
Chapter 7

Numerous Design Variables

In previous chapters, the use of simplified models and central finite

differencing for the determination of gradient information, when optimising

the off-road vehicle’s suspension characteristics for ride comfort and handling,

was shown to be beneficial. The problems considered, however, looked at

only a few multiplication factors to define the suspension characteristics.

In this chapter the suspension characteristics are defined by up to 14 design

variables, dramatically increasing the complexity of the optimisation problem.

The design variables are used to define the non-linear spring and damper

characteristics, with these characteristics being optimised for the vehicle’s

handling and ride comfort. This chapter highlights the complications involved

with the higher number of design variables. Poor scaling and sensitivity

effects are illustrated in typical optimisation convergence histories,

and solutions highlighted. The improved scaling discussed, dramatically

helps to improve the convergence history with respect to noise. This chapter

thus aims to give the optimisation engineer techniques for identifying and

correcting complications associated with gradient-based vehicle suspension

optimisation. It is normally these complications that lead to the adoption

of less efficient stochastic based optimisation methods. While not all the

complications are solved, reasons for the complications are investigated.

Based on the success of the non-linear simplified models describing vehicle

handling and ride comfort, to obtain the gradient information for optimisation
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problems with two and four design variables, the problem is expanded to 14

design variables. These 14 design variables better describe the shape of the

damper characteristics front and rear, and the static gas volume front and

rear.

The concept of using the simplified models for the calculation of the gradient

information, as proposed by Balabanov and Venter (2004) for finite element

structural problems, and Chapter 5 for vehicle suspension optimisation, is

now assumed to be sufficiently representative of the full simulation model.

This chapter will thus only define the design variables and discuss

the optimisation results, with emphasis on the adjustments needed when

considering many design variables. The vehicle model used is the same

as in Chapter 6, except for the design variables that define the damper

characteristics.

7.1 Definition of Design Variables

The front and rear static gas volumes are kept as design variables, defining

the non-linear spring stiffness. The design variables that define the damper

characteristics are redefined in order to achieve a more accurate description of

the required damper characteristics. The standard rear damper characteristic

is used, and redefined in terms of piecewise quadratic approximations, as

illustrated in Figure 7.1. This gives a very accurate approximation to the

measured damper characteristics. The damping force is primarily generated

as a result of oil flow through an orifice, and for this reason the quadratic

approximation is used to describe the characteristics. The general description

of the force generated by oil flow through an orifice can be described by the

quadratic relation:

F = kv2 (7.1)

where F is the damper force, v the velocity of the relative displacement of the

piston (in this case of the suspension strut between the axle and the body),

and k a correlation coefficient, dependent on the area and drag factor (Cd)

of the orifice.
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Damper Characteristics
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Figure 7.1: Definition of damper characteristics with quadratic approximation to

the baseline rear Land-Rover damper

The damper fits with scale factors sf1→6 are defined as follows:

fit1 = sf1(−1084.5v2 + 1378.2v) − sf2(878.2)

fit2 = sf3(−2220.2v2 + 4076.3v)

fit3 = sf4(7316.8v2 + 6483.7v)

fit4 = sf5(324.88v2 + 2522.7v) + sf6(2067.9)

(7.2)

The damper force Fdmp, using the above piecewise fits to the measured

damper characteristic, is defined as follows:

if v ≤ 0

Fdmp = max(fit1(v), f it2(v))

else

Fdmp = min(fit3(v), f it4(v))

end

(7.3)

The full damper force velocity characteristic can now be defined in terms of

the six scale factors sf1→6. These damper scale factors are allowed to range
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between 0.1 and 3. The design variables can then be stated as follows:

x1→6 = sff1→6−0.1
3−0.1

, x7 = gvolf−0.1
0.6−0.1

,

x8→13 = sfr1→6−0.1
3−0.1

, x14 = gvolr−0.1
0.6−0.1

,

(7.4)

with bounds:

0.001 ≤ xi ≤ 1, i = 1, ..., 14 (7.5)

where sff and sfr denotes the front and rear damper scale factors, gvolf and

gvolr the front and rear static gas volumes, of the 4S4 suspension system.

As before the static gas volumes range between 0.1 and 0.6 liter. All the

design variables are then scaled to range from zero and one as suggested by

Snyman (2005b).

The normalised objective and constraint functions defined in Chapter 5 are

again used for the optimisation of ride comfort and handling.

7.2 Handling Optimisation

The handling optimisation was performed using the middle of the design

space as a starting point, the opposite of the 4 design variable optimum

(i.e. the infeasible point), and a random point in the design space. The

results indicated that design variables 3, 4, 10 and 11 (the scale factors of

fit2 and fit3, front and rear) all converged to the maximum boundary value

of one, while design variables 7 and 14 (the gas volumes) converged to the

minimum boundary value of almost zero. However, the other design variables

did not change from their initial starting value. Yet when using different

values starting values for these variables, different minima f ∗(x), less than

the above result were obtained. This indicates that design variables 1, 2, 5,

6, 8, 9, 12 and 13 do have an effect on the local minimum found, yet not as

strong as 3, 4, 7, 10, 11 and 14. Figure 7.2 indicates the objective function

convergence history and the relative summed change in the design variables,

and objective function, from one iteration to the next. It could be argued

that the convergence/termination criteria are not strict enough allowing
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Handling Optimisaion, Double Lane Change 55 km/h, 14 Design Variables
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Figure 7.2: Handling 14 design variable optimisation convergence history.

premature termination of the optimisation algorithm on a non-optimum

point. The termination criteria were then made 10% of previous, yet the

optimisation still converged to the same points. This indicates that the design

variable’s current scaling flattens out their effect, resulting in an almost zero

gradient, or low sensitivity.

This low sensitivity could be overcome by one of two methods. Firstly

by rescaling the particular variables that they have the same magnitudes

but over a much smaller range, effectively increasing their sensitivity.

Alternatively by using a much larger perturbation of the design variables

when calculating the gradient by central finite differences. However, Figure

7.3 indicates that the relative change in the design variable is so small, that,

a change in the perturbation when calculating the gradient will not work.

When observing the change in the normalised objective function values with

respect to, for example design variable x2 (Figure 7.4), it can be seen that

there is a definite minimum of the objective function with respect to x2.

The objective function with respect to these design variables, or the design
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Figure 7.3: Change in objective function value with respect to design variable

x2, when the other design variables are in the middle of the design

space

variables themselves has to be rescaled. This highlights that the scaling of

the design variables between zero and one, as suggested by Snyman (2005b)

does not necessarily guarantee good convergence to a minimum.

The design variables should thus be scaled to have almost equivalent

sensitivity, without deviating too far away from similar ranges and

magnitudes. This implies that it is more desirable to have an objective

function of a spherical nature rather than an elliptic nature. Figure 7.5

illustrates this point, by showing the more direct and faster convergence

to the two design variable optimum, when the objective function is scaled

to be more spherical, as opposed to the elliptic objective function that has

the design variables scaled between zero and one. In the elliptic objective

function graph, it can be seen that due to slight errors in the approximate

quadratic approximations, the design variables ‘jump’ around the optimal
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Figure 7.4: Normalised change in objective function value with respect to design

variable x2, when the other design variables are in the middle of the

design space

line to the optimum. This jumping is another reason for the spikes seen

in the objective function’s optimisation convergence history when close to

the optimum. Thus, although the objective function’s history may appear

erratic, the design variables are moving closer to the optimum point in the

design space. This effect is amplified when the objective function is severely

elliptic, with respect to the design variables, i.e. combination of a steep

valley with respect to the one design variable and a shallow valley with

respect to the other design variable. Also to consider is that Dynamic-Q

constructs successive spherical quadratic approximations to the optimisation

problem, thus if the optimisation problem exhibits a more spherical nature,

the successive approximations will be a more accurate approximation,

resulting in faster convergence to the actual optimum.
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Figure 7.5: Illustration of the effect of ellipticity and sphericality on the

convergence to the optimum

7.3 Ride Comfort Optimisation

The optimisation was performed with 14 design variables for ride comfort.

Contrary to the handling optimisation case, it was found that design variables

1, 2, 5, 6, 8, 9, 12 and 13 (damper scale factors of fit1 and fit4 front and rear)

had the largest effect on the erratic behaviour of the objective function value.

Figure 7.6 illustrates the convergence history for the first 20 iterations, where

it can be seen that changes in design variables 1 and 12, correspond to spikes

in the objective function value, while design variable 14 is well behaved.

Design variables 1, 2, 5, 6, 8, 9, 12 and 13 all exhibited similar trends that

appeared erratic. On closer inspection it was noted that for a small change

in the design variable relative to it’s allowable range, there is a relatively

dramatic change in the objective function value, as observed in Figure 7.6.

It is thus proposed that these design variables should be rescaled so that

the original normalised range of 0 to 0.4 (resulting in a scale factor range of

0.1 to 1.26) becomes their new 0 to 1 range. This effectively decreases their
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14 VariableRide Comfort Optimisation
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Figure 7.6: Ride comfort optimisation convergence history illustrating first 20

iterations

sensitivity, and flattens out the change in objective function with respect to

a change in design variable value. This is opposite to what is needed for

the handling optimisation described above. The design variables can then be

stated as follows:

x1→2 = sff1→2−0.1
1.27−0.1

, x3→4 = sff3→4−0.1
3−0.1

,

x5→6 = sff5→6−0.1
1.27−0.1

, x7 = gvolf−0.1
0.6−0.1

,

x8→9 = sfr1→2−0.1
3−0.1

, x10→11 = sff3→4−0.1
1.27−0.1

,

x12→13 = sff5→6−0.1
1.27−0.1

, x14 = gvolr−0.1
0.6−0.1

,

(7.6)

with bounds:

0.001 ≤ xi ≤ 1, i = 1, ..., 14 (7.7)

where sff and sfr denotes the front and rear damper scale factors, and

gvolf and gvolr the front and rear static gas volumes of the 4S4 suspension

system, as defined in Section 7.1. The results obtained in Figure 7.7 for the
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14 Variable Ride Comfort Optimisation
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Figure 7.7: Ride comfort optimisation convergence history with rescaled design

variables

rescaled problem show a dramatic improvement in the objective function’s

optimisation convergence history compared to Figure 7.6. However, the

inequality constraint is poorly satisfied for most of the optimisation iterations.

Experimentation with the penalty function parameters within the LFOPC

solver of Dynamic-Q did not have sufficiently noticeable effects on

the inequality constraint’s convergence history. This is because the LFOPC

solver finds a feasible optimum of the optimisation approximate sub-problem

for every iteration, regardless of the changes in the penalty function values.

This can be attributed to the smooth nature of the spherically quadratic

approximate objective and constraint functions. It is postulated that the

complication arises from a poor approximation of the objective and constraint

functions due to the high levels of numerical noise in the full simulation

model, and or gradient information.

Closer inspection of the tyre deflection at very low damping values, indicated

unrealistically high levels of tyre deflection. The high tyre deflection is
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attributed to the linear vertical tyre stiffness used in the ADAMS model.

The tyre damping was increased to help overcome this effect with no suitable

improvement at double the measured tyre damping. The logical step is to

implement a non-linear vertical tyre stiffness, to overcome the problem. This

was not implemented due to time constraints as the current tyre model used

in the MSC.ADAMS model cannot accommodate a non-linear vertical tyre

stiffness. It is thus suggested that a non-linear vertical tyre stiffness should

be implemented in the tyre model used, before a decrease in the high levels

of noise associated with the tyre hop inequality constraints can be achieved.

Another suggested method of overcoming the noise levels present in the

objective and constraint functions as a result of the simulation model, is by

re-formulating the multi-body dynamics solver’s convergence criteria. The

implementation of the proposed method, however, requires access to the code,

and for this reason was not implemented for this research.

7.4 Conclusions

This chapter investigated the optimisation of an off-road vehicle’s suspension

characteristics for ride comfort and handling, where the suspension

characteristics are defined by numerous design variables.

The handling optimisation highlighted the design variables that have a

predominant effect on the handling performance, but also that the other

design variables do contribute to the improvement of the optimum objective

function achievable. However, some variables showed poor sensitivity and

needed to be rescaled to improve the sphericality of the optimisation problem.

This highlighted, that ensuring that the design variables vary over the same

range and have equal orders of magnitude, does not necessarily guarantee

good convergence to the optimum.

The ride comfort optimisation, illustrated that erratic optimisation

convergence histories can be a result of over sensitive design variables in
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comparison to the rest of the design variables. These over sensitive design

variables were identified and rescaled, resulting in greatly improved

optimisation convergence history of the objective function. However,

difficulty was encountered with satisfying the tyre hop inequality constraints.

This difficulty could be as a result of the tyre model’s use of a linear vertical

tyre stiffness, leading to unrealistically high tyre deflections in the presence

of low suspension damping. Increasing the vertical tyre damping did not

result in a sufficient improvement. A non-linear vertical tyre stiffness should

be implemented in the model in future.

This chapter provides the optimisation engineer with some valuable methods

for identifying scaling problems in the definition of the optimisation problem.

While all the complications associated with noise in the optimisation process

have not been addressed, feasible suggestions for future work have been

proposed.

 
 
 



Chapter 8

Automatic Scaling of Design

Variables

With the difficulties encountered in Chapter 7, it is proposed

that an automatic scaling methodology be implemented within Dynamic-Q.

This should limit the number of investigations and time the optimisation

engineer spends on the formulation of the optimisation problem, performing

optimisation runs with poor convergence, and repeating the process. This

automatic scaling methodology is proposed for unconstrained optimisation

problems with only design variable upper and lower bounds. This scaling

aims to improve the sphericality of the optimisation problem. Figure 8.1

illustrates the typical problem with an elliptic problem, whereby the

optimisation is only very sensitive to one variable, and thus takes longer to

reach the optimum point. The primary assumption with this methodology is

that the design variables are uncoupled. While this is an oversimplification

of the optimisation problem, from the surfaces generated in Chapter 5 this

assumption is not far from the physical problem.

The basic proposed methodology can be summarised as follows:

1. Scale design variables using their upper and lower limits to between

zero and one.

2. Perform one function evaluation at the middle of the design space

109
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Figure 8.1: Illustration of the effect of ellipticity and sphericality on the

convergence to the optimum

3. For each design variable perform 2 additional function evaluations with

a perturbation of 50 % about the middle of the design space.

4. Construct a quadratic approximation of the objective function using

the above simulation data, with respect to each design variable.

5. Rescale the scaled design variables so that the quadratic coefficient is

equivalent to 1.

6. Perform the optimisation with the new rescaled design variables, but

report the equivalent unscaled design variables at each iteration point.

This methodology should thus help to eliminate the ellipticity of the problem,

if the design variables are approximately uncoupled. In the vehicle dynamics

application the simplified models will be used for performing the scaling,

however, under normal circumstances the cost of this scaling is equivalent

to one iteration, i.e. 2n + 1 function evaluations where n is the number of

design variables, if central finite differencing is used for gradient information.

The proposed automatic scaling will now be formally formulated.
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8.1 Formulation of Unconstrained Automatic

Scaling

Six steps need to be followed for the implementation of the automatic scaling

methodology within Dynamic-Q.

Step 1: Scale the design variables xi between their upper ǩi and lower k̂i

boundary values, so that the design variable ranges from zero to one, as

follows:

zi =
xi − k̂i

ǩi − k̂i

(8.1)

where i ranges from 1 to the number of design variables n.

Step 2: Perform 2n + 1 function evaluations to obtain function values for

the construction of the quadratic approximations. This is known as central

composite design (CCD). The function evaluations are performed with a

50% perturbation from the middle of the design space. The initial function

evaluation f(xmid) is at the middle of the design space (mid-space). The

next function evaluations are performed with the design variables at the

mid-space value xmid, but a perturbation in only the ith design variable.

Thus the function evaluations can be defined as:

f̂i = f(xmid, x̂i)f̌i = f(xmid, x̌i) (8.2)

where x̂i corresponds to the equivalent ẑi which is defined as:

ẑi = z0i
− 0.5 (8.3)

and x̌i corresponds to the equivalent ži which is defined as:

ži = z0i
+ 0.5 (8.4)

Thus the objective function is evaluated with a 50% perturbation on either

side of the mid-space point xmid, resulting in the whole design space being

approximated. All the optimisation up until now has been done with a 3%

perturbation on either side of the current iteration point for the evaluation
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of the central finite difference gradient. It is decided that by considering

the whole design range a suitable evaluation of the effective curvature of

the optimisation problem is obtained, without being dramatically affected

by numerical noise. This then ensures that the sensitivity of the design

variables over the whole design space is taken into account.

Step 3: Use the above determined objective function values to construct

approximate quadratic approximations of the objective function with respect

to the design variable as follows:

f̃(zi) = aizi
2 + bizi + ci (8.5)

Step 4: Rescale the design variables z so that the corresponding ai term of

the approximated objective function will be 1. The rescaled design variable

will thus be defined as:

Xi = ziti (8.6)

where the design variable scale factor ti is defined as:

ti =
√
ai (8.7)

This scaling, however, has the problem that it tends to zero when ai tends to

zero, and Xi tends to infinity when ai tends to infinity. It is thus proposed

that should ai tend to zero, then the quadratic approximation tends to a

straight line, and that this straight line should have a gradient of + or - 1,

this means that the bi term should be used for the scaling. If, on the other

hand, ai becomes very large the scaling will result in a very large design space

with respect to that design variable, thus it is proposed that the upper limit

of the design space/variable range should be 20, corresponding to an ai value

of 400. The lower limit to the design space is chosen as 0.2, corresponding
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to an ai value of 0.04. The following if loop then applies:

if ai ≤ 0.04

ti = |bi|
elseif ai ≥ 400

ti =
√

400 = 20

end

(8.8)

Again the problem of tending to infinity when |bi| tends to infinity, exists.

Should |bi| tend to zero, then ti also tends to zero. Thus the additional if

statement must be inserted:

if |bi| ≤ 0.2

ti = 0.2

elseif |bi| ≥ 20

ti = 20

end

(8.9)

The rescaled design variables Xi will thus be limited to the following:

0.2zi ≤ Xi ≤ 20zi (8.10)

Step 5: Change the move limit so that it is still representative for the rescaled

problem. The new move limit DMn is a function of the number of design

variables n, the original move limit dml, and the scale factors ti, and is

defined as follows:

DMn = dml

√∑n
i=1ti

2

n
(8.11)

Step 6: Perform the optimisation with the rescaled design variables X, and

new move limit DMn, but report the actual design variable values to the

user. The Dynamic-Q design variables X will thus be converted for printout

to the users design variables x as follows:

xi =
Xi

ti
(ǩi − k̂i) + k̂i (8.12)
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8.2 Concept Test

This automatic scaling methodology is first tested on simple severely elliptic,

analytical design problems. The first test is using a two design variable

analytic problem described by the objective function:

f(x) = x1
2 + 10x2

2 (8.13)

Were the objective function f(x) is uncoupled with respect to x1 and x2.

Upper and lower bounds on the design variables are defined as:

−1 ≤ x1,2 ≤ 1 (8.14)

and an initial starting point of [1 1]. The gradient information was determined

analytically, and the performance of the standard form of Dynamic-Q

(Snyman and Hay 2002) was compared to the automatic scaling version

of Dynamic-Q to be known as Ascl-Dyn-Q. Figure 8.2 illustrates the

comparison of the convergence histories in the design space for the standard

form of Dynamic-Q and Ascl-Dyn-Q. It is observed that Ascl-Dyn-Q moves

much faster towards the optimum. The function error is determined as

defined by Snyman and Hay (2002) as:

f(err) =
‖fact − f ∗‖
1 + ‖fact‖ (8.15)

For the above optimisation problem the results are tabulated in Table 8.1,

line cp 1.

The second problem cp 2 is a skew problem, where the dependence of f(x)

with respect to x1 is coupled to x2, described by the objective function:

f(x) = x1
2 + 10x2

2 + 3x1x2 (8.16)

With upper and lower bounds on the design variables defined as:

−1 ≤ x1,2 ≤ 1 (8.17)

and an initial starting point of [1 1]. It can be seen from Figure 8.3 that

the Ascl-Dyn-Q algorithm moves to the optimum in the same manner as the
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Figure 8.2: Comparison of standard Dynamic-Q convergence to optimum and

Dynamic-Q with automatic scaling, for test 1

standard algorithm, but approaches the optimum from the other side. This

is the limit of the permissible cross-coupling of design variables, where the

algorithms exhibit almost equal performance, cp 2 in Table 8.1.

8.3 Modification for Constrained Problems

With the success achieved with the proposed automatic scaling procedure,

the methodology was expanded to include constrained optimisation problems.

It is proposed that, because Dynamic-Q makes use of LFOPC for the optimisation

of the approximate sub-problem at each iteration, the constraints could be

included by using the penalty function approach, as in LFOPC. The resulting

penalty function should thus be made spherical, as opposed to just the

underlying objective function. LFOPC solves the penalty function in a three

part approach (Snyman 2000), thus the question must be asked as to what

penalty parameter multiplication factor should be used. LFOPC first solves

the approximate sub-problem using a low penalty function multiplication
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Figure 8.3: Comparison of standard Dynamic-Q convergence to optimum with

Dynamic-Q with automatic scaling, for test problem 2

factor, and then increases the penalty function multiplication factor in the

next phases. It is thus proposed that the violated constraint should be added

to the objective function value using the lowest multiplication factor. The

quadratic approximations with respect to each design variable are then fitted

to the resulting penalty function. Where the penalty function is defined as

follows:

minimize
w.r.t.x P (x,µ)(8.18)

where

P (x,µ) = f(x) +
∑m

j=1 µjgj(x) +
∑r

j=1 µjhj(x)(8.19)

where the penalty multiplier µj is defined by the if statement for gj(x) as:

if gj(x) ≤ 0

µj = 0

else µj >> 0

end

(8.20)
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Table 8.1: Results for the standard Dynamic-Q and Auto-Scaling Dynamic-Q

methods

Problem # n f(act) Dynamic-Q Ascl Dyn-Q

# iter f∗ f(err) # iter f∗ f(err)

cp 1 2 0.00e+00 7 1.53e-12 1.53e-12 3 8.99e-11 8.99e-11

cp 2 2 0.00e+00 7 1.70e-12 1.70e-12 8 4.24e-11 4.24e-11

Hock 2 2 5.04e-02 7* 4.94e-00 error 11* 4.94e-00 error

Hock 13 2 1.00e+00 6 9.99e-01 1.00e-08 6 nc 1.00e+00 3.00e-07

Hock 15 2 3.07e+02 17 2.13e+02 4.35e-01 14 error error

Hock 17 2 1 16 1 < 1.00e-08 10 nc 1 < 1.00e-08

* - converged to local minimum

nc - no constraints considered with scaling

and the if statement for hj(x) as:

if hj(x) = 0

µj = 0

else µj >> 0

end

(8.21)

Some random test problems, of the ones on which Dynamic-Q was tested

and presented in Snyman and Hay (2002) are resolved using the auto-scaling

methodology. The test problems are from the book of Hock and Schittkowski

(1981), and given in Appendix A for the readers convenience.

From the results it can be seen that the auto-scaling improves the optimisation

convergence to the optimum, for most test cases, except badly skew elliptic

problems like the Rosenbrock problem. From the results the feasibility of

using the penalty function for constrained optimisation problems has not

been shown, as there are difficulties as to what value to use for the penalty

function multiplication factor.

With the success of the automatic scaling a search was done for similar
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novel approaches to scaling of the design variables. Most researches suggest

the normalisation of the design variables to range between zero and one, as

in Snyman (2005b) and Lasdon (2001). Willcox (2006) suggests inspecting

the Hessian matrix at the converged optimum design point. The condition

number of the Hessian matrix is evaluated. If the condition number is greatly

larger than one, the matrix is ill-conditioned, and the design variables are

transformed linearly to minimise the condition number of the solution. This

is, however, only performed after the optimisation algorithm has converged

to a solution, while the scaling proposed in this thesis is done over the whole

design space at the begining of the optimisation process. This ensures that

the global problem is scaled to be more spherical. The other advantage of the

automatic scaling suggested here, is that the Hessian matrix does not need

to be constructed, greatly reducing gradient evaluations, that are normally

very costly in typical engineering problems.

If the Hessian needs to be calculated in order to better scale the design

variables, Danchick (2006) suggests an efficient and accurate method for

computation of the Hessian matrix. Danchick makes use of central finite

difference quotients and extrapolation-to-the-limit to achieve a h4 level of

accuracy, where h is the finite difference step size. The computational

cost is 2n(n + 1) + 1 function evaluations per Hessian matrix evaluation,

where n is the number of design variables. This is then implemented in

an optimisation algorithm that makes use of Hessian decomposition and

eigenvalue shifting to follow a ridge in a difficult skew optimisation problem

like Rosenbrock’s parabolic valley. The determination of this Hessian matrix

should be considered over the whole design space before the optimisation

process should be considered in the future, but will probably not be necessary

for most well defined engineering problems.
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8.4 Implementation in the Vehicle Suspension

Problem

The automatic scaling method proposed above was implemented for the 14

design variable optimisation, and the results were compared to the those

obtained with Dynamic-Q without automatic scaling. Because of

the apparent hopping about an optimum point, the convergence histories

presented are in the form of the best feasible point at the current iteration

point. This approach is borrowed from the genetic algorithm and particle

swarm community. If an improved solution is not achieved after a certain

number of iterations, the optimisation is terminated. The number

of iterations before termination is, however, difficult to select, as this may

result in premature termination. It was also determined that the optimisation

should not be permitted to terminate within the first 10 iterations.

Presented in Figure 8.4, is the comparison of the optimisation convergence

histories for optimisation with automatic scaling (ascl) and without (std). It

is observed that the automatic scaling terminates at a better optimum than

without automatic scaling, and the design variables do not get stuck in local

minima as for the standard optimisation. This local minimum is used to

start the optimisation using automatic scaling in order to achieve a better

optimum, the results are presented in Figure 8.5. It can thus be concluded

that the automatic scaling was successful for the optimisation of 14 design

variables for handling.

For ride comfort, the decision of when to terminate the optimisation will

impact on the performance of the optimisation methods. Presented in Figure

8.6 is the optimisation convergence histories for the standard form of

Dynamic-Q (std) and with automatic scaling implemented (ascl). The use of

the penalty function for the automatic scaling as discussed in section 8.3, was

not used here, due to difficulties associated with the correct magnitude of the

penalty multiplier. It can be seen that the automatic scaling reaches a better
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Handling, 14 Variables, Auto-Scaling Comparison
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minimum than the standard form, however, this is not the optimum point,

as better optima were reached using only 4 design variables (see Chapter 6,

Figure 6.9). The minimum point achieved in Figure 8.6, for the automatic

scaling (f(x) feas. ascl, iteration 18) was then used as a starting point for

the optimisation of the ride comfort, with the design variables subjected to

a 30% range about the minimum found in Figure 8.6. The optimisation

convergence history is presented in Figure 8.7. It is observed that an equal

minimum is reached as for the 4 design variables.

From the optimisation results the optimum damper characteristics

for handling (Figure 8.8) and ride comfort (Figure 8.9), are presented. It

is also found that for optimum handling the static gas volume must be 0.1

liter, while for optimal ride comfort the static gas volume in front should be

0.39 liter, and at the rear 0.46 liter. The handling gas volume thus ran to

the lower boundary, but the ride comfort static gas volume did not. This

can be attributed to the tyre hop inequality constraints. The optimal driver

vertical RMS acceleration is 1.1 m/s2 and the rear passenger vertical RMS

acceleration is 1.1 m/s2. The optimal body roll velocity RMS value is 0.52

o/s and the maximum roll angle is 3.1 o.

8.5 Conclusions

The automatic scaling methodology was proposed, and implemented on several

analytic problems with success. Automatic scaling was then applied to the

vehicle dynamics problem of numerous design variables.

The automatic scaling methodology was implemented with success. The

optimal handling and ride comfort were determined, where it was found that

the handling setting would require a small gas volume, and stiff dampers

front and rear, while the ride comfort required soft front and even softer rear

damping, and a static gas volume of 0.39 liter in front and 0.46 liter at the

rear.
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Ride Comfort, 14 Variables, Auto-Scaling Comparison
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Figure 8.6: Comparison of optimisation convergence histories for standard

Dynamic-Q and for the implementation of the automatic scaling (14

design variable ride comfort)
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The automatic scaling methodology can be further improved with

the investigation of the Hessian matrix. This Hessian matrix can then be

transformed so as to better scale skew problems.

Further investigation into the weight of the penalty function multiplication

parameters is needed, so that scaling of constrained problems can be improved.

 
 
 



Chapter 9

Combined Optimisation

With the use of simplified models for gradient information validated,

the models are combined to represent the vehicle performing a handling

manœuvre on a rough terrain. For the combined ride comfort and handling

optimisation, the vehicle performs the double lane change over the Belgian

paving. The full simulation model is used, as before, once per iteration

for the exact objective function values and constraint values. The Matlab

models remain the same. However, the ride model will be used to observe the

ride dynamics gradient tendencies, and the handling model for the handling

dynamics gradient tendencies. This work was performed before the proposal

of the automatic scaling methodology. A study was conducted as to how best

to consider the optimisation of the compromise passive suspension. This

is done to determine the methodology needed when including the control

strategy of the 4S4 system for optimisation.

9.1 Handling Followed by Ride Comfort

First the vehicle will be optimised for handling, subject to the tyre hop

inequality constraints, and then optimised for ride comfort starting from the

point where the handling optimisation converged, for two design variables.

The ride comfort is optimised subject to the tyre hop inequality constraints,

and an additional inequality constraint that the optimised handling f ∗(x)hand

may not decrease by more than 20% (compared to the optimised handling

125
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result) as stated below:

g(x)hand = 10(f(x)hand − 1.2f ∗(x)hand) ≤ 0 (9.1)

The 20% parameter was selected as it was found that for optimisation runs

where the handling constraint was 5 or 10 %, the handling constraint could

not be satisfied, if improvements in ride comfort were achieved. The value of

20% was thus found to be a reasonable constraint value. This value would,

however, typically depend on the design requirements for the specific vehicle

being optimised. The multiplication by 10 was used to better normalise the

constraint values between -1 and 1.

The optimisation convergence history for two design variables is presented

in Figure 9.1. The equivalent tyre hop constraint is plotted as defined in

equation (6.2). The top graph refers to the handling optimisation where the

objective function is defined as in equation (5.7), and the bottom graph is

for the ride comfort optimisation, where the objective function is defined as

in equation (5.6). It can be seen that the optimisation convergence history

is well behaved for the handling optimisation, and results in an objective

function value of approximately 0.21, which is equivalent to a body roll

angle of 3 o, and a RMS body roll velocity of 1.3 o/s. The ride comfort

optimisation, subjected to the handling constraint, has a poorly behaved

convergence history, and does not converge to a clear optimum. If iteration

18 is considered as the best minimum, the driver RMS vertical acceleration

is approximately 2.2 m/s2, which is considered as extremely uncomfortable

(Els 2005), and needs to be improved. The ride comfort can be greatly

improved but at the expense of handling.

9.2 Maximum of Ride Comfort and Handling

The results for handling followed by ride comfort optimisation, prompted the

investigation into using the maximum value of the four normalised objective

function parameters (roll angle, RMS roll velocity, driver comfort, passenger

comfort) as the objective function value. The objective function is thus
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Combined Optimisation, 45 km/h, Handling Optimisation, 2 Variables
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Figure 9.1: Combined convergence history, first handling optimisation, then ride

comfort.
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defined as follows:

f(x) = max(f(x)hand, f(x)ride) (9.2)

The disadvantage of the nature of this objective function is the now inherent

discontinuities due to the maximum function. However, very reasonable

results were achieved as illustrated by Figure 9.2. In the figure, f(x)hand is

the handling objective function value as defined by equation (5.7), f(x)ride

is the ride comfort objective function as defined by equation (5.6), and the

equivalent tyre hop constraint g(x)eq defined by equation (6.2). Additionally

it is observed that the overall optimum is the equalization of the two objectives.

When considering the final design configuration, iterations 3, 6 and 9, are

repeated identical minima, and should be considered for the acceptable band

of the design variables, to return objective function values of approximately

0.32. This results in vertical RMS accelerations of approximately 1.8 m/s2,

body roll angle of 4o, and a RMS roll velocity of 1.9 o/s. The optimisation

convergence took fewer iterations than the optimisation of handling followed

by ride comfort, even though the objective function is of a discontinuous

nature, due to the maximum function.

The use of the maximum function for the objective function was expanded

to four design variables, and started in the same place as for two design

variables, namely the middle of the design space. The results, presented in

Figure 9.3, illustrate the excellent convergence to the optimum, of identical

magnitude as for two design variables, but the design variable values differ.

Although it is evident that multiple local minima exist, the optimisation

converges to identical objective function value minima.

With the difficulty encountered with the definition of ride comfort as a

constraint and optimising handling, yet excellent convergence history when

using an equal weight of the two objectives, in the form of the maximum

function, a pareto front will now be constructed, between the handling and

ride comfort objective functions.
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Combined Optimisation, Double Lane Change on Belgian Paving, 45 km/h, 2 Variables
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Figure 9.2: Combined optimisation convergence history, maximum of handling

and ride comfort objectives, 2 design variables.

9.3 Pareto Optimal Front

With the success of the optimisation results, but the vastly varying optimal

design points in the design space, the simplified model was used to investigate

the trends in terms of the pareto optimal front of feasible points for ride

comfort and handling, subject to the tyre hop constraints. Random points

in the four design variable space were generated and their objective and

constraint function values evaluated. This would traditionally give the design

engineer the necessary insight into which optimal suspension settings to

select for a desired combination of ride comfort and handling. However,

as shown in Figure 9.4, the random feasible points lie greatly inward of

the pareto optimal front. Optimisation runs were performed where the

objective function was defined as a weighted sum of the handling and ride

comfort objective functions defined in Chapter 5. Figure 9.4, illustrates

the optimisation convergence histories of the differing weighted objective
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Combined Optimisation, Double Lane Change on Belgian Paving, 45 km/h, 4 Variables
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Figure 9.3: Combined optimisation convergence history, maximum of handling

and ride comfort objectives, 4 design variables.

functions, to the pareto optimal front. The shortest distance from the pareto

front to the zero point is generally accepted as the best compromise, however,

this depends on which objective is most important to the vehicle being

designed. In the case of the SUV, handling is a safety critical component, as

these vehicles at their handling limit roll over before they slide out.

With the converged optimal points of Figure 9.4, the pareto optimal front

and design variable values were plotted in Figure 9.5. From Figure 9.5, the

change in the design variable with respect to a change in the ride comfort and

handling objective function values can be quantified. The design engineer can

now use this information to obtain a first order estimate as to the optimal

design variable combination in order to achieve a desired point on the optimal

pareto front. From Figure 9.5, it is observed that the rear suspension (design

variables x3 and x4) have the greatest sensitivity on the ride comfort objective

function value, when close to the handling optimum (i.e. f(x) handling <
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Combined Optimisation Differing Objective Function Weights
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Figure 9.4: Investigation of convergence history to pareto front for different

weights of the objective function for handling (h) and ride comfort

(r), compared to random feasible points of design space

0.16). A large change in the value of design variables x1, x3 and x4 will result

in a dramatic improvement of the ride comfort, but a much smaller decrease

in the handling objective function value, from the optimal to worst handling

configuration. Also noticeable is the fact that the front gas volume design

variable x2, must be at it’s stiffest setting (value of 0) for good handling, yet

the rear gas volume design variable x4 can be as large as 50% (value of 0.3)

of the optimal handling gas volume.

From the pareto optimal front results presented in Figure 9.5, it can be

concluded that the most feasible compromise point in the design space is

for a handling objective function value of 0.16, and a ride comfort objective

function value of 0.32. The use of the weighted objective functions to obtain

the pareto optimal front is of importance, when designing the vehicle’s
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Pareto Front Combined Optimisation 45 km/h
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Figure 9.5: Pareto front plot including the change in the design variables along

the pareto front

suspension system for the compromise ride comfort vs. handling setup. The

necessary insight into the design variables most sensitive to improving the

ride comfort with minimal loss of handling ability was obtained.

9.4 Summary of Results

Presented in Table 9.1 are the results for the optimisation runs. From

the results it can be seen that the combined optimisation is a compromise

between handling and ride comfort, especially when considering the use of

the maximum function for the objective function. If reasonable handling is

to be achieved, then the ride comfort suffers, while if good ride comfort is to

be achieved then the handling suffers. This is the traditional compromise,

that the 4S4 suspension avoids due to the ability to switch between the

optimum handling and ride comfort settings. The resulting optimal damping

 
 
 



CHAPTER 9. COMBINED OPTIMISATION 133

multiplication factors and spring gas volumes are presented in Table 9.2. Also

noticeable when observing the parameters of the combined optimisation, is

that the gas volume lies in the middle of the design space at 0.3 l, but that the

damping should be 50% of the current baseline characteristic. This however,

severely affects the handling stability of the vehicle as can be observed by

the higher RMS roll velocity value. The most feasible compromise suspension

setup was, however, achieved when considering the pareto optimal front.

The pareto optimal front provided the necessary insight into the problem in

order to select the most feasible compromise. The resulting optimal damping

multiplication factors and spring gas volumes were evaluated using the full

MSC.ADAMS simulation model. It was found that the pareto optimal front

objective function values were optimistic when compared with the actual full

simulation model’s objective function values. The full simulation pareto front

values for four design configurations along the pareto front were evaluated

and presented in Table 9.3. From the results it is observed that the pareto

front displayed accurate trends, but with optimistic objective function values.

From the pareto test points it can be seen that design configuration 3 returns

acceptable ride comfort with a average decrease in handling of 31% over test

point 1. This pareto methodology can thus in future be used to optimise a

controllable suspension with included control system. Only the simplified

models are optimised with objective functions being defined by differing

weights, to determine the pareto optimal front. Once the pareto front is

determined a few test points, along the pareto optimal front, can be used to

determine the actual full simulation model objective function values, to scale

the pareto optimal front.

It is suggested that a more effective approach for the determination of the

pareto optimal front, would be to run the Dynamic-Q optimisation using a

weighted objective function consisting of 100% handling and 0% ride comfort.

Once the optimisation has converged to this optimum point, the algorithm

should then change the objective function weighting to 80% handling and

20% ride comfort. By continually changing the objective function weighting
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Table 9.1: Summary of Results for Optimisation Objectives

variables, Fig. # iter. f ∗(x) ϕ̇RMS ϕpeak aRMSd
aRMSp

opt. run (eq evals) ±0.01 [o/s] [o] [m/s2] [m/s2]

Combined

2, handling 1st 9.1 6 (9.8) 0.21 1.29 2.9 - -

2, ride after 9.1 18 (34.2) 0.40 1.52 3.0 2.20 2.18

2, fmax(x) 9.2 6 (12.6) 0.32 1.86 4.0 1.78 1.78

4, fmax(x) 9.3 7 (20.8) 0.32 1.83 4.0 1.76 1.62

Table 9.2: Summary of optimum damper factors and gas volumes

opt. run Fig. dpsff gvolf dpsfr gvolr

Combined

2, handling 1st 9.1 1.35 0.10 1.35 0.10

2, ride after 9.1 0.55 0.17 0.55 0.17

2, fmax(x) 9.2 0.51 0.30 0.51 0.30

4, fmax(x) 9.3 0.53 0.26 0.40 0.28

during the optimisation procedure, the optimisation should progress along

the pareto optimal front, from the best handling objective function value to

the best ride comfort objective function value.

9.5 Conclusions

This chapter shows that the use of simplified numerical models, originally

used for the optimisation of ride comfort and handling separately for gradient

information, Chapters 5 and 6, can be successfully used for the combined

optimisation of the ride comfort vs. handling compromise suspension

configuration.

The advantages and disadvantages of different definitions of the objective
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Table 9.3: ADAMS data for 4 test points along pareto optimal front

test point dpsff gvolf dpsfr gvolr ϕpeak ϕ̇RMS aRMSd
aRMSp

1 0.91 0.10 0.39 0.15 1.80 2.93 2.55 2.27

2 0.80 0.10 0.39 0.27 2.18 3.24 2.38 1.89

3 0.54 0.18 0.39 0.28 2.48 3.65 1.89 1.71

4 0.39 0.30 0.39 0.38 2.95 4.44 1.46 1.47

and constraint functions for the determination of the optimal suspension

characteristics for combined ride comfort and handling are highlighted in

terms of achievable optimal ride comfort and handling. It is, however, found

that the use of only the simplified models to optimise for the pareto optimal

front is most efficient. The design variable values along the pareto front can

be used to determine the actual full simulation model’s objective function

values. The simplified model’s pareto front is accurate in terms of design

variable values, but the objective function values differ in absolute value.

It is suggested that a future implementation of continuously varying the

weighting attached to the different objectives within the objective function

definition will more effectively define the pareto optimal front. The

optimisation convergence history, will then converge from the best of the one

objective gradually towards the best of the other objective, along the pareto

optimal front.

The methodology proposed is shown to be an efficient means of optimising

a vehicle’s suspension system for combined ride comfort and handling. This

research illustrated that the use of gradient-based optimisation algorithms

are suitable and competitive for determination of the pareto optimal front

necessary for optimising vehicle suspension systems when considering

combined ride comfort and handling.

 
 
 



Chapter 10

Conclusions

The use of central finite differences with relatively large perturbation sizes

has proven to be beneficial in terms of total function evaluations needed

to obtain a feasible minimum. This was measured in terms of less noise

in the optimisation convergence history, although at an increased number

of function evaluations per iteration, but less overall iterations to reach a

feasible optimum. This approach holds definite benefit for all gradient-based

optimisation algorithms.

A highly nonlinear vehicle model, with large suspension deflection, that

returns excellent correlation to measured results was built in MSC.ADAMS.

A novel lateral driver model that makes use of the magic formula to define a

nonlinear steering gain factor, was proposed and successfully implemented.

This nonlinear steering gain factor modelled with the magic formula made it

possible to achieve excellent correlation with measured test data, for a single

preview point yaw rate steering driver model. This driver model proved to be

robust for different suspension setups, when optimising the vehicle’s handling

for the closed loop double lane change manœuvre.

The necessity of including wheel hop in the ride comfort optimisation problem

was investigated. It was found that it is necessary to include wheel hop as

an inequality constraint, when optimising the vehicle’s suspension for ride

comfort, if the vehicle is to remain stable on rough terrain.

136

 
 
 



CHAPTER 10. CONCLUSIONS 137

Nonlinear simple models that capture the essence of the handling and ride

comfort have been developed, and shown to exhibit similar trends to the

full computationally expensive numerical simulation model of the off-road

vehicle, at approximately 10 % of the simulation cost. The two design

variable case of the simplified models had to be scaled to be equivalent to the

full simulation model over the design space. These simplified models have

been successful in speeding up the optimisation process, by at least 50%

of total simulation time needed when using only the full simulation model

for gradient, objective and constraint function values, when used for the

determination of gradient information by means of central finite differences.

This is a novel approach to vehicle suspension design optimisation and has

been shown to be accurate and economical when compared to full simulation

gradient based optimisation. The contribution in the field of vehicle design

is also underlined by the fact that the same principle can be applied to any

gradient-based optimisation algorithm.

The optimisation problem was expanded from 4 design variables to

14. Difficulties were encountered with poor scaling of the design variables,

and noise associated with infeasible tyre deflections due to the current tyre

model only accommodating a linear vertical tyre stiffness. Scaling of the

optimisation problem has been investigated, with the result that sphericality

of the design space is more important than having equivalent ranges and

magnitudes of design variables. Great improvements were achieved in the

optimisation convergence histories, when the optimisation problem was better

scaled.

The scaling process that was followed, is reformulated into a novel automatic

scaling methodology, that can help engineers reduce the time necessary for

investigation of design variable scaling. This methodology was tested on

analytic functions, and found to improve the optimisation convergence for

most tested problems. The methodology was expanded to include constrained

optimisation problems in the form of the penalty function, but further
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experimentation is required with the penalty function multiplication factor

to be used. The automatic scaling methodology was applied to the vehicle

suspension optimisation for 14 design variables, with great success. When

automatic scaling was applied, better optimum values were reached, than

without automatic scaling.

There is at this stage no guarantees that the results achieved are global

optima, as concluded from the fact that some of the optimisation results

return similar objective function values for different design variable combinations.

The aim is however, for an improvement in handling and ride comfort rather

than the absolute global optimum suspension setup. There is also no guarantee

that if the global optimum is found, the design variables are robust in terms

of manufacturing tolerances.

Noise in the inequality constraints, when optimising ride comfort,

and combined optimisation of ride comfort and handling, is still problematic.

Some avenues were investigated but a more intensive investigation is needed

before the problem is fully understood.

The combined optimisation of ride comfort and handling was investigated.

Various concepts were investigated for the definition of the objective function.

The discontinuous nature of the maximum function in the definition of the

objective function was found to pose no difficulties in terms of optimisation

convergence. When optimisation was performed using the baseline vehicle’s

handling as a constraint no improvement was found in ride comfort, and the

same applies when the baseline vehicle’s ride comfort was used as a constraint

and handling optimised no improvement was observed. This was because the

baseline vehicle’s design point lay outside the feasible design space achievable

with the current 4S4 suspension system when optimised for the compromise.

This will probably be overcome when the control system is included in the

optimisation process.

 
 
 



Chapter 11

Discussion of Future Work

The results of the 14 design variable optimisation, postulated that a solver

change has the potential to greatly reduce the numerical noise present in

the objective functions with respect to small perturbations of the design

variables. This would be implemented by interpolation of the equivalent

function value, for a constant numerical error, at each time step of the

multi-body dynamics solver. It is believed that this alone will

greatly contribute to reduced noise in the objective functions obtained from

numerical simulations.

The vertical tyre stiffness should be modelled as nonlinear, so as to capture

the effect of increasing tyre stiffness with high tyre deflections. This will

be beneficial when considering the tyre hop inequality constraint at low

suspension damping, which is currently resulting in optimisation convergence

difficulties when considering many design variables. This, however, is not

easily implementable in the current ADAMS Pacejka ’89 tyre model used.

Other tyre models would have to be investigated for the implementation of

this stiffness characteristic.

A preliminary investigation has been performed in the use of gradient only

optimisation algorithms like LFOPC (Snyman 2000) and ETOPC (Snyman

2005a), used with the simplified models, not presented in this thesis. This

should be further investigated, as it could prove to be more efficient.
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A greater variety of road conditions need to be considered over varying vehicle

speeds and loading conditions, before a decision can be made regarding the

final overall optimum design. The ultimate test will be the optimisation

of the vehicle’s performance under severe handling manœuvres on an uneven

road. The methodology presented in this research is easily adaptable to these

multiple conditions.

The incorporation of the complex model describing the hydro-pneumatic

suspension’s characteristics as proposed by Theron and Els (2005), should

be included with the control of switching proposed by Els (2006), in the final

optimisation phase.

The final optimised spring and damper characteristics should be investigated

for robustness. This should be done in terms of the effect normal

manufacturing tolerances will have on the vehicle’s handling and ride comfort.

The proposed automatic scaling methodology should be further researched so

as to take Hessian information into account before scaling the design space,

in an effort to minimize the negative effects cross-coupled design variables

have on the current scaling method.

A variable weighting when performing multi-objective optimisation needs to

be investigated, so as to more efficiently plot the pareto optimal front, from

the optimum of the one objective to the optimum of the other objective.
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