
Chapter 5

Simplified Vehicle Models

The work discussed in Chapter 4 suggested that central finite differences

rather than forward finite differences should be used for gradient calculation.

This, however, implies more function evaluations per iteration. To circumvent

additional costs related to more function evaluations, and the high level of

noise present, the feasibility of using simplified models for gradient evaluation

is investigated in this chapter. Proposed is the use of carefully chosen

simplified numerical models of the vehicle dynamics for computing gradient

information, and a detailed vehicle model for obtaining objective function

values at each iteration step. It is proposed that a non-linear pitch-plane

model, be used for the gradient information, when optimising ride comfort.

When optimising for handling, the use of a non-linear bicycle model, that

includes roll, is suggested. The gradients of the objective function and

constraint functions are obtained through the use of central finite differences,

within Dynamic-Q, via numerical simulation using the proposed simplified

models. The importance of correctly scaling these simplified models is

emphasised. The models are validated against the full simulation model.

5.1 Optimisation Procedure

The use of simplified numerical models of the full vehicle model, for the

determination of gradient information, is investigated. Although the

Dynamic-Q optimisation method is used, the principle can be applied to any

gradient-based optimisation method. For the determination of the required
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first order gradient information central finite differencing is used. Central

finite differencing was found to significantly improve the gradient based

optimisation process, as discussed in Chapter 4. If the simplified vehicle

models can be used for the determination of the gradient information, the

number of numerically expensive simulations of the full vehicle model can be

reduced to one per iteration, as it is only required to obtain the objective and

constraint function values. This has the advantage that the total optimisation

time can be greatly reduced, as the analysis of the simplified models take

approximately 10% of the simulation time of the full vehicle model.

Traditionally the use of central finite differences would have resulted in 2n+1

full simulations per iteration, where n is the number of design variables. In

this case the optimisation takes effectively, in terms of computational time,

2n times 0.1 for the gradient evaluation and 1 for the objective function

evaluation resulting in an equivalent 0.2n+1 function evaluations per iteration.

5.2 Definition of Optimisation Parameters

Before the optimisation can be performed, the design variables, objective

functions, and constraints need to be defined and scaled. These need to be

defined before the simplified models can be developed.

5.2.1 Definition of Design Variables

As before the assumption is made that the left and right suspension settings

will be the same, but that front and rear settings may differ. The design

variables chosen for optimisation are therefore the static gas volume of the

accumulator (Figure 5.1), and damper force scale factor (Figure 5.2), on both

the front and rear axles. Thus there are two design variables per axle.

For this initial study the standard rear damper force characteristic

is multiplied by a factor which constitutes the damping design variable

(Figure 5.2). The general shape and switch velocities of the damper are

thus kept the same. This chapter only considers the cases of two and four
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Figure 5.1: Definition of 4S4 spring characteristics for various gas volumes

design variables, which respectively corresponds to the case where the spring

and damper characteristics are identical for the front and rear axles (two

design variables), and where they may differ for front and rear (four design

variables).

The static gas volume of the accumulator is denoted by gvol, and allowed to

range from 0.1 to 0.6 liters. The range is dictated by the smallest and largest

gas volumes that are possible with the current 4S4 unit. The damper force

scale factor is denoted by dpsf , and allowed to range from 0.1 to 3. The range

is again determined by the current design limits of the 4S4 unit (see paragraph

1.2). The design variables are normalised to allow a range from 0.001 to 1 in

magnitude, which are accordingly chosen as upper and lower bounds. The

normalisation of the design variables is generally sound optimisation practice,

to ensure that the problem to be solved by the optimisation algorithm, is

not poorly scaled. Poor scaling results in optimisation difficulties, and poor

 
 
 



CHAPTER 5. SIMPLIFIED VEHICLE MODELS 67

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

Velocity [m/s]

F
or

ce
 [k

N
]

4S
4
 Damper Characteristics

0.1 x std damper
1.0 x std damper
3.0 x std damper

Figure 5.2: Definition of 4S4 damper characteristics for various damper scale

factors

convergence, and could be a reason for the difficulties encountered in Chapter

4. The ith design variable xi is defined as a ratio of: the parameter’s current

value vcurrent , the lowest permissible value v
low

, and the highest permissible

value v
high

, as follows:

xi =
vcurrent − v

low

v
high

− v
low

(5.1)

The design variables are then explicitly defined as follows:

x1 = dpsf−0.1
3−0.1

, x2 = gvol−0.1
0.6−0.1

(5.2)

with bounds

0.001 ≤ xi ≤ 1, i = 1, 2 (5.3)

For the four design variable problem the front and rear settings are uncoupled,

meaning that there are separate front and rear damper scale factors and
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front and rear spring static gas volumes. This results in two design variables

describing the front and two describing the rear, giving four design variables

in total.

The front damper scale factor is denoted by dpsff , the front static gas

volume by gvolf , the rear damper scale factor by dpsfr, and the rear static

gas volume by gvolr. These design variables are also allowed to range from

0.001 to 1 in magnitude. Thus the design variables are defined explicitly as

follows:

x1 = dpsff−0.1
3−0.1

, x2 = gvolf−0.1
0.6−0.1

x3 = dpsfr−0.1
3−0.1

, x4 = gvolr−0.1
0.6−0.1

(5.4)

with bounds

0.001 ≤ xi ≤ 1, i = 1, ..., 4 (5.5)

5.2.2 Definition of Objective Functions

For ride comfort the motion of the vehicle is simulated for travelling in a

straight line over the local Belgian paving, and the sum of the driver azRMSd

and passenger azRMSp frequency weighted (according to British Standard

BS6841 1987) root mean square (RMS) vertical accelerations are used for the

objective function. This was found to be a sufficiently representative measure

of passengers’ subjective comments by Els (2005). The Belgian paving test

track used, is located at the Gerotek Test Facilities (Gerotek 2006), and has

a ISO8608 (1995) roughness coefficient Gdo of 1 × 10−4 m2/(cycles/m), and

a terrain index ω of 4 (Thoresson 2003).

Following sound optimisation practice the objective function is also scaled as

for the design variables to range between zero and one (equations 5.2 to 5.5).

This is done by assuming that the maximum and minimum objective function

values will lie on one of the corners of the design space. The four corners

for the two design variable case were evaluated. The maximum vertical

RMS acceleration was found to be 4.4 m/s2, and the minimum to be 0.7

m/s2. RMS accelerations are then scaled so that the expected maximum
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and minimum values lie between zero and one. The ride comfort objective

function fride(x), is defined as the sum of the scaled driver and passenger

accelerations divided by two, as follows:

fride(x) =

∑
(azRMSd−0.7

4.4−0.7
, azRMSp−0.7

4.4−0.7
)

2
(5.6)

The handling objective function is defined as the sum of the normalised

first peak value of the body roll angle ϕ1stpeak for the first lane change (Els

and Uys 2003) of the ISO3888-1 (1999) double lane change manœuvre, and

the normalised RMS roll velocity ϕ̇RMS for the whole double lane change

manœuvre. The RMS roll velocity is now used in addition to the roll angle,

so as to have a measure of the transient stability of the vehicle in roll, which

was previously not considered in Chapter 4. The handling objective function

fhand(x) is defined as the sum of these normalised parameters divided by two,

as follows:

fhand(x) =

∑
( (ϕ̇RMS−0.8)0.9

5.7−0.8
+ 0.1,

(ϕ1stpeak−1.4)0.9

12.2−1.4
+ 0.1)

2
(5.7)

5.2.3 Definition of Inequality Constraint Functions

Tyre hop effects need to be considered when optimising for ride comfort, as

the damping design variables tend to be sensitive to tyre hop (Uys et al.

2006b). In the preliminary study discussed in Chapter 4, it was found that

the optimal ride comfort was found at the expense of vehicle stability on

the road, thus necessitating the consideration of tyre hop. The requirement

was introduced, that the tyre could only be permitted to loose contact with

the ground for 10% or less of the simulation time, when considering typical

off-road and rough terrain. The time the tyre has lost contact with the

ground was determined by observing when the tyre’s vertical force Fztyrei
is

equal to zero. The tyre hop effect is added as inequality constraints for each

individual tyre i as follows:

gi(x) = 10(

∑
t(Fztyrei

= 0)

ttotal

− 0.1) ≤ 0 (5.8)

The factor of 10 was used to better scale the tyre hop constraint between

minus one and one.
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Suspension working space was not included as an inequality constraint as the

non-linear bump and rebound stops are included in the simulation models.

Thus the simulation models will restrict the suspension working space.

5.3 Simplified Vehicle Models

The need for simplified models to obtain smoother (less noisy) gradient

information, is justified by the high amplitude noise inherently present in

the MSC.ADAMS simulation model, as illustrated in Figure 5.3. This figure

reflects the change in the ride comfort objective function value for a change

in only the front damper design variable x1. This was performed at the

center of the design space. It can be seen that the noise in relation to the

objective function value is severe, especially when considering the tyre hop

constraint values. Figure 5.4 represents the objective and constraint values

for changes in the front damper design variable, for the simplified ride comfort

vehicle model, discussed in detail in paragraph 5.3.2. It can be seen that

the noise present in the objective function is greatly reduced, although no

significant benefit is observed when considering the constraint functions. It

is speculated, that this is attributed to the low tyre damping, which results

in unstable tyre dynamics.

5.3.1 Handling Model

For the simplified vehicle handling model it is assumed that the vehicle

drives on a smooth surface, and uses exactly the same steering input as

the MSC.ADAMS model for that iteration. The model consists of two parts,

namely the lateral and yaw dynamics, and then the resulting roll dynamics of

the body. For the formulation of the equations of motion for the simplified

handling model, Figures 5.5 and 5.6 are considered. The model is simplified

so that only three degrees of freedom are considered, namely: body roll ϕ,

vehicle yaw ψ and vehicle lateral displacement y. The assumption will be

made that the vehicle will drive at a constant longitudinal velocity ẋ along
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Figure 5.3: Level of inherent numerical noise in objective function and inequality

constraints, for change in front damper design variable x1, for full

vehicle MSC.ADAMS model

the vehicle’s x-axis. Looking at the top view of the vehicle (Figure 5.5) the

overall yaw and lateral equations of motion can be formulated. For yaw:

∑
Mz = Izψ̈ = a(Fy1 + Fy2) − b(Fy3 + Fy4) (5.9)

where it is assumed that the steer angle δ is small (i.e. Fyicos(δ) ≈ Fyi).

Thus the full lateral tyre force Fyi acts along the y-axis. Also the longitudinal

component of the lateral tyre force is low in magnitude and can be ignored.

For the lateral direction:

∑
Fy = mvÿv = Fy1 + Fy2 + Fy3 + Fy4 (5.10)

Similarly by considering Figure 5.6 the equation of motion for the body roll

about the body cg can be formulated as follows:

∑
Mx = Ixϕ̈ = (f4S4l

− f4S4r)
ts
2

+ hcg(Fyl + Fyr)
mb

mv
(5.11)
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Figure 5.4: Level of inherent numerical noise in objective function and inequality

constraints, for change in front damper design variable x1, when

considering the simplified MATLAB model

The mass ratio mb

mv
is introduced so that the the tyres’ lateral force effect

on the vehicle body can be uncoupled from the axles and wheels, as the

body motion is what our suspension can control. This was done so as to

decrease the number of degrees of freedom to be calculated, helping to speed

up simulation time. The left f4S4l
and right f4S4r suspension forces are the

sum of the suspension forces on the respective side. Similarly the left Fyl

and right Fyr lateral forces are the sum of the lateral tyre forces for the

respective side. The lateral forces are calculated by taking the vertical load

and slip angle for the tyre, as inputs to the ‘Magic Formula’ Pacejka’89

(Bakker et al. 1989) tyre model using the same coefficients as for the full

vehicle simulation model. For this model the following simplifications have

been applied:

• The tyre lateral force produces a minimal longitudinal component that
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is taken up by the longitudinal driving force and can be ignored.

• No longitudinal effects except vehicle speed are considered.

• Nothing can be done about the tyre deflection and the angle that the

axle makes with respect to the ground, for this reason the axle roll

effects, due to tyre deflection are ignored.

• The MSC.ADAMS calculated steer angle is used as the input steer

angle for the MATLAB simulation.

• Vertical tyre forces are taken as being the same mass proportion front to

rear as the static case, of the side suspension force. (i.e. no longitudinal

load transfer)

The simplified handling model is thus a significant simplification of the actual

vehicle dynamics. It will be shown to still return very good trends when

compared to the full vehicle simulation model.

5.3.2 Ride Comfort Model

For the simplified ride comfort vehicle model a simple pitch plane vehicle

model, similar to that used by (Eberhard et al. 1995, Etman et al. 2002,

Naudé and Snyman 2003a) and many other’s, is used. The measured rough

road profile seen by the full vehicle model’s wheels is averaged left and right

to give an effective centerline profile. The pitch plane model then follows

the averaged path using a point follower tyre model. The basic layout of

the simplified model is indicated in Figure 5.7. The equations describing the

vehicle behaviour are derived as follows. Consider the forces acting on the

front unsprung mass mtf , as a result of the road disturbance input zrf . The

summation of vertical forces on the unsprung masses leads to:

∑
Fz = mtf z̈3 = 2ktf(−z3+zrf+δstat)+2ctf(−ż3+ ˙zrf)−mtfg−2f4S4f

(5.12)

for the front, and similarly for the rear:

∑
Fz = mtr z̈4 = 2ktr(−z4+zrr+δstat)+2ctr(−ż4+ ˙zrr)−mtrg−2f4S4r (5.13)
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Figure 5.7: Simple pitch-plane vehicle model

where the 2 relates to the fact that there is both a left and a right 4S4 strut.

It is taken that g = 9.81m/s2. The mtf is the total front axle unsprung mass

including the two tyres. And f4S4f
is the 4S4 front suspension force which

is a function of the displacement of the vehicle body mb and the unsprung

mass:

f4S4f
= f(z3 − z1 + θa, ż3 − ż1 + θ̇a) (5.14)

The rear suspension force f4S4r can similarly be defined as:

f4S4r = f(z4 − z1 − θa, ż4 − ż1 − θ̇a) (5.15)

The tyre spring stiffness and damping are only active while the tyre is in

contact with the ground thus the following if statement also applies:

if z3 − zrf − δstat < 0

then ktf = kt ctf = ct

else ktf = 0 ctf = 0

(5.16)

For the sprung mass mb two equations of motion are applicable, first for

vertical motion:

∑
Fz = mbz̈1 = mbg − 2f4S4f

− 2f4S4r (5.17)
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and then for pitch motion:

∑
My = Iyθ̈ = a2f4S4f

− b2f4S4r (5.18)

These equations of motion can be manipulated as follows:

−mbz̈1 = −mbg + 2f4S4f
+ 2f4S4r

−Iy θ̈ = −a2f4S4f
+ b2f4S4r

mtf z̈3 + 2ktfz3 + 2ctf ż3 = 2ktf(zrf + δstat) + 2ctf ˙zrf −mtfg − 2f4S4f

mtr z̈4 + 2ktrz4 + 2ctrż4 = 2ktr(zrr + δstat) + 2ctr ˙zrr −mtrg − 2f4S4r

(5.19)

This results in a clear set of matrices for mass M, stiffness K, damping C,

and force F , which correspond with the formula:

Mz̈ + Kz + Cż = F (5.20)

The above differential equations can be re-arranged, in order to be solved

with a numerical integration scheme, as follows:

⎧⎪⎨
⎪⎩

ż

z̈

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ O I

−M−1K −M−1C

⎤
⎥⎦

⎧⎪⎨
⎪⎩

z

ż

⎫⎪⎬
⎪⎭ +

⎧⎪⎨
⎪⎩

O

M−1F

⎫⎪⎬
⎪⎭ (5.21)

The modelling units of the models are meters and radians. For the execution

of the numerical integration of the simplified models, the built-in MATLAB

ode15s (Mathworks 2000b) solver is used with a relative tolerance of 1.5 mm

and a maximum time step of 0.05 seconds. These simplified models solve

in approximately 1 minute depending on design variables chosen while the

average MSC.ADAMS model takes at least 10 minutes to solve, on a Pentium

4, 1.8 GHz processor with 1 G RAM.

5.3.3 Handling Model Validation

Figures 5.8 and 5.9 illustrate the comparison between the full vehicle

MSC.ADAMS model and the simplified model for the handling objective

function parameters, where it should be noted that the colours are for easier

visualization purposes only. It can be seen that the simplified model does not

display all the information of the full vehicle model, but the global optimum

and maximum are the same. In general the trends are very similar, while only
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varying in absolute values. The MATLAB handling model is thus scaled so as

to give a better approximation of the MSC.ADAMS full vehicle model. For

the scaling of the MATLAB simplified models, the two design variables were

considered and 30 function evaluations were performed over the design space

using the full MSC.ADAMS simulation model and the simplified model. The

results for the simplified model were then scaled so that the surfaces coincided

over most of the design space.
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Figure 5.8: Validation of 1st peak roll angle over design space, for double lane

change.

5.3.4 Ride Comfort Model Validation

The simplified MATLAB model for ride comfort was evaluated against the

full MSC.ADAMS vehicle model to investigate whether the gradient closely

matched that of the MSC.ADAMS model. The sum of the vertical weighted

accelerations was normalised in both cases so that the objective function

value would range from zero to one. Figures 5.10 to 5.12 illustrate the close

correlation achieved when observing the effect of the design parameters on

the objective function and the tyre hop effect.
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Figure 5.9: Validation of RMS roll velocity over design space, for double lane

change.
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5.4 Conclusions

In this chapter the combined use of simplified numerical vehicle models and

computationally expensive full vehicle simulation models in gradient-based

optimisation algorithms, for vehicle suspension optimisation was investigated.

In particular the specific optimisation methodology to be used is described

and the objective functions and design variables are defined. The full vehicle,

modelled in MSC.ADAMS, returns excellent correlation with measured

results as presented in Chapter 3. However, this model is computationally

expensive and exhibits severe numerical noise.

In order to help overcome the problems associated with high computational

cost and numerical noise in the optimisation process, the use of simplified

models of the vehicle is suggested. These models exhibit very similar trends

to the full vehicle simulation model, however, the absolute values are not the

same. It is also important to note that the constraints, especially the tyre

hop constraints, do not necessarily cross the zero axis at the correct points,

even though the gradient trends are very similar. The required scaling of

the simplified models to be more representative of the full vehicle model

is presented. The cost of this scaling must be taken into account when

optimising. Here 30 expensive full vehicle model simulations per simplified

model were performed. The simplified model’s objective functions were

suitably scaled, to be representative of the full simulation model’s objective

function values. Once scaled, the simplified models are representative of the

full vehicle simulation model, but exhibit significantly less numerical noise,

and solve significantly faster.

Chapter 6 investigates the implementation of the simplified models in the

optimisation procedure. The optimisation results using the full simulation

vehicle model throughout, will be compared to that obtained using the

simplified models for computation of the gradient information. The use of the

simplified models for optimisation information as well as the full simulation
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model is known as multi-fidelity optimisation, and further discussed in Chapter

6.

 
 
 



Chapter 6

Multi-Fidelity Optimisation

Chapter 5 proposed a methodology for the efficient determination of gradient

information, when optimising for a vehicle’s suspension characteristics. The

non-linear full vehicle model, and simplified models for gradient information

have been discussed, and validated. Chapters 2 and 4 presented a brief

history of vehicle suspension optimisation, the general problem of numerical

noise, and computationally expensive simulation models. Proposed is the

use of simplified mathematical models for calculating gradient information,

and the full simulation model for determining the objective function value

when optimising an off-road vehicle’s suspension characteristics. Although

this application uses the gradient-based optimisation algorithm Dynamic-Q,

the principle can be applied to any gradient-based optimisation algorithm.

In this chapter, the simplified models presented in Chapter 5 are used for

gradient information simulations, in the optimisation of the vehicle’s

suspension characteristics, for ride comfort and handling. The simplified

vehicle models for handling and ride comfort, as described in Chapter 5, are

used to decrease the computational complexity of the full vehicle simulation

model, while still capturing the trends over the design space. The convergence

histories of the optimisation are compared to those obtained when only the

full, computationally expensive, vehicle model is used. For illustration of

the proposed gradient-based optimisation methodology, up to four design

variables are considered in modelling the suspension characteristics.
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The proposed methodology is found to be an efficient alternative for the

optimisation of the vehicle’s suspension system. The undesirable effects

associated with noise in the gradient information is effectively reduced, in

the optimisation process. Substantial benefits are achieved in terms of

computational time needed to reach a solution.

6.1 Optimisation Procedure

This chapter compares the optimisation results when using the full vehicle

simulation model for objective function value and gradient information

(admsgrad), as traditionally used in gradient-based optimisation, to the use

of the full vehicle model for only objective function value, and the simplified

models for gradient information (matgrad). Central finite differences, at a

computational cost of 2n + 1 function evaluations per iteration (where n is

the number of design variables), is used for the determination of the gradient

information. The use of central finite differences for gradient information,

was found to improve optimisation convergence in the presence of severe

numerical noise by Els et al. (2006), and discussed in Chapter 4.

The use of only the MSC.ADAMS full vehicle model in the optimisation

(admsgrad) has a computational cost of 2n + 1 computationally expensive

simulations per iteration. The use of the MSC.ADAMS full vehicle model

for only the objective function value, and the simplified MATLAB vehicle

models for gradient information (matgrad), has a computational cost of one

computationally expensive simulation per iteration, and 2n computationally

inexpensive simulations per iteration. The simplified MATLAB models solve

in approximately 10% of the full vehicle model’s simulation time. Sufficient

gradient information is obtained, after the simplified models have been scaled

at a once-off cost of 30 computationally expensive simulations.

With the proposed methodology, more starting points or design variables can

be efficiently considered, in less computational time, making gradient-based
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approximation methods for optimisation of vehicle suspension systems more

feasible. The simplified models also exhibit less numerical noise than the

full simulation model, resulting in smoother gradient information. For the

optimisation, the same normalised design variables as discussed in Chapter

5 and the same normalised objective and constraint functions are used.

6.2 Handling Optimisation Results

Presented in the following subsections is the handling optimisation results

for two and four design variables. This is considered first as up to this stage

a reasonably firm feeling of the problem has been built with which to test

the results. This is to demonstrate the concept before considering the full

optimisation design variables.

6.2.1 Two Design Variable Optimisation

The results for the comparison between the admsgrad and the matgrad,

when optimising handling for two design variables, are illustrated in Figure

6.1. It can be seen that the use of the simplified model for the gradient

information (matgrad) converged to an optimum after 12 iterations and 13

expensive function evaluations. The use of the computationally expensive full

vehicle model, for gradient information (admsgrad), converged to the same

optimum point within 15 iterations, but took 80 computationally expensive

function evaluations of the full vehicle model. The simplified model solves

in approximately 10% of the solution time of the full MSC.ADAMS vehicle

model. Central finite differences is used for the gradient determination, at

a cost of 2n + 1 function evaluations per iteration, where n is the number

of design variables. When using only the MSC.ADAMS model for gradient

and objective function evaluation (admsgrad), one iteration of two design

variables costs the equivalent of 500% of the computational time of one

MSC.ADAMS model simulation. When using the simplified models

for gradient information, and only one full MSC.ADAMS simulation for the

objective function value, the cost of one iteration is equivalent to 100% +
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2x2x10%, which is the equivalent of 140% of the computational time of

one MSC.ADAMS simulation. The use of the simplified models for the

determination of gradient information, is approximately 3.5 times faster than

using only the MSC.ADAMS model, when considering two design variables.

This highlights the advantages in terms of simulation time achievable for just

two design variables. It is also observed that the use of the simplified model

for gradient information does not introduce instabilities in the optimisation

convergence history. The simplified model produces sufficiently accurate

gradient information to drive the optimisation to the same optimum.

Handling Optimisation, Double Lane Change 55 km/h, 2 Variables
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Figure 6.1: Handling optimisation convergence histories for full MSC.ADAMS

model, and using the simplified MATLAB model for gradient

information, 2 design variables

6.2.2 Four Design Variable Optimisation

With the successful results obtained for the two design variable

handling optimisation, the problem was expanded to four design

variables, thus allowing the front and rear suspension characteristics to be

independent of each other. It is believed that the four design variable problem
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will exhibit more local minima, and the use of the simple model for gradient

information needs to be tested for robustness. The results of the four design

variable optimisation, where the full MSC.ADAMS model was used for

gradient information are presented in Figure 6.2. From the figure it can be

seen that the optimisation converged to a minimum identical to that for two

design variables, considering the noise levels present in the numerical model.

It is noted from the optimisation convergence history, that there are repeated

equal local minima at iterations five, eight, and ten. It can be seen that the

design variable x1 (front damper) takes on a value around 0.9, and x3 (rear

damper design variable) takes on a value of 1. It is also evident that design

variable x4 (rear gas volume design variable) moved to the boundary, and

should be at the lowest value. However, interestingly the front gas volume,

design variable x2 takes on a value around 0.27 (iteration 5), but can also

take on a value around 0.07 (iteration 10).

Handling Optimisation, Double Lane Change 55 km/h, 4 Variables, Adams Gradients
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Figure 6.2: Handling optimisation convergence history using the full

MSC.ADAMS model for gradient information, 4 design variables
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Considering the optimisation convergence history, when the simplified model

is used for the gradient evaluations (Figure 6.3), it can be seen that the

optimisation process converges to a minimum identical to that for two design

variables and four design variables using the MSC.ADAMS model for gradient

information. The design variable values converge to different values,

indicating the presence of multiple equivalent local minima. From the results

it is clear that no difficulties are experienced in obtaining a feasible optimum

and that both the solutions are equally feasible. The four design variable

optimisation for seven optimisation iterations, using the simplified model, is

approximately five times faster than using only the full MSC.ADAMS vehicle

model.

Handling Optimisation, Double Lane Change 55 km/h, 4 Variables, Matlab Gradients
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Figure 6.3: Handling optimisation convergence histories using the simplified

MATLAB model for gradient information, 4 design variables
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6.3 Ride Comfort Optimisation Results

For the ride comfort optimisation the implementation of the tyre hop had to

be investigated before the optimisation could be performed. Once the tyre

hop had been implemented the ride comfort was optimised considering two

and four design variables.

6.3.1 Tyre Hop in the Optimisation Process

The ride comfort optimisation has to be performed considering tyre hop

effects, as the vehicle can become unstable on the road should the tyres

constantly loose contact with the road, as concluded in Chapter 4. The tyre

hop constraints tend to exhibit a more prominent role, than the objective

function, on the damping design variable’s lower limit. An investigation was

performed, to determine the most effective method of including the tyre

hop effect within the optimisation process. The following conditions were

considered:

• Constrained optimisation: (constrained) The objective function is

defined as in equation (5.6). The tyre hop constraints are defined as:

the individual tyre’s vertical force Fztyrei
may not be equal to zero for

more than 10% of the total time ttotal, when travelling on rough off-road

terrain, and scaled as follows:

gi(x) = 10(
∑

t(Fztyrei
=0)

ttotal
− 0.1) ≤ 0, i = 1, ..., 4 (6.1)

Results are indicated in Figure 6.4.

• Unconstrained optimisation: The objective function is defined as in

equation (5.6). The constraints, as defined in equation (6.1), are only

monitored, but not considered by the optimisation algorithm,

(unconstrained). The results are indicated in Figure 6.5.

The equivalent objective function f(x)eq values presented in Figures 6.4 and

6.5 is the ride comfort objective function defined by equation (5.6). The

equivalent inequality constraint value g(x)eq is defined as:

g(x)eq = maxi=1,..4(gi(x)) (6.2)
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representing the maximum of the tyre hop constraint function of the four

wheels. From the results it can be seen that the constrained optimisation

(constrained, Figure 6.4), returns the lowest objective function value for the

tyre hop inequality constraint being satisfied. In general the front tyres

contributed most to the tyre hop, compared to the rear tyres, however, the

rear tyres also contributed in the optimisation convergence history, making

the inclusion of all tyres as constraints necessary. It was found that a tyre

hop limit of 10% for the particular road in question is a reasonable constraint,

as smaller limits tend to overconstrain the optimisation. It is thus decided

that the tyre hop limit of 10% will be included as a constraint for all future

ride comfort optimisation, when travelling over rough off-road terrain.

Ride Comfort Optimisation, Implementation of Tyre Hop
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Figure 6.4: Implementing tyre hop as a constraint in ride comfort optimisation

6.3.2 Two Design Variable Optimisation

The vehicle suspension settings were optimised for ride comfort, for two

design variables, with the tyre hop constraint included, as defined in equation

(6.1). The results of the optimisation process, for using only

the MSC.ADAMS model for gradient information, compared to using the
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Ride Comfort Optimisation, Implementation of Tyre Hop
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Figure 6.5: Observing tyre hop value while performing ride comfort optimisation

simplified pitch-plane model for gradient information are presented in Figure

6.6. It can be seen that the simplified gradients (matgrad) took approximately

24 iterations (25 expensive function evaluations) corresponding to an effective

cost of 35 expensive function evaluations in terms of time, to reach an

optimum. However, identical local minima, in terms of the objective function

value, were repeatedly reached at iterations 10, 13, 17 and 20. The expensive

gradients (admsgrad) effectively reached the optimum after 8 iterations at a

cost of 45 expensive function evaluations, with an identical objective function

value minimum repeated at iteration 19. Although the use of the simplified

model for gradient information took more iterations, the total computing

time was significantly less than using only the expensive numerical model

for function values and gradient information. It is also apparent from the

convergence histories that the use of the simplified model for gradient

information, results in a much smoother convergence history, giving greater

confidence in the computed results.
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Ride Optimisation, 40 km/h Belgian Paving, 2 Variables, MSC.ADAMS Gradient
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Ride Optimisation, 40 km/h Belgian Paving, 2 Variables, MATLAB Gradient
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Figure 6.6: Comparison of the optimisation histories for the MSC.ADAMS

gradient and simple MATLAB model gradient methods for 2 design

variable ride comfort optimisation
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6.3.3 Two Design Variable Optimisation, MATLAB

Model Only

With such reasonable results obtained using the simple model for

the computation of gradient information, it is necessary to justify the use

of the complete MSC.ADAMS vehicle model for the function value in the

optimisation process. The same optimisation was done as above but using

only the simple Matlab model for the optimisation procedure. From the

results in Figure 6.7 it can be seen that the function values are not the same

as the MSC.ADAMS simulation values (calculated at iteration 5 and 25) and

that the optimisation algorithm will converge to an infeasible point, when

considering the constraints. Thus the use of the full MSC.ADAMS vehicle

model is necessary in order to ensure the optimisation algorithm terminates

at a feasible minimum. Although the simplified model has very similar trends,

the absolute values are not always the same, especially when considering the

tyre hop constraints. This explains why the converged solution may not be

feasible.

Ride Optimisation, 40 km/h Belgian Paving, 2 variables, MATLAB Only
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Figure 6.7: Ride comfort optimisation convergence history for using only

the simple MATLAB based model, for objective function value,

gradients, and tyre hop information.
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6.3.4 Four Design Variable Optimisation

The four design variable ride comfort optimisation, was started from the

optimum achieved from the two design variable optimisation. The

optimisation process worked equally well as in the previously considered

cases, although only small improvements are visible from the starting point,

as can be seen from the MSC.ADAMS gradient history in Figure 6.8, and

the Matlab gradient history in Figure 6.9. It is observed that although both

methods converge to equally feasible solutions, the front and rear spring

characteristics should differ in absolute value as can be seen by design

variables x2 and x4. The result of this is that if the front gas volume is larger

the front seated passengers will experience better ride comfort than the rear

passengers, and the opposite if the rear spring gas volume is larger.

Ride Comfort Optimisation, Belgian Paving 40 km/h, 4 Variables, ADAMS Gradients

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Iteration

N
o

rm
al

is
ed

va
lu

e

f(x) x1 x2 x3 x4 g(x)eq

Figure 6.8: Ride Comfort optimisation convergence history for 4 design variables

using the full MSC.ADAMS model for gradient information, starting

at the optimum from two design variables
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Ride Comfort Optimisation, 40 km/h, 4 Variables, MATLAB Gradients
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Figure 6.9: Ride Comfort optimisation convergence history for 4 design variables

using the simple matlab model for gradient information, starting at

the optimum from two design variables

From the above studies it is concluded that the optimisation process, making

use of the simplified Matlab models for gradient information, produces equally

feasible results in substantially less computational time. It will now be

assumed that these models are sufficiently representative of the system for

gradient information.

6.4 Summary of Results

Presented in Table 6.1 are the results for the optimisation runs. From the

results it can be seen that the handling optimum suspension settings lie

on the opposite corner of the design space to the ride comfort optima. If

reasonable handling is to be achieved, then the ride comfort suffers, while if

good ride comfort is to be achieved then the handling suffers. This is the
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Table 6.1: Summary of Results for Optimisation Objectives

variables, Fig. # iter. f ∗(x) ϕ̇RMS ϕpeak aRMSd
aRMSp

opt. run (eq evals) ±0.01 [o/s] [o] [m/s2] [m/s2]

Handling

2, matgrad 6.1 12 (18.2) 0.15 0.57 3.0 - -

2, admsgrad 6.1 15 (80) 0.15 0.57 3.0 - -

4, admsgrad 6.2 6 (63) 0.15 0.54 3.2 - -

4, matgrad 6.3 7 (14.4) 0.15 0.55 3.1 - -

Ride

2, matgrad 6.6 24 (35) 0.13 - - 1.20 1.18

2, admsgrad 6.6 19 (100) 0.12 - - 1.16 1.14

4, matgrad 6.9 9 (18) 0.11 - - 1.14 1.08

4, admsgrad 6.8 7 (72) 0.11 - - 1.10 1.10

traditional compromise, that the 4S4 suspension avoids due to the ability

to switch between the optimum handling and ride comfort settings. The

resulting optimal damping multiplication factors and spring gas volumes are

presented in Table 6.2.

6.5 Conclusions

This chapter has shown that the use of simplified mathematical models, of

the computationally intensive full simulation model, for use in computing

gradient information, can significantly improve the optimisation process,

when two and four design variables are considered. Firstly the optimisation

process is significantly faster in terms of total optimisation time.

Secondly the simplified models help to reduce numerical noise in the evaluation

of the gradients, resulting in smoother convergence histories. Thirdly the

simplified models are sufficiently representative of the vehicle system, when

used for gradient information, although their absolute values may differ, and

need to be properly scaled before use.
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Table 6.2: Summary of optimum damper factors and gas volumes

opt. run Fig. dpsff gvolf dpsfr gvolr

Handling

2, matgrad 6.1 3.00 0.10 3.00 0.10

2, admsgrad 6.1 3.00 0.10 3.00 0.10

4, admsgrad 6.2 2.72 0.24 3.00 0.10

4, matgrad 6.3 2.89 0.10 2.69 0.10

Ride

2, matgrad 6.6 0.30 0.51 0.30 0.51

2, admsgrad 6.6 0.29 0.54 0.29 0.54

4, matgrad 6.9 0.29 0.56 0.25 0.47

4, admsgrad 6.8 0.24 0.43 0.27 0.53

For the handling optimisation, it was found that the two methods gave

identical optimum solutions, and that the optimal solutions lie along the

maximum boundary of the damper design variable, and the lower boundary

of the spring design variable.

For the ride comfort optimisation, the inclusion of the vehicle’s tyre hop was

investigated. It was found that the best results were achieved when including

the tyre hop as an inequality constraint in the optimisation process. It was

also found that the tyre hop tends to constrain the damping parameter from

running towards its lower boundary constraint.

The methodology proposed is thus an efficient means of optimising a vehicle’s

suspension system for ride comfort and handling. This makes the use of

deterministic gradient based optimisation algorithms most suitable,

and competitive for suspension optimisation. More design variables will

be incorporated and the combined optimisation of both ride comfort and

handling considered in the following chapters.
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