
Chapter 4

Finite Difference Gradient

Information

In the masters thesis Thoresson (2003), the feasibility of using gradient-

based approximation methods for the optimisation of the spring and damper

characteristics of an off-road vehicle, for both ride comfort and handling,

was investigated. The Sequential Quadratic Programming (SQP) algorithm

and the locally developed Dynamic-Q method were the two successive

approximation methods used for the optimisation. The determination of

the objective function value is performed using computationally expensive

numerical simulations that exhibit severe inherent numerical noise. The use

of forward finite differences and central finite differences for the determination

of the gradients of the objective function within Dynamic-Q is also

investigated. The results of this study, presented here, proved that the use of

central finite differencing for gradient information improved the optimisation

convergence history, and helped to reduce the difficulties associated with

noise in the objective and constraint functions.

This chapter presents the feasibility investigation of using gradient-based

successive approximation methods to overcome the problems of poor gradient

information due to severe numerical noise. The two approximation methods

applied here are the locally developed Dynamic-Q optimisation algorithm

of Snyman and Hay (2002) and the well known Sequential Quadratic
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Programming (SQP) algorithm, the MATLAB implementation being used for

this research (Mathworks 2000b). This chapter aims to provide the reader

with more information regarding the Dynamic-Q successive approximation

algorithm, that may be used as an alternative to the more established SQP

method. Both algorithms are evaluated for effectiveness and efficiency in

determining optimal spring and damper characteristics for both ride comfort

and handling of a vehicle.

The initial vehicle model was used in this part of the optimisation

investigation. This vehicle is fitted with the 4S4 suspension system, and up

to four design variables are considered in the optimisation of the suspension

characteristics. The details of which were discussed in detail in Chapter 3,

Section 3.1.

It is found that both optimisation algorithms perform well in optimising

handling. However, difficulties are encountered in obtaining improvements in

the design process when ride comfort is considered. This is attributed to the

very noisy nature of the ride comfort objective function, which incorporates

computed vertical accelerations. Nevertheless, meaningful design

configurations are still achievable through the proposed optimisation process,

at a relatively low cost in terms of the number of simulations that have to

be performed.

4.1 Optimisation Algorithms

The following optimisation algorithms are evaluated in this chapter:

• The Dynamic-Q method (see Section 2.3) which constructs a sequence

of simple spherical quadratic approximations to the original problem,

and successively solves these sub-problems via the LFOPC (leapfrog)

algorithm (Snyman 2000). The gradients used by the algorithm are

evaluated by forward finite differences, or by central finite differences,

with sufficiently large steps to smooth out the numerical noise.
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• The Sequential Quadratic Programming (SQP) method (see Section

2.2) with Broyden- Fletcher-Goldfarb-Shanno approximations to the

Hessian matrix and one-dimensional minimization by quadratic

polynomial interpolation in the search directions. This method

is invoked by the MATLAB m-file fmincon, which also uses forward

finite difference approximations for the gradients.

4.2 Gradient Approximation Methods

Most gradient-based optimisation algorithms require the determination of the

first and/or second order gradient information of the objective and constraint

functions with respect to the design variables. In most engineering

optimisation problems this gradient information is not analytically available.

The only information available to the designer is the values of objective

and constraint functions obtained via expensive simulations. This research

investigated the use of forward and central finite differences in the Dynamic-Q

optimisation algorithm, for the determination of the first order gradient

information. The formulation of forward finite difference gradient information

was presented in Section 2.4.1, and central finite difference gradient

determination described in Section 2.4.2.

4.3 Optimisation

The vehicle model used is the initial vehicle model that was modelled in

ADAMS View 12 and described in Section 3.1. This model made use of the

521 tyre model, which was later found to be not sufficiently suited for the

desired correlation with measured data. In this initial study the optimisation

parameters were defined as in the following sections.

4.3.1 Design Variables

In choosing the design variables for optimisation, the assumption is made

that the left hand and right hand suspension settings will be the same, but

that front and rear settings may differ. The design variables chosen for
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optimisation are the static gas volume (Figure 4.1), and damper force scale

factor (Figure 4.2), on both the front and rear axles. Thus there are two

variables per axle.

Figure 4.1: Definition of spring characteristics for various gas volumes

Figure 4.2: Definition of damper characteristics for various damper scale factors
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For this initial study the standard damper force characteristic is multiplied

by a factor which constitutes the damping design variable (Figure 4.2).

The general shape and switch velocities of the damper are thus kept the

same. This chapter only considers the cases of two and four design variables,

which respectively corresponds to the case where the spring and damper

characteristics are identical for the front and rear axles (two design variables),

and where they may differ for front and rear (four design variables).

4.3.2 Two Variable Case

The two design variable study is an important starting point in the

optimisation procedure as it gives the necessary insight into the problem. For

this two design variable study, it was decided to use the same design variables

as those considered by Els and Uys (2003) in their preliminary study, namely

the static gas volume and the damper force scale factor. Figure 4.1 illustrates

the spring characteristics for various static gas volumes. Figure 4.2 illustrates

the damper characteristics for various damper scale factors.

The static gas volume is denoted by gvol, and the damper force scale factor by

dpsf . These variables are allowed to range from 0.05 to 3 in magnitude, which

are accordingly chosen as upper and lower bounds. The design variables are

explicitly defined as follows:

x1 = gvol, x2 = dpsf (4.1)

with bounds

0.05 ≤ xi ≤ 3, i = 1, 2 (4.2)

4.3.3 Four Variable Case

For the four design variable problem the front and rear settings are uncoupled.

This means that there are separate front and rear damper scale factors and

front and rear spring static gas volumes. This results in two design variables

describing the front and two describing the rear, giving four design variables
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in total.

The front damper scale factor is denoted by dpsff , the front static gas

volume by gvolf , the rear damper scale factor by dpsfr, and the rear static

gas volume by gvolr. These variables are also allowed to range from 0.05 to

3 in magnitude. Thus the design variables are defined explicitly as follows:

x1 = dpsff, x2 = gvolf,

x3 = dpsfr, x4 = gvolr (4.3)

with bounds

0.05 ≤ xi ≤ 3, i = 1, ..., 4 (4.4)

4.3.4 Definition of Objective Functions

For ride comfort, the motion of the vehicle is simulated for travelling in a

straight line over the Belgian paving (Gerotek 2006) and the sum of driver

and rear passengers British Standard (BS6841 1987) weighted root mean

square (RMS) vertical accelerations are used for the objective function. The

Belgian paving test track used, is located at the Gerotek Test Facilities

(Gerotek 2006), and has a ISO8608 (1995) roughness coefficient Gdo of 1 ×
10−4 m2/(cycles/m), and a terrain index ω of 4 (Thoresson 2003). In a study

performed by Els (2005), it was found that the BS6841 weighed RMS vertical

acceleration corresponds well with subjective responses of ride comfort in

off-road vehicles. For this reason the weighted RMS vertical accelerations will

be used for the objective function, when considering ride comfort optimisation.

The motion sickness component was ignored as it requires long run times

and the Belgian paving test track is not long enough to evaluate motion

sickness. No additional measures were used for the ride comfort objective

function, despite numerous studies (Alleyne and Hedrick 1995, Kim and

Ro 1998, Pilbeam and Sharp 1996, Miller 1998) where the tyre deflection

or force is used as a measure of road holding, when considering a quarter car

model. This was ignored as the suspension system has the ability to switch to

the handling setting should a handling condition be detected. Also handling
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lateral and roll degrees of freedom cannot be simulated with a quarter car

model. Kim and Ro (2001) also suggest that tyre deflection is insufficient

for evaluating handling parameters. This afforded the optimisation for ride

comfort and handling to be done separately.

For handling, the vehicle performs a ISO3888-1 (1999) double lane change

manœuvre at 80 km/h and the maximum body roll angle at the first peak (Els

and Uys 2003) is used as the objective function. For this initial investigation

only roll angle was used as a measure of handling as suggested by Uys et al.

(2006a).

4.3.5 Design Space

For the two design variable optimisation, surface plots of the objective

function over the complete design space were generated. However, with an

increasing number of variables added this is not possible. These objective

function surfaces were generated for the optimisation of handling (Figure 4.3)

and ride comfort (Figure 4.4) separately. From the figures it can be seen that

for excellent handling capability we require high damping and high spring

stiffness, however, the damping does not really contribute to the improvement

if the spring stiffness is high (a small gas volume in Figure 4.3).

However, for ride comfort (Figure 4.4) we find that the opposite holds. The

lowest spring stiffness and low damping is required, but a medium spring

stiffness and low damping results in a minimal decrease in ride comfort

compared to the optimum. The damper scale factor has a more noticeable

effect on the ride comfort, as established previously by Els and Uys (2003)

for the heavier version of this vehicle.

4.3.6 Handling Results

No significant problems were encountered in applying the algorithms to

the optimisation of handling. For handling optimisation with two design

variables both algorithms converged to an optimum without difficulty. Figure
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Figure 4.3: Vehicle roll angle, double lane change at 80 km/h for the two variable

design space

Figure 4.4: Vehicle Ride comfort, Belgian paving at 60 km/h for the two variable

design space
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4.5, depicting the convergence histories for each algorithm, plots the objective

function value against number of function evaluations. The number of

function evaluations is used for the x-axis, instead of iterations, as the cost of

the optimisation depends on the number of function evaluations performed,

and not the number of iterations, due to the computationally expensive

nature of the simulation model. Note that each successive marker on the

graphs denotes a new iteration, and that each iteration does not necessarily

require the same number of function evaluations. The SQP convergence

history for handling optimisation (Figure 4.5) indicates two local minimum

solution sets with the same objective function value. This is observed when

comparing the two distinct values of design variable x(2) (at 15 and 30

function evaluations for example) that result in little or no change in the

objective function value. Because of the cost of the function evaluations, the

objective function values are plotted against cumulative number of function

evaluations at the iteration point. The use of Dynamic-Q with 10 % move

limit (Figure 4.5) re-iterates the fact that design variable two (damper

multiplication factor) has a limited effect on the objective function value as

has already been established in Figure 4.3. Using a 20 % move limit (Figure

4.5) Dynamic-Q progresses faster to a minimum. Because of the excellent

performance of the forward finite difference method the use of central finite

differences at additional cost was not necessary.

The handling optimisation results for four design variables (Figure 4.7)

were not really different to that for two variables. This can be expected as

the dynamics of the system has not changed substantially. It is interesting to

note that a move limit of as big as 30 % of the variable’s range may be used in

Dynamic-Q using forward finite differences. It can also be seen from Figure

4.6 that the optimisation histories are very well behaved. Figure 4.6 again

indicates the definite existence of more than one local minimum with the same

objective function value, but significantly different design variable values.

This is attributed to the ‘flat’ region in the design space, where the objective

function is relatively insensitive to the design variables. The SQP algorithm

performed almost similarly to Dynamic-Q, and also found two different local

minima, with the same objective function value. SQP converged in 9
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Figure 4.5: Handling optimisation, 2 design variables

Figure 4.6: Handling optimisation, 4 design variables
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iterations (49 function evaluations), and Dynamic-Q in 5 iterations (25

function evaluations). The two different optima correspond to the cases

where the damper scale factors are respectively the same and different at

the front and rear. Large differences in performance of the optimisation

algorithms are only expected when the number of design variables increases.

This reinforces our initial conclusion from the results for two variables: that

the damper scale factor has negligible effect on the vehicle’s handling

performance (body roll angle) through the double lane change manœuvre at

the optimum (stiff) spring rate. It can also be observed from the results that

the spring gas volume (two design variable optimisation, variable x1, four

design variable optimisation, variables x2 and x4) runs to the lowest bound,

corresponding to the maximum possible spring stiffness (smallest possible

gas volume).

4.3.7 Ride Comfort Results

A summary of the results of the optimisation for ride comfort is shown in

Table 4.1. Two design variable ride comfort optimisation encountered the

problems associated with a noisy objective function. It is postulated that

the severe noise present in the ride comfort objective function, as opposed

to the smooth nature of the handling objective function, is related to the

fact that for ride comfort, accelerations are used, while for handling, angular

displacement is used for the objective function measure, however, the filtering

and use of the RMS value is a traditional smoothing effect, which is not

evident from the results though. Although not immediately apparent at this

stage, especially when considering the course mesh of Figure 4.4 used to get

a feel of the form of the optimisation problem, it will be shown that the

objective function exhibits severe noise.

The SQP method (Figure 4.7) took 8 iterations (33 function evaluations) to

stabilise on a minimum, corresponding to the lowest possible damping and

stiffness, as expected from Figure 4.4. The Dynamic-Q method experienced

greater difficulties in obtaining a stable minimum. For this reason, the
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central finite difference method for determining the gradient, was introduced

to obtain stability in the optimisation process. The Dynamic-Q method

with central finite differences, with a 10 % move limit (Figure 4.7) took

9 iterations (50 function evaluations) to find a minimum, with inspection

showing that this minimum is effectively reached after only 4 iterations (25

function evaluations). The vertical acceleration at this point is, however,

significantly higher than that found with SQP indicating the existence of a

separate interior local minimum. A 20 % move limit (Figure 4.7) took 6

iterations (30 function evaluations), finding a local minimum not far off the

SQP minimum. The Dynamic-Q minimum design variable values are not at

the extrema found by the SQP method, reinforcing the fact that the ride

comfort design space has a flat plateau of local minima.

Figure 4.7: Ride comfort optimisation, 2 design variables

For the four design variable optimisation Dynamic-Q was modified so that

the move limit for each iteration is 90 % of the move limit of the previous

iteration. This was done so as to stabilise the convergence behaviour of the
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Figure 4.8: Dynamic-Q ffd ride comfort, 4 design variables, 10 % move limit

Figure 4.9: Ride comfort optimisation, 4 design variables
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Table 4.1: Ride Comfort Optimisation Results

Algorithm Move Figure Iterations Function Optimum

Limit Number Evaluations value

Two Design Variables

SQP - 4.7 8 33 2.7

Dynamic-Q central 10 % 4.7 9 (4) 50 (25) 4.1

finite differences 20 % 4.7 6 30 3.1

Four Design Variables

Dynamic-Q forward 10 % 4.8 12 65 3.8

finite differences 5 % 4.9 6 35 3.9

Dynamic-Q cfd 10 % 4.9 4 45 3.6

SQP - 4.9 8 65 3.5

algorithm and to try and prevent high spikes in the optimisation process.

These spikes are caused by a poor approximation to the objective function

close to the minimum, resulting in the LFOPC algorithm finding a minimum

of the approximated problem on the slope of the steep valley close to the

actual minimum. However, Dynamic-Q quickly recovers within a single

iteration (5 function evaluations) as can be seen in Figure 4.8 iteration 7.

The results of the optimisation are presented for both central finite differences

and forward finite differences used for the gradient approximations in Figure

4.9.

An alternate explanation for the spiky nature of the optimisation convergence

histories is the numerical noise of the objective function. This becomes

apparent when evaluating Figure 4.7 where it can be observed that for a

relatively small change in the design variable values (Dyn-Q cfd 10 %) there

is a relatively large change in the objective function value. This is also

observed in Figure 4.8 iterations 5 and 6.

From Figures 4.8 and 4.9 for the forward finite difference Dynamic-Q

implementation, it can be seen that the smaller move limit of 5 % is more

stable reaching a minimum within 6 iterations (35 function evaluations),
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while 10 % move limit takes 12 iterations (65 function evaluations). The

algorithm however does not converge due to the noisy objective function with

steep valley. The convergence behaviour for central finite differences coupled

to Dynamic-Q is shown in Figure 4.9 requiring 4 iterations (45 function

evaluations). Again it has been determined that the smaller move limit is

beneficial to finding the minimum. The central finite difference gradient

evaluation builds into the system a level of robustness. From the results it

can be seen that around 1.5 liter gas volume and limited damping returns the

best results. The central finite difference results show that by increasing the

rear gas volume with minimal damping, a better overall ride can be achieved

(Figure 4.9).

SQP also found similar good results within 8 iterations (65 function

evaluations) (Figure 4.9). From Table 1 it is concluded that Dynamic-Q

with forward finite differences does not reach the same minimum

as Dynamic-Q with central finite differences. Dynamic-Q with central finite

differences is also comparatively economical to SQP, finding an minimum

within 5 % of the SQP minimum objective function value.

The levels of tyre vertical acceleration associated with the obtained optimum

design conditions were evaluated. It was found that compared to the baseline

vehicle (Figure 4.10), the tyre does experience high levels of acceleration,

which is associated with tyre hop, when driving in a straight line over the

Belgian paving. However, these accelerations are not transmitted to the

vehicle body, so that the objective function value calculated is indeed an

optimal value. Due to the presence of tyre hop, it is suggested that even

when considering ride comfort and handling separately, a measure of the tyre

hop (vertical force, deflection or acceleration) should also be considered when

optimising the vehicle’s suspension for ride comfort, this is later included in

the work performed in Chapter 5.
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Figure 4.10: Tyre hop investigation. Vertical tyre accelerations for SQP

optimised suspension compared to baseline vehicle.

4.4 Conclusion

The feasibility of using gradient-based approximation methods for the optimal

design of a vehicle’s suspension was investigated. An industry-standard

version of the SQP method, and the in-house Dynamic-Q method, were

evaluated. The determination of the objective function was performed using

a full multi-body vehicle simulation model that was both computationally

expensive, and exhibited severe inherent numerical noise when considering,

in particular, ride comfort. The goal was to determine the vehicle’s optimal

spring and damper characteristics for both ride comfort and handling.

It is concluded that both optimisation algorithms work exceptionally well

when optimising for handling. However, it is felt that the damper should

play a role in the optimum suspension settings and thus a damper dependent

measure should also be considered in the definition of the handling objective

function.
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Although difficulties were experienced in the ride comfort optimisation due to

the severe inherent noise in the objective function, both algorithms sufficiently

overcame this problem by yielding locally optimal feasible solutions. It was

found that for the Dynamic-Q algorithm the use of central finite differences

for the gradient approximations, at the cost of 2n + 1 function evaluations

per iteration, achieved meaningful optima at a lower cost in terms of total

number of function evaluations (simulations), than the SQP method. This

can be attributed to the inherent stability that the central finite differencing

technique introduces by considering information ahead and behind the current

iteration point. Dynamic-Q can thus be strongly recommended

for applications in vehicle suspension optimisation. The increase in tyre

hop over the baseline vehicle suggests that tyre hop should be added as

a constraint when optimising ride comfort, and cannot be neglected, as

previously postulated.

The gradient-based approximation methods considered here prove to

be feasible optimisation methods when noisy objective functions are to be

optimised. These methods have the distinct advantage of requiring relatively

few function evaluations, each of which corresponds to an expensive numerical

simulation, before reaching an optimal design. It is concluded from this work

that other means of eliminating the negative effects of the numerical noise

should be investigated. Also a means of decreasing the total number of

expensive numerical simulations even further, should be investigated as this

method will still be prohibitively expensive when more design variables are

considered. It is also concluded that a move limit of 10 % is a good general

value to be used in Dynamic-Q. The Dynamic-Q algorithm will now be used

further as it is an in-house code making access to the source code easy, for

the implementation of the ideas of the rest of this research.
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