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CHAPTER FOUR

VITERBI DECODING OFLINEAR BLOCK CODES

4.1 CHAPTER OVERVIEW

HIS chapter sets out by describing the BCJR linear block code trellis catistn method [2]

for (n, k, dmin) linear block codes, wherk is the message length,is the code word length,
andd,,;, is the minimum Hamming distance property (Sgrtion3.2.2.2) of the code. For illustra-
tive purposes, it is used to created the trellis of a shortened binary Hanimig) block code (see
Section3.2.2.3.1). The next part of the chapter is concerned with the quantifiggttbe complexity
of a linear block code’s trellis: Using a binary Hammi(ig 4, 3) block code (se&ection3.2.2.3.1)
as example, it firstly describes a simple, but tedious method whereby thepstates ofile and com-
plexity [141-143] of a block code’s trellis can be determined. Secondlisdusses a trellis reduction
method and illustrates the use thereof for a binary cy@i@, 2) block code. In the final part of this
chapter, the application of a block-wise VA [3] as an optimal ML trellis decéoleBCJIR block code
trellises is considered. Both hard and soft decision VA metric calculatioroappes are addressed.

Although the block codes used as examples in this chapter are all binary tiloek codes, the
algorithms presented are readily applicable to non-binary codes, siR8 &seeSection3.2.2.3.3)

and BCH (see&ection3.2.2.3.2) block codes. Unfortunately, due to the size and complexity of such
codes’ trellises, they do not lend themselves to be good examples wheecalgthithms presented
here can be effectively demonstrated.

4.2 LINEAR BLOCK CODE TRELLIS CONSTRUCTION

In principle, every linear block code has a unique trellis description: Bwtarg a set of parallel
trellis paths, one for each code word, a simple albeit inefficient trellis isrgte In [2]Bahl et al.
presents a more elegant approach to derive an efficient trellis strdcdorehe linear block code’s
parity check matrix (se8ection3.2.2.1). The following two subsections are devoted to a description
of this trellis construction technique.
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4.2.1 CONSTRUCTING AN UNEXPURGATED LINEAR BLOCK CODE TRELLIS

As previously stated, the BCJR trellis construction method fot,&, d..;,) linear block code with
code word symbols from Galois fiedF (2¢), requires the code’s parity check matrix, given by:

Hpc = [ho b ... hyq] (4.1)

In Eq. (4.1) by, withi = 1,2, ..., n, is thei*® column of the parity check matrix, containirig — k)
elements from the Galois fieldF" (2¢). The trellis construction technique is based on the fact that

the i (n — k)-tuple syndrome vectoﬁn [47] for the m™ n-tuple valid code word vectat,, =
{¢m.,0,Cm.1,--.,cmn—1} Can be calculated using the following recursion formula [2, 87]:

) 1—

gm = gm ! + Cmﬂ',l.ﬁifl (42)

wherec,, ; is theit" code word symbol contained in the vectgy. The initial condition is@?n = 0.
Note that addition and multiplication are carried out symbol-wis@ i (25). The block code trellis,
which is a compact method to represent24lf code words in the code, consists(af+ 1) sets of
nodes (states), each set contain?d§”—*) nodes. By interconnecting the nodes with branches in a
topology uniguely defined by s, the trellis is constructed. For the purpose of this discussion, the
sets of nodes are indexed by a paramétevith i = 0,1,2,...,n. Nodes in set are indexed by a
parametet, with [ = 0, 1,2, ..., 2¢(»=%) _ 1. Therefore, thé'" node in the'" set has an indef(, 7).

The branches emanating from the nodes in the trellis are indexed by thragiarg. Each branch

in the trellis has an associate branch weight or decoder input brantbr,vas well as a decoder
output branch vector. For example, the branch weight vector andddecaitput branch vector of
the ;" branch leaving nodéd, 1) areﬂfl) andagjl), respectively. The trellis construction procedure is
described below: 7 7

1. Set;i = 0, wherei is the trellis depth counter.

2. At a depth ofi = 0, only node(0,0) has2¢ emanating branches. From any nddei), with
i > 0, that has incoming branches, branches flow forth. The destination nodes inisetl of the
branches leaving any nodg ¢) are determined as follows:

(@) Determine a lengtkn — k) vectorg;, which contains thé" possible combination af — k)
elements fronGF (2°).

(b) Let the GF (2¢) symbol associated with th¢™ branch be denoted by;. With j =
0,1,2,...,2¢ — 1, proceed as follows:

i. Compute the(n — k)-tuple GF (2°) vectorg; ; = (R) .b;) + &, where addition and
multiplication are carried out symbol-wise &F (25). The vectorEiT represents the
transpose ok;.

ii. The destination node in sét- 1 is node(z; ;,i + 1), where the vectog; ; contains the
2% possible combination af» — k) elements fronGF' (2¢).

iii. If bit-wise comparison has to be used in the metric calculations of the trellisddecas
is always the case with binary block codes, the branch weight vectgnasisto thejt"
branch is given by valuegﬁ) = w;, wherew; is the sequence of binary bits representing
the GF (2°) symbolb;. When, for non-binary block codes such as RS and BCH block
codes, the code word symbols are used directly in the decoding proeesgmbol-wise
comparison during the branch metric calculations, the branch weight vamsists of
a single element, namely; = b;.
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iv. The decoder output branch vector of tji& branch is equal to the branch weight vector,
P ) )]
l.e. Oi,l = ui’l .

(c) Repeat steps (a) and (b) for evérywhere nodé€!/, i) has one or more incoming branches.
3. Repeatstep2far=1,2,..,n — 1.

Following the procedure outlined above, a trellis with more paths than coddsvilorthe code is
created. Such a trellis is called anexpurgated3] or unconstrained87] block code trellis. Shown

in Fig. 4.1 is the unexpurgated trellis, obtained using the BCJR trellis construction dpdtrca
binary Hamming5, 2, 3) block code (se&ectiorn3.2.2.3.1) (constructed by shortening the Hamming
(7,4, 3) block code, defined by the generator matrixeaf. (4.4)) with the following parity check
matrix:

1
1
0
In this figure, the VA decoder (se®ection4.4) output and input sequences associated with each
branch of the trellis are indicated by tibecoder Output Sequena%) / Decoder Input Sequence

0100
Hpc = 1010 (4.3)
100 1

az(]l) labels.
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Figure 4.1: Unexpurgated Trellis of the Shortened Binary Hamr(fing, 3) Code

4.2.2 EXPURGATING A BLOCK CODE TRELLIS

Removal of all non-code word representing paths in the unexpurgatiid of a block code, with
code word symbols front’F (2¢), a process referred to allis expurgation[3], involves discard-
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ing all paths that do not end in no@@ n). The resultant trellis is called @axpurgatedr constrained
block code trellis. In this trellis, onlgs* unique paths, representing the valid code words in the block
code, are retained.

Although the expurgation process seems simple, it usually involves tediokgiaaing through the
trellis. A simple technique, applicable to the BCJR trellis structures of unextestdrsatic linear

block codes, presented [8taphorst Buttner andLinde in [52] for binary block codes and in [55]
for non-binary block codes, involves removing all branches fronesad set — 1 entering the node
(Li)fori =k +1,k+2k+3,..,nandl = 2569 2o&(n=0) 4 1 9&(n=k) _ 1 Fig. 4.2 shows

the expurgated trellis obtained for the binary Hammisg, 3) code, defined b¥q. (4.3), after this

path removal algorithm has been applied to the unexpurgated trekig.of.1.
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Figure 4.2: Expurgated Trellis of the Shortened Binary Hamn(ing, 3) Code

It should be noted that the VA can be just as successfully applied to aipungated trellis, as long
as it is configured to only select paths starting in stat®) and ending in stat€), n) (seeSection
4.4). Moreover, identical BER performances are obtained by applymd/4hto unexpurgated or
expurgated BCJR trellis structures, irrespective of the channel comslititowever, this will result in
unnecessary computations, larger decoder memory requirements aatll ioeeeased system com-
plexity. For example, a VA applied to the unexpurgated trelli§igt 4.1 must performt6 branch
metric calculations for the branches connecting4ts (C') = 31 active nodes, whereas a VA run-
ning on the expurgated trellis &ig. 4.2 only needs to calculat& branch metrics for the branches
connecting itsAN (C') = 14 active nodes.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 63



University of Pretoria etd — Staphorst, L (2005)

CHAPTER FOUR VITERBI DECODING OFLINEAR BLOCK CODES

4.3 COMPLEXITY OF LINEAR BLOCK CODE TRELLISES

For most block codes of practical interest, such as the extended biity(®, 21, 6) block code,
used extensively in several paging protocols, the codeRate k/n is greater than or equal t5,
while the number of parity symbo(s — &) is at least 0. Given the extensive use of such block codes
in wireless communication systems, these codes lend themselves to be primetenftid trellis
decoding. Unfortunately, the complexity of &n, k, d,,.;) block code’s trellis grows exponentially
with min {k, (n — k)} [3]. For example, the expurgated trellis of the previously mentigaed21, 6)
extended BCH block code has a staggerid§72 branches [144]. Thus, the cost effectiveness of
block code trellis decoders for such codes is questionable. The foll@uimgections firstly illustrates

a procedure whereby the complexity of a block code’s trellis can be c&d,lmllowed by a simple
block code trellis reduction method.

4.3.1 TRELLIS COMPLEXITY CALCULATION

A simple state space complexity calculation method [141-143, 145, 146] fon,a&nd,,,) block
code with code and message word symbols fiGi#i (25), defined by generator matri¥z- (see
Section3.2.2.1), is detailed in this subsection. As is shown in this subsection, the stage gpm-
plexity of a block code gives a good indication of the complexity of the blocle&trellis. The state
space complexity calculation procedure is illustrated for a binary Hamiiting 3) block code (see
Section3.2.2.3.1) with the following generator matrix:

1000101
0100111

Gee=14001011 0 (4.4)
0001011

Due to the considerable number of lengthy intermediate results obtained theiglculation of a
block code’s state space complexity, some of these results are omitted in thdrfglitiscussion for
the Hamming(7, 4, 3) block code.

The first step in the estimation of the block code’s state space complexity is tondeteall pos-
sible code words obtainable froigz-. In general, the number of unique code words that can
be generated by afw, k, d,,;,) block code’s generator matri& zc is 28k For the Hamming
(7,4, 3) block code2* = 16 unique code words exist. L&t denote this set of code words, with
Cm = {Cm,0, Cm,1+ s Cm(n—1) } them™ code word in the set.

Next, the block code’s dimension and inverse dimension distributions [485,denoted by (C') =
{Ag, A1, A, Ap} and A1 (C) = {AgY AT ALY, . ALY, respectively, are determined. The
procedure is as follows [145, 146]:

1. Define a master indexing $e{C) = {0, 1,2, ...,n—1}. The master indexing set for the Hamming
(7,4, 3) block code i2(C) = {0,1,2,3,4,5,6}.

2. Let: denote the dimension distribution element index. With 0,1, 2, ..., n, proceed as follows:
(a) Forj =0,1,2,..., (%), complete the following steps:

i. Select an indexing seb’ (C) = {@{, <I>§, vy <I>§}, such that it is a subset frofa(C'),
containing: elements that have not been selected for any previous valjeTdie size
of ®/(C) is thereforg®/(C)| = i. For example, ifi = 3, one possiblg*™® indexing set
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for the Hamming 7, 4, 3) block code is:
®/(C) = {1,3,6} (4.5)

ii. Next, a subset of code words is created fréhby manipulating the symbols of each
code word, pointed to by the indexing elementstii(C): For each code word it
the code word symbols at positiods, @, ..., ®! are replaced with zeros, resulting in
28k new, but necessarily unique, code words. By only keeping the unioge words,
a new set of code words, denoted #y®’(C)), is created. For example, as specified
by the chosen indexing subset givenkn. (4.5), setc,,1 = ¢z = cme = 0 for
m = 1,2,...,16. This results inl6 new, but not necessarily unique code words. From
thesel6 it can be shown that there are odyistinct code words in this new set, given
by:
r{0,0,0,0,0,0,0} T
{1,0,0,0,1,0,0}
{1,0,1,0,0,0,0}

, | {1,0,1,0,1,1,0}
9 (2(0)) = {0,0,1,0,1,0,0} (4.6)
{1,0,0,0,0,1,0}
{0,0,1,0,0,1,0}
| {0,0,0,0,1,1,0} |

iii. Determinek[d (®7(C))], a parameter which can be interpreted as the effective number
of message symboils that is required to generate the number of code watdimed in
9 (®7(C)) [145, 146]:

k[ (®7(C))] = logye {Number of code words it (¢7(C)) } (4.7)

FromEqg. (4.6) it is clear thak[v (7(C))] = 3 for the indexing subset defined .
(4.5) for the Hammind7, 4, 3) block code.

iv. The next step is to define an inverse indexing sulis¢r) = {\If{, \I/é, ceey \I/f;H} which
contains all the elements frofd(C), except those already i (C). The inverse index-
ing subset associated with the indexing subset givétgir(4.5), is given by:

(C) = {0,2,4,5} (4.8)

v. The inverse indexing subset is now used to create a new set of andedv( ¥ (C)),
containing all the code words froi that have zero code word symbols at the positions
indicated by the indexing elements ¥ (C). Using the selected inverse indexing set
given inEq. (4.8) produces the following set of new unique code words:

| {0,0,0,0,0,0,0}

9 (W(C)) = {0,1,0,1,0,0,1}

(4.9)

vi. From the new set of code words( ¥/ (C')), determinek[d (U7(C'))], defined as:
k[ (27 (C))] = logye {Number of code words it (¥/(C))} (4.10)

FromEq. (4.9) it follows thatk[v (¥ (C))] = 1 for the Hamming(7, 4, 3) block code.

(b) Thei*® elements of the code’s dimension and inverse dimension distributions arelgyive
A; = max{k[9 (®7(C))]} andA; ' = max{k[¢ (¥7(C))]} for j = 0,1,2,..., (7), respec-
tively.
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If the procedure outlined above is completed for the Hamnfing, 3) block code, the dimension
and inverse dimension distributions obtained will be:

AC) ={0,1,2,3,4,4,4,4} (4.11)

and:
A7Y(C) ={0,0,0,0,1,2,3,4} (4.12)

respectively. With arin, k, d,,.;,) linear block code’s dimension and inverse dimension distributions
known, its state space profile is determined as follows [145, 146]:

SSP(C) = {So, S, ..., Sn}

= {(Ao = AgH), (A1 = AT, o (A — A1)} (4.13)

Using Eq. (4.11) andEq. (4.12), the state space profile for the Hammifigd, 3) block code under
investigation follows readily:

SSP(C) ={0,1,2,3,3,2,1,0} (4.14)

At a depth ofi into the code’s expurgated trellis, the number of active nodes (state)des having
incoming and/or outgoing branches,25%. Thus, the total number of active nodes in the block
code’s expurgated trellis is [59, 145, 146]:

AN(C) = zn: 28-S (4.15)
=0

The final important parameter to calculate is the state space complexity of the bine& code
[145,146]:
SSC(C) = max {S;} fori =0,1,2,...,n (4.16)

From the Hamming 7,4, 3) block code’s state space profile, givenkn. (4.14), it follows that
the number of active nodes and the state space complexity of the codéNy€) = 30 and
SSC(C) = 3, respectively.

With the number of active states in the trellis known, the next step is to determimgpan bound on

the number of branche¥ B(C') present in the trellis: For a trellis depth ok n into the unexpur-
gated BCJR trellis of afn, k, d.n:,) linear block code with code and message word symbols from
GF (2¢), the number of branches exiting an active nod#*isSince all paths end in node, n), it
follows that AN (C') — 1 nodes in an expurgated trellis have departing branches. Hence, themnumb
of branches present in an expurgated trellis is upper bounded asgollow

NB(C) < (AN(C) —1).2¢° (4.17)

The state space complexity is a key measure [59,141,142,147] of thedosfijdexity, and thus also
the decoding complexity of a specific linear block code. A lower value oftiite space complexity
results in a less complex trellis structure, leading to faster decoding anlegdex trellis decoder
structures.

4.3.2 REDUCING TRELLIS COMPLEXITY

It is a known fact [93, 148] that the swapping of columns of a generagtdrix of an(n, k, )
block code, with code word symbols fro6iF'(2¢), results in an equivalent block code. Although
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the resultant block code has different code words, it has the santecerrecting capabilities as the
original code, since the minimum Hamming distaagg,, (seeSection3.2.2.2) remains unchanged.
However, it can be shown [149, 150] that the state space dimension nétheode differs from that
of the original code. Therefore, swapping columns in a code’s gemaratrix influences the com-
plexity of the resultant block code’s trellis. As will be illustrated by the followingllis reduction
example, it is possible to obtain an equivalent code with a lower complexity tredis L50].

The binary cyclic(5, 3, 2) block code (se&ection3.2.2.2) to be used as an example in this section,
is defined by the following generator matrix:

1 0011

Gge=|01 010 (4.18)

001 01
From this generator matrix, the following parity check matrix can be determined:
0
1

0
. ] (4.19)

O =
O =

1
HBC—|:1

Fig. 4.3 depicts the expurgated trellis obtained for this parity check matrix usinglgbatams

i=3
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=0 0/0 0/0——e,—0/0 0/0 0/0
N VA
N i
NYS
° ° 2 o/
=
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=2 e ° N\ 0/0
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,\3\,
=3 e 0/0——&——0/0

Figure 4.3: Expurgated Trellis of the Original Binary Cyd(ic 3, 2) Code

presented irSectiond.2.1 andSectiond.2.2. Following the procedures describediectiord. 3.1, it
can be shown that the state space profile of the binary c{€l; 2) block code is given by:

Ssp(C)y={0 1 2 2 1 0} (4.20)

The number of active nodes in the binary cyglic3, 2) block code’s expurgated trellis is:

5
AN(C) =) 28 =1+2+4+4+2+1=14 (4.21)
=0

Comparing these results wiHig. 4.3, it is clear that the calculated and actual number of active nodes
in the expurgated trellis correspond. Furthermore, accordifi@t@4.17) the number of branches in
the expurgated trellis is upper bounded/®By3 (C') < (14 —1).2 = 26. To be preciseN B(C') = 20.

In order to find an equivalent code with the least complex trellis, the state gganplexity of every
possible swapped column permutation of the generator matrix has to be ceddit43, 149, 150].
Thus, the state space profile has to be calculateafer 5! = 120 different permutations of the
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code’s generator matrix. The following data was obtained from this analysis
e There exist® generator matrices witA N (C) = 10 andSSC(C) = 1.

e There exist8$2 generator matrices wWitA N (C) = 12 andSSC(C) = 2.

e There exist80 generator matrices WitA N (C) = 14 andSSC(C) = 2.

From these results it is apparent that by selecting one df gemerator matrices which has active
nodes, a minimally complex trellis is obtained. For example, one of thesiaimal trellis generator
matrices is given by:

1 01 01
Gge=|110 0 0 (4.22)
00 0 11
with the following associated parity check matrix:
1 1.1 0 0
Hpe = [ 00 1 1 1 ] (4.23)

The state space profile for this equivalent code is given by:
SSP(C)={0 1 1 11 0} (4.24)

Fig. 4.4 shows the expurgated trellis of this equivalent code. Comp&itngd.3 andFig. 4.4, the
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Figure 4.4: Optimally Reduced Expurgated Trellis of the Equivalent Bingoli€(5, 3,2) Code

reduction in trellis complexity is clearly visible. By applying the VA to the reducetlis; decoding
time as well as decoder complexity will be noticeably reduced.

4.4 TRELLIS DECODING OF LINEAR BLOCK CODES USING THE VITERBI
ALGORITHM

Algebraic ML decoding of aifn, k, d,,.;,) linear block code, with code word symbols frai#’ (25),
involves the comparison of the received code word with each of&fievalid code words, selecting
the one which proves to be the closest as the most likely transmitted one. dbésprcan be time
consuming and complex, especially for codes where hahdk are large.

Conversely, the application of the VA as ML block code decoder resultseinmibst likely path in
the code’s trellis, describing the received code word, to be chosarardisg several unlikely code
words along the way before even comparing them with the received aperiding on the parameters
n andk, this decoding approach may greatly reduce decoding time and complexity.
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4.4.1 THE BLOCK-WISE VITERBI ALGORITHM FOR LINEAR BLOCK CODE
TRELLISES

Letc,, andy,, denote then'® transmitted and the received code words, respectively, associated with
the message word,,. ML decoding entails obtaining the best estimate,gf denoted by,,, by
comparing the received code wajg with all valid code words. Since there exists a one-to-one map-

ping betweenl,,, andz,,, the data vector associated with, denoted byi,,,, shall be identical td,,,,

if and only if ¢, = . If € # ©m, a decoding error is incurred. Thus, the decoding rule whereby
an ML decoder chooses the optimal estimate giveny,,,, is by minimising the probability of a de-
coding error. Assuming equiprobable message words, the probabiligcofithg error is minimised

if the overalllog-likelihood functionin (Prob.(7,,[¢.)) is maximised, where Proky,, |c,,) repre-
sents the conditional probability of receiving the code wgyd given thatc,, was the transmitted
code word. The VA accomplishes this by, moving from trellis dépth n, systematically discarding
paths that do not maximise the overall log-likelihood functien,Prob.(,,[¢x)].

Since every branch in an expurgated trellis represents a symbol in a wal@veord, finding the
most likely path involves comparing each incoming symbol (hard decisiorgropke (soft decision)
of the received vector to the corresponding branch symbols. Fobimamy codes, this can be done
on a symbol level or on a bit level, depending on the application. For examvpkn an RS block
code’s code word symbols are transmitted as equivalent bit streams dbicdeaparison will be used
by the VA trellis decoder. In this dissertation only bit level comparison isidened.

Before describing the VA, as applied to block code trellises, the conéepnetricis introduced: In
the broad sense, a metric is a measure of similarity between two entities. True gerteisl defi-
nition, VA decoding entails the calculation of branch and path metrics (bas#dteaccomputation of
log-likelihood values) in order to indicate the degree of similarity between tteived bits/samples
of them'™" transmitted code word and the valid code word paths in the code’s trellis nsguhat
then.£ received bits/samples representing thteansmitteds F' (25) code word symbols are statisti-
cally independent, the mathematical definition of the branch metric, indicatingntilarsty between
m'" received code word's" set of¢ received and demodulated bits/samples (denoteg, by and

the branch weight vector of thg" branch leaving nodéat a trellis depth of (denoted bwgfl)) is
given by:
BMY)  —1n [Prob.(ym,imgfl))}

myi,l

§-1 .
= In [H Prob-(ym,i,a’uz(?l?a>] (425)
a=0
-1

— Z In [Prob.(ym,i,afug),a)}
a=0

wherey,, ; . denotes the'" element of the'® ¢-tuple vectory,,, ; of demodulated bits/samples, and
uy)a thea'™ branch weight vector element of t}i&' branch leaving nod€, i). Several hard and soft
decision methods WherekEMT(j)“ can be calculated are discussed#ctiord.4.2.

As input samples (soft decision decoding) or bits (hard decision degpdne received, path met-
rics are computed, indicating the probability that a certain path through the,tstfiiting at node
(0,0) and ending in nod€), n), represents the transmitted code word. The VA for linear block codes
therefore operates in a block-wise fashion, whereas a more tradititiabsnvindow approach is
used for convolutional code decoding [106].
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Since there areé-("—%) states in the trellis, there will bg¢-("—*) path metrics. At a decoding depth
of i into the trellis for then'® received code word, the path metric of the survivor path ending in node
(,7), is denoted byP MU ,. The cumulative metric [47] of th¢'" branch leaving nodeat a trellis
depth ofi, is given by: B

oM = PMgr, + BMY) (4.26)

myi,l m,i,l
It should be noted that, although according to the general modus opefavd decoders, as de-
scribed at the beginning of this subsection, the probability of a decoding isrminimised if the
largest path metric is chosen as the most optimal at each trellis depth, thésecexiain conditions
for which Eq. (4.25) can be simplified to such an extent thatghwllestpath metric dictates a min-
imum probability of decoding error. More attention is given to such scemamnithe following two
subsections.

With the aforementioned definitions in mind, the forward tracing procedurenpeed by the VA
in order to determine the survivor path metrics for the active nodes in the trelfis follows:

1. Set the survivor path metrieM;)'q ,, representing the non-existent survivor path ending in node
(0,0), to PM;' o = 0.

2. Set the survivor path metrid@M s, with I = 1,2, ..,25("=*) — 1, of the non-existent survivor
paths entering the other nodes at this depth to either (if an increase in path metric dictates a
decrease in the probability of decoding error)eoi(if a decrease in path metric dictates a decrease
in the probability of decoding error).

3. At decoding time instance:, n.£ bits or samples are received, which are contained within the
vectory,,. Using this vector, the forward tracing procedure that determines tiwvévsupath
metrics associated with tH¥-("—*) paths through the trellis are as follows:

(a) Begin decoding at a trellis depthof 0.
(b) For every nodél, i) at a trellis depth of that has exiting branches, proceed as follows:

i. Calculate the cumulative metr'@Mfrf’)“ for the j* branch leaving nodg, i) usingEq.
(4.26).

ii. For every nodgb,i + 1) at a trellis depth of + 1 that has incoming branches, set the
survivor path metrid” ;"7 ; , equal to the most optimal cumulative metric calculated
for these incoming branches. Discard all the branches entering(hode 1), except
the branch associated with the most optimal cumulative metric.

(c) Repeat step (b) far=1,2,..,n — 1.
When the procedure as outlined above is followed, only one complete tatingat nod€0, 0) and

ending in nod€0, n), will survive. Hence, then'" most likely transmitted code word can be found
by noting the entries in the output branch vectors of the branches in thigisgrpath.

After acquiring the most likely transmitted code word using the VA, a conveatialyebraic de-
coding method can be employed to obtain the associat®gnbol message word. In the case of a
systematic block code, the associated message word is simpkyspgtematic symbols of the VA
decodedh-symbol code word.

4.4.2 HARD VERSUS SOFT DECISION DECODING

If demodulated data samples are processed by the VA immediately after detimduidthout any
previous decisions having been made, the decoding process is saftetbcision decodingAlter-
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natively, if the demodulated samples are classifietisaand0s prior to VA decoding, it is referred to
ashard decision decodinglt has been shown [47] that soft decision decoding shows an asiimpto
BER performance gain of approximatelyl dB over hard decision decoding for binary transmitted
data in AWGN channel (segection2.2) conditions. This can be attributed to the fact that the entropy
of an analogue information source, such as the output of a demodulatecresased by hard decision
processing, i.e.l-bit analogue to digital conversion [47]. Thus, less information is utilisathdu
hard decision metric calculations than with soft decision metric calculationgtingsin poorer BER
performances. Unfortunately, soft decision decoding’s gain comtse atrice of higher implemen-
tation hardware complexity, i.e. the need for high precighmalogue-to-Digital Convertear(ADC)
and DSPs. The following subsections briefly outline branch metric calculat@thods for both hard
and soft decision decoding.

4.4.2.1 HARD DECISION DECODING

Two hard decision decoding branch metric calculation methods are deburities subsection. The
first, which employs th&inary Symmetric ChannéBSC) [47] crossover probability’z s, calcu-
lates the branch metric as follows:

BMY.

mzl_

- . ()

In(1 — P, if Ymia = u,

> n(l — Ppsc)  if ym, “%,z,a (4.27)
= |In(Ppsc) it Ym.ia 7 U;

,l,ll

The second method, which is simpler to implement in hardware, uses the Hamntizcdigsee
Section3.2.2.2) between the input bit sequence and branch weight vector tdataltiie branch
metric:

BMY), = di (55,75 ) (4.28)

where the Hamming distance is defined as the number of bit@,;t]gaandﬂgﬂ) differ, i.e.:

. 0 ify =
dg (7. .. a9) = e Tk 2
H (ym,z il > ;) {1 if Yimia 7 Ug,z,a | )

It should be apparent that the size of a path metric and the probability oflohecerror are directly
proportional for the latter calculation method, whereas an indirect ptiopatity exists for the branch
metric calculation method dEq. (4.27).

4.4.2.2 SOFT DECISION DECODING

Assume that the linear block code encoder output bits ofitHetransmitted code were modulated
and transmitted over a mobile radio channel exhibiting both slow flatgsetor2.5.1.1) fading (see
Sectior2.5.1.1) and AWGN channel (s&ectior?.2) effects. The demodulator output is described by

Eq. (3.57), having the PDF given i&qg. (3.58). Usingeqg. (3.58), the probability Prot(ym i a|“@ i a)

can easily be calculated [47], an exercise which is not repeated hemglo¥ing this probability in
Eq. (4.25), removing all factors and terms that are common to all cumulative medlmsated at a
trellis depth ofi, it follows that the general expression for the VA branch metric calculdtosoft
decision decoding with fading amplitude CSlI, is given by [60]:

£—-1
BMY, =" (v - ﬁm,z-,a.ugﬁa)Q (4.30)
a=0
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where&m,m is an estimate of the average fading amplitude associatedywyith,. Once again the
size of a branch metric is directly proportional to the probability of decodimgr.e This metric
calculation method can also be readily applied to hard decision decoding.l€omgphe square and
further removing common factors and terrisy. (4.30) simplifies to:

-1 ' oy
BM751)11 - Z (2'ym,i,a-&m,i,a~u§7l)’a - <&m,i,a-ug‘7l?a> ) (431)
a=0

Yet another simplification can be performed if antipodal code bit reptasen is used, i.e. the

: 2
branch weight vectors have elements from the alph@bét 1}, since(ugfl?a> = 1 for all branches
at a trellis depth of, resulting in:

m,z,l - Z Ymia- Ctm iLhar E l)a (432)

It should be noted thd&q. (4.32) now describes a branch metric calculation method where an increase
in the path metric dictates a decrease in the probability of decoding error.

In the event that the receiver achieves perfect coherent demodulbtio no fading amplitude in-
formation is available (or only AWGN channel effects are present), themfaloys any of the above
soft decision branch metric calculation methods vﬁmm =1.

4.5 ANALYTICAL BIT-ERROR-RATE PERFORMANCE EVALUATION OF
VITERBI DECODED LINEAR BLOCK CODES

The following subsections briefly presents BER performance uppendsofor VA or classic ML
decoded binary linear block codes in AWGN (ssection2.2) and flat (se&ection2.5.1.1) Rayleigh
(seeSection2.5.2.1) fading channel conditions, assuming they are employed in namoWPSK
systems (seBectiornb.2).

45.1 AWGN CHANNEL BIT-ERROR-RATE PERFORMANCE UPPER BOUND

Assuming coherent demodulation and ML decoding, the BER performaneerfarrowband QPSK
system employing afn, k, d,i,,) binary linear block code, operating in AWGN channel conditions
(seeSection2.2), is upper bounded as follows [63, 100, 151]::

o= 3 (o) eben

h= dmln

(4.33)

whereR. = k/n, E; is the energy per message word B, is the single sided PSD of the AWGN,
Q(-) represents the Q-function, afdl,, ,} are the coefficients of the block code’s IOWEF, as
defined byEq. (3.21) inSection3.2.2.2. Defining the following constant:

k
w
By, = E EAle (4.34)
w=1
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the upper bound dtqg. (4.33) can be further simplified:

P(e)< Y BrQ (MQ.h.RC%) (4.35)

h=dmin

Note thatk. B, represents the total Hamming weight of all message words that yield codis wbr
Hamming weight.. Eg. (4.35) suggests that there are two possible methods to decrease the BER of
the block coded QPSK system:

e The BER of the system can be reduced by increadipg,. This is the classic approach taken
by block code designers. In addition, a well designed block code kbepsumber of minimum
distance code words as small as possible.

¢ By reducingB,, of the most significant terms Bqg. (4.35), which corresponds to the lowest weight
code words, the BER can be reduced. This is the technique employedbgdelhig schemes [66].

45.2 SLOW RAYLEIGH FLAT FADING CHANNEL BIT-ERROR-RATE
PERFORMANCE UPPER BOUND

Let the code word bits generated by(@nk, d,.i») binary linear block code be modulated by a QPSK
transmitter and transmitted over flat Rayleigh fading channel§segor2.5.1.1 ancsectior2.5.2.1).
For simplicity, it is assumed that each transmitted code word bit experienagseindent Rayleigh
fading. This assumption is valid for a fully interleaved (Ssetior3.2.3) flat Rayleigh fading channel
where the fading amplitudes of the respective transmitted code word bitPastothastic variables.

If the QPSK receiver achieves perfect coherent demodulation, Mbdieg results in the following
BER bound, conditioned omﬁm the SNR per code word for the® code word of Hamming weight

h [151]:

n k
h w / h
Pb (eh/qm> < _Z [(; k Aw,h) Q ( Q-Rcfyc,m)] (436)
whereR, = k/n, Q( - ) represents the Q-function, afd,, ;, } are the coefficients of the linear block
code’s IOWEF (se&ection3.2.2.2). The SNR per code word in this equation, is given by [151]:

h—1

h—1
Ey
ng = Z E%Qn,i = Z%,m,i (4.37)
i=0 i=0

wherea,, ; is the average fading amplitude experienced byitheeceived code word bit in the
m'" code word. Furthermore, it is assumed that the fading amplitude is approkiroatstant over

a code word symbol period under slow fading conditions. Sifgg is a stochastic variable with

a Rayleigh PDF, it follows thaty, ,, ; = Eb/NO.afm. has a chi-squared PDF with two degrees of
freedom, given byEq. (5.22) inSection5.2.4.2 [47,152]. Thus, it can be shown that the PDF of
’ygm, denoted by (ygm) resemble&q. (5.45) inSectiorb.3.4. Finally, obtaining an averaged BER

performance upper bound necessitates averaBirig|y!,,) over the PDF of/, [151,152]:

[ee]
Py(e) < /0 By (elvtm) 2 () Al

SO R AR
2 ’ h wih l—l-RC.Eb/N() 2 " 1+Rc-Eb/NO

h (4.38)
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where the constant &q. (4.34) has been employed ahg represents the average energy per message
word bit. By assuming a fully interleaved channel, this bound will be loosenwised to study block
coded QPSK systems functioning in Rayleigh fading channels exhibiting dédvghof correlation,

i.e. slow fading (se&ection2.5.1.2) and no channel interleaving. A tighter upper bound, which
takes the Doppler spread (sBection2.4.3.3) of the slow fading channel into account, is presented
in [69, 153]. However, this bound is more cumbersome to calculateBQa(.38).

4.6 CONCLUDING REMARKS

This chapter considered the VA decoding of binary and non-binaryrlibkeek codes. Firstly, a
detailed description was given of the BCJR trellis construction techniquéniear block codes,

followed by novel trellis complexity calculation and reduction techniquest fidbowed an in-depth

discussion on the block-wise VA as applied to BCJR trellises. Severaldmaldoft decision branch
metric calculation methods, employing CSI, were considered. Lastly, BERdsowere presented
for AWGN and slow Rayleigh flat fading channels. The main contributionthisfchapter are the
following:

1. Sectiord.2.1 presents "The Complete Idiots Guide to...” for the construction of wmgafed BCIR
linear block code trellises. The simple step-by-step algorithm presenteplisabe to both binary
and non-binary linear block codes.

2. A novel BCJR trellis expurgation scheme is presente8ention4.2.2. This algorithm can be
used to prune both binary and non-binary BCJR linear block code tretbsesntain only paths
representing valid code words.

3. Sectiond.3.1 describes a method whereby the trellis complexity of BCJR trellises forykamal
non-binary linear block codes can be calculated (or at least closely éstin@his is then followed
in Sectiond.3.2 by a rudimentary technique that can be used to reduce the complexigyRECHR
trellis structures for binary linear block codes.

4. In Sectiord.4.1 the classic block-wise VA, applicable to BCJR linear block code trellisgse-
sented. Section4.4.2.2 gives attention to the inclusion of fading amplitude CSI into the branch
metric calculations used during soft decision decoding.
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