicts the real and imaginary parts of user-q's
length-63 ABC sequence with= 1, a chip rate off.;;, = 63000 Hz and16 samples per chigFig.

D.8 shows its constant complex envelope.
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Figure D.7: Real and Imaginary Parts of a Length., = 63 ABC Sequence fot. = 1, feuip =
63000 Hz and16 Samples per Chip
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Figure D.8: Envelope of a Length/,., = 63 ABC Sequence fot = 1, fe4i, = 63000 Hz and16
Samples per Chip
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SIMULATION SOFTWARE INDEX

E.1 APPENDIX OVERVIEW

CQUIRING the results presented @hapter6 required the development of an extensive set of
simulation software tools, ranging from BER performance measurementnpfetf{seeChap-
ter 5), to data analyses and plotting tools. C++ was chosen to implement the simulati@nnps
presented irChapter5, whereas Matlab was employed to create the necessary filter desigatand d
analyses/plotting tools.

This appendix firstly presents the labelling conventions applied extensivéhe filenames of the
Matlab scripts/functions, C++ classes and compiled applications. Next fodédailed indexes, list-
ing the filenames and short descriptions of the simulation software compatexeisped during this
study. All of the listed Matlab and C++ software modules are available on th&OBI accompany-

ing this dissertation. Note that each of the simulation software tools presestieavhre created by
the author without making use of any prior base code.

E.2 NAMING LABEL CONVENTIONS

The naming label conventions applied in the filenames of the Matlab m-files amulled executables
are given inTableE.1.

E.3 MATLAB FUNCTIONS AND SCRIPTS

TableE.2 andTableE.3 list the Matlab functions and scripts developed during the course ofilig s
Note that the Matlab functions and scripts were not employed in the actdalpance evaluation
of the VA decoded linear block codes under investigation, but rathethéocreation of filters and
pulse shapes, the processing and plotting of measured simulation result8jtetrigh the results
presented irChapter6 were obtained running these scripts and functions Micaosoft Windows
platform, they can be used &mix or Linux platforms without any alterations.
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Table E.1: Matlab Script and C++ Executable Filename Labelling Convention

Naming Label Options Available Description
CODENAME half_rate NSC / h NSC 4-state, rateR. = 1/2 NSC code
Hamming7_4_Classic / Ham7_4_cl | Hamming(7,4, 3), classic decoding
Hamming7_4_VA / Ham_7_4_cl_VA Hamming(7, 4, 3), VA decoding
Interl_ Hamming7_4 / iHam.7_4 Interleaved Hamming7, 4, 3) code
Inter.RS.7.5/iRS.7.5 Interleaved R7, 5, 3) code
Original 5.3 / or.5_3 Cyclic (5,3, 2) code, original trellis
PunctBCH_15.7 / pBCH.15.7 Punctured BCH15,7,5) code
Puncthalf_rate RSC / phtRSC Punctured, raté&. = 1/2 RSC code
Reduced5_3 / orred 53 Cyclic (5, 3,2) code, reduced trellis
RS7.5 RS(7,5, 3) block code
two_thirds.rate RSC / ttr RSC 8-state, rate?. = 2/3 RSC code
uncoded / uc Uncoded
SEQNAME ABC ABC sequences
DSB DSB CE-LI-RU GCL CSSs
ZC ZC CSSs
QPH QPH CSSs

Table E.2: Description of the Matlab Functions and Scripts - Part |

Matlab Function/Script

Function/Script Description

calcpdf.1D.m

Calculate thd -dimensional PDF of a set of samples

calcpdf-2D.m

Calculate the-dimensional PDF o2 sets of samples

createelliptic_rx_filter.m

Create the numerator and denominator coefficients
an elliptic IR lowpass filter, plot its amplitude response

of

createnyquistpulseshape.m

Create a Nyquist pulse shape, plot the pulse shape

createsqrtnyquistpulseshape.m

Create a square-root Nyquist pulse shape,
plot the pulse shape
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Table E.3: Description of the Matlab Functions and Scripts - Part II

Matlab Function/Script

Function/Script Description

delay.spread.m

Configure the path delays faf
unique users’ multipath fading channels

dopplerfilter.m

Create the numerator and denominator coefficients of

a Doppler IIR lowpass filter, plot its amplitude response

plot. CODENAMEAWGN_ber.m

Plot the BER curves of @ODENAME
code in AWGN channel conditions

plot. CODENAMESEQNAMEber.m

Plot the BER curves of EODENAME
code in multipath fading channel conditions
for SEQNAMECSSs

plot CODENAME33Hz FF ber.m

Plot the BER curves of @ODENAME
code in flat fading channel conditions
with a 33 Hz Doppler spread

plot CODENAME100Hz FF_ber.m

Plot the BER curves of @ZODENAME
code in flat fading channel conditions
with a 100 Hz Doppler spread

plot_eyediagram.m

Plot the eye diagrams of a pulse shaping
or matched filter’s output

plot SEQNAMEenvelope.m

Plot the complex envelope ofSEQNAMECSS

plot SEQNAMEPSD.m

Plot the PSD of SEQNAMECSS

plot SEQNAMEtime_signals.m

Plot the real and imaginary time signals
of aSEQNAMECSS

powerdelay profile.m

Create an exponential decay power delay profile

processsequencdamily_files.m

Generation of the user CSS configuration files

randominterleaver.m

Create the interleaver mapping of a random interleay

RayleighPDF.m Plot a theoretical Rayleigh PDF
Rician PDF.m Plot theoretical Rician PDFs
SEQNAMEgenerate Generate and store a lengilf;., SEQNAMECSS family

systematiccyclic_matrices.m

Convert ann, k, d.n:, ) linear block code’s generator
matrix to systematic form

classicdopplerspectrum.m

Plot the classic Doppler spread PSD
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E.4 C++ CLASSES

A large number of coding, modulation and channel simulator building bloaksegjuired to con-
struct the AWGN, flat fading and multipath fading channel performandéoptas shown irFig. 5.5,
Fig. 5.8 andFig. 5.9, respectively. The header ammgpfiles of each C++ class that was created to
realise the required performance evaluation platform building blocks ¢ed lisTableE.4 andTable
E.5, with their primary functions. Note that these files ANSI Ccompliant, ensuring portability to
Microsoft WindowsUnix or Linux platforms.

Table E.4: Description of the C++ Classes - Part |
C++ Class

Class Description

B_Trellis_.Advanced.h
B_Trellis Advanced.cpp

BCJR trellis class for an
(n, k, dmin) linear block code

B_Viterbi_Advanced.h
B_Viterbi_Advanced.cpp

Block-wise VA decoder class that
operates on a BCJR trellis

BC_with_Interleaver.h
BC_with_Interleaver.cpp

(n, k, dmin) linear block code encoder and
length4V interleaver combination class

BC_with_Puncturer.h
BC_with_Puncturer.cpp

(n, k, dmin) linear block code encoder
and puncturer combination class

Block_Coder.h
Block_Coder.cpp

(n, k, dmin) linear block code encoder class

C_Trellis.h
C_Trellis.cpp

Raten/k convolutional code trellis class

CC.with_Puncturer.h
CC_with_Puncturer.cpp

Raten/k convolutional code encoder
and puncturer combination class

Convolutional.cpp
Convolutional.h

Raten /k convolutional code encoder
class

De-interleavemwith_B_Viterbi.h
De-interleavemwith_B_Viterbi.cpp

Length<V de-interleaver and block-wise VA
block code decoder combination class

Delayline.h
Delay line.cpp

General delay line class

De-puncturemith _B_Viterbi.h
De-puncturemwith_B_Viterbi.cpp

De-puncturer and block-wise VA
block code decoder combination class

De-puncturetwith_SW._Viterbi.h
De-puncturemwith_SW._Viterbi.cpp

De-puncturer and sliding window VA

convolutional code decoder combination class
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Table E.5: Description of the C++ Classes - Part Il

C++ Class

Class Description

DSSSQPSKRAKE_Rx.h
DSSSQPSKRAKE_Rx.cpp

Wideband classic and complex DS/SSM
QPSK RAKE receiver class

pg

P>

DSSSQPSKTx.h Wideband classic and complex DS/SSM
DSSSQPSKTx.cpp QPSK transmitter class
FIR.h General FIR filter class
FIR.cpp

GF_Calculator.h
GF_Calculator.cpp

Galois field mathematics calculator clas

|2}

IIR.h General lIR filter class
lIR.cpp
Int_dump.h Integrate-and-dump circuit class
Int_dump.cpp

Interleaver.h
Interleaver.cpp

General block interleaver class

Mapper.h
Mapper.cpp

General input-to-output mapper class,
used as a block code ML decoder

Multipath_FadingChannel.h
Multipath_FadingChannel.cpp

Classic and complex multipath fading
channel simulator class

Noise.h AWGN, uniform noise and Poisson noise
Noise.cpp generator class
PN_Gen.h LengthsV PN generator class
PN_Gen.cpp

Puncturer.h
Puncturer.cpp

Block or convolutional code puncturer class

QPSKRx.h Narrowband classic and complex
QPSKRx.cpp QPSK receiver class
QPSKTx.cpp Narrowband classic and complex

QPSKTx.h QPSK transmitter class

Rician.Channel.cpp
Rician.Channel.h

Classic and compleglarke
flat fading channel simulator

SW._Viterbi_Conv.cpp
SW. Viterbi_Conv.h

Sliding window VA convolutional
code decoder class
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E.5 COMPILED EXECUTABLES

Using the C++ classes listed BectionE.4, the compiled executable files, listedTiable E.6 and
Table E.7, were created to obtain the simulation results present€&hapter6. The executables
created to test the channel simulators, verify the operation of the naaruldnd wideband commu-
nication systems, construct block and convolutional code trellises, aatrg the mapping functions
of random interleaver, were developed usBgrland C++ Builder 6, since they contaiMicrosoft
Windowsgraphic components, such as forms, buttons, dialog boxes, etc. Astsash executables
are not portable to OS platforms other thditrosoft Windows

A command line approach was used for the executables performing thé B&Raperformance
evaluations. These executables were created Wganignd C++ Builder 6, but compiled usindn-

tel's ICC and GNU’sG++ compilers forLinux platforms. The BER performance results presented
in Chapter6 were obtained in record breaking time by distributing the applications’ cortiqodh
load over the multiple workstations in tténiversity of Pretorigs I-percube donated byintel. The
I-percubeconsists ofl 6 2.4 GHz Pentium4 stations, each station runnindgvandrake Linuxoperat-

ing system. Thé6 stations are linked vigast Ethernetonnections. Process migration and message
handling between the stations are managed transparently by me@apsmMosiXor Linux.

Table E.6: Description of the Compiled Executables - Part |

Executable Description/Function Portability

BC_Trellis_Creator Creation of an(n, k, d,up) linear | Windows
block code’s BCJR trellis

CC_Trellis_Creator Creation of a rater/k Windows

convolutional code’s trellis

InterleaverCreator Creation of a random or classig Windows
block interleaver

main CODENAMEQPSKAWGN BER performance evaluation of Windows
a CODENAMEcode in AWGN Linux
channel conditions DOS
main CODENAMEQPSKFF BER performance evaluation of Windows
a CODENAMEcode in flat fading Linux
channel conditions DOS

main CODENAMEDSSSMAQPSKMPFC || BER performance evaluation of Windows
a CODENAMEcode in multipath Linux
fading channel conditions DOS
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Table E.7: Description of the Compiled Executables - Part Il

Executable

Description/Function

Portability

Testflat fading channel

Verify the operation of
classic and complex flat
fading channel simulators

Windows

Testfrequencyselectivefading channel

Verify the operation of
classic and complex multipath
fading channel simulators

Windows

TestnarrowbandQPSK

Verify the operation of a
narrowband classic or complex
QPSK communication system

Windows

WidebandCorrelator

Verify the operation of a classic
or complex DS/SSMA QPSK
communication system employin
a correlator RAKE receiver

Windows

WidebandMatchedFilter

Verify the operation of a classic
or complex DS/SSMA QPSK
communication system employin

a matched filter RAKE receiver

Windows
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