
Chapter 3

Full Vehicle Simulation Model

Two different versions of the full vehicle simulation model of the test vehicle

will now be described. The models are validated against experimental results.

A unique steering driver model is proposed and successfully implemented.

This driver model makes use of a non-linear gain, modelled with the Magic

Formula, traditionally used for the modelling of tyre characteristics.

3.1 Initial Vehicle Model

A Land Rover Defender 110 was initially modelled in ADAMS View 12

(MSC 2005) with standard suspension settings as a baseline. The ADAMS

521 interpolation tyre model is used, because of its ability to incorporate test

data in table format. The tyre’s vertical dynamics and load dependent lateral

dynamics are thus considered in this model. In order to keep the model

as simple as possible, yet as complex as necessary, longitudinal dynamic

behaviour of the tyres and vehicle is not considered here. The anti-roll

bar and bump stops are left unchanged. Only the spring and

damper characteristics are changed for optimisation purposes. This study

builds on current research into a two-state semi-active spring-damper system.

The semi-active unit has been included in the ADAMS model and replaces

the standard springs and dampers. The inertias of the vehicle body were

determined by scaling down data available for an armoured prototype Land

Rover 110 Wagon, and were considered to be representative of the lighter

vehicle.
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The complete model consists of 16 unconstrained degrees of freedom, 23

moving parts, 11 spherical joints, 10 revolute joints, 9 Hooke’s joints, and

one motion defined by the steering driver. The vehicle direction of heading

is controlled by a simple single point steering driver, adjusting the steering

wheel rotation according to the difference of the desired course from the

current course at a preview distance ahead of the vehicle.

3.2 Refined Vehicle Model

A refined model of the Land Rover Defender 110 is also modelled

in MSC.ADAMS View (MSC 2005) with standard suspension settings,

as a baseline. For this model, the non-linear MSC.ADAMS Pacejka 89

tyre model (Bakker et al. 1989) is fitted to measured tyre data, and

used within the model. This tyre model was selected as it was found that

the 5.2.1 tyre model could not handle tyre slip angles larger than 3 degrees.

The Pacejka 89 tyre model was used with a point follower approximation for

rough terrain, to speed up the simulation speed, and as a result of limited

tyre and test track data available at the time. As in the initial model,

the tyre’s vertical dynamics and load dependent lateral dynamics are also

considered in this model. In order to keep the model as simple as possible,

yet as complex as necessary, longitudinal dynamic behaviour of the tyres

and vehicle is again not considered here. The vehicle body is modelled as

two rigid bodies connected along the roll axis at the chassis height, by a

revolute joint and a torsional spring, in order to better capture the vehicle

dynamics due to body torsion in roll. The anti-roll bar is modelled as a

torsional spring between the two rear trailing arms to be representative of the

actual anti-roll bar’s effect. The bump and rebound stops, are modelled with

non-linear splines, as force elements between the axles and vehicle body. The

suspension bushings are modelled as kinematic joints with torsional spring

characteristics that are representative of the actual vehicle’s suspension joint

characteristics, in an effort to speed up the solution time, and help decrease

numerical noise. The baseline vehicle’s springs and dampers are modelled
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Table 3.1: MSC.ADAMS vehicle model’s degrees of freedom

Body Degrees of Freedom Associated Motions

Vehicle Body 7 body torsion

(2 rigid bodies) longitudinal, lateral, vertical

roll, pitch, yaw

Front Axle 2 roll, vertical

Rear Axle 2 roll, vertical

Wheels 4 x 1 rotation

with measured non-linear splines. The vehicle’s center of gravity (cg) height

and moments of inertia were measured (Uys et al. 2005) and used within

the model. Only the spring and damper characteristics are changed for

optimisation purposes. The 4S4 unit has been included in the MSC.ADAMS

model, using the MSC.ADAMS Controls environment to include the Simulink

model, and replaces the standard springs and dampers. Due to the fact that

different suspension characteristics are being included the first two seconds

of the simulation have to be discarded, while the vehicle is settling into an

equilibrium condition. Figures 3.1 and 3.2 indicates the detailed kinematic

modelling of the rear and front suspensions. The complete model consists

of 15 unconstrained degrees of freedom, 16 moving parts, 6 spherical joints,

8 revolute joints, 7 Hooke’s joints, and one motion defined by the steering

driver. The degrees of freedom are indicated in Table 3.1.

The vehicle’s direction of heading is controlled by a carefully tuned yaw rate

steering driver, adjusting the front wheels’ steering angles according to the

difference of the desired course from the current course at a preview distance

ahead of the vehicle (see paragraph 3.4). The longitudinal driver is modelled

as a variable force attached to the body at wheel height depending on the

difference between the instantaneous speed and desired speed (see paragraph

3.3). This MSC.ADAMS model is linked to MATLAB (Mathworks 2000b)

through a Simulink block that requires as inputs the spring and damper

design variable values, and returns outputs of vertical accelerations, vehicle

body roll angle and roll velocity.
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Figure 3.1: Modelling of the full vehicle in MSC.ADAMS, front suspension
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Figure 3.2: Modelling of the full vehicle in MSC.ADAMS, rear suspension
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3.2.1 Validation of Full Vehicle Model

The MSC.ADAMS full vehicle model is validated against measured test

results performed on the baseline vehicle. The measurement positions are

defined by Figure 3.3 and Table 3.2. The correlation results are presented

in Figure 3.4 for the baseline vehicle travelling over two discrete bumps to

evaluate vertical dynamics, and in Figure 3.5 for the vehicle performing a

double lane change manœuvre at 65 km/h. From the results it is evident

that the model returns excellent correlation to the actual vehicle. It is,

however, computationally expensive to solve and exhibits severe numerical

noise due to all the included non-linear effects.

Table 3.2: Land Rover 110 test points

channel point position measure axis

1 B center of gravity velocity longitudinal

2 G left front bumper acceleration longitudinal

3 lateral

4 vertical

5 C rear passenger acceleration longitudinal

6 lateral

7 vertical

8 I right front bumper acceleration vertical

9 A steering arm displacement relative arm/body

10 D left rear spring displacement relative body/axle

11 E right rear spring

12 F left front spring

13 H right front spring

14 B center of gravity angular velocity roll

15 pitch

16 yaw
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Figure 3.3: Test vehicle indicating measurement positions

3.3 Vehicle Speed Control

The speed control is modelled as a variable force Fdrive attached to the body

at wheel center height. The magnitude of this force depends on the difference

between the instantaneous speed ẋact and desired speed ẋd. Because the

vehicle is a four-wheel drive with open differentials, the vertical tyre force

Fztyre is measured at all tyres (1 to 4). If a tyre looses contact with the

ground, the driving force to the vehicle is removed until all wheels are again

in contact with the ground. The driving force is thus defined as:

if Fztyre1→4 = 0

Fdrive = 0

else

Fdrive = 4min(1200,1200(ẋd−ẋact))
0.4

end

(3.1)

The gain value of 1200 was determined to be sufficiently large to ensure

fast stable acceleration of the vehicle model from rest up to the desired

simulation speed. This force is multiplied by 4 as there is one force acting on
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Figure 3.4: Discrete bumps, 15 km/h, validation of MSC.ADAMS model’s

vertical dynamics

the vehicle representative of the torque applied to the four wheels, and 0.4

meters is the radius of the tyres. The MSC.ADAMS model is then linked to

the Simulink (Mathworks 2000b) based driver model that returns as outputs

the desired vehicle speed and steering angle, calculated using the vehicle’s

dynamic response.

3.4 Driver Model For Steering Control

The use of driver models for the simulation of closed loop vehicle handling

manœuvres is vital. However, great difficulty is often experienced

in determining the gain parameters for a stable driver at all speeds, and

vehicle parameters. A stable driver model is of critical importance during

mathematical optimisation of vehicle spring and damper characteristics

for handling, especially when suspension parameters are allowed to

change over a wide range. The determination of these gain factors becomes
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Figure 3.5: Double lane change, 65 km/h, validation of MSC.ADAMS model’s

handling dynamics

especially complex when accurate full non-linear vehicle models, with large

suspension travel, are to be controlled. Single point preview models are

normally unstable for such non-linear vehicle models. This paragraph

investigates the relationship between vehicle yaw response and non-linear tyre

characteristics. The non-linearity of the tyre characteristics is replicated for

the steering gain parameter, ensuring the feasibility of single point preview

models. This paragraph proposes the fitting of the Magic Formula, usually

used for tyre modelling, to the non-linear response of the vehicle’s yaw

acceleration vs. steering velocity in terms of vehicle speed. The subject

of the Magic Formula is reformulated, and used to determine the required

steering input, for a given vehicle speed and desired yaw acceleration. The

proposed steering driver is applied to the refined non-linear full vehicle model

of a Sports Utility Vehicle (see paragraph 3.2), performing a severe double

lane change manœuvre, and simulation results are compared to measured

results. It is concluded that the proposed driver has definite merit, with
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excellent correlation to test results.

The primary reason for requiring a driver model in the present study, is

for the optimisation of the vehicle’s suspension system. The suspension

characteristics are to be optimised for handling, while performing the closed

loop ISO3888-1 (1999) double lane change manœuvre. The driver model

thus has to be robust for various suspension setups, and perform only one

simulation to return the objective function value. Thus steering controllers

with learning capability will not be considered, as the suspension could

be vastly different from one simulation to the next. Only lateral path

following is considered in this preliminary research, as the double lane change

manœuvre is normally performed at a constant vehicle speed.

Previous research into lateral vehicle model drivers, was conducted amongst

others by Sharp et al. (2000) who implement a linear, multiple preview

point controller, with steering saturation limits mimicking tyre saturation,

for vehicle tracking. The vehicle model used is a 5-degree-of-freedom (dof)

model, with non-linear Magic Formula tyre characteristics, but no suspension

deflection. This model is successfully applied to a Formula One vehicle

performing a lane change manœuvre. Also Gordon et al. (2002) make use of

a novel method, based on convergent vector fields, to control the vehicle along

desired routes. The vehicle model is a 3-dof vehicle, with non-linear Magic

Formula tyre characteristics, but with no suspension deflection included.

The driver model is successfully applied to lane change manœuvres.

The primary similarity between these methods is that vehicle models with no

suspension deflection were used. The current research is, however, concerned

with the development of a controllable suspension system for Sports Utility

Vehicles (SUV’s). The suspension system thus has to be modelled, and the

handling dynamics simulated for widely varying suspension settings. The

vehicle in question has a comparatively soft suspension, coupled to a high

center of gravity, resulting in large suspension deflections when performing

the double lane change manœuvre. This large suspension deflection, results
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in highly unstable vehicle behaviour, eliminating the use of driver models

suited to vehicles with minimal suspension deflection. Steady state rollover

calculations also show that the vehicle will roll over before it will slide.

Proköp (2001) implements a PID (Proportional Integral Derivative)

prediction model for tracking control of a bicycle model vehicle. The driver

model makes use of a driver plant model that is representative of the actual

vehicle. The driver plant increases in complexity to perform the required

dynamic manœuvre, from a point mass to a four wheel model with

elastokinematic suspension. This model is then optimised with the SQP

(Sequential Quadratic Programming) optimisation algorithm for each time

step. This approach, however, becomes computationally expensive, when

optimisation of the vehicle’s handling is to be considered.

For the current research several driver model approaches were implemented,

but with limited success. Due to the difficulty encountered with

the implementation of a driver model for steering control, it was decided

to characterize the whole vehicle system, using step steer, and ramp steer

inputs, and observe various vehicle parameters. This lead to the discovery

that the relationship between vehicle yaw acceleration vs. steering rate for

various vehicle speeds appeared very similar to the side force vs. slip angle

characteristics of the tyres. With this discovery it was decided to implement

the proposed novel driver model, with the non-linear gain factor modelled

with the Pacejka Magic Formula, normally used for tyre data.

3.4.1 Driver Model Description

To investigate the relationship between vehicle response and steering inputs,

simulations were performed for various steering input rates (Figure 3.6, where

ts is the start of the ramp when the vehicle has reached the desired speed), at

various vehicle speeds. It was found that there existed a trend very similar

to the tyre’s lateral force vs. slip angle at various vertical loads, (Figure

3.7) with the vehicle’s yaw acceleration vs. steering rate at different vehicle

 
 
 



CHAPTER 3. FULL VEHICLE SIMULATION MODEL 34

speeds (Figure 3.8). Because of this relationship it was postulated that the

vehicle could be controlled by comparing the actual yaw acceleration to the

desired yaw acceleration, and adjusting the steering input rate.

t
ts

δ

δ

Figure 3.6: Vehicle characterisation steering input

From dynamics principles it is known that, for a rigid body undergoing

motion in a plane, the rotational angle as a function of time is dependant

on: the current rotational angle ϑ0, the current rotational velocity ϑ̇, the

rotational acceleration ϑ̈, and the time step δt over which the rotational

acceleration is assumed constant. If the rotational acceleration is not constant,

but sufficiently small time steps are considered, the predicted rotational angle

ϑp will be sufficiently well approximated. The predicted rotational angle can

be determined as follows:

ϑp = ϑ0 + ϑ̇δt+
1

2
ϑ̈δt2 (3.2)

The above equation can be modified for a vehicle’s yaw rotation motion by

defining ϑ as the yaw angle ψ. Considering Figure 3.9, the driver model

parameters can now be defined as:
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Figure 3.7: Tyre’s lateral force vs. slip angle characteristics for different vertical
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Figure 3.8: Vehicle yaw acceleration response to different steering rate inputs
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• desired yaw angle of the vehicle ψd, equivalent to ϑp

• actual vehicle yaw angle ψa, equivalent to ϑ0

• actual vehicle yaw rate ψ̇a, equivalent to ϑ̇

• response/preview time τ , equivalent to δt

• vehicle forward velocity ẋ

x

aψ
dψ

aψ

previewd xτ=

x

y

desired path

vehicle

Figure 3.9: Definition of driver model parameters

The yaw acceleration ψ̈ needed to obtain the desired yaw angle is calculated

from equation (3.2), substituting in the equivalent variables, as follows:

ψ̈ = 2
ψd − ψa − ψ̇aτ

τ 2
(3.3)

The vehicle’s steady state yaw acceleration ψ̈ with respect to different steering

rates δ̇, was determined for a number of constant vehicle speeds ẋ and is

presented in Figure 3.8. Where the vehicle’s response did not reach

steady-state, and the vehicle slided out, or rolled over, the yaw acceleration

just prior to loss of control was used. This process is computationally
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expensive as 11 different steering ramp rates, for each vehicle speed, were

applied to the vehicle model and simulated. The steady state yaw acceleration

reached was then used to generate the figure. When comparing Figure

3.8 to the vehicle’s lateral tyre characteristics, presented in Figure 3.7, it

appears reasonable that the Magic Formula could also be fitted to the steering

response data. Therefore the reformulated Magic Formula, discussed below,

is fitted to this data, and returns the required steering rate δ̇, which is defined

as:

δ̇ = f(ψ̈, ẋ) (3.4)

As output, the driver model provides the required steering rate δ̇, which is

then integrated for the time step δt to give the required steering angle δ.

The Magic Formula is fitted through the obtained data, as it is a continuous

function over the fitted range. Normal polynomial curve fits would be discreet

for the vehicle speed they are fitted to and an interpolation scheme would

be necessary for in-between vehicle speeds. The Magic Formula is thus a

continuous approximation described by 12 values, as opposed to multiple

curve formulae, requiring intermediate interpolation.

3.4.2 Magic Formula Fits

The Magic Formula was proposed by Bakker et al. (1989) to describe the

tyre’s handling characteristics in one formula. In the current study the

Magic Formula will be considered in terms of the tyre’s lateral force vs. slip

angle relationship, which directly affects the vehicle’s handling and steering

response. The Magic Formula is defined as:

y(x) = Dsin(Carctan{Bx− E(Bx− arctan(Bx))})
Y (X) = y(x) + Sv

x = X + Sh

(3.5)

The terms are defined as:

• Y (X) tyre lateral force Fy

• X tyre slip angle α
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• B stiffness factor

• C shape factor

• D peak factor

• E curvature factor

• Sh horizontal shift

• Sv vertical shift

These terms are dependent on the vertical tyre load Fz and camber angle

γ. The lateral force Fy vs. tyre slip angle α relationship typically takes on

the shape as indicated in Figure 3.7, for different vertical loads. Considering

the shape of Figure 3.8 presenting the yaw acceleration vs. steering rate for

different vehicle speeds, the Magic Formula can be successfully fitted, with

the parameters redefined as:

• vertical tyre load Fz is equivalent to vehicle speed ẋ

• tyre slip angle α is equivalent to steering rate δ̇

• tyre lateral force Fy is equivalent to vehicle yaw acceleration ψ̈

The Magic Formula for the vehicle’s steering response can now be stated as:

y(x) = Dsin(Carctan{Bx− E(Bx− arctan(Bx))})
Y (X) = y(x) + Sv

x = X + Sh

(3.6)

With the terms defined as:

• Y (X) yaw acceleration ψ̈

• X steering rate δ̇

• B stiffness factor

• C shape factor

• D peak factor
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• E curvature factor

• Sh horizontal shift

• Sv vertical shift

With the redefined parameters, the Magic Formula coefficients can

be determined in the usual manner. The determination of the coefficients

applied for the steering driver is now discussed. The baseline vehicle’s response

as indicated in Figure 3.8 is used for the fitting of the parameters.

3.4.3 Determination of Factors

The peak factor D is determined by plotting the maximum yaw acceleration

value ψ̈ against the vehicle speed ẋ. For this the graphs have to be interpolated.

Quadratic curves were fitted through the vehicle’s response curves, and the

estimated peak values were used. The peak factor is defined as:

D = a1ẋ
2 + a2ẋ (3.7)

The peak factor curve was fitted through the estimated peak values, with

emphasis on accurately capturing the data for vehicle speeds of 50 to 90

km/h. The 90 km/h peak was taken as the point where the graph changed

due to the maximum yaw acceleration just prior to roll-over. The resulting

quadratic curve fit to the predicted peak values of the yaw acceleration is

shown in Figure 3.10. It is observed that the fit for the Magic Formula is

poor for 30 km/h. This is attributed to the almost linear curve fit through

the yaw acceleration vs. steering rate for speeds of 10 and 30 km/h Figure

3.6, resulting in an unrealistically high prediction of the peak values.

In the original paper (Bakker et al. 1989), BCD is defined as the cornering

stiffness, here it will be termed the ‘yaw acceleration gain’. For the yaw

acceleration gain the gradient at zero steering rate is plotted against vehicle

speed as illustrated in Figure 3.11. The camber term γ of the original paper

will be ignored so that coefficient a5 becomes zero. The yaw acceleration

gain is fitted with the following function:

BCD = a3sin(2arctan(ẋ/a4))(1 − a5γ) (3.8)
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Figure 3.10: Magic Formula coefficient quadratic fit through equivalent peak

values

For the determination of the curvature E, quadratic curves were fitted through

each of the curves in Figure 3.8. These approximations could then be

differentiated twice to obtain the curvature for each. This curvature is plotted

against vehicle speed ẋ, and the straight line approximation:

E = a6ẋ+ a7 (3.9)

is then fitted through the data points, in order to determine the coefficient a6

and a7. The straight line approximation fitted through the points is shown

in Figure 3.12.

The shape factor C, is determined by optimising the resulting Magic Formula

fits to the measured data. This parameter is the only parameter that has

to be adjusted in order to achieve better Magic formula fits to the original
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Figure 3.11: Magic Formula fit of yaw acceleration gain through the actual data
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Figure 3.12: Determination of curvature coefficients
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data. It is defined in terms of the Magic Formula coefficient a0 as follows:

C = a0 (3.10)

The stiffness factor B is determined by dividing BCD by C and D:

B = BCD/CD (3.11)

In the current research the horizontal and vertical shift of the curves were

ignored allowing coefficients a8 to a13 to be assumed zero. The Magic Formula

fits to the original data are presented in Figure 3.13. It can be seen that

most of the fits except for 90 km/h are very good. The vehicle simulation

failed for most of the steering rate inputs before reaching a steady state yaw

acceleration at 90 km/h, thus this can be viewed as an unstable regime.

With the Magic formula coefficients being determined, the manipulation of

the Magic formula for the driver application is discussed.
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Figure 3.13: Magic Formula fits to original vehicle steering behaviour

3.4.4 Reformulated Magic Formula

The steering driver requires, as output, the steering rate δ̇. For this reason

the Magic Formula’s subject of the formula must be reformulated, to make
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it possible to have as inputs, vehicle velocity ẋ and required vehicle yaw

acceleration ψ̈, and as output required steering rate δ̇. However, due to the

nature of the Magic Formula it is not possible to change the subject of the

formula, so the arctan function is described by the pseudo arctan function

as suggested by Pacejka (2002) as:

psatan(x) =
x(1 + a |x|)

1 + 2(b |x| + ax2)/π
(3.12)

where a = 1.1 and b = 1.6. The Magic Formula can now be written as:

F = Bx−E
(
Bx− Bx(1+a|Bx|)

1+2(b|Bx|+a(Bx)2)/π

)

F = tan
(

arcsin( y
D

)

C

) (3.13)

This equation was solved symbolically for x using MATLAB’s Symbolic

Toolbox, and returns an exceptionally long equation, of three terms, not

presented here due to its shear size. This resulting equation is coded into

the Simulink model consisting of the MSC.ADAMS model and the steering

controller. It should be noted that the solution to equation (3.13) will return

multiple answers as the shape of the graphs in Figure 3.13 suggest. Only the

first part of the graphs, up to the peak/maximum point, was used, with the

peak point used as a limit for higher steering rates.

3.4.5 Implementation of Results

In order to validate the performance of the proposed methodology, the Magic

Formula driver was implemented in the vehicle simulation model. The vehicle

was simulated performing the ISO3888-1 (1999) double lane change manœuvre.

The excellent comparison to measured results is presented in Figure 3.14, for

kingpin steering angle, yaw velocity, left rear (lr) spring displacement and left

front (lf) lateral acceleration. It is important to note that the double lane

change is simulated at a constant speed (see results in Figure 3.5) while the

measured results show that the driver decreased speed during the manœuvre,

explaining the slight discrepancies towards the end of the double lane change.
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Figure 3.14: Correlation of Magic Formula driver model to vehicle test at an

entry speed of 63 km/h

The driver model was then analysed for changing the vehicle’s suspension

system from stiff to soft, for various speeds. Presented in Figure 3.15 is the

driver model’s ability to keep the vehicle at the desired yaw angle (Genta

1997) over time. From the results it can be seen that a varying preview

time with vehicle speed, would be beneficial, however, it is felt that for this

preliminary research the constant 0.5 seconds preview time is sufficient. Also

it is evident that the softer suspension system, and 70 km/h vehicle speed,

are slightly unstable, as seen by the oscillatory nature at the end of the

double lane change manœuvre.

The results show that the driver model provides a well controlled steering

input. Also there is a lack of high frequency oscillation typically associated

with single point preview driver models, when applied to highly non-linear

vehicle models like SUV’s, that are being operated close to their limits in the
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double lane change manœuvre.

3.5 Conclusions

It has been shown that the Magic Formula, traditionally used for describing

tyre characteristics, can be fitted to the vehicle’s steering response, in the

form of yaw acceleration vs. steering rate, for different vehicle speeds.

A single point steering driver model has been successfully implemented on a

highly non-linear vehicle model. The success of the driver model, is attributed

to the modelling of the vehicle’s response with the Magic Formula. The

success of the single point steering driver can be related to the non-linear gain

factor, that changes in value with vehicle speed and required yaw acceleration.

Future work should entail an investigation into determining the parameters of

the vehicle that modify the tyre characteristic Magic Formula coefficients to

arrive at the steering rate and yaw acceleration parameters. Ideally the tyre

Magic Formula coefficients should be multiplied by some modifying factor,

based on vehicle characteristics, to be used directly for the control of the

vehicle steering. This would eliminate the need for the computationally

expensive characterisation currently required. A further aspect that could

be considered is determining the value of varying preview time with vehicle

speed. The driver model is, however, sufficiently robust to be used in the

optimisation of the vehicle’s suspension characteristics for handling.
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Figure 3.15: Comparison of different suspension settings and vehicle speeds, for

the double lane change manœuvre, where the desired is as proposed

by Genta (1997)
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